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Abstract

Spacecraft relative navigation is a crucial and yet challenging capability for
missions ranging from science and exploration to on-orbit-servicing and active
debris removal. Traditional approaches vastly rely on the target’s cooperation
or on the ground acquisition of knowledge of the target’s characteristics, then
exploited on-board. Today, the achievement of an autonomous navigation is
becoming a primary task, enabling new complex mission objectives that require
low latencies and thus can not completely rely on ground commands, as is typ-
ically done. To accomplish this task, future missions will embark sensors suites
composed by multiple Electro-Optical instruments. In fact, in the last decade,
the technological development of space sensors as uncooled microbolometers,
multispectral cameras and laser scanners, made them portable also on small
platforms and apt to be employed for navigation purposes, as opposed to
complex scientific instruments. Differentiating the input measurements to
navigation not only would raise robustness and accuracy, which are keys for
autonomy, but would also increase flexibility, allowing to widen the operational
ranges.

This research work focuses on the exploitation of Electro-Optical sensors for
enhancing autonomous relative navigation in proximity of an uncooperative
target. Different types of sensors are examined, probing the advantages and
limitations of their stand-alone employment and proposing methods to engage
them in synergy for the navigation. Monocular cameras working in the visible
band are considered at first, being the most common solution adopted for
relative navigation. To explore benefits and boundaries of such approach,
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particularly challenging applications are considered, as of use to understand
when other sensors may come into place. As a result, multispectral navigation
is proposed to overcome visibility and illumination-related issues proper of
the visible band, identifying from analyses the Long Wave Infrared Band as
interesting for a multispectral navigation. Secondly, the navigation performance
achievable with currently available thermal infrared cameras is studied. The
operative conditions in which thermal-based navigation is advantageous with
respect to visible imaging are defined and a multi-modal navigation is proposed.
Moreover, visible-infrared images fusion is implemented and compared with
the two stand-alone techniques of visible and infrared images. Finally, classical
and Deep Learning methods based on LiDAR scanners are developed for
pose estimation, offering structured information of the target geometry. The
possibility of an integration with a classical vision-based approach is also
proposed. The research work successfully finds key elements and guidelines
for an exploitation of the different kind of sensors in various scenarios. The
proposed methods can increase accuracy, robustness or enable operations for
new mission concepts.

The Thesis also poses its accent on the verification and testing of the proposed
navigation techniques. In particular, the topic of generating representative
synthetic data and of their validation with real or experimental data is argued
for the three sensors. The lack of prior tools is mostly challenging for thermal
cameras, therefore an innovative pipeline for generating synthetic thermal
images is proposed and implemented. Experimental activities including cal-
ibration of sensors in GNC facilities are carried-out. Such activities allowed
tests of the navigation algorithms, comparing the performance achieved with
respect to synthetic data.

This Thesis offers an overview and initial framework for the concurrent ex-
ploitation of visible cameras, thermal cameras and LiDAR sensors, making a
step forward to overcome major challenges of proximity relative navigation
with uncooperative objects.
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CHAPTER1
Introduction

For several space missions, the task of relative navigation is of vital impor-
tance for the fulfillment of the proposed objectives. Relative navigation in
space has already been performed in past decades, but, due to its inherent
complexity, it still requires the massive employment of ground intervention
during the mission.

Spacecraft relative navigation consists in processing measurements from on-
board sensors to determine the relative position and attitude of two different
space objects, namely an active satellite and a space target. The targets of
interest are indeed various, as they inhere to both natural celestial bodies
and artificial objects, i.e. other spacecraft. Thus, the relative navigation
problem is of interest for several applications. For what concerns missions
to moons, asteroids, comets and planetary terrains, it is fundamental for the
operations of approach, descend and landing on the celestial body. Whereas,
with regard to On-Orbit Servicing (OOS), Formation Flying (FF) and Active
Debris Removal (ADR) missions, relative navigation allows complex operations
such as approach, docking and capture. As a general consideration, for all the



Chapter 1. Introduction

above mentioned missions, the relative navigation is a mandatory step, being
part of the spacecraft Guidance Navigation and Control (GNC) chain.

A key element to achieve a successful navigation is the choice and the exploita-
tion of navigation sensors. In case of cooperative targets, the relative navigation
architecture can rely on Radio Frequency (RF) and Global Positioning System
(GPS) sensors. Instead, when the target is uncooperative the available options
restrict to Electro-Optical (EO) sensors. EO sensors include passive sensors, as
monocular cameras and stereocameras, and active sensors, as Light Detection
and Ranging (LiDAR) sensors and Time-of-Flight (ToF) cameras [1], [2].

This Thesis deals with the relative navigation problem, in particular focusing
on the exploitation of EO sensors for the navigation.

1.1 Context & motivation

Past and current missions have tackled only some of the many challenges
related to the navigation problem. The achieved results were possible thanks
to the heritage of missions of the past decades. This process towards autonomy
is on-going, as major improvements still need to be performed in this direction,
in order to enable new, more ambitious and complex mission objectives.

An important mission demonstrating autonomous navigation is PRISMA, that
dealt with relative GNC between a chaser and a target spacecraft. The mission,
launched in 2010, included the demonstration of several GNC techniques to
enable future FF missions. The experiments consisted in performing different
maneuvers and relative approaches around the target spacecraft, employing
GPS-based, RF or vision-based techniques. Concerning the vision-based ap-
proaches, at far-range a camera was used for LoS (Line of Sight) navigation
from about 100 km down to 100 m. While at short-range, another camera
was exploited to carry out pose determination with the known cooperative
target. A set of active markers (LEDs) was employed on the target, positioned
according to a coplanar, non-collinear pattern. An output of the mission was
the collection of space images and of the related navigation data, that were
then used on-ground to develop algorithms for the case of an uncooperative
known spacecraft target, relying on the knowledge of its model [3].

The Automated Transfer Vehicle (ATV, 2008 - 2014) missions employed a
videometer, a system that operates similar to a Flash LiDAR as navigation
sensor. At far distances, the sensor was employed to derive range, range-rate
and LoS measurements. Whereas at close distances, the relative position and
relative attitude were computed thanks to retro-reflectors on the ISS [4]. Of
particular interest for the development of improved navigation algorithms was
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the ATV-5 experiment in 2014, which allowed the collection of synchronized
data from visible, thermal cameras and scanning LiDARs [5].

Regarding the close-range navigation with an uncooperative natural body,
one of the most recent missions tackling this problem is Hayabusa 2, that in
2018 reached the asteroid 162173 Ryugu. A retroreflective target marker was
deployed on the asteroid’s surface and used as an artificial landmark on the
natural terrain. A flash lamp installed near the on-board camera illuminated
the marker, that reflected most of the light unlike other natural bright objects
on the surface, allowing the retrieval of differential images for landing [6]. On
the other hand, for the first part of the descent operations, the autonomy of
the GNC system was still low. In fact, the vision-based navigation relied on
ground-loops, where the control operators manually had to find by hand the
pose of the asteroid by means of a Graphical User Interface (GUI) program,
with an iterative process. Operations entailed then the ground computation
of the spacecraft maneuver, propagating the estimated state for 65 min. This
was the time needed to uplink the maneuver’s command, downlink new images
and compute the successive command. Whereas the altitude was estimated
on-board relying on LiDAR measurements [7].

For the first time, during the OSIRIS-REx mission in 2020, an autonomous
optical navigation system relying on natural terrain features was used to guide
a spacecraft to a planetary surface. The spacecraft’s position and velocity with
respect to the asteroid was estimated autonomously on-board, thanks to prior
on-ground generation of digital terrain models, equipped with relative albedo
data [8]. The on-board system worked by rendering the landmark features
from the digital terrain models and then performing a correlation in real-time
with navigation images.

In 2022, the DART mission reached and impacted the Didymos system, relying
on a vision-based navigation system that was autonomous for the last hours
up to the impact. The mission was planned to perform blobbing, centroiding,
targeting to derive LoS measurements of Didymos. The spacecraft inertial
pointing was exploited to predict the stars and Didymos’ centers in the im-
ages [9]. The thorough navigation results are still not publicly available. From
first insights, the most relevant challenges in the application of the navigation
technique were the number and frequency of images, the need to add multiple
images and the distortions caused by the camera rolling shutter [10].

The high Technology Readiness Level (TRL) relative navigation techniques
based on EO sensors are reported in Table 1.1, where ρ, ρ̇ are range and range-
rate, r and v are position and velocity, h is the altitude and q stands for the
relative attitude. As clearly visible, relative navigation in proximity of a known
or unknown uncooperative target is clearly still a great technological challenge.

3
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In fact, the solutions adopted up to now largely rely on the active cooperation
of the target, on the employment of markers, or on ground-loops.

Table 1.1: State-of-the-art relative navigation techniques with EO sensors.

Navigation Target Range Measure- Notes on
sensor ment autonomy

Camera known far/mid LoS on-board
cooperative s/c

Camera known close r, q on-board,
cooperative s/c relying on

markers
Camera known far/mid r, v on-board,

asteroid ground
maplets

Camera asteroid mid/close LoS on-board,
relying on
absolute nav
output

Camera asteroid close LoS, ρ on-board,
marker
deployment

LiDAR known far/mid ρ, ρ̇, LoS on-board
cooperative s/c

LiDAR known close r, q on-board,
cooperative s/c retroreflectors

LiDAR asteroid mid/close h on-board

New sensors technologies, as scanning LiDARs and uncooled microbolometer
thermal cameras, have enhanced their TRL in the recent years, opening the
doors to new possibilities for navigation. The LIRIS ATV 5 experiment in 2014
has been a technological demonstration for the employment of new sensors, to
support the advancement of GNC non-cooperative rendezvous technologies.
LIRIS experiment consisted of two thermal infrared cameras, a visible camera
and a LiDAR system. The new sensors’ data were recorded on-board without
any on-board processing and then were used on ground to develop and test
relative navigation algorithms [5].

Future missions are planned with more ambitious objectives that require the
employment of such recently proposed and tested sensors technologies. ESA’s
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Hera mission payloads will include both an AFC (Asteroid Framing Camera) for
navigation and imaging and the TIRI (Thermal InfraRed Imager) contributed
by JAXA, which is proposed to be used for navigation and observation of the
asteroid night side [11]. For future active debris removal missions [12], LiDARs
are suggested as key technology enabling the rendezvous with an uncooperative
target, in the mid/close-range operations. While final rendezvous and capture
should incorporate a combination of sensors, namely cameras working in the
visible and infrared spectrum and LiDAR.

Hence, an appealing opportunity for spacecraft navigation consists in the
clever and concurrent exploitation of multiple EO sensors, with the aim of
compensating the limitations of the respective technologies.

The choice of the relative navigation sensors and of the related algorithms is
not trivial, as it is tightly connected to the mission analysis and operations
design, since the first mission design phases. In fact, the sensors measurements
depend on the spacecraft trajectory relative to the target, on the absolute
trajectory, i.e. on the environmental conditions (such as the illumination) and
on the mission operations, which determine the different sensing modes to be
employed in all mission phases and contacts with ground. Thus, on one side
the sensors characteristics constitute an input to the trajectory design, and on
the other side the input to sensors are dependent on the nominal trajectory
and environmental conditions.

The most commonly adopted sensors are visual cameras, that are passive and
provide a wide operative range, generally required by the mission’s operations.
Indeed, spacecraft relative navigation techniques largely rely on optical mea-
surements taken from monocular cameras working in the visible spectrum. On
the other hand, space imaging strongly suffers from high contrast, low Signal to
Noise Ratio (SNR) and smearing. Moreover, the target appearance is subject
to large variations due to the changes of the illumination conditions in orbit.

In addition to visible cameras, missions to celestial bodies typically carry on
board scientific instruments working in different spectral bands, and which could
be exploited also for navigation purposes. The Rosetta mission carried VIRTIS
(Visible InfraRed and Thermal Imaging Spectrometer), an hyperspectral imager
performing 0.25 µm to 5.1 µm imaging spectroscopy on two separate channels
[13]. The Hayabusa 2 mission carried on board the TIR experiment, that
collected far to close range thermal images of the surface in the Long Wave
InfraRed (LWIR) spectrum, in the range 8-12 µm [14]. In particular, it has
been shown that during the descent some of the thermal images could have
been exploited for enhancing the detection of markers placed on the asteroid
surface, that were detectable as cold spheres [15]. Such recent outcomes have
highlighted the possibility to exploit sensors working in the infrared band for
navigation purposes, along side with a more classical sensor suite. Possible
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useful applications include vision-based GNC algorithms for approaching a
target body, operations in the night or in the dark area, but also moons
and meteoroids detection, markers tracing, landing site selection and hazards
detection.

The main idea behind multispectral imaging consists in collecting images in
specific and distinguished targeted spectral bands and exploit the differences
among images to obtain the algorithms performance improvement. Thermal
sensors typically present a smaller array size compared to photon sensors and
for this reason they are less prone to navigation. On the other hand, the
thermal infrared band is less sensitive to illumination than the visible band [16].
Thus thermal cameras could be employed also in the dark side if the body
surface temperature is inside the instrument detection range. Other advantages
of thermal images compared to the visible ones are the absence of bright spots
such as background bright stars, bad pixels, irradiation of solar wind particles
or galactic rays. Moreover, there is no need to change the overexposure when
the target is seen from a single pixel unit until a numerous pixel-sized body
[15].

While visible and thermal cameras are both imaging instruments, LiDAR
sensors are laser-based and thus offer a quite different alternative. In fact,
they are employed with success for deriving range measurements, which are
more difficult to obtain with vision sensors. Moreover, LiDAR sensors are
affected neither by illumination conditions and by the presence of far-range
celestial bodies in their field of view, nor by the temperature of the target.
On the other hand, LiDAR are active sensors and they typically require a
larger computational processing power, which is indeed very limited in space
applications, due to the necessity of using rad-hard components. Some other
disadvantages presented by LiDAR are the limited Field of View (FoV), motion
distortion (i.e. point clouds measurements received at different times during
continuous LiDAR motion) and failure of scan matching in degenerate scenes
dominated by a planar surface. In ground applications, visual-LiDAR fusion
strategies have shown an increased robustness in terms of strong light changes,
which is a typical condition for space applications, and in terms of motion speed,
which could be the case of a high tumbling target or slow processing frequency
available on-board. Since images provide rich visual texture information, and
LiDAR has sparse but precise distance measurement and 360-degree field of
view, the combination of vision sensors and LiDAR sensors may complement
each other in motion estimation tasks.

When dealing with the development of new navigation techniques, an important
aspect consists in their verification and test. To be accepted for flight, GNC
algorithms require running Hardware/Processor-In-the-Loop (HIL/PIL) tests
campaigns in highly representative environments. PIL and HIL experiments
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are mandatory to further increase the TRL of EO-based navigation algorithms.
There are several reasons for which such experimental approach is fundamental
for the testing and validation process. In first place, the navigation algorithms
development widely relies on synthetic images and data, because of the scarce
availability of complete and repeatable real imagery datasets. To validate
such approach, experiments are necessary. In addition, while synthetic images
allow to create large datasets, they are not always suitable for carrying out
closed-loop PIL tests. In fact, the high computational cost of the rendering
process may not allow real time tests, which may thus require the use of a real
sensor. Finally, the whole navigation system performance can be assessed only
by means of complete HIL tests, connecting the composing parts together to
verify mutual influences. In addition to traditional image-based navigation
techniques, the recent development of navigation algorithms based on Artificial
Intelligence (AI) has posed further challenges to the verification and testing of
the GNC chain. Therefore using both kind of data, synthetic and experimental,
is mandatory for the development and testing of relative navigation algorithms.

1.2 The research problem

1.2.1 Objectives

The enhancement of autonomy in space missions is the core motivation of
the Thesis, given the context explained in Section 1.1. More specifically, the
principal research objective of the present Thesis is:

to study the exploitation of Electro-Optical sensors for enhancing relative
navigation and proximity operations with uncooperative space targets.

In order to develop the proposed objective, tools and techniques must be found
merging and adapting knowledge from the two realms of space navigation
and computer vision. The former offers consolidated algorithms with low
autonomy, but light, robust and suitable for an on-board implementation; the
latter provides advanced image processing and machine learning algorithms
with high autonomy, and sensor fusion methods.

The Thesis always keeps into account that research is not independent of the
real application. For this reason, the verification and testing of techniques with
realistic data is an aspect that can not be ignored. In light of the fact that
datasets from real missions are limited, or not public, or not existing for some
scenarios, the work starts with the problem of realistic datasets generation.
The work methodology consisted in exploiting both synthetic and experimental
data for the techniques development, verification and testing.
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1.2.2 Research questions

The Thesis objective is argued in the research, looking for the answer to the
following questions:

1. How to generate representative synthetic visible images, thermal images
and LiDAR data? How to obtain realistic experimental data and which
is the ground truth pose accuracy achievable in the laboratory for a
multi-sensor system?

2. Which is the actual difference between synthetic data and experimental
or real data? To which degree can synthetic data be used for developing
and testing of navigation algorithms for space applications?

3. Which are the limitations of visible imaging algorithms in complex mis-
sion scenarios with multiple targets of different nature? Can mapping
with visible imaging be improved in the direction of an autonomous ex-
ploration and specifically how is the performance affected by factors and
uncertainties not accounted for during the technique ground development?

4. Can multispectral imaging improve relative navigation and mapping?
What is the contribution of thermal imaging? In which conditions a
multispectral approach can lead to benefits to the navigation?

5. Can LiDAR-based methods provide robust and accurate solutions for
pose estimation with an uncooperative target? How could they be used
in synergy with camera for pose estimation?

6. What is the gap in pose estimation performance between synthetic and
real data?

1.3 Dissertation overview

The Thesis dissertation follows the research questions listed above. The
dissertation starts from researching ways for obtaining realistic synthetic and
experimental sensors’ data. From the comparison among them, some insights
on their employment are drawn and then followed for the navigation algorithms
development and testing. Then, innovative approaches for relative navigation
are proposed. First, the employment of visual cameras for navigation and
mapping is considered, dealing with non-traditional approaches and highlighting
which are the limits that could be improved by employing other sensors. Then,
the exploitation of thermal cameras and LiDAR scanners for pose estimation
is studied, considering the sensors alone or in synergy with a visual monocular
camera. More specifically, the Thesis is organized as follows.
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Chapter 2 describes the background and state-of-the-art knowledge needed
to develop the present work. The models of the different EO sensors are
introduced and the state-of-the-art techniques for relative navigation with
multispectral imaging and LiDAR sensors are presented.

Chapter 3 discusses the employment of vision data for development and valida-
tion of on-board algorithms. The different aspects and challenges related to
the generation of synthetic data are faced, argued for visible cameras, thermal
cameras and scanning LiDARs. The work then includes experimental activities
in GNC facilities, tackling the issues related to calibration of new mock-ups and
sensors. A comparison of artificial with experimental or real data is carried-out
for the three kinds of sensors.

Chapter 4 deals with the navigation and mapping relying on visible imaging,
with the aim of probing both the benefits and applicability limits of such
kind of sensors, considering challenging applications. First, a scenario with
multiple targets of different nature is examined, proposing a centralized relative
navigation for far-range CubeSats in a binary asteroid system. Then, an
AI-based policy for mapping an asteroid in the close-range is verified, testing
it with uncertainties not accounted for during the learning and checking the
advantages obtainable with the on-ground mapping from the collected images.

Chapter 5 investigates the possibility and advantages of employing imaging
systems working in different spectral bands for the purposes of on-board
navigation. In detail, relative navigation in proximity of an unknown asteroid
is tackled, defining the boundaries for exploiting a multi-modal Simultaneous
Localization And Mapping (SLAM) with visible and thermal images. Than,
image-level multiscale transform-based fusion of visible and thermal images
is performed and the SLAM with fused images is compared with the prior
approach.

Chapter 6 focuses on LiDAR-based methods for pose estimation with an
uncooperative spacecraft. In particular, a Point Completion Network (PCN) is
trained for the global pose estimation with a known uncooperative spacecraft.
The possibility of employing a visible camera along with LiDAR sensors for pose
tracking is studied proposing a Visual-LiDAR Odometry (VO-LO) architecture.
For both PCN and VO-LO results are discussed comparing the performance
achieved with synthetic and real data.

Finally, Chapter 7 synthesizes conclusions about each aspect studied in the
Thesis work. The major findings and results are highlighted, drawing a recom-
mended road-map for future developments.
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CHAPTER2
Background & State of Art

In this Chapter, the background and state-of-the-art knowledge needed to
develop the present work are presented. First, the models of EO sensors are
described. Then, techniques for relative navigation are presented, starting from
LiDAR-based methods, and then describing multi-sensor methods, including
visible-thermal imaging and visual-LiDAR techniques. Finally some tools for
validation and testing are introduced.

2.1 Electro-Optical sensors models

In this Section, models for EO sensors are introduced. First, cameras’ work-
ing principles are presented, including the response model of the two major
categories of detectors for imaging in the visible and thermal spectral bands.
Then, an overview of LiDAR sensors for space applications is presented.
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2.1.1 Cameras

Cameras are EO sensors that collect light through an optical system onto
a detector, thus capturing an image. A fundamental aspect of vision-based
navigation algorithms consists in associating pixel coordinates of image points
to real world coordinates.

Figure 2.1: Camera model.

To define the relationship between world points and the image’s pixels, the
following reference frames, shown in Fig. 2.1, are considered:

• the world reference frame W, being an inertial reference frame;

• the camera reference frame C, that is fixed with the camera sensor. Its
origin coincides with the camera center of projection, while the third axis
is coincident with the principal camera axis and the other two axes are
aligned with the detector edges;

• the image-centered reference frame Ic, which is here defined as fixed with
respect to C, with the origin translated on the image plane;

• the image reference frame I, which typically finds its origin in the center
or external corner of the upper left pixel.

To obtain the camera coordinates of the world point xw = [xw yw zw]T , a
transformation is applied to the point homogeneous world coordinates xH

w =
[xw yw zw 1]T .

xH
c = [Rc

w|t]xH
w (2.1)

where Rc
w is the rotation matrix from world to camera coordinates and t is the

translation vector. The roto-translation matrix given by [Rc
w|t] is also called

extrinsic matrix.

12



2.1. Electro-Optical sensors models

Then, the point can be expressed in the Ic frame:

xIc = KxH
c (2.2)

where xIc = [xIc yIc 1]T and its components are expressed in pixel units. The
camera model needs to be characterized by means of the intrinsic calibration,
which consists in retrieving the intrinsic camera matrix K and the camera
distortion coefficients. A simple pinhole camera model can be used for the
intrinsic matrix:

K =


fx 0 px

0 fy py

0 0 1

 (2.3)

where fx and fy are the camera focal lengths and (px, py) is the position of the
principal point. The intrinsic camera matrix transforms the coordinates of a
point from the camera frame to the image pixel coordinates xIc by means of a
projective transformation [17].

Finally, the image coordinates of the point xI can be found by means of a rigid
translation in the image plane:

xI =
[
xI

yI

]
=
[
xI − nx/2
ny/2− yI

]
(2.4)

where [nx, ny] is the detector array size in pixel units.

Camera distortion For a real camera model, the two main distortion effects
are often considered, being the radial and tangential distortion.

Regarding the radial distortion, the actual projected point pixel coordinates
(x′′, y′′) are related to the ideal point coordinates (x′, y′) by a radial displacement
described as: [

x′′

y′′

]
= L(r′)

[
x′

y′

]
(2.5)

where r′ =
√
x′2 + y′2 is the radial distance from the center and L(r′) =

1 + k1r
′ + k2r

′2 + k3r
′3 + ... is an approximation of an arbitrary function.

Tangential distortion can be corrected applying the following transformation:

x′ = x′′ + [p1(r′′2 + 2x′′2) + 2p2x
′′y′′]

y′ = y′′ + [p2(r′′2 + 2y′′2) + 2p1x
′′y′′]

(2.6)
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Detector model Focal Plane Array (FPA) detectors are considered in this
Thesis, being currently the dominant technology for cameras. Such detectors
can be divided into two main categories: photon detectors, that can work from
the visible (VIS) band to LWIR band and thermal detectors, which work in
the LWIR band, as shown in Fig. 2.2. The sensors responses for the two types
are hereafter described.

Figure 2.2: Typical detector materials [18] operational range along the
spectrum.

2.1.1.1 Photon detector model

Photon detectors convert the absorbed electromagnetic radiation directly into
a change of the electronic energy distribution in a semi-conductor by the
change of the free charge carrier concentration. The working principle of such
materials consists in the generation of a photocurrent proportional to the
intensity of the incident radiation. In particular, when the material is exposed
to impinging photons, if their wavelength is inside the sensibility range of the
material, electrons can be moved from their valence band to the conduction
band, generating a current.

Sensor response Considering a point target, in first approximation the
number of photons incident on the detector during the exposure time texp can
be computed as [19]:

Ppx = Psun

πd2

2 ρg(φ)

 1
r2

πd2
a

4

texp (2.7)

where Psun the photon flux coming from the Sun at the target body, r is the
range target-camera, ρ is the target reflectance, φ is the phase angle Sun-target-
camera. The function g(φ) models the reflection on the target surface. The
pixel response in Digital Numbers (DN) is computed as:

rpx = η
Ppx
G

(2.8)
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where G is the camera gain and η is the detector efficiency, computed based
on the fill factor FF, the detector quantum efficiency QE and the optical
throughput ηoe:

η = ηoeQE FF (2.9)

Sensor noise Background noise (expressed in [DN ]) is computed as the
Root Mean Square (RMS) of the noise sources: read-out noise, dark current
and shot noise [20] [19].

N =
√
σ2
shot + σ2

dark + σ2
read

=
√
Nshot + (Ndarktexp)2 +N2

read

(2.10)

Shot noise is typically modeled as a Poisson process, hence its variance is equal
to the mean: Nshot = ηPpx/G.

2.1.1.2 Thermal detector model

Thermal detectors convert the absorbed electromagnetic radiation into thermal
energy causing a rise in the detector temperature.

A common type of thermal detector is the uncooled microbolometer, which is
made of a metal or semiconductor material. Due to recent developments of
this technology, such sensors are becoming interesting for space applications.
Microbolometer sensors present numerous advantages, such as the possibility
to operate without cooling system; thus, having reduced dimensions, this
technology is a promising option for deep-space CubeSats as well, thanks to
the small dimensions of such compact devices.

The working principle of a microbolometer consists in applying a bias voltage
to a film of thermo-sensitive material through the readout circuit. If the thin
film is irradiated by infrared radiation, it heats up and its resistance value is
changed; such resistance change is converted to a current or voltage signal that
can be output by the readout circuit.

Sensor response The measurement provided by a microbolometer is pro-
portional to the incoming scene radiation.

The pixel response rpx in [DN ] of the instrument can be modeled as:

rpx = GpxL+Dpx (2.11)

15



Chapter 2. Background & State of the Art

where L is the scene radiance and Gpx and Dpx are parameters determined
experimentally during the instrument characterization. In particular, Gpx is
the camera gain and Dpx the camera offset, also known as dark signal. The
parameters can be determined experimentally by imaging a black body that
occupies the whole scene, at different temperatures. This procedure allows
to retrieve the response of each pixel of the detector array as function of the
scene radiance. Due to the non-uniformity of the detector, each pixel has a
different response and thus the parameters Gpx and Dpx must be determined
for each pixel (i, j). Typically, the offset and sensitivity variations on the array
are quite relevant, thus during operations dark frames are acquired to correct
the response.

Scene radiance Ideally, the emitted scene radiance Le can be computed by
means of the Stephan-Boltzmann law as:

Le = εσTα (2.12)

where α = 4. Whereas, the incoming radiance accounts for the view factor
from the emitting body to the detector pixels:

L = Fa−pLe (2.13)

The view factor Fa−p between the target object and pixel surfaces is:

Fa−p = 1
Ap

∫
Aa

∫
Ap

(n̂a · sap)(n̂p · spa)
πS4 dApdAa (2.14)

where n̂ is the surface normal, sij = rj − ri is the position vector connecting
the points on surface i with those on surface j and S is its magnitude (S =
||sji|| = ||sij ||), as shown in Fig. 2.3.

Figure 2.3: View factor between detector array and target area.

Sensor responsivity The responsivity R (or sensitivity) of a microbolometer
array is defined as the ratio between the detector output, i.e. the voltage
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variation, and the corresponding input, i.e. the temperature variation. The
responsivity is thus expressed in [DN/K] and corresponds to the slope of the
response curve:

R(T ) = drpx(T )
dT

(2.15)

Using equations 2.11, 2.12 and 2.13 it turns to be:

R(T ) = αGpxFεσT
α−1 (2.16)

From experiments, the sensitivity has been proved to be quite homogeneous
on the detector, thus it can be approximated as independent from the (i, j)
pixel [21].

Sensor noise Microbolometers sensors are characterized by the Noise Equiv-
alent Temperature Difference (NETD), that is the minimum ∆T that the
instrument can resolve. In particular, it corresponds to the T difference that
a signal equal to the temporal noise (SNR = 1) would produce. It can be
expressed as:

NETD = Nt

R
(2.17)

whereNt is the temporal noise ([DN ]) and R the camera responsivity ([DN/K]).

Experimentally, the NETD can be determined as the difference in temperature
between two side-by-side blackbodies which, when viewed by the camera, gives
rise to a difference in SNR of 1 in the electrical output of the two halves of the
array. It is important to highlight that the NETD depends on the instrument
f-number, the exposure time and the operating temperature of the camera.

NETD = NETD(fnum, texp, Tcam) (2.18)

2.1.2 LiDAR sensors

While cameras capture the color, texture and appearance information, LiDAR
sensors supply the 3D structure information of the environment. The working
principle of a LiDAR sensor consists in illuminating the target with a light
source, providing a ranging measurement ρ by detecting the radiation scattered
by the target:

ρ = c t

2 (2.19)

where c is the light speed, and t the time incurred from the light emission to
the detection of the scattered radiation.
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The source of each laser pulse is a semi-conductor laser diode, composed by
stacked n-p layers of a semi-conductor material. When current is applied across
the diode, photons are emitted and routed into a focused beam.

Several types of LiDAR systems can be employed for space navigation purposes
[4]:

• Scanning LiDAR. Such sensor is made by a row of laser diodes and
detectors, that are put into rotation by a motor, scanning the environment
with a tight laser. They emit and detect the light with a high frequency,
scanning the scene. Such systems contain moving parts.

• Detector arrays. An array of lasers and detectors is kept fixed, illumi-
nating the scene at once.

For what concerns LiDAR scanners and arrays, different approaches can be
used to measure the light ToF:

• Pulse/flash. Discrete laser pulses are emitted, and the return pulse is
awaited at the detector.

• Continuous Wave. A signal is modulated onto the laser and the phase
shift is tracked onto the returning signal.

• Pseudo Random Number. A PRN is encoded onto the laser and then
auto-correlation is performed with the sensed return.

Scanning LiDAR In case of a scanning LiDAR, in addition to the point
range typically other information is provided. In particular, for each measure-
ment the angular position of each laser can be derived in the LiDAR reference
frame L (see Fig. 2.4). Hence, it is possible to measure the position of a world
point in the sensor’s frame, with a simple transformation from spherical to
cartesian coordinates: 

xL = ρ cosω sinα
yL = ρ cosω cosα
zL = ρ sinω

(2.20)

where ω is the elevation angle, related to the laser detector ID, and α is the
azimuth angle, given by the time of the measurement.

Therefore, the LiDAR output consists in a sparse point cloud, i.e. a set of
unordered points, invariant to spatial transformations and where neighbouring
points form a meaningful subset. A point cloud point can be represented
only with its 3D coordinates or also adding other kind of information, such
as color or surface normal. To change the format of such representation into
a regular format (such as vortex grids or 3D images) is not convenient for a
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Figure 2.4: LiDAR model.

light online application, as it implies a high computational cost and storage
memory. Therefore it is preferable to operate directly on the point cloud.

2.2 LiDAR-based relative navigation techniques

2.2.1 Classical methods

Classical methods for LiDAR-based pose estimation have been employed in
both the ground robotics and in the space realms.

In the ground robotics field, LiDAR sensor’s employment for retrieving the
robot pose is quite consolidated and used in real-time applications. One of
the most classical approaches is LiDAR Odometry And Mapping (LOAM)
method proposed in [22] and depicted in Fig. 2.5.

Figure 2.5: LOAM scheme [22].

Concerning the research in the space realm, in [23] a scanning LiDAR is
employed for pose acquisition and tracking of a known uncooperative target. In
particular, the pose acquisition is performed with a binary Template Matching
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(TM) algorithm exploiting a voxel representation of the data. The pipeline is
tested with proof-of-concept experiments.

In [24], another TM approach is proposed for navigation in close-proximity of
a known uncooperative satellite. The TM operates directly on the point cloud
and is in charge for the pose initialization, while the classical Iterative Closest
Point (ICP) algorithm is employed for pose tracking. The presented approach
is reliable, but has the limits of the huge amount of data to be stored on-board
required by the TM and the consequent high computational cost. A highlight
of the study is that the ICP performance is affected by the partial view of the
target spacecraft.

In [25], a 3D LiDAR is used for providing an initial pose estimate, performing
a registration of the acquired point cloud with a known model point cloud,
exploiting the matching among a query point set and a match point set. The
algorithm is tested in DLR EPOS facility, with real LiDAR point clouds.

2.2.2 Deep Learning methods

While several Deep Learning (DL) methods exist for estimating the 6-DoF pose
of an object from visual information, such architectures can not be employed
with point cloud data. In the recent years, some DL methods that handle this
kind of data have been studied.

In [26], PointNet has been proposed to process directly point clouds for classi-
fication and segmentation problems. The authors introduce an architecture
based on the use of a single symmetric function, max pooling, since point clouds
are invariant to permutation of their members. The advantage of employing
a symmetric function is in fact to aggregate information from all the points,
without the need of performing a training with input permutation or without
the need of finding a good sorting strategy for the input points (which is not a
trivial problem). In [27], PointNet++ addresses the problems of partitioning
point sets and of learning local features. PointNet++ applies PointNet recur-
sively on a nested partitioning of the input set. In [28] a Point Completion
Network (PCN) is presented as a new approach for shape completion, building
up on PointNet and generating higher resolution outputs in an efficient manner.

In the context of pose estimation, in [29] it is proposed to employ the PCN
architecture for the task of pose estimation with an uncooperative known
satellite, as hereby detailed.

Point Completion Network architecture The PCN architecture is shown
in Fig. 2.6. The PCN original task consists into shape completion of classes of
objects. Taking in input a partial shape of an object, structured as a sparse
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set of points, the PCN is capable of retrieving the whole shape of the object.
It is composed by an encoder and a decoder.

Figure 2.6: Point Completion Network architecture [28].

The encoder stacks 2 PointNet layers [30]. It takes as input a point cloud
X, composed by a set of m points. In particular, each point pi = (x, y, z)
is described as a set of 3D coordinates and it is individually parsed into a
shared Multilayer Perceptron (MLP), that outputs a feature per point. This
operation repeated for each point results into a matrix F of point features fi.
The set F undergoes the maxpool operator, from which only one global feature
g of dimensions k is retained, where gj = maxi=1,..,m(Fij). Then, the obtained
global feature is stacked with each individual feature in F and parsed into
another shared MLP, obtaining other point features. The maxpool operator is
then applied again, finally retaining the global feature v.

The decoder is a multistage process composed by a fully connected decoder
and a folding-based decoder. The fully connected decoder takes in input
the global feature vector v and outputs a coarse point cloud Ycoarse. The
feature v is parsed into a MLP and reshaped, to obtain Ycoarse, which has a
fixed dimension dependent on the latent space dimension. Then, the folding
operation is performed, creating a dense point cloud Ydense of a smooth surface.

The strength of this algorithm is that it is independent on the dimension of the
input point cloud, which varies depending on the LiDAR-target relative pose.
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Loss function The loss function used for the training is a combination of
the Chamfer Distance (CD) and the Earth’s Mover Distance (EMD).

The CD is defined as:

CD(S1, S2) = 1
|S1|

∑
x∈S1

min
y∈S2
||x− y||+ 1

|S1|
∑
y∈S2

min
x∈S1
||y − x|| (2.21)

where S1 ∈ Rmx3 and S2 ∈ Rnx3 are respectively the PCN output point cloud
and the ground truth point cloud, while x, y ∈ R3 are their points. The CD
metrics indicates the distance among ground truth and output: the output
point cloud must lie close to the ground truth, and all the ground truth points
shall be covered by the output.

The EMD distance is defined as:

EMD(S1, S2) = min
φ:S1→S2

1
|S1|

∑
x∈S1

||x− φ(x)|| (2.22)

where φ consists into a bijection mapping that minimizes the average distance
between the corresponding points of S1 to S2.

Finally the loss function is defined as:

L(Ycoarse,Ydense,Ygt) = CD(Ycoarse, Ŷgt) + EMD(Ycoarse, Ŷgt)
+ α CD(Ycoarse,Ygt)

(2.23)

where α is an hyperparameter, Ygt is the ground truth dense point cloud, Ŷgt
is its sampling, while Ycoarse and Ydense are the PCN outputs.

Pose estimation The PCN is trained with synthetic scans of a known client
satellite. After training, a codebook is generated offline containing the encoder
global features and a labelbook is created to store the corresponding poses.
For the online pose estimation, a new scan is parsed into the PCN to encode
its global feature; then, the pose is predicted finding the closest global feature
in the codebook and its correspondence in the labelbook.

2.3 Multi-sensor relative navigation techniques

2.3.1 Visible-thermal imaging navigation

The use of multispectral imaging today is present in particular ground applica-
tions, such as detection and tracking of targets in the agricultural and military
applications. The most common combination of cameras for multispectral
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imaging is thermal and visual [16]. Concerning relative navigation techniques,
thermal imaging is proposed as a method to overcome low-light conditions in
visual odometry algorithms by means of non-uniformity correction [31].

Different techniques for exploiting the multispectral information exist, since
the fusion can take place at different steps of the processing. An option
consists in performing visible-thermal images fusion. Regarding pixel-level
image fusion algorithms, the main categories are multi-scale transform, sparse
representation, neural networks, subspace and saliency-based methods [32].
Such approaches aim at enriching the information content of the images.
Visible and thermal images can be used as a stereo-pair. Multispectral
VO for unmanned air vehicles based on stereo visible-thermal images has
been presented and experimentally validated [33]. Other works consider the
sensors as independent and non-stereo. A multispectral SLAM approach for
robot navigation [34, 35], confirming experimentally [35] that the information
added by the thermal camera improves the performance of the monocular
SLAM approach. Another option consists in leaving the measurements as
separated inputs for the navigation filter.

Concerning space applications, some studies on the possibility of using thermal
and multispectral imaging were made in the recent years, following the ATV-5
LIRIS experiment that collected thermal images of the ISS.

In [36] a SLAM based approach is employed for the scenario of an ADR
mission and tested with experimental thermal images of a heated mock-up,
showing successful results. The importance of adopting more realistic space
imagery data especially from real space debris to verify developed algorithms
is highlighted.

In [37] a method for approximated thermal analysis of space debris along
their orbits is proposed and analyses are made to evaluate the signature of
space debris in the thermal infrared bands. Based on the debris materials,
thermal inertia and orbit, their signatures are evaluated and guidelines for the
applicability of thermal imaging for navigation are provided.

Within the ESA-funded Multispectral Sensing for Relative Navigation (MSR-
NAV) project, in [38] the scenarios of non-cooperative rendezvous with a dead
satellite (Envisat) and of landing on one of the components of the binary as-
teroid Didymos were studied. The Image Processing (IP) algorithm compares
input images against a codebook with image representations (aggregate of
visual features) associated to poses. To exploit the information provided by
the different bands of the multispectral camera, the codebook is built for each
band and the fusion of measurements is based on majority voting. The major
findings are the importance of the thermal band for image segmentation when
the Earth is in the background and in eclipse; while with favorable illumination
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conditions configurations with a larger number of multispectral bands provide
better results.

Finally, considering a far-range target, in [39] the infrared signal provided by a
satellite target and received by a hyperspectral space telescope is simulated. A
machine learning approach is then proposed to reconstruct the attitude motion
from the time series of the CubeSat spectral light curve.

2.3.2 Visual-LiDAR navigation

In the recent years, in the robotics realm fusion approaches have been investi-
gated, that exploit LiDAR information into monocular camera pipelines, which
can be VO or SLAM approaches.

Indirect methods In [40] the V-LOAM method is presented. Visual
odometry (DEMO) is combined with LiDAR odometry (LOAM) with two
sequential stages, in order to estimate the pose and to build a metric map of the
environment. Improvements are achieved with respect to previous odometry
methods, in terms of accuracy but also robustness to ambient light changes
and high speed of motion. The fusion is exploited in two blocks: the Depth
Map Registration and in the Sweep to Sweep Refinement. The Depth Map
Registration consists in a 2D-KT where the features depth is stored. The
depth is computed by correspondences with the LiDAR point cloud and with
triangulation of corresponding visual features in subsequent frames. The Sweep
to Sweep Refinement consists in refining the LiDAR point clouds exploiting
the VO knowledge. Finally, the transforms computed with motion estimation
of camera and LiDAR (operating at different frequencies) are integrated.

Figure 2.7: V-LOAM method scheme [40].

In [41], the LIMO architecture exploits the LiDAR points, projected onto the
image plane, to estimate the depth of feature points in the image by fitting
local planes.

In [42], a LiDAR-monocular visual odometry using point and line features is
proposed. Point and line features are extracted from a monocular sequence;
then, their depth is estimated by correlating the 2D points with the LiDAR
3D points; finally, a frame-to-frame odometry is performed. The sensor fusion
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is also exploited in a scale correction optimization routine, which prevents the
scale drift.

Direct methods The LAPS pipeline in [43], presents a cross modal ap-
proach where the camera localization method uses appearance of prior structure.
The difference in appearance of LiDAR points in images is minimized from
different view-points.

In [44], the DLV-SLAM method is presented, being a Direct Sparse Odometry
method employed with window-based optimization. This direct method projects
the LiDAR points on the current frame, forming an RGB sparse depth image.
Image patches in the surrounding of the LiDAR points are considered in the
reference frame. The tracking is performed with a Gauss-Newton optimization
of photometric error of image patches between the current and reference frame.
Similarly, a window-based optimization among keyframes is performed.

Figure 2.8: DLV-SLAM method [44].

In [45], DV-LOAM combines a two-stage direct tracking VO module with
a LiDAR mapping module, based on a front-end for tracking and LiDAR
scan-to-map optimization and a back-end for loop closure and pose graph
optimization.

Regarding space applications, research in the LiDAR-camera fusion field has
not yet been conducted, to the author’s knowledge.

2.4 Algorithms validation and testing tools

In this Section, the tools used in the Thesis for the algorithms’ validation and
testing are introduced.
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2.4.1 Tools for synthetic datasets generation

Real mission’s datasets availability is generally scarce, but some datasets are
made publicly available from space agencies. This is particularly true for
scientific missions. Data typically comprise natural bodies’ shape models,
science or navigation instruments data and SPICE kernels. If available, such
data are the best option for testing algorithms, but typically they are scarce
due to the data transfers limits during missions and of course they are related
only to a particular target, instrument and orbit/environmental condition. All
the following datasets were employed for the development of this Thesis: ESA’s
COSMOS [46], NASA’s Planetary Data System [47] and JAXA’s DARTS for
Lunar and Planetary Science [48].

In light of the fact that datasets from real missions are limited, or not public, or
not existing for some scenarios, it is fundamental to produce artificial datasets
for the aim of algorithms development, validation and testing. Synthetic visible
image rendering is a well-known task that is achieved via ray tracing. Ray
tracing is a rendering technique that relies on the concept of evaluating and
simulating the path of view lines. Lines start from the observer camera and
end on generic virtual objects that, together with the light rays simulated
from the light sources to the virtual object, allow the computation of the color
intensity of the related pixels. Several available tools allow a user-friendly
environment to develop 3D scenes to generate images via ray tracing. In
particular, general-purpose open source programs are available, like POV-Ray
(Persistence of Vision Raytracer) by [49] and Blender, developed by [50]. While
a commercial tool specific for rendering space targets is Pangu (Planet and
Asteroid Natural scene Generation Utility), presented by [51]. In the context
of this Thesis, all the three aforementioned rendering programs are employed.

Datasets with already generated images are also available, as the SPEED
dataset, which contains images of the Tango satellite [52]. This option can be
useful for development and comparison of machine learning-based techniques
in the scenario of a satellite target.

Regarding thermal images simulation, less solutions are available. Commercial
software can be used to synthesize thermal images in space scenarios, e.g.
infrared sequences of Envisat were produced using the Astos’ Camera Simulator
in [53] and images have synthesized exploiting the Vega Prime software in [54].
Among commercial software, PANGU v6 will include a tool for TIR image
rendering through a lookup table-based thermal image rendering model for
natural scenarios, including physics-based features such as thermal lag and
local variations in emissivity and absorptivity. Hence, such approach is limited
to already explored natural bodies. Instead, for artificial bodies the thermal
rendering is equation-based with a model that accounts for thermal energy
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from solar, planetary reflectance, planetary emission, background radiation,
and internal heat sources as reported by [55]. Such tools for thermal images
rendering are not available for the development of this Thesis.

2.4.2 Tools for experimental datasets collection

A step further in the navigation’s algorithms testing is the verification by
means of real sensors data. When real datasets for the scenario of interest
do not exist, the only option is then the one of experimental activities in
dedicated GNC laboratories. When dealing with the employment of sensors
in a GNC facility, their calibration is a fundamental aspect for allowing the
utilization of the sensors and retrieval of the ground truth data. The calibration
methods for cameras and LiDAR sensors are numerous. In the context of this
Thesis the ones here after presented are used, being or the most classical or
required/already tailored for the specific application of interest.

Camera intrinsic calibration A classical method for retrieving the intrinsic
parameters of a monocular camera, is OpenCV’s library chessboard-based
calibration procedure [56]. The traditional procedure consists in finding the
internal chessboard corners pixel coordinates and associate them to their world
coordinates, knowing the chessboard dimensions and lying the corners on the
same plane. Several images of the chessboard are taken, from different viewing
angles, allowing to estimate the intrinsic matrix and distortion parameters [17].
First, the intrinsic parameters are initially computed, assuming no distortion.
Then, the initial camera pose is estimated, solving the Perspective n Point
problem (PnP) [57]. Finally, the global Levenberg-Marquardt optimization
algorithm is employed to minimize the reprojection error.

Figure 2.9: Camera calibration.
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Dual-LiDAR system calibration Concerning scanning LiDAR sensors, a
method for a dual-LiDAR system calibration is presented in [29]. Such method
allows to find the relative pose between two LiDARs and the transformation
among them and a Calibration Target (CT). Starting from an initial guess, the
points belonging to the scans are transformed into the CT frame. A routine
segments the points into two distinct sets:

• inner points Sin, whose projection on the CT plate falls inside the CT;

• outer points Sout, whose projection on the CT plate falls outside the CT.

An optimization is run to find the optimal transformations, i.e. the ones that
minimize the distance of outer points from the CT edges and minimizes the
distance of inner points from the CT plate.

In the notation here employed, F1_T_F2 stands for the transformation from
reference frame F2 to reference frame F1. The reference frames of interest are:

• the calibration Target frame CT ;

• the vertical LiDAR L1 and the horizontal LiDAR L2 frames.

The optimization procedure minimizes the following cost function:

L = 1
N

N∑
n=1

[L1 + L2] (2.24)

where N is the total number of scans of the calibration target acquired with
the LiDAR system, L1 is the loss computed from the points p1 of L1 scans,
L2 is the loss computed from the points p2 of L2 scans.

L1 =
∑

p1,i∈Snin

f2
(
CT_T_L1n p1,i

)
+

∑
p1,j∈Snout

g2
(
CT_T_L1n p1,j

)
(2.25)

L2 =
∑

p2,i∈Snin

f2
(
CT_T_L1n L1_T_L2 p2,i

)

+
∑

p2,j∈Snout

g2
(
CT_T_L1n L1_T_L2 p2,j

) (2.26)

where f(.) is the point to plane distance and g(.) is the point to edge distance.

The optimization problem is formulated as follows:

(CT_T_L11, ..., CT_T_L1n, L1_T_L2)∗ = argmin(L) (2.27)
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CHAPTER3
Comparison and usage of synthetic and real

vision data

In this Chapter, the gap between synthetic and real data is studied for the
sensors of interest, carrying out a systematic comparison and drawing general
guidelines for the data usage, considering different mission targets and various
scenarios.

3.1 Synthetic data generation

3.1.1 Visible images

The realization of synthetic visible images can rely on the heritage from ren-
dering programs, like Blender and POV-Ray, and on space-dedicated rendering
tools, as Pangu. The key aspects in the data creation are here studied for
different types of space targets and three different applications:

1. Moon terrain: landing on the South Pole.
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2. Point objects and asteroid terrain: rendezvous with a binary aster-
oid system, with point CubeSats orbiting around the system.

3. Space debris: rendezvous with the Envisat space debris.

Moon terrain The chosen software for the lunar landing is Pangu, as it
already provides nice starting features for this kind of application. An artificial
Digital Elevation Model (DEM) of the Moon is exploited to generate simulated
images taken by a landing navigation camera, to create a dataset useful for
instance for training of AI techniques or end-to-end simulations of complete
landing maneuvers. Two different approaches were considered, depending on
the spacecraft altitude: one relies on a real DEM for high altitudes, the other
on a completely synthetic DEM for low altitudes.

DEMs for the Moon are available from the LROC mission data [58] and
depending on the area the available resolution can be between 100 m/px up to
5 m/px (for instance at latitudes from 87.5S to the South Pole). The use of
the DEM is paired with an update Moon Crater Database considering all the
craters with a diameter greater than 1-2 km. The real DEM is imported in
Pangu and converted, with the possibility of exploiting particular projections.
In the considered mission scenario, for the highest altitudes the Moon surface
curvature effect is still relevant if the camera attitude is not downward. For
this reason, a polar stereographic projection of the flat DEM surface is adopted
in the area of the South Pole (60S to 90S), as shown in Fig. 3.1. Once the
DEM has been projected, it is used as base to generate the world model. From
realistic mission constraints, a resolution of 2 m is needed at an altitude of
3 km. Therefore, the DEM resolution has to be increased, depending on the
spacecraft altitude upon the surface. Pangu provides the possibility of adding
layers to the DEM area with increased resolution, maintaining the model light
in regions where this is not necessary. Moreover, Pangu supports the addition
of realistic craters and boulders with the desired dimensions, ages and frequency
distribution. Craters and boulders are added to include such elements in the
scene even for the smallest resolution; realistic sizes and distributions are
considered. An example of synthetic image rendered from the modified real
DEM is shown in Fig. 3.3.

Similarly, for low altitudes a flat DEM is created, perturbed with fractal
noise and enriched with the other relevant terrain features, i.e. craters and
boulders. Craters constitute the most relevant terrain feature, therefore they
are often exploited in relative and absolute navigation algorithms. An example
of synthetic image rendered from the synthetic flat DEM is shown in Fig. 3.2.

In order to generate a rich and representative dataset, the environmental
variables in Table 3.1 are randomly varied within the reported ranges. By
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doing so, the dataset can cover the wide feature-space that is expected in the
operational scenario.

Table 3.1: Environmental variables and their range of variation for the
dataset generation.

Variable Range

Altitude 3 - 100 km
Attitude pitch (wrt vertical) 0◦ - 20◦
Sun illumination angle - Elevation 0◦ - 90◦
Sun illumination angle - Azimuth 0◦ - 360◦
Synthetic crater frequency 1.8e6 - 3e6
Synthetic craters dimension 6 - 500 m

The craters reported in Table 3.1 refer to the synthetic generation performed in
Pangu, with lunar impact crater size and distribution extracted from [59]. Con-
sidering a ballistic landing trajectory, during the coasting phase the spacecraft
travels half of the transfer orbit, covering 180◦ in true anomaly. This implies
that the illumination conditions, especially the elevation of the Sun over the
terrain, that the navigation system is expected to encounter are extremely
variable, from the Sun slightly above the horizon in polar regions to potentially
straight illumination with 90◦ of Sun elevation close to the Lunar Equator.
Regarding the Sun Azimuth angle, considering the South Pole region, it is
related to the Moon rotation. Therefore, it can vary in the whole range between
0◦ to 360◦. Actually, this wide range is applicable only for high latitudes close
to the Poles. No particular constraints that bound the Sun inclination to a
specific range (like the execution of the whole landing maneuver close to the
lunar terminator) are assumed. Some examples of the generated images are
reported in Fig. 3.5a, with the associated ground truth craters present in the
images highlighted in Fig. 3.5b.

The main challenges found in synthetic data generation for this application
are:

• the many constraints linking the availability of real DEMs, the considered
Moon area, the particular projection needed depending on the spacecraft
altitude, the minimum resolution needed depending on altitude and
camera pitch;

• the conciliation between the need to limit the model resolution as much
as possible and the rigid methods that allow the manipulation of the
DEM in the software, which cause the unavoidable creation of very large
models;
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Figure 3.1: Example of polar stereographic projection of the 60S to 90S.

Figure 3.2: Synthetic
image and DEM.

Figure 3.3: Synthetic
image, real DEM.

Figure 3.4: Real image
from LROC.

(a) Synthetic images.

(b) Ground truth craters.

Figure 3.5: Dataset samples for different altitudes and illuminations.
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• the achievement of a precise craters ground truth on a terrain that is
projected or presents mountains/fractal noise.

Point objects and asteroid terrain For an application in which the main
goal is to detect point CubeSats in proximity of asteroids, again Pangu is
selected as preferred software. The main reason is that the key element is here
found to be the EO sensor model [20], which in Pangu can be easily included
considering the effects typical of the space environment. Representative images
are synthetically generated using Pangu [60], as shown in Fig. 3.6.

Figure 3.6: Implemented simulator block for images generation.

All the necessary elements for the images generation with Pangu are reported in
the scheme in Fig. 3.6. The true dynamics of the objects is taken as input from
the trajectory generation. The considered binary asteroid is Didymain. The
camera is assumed to point towards the primary asteroid, while two CubeSats
(CubeSat1 and CubeSat2) are assumed to be Sun pointing for their brightness
analysis. The CubeSats visibility is confirmed, thanks to the low Sun phase
angle.

The following modeling assumptions have been considered:

1. Primary asteroid. Didymain model is created starting from a sphere
of radius 387.5 m and then adding Perlin noise, craters and boulders.

2. Secondary asteroid. Dimorphos model is created starting from a sphere
of radius 81.5 m and then adding Perlin noise, craters and boulders.

3. Spacecraft. Considering their point-like object appearance, the Cube-
Sats are modeled as cubes and rendered as imposter images. Since solar
panels are not modeled, the side of the cube is assumed to be 1 m. The
surface is assumed to be white and with a combination of diffuse and
specular reflection.

4. Stars. The stars background is simply generated with the default stars
catalogue and relating it with the trajectory kernels.
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5. Camera. The camera is modeled according to the characteristics of a
narrow angle camera, including distortion, Point Spread Function (PSF),
shot noise and dark current [61].

An example of generated synthetic image including all the above mentioned
elements is shown in Fig. 3.7a; it can be noticed that with the given camera
exposure time and Sun phase angle, the asteroids saturate the image. Both
point CubeSats and stars with high magnitude are visible in the image. This
condition is suitable for a navigation in which the LoS of the objects has to be
derived and also in the case in which point objects need to be detected.

(a) Didymos - Pangu. (b) Ryugu - Blender. (c) Eros - POV-Ray.

Figure 3.7: Examples of synthetic images for asteroids terrain.

The main suggestion for the generation of data for such application is to tailor
the data generation on the algorithm’s need. Indeed, at least within Pangu
framework, it is not possible to conciliate the need of an accurate rendering
of an unknown asteroid terrain with the need of rendering far point objects.
Thus the latter aspect has been privileged, at the expense of a detailed asteroid
terrain with custom shape. Instead, if more detailed features of the terrain
are needed, the suggestion is to start from a real asteroid mesh. This can
be done with Pangu, but also with POV-Ray (see Fig. 3.7c) or Blender(see
Fig. 3.7b). The latter program also allows an easy manipulation of the mesh in
case custom shapes need to be created. On the other hand, the use of Pangu is
suggested for the rendering of point objects and stars with an accurate sensor
model.

Space debris Concerning the rendering of a spacecraft object, two different
options are investigated. The first possibility is to use Pangu. Such tool is
born mostly for rendering natural objects and it allows also to treat artificial
objects, but with some limitations. The second option is to use a different tool,
such as Blender, a photorealistic rendering software which is more flexible for
the artificial object modeling.
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In case Pangu is used, the artificial target needs to be first modeled in a
Computer-Aided Design (CAD) program and then imported in the rendering
software. In particular, the Envisat debris is here considered. Pangu allows to
import models of artificial objects and to convert them in a more convenient
format for the rendering. Nevertheless, Pangu does not allow to directly import
the object geometry together with its materials. The final effect would be
similar to the one in Fig. 3.8a. To overcome such limitation, the approach
can be to break down the geometry into different parts and convert each part
into a Pangu model. Each Pangu part can then be included by hand in an
XML file in order to add the material properties and its appearance, specifying
the BRDF (Bidirectional Reflectance Distribution Function) and color. Some
additional features are supported, as the Multi Layer Insulation (MLI) textures.
Anyway, this procedure can be cumbersome with a complex geometry such as
the one of Envisat.

The other possibility is to render Envisat with Blender. The geometry can be
imported from a CAD of the spacecraft and materials can be easily modeled
by means of a GUI. Textures can be added and several options are available
for specifying the materials properties, including the BRDF. An example of
obtainable images is reported in Fig. 3.8b. Blender can be easily interfaced
with Python for the database creation, creating an automatic sequence of
camera poses to be rendered, varying the illumination as well. On the other
hand, less parameters for the camera model can be specified. Therefore, for
instance noise needs to be added after images have been rendered with some
post-processing.

(a) Pangu framework. (b) Blender framework.

Figure 3.8: Example of artificial target modeling and rendering tools.

3.1.2 Thermal images

While traditional and consolidated rendering techniques allow to generate
visible synthetic images, analogous tools for thermal images rendering do not
exist.
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The architecture shown in Fig. 3.9 is proposed for the generation of realistic
thermal images. Such tool will be referred to as ADE. The proposed framework
focuses on a natural body, in particular on an asteroid target, because of the
availability of real data from the Hayabusa 2 mission for the process validation,
but it can be extended to other types of targets, such as terrains or artificial
object.

Figure 3.9: Thermal images chain model.

The proposed tool starts from the thermal simulation of the target body,
which is performed on a low resolution shape model, due to computational
resources availability. The thermal simulation of the body is performed starting
from the asteroid and space environment inputs and deriving the temperature
distribution field at the trajectory epoch. The output of the simulation consists
into a low resolution shape model with the temperature field, in .vtk format.

The temperature information is re-elaborated inside a rendering software
(Blender), with the aim of quickly project it from the 3D point into a 2D
temperature image.

Then, the response of an uncooled microbolometer sensor is modeled, accounting
for the input radiation and the related NETD. This model allows the conversion
of the temperature image into a radiance image and then into a digital image.

As previously explained, the thermal simulation is run on a low resolution
shape model. The consequence is that the projected shape model facets are
larger than the image pixel. As first step of the tool development, the issue
is solved by means of an artifact. A high-resolution image of the asteroid
surface is rendered and exploited to mask the low-resolution temperature-
image, adding the details while keeping the mean brightness value for the pixels
corresponding to each facet. This post-processing step aims at obtaining a
more representative appearance of the target asteroid. In particular, to match
the expected microbolometer physical response - proportional to the radiation
power absorbed by the detector pixels - and re-introduce low level details,
which nevertheless do not derive from a thermal simulation.
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As an extension of the tool, greater computational resources shall be allocated
to work directly with larger shape models and the thermal simulation shall be
performed by means of a CFD software, as OpenFoam. This step is currently
under development at Politecnico di Milano, and for this reason the tool is
compatible with the .vtk output provided by the software.

Asteroid thermal model The thermal model considers the contributions
of the incoming Sun heat flux Qin, the radiated flux Qout and the heat transfer
towards the ground layers Qs:

Qin = Qout +Qs (3.1)

The solar flux depends on the distance between the Sun and the asteroid and
on the incidence angle φ between the direction of the Sun and the normal to
the heated surface:

Qin = S�(1−A)
(
AU

r

)2
cos(φ) (3.2)

where S� is the solar constant, A is the bolometric Bond albedo and r is the
distance to the Sun expressed in AU. The flux emitted from the asteroid at the
thermal equilibrium is commonly written through the Stephan-Boltzmann law:

Qout = εσT 4 (3.3)

where ε is the emissivity of the surface of the asteroid, σ is the Stefan-Boltzman
constant and T is the temperature of the asteroid. The heat flux at the surface
of the asteroid is linked to the the 1D temperature gradient

Qs = −k ∂T
∂x

∣∣∣∣
x=0

(3.4)

being k is the conductivity of the ground of the asteroid. The x coordinate
is taken in the radial direction, positive downwards. The heat conduction
equation is then applied, in which a constant conductivity is assumed for
simplicity:

ρcp
∂T (t, x)
∂t

= k
∂T (t, x)
∂x2 (3.5)

Finally, boundary conditions are set to complete the model:
T (0, x) = f(x) ∀ x ∈ [0,ls]
Tx(0, t) = Qout−Qin

k ∀ t ≥ 0
Tx(ls, t) = 0 ∀ t ≥ 0

(3.6)
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Where Tx denotes the partial derivative of temperature with respect to the
spatial coordinate x and the skin depth ls is regarded as the depth of the ground
where an adiabatic assumption can be acceptable. A numerical finite-difference
technique is used to solve the 1D heat conduction equation and an iterative
technique is used to solve the surface boundary condition.

Microbolometer response model Starting from the thermal sensor model
presented in Section 2.1, the following assumptions are made. The respon-
sivity is assumed homogeneous on the detector, therefore for a specific scene
temperature T̄ :

R(T̄ ) = α(i, j)G(i, j)T̄α(i,j)−1 (3.7)

A mean value of the exponent α is taken on the detector pixels (i, j) [21],
leaving the spatial dependence on the gain only:

G(i, j) = R(T̄ )/(αT̄α−1) (3.8)

The non-uniformity of the detector gain and offset are accounted for, ex-
ploiting data available in the literature from experimental activities on space
microbolometers sensors for asteroids thermal mapping [21]. Such effects are
important to be modeled in case of the absence of non-uniformity corrections,
which may be the case for on board application because of re-calibration needs
or limited computational power reasons.

Thus the pixel response r(T, i, j) in [DN ] is computed as:

r(T, i, j) = G(i, j)FεσTα +D(i, j) +Nt (3.9)

where Nt = R(T̄ )NETD is the temporal noise, which depends on the detector
responsivity and thus on the temperature of the observed scene.

A simplified radiation view factor F can be adopted for a quasi-spherical body,
as the case of emission from a sphere of radius R to small flat surface at distance
H:

F =
(
R

H

)2
(3.10)

3.1.3 LiDAR scans

For a scanning LiDAR, a synthetic point clouds can be generated by means
of ray-tracing from the sensor to the target. A tool developed at DLR with
this purpose [29] has been employed. According to the vertical and horizontal
resolution achieved with the scanner, a ray is traced for each grid point from
the origin of the sensor. The data point is found by intersecting the ray with
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the target model mesh. The tool has been slightly modified in few aspects, to
tailor it for its specific application in the OOS-SIM facility. The tool framework
and an example of generated scan are shown in Fig. 3.10a and 3.10b.

(a) Tool framework. (b) Example of synthetic scan.

Figure 3.10: LiDARs synthetic data generation.

3.2 Laboratory data gathering

Some parts of the present doctoral research has been developed in two different
vision-based GNC facilities: ARGOS (Advanced Robotics & GNC Optical-
based Simulator) at Politecnico di Milano and OOS-SIM (On-Orbit Servicing
SIMulator) at the DLR RMC Institute. In this Section, a brief description of
the two facilities is provided and then the calibration activities carried-out are
described.

3.2.1 Vision-based GNC facilities

3.2.1.1 ARGOS facility

ARGOS facility at PoliMi comprises the fundamental following elements:

• Navigation camera.

• Illumination system.

• Moon diorama.

• Artificial satellite mock-up.
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Figure 3.11: ARGOS facility at DAER-Polimi.

Navigation camera The main sensor of the reproduced autonomous GNC
architecture is made up by the navigation camera, as representation of a
possible flight hardware. Given the laboratory envelope, the camera has a wide
FoV and fixed focus is exploited, without the need of having high resolutions.
For this facility, a Chameleon 3 by FLIR is used, whose characteristics are
reported in Table 3.2. Such camera can be easily tuned through a dedicated
C++ API, and can be interfaced to the rest of the system by USB3.1 connection
and a programmable GPIO. A grey-scale images configuration is adopted for
simulating flight hardware, exploiting lower frame rate and a 1024 × 1024
resolution.

Table 3.2: Navigation camera specifications.

Parameter Value

Resolution 1280x1024
Frame rate 149
Megapixels 1.3
Chroma Colour/grey-scale
ADC 10 bit
Sensor format 1/2-inch-type CCD
Focal length 6 mm
FoV 63.5◦

40



3.2. Laboratory data gathering

Illumination system In order to properly validate the images, it is fun-
damental to ensure a proper illumination and environmental conditions for
obtaining realistic images. To achieve that, the light shall not be diffuse, given
that the operational conditions under investigation all outside the atmosphere.
For such reason, the facility has been realized in a dedicated dark room, prevent-
ing light reflection with black curtains and floor covers. To simulate the Sun
illumination, a dedicated high-CRI LED array with 60◦ beam angle and 5700
K light temperature is employed, characterized by the features in Table 3.3.

Table 3.3: Illumination system specifications

Parameter Value

Light temperature 5700 K
Beam angle 60◦
Led array dimension 1024x1024

Moon diorama A portion of the Far-Side Lunar surface has been realized
fully at the PoliMi-Daer laboratories, to be exploited as a mock-up for the
landing simulations. To guarantee correct optical properties, the material used
for the diorama is Urethane foam due to its surface finish. The diorama is made
up by 8 separated tiles, measuring 1200×500 mm, leading to an overall size of
2400×2000 mm and a scale factor of 2000:1. In order to have mixed terrain
features, i.e. from plains to rough slopes, a DEM from the GLD-100 NASA
LROC dataset was employed. The facility was designed to test navigation
algorithms for pinpoint landing with desired touch-down accuracy in the order
of 10 m, which in the scaled mock-up corresponds to 5 mm. In order to keep a
terrain resolution of at least one order of magnitude better than the required
accuracy, the machine-working accuracy of at least 0.5 mm was required.

The facility was also equipped with a robotic arm for simulating trajectories
and carrying the camera on the end effector. Unfortunately, the robotic arm
was not available during the period of the present research.

3.2.1.2 OOS-SIM facility

The OOS-SIM is a simulator for on-orbit servicing of the Robotik und Mecha-
tronik Zentrum part of the DLR [62].

As visible in Fig. 3.12, the facility is equipped with two satellites mock-ups,
a servicer and a chaser. The servicer carries a sensitive lightweight robot
arm with gripper to perform tasks as capture of the client satellite. The
entire servicing system is called free-flying robot in orbital robotics. Two large
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Figure 3.12: OOS-SIM: on-orbit servicing simulator [29]

industrial robots hold the satellites mock-ups, simulate their weightlessness
and relative motion [63]. In order to perform the close approach with the client,
the servicer is equipped with a stereo camera attached to gripper of robot and
a LiDAR system composed of two scanning LiDARs, attached to a boom.

The facility thus allows to study complex tasks such as assembly, maintenance
and repair work on satellites. It also investigates the system’s applicability
for the removal of non-functioning orbiting target satellites [64]. It provides a
suitable framework for development and validation of the orbital robot control
with the support of computer vision methods through data acquired by the
servicer sensors.

Navigation LiDAR In the OOS-SIM, two VLP-16 by Velodyne are available.
The two lidars are mounted on the servicer boom, tilted of 90◦ with respect to
each other. The VLP-16 is a scanning LiDAR emitting laser beams with 16
channels working in the Near InfraRed (NIR). A laser channel is a single 903 nm
laser emitter and detector pair. Each laser channel is fixed at a particular
elevation angle relative to the horizontal plane of the sensor. The characteristics
of a VLP-16 are reported in Table 3.4.

An output data point of the device consists in the calibrated reflectivity of the
target (which can be classified in diffused or reflective material) and in the
range measurement.

In order to define the 3D coordinates of a data point, in addition to the distance,
two angular measurements in the LiDAR-fixed reference frame are necessary.
Both angles are given in the data output, along with the time stamp (necessary
for the multi-sensors algorithms).
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Table 3.4: VLP-16 characteristics.

Parameter Value Unit

Wavelength 903 nm
Maximum range 100 m
Channels 16 -
HFoV 360 deg
VFoV 30 deg
Rpm 300-1200 rpm
Horizontal resolution 0.1-0.4 deg
Vertical resolution 2 deg

3.2.2 Experimental activities in ARGOS

The activities carried-out in ARGOS comprised the creation of a satellite
mock-up of Envisat and the gathering of images of the created mock-up and of
the Moon diorama, with the corresponding pose ground truth.

Artificial satellite mock-up The Envisat mock-up is 1:50 scale of the real
satellite, entailing all the most critical geometrical and appearance features.
The mock-up is manufactured using 3D Stratasys Fortus450 3D printer available
at Politecnico di Milano premises. The model dimensions are maximized to
reduce the scaling of the experiment, compliant with the printer capabilities.
In this way, the accuracy to validate the algorithms can be reached. A spray
acrylic white paint, usually used for modeling, was applied twice on the surface
to reproduce the surface of the spacecraft. The details were adjusted by a
thin brush. Silver aluminum foils were used to reproduce the classical thermal
protection of spacecraft, made of MLI. The white paint and silver aluminum
foil have been applied to maximize the reflectivity of the materials and enhance
the contrast with respect to the laboratory background.

Camera pose retrieval The present work is based on images acquisition
without the employment of the robotic arm, that was not available due to
contingencies external to this research work. In this case, it is possible to
derive the camera pose using visual markers applied on the target or in the
target proximity. If the acquired images contain the visual marker, standard
libraries can be used to compute the camera pose with respect to the marker
(as OpenCV [56]), retrieving the translation from camera to marker tc,m and
the rotation matrix Rm

c .
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Thus, if the position and rotation of the marker with respect to the world
frame are known (tm,w, Rw

m), the camera pose in the world frame is simply
computed as:

xc,w = tm,w + xc,m (3.11)

Rw
c = Rm

c Rw
m (3.12)

Markers calibration The marker calibration procedure consists in the
marker pose measurement with respect to the world reference frame. Two
strategies are tried:

1. Direct measurement in the facility. The marker center position
is measured with respect to a known point on the target, while its
orientation is fixed in order to easily derive a known rotation with respect
to the target frame. Multiple position measurements were taken from
different points and the mean was retained.

2. Dense reconstruction of the target including markers. If an
accurate mesh can be reconstructed including both target (Moon or
satellite mock-up) and applied markers, then the transformation can be
numerically computed, finding the corners’ vectors of the marker in the
reconstructed mesh.

A dense matching method has been selected to perform the shape reconstruction,
based on the Colmap software [65]. Several photos from different angles are
taken; then, structure from motion algorithms are used to obtain the camera
pose for each image. Finally, dense cloud point models are obtained by
triangulation of optical features between different frames. For the Lunar
terrain mock-up, reconstruction is performed for the testing region. The dense
reconstruction is composed of three main steps that were performed by means
of the Colmap software [65]: feature detection and extraction; feature matching
and geometric verification; structure and motion reconstruction; multi-view
stereo and dense reconstruction.

Results Both the adopted procedures successfully allowed to collect the
images with the related poses, an example is shown in Fig. 3.13. Aruco markers
were employed, exploiting a predefined dictionary of 50 7-pixels markers.
Different illumination conditions were used and measured by means a sundial,
built for this purpose.

Fig. 3.14 shows a reconstructed point cloud of a limited testing region in the
Moon diorama, refined through Screened Poisson surface reconstruction. As
shown in Fig. 3.13,
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Figure 3.13: Pose retrieval with
visual marker.

Figure 3.14: Dense point cloud
reconstruction of testing region.

3.2.3 Multi-sensor calibration in OOS-SIM

Concerning the activities carried out at the OOS-SIM, the main goal is to
calibrate the dual-LiDAR system in the facility. The calibration of the two
LiDARs in the OOS-SIM is necessary to obtain the ground truth of their pose
in the laboratory. In particular, the aim is to find their pose with respect
to the servicer satellite on which they are mounted. As a consequence, after
the calibration is performed, it will be possible to align the measurements of
the stereo-camera and the LiDARs and thus develop and test multi-modal
computer vision algorithms in the laboratory.

The approach here proposed consists in performing two different calibration
paths, and comparing the obtained results, providing a quantification of the
error. The method is schematized in Fig. 3.15. Two routines for calibrating the
stereo-camera and the dual-LiDAR system are exploited. They are presented
hereafter.

LiDAR-LiDAR extrinsic calibration The methodology proposed and
developed in [29] has been adopted for calibrating the LiDAR system with the
use of a calibration target. For the method formulation please see Section 2.4.
The method has been tested with synthetic LiDAR data in [29]. From such
numerical simulations, the method has shown to be capable to deal with
synthetically introduced noise. For the usage with real data, an extension of
the method is desirable. When gathering a scan of the CT, the whole scan
from the LiDARs will be present, including the surrounding environment. The
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Figure 3.15: Multi-sensor calibration method.

problem of segmentation of the CT point cloud from the overall point cloud is
not trivial. The following prior steps are introduced:

1. Extraction of interest bounding box from ambient point cloud.

2. RANSAC routine for finding the CT plane in the point cloud and outliers
removal.

3. Clustering algorithms for removal of inliers not belonging to the CT.

The LiDAR output is organized in UDP packets, providing the measured
distance and two angles. The box extraction is based on a configuration file,
related to the used set-up, in which the bounding limits are defined in terms of
spherical coordinates, as they are directly related to the lasers identification and
to the LiDAR pointing direction. The RANSAC algorithm is then used to find
the plane model and remove outliers, i.e. points lying outside the calibration
plate [66]. Then, the obtained point cloud is segmented in each of its composing
laser scan. Each scan line is processed with the DBSCAN algorithm to identify
the cluster of points belonging to the chessboard and the noise points. Finally,
the optimization routine is run and the transformation HL1

L2 from the L2
reference frame to the L1 frame is found. Also the transformation with the
calibration target HCTc

L1 is retrieved, where the frame CTc is placed on one of
the two centers of the stereo-calibration target.

Stereo-camera calibration algorithm The stereo-camera calibration re-
lies on DLR toolbox CalLab [67]. As first step, the intrinsic calibration of
each camera is performed. This consists in retrieving the camera intrinsic
parameters of the left camera (CL) and of the right camera (CR) and thus
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properly distort and un-distort image coordinates. At least four shots of the
chessboard are necessary, inclining the board up, down, right and left. As a
second step, a static image of the chessboard is taken with the two cameras
at the same time and the relative pose among them HCL

CR can be computed,
along with the transformation with respect to the chessboard HCL

CT.

3.2.3.1 Calibration PATH 1

Calibration PATH 1 is schematized in Fig. 3.16 consists in exploiting a calibra-
tion target (a rigid chessboard) and gathering data of the CT with the LiDAR
system and the stereo-camera, keeping the system static and requiring a single
pose to perform the calibration.

Figure 3.16: Calibration PATH 1.

The images and scans are then processed with the two calibration algorithms,
the stereo-camera system calibration and the dual-LiDAR system calibration.
Their output is the pose of all the sensors with respect to the CT. This allows
to find the relative pose between LiDAR system and stereo-camera.
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The stereo-camera and LiDARs are used to image and scan the calibration
target in a static set-up. From the stere-camera and LiDAR system calibrations
algorithm, the following transformations are found respectively HCTc

CL , HCT
L1 .

The transformation HCT
CTc is known from the calibration chessboard manufac-

turing and measurement.

HL1
CL = HL1

CT ·HCT
CTc ·HCTc

CL (3.13)

This provides a direct calibration among the two sensor systems.

From the industrial robots kinematics, it is possible to log the transformation
Hs0

s of the servicer center point with respect to its start-up position.

From the manipulator kinematics, it is possible to log the transformation Hs0
lwr

of the manipulator target center point with respect to the servicer start-up
position.

The camera system pose with respect to the light weight robot (Hlwr
CL ) is known

from prior extrinsic calibration activities performed at the OOS-SIM.

The extrinsic calibration of the LiDAR system in the servicer body-fixed frame,
thus results to be:

HL1
s

∣∣∣∣
PATH1

= HL1
CL ·HCL

lwr ·Hlwr
s0 ·Hs0

s (3.14)

The possible error sources for this path are expected to be:

• not exact calibration plate segmentation in the LiDARs scans;

• inaccuracies in the kinematics of the light weight robot;

• exploitation of past results from the stereo-camera extrinsic calibration
with respect to the light weight robot.

3.2.3.2 Calibration PATH 2

Calibration PATH 2 is schematized in Fig. 3.17. The PATH 2 calibration
exploits the fact that the client is an object with known position in the lab,
contrary to the chessboard. In fact from the industrial robots kinematics, it is
possible to log the transformation Hc

s0 of the client center point with respect
to the servicer start-up position.

This calibration path is based only on the LiDAR system, and thus still requires
the two LiDAR to be calibrated with a CT, in order to obtain a stitched point
cloud of the client.
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Figure 3.17: Calibration PATH 2.

Given an initial guess, the ICP algorithm can be exploited to find the trans-
formation between LiDAR system and client HL1

c . This is possible because
a model of the client is available, even if some error may arise because of
differences between the client model and the manufactured client. In order
to converge, the ICP needs a good initial guess. This procedure has been
automatized, requiring in input the position of 3 known points of the client in
the LiDARs scans. Such input needs to be manually provided.

To summarize, the second calibration path can be computed as:

HL1
s

∣∣∣∣
PATH2

= HL1
c ·Hc

s0 ·Hs0
s (3.15)
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In this case, the major error source is expected to be the ICP.

Accuracy computation The translation error et and rotation error er
among the two transformations obtained for HL1

s are computed as:

et = ||t2 − t1||2 (3.16)

er = acos
(

1− trace(I −R2R1
−1)

2

)
(3.17)

Where ti is the translation vector and Ri the rotation matrix, composing the
transformation matrix H.

3.2.3.3 Results

Experiment set-up The calibration target is a metallic chessboard with
external dimensions of 88.0 cm width and 63.4 cm height. In order to take
static scans, the chessboard was put on a stair and different set-ups have been
tested, either tilting the calibration target or the dual-LiDAR system.

LiDAR system calibration results The LiDAR calibration routine suc-
cessfully finds the transformation among the two sensors. Different set-ups
and variations of the algorithm are tested, as reported in Table 3.5.

Table 3.5: LiDAR system calibration results.

Set-up Outliers Loss Optimizer Final
removal function loss [mm]

CT tilted Y L1 + L2 LM 0.177465
CT tilted Y L1 + L2 BFGS 0.177463
L1-L2 tilted Y L1 + L2 LM 0.182658
L1-L2 tilted Y L1 + L2 BFGS 0.182651

where LM is the Levenberg-Marquardt optimization routine and BFGS is the
Broyden-Fletcher-Goldfarb-Shanno algorithm. In all the successful cases the
loss function was including the point clouds of both LiDARs and the outlier
removal steps were applied. With respect to the results obtained with synthetic
scans in [29], the final loss is one order of magnitude larger. The loss function
trend during the optimization is shown in Fig. 3.18 and 3.19, along with the
points belonging to the inner and outer set.

It has been observed that the optimization is highly sensitive to the presence
of outliers or in-liers not belonging to the chessboard. An example of run
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Figure 3.18: Outliers removal - LM optimizer.

Figure 3.19: Outliers removal - BFGS optimizer.

Figure 3.20: Optimization wrong convergence without outliers removal.
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performed without the outliers removal is shown in Fig. 3.20. In this case, the
optimizer converges to the wrong solution.

The edges detection is fundamental for an accurate result, as the loss function
computation is also based on the identification of points sets that are inside
and outside the board edges. Therefore, as best practice, it is suggested to
take care in the experimental set-up preparation to the positioning of the
chessboard. In fact, if the chessboard plane lies on the exact same plane of
another object it can be hard for the clustering step to correctly perform the
segmentation on edge points. As it can be seen in Fig. 3.21, also for a human
eye in this case it is impossible to properly distinguish the chessboard points.
It has been found that, as best practice, the calibration board shall not be
lying on a plane coincident with the one of the background stair, otherwise its
segmentation from the ambient point cloud will be harsh.

(a) Correct clustering. (b) Incorrect clustering.

Figure 3.21: Chessboard segmentation sensitivity to the set-up preparation.

LiDARs-OOS-SIM calibration results The error among HL1
s

∣∣∣∣
PATH1

and

HL1
s

∣∣∣∣
PATH2

is reported in Table 3.6. The achieved accuracy is lower than the
pose estimation requirement, thus the result can be considered successful for
generating a ground truth in the lab. It is worth mentioning that the achieved
accuracy is comparable to the accuracy obtained with the real LiDAR data on
the ATV-5 experiment, which is 30 cm at 20 m and 5 cm at docking [68].

Table 3.6: Calibration accuracy.

et [cm] er [deg]
Calibration accuracy 2.98 1.44
Pose estimation req 5 2
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Figure 3.22: Left image. Figure 3.23: Right image.

Figure 3.24: Calibration path 1. Figure 3.25: Calibration path 2.

Figure 3.26: Error between the two calibration paths.
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3.3 Data validation and comparison

In this Section, the data (images and scans) generated synthetically in Sec-
tion 3.1 are compared with the ones acquired in the GNC facilities as explained
in Section 3.2 or with real missions data. The comparison is presented in
order for the three EO sensors: visible cameras, thermal cameras and scanning
LiDAR.

3.3.1 Visible images results

The comparison and cross-validation of visible images has been carried out at
PoliMi’s ARGOS. After the ARGOS facility calibration, an images acquisition
campaign has been conducted for the two following scenarios.

1. Lunar landing. The scenario is based on a descent trajectory targeting
the Lunar South Pole. In order to correctly simulate it, some requirements
must be taken into account to set-up the facility to acquire a realistic
sequence of camera images. Therefore, the facility must be able to
reproduce the conditions listed in Table 3.7.

Table 3.7: List of the facility requirements for the Moon scenario.

Variable Range

Altitude 3-100 km
Attitude pitch 0◦-20◦
Sun Elevation angle 0◦-90◦
Sun Azimuth angle 0◦-360◦

2. Debris inspection. The second scenario studied concerns a relative
vision-based navigation system for debris or space object inspection or
capture. In particular, the objective is to acquire the image dataset of a
trajectory around Envisat. In Table 3.8 the facility requirements for the
Envisat inspection are listed.

Table 3.8: List of the facility requirements for the Envisat scenario.

Variable Range

Chaser relative position 0.5-50 m
Camera attitude pitch/yaw angle ±90◦
Sunlight direction azimuth angle 0◦-360◦
Target attitude angle 0◦-360◦
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Images cross-validation and comparison metrics To verify the accuracy
of the calibrated facility, images taken in ARGOS are compared with the
synthetic images generated by a rendering software with the same pose. The
validation aim is to cross-verify the reliability of laboratory and synthetic
images by means of quantitative indices, comparing them for the two scenarios.
In particular, the synthetic images are generated exploiting the ESA’s software
Pangu for the Moon landing scenario, whereas the open source Blender suite
is used for the debris inspection scenario.

For each scenario, the validation set is made of 10 images spanning the dataset
ranges in terms of illumination and poses.

Four indications are examined to evaluate the facility images goodness:

1. Image histogram. The histograms information is a low level infor-
mation which gives a good representation of the image content. Such
method has been already used to evaluate images quality for testing of
space navigation algorithms [69].

2. Shadow index. The synthetic and laboratory images are thresholded to
identify shadows. The value of the threshold is identified automatically
using the Otsu algorithm. The Otsu method is a deterministic and
automatic way to discriminate shadowy and illuminated target parts.
Then, the two resulting binary images are subtracted to obtain a shadow
disparity map. The accuracy of the shadow representation, which can be
considered as representative of the accuracy of the general shape of the
sample, is evaluated by a scalar shadow index (Js), defined as:

Js = 1− Ds

Sreal
(3.18)

Where Ds is the sum of the disparity map and Sreal is the sum of the
pixels classified as shadow in the real image. Js expresses the fraction of
pixels in shadows correctly reproduced in the synthetic model.

3. Contrast index. A second index is then identified. For both images,
the real and the synthetic, an illumination ratio RI is identified as:

RI = IL
Is

(3.19)

Where IL is the mean intensity of the pixel classified as in light, and
IS is the mean intensity of the pixel classified as in shadow. Then, the
contrast index Jc is defined as:

Jc = RIreal
RIrend

(3.20)
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4. Features quality index. Typical navigation algorithms rely on feature
extraction steps, thus a comparison among real and synthetic images is
considered a good indication of the similarity of behaviour among the
two. The Feature Quality Index (FQI) indicates the similarity of features
extracted in two corresponding frames (a real and a synthetic one) and
it is defined as:

FQI = 1− µ(Hd)
Hd,max

(3.21)

where Hd is the Hamming distance between two corresponding features
descriptors and Hd,max are the maximum possible hamming distance.
The mean value µ(Hd) is computed on 10 corresponding ORB features
[70].

The higher the indexes, the best the image is represented. Requirements to
satisfy the validation are based on the scalar shadow index Js and on the
contrast index Jc. In particular, it is required Jc > 0.90, Js > 0.75 and
FQI > 0.80.

Results of obtained images Hereafter, the images validation results are
presented, starting from the Moon landing scenario and then examining the
debris inspection case. For the Moon application, the synthetic images have
been rendered first with the dense reconstruction of the diorama, and then,
after some re-calibration activities, it was possible to use directly the DEM for
the diorama manufacturing.

Moon scenario - dense reconstruction results In Fig. 3.27a an image
of the Moon diorama taken with the FLIR Chameleon-3 camera is shown;
in Fig. 3.27b it is shown the corresponding image generated in Pangu from
the reconstructed diorama point cloud. The illumination data are recorded
exploiting multiple sundial’s measurements. Results show that the validation
tool is capable to correctly reproduce the pose and the illumination conditions.

In Fig. 3.27e the disparity between shadow areas is shown. The corresponding
index of merit is Js = 1−Ds/Sreal = 0.82. As it can be seen, there are still some
shadow areas not matched and the requirement is not yet satisfied. The error
causes are multiple: the uncertainty in the pose, errors in the determination
of the camera intrinsic parameters, the irradiance settings on the point cloud.
The black peaks in the synthetic images are mainly due to the presence of holes
in the dense point cloud of the facility. A recalibration of the Moon diorama
facility has been performed, which solved the problems yielding a successful
validation. On the other hand, the contrast index requirement is met, being
Jc = 0.80, showing a good capability of brightness representation.
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(a) Laboratory image. (b) Rendered image.

(c) Laboratory image histogram. (d) Rendered image histogram.

(e) Disparity map of shadow areas.

Figure 3.27: Comparison and cross-validation of laboratory image and
synthetic image, before recalibration activities.
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As a further insight on the two images, their histograms are shown in Fig. 3.27c
and in Fig. 3.27d. It can be observed that the histogram peak is similar for
the two and that in the synthetic image there is the presence of completely
black pixels, as expected.

The histograms values are comparable, in particular the central peak. Never-
theless, in the synthetic images a black peak is found, which scales the plots
differently. The white peak present in the lab images was due to reflections in
the lab, which are aimed to be further minimized. As mentioned, the black
peak found in the synthetic image is due to the presence of holes in some region
of the diorama mesh used to generate Pangu world.

Moon scenario - manufacturing DEM results The validation campaign
aimed at using the robotic facility to acquire real images, to check the ad-
equateness of synthetically generated images. The validation images cover
different region of the diorama and are taken with different set-up of the
facility illumination. The results of the validation campaign (restricted to 10
images) are summarized in Table 3.9. An example of validated images and
corresponding histograms, together with the resulting disparity map is shown
in Fig. 3.28.

Table 3.9: Summary of validated images and corresponding indices - Moon
scenario.

Frame Js > 0.9 Jc > 0.75 Sun [Az, El]

0 0.92 0.88 [262◦, 56◦]
1 0.96 0.79 [84◦, 60◦]
2 0.91 0.82 [84◦, 60◦]
3 0.91 0.78 [84◦, 60◦]
4 0.96 0.78 [84◦, 60◦]
5 0.92 0.82 [86◦, 35◦]
6 0.91 1.00 [262◦, 41◦]
7 0.92 0.97 [86◦, 26◦]
8 0.91 0.80 [86◦, 26◦]
9 0.91 0.91 [86◦, 26◦]
10 0.95 0.91 [86◦, 26◦]

Debris scenario results The images obtained for the debris scenario are
here analyzed. Detailed results are shown for a sample pose and illumination.
The laboratory image and the render are compared with the extracted ORB
features in Fig. 3.31. It can be seen that the pose is correctly retrieved, even if
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(a) Laboratory image. (b) Rendered image.

(c) Laboratory image histogram. (d) Rendered image histogram.

(e) Disparity map of shadow areas.

Figure 3.28: Comparison and cross-validation of laboratory image and
synthetic image, after recalibration activities.
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the rigidity of the mock-up’s solar panel has to be improved to match the ideal
positioning visible from the synthetic image. The extracted features are very
close both in number and location; the features quality index is FQI = 0.82.
Please note that in Fig. 3.31 the marker in the laboratory image has not
been cropped, but that the FQI is computed based on corresponding features
only. An high FQI indicates that the ORB descriptors are similar in the two
images and thus that the illumination and mock-up materials are realistically
reproduced. It has been noticed that, the two images histograms are not
exactly matching. The major difference is present for low intensity pixels, and
in particular it can be attributed to the diffuse light inevitably present in the
facility. The shadow index is Js = 0.98, indicating a shadow distribution very
close to the one obtained with the rendered ground truth.

The indices relevant for an artificial target are reported in Table 3.8 for 10
validation images. The images are shown in Fig. 3.30 and correspond to
different poses and illumination conditions. The validation campaign can be
considered successfully concluded, even if some differences among the two kinds
of images could not be completely eliminated.

Table 3.10: Summary of validated images and corresponding indices - Debris
scenario.

Frame Js > 0.9 FQI > 0.8 Sun [Az, El]

0 0.97 0.82 [318◦, -28◦]
1 0.95 0.83 [120◦, -63◦]
2 0.91 0.80 [120◦, -63◦]
3 0.94 0.82 [120◦, -63◦]
4 0.96 0.80 [120◦, -63◦]
5 0.94 0.82 [120◦, -63◦]
6 0.96 0.85 [120◦, -63◦]
7 0.92 0.82 [120◦, -63◦]
8 0.94 0.84 [334◦, -17◦]
9 0.98 0.81 [334◦, -17◦]
10 0.97 0.82 [334◦, -17◦]
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(a) Laboratory images.

(b) Synthetic images.

Figure 3.29: Images from Moon validation set (frames 1 to 6).

(a) Laboratory images.

(b) Synthetic images.

Figure 3.30: Images from Debris validation set (frames 1 to 7).

Figure 3.31: Example of features extraction comparison.
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3.3.2 Thermal images results

Validation method Concerning thermal images, the validation process
is carried benchmarking synthetic images rendered with the ADE tool (see
Section 3.1), with a sequence of real images from the Hayabusa 2 Science Data
Archive [71]. In particular, Hayabusa 2 TIR 20180720-071632-l1 to 20180720-
150217-l1 47 images are selected, since the distance from target is adequate for
the application case considered in this work. Spice kernels are used to retrieve
the Sun position, the TIR camera position and orientation in the Ryugu-fixed
reference frame.

Figure 3.32: Synthetic thermal images validation scheme.

In Fig. 3.32 the validation process is schematized. For each image, the thermal
simulation is run to derive the corresponding temperature field, under the
assumption of a stationary thermal behaviour, thus considering to reach the
thermal equilibrium after the transient, for each time instant. The considered
asteroid 162173 Ryugu’s thermophysical properties are reported in Table 3.11
[72]. The asteroid shape model used is available from Hayabusa 2 mission data
[71].

Table 3.11: Ryugu’s thermophysical properties [72].

Parameter Symbol Value Unit

Emissivity ε 0.9 -
Bond albedo a 0.0146 -
Thermal inertia Γ 225 Js1/2K−1m−2

Density ρ 1192.8 kgm−3

Heat capacity cP 600 JK−1

Then, from the temperature field, a radiance image is obtained. The TIR
camera model is based on Hayabusa 2 Thermal Infrared imager, whose charac-
teristics are reported in Table 3.12.
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Table 3.12: Cameras characteristics, from [14].

TIR

Array size 344 x 260
FoV 16.7◦ x 12.7◦
NETD 0.4 K
Bit depth 12
Detectable temperature 150 - 460 K
Spectral band 8 - 12 µm

Overall, the disparity error is quantified by means of a disparity index, which
has been defined as the absolute difference between pixel intensities in the two
images, only considering the Region Of Interest (ROI), i.e. the asteroid.

JD = |Ireal − Isynth|ROI (3.22)

Such index is a low level measure of the difference among the images.

Validation results The first real image of the sequence can be seen in
Fig. 3.33a and its correspondent synthetic image in fig. 3.33b. The disparity
image |Ireal − Isynth| among the two is shown in Fig. 3.33e. The images
histograms are shown in Fig, 3.33c and 3.33d.

The disparity image is useful to qualitatively understand the error sources. On
a macroscopic basis, the disparity is tending to zero, showing that the ADE
tool can successfully reproduce the mean brightness of the body and represent
the major image features. Nevertheless, low level details are not always well
represented. For instance, some rocks on the surface appear to be brighter in
the real images. The main reason is that a uniform emissivity has been assumed
for the whole body, but Hayabusa 2 studies [72] highlighted that the surface of
the asteroid presents different materials, with different emissivity values. Such
error is considered acceptable here, as its entity is contained and the ADE tool
purpose is to be a general tool. A fine hand tailoring of the emissivity value
would be necessary to reproduce exactly the same materials that are present
on Ryugu’s surface. As second option, a random emissivity map can be applied
on the shape model. Another error visible in the disparity image, is instead
related to a gradient in the longitudinal direction. The origin of this error is
instead associated to the hypotheses performed in the thermal simulation. The
ADE tool is compatible with OpenFoam, and a future extension will include
more complex thermal analyses.

The mean JDµ and standard deviation JDstd in the ROI have been computed
for JD. Results for the whole sequence are shown in Fig. 3.33f: JDµ is in
average the 2.83% of the gray levels while JDstd is the 7.05%.
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(a) Real image. (b) Rendered image.

(c) Real image histogram. (d) Rendered image histogram.

(e) Disparity image. (f) JD index for the whole sequence.

Figure 3.33: Comparison of synthetic and real thermal images belonging to
the 20180720-071632-l1 to 20180720-150217-l1 image sequence.

64



3.3. Data validation and comparison

3.3.3 LiDAR data results

A first characterization of the scanning LiDAR point cloud is performed, thanks
to the data gathered in the OOS-SIM.

Observing the appearance of the LiDAR’s point cloud of a flat plate, it has
been noticed that the major noise component is in the laser firing direction.
This is easily explainable considering the working principle of the sensor.

The noise of LiDAR point cloud has been quantified using the plate point cloud
and considering the distance of the points from the plane model computed with
the RANSAC algorithm. The point-plane distances distribution is shown in
Fig. 3.34, being a Gaussian with mean of 0.2863 mm and standard deviation of
8.693 mm. This characterization can be exploited to generate noisy synthetic
scans.

On the other hand, observing the real point cloud of the client satellite, other
kinds of noisy features were observed. Such features can not be reproduced
with a simulator in a straightforward way, being:

• massive blobs of points inside the client, caused by MLI reflections in
proximity of the borders of the client central cylinder;

• train of points when the impinging light is tangent to the surface, observed
especially on the external ring which is non-planar and thin with respect
to the vertical grid of laser firings;

• noise components in directions other than the firing one, due to random
reflections on the surface, which sometimes cause a distortion of the grid.

(a) Point-plane distance
distribution on the plate.

(b) Noisy features in the client satellite point
cloud.

Figure 3.34: LiDAR noise characterization.

Such considerations are a first starting point for filling the gap between real
and synthetic point clouds.
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CHAPTER4
Visible imaging navigation and mapping

systems

4.1 Far range relative navigation

4.1.1 Centralized relative navigation of multiple far-range Cube-
Sats

The problem of performing a centralized autonomous navigation algorithm
able to reconstruct the trajectories of a fleet of CubeSats relative to an asteroid
binary system is here studied.

The algorithm has to be executed on-board the main spacecraft, which takes
relative measurements using a narrow optical camera. The image processing
algorithm goal is to detect and track the CubeSats, deriving Line of Sight
(LoS) measurements. Such measurements can be exploited into a navigation
filter to obtain the CubeSats position relative to the asteroid.
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The optical navigation capability of the mothercraft is exploited to detect and
track the CubeSats, deriving LoS measurements. In particular, the following
challenges are tackled:

• to exploit only low exposure images that are already taken for the
mothercraft’s own navigation;

• to detect and distinguish far-range objects in presence of starry back-
ground and large natural celestial bodies in the FoV.

Depending on the target distance, characteristic dimension and camera char-
acteristics, different IP techniques can be adopted. In Fig. 4.1, the image
portion occupied by a CubeSat target with characteristic dimension of 60 cm
is displayed at different distances for images taken with a narrow angle camera.
When the CubeSat is close to the mothercraft, algorithms for pose estimation
can be employed, from which the LoS measurement can be derived. Considering
that the pixels occupied by the object should be at least of the order of 50-100
px to estimate the pose, the employment of such strategy is limited only to
very close range distances. Such close-range distances are of the order of 50 m,
thus likely coinciding with a very reduced mission phase, e.g. the CubeSats
release. For the mid and far range distances, it is possible only to employ blob
detection algorithms to safely compute the LoS.

Figure 4.1: CubeSats pixel size at possible mission ranges.

Additional challenges related to the CubeSats detection and identification are
the presence of other point objects in the image (i.e. stars or other CubeSats).

4.1.1.1 Mission scenario

Scenario description For the evaluation of the far-range techniques, with-
out loss of generality, the Hera mission scenario is considered [11]. The main
spacecraft (Hera) will be executing a set of hyperbolic passages around the
binary system 65803 Didymos. A 6U CubeSat (CubeSat1) will be orbiting
closer to the system, exploiting the three-body problem equilibrium points of
the binary gravity field. Another 6U CubeSat (CubeSat2), will be orbiting
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around the whole binary system, in a Self-Stabilizing Terminator Orbit (SSTO)
whose period is such that an integer number of orbits are completed within
one week [73].

For the subsequent analyses here presented, the specific orbits derived in [74]
are taken (see Fig. 4.2):

1. Hera’s trajectory has been selected from the planned hyperbolic passages
sequence and has been propagated with a Keplerian + solar radiation
pressure (SRP) dynamical model.

2. CubeSat1 is located to a naturally stable orbit, centered on the Lagrangian
point L4 and leveraging the binary system dynamics, known as Short
Period Orbit (SPO). The resulting orbit has a bounded, non-periodic
motion with a synodic period of 12 hours and 20 minutes approximately.

3. CubeSat2 is placed in a SSTO, a trajectory naturally stabilized by the
effect of the SRP, with a radius of 3.3 km and a period of 56 hours. Due
to the geometry of the system, the orbit is nearly perpendicular to the
binary system’s orbital plane, thus providing good coverage of the whole
system.

Figure 4.2: Mission scenario under study.

Electro-optical sensor characteristics Hera visual sensor and its param-
eters are essential for the study of a centralized vision-based navigation. The
Asteroid Framing Camera (AFC) characteristics of interest are reported in
Tab. 4.1, as from [61]. Such camera model is used to generate realistic synthetic
images in Pangu. In operating conditions the AFC is affected by a dark noise
with rate Ndark = 0.03 DN/s and a read-out noise with standard deviation
Nread = 2 DN. This paper wants to investigate the possibility of exploiting
images already taken by Hera for its own navigation. Therefore, images are
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acquired with a low exposure time texp = 0.1 s, necessary to avoid smear and
saturation, since Didymos is the main target [11].

Table 4.1: AFC characteristics.

Parameter Value

Field Of View FOV = 5.5◦
Aperture diameter da = 20 mm
Focal length f = 150 mm
Pixels 1024x1024
Bit Depth BD = 14
Analog chain gain G = 18 electrons/DN
Quantum Efficiency (max) QEmax = 0.2
Point Spread Function (PSF) diameter dPSF = 1.7 px

4.1.1.2 IP alternatives definition for trade-off

In this section, the possible architectures for the IP algorithm are defined.

Prior information availability Two different general approaches can be
adopted for the IP algorithm:

1. the IP assumes a-priori information from a navigation filter;

2. the IP does not rely on a-priori information from the navigation filter.

The first possibility is to assume to have the filter state feedback. In this case,
no lost-in-space detection is performed: the IP takes as input the CubeSats
image coordinates estimated by the filter and their covariance. This allows
to crop a region of interest in the image where the CubeSats detection and
identification can be performed. The IP outputs are the measured image
coordinates of the targets, that are fed into the filter.

The second possibility is not to rely on filter feedback. The objective of the
IP algorithm here is to find the CubeSats in a lost-in-space scenario, where
no information comes from the filter. It takes in input two subsequent images
and its output is the CubeSats position in image coordinates or a not-found
message. Within the image pre-processing block, asteroids are masked and the
centroids corresponding to the other celestial and artificial objects is computed;
then such points are characterized as features and matched from one image to
the other. Finally, disparity is computed and the candidate points are screened,
identifying the CubeSats.
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Centroid computation For the blob centroid computation different tech-
niques are available, e.g. developed for star trackers [20]. The Moment
computation is the simplest and computationally efficient technique. This
basic technique is used to find the target object center (xc, yc) in the image I
and can be used to provide a LoS measurement. The simplest method is the
computation of the momentum:

xc =
∑n
i=1

∑m
j=1 I(i, j)i∑n

i=1
∑m
j=1 I(i, j) (4.1)

yc =
∑n
i=1

∑m
j=1 I(i, j)j∑n

i=1
∑m
j=1 I(i, j) (4.2)

The momentum method is very simple as robust, thus suitable for the imple-
mentation of a light on-board algorithm. On the other hand, Gaussian Fit can
achieve a larger accuracy at the price of a larger computational effort [75]. This
method can be employed when the target object is smaller than the detector
resolution. The object appearance is mainly related to the optics and stray
light effects that determine the Point Spread Function (PSF) of the camera.
The method consists in fitting a 2D gaussian distribution with a linear least
square based algorithm:

I(x, y) = texp
2πσxσy

e−
m0−m

2.5 e
− (x−xc)2

2σ2
x e

− (y−yc)2

2σ2
y (4.3)

where texp is the exposure time, m0 = −1.5 is the visual magnitude of Sirius
and σx, σy is the standard deviation of the camera PSF. Its main applications
of interest are star trackers, as it exploits the known magnitude of the object
and allows centroiding with sub-pixel accuracy.

The Moment algorithm is selected in virtue of its simplicity and robustness,
considering also that the main challenge of the IP is related to the CubeSat
identification among the detected blobs rather than to the centroid accuracy.

Features Extraction (FE) Each candidate needs to be matched with the
corresponding one in the previous image. In this process it is essential to
have points in the center of highly variable area, which helps in the matching
process. Well defined points are found in the presented scenario (i.e. stars,
CubeSats), but they are all placed over a background poor of features. Typical
features used for stars matching are based on geometric patterns or brightness
information. Therefore they are the ones considered here.

1. FE1: Point coordinatesWith the scenario image acquisition frequency,
the disparity between the images is small. Therefore an option is simply
to consider as a feature the points coordinates in the two images.
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2. FE2: Triangular Feature For each point the two closest ones are
considered, forming the three of them a triangle, as shown in Fig 4.3.
Parameters used by Liebe for stars matching are the angles from the star
to the closest two neighbors and the inner angle of the triangle [76].

Figure 4.3: Triangular Feature A,B,C: A,B = angular distance C = inner
angle.

3. FE3: Triangular feature + brightness Geometry may be different
because the CubSats are moving with respect to the stars. Therefore
brightness information should increase their detectability. Brightness is
therefore considered as additional parameter. As brightness parameter
the brightest pixel of the blob can be taken, or the mean of surrounding
pixels.

Outliers Identification (OI) After the disparity computation the candidate
points corresponding to CubeSat1 and CubeSat2 need to be selected. While
stars movement is due to the movement of Hera, the CubeSats disparity in the
image is the result of their relative motion with respect to the mothercraft. If
a sufficient number of stars is detected, CubeSats can be recognized as outlier
points, having a different disparity.

1. OI1: Median The point is considered an outlier if its deviation from
the median is larger than three standard deviations.

2. OI2: GESD The Generalized Extreme Studentized Test is performed
to verify if a point is an outlier or not. Such test is useful when the
number of outliers is not known a priori, therefore it is suited to the
present scenario. [77].

3. OI3: Mean The point is considered an outlier when the distance of its
disparity from the mean is more than a certain threshold. Such threshold
is a number of pixels chosen depending on the image acquisition frequency,
given the orbital dynamics scenario. When an outlier is found, it is
removed and other outliers are searched for with an iterative procedure.

4.1.1.3 CubeSats’ Visibility analysis

Given the orbits in Fig. 4.2, the CubeSats dimension is always less than the
pixel resolution.
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An analysis is performed to assess when the CubeSats are visible. Four
geometric constraints that affect the CubeSats detection are taken into account:

1. the target is in the camera Field Of View (FOV);

2. the target is not overlapped to Didymain or behind the body;

3. the target is not overlapped to Dimorphos or behind the body;

4. the target is not in Didymain or Dimorphos shadow.

Please note that the overlap with a celestial body makes the target impossible
to detect because of its small dimension in pixels.

Results are reported in Tab. 4.2 for both CubeSat2 and CubeSat1. In Fig. 4.4
and 4.5 Hera orbit traits are highlighted when the targets are visible. It can
be observed that CubeSat1 is not visible mainly because it lies on Didymos
orbital plane as Hera, therefore it is often covered by Didymain. It is visible in
a discontinuous manner. While CubeSat2 is almost always outside the FOV
and the trait in which it is visible is unique.

Table 4.2: CubeSats Visibility.

Cubesat Contraint Visibility

CubeSat1 1 35.08 %
CubeSat1 2 78.39 %
CubeSat1 3 100 %
CubeSat1 4 85.58 %
CubeSat1 all 9.17 %
CubeSat2 1 4.58 %
CubeSat2 2 100 %
CubeSat2 3 100 %
CubeSat2 4 100 %
CubeSat2 all 4.58 %

From the geometric constraints analysis, it is clear that the overall algorithm
performance will be seriously affected by the targets’ low visibility and occa-
sional measurements provided by the IP. Such an outcome is highly dependent
on the reference hyperbolic arc of Hera. The reference arc is selected based on
the trajectory analyzed in [11]. An out-of-plane arc is expected to be beneficial
with respect to geometrical constraints mentioned here. Nevertheless, the
impact of such constraints on the navigation needs to be evaluated through
extensive tests.
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Figure 4.4: CubeSat2 visibility
during Hera hyperbolic trajectory

(green = visible, blue = not
visible)

Figure 4.5: CubeSat1 visibility
during Hera hyperbolic trajectory

(green = visible, blue = not
visible)

4.1.1.4 IP alternatives trade-off results

For the algorithm alternatives trade-off, a simulation is carried-out over the
first 1000 measurements taken along Hera hyperbola. The measurements are
acquired every 60 s. The images in which the CubeSats are visible are 239.
Pangu generated images are used for the simulation, considering only CubeSats,
stars, sensor model and noise.

The IP architecture trade-off is reported in Tab. 4.3. The accuracy of the two
strategies is similar and the number of false positive (FP) and false negative
(FN) are comparable. The first alternative is computationally lighter than the
second: simulating one Hera hyperbolic arc, the mean CPU time dedicated to
one step of the IP with filter feedback is 0.024 s, while without feedback it is
0.130 s. The simulation has been run on an Intel(R) Core(TM) i7-10510U CPU
@ 1.80GHz. The preliminary analyses in the sections above have pointed out
that the CubeSats visibility is low, so the IP algorithm measurements provided
to the filter are scarce. Hence, in case of assuming preliminary info from the
filter, if the filter diverges the IP will not be able to provide any measurement,
causing a failure of the navigation architecture. Therefore, in virtue of its
robustness, the IP without filter feedback is selected as baseline.

Table 4.3: IP main architecture trade-off

Alternative Accuracy Robustness Cost

IP with filter feedback Medium Low Low
IP without filter feedback Medium High Medium
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For a lost-in-space scenario the algorithm robustness is critical. In particular,
two criteria are selected to evaluate the other alternatives:

1. False Positives (FP). False positives need to be avoided, as providing a
wrong measurement to the filter will cause its divergence, compromising
the navigation success. Therefore the percentage of false positives in
sample cases needs to be minimized.

2. False Negatives (FN) False negatives would miss the opportunity of
detecting the CubeSat when it is in view. Therefore the percentage of
false negatives in sample cases needs to be minimized.

Table 4.4 shows the results for the features extraction trade-off. For the success
of the algorithm it is essential to have enough stars correctly detected and
matched, in order to have a term of comparison for CubeSats disparities. The
best performance is obtained with FE2 and FE3 for both FP and FN. Between
the two FE2 is selected as a baseline, since geometrical information is sufficient
and brightness adds no relevant information. Some FP are due to the fact that
the satellite center of mass is not inside the fov, but the PSF is actually visible.

Table 4.4: Features extraction trade-off

Alternative FN FP

FE1 - image coordinates 50 145
FE2 - triangular features 27 37
FE3 - triangular features and brightness 27 37

Table 4.5: Outlier identification trade-off

Alternative FN FP

OI1 - median 26 1049
OI2 - gesd 20 466
OI3 - mean 27 37

Table 4.5 shows the results for the outlier identification trade-off. OI2 and OI3
largely exceed the FP number of OI3. Therefore the mean method is selected
as baseline.

4.1.1.5 Baseline description

The detailed IP baseline design resulting from the trade-off is shown in Fig.
4.6.
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Figure 4.6: IP baseline algorithm

Masking The asteroids masking is performed as first step in the image
pre-processing. In particular, Didymain position is assumed known from the
mothercraft central navigation, while Dimorphos position is not considered
known. Dimorphos is assumed on a circular orbit around Didymain, allowing
a coarse knowledge of its position. The error in pixels between the two cases is
shown in Fig. 4.7 and can reach about 80 pixels. According to this analysis, to
establish the margin, the uncertainty on Dimorphos position is assumed to be
equal to the body radius.

Figure 4.7: Error in Dimorphos assumed position, between circular and
elliptical orbit.

Threshold and centroids Afterwards, a threshold is applied to the image
to remove background noise. The threshold is tuned according to the present
scenario. The result is a binary image where only stars and CubeSats bright
enough are visible. Their centroids are computed as center of the detected
blobs. Such points constitute the pool of candidates.

Features extraction and matching Each candidate needs to be matched
with the corresponding one in the previous image. Triangular features are
extracted to associate the stars and CubeSats geometric pattern in the two
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frames. For each point the two closest ones are considered, forming the three
of them a triangle, as shown in Fig 4.3. Parameters used by Liebe for stars
matching are the angles from the star to the closest two neighbours and the
inner angle of the triangle [76]. Features are matched with a Sum Squared
Differences metric, in order to associate candidate points of the two images
and understand how they moved from one frame to the other.

Candidate points on the image border Feature matching is necessary
for associating candidate points of the two images and to understand how they
moved from one frame to the other. It is possible that a candidate in one image
is not visible in the subsequent one; in this case the algorithm shall recognize
that the candidate is no longer present in the image. Triangular features are
identified by searching for the two closest points for each point. When a point
appears or disappears in one image, being near to the image border, the pattern
can not be correctly matched in the two frames, as the closest points will be
different. As an additional check in the candidate selection process, centroids
within a few pixels of the image border are removed from the candidate pool,
because they are likely not found in subsequent images.

Disparity and outliers identification The disparity of the matched can-
didates is computed. The stars shall have a similar disparity, as the relative
motion between camera and fixed stars is due only to Hera trajectory and
pointing. A candidate is selected if its disparity differs from the mean more
than a threshold. Such threshold is a number of pixels chosen depending on
the image acquisition frequency, given the orbital dynamics scenario. When
an outlier is found, it is removed and other outliers are searched for with an
iterative procedure.

Distinguish CubeSat1 and CubeSat2 Once candidates have been screened
and outliers found, it is necessary to distinguish between CubeSat1 and Cube-
Sat2. The knowledge of CubeSat disparity can be exploited to distinguish
among them. The criteria used are the following:

1. a candidate is recognized as CubeSat1 if its disparity, which has a direction
similar to the CubeSat velocity, is mainly horizontal and if the CubeSat
is close to the asteroid plane;

2. a candidate is recognized as CubeSat2 if it is not CubeSat1 and its
velocity is mainly vertical, as it should be during visibility periods from
the scenario preliminary analysis.
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4.1.2 Results of centralized relative navigation

4.1.2.1 Centralized navigation performance

The IP algorithm is tested on the reference scenario using Pangu synthetic
images. The performance is evaluated in terms of FP, FN and pixel error for
the reference nominal scenario.

The vision-based navigation algorithm has been evaluated in the reference
scenario. Representative images of the AFC have been synthetically generated
using Pangu, including the binary asteroid system, the CubeSats, the Sun and
the stars (Hypparcos catalog), coherently with the reference dynamics of the
built trajectories. An example of generated image is shown in Fig. 4.8. Since
the phase angle among camera asteroid and Sun is low, the asteroids saturate
the image. This condition is desirable for the mothercraft’s own navigation
and allows have a low phase angle also for the CubeSats. Nevertheless, it can
be observed that even if CubeSats and stars are present in the image, they are
hardly visible, and a longer exposure time would improve their brightness.

Figure 4.8: Example of synthetic image of Didymos system, stars and
CubeSats, generated in Pangu considering the AFC model.

Test 1: images without asteroids. At first, the algorithm capabilities are
tested on images without the asteroids rendering. This test aims at addressing
the IP performance without the masking block. Since the CubeSats visibility
is not affected by the asteroids presence, such test involves a larger number
of images where the spacecraft are visible and so it involves a wider set of
situations in terms of illumination and trajectory. The test results are shown
in Table 4.6.
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Table 4.6: IP validation - test 1.

Visible Correct FP FN Error µ Error σ
Matches [px] [px]

CubeSat1 1676 1628 2 48 3.03 2.15
CubeSat2 276 242 0 34 7.72 2.33

The algorithm under test can be considered validated, as the number of FP is
kept very low and the FN are contained.

The main causes of the presence of FN are here analyzed:

• Candidate near to the image border. In the algorithm implemen-
tation there is a 5 pixel border near to the margin in which candidates
can not be detected. Such margin is necessary to deal with candidate
points that appear or disappear in one of the two involved frames and
have the same number of candidate points in the two frames.

• Appearance of the CubeSat. When a CubeSat enters the FoV (over-
coming the margin), it is not possible to detect it, simply because it is
not present in the former frame.

• Feature description. It has been discovered that the 67% of CubeSat2
FN are due to a degenerate case in the feature matching. In fact, the
three following conditions happen simultaneously:

1. the two closest candidates form with CubeSat2 an isosceles triangle
(see Fig. 4.9);

2. those two stars are involved in the same triangle when forming the
triangular feature (in other words, there are not other candidates
closer to them), making CubeSat2 feature description identical to
another one;

3. the two identical features are mismatched.

Test 2: Dimorphos position assumed known. For a proper validation
of the masking block as well, images including the asteroids are now considered.
In this case, the CubeSats visibility is affected by the presence of the two
bodies. In this test, Dimorphos position is assumed to be exactly known from
Hera central navigation. Results of test 2 are reported in Table 4.7.

As expected, with respect to test 1 CubeSat1 visibility decreases, whereas
it does not change for CubeSat2. In fact, in CubeSat2 case the visibility is
affected mainly by the FoV and not by the asteroids presence. It can be noticed
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Figure 4.9: FN due to degenerate case in feature description.

Table 4.7: IP validation - test 2.

Visible Correct FP FN Error µ Error σ
Matches [px] [px]

CubeSat1 535 423 8 112 4.85 1.69
CubeSat2 269 211 12 58 7.90 2.30

that the inclusion of the asteroids in the images leads to a significant increase
of FN.

The new FN causes are here analyzed (additional to the ones already presented):

• Insufficient number of candidates. This is due to the fact that a
large portion of the sky is not visible anymore and so the number of
reference stars decreases, making it harder or impossible to distinguish
the CubeSats as outliers. For instance, the 55% of CubeSat1 FN and
the 9% of CubeSat2’ ones are happening when the number of candidate
points is 3 or 2. Such a low number of candidates is due to the fact that
a large potion of the image is being masked. For instance, at the perigee
almost the whole image needs to be masked (see Fig. 4.10).

• Appearance and disappearance of candidates. The problems aris-
ing when a candidate appears and disappears are now much more frequent.
In fact, such phenomena happen not only when a candidate is in the
nearby of image borders, but also when it is in proximity of the asteroids.
Moreover, the way in which geometric features of candidates close to the
appearing/disappearing point are extracted is also affected. There is a
routine in the algorithm in order to identify which is the point appearing
or disappearing. In Fig. 4.11 and 4.12 an example is shown.

• Asteroids margin. Finally, the asteroids masking is done by masking
a circular area centered in them. Such area does not correspond to
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the bodies exact contour and in the case of Dimorphos it includes a
significant margin to deal with uncertainty in his position knowledge. As
a result, points that are actually visible in the images are lost during
the masking process (see Fig. 4.12). For instance, in CubeSat2 this
happens for the 45% of FN. A possible solution could be a more complex
image segmentation, that could limit the margin impact. On the other
hand, if such solution is followed for an on-board implementation, the
computational cost should be carefully evaluated.

Figure 4.10: Frame at
perigee - largest
masking needed.

Figure 4.11: CubeSat1
before being masked

(frame k).

Figure 4.12: CubeSat1
after being masked

(frame k+1).

Test 3: Dimorphos position unknown As last test for the IP validation,
the most challenging situation is considered, i.e. Dimorphos position is consid-
ered not known, but the body is assumed (on-board) to be on a circular orbit
around the primary. Please note that the masking margin is equal to Test 2,
but in this case the centre of the masked area changes.

Results of measurements coming from the algorithm are resumed in Table 4.8.
In particular, a match is considered correct if the error between nominal and
measured position is < 10 pixels for CubeSat1 and < 15 pixels for CubeSat2.
Otherwise, the point is considered to be a FP. The number of FN is deduced
from the visibility analysis. Please note that the high number of FN is due to
asteroids masking and especially to Dimorphos, for which the masking margin
is 1.5.

Table 4.8: IP validation - test 3.

Visible Correct FP FN Error µ Error σ
Matches [px] [px]

CubeSat1 535 425 14 110 4.85 1.68
CubeSat2 269 209 12 60 7.93 2.29
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Please note that test 3 results are almost unchanged with respect to test 2.
This means that the margin for masking has been correctly tuned: the current
margin leads to similar results with a less restrictive assumption on Dimorphos
position knowledge. In other words, asteroids are correctly and fully masked.
The IP performance is not affected by the fact that on-board knowledge on
Dimorphos position is limited, but by the fact that less stars in background
are visible (with respect to test 1).

With this test the IP is considered validated: in the reference scenario the
algorithm is capable of detecting the CubeSats and to identify them. The
performance can be considered satisfactory in terms of FP: the FP number
is < 2.6% (with respect to the total number of visible time instants) for
CubeSat1 and < 4.4% for CubeSat2. A low number of FP is fundamental
for the robustness of the navigation architecture. The FN number is still
relevant, being the 20.6% for CubeSat1 and the 22.3% for CubeSat2. The
number of correct matches corresponds to the 79.4% for CubeSat1 and the
77.7% for CubeSat2. The mean error excluding false positives is about 5 pixels
for CubeSat1 and 8 pixels for CubeSat2. All performance criteria are met, so
the validation is successful.

IP measurement model The IP algorithm is run for the whole trajectory,
using images from Pangu. Results of measurements coming from the algorithm
are presented in Tab. 4.9. In particular, a match is considered correct if the
error between nominal and measured position is < 10 pixels for CubeSat1 and
< 15 pixels for CubeSat2. Otherwise, the point is considered to be a FP. The
number of FN is deduced from the visibility analysis. The IP is able to detect
the CubeSats and correctly distinguish them from stars, background noise
and among them, notwithstanding their limited visibility and the presence of
other objects in the scene (Didymain and Dimorphos). The number of FP
is kept low, avoiding to provide incorrect measurements to the filter. Please
note that the high number of FN is due to asteroids masking and especially to
Dimorphos, for which the masking margin is 1.5.

Table 4.9: IP performance.

Visible Correct FP FN Error µ Error σ
Matches [px] [px]

CubeSat1 535 425 14 110 4.85 1.68
CubeSat2 269 209 12 60 7.93 2.29

The IP measurement error model is shown in Fig. 4.13 for CubeSat1 measure-
ments and in Fig. 4.14 for CubeSat2. The error is the difference between the
measured pixel coordinates and the pixel coordinates that would be obtained
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with a perfect imaging system (i.e. no PSF, no distortion). It can be seen that

Figure 4.13: CubeSat1
measurements error

Figure 4.14: CubeSat2
measurements error

the error differs for the two CubeSats. This may be due to different reasons,
here listed:

• CubeSat2 when visible is close to the image border, where the camera
distortion is stronger and therefore the error in the measured position is
larger;

• the different distance and therefore brightness of the CubeSats can cause
a different PSF intensity distribution. The threshold therefore affects
differently the PSF areas and if the kept area is larger, the error may be
larger as well.

4.1.2.2 CubeSats detection analysis

The detectability of the CubeSats in the visible band is studied in this section.

With the considered trajectories and exposure time, no smear occurs. Smear
becomes relevant only with exposure times larger than 10 s, as shown in Fig. 4.16
and Fig. 4.15. Therefore, the CubeSats’ irradiance can be considered to arrive
at one pixel only for the SNR computation.

For the considered trajectories, the resulting range and camera-target-Sun
phase angle are shown respectively in Fig. 4.17 and in Fig. 4.18. Considering
the surface area of the object to be 0.36 m2, and the materials reflectivity of
0.8, the expected SNR along the trajectory is computed. As visible in Fig. 4.19,
the SNR of the target objects is above the typical acceptability limit of 10 dB.
Hence the CubeSats are detectable along the whole trajectory.
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Figure 4.15: CubeSat1 smear. Figure 4.16: CubeSat2 smear.

Nevertheless, assuming a worst case scenario in which the CubeSat is badly
oriented, exposing a surface area of 0.01 m2 with a low reflectivity of 0.2, the
CubeSat would not be detectable anymore (see Fig. 4.20).

Considering the irradiance from the target to the sensor, two different contribu-
tions can be distinguished: the light reflected from the Sun and the target’s own
thermal emission. In Fig. 4.21, the two contributions are reported for an object
with reflectance ρ = 0.8 and emittance ε = 0.8, at different temperatures. The
selected temperature range is wide: from −100 ◦C to 150 ◦C, being a possible
range for a non-operating or debris spacecraft. For an operating spacecraft the
range can be restricted to −40 ◦C to 80 ◦C. It can be noticed that among the
different possible temperatures, the emitted component plays a dominant role
with respect to the reflected one in the LWIR (Long Wave Infrared) range, i.e.
[8 to 15 µm]. The IR band interesting for this mission scenario is therefore the
LWIR, since in this band the reflected radiation component is less than the
thermal emitted component, allowing robustness to illumination and target
visibility also in eclipse (lowest temperatures). The choice of such band can
be considered robust with respect to orbit and target materials, since the
appropriate band would be always the LWIR.

In conclusion, a possible enhancement of the far-range object detection could
be performed with multi-spectral imaging and in particular with a TIR camera.

4.2 Close range imaging for mapping

In this section the problem of using an AI architecture inserted in the GNC
chain during the close range relative navigation with an unknown target is
tackled.

The quality of the mapping process of a small celestial body can be evaluated
based on the spacecraft viewing angle (i.e. the incidence angle i) and the
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Figure 4.17: Target - camera range.

Figure 4.18: Camera-target-Sun phase angle.

Figure 4.19: Target SNR - best case.

Figure 4.20: Target SNR - worst case.

Figure 4.21: Target irradiance: contribution of reflected and emitted
radiation.
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illumination of the surface (i.e. the emission angle e) [78]. Considering a
polyhedron shape model of the body, a score Si can be associated to each facet:

Si = w1S
i
i + w2S

i
e + w3S

i
∆e + w4S

i
∆α + w5S

i
∆β (4.4)

where Sii is the inclination score, Sie the emission one, Si∆e the emission variation
score and Si∆α and Si∆β the solar and spacecraft azimuth angle scores. According
to the images history, the facet mapping index mi is defined for the i-th facet:

mi = Si min
(

1, n
N

)
(4.5)

where n and N are respectively the number of taken images and the number
of ideally necessary images.

As a general formulation, small bodies mapping can be described as a continuous
states and actions POMDP (Partially Observable Markov Decision Process)
[78]:

π? = argmaxπEπ

 T∑
k=0

γkrk(ak, bk)

 (4.6)

where γ is the discount parameter, bk is the belief of spacecraft state and map
state sk = (xk, mk), ak the actions performed by the agent following policy π
and rk the reward that models the planner objectives.

The spacecraft can act according to an AI-policy for improving the mapping
performance. The goal of the policy is to better the mapping operations of
a partially unknown small body, enhancing the mission science return and
optimizing the amount of collected data. A Deep Reinforcement Learning
(DRL) algorithm is employed for an on-ground learning, allowing to obtain a
flexible, light and performing policy to be used on-board. Such policy betters
the body coverage ensuring good illumination conditions of the acquired images,
outperforming a uniformly scheduled image acquisition. In particular, two
different techniques are compared: Neural Fitted Q (NFQ) [79] and Deep Q
Network (DQN) [80], where an Artificial Neural Network (ANN) is used to
approximate the Q-value, i.e. the expected return over time. Therefore the
optimal policy is the one that maximizes the Q-value:

π? = argmaxπQπ(ak, sk|θπ) (4.7)
where θπ are the ANN weights and biases. The action that can be performed
by the agent is the acquisition of an image at the current time step. States
have been designed to synthesize only the information necessary and useful for
decision making and comprise the memory state, map state and current viewing
and illumination angles state. The AI-based algorithm has been selected also
in virtue of its low computational burden and flexibility with regard to the
mission scenario, which would facilitate an on-board implementation.

The implementation of the AI-policy relies on the work done in [81].
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4.2.1 Verification of AI-based policy for mapping operations im-
provement

AI-policy verification with inputs state belief The images acquisition
policy takes in input the estimated pose from the GNC system (see Fig. 4.22)
and outputs the command of acquiring an image, if it is worth, keeping into
account the body mapping and constraints from the available on-board memory.

Figure 4.22: Reference trajectory in the inertial frame.

In the present paper, the AI-policy for high-value images collection is included
in the system as shown in Fig. 4.22. In particular, the acquisition logic takes
in input the estimated relative pose with respect to the asteroid system and
processes such values to compute the input state for the AI-policy. The on-
board algorithm is supposed to have a coarse polyhedral shape model of the
body available.

AI-policy verification with on-ground point cloud generation Be-
cause of the need of verifying the mapping efficiency, a simple IP algorithm
is implemented. The policy is meant to optimize images collection for SPC,
nevertheless SPC is a very complex and iterative process, usually performed
with human experts supervision and its implementation is beyond the purpose
of this analysis.

The equivalent of an on-ground mapping algorithm is implemented for generat-
ing a point cloud of the body.

A simulation of the on-board system is run first, then the on-ground equivalent
algorithm takes as input the spacecraft position and orientation as from the
on-board navigation and the acquired frames from the AI-policy. According to

87



Chapter 4. Visible imaging navigation and mapping systems

the actions performed by the agent, the corresponding synthetic images are
generated.

A reference image is considered and images that overlap are selected, based on
the navigation data. SIFT features are extracted and correspondences in the
images are searched for: when two features match, based on a Sum Squared
Differences (SSD) metric criterion, the point is triangulated [82]. The process
is repeated for each image. In such a way a point cloud of the body is created.

The obtained shape is then compared with the available high-resolution shape
model, used for generating the images and taken as reference ground truth.
Such triangulation-based IP wants to be a verification method, with the aim
to assess the effectiveness of the images collection policy, rather then a shape
reconstruction algorithm to be used during mission operations. This kind of
verification has two different purposes:

• to assess the effectiveness of the AI-policy;

• to compare the performance of the AI-policy and benchmark policies,
using a criterion that overcomes the limitation of having hand-based
rewards.

4.2.2 AI-based policy verification results

4.2.2.1 AI-policy verification with inputs state belief

The reference trajectory is a circular orbit at 4 km from the Didymos system,
with an inclination of 11◦ (see Fig. 4.23). The perturbations introduced by
the secondary body of the system are deemed negligible at the distances in
play and for the purpose of this analysis, reason for which the dynamical
model used to generate the reference ground-truth trajectories is the perturbed
2-body problem, with the whole mass of the system concentrated in the primary
asteroid. A camera with a 10◦ FoV is considered as science imaging payload.

AI-policy ideal behavior at Didymos The AI-policy is tested on the
reference scenario, with the mapping of Didymain only as objective. The
presence of Dimorphos is not known by the net. The known input to the
strategy comprises a 1000 facets shape model of Didymain and a known
memory constraint of maximum 50 images to acquire during one orbital period,
which lasts about 74 h. The AI-policy is employed with a lower frequency with
respect to the navigation one, and in particular a frequency of 150 time steps
per orbit is chosen.
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Figure 4.23: Reference trajectory in the inertial frame.

The performance of the AI-policy is compared to the mapping that would be
obtained taking all the images, at each of the 150 steps. In Table 4.10, the
all-frames acquisition policy (ALL) is compared with two AI-based strategies
(DQN and NFQ) and also with the UNI policy, that considers a fixed frequency
for acquiring the frames, to completely exploit the available memory. The

Table 4.10: Comparison between UNI, DQN and NFQ and the ideal ALL
policy.

Policy Mapping Frames
index [%] acquired [-]

ALL 47.8 150
UNI 41.9 50
DQN 46.8 37
NFQ 44.3 18

best mapping is reached with the DQN strategy, which gets close to the ideal
maximum quality achievable (ALL), outperforming both UNI and NFQ. Both
the AI-based policies respect the constraint on maximum memory. The NFQ
strategy is less prone to collect new data and reaches an inferior mapping
quality, even if still better than UNI. As additional note, the UNI takes 6
images of Didymain when it is completely shadowed. Please note that for such
test, a perfect knowledge of the spacecraft state is available as input to the
AI-policy.

To have a better insight on the obtained mapping, the results achievable with
the all-frames acquisition policy are shown in Fig. 4.24. In particular, in
Fig. 4.24a it can be seen that the achievable mapping is quite uniform with
exception of the poles, that can not be covered staying in the considered orbit.
Regarding the emission score (in Fig. 4.24b), it is dictated by the quite regular
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shape of the body and the Sun direction, that is approximately in Didymain
equatorial plane. For this reason, the collected images have almost always
emission angles in the acceptable range of 10− 50 ◦ in the equatorial area and,
with the poles exception, a good score is obtainable. The incidence score (in
Fig. 4.24c), has a more uniform distribution, as expected from the spacecraft
position relative to the body and the pointing towards its center of mass
direction.

The results obtained with the AI-policy (DQN) are shown in Fig. 4.25. Looking
at Fig. 4.25b and Fig. 4.25c, it can be noticed that the score is less homogeneous
among neighboring facets, compared to the ALL case. Nevertheless, the AI-
policy performance is close to the all-frames acquisition policy, granting a good
overall coverage of the body.

(a) Mapping index. (b) Emission score. (c) Incidence score.

Figure 4.24: All-frames acquisition mapping performance (ALL).

(a) Mapping index. (b) Emission score. (c) Incidence score.

Figure 4.25: AI-policy mapping performance (DQN).

AI-policy behavior with input state belief Another test of the AI-policy
is performed introducing some errors in the knowledge of the relative pose
of the spacecraft. Such tests are meant to verify the DQN robustness to
uncertain inputs, which were not considered at all during the training, but
may be relevant in case of application of the strategy to a small platform in a
challenging environment such as the one of a binary asteroid system.

In particular, 7 tests are performed considering an increasing uncertainty
separately for position and pointing, which are perturbed by a white noise.
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Finally, test 8 considers both effects, with the uncertainty expected for the
study case, i.e. 100 m for the relative position and 3◦ for the pointing. Each
test has been run with 50 simulations; mean value and standard deviation of
the mapping index and acquired frames are reported in Table 4.11. Please note
that the acquired frames are reported as percentage of the maximum capability
of the memory.

Table 4.11: AI-policy performance with uncertainties on relative state.

Test Position Pointing Mapping Frames
σ [m] σ [◦] index [%] (σ) acquired [%] (σ)

0 0 0 46.8 (-) 74
1 100 0 47.4 (0.8) 75 (4)
2 250 0 44.0 (1.5) 71 (4)
3 500 0 30.4 (4.2) 70 (5)
4 0 0.05 46.8 (0.2) 73 (2)
5 0 3 45.6 (0.7) 88 (3)
6 0 5 46.3 (0.4) 94 (7)
7 0 7.5 46.0 (0.7) 79 (12)
8 100 3 47.2 (0.6) 84 (7)

The results in Table 4.11 show that the AI-policy is quite robust to both kinds
uncertainties. It can be noticed that the final mapping obtained is close to the
ideal value. This is due to the fact that, to have a fair term of comparison, in
each simulation and test case the actual pointing and position of the spacecraft
is the same and only the state belief is different.

The first 3 tests show that the number of frames acquired is comparable to the
test-0, but the actual mapping performance decreases with a higher position
uncertainty. Since the AI-policy assumes to point to Didymain CoM from the
belief of its relative position, the information regarding to the illumination
of the surface in view is affected, leading to a lower quality mapping. It can
be noticed that in test-1 the mapping index outperforms the one of test-0,
meaning the the AI-policy is actually not optimal for the present test case.
Therefore, with a slightly different belief of the state, it acts better than in
the nominal situation. Please note that the AI-policy has been trained in a
completely different scenario [81], concerning both body shape and orbit, and
has been designed in order to be easily employed into a wide variety of different
mission scenarios. Therefore, an optimal behavior is actually not expected to
be reached, but only an enhancement in scientific mapping and data collected
compared to simpler acquisition strategies [81].
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Test 4 considers a pointing error in line with the result presented in Fig. ??.
Such error does not significantly affect the policy behavior, since about the
same performance is reached. On the contrary, tests 5-7 highlight a different
behavior of the net: a larger number of images is collected, maintaining a good
mapping quality thanks to the larger amount of data. With a perfect pointing,
at 4 km Didymain would be almost inscribed in the image, thus maximizing
the resolution, keeping the whole body in view. In test 6 almost all the images
are collected: the belief of the current mapping is worse than the actual one
because part of the body is believed to exit the FoV; thus the policy continues
collecting data to complete the body coverage even if they are not necessary.
Increasing again the pointing determination uncertainty, a large amount of
data is still collected, but decreasing with the uncertainty. Such effect can be
related to the fact that when a significant portion of the asteroid is believed
not to be in view, it is not worth collecting the data.

In the combined test (test 8) the policy is robust to uncertainty in the state,
leading to a good mapping of the object, but with a rise of data acquired
with respect to absence of uncertainties. The considered uncertainties can
be considered in line with a realistic scenario and the AI-policy is verified to
outperform a classical UNI scheduling both in terms of amount of data and
images quality.

As an additional consideration, it is observed that the coverage of the body’s
surface can not be always completed because some areas persist to be in
shadow. Thus, as a general consideration, the mapping could benefit from the
employment of multispectral cameras.

4.2.2.2 AI-policy verification with on-ground point cloud generation

As a target for testing the images collection DRL-based policy, comet 67P has
been chose in virtue of its irregular shape. The orbital scenario is a keplerian
hyperbolic arc with pericenter at 70 km from 67P, shown in Fig. 4.26. A narrow
angle camera with a 5◦ field of view and 1024x1024 pixels is considered as
optical sensor. Therefore the body characteristic dimension is about 800 pixels
and the resolution with which the surface is imaged is 7 m per pixel. The
phase angle Sun-body-spacecraft ranges from 10◦ to about 90◦ along the orbit,
granting an appropriate illumination for the body imaging and at the same time
allowing sufficiently variable illumination conditions for testing the algorithm
in a challenging scenario.

Since the body is still far, the aimed number of images is assumed to be 30
and the preliminary knowledge of the shape model is assumed to be quite low,
as represented in Fig. 4.27, corresponding to a 100 facets shape model.
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Figure 4.26: Orbital scenario -
hyperbolic arc at 67P.

Figure 4.27: Low resolution shape
model available on-board.

Verification of effectiveness for on-ground IP The collected images are
synthetically generated with the ray-tracing software POV-Ray and the IP
algorithm is applied to reconstruct the shape. SIFT features are extracted
from images of the same body areas and matched (see Fig. 4.28 ).

Figure 4.28: SURF features extracted from POV-Ray generated images.

The DRL-based policy is capable of dealing with memory constraints, collecting
a total number of 33 images (slightly larger that the aimed number of 30
images). The point clouds of the UNI and DRL policies are shown respectively
in Fig. 4.29 and 4.30. Following the DQN policy the mapping quality betters
and excluding outliers 938 points are triangulated, whereas with the UNI policy
only 162 points are correctly matched triangulated.

This proves that an image collection based on the DRL policy results in a
better capability of reconstructing the body shape and being compliant with
the storage memory requirements. Nevertheless, the body shape is still far
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from being completely reconstructed, because of the scarcity of salient features
in the generated images and because of simplified IP adopted.

Figure 4.29: UNI policy point cloud. Figure 4.30: DQN policy point
cloud.
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CHAPTER5
Visible-thermal relative navigation and

mapping systems

5.1 Multimodal visible-thermal relative navigation and mapping

In this Section, the possibility of using visible and thermal images for navigation
in proximity of an asteroid is studied. The aim of this study is to understand
if thermal images can be employed for navigation purposes, and what are the
conditions in which their exploitation can lead to benefits for the navigation.

Multi-modal VIS-TIR SLAM architecture It is here proposed to use a
multi-modal approach to employ images from cameras working in the visible
and thermal spectrum for navigating in proximity of an asteroid.

For this purpose, the validated visible and thermal images are employed as
input to a vision-based navigation algorithm, as shown in Fig. 5.1.

The selected vision-based navigation algorithm builds on concepts of Visual
Odometry (VO) and Visual-SLAM (V-SLAM) and relies on the implementation
from [83]. Features are extracted and tracked from the incoming image stream,
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Figure 5.1: Multi-modal visible-thermal relative navigation and mapping.

while at the same time a sparse 3D map of the asteroid is reconstructed and
used for navigation. A detailed description of the algorithm can be found
in [83].

5.1.1 Phase angle and thermal inertia analysis

Mission scenario definition The scenario under study is the one of asteroid
162173 Ryugu, for which real mission data are available. The navigation
architecture is tested considering a keplerian circular orbit at 5 km distance
from Ryugu, with an inclination of 11◦, shown in Fig. 5.3. Please note that
Ryugu’s mean diameter is 870 m.

Ryugu’s thermophysical properties used for the thermal analysis are reported
in Table 5.1. The asteroid shape model used is available from Hayabusa 2
mission data [84].

Table 5.1: Ryugu’s thermophysical properties [85].

Parameter Value Unit

Emissivity 0.9 -
Bond albedo 0.0146 -
Thermal inertia Γ 225 Js1/2K−1m−2

Density 1192.8 kgm−3

Heat capacity 600 JK−1

Sensors for multispectral imaging selection Given the orbital scenario,
the grey-body emitted radiation (Planck’s law) and the radiation reflected by
the target at a 5 km distance is shown in Fig. 5.2. Reflectance and emissivity
coefficients for Ryugu are ρ = 0.02 and ε = 0.9 from the Hayabusa 2 mission
data analyses [15] [86].
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Figure 5.2: Radiation emitted and reflected from Ryugu at 5 km.

The selected bands of interest for the multispectral imaging are consequently
the VIS and LWIR band, being not overlapping and corresponding respectively
to the peaks of reflection and emission. The main purpose of this study is in
fact to analyze the benefits of exploiting imaging coming from well separated
bands and thus carrying different information.

The TIR and VIS cameras characteristics are reported in Table 5.2. In par-
ticular, for the TIR the real HW characteristics of Hayabusa 2 TIR payload
have been considered, while for the VIS sensor common characteristics have
been chosen, in order to have as expected a wider array size and a similar but
smaller FoV (Field of View).

Analysis parameters Four case studies are analyzed:

1. Low phase angle. In this case the s/c is on the light side of the asteroid.

2. Intermediate phase angle. The s/c is looking at the terminator.

3. High phase angle. The s/c is on the eclipse side of the asteroid.

4. High phase angle + high thermal inertia. The s/c is on the eclipse
side of the asteroid and a high thermal inertia is assumed for Ryugu.

The considered cases differ only regarding the illumination conditions (phase
angle φ) and asteroids thermal inertia Γ. Such parameters are in fact potential
weaknesses of VIS-only and TIR-only navigation and thus a potential area
of improvement with a multispectral approach. The actual Γ of Ryugu is
employed in cases 1-3 and a different one is chosen for case 4.

97



Chapter 5. Visible-thermal relative navigation and mapping systems

Table 5.2: Cameras characteristics.

TIR

array size 344 x 260
FoV 16.7◦ x 12.7◦
NETD 0.4 K
bit depth 12
detectable temperature 150 - 460 K
spectral band 8 - 12 µm

VIS

array size 1024 x 1024
FoV 10◦ x 10◦
bit depth 8
spectral band 380-750 nm

Each arc has a duration of about 3 h and the considered sampling rate is 1
frame per minute, due to the slow relative dynamics.

Figure 5.3: Spacecraft orbit in inertial frame with different illumination study
cases.
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5.1.1.1 Images generation results

Thermal simulation results For each case study, the minimum and maxi-
mum temperatures on the asteroid surface are approximately constant along the
whole orbit, being in range 146 K to 397 K. Such results are in accordance with
the actual Ryugu surface temperature, which is estimated to typically range
from 250 K to 400 K during daytime and down to 150 K during nighttime [14].

From the thermal simulations in cases 1-3, it has been observed that the low
thermal inertia causes fast temperature changes on the surface as the asteroid
rotates on its spin axis. This means that the phase angle is tightly related with
the temperature field on the surface.

Figure 5.4: Temperature field, high Sun phase angle.

Microbolometer response result Representative data for the sensor model
have been taken from calibration experiments on microbolometer for asteroids
observation [21]. In particular, the available non uniformity textures of respon-
sivity and offset have been tailored on the present study case. The textures
are resized with TIR array dimensions; while the offset and gain values are
scaled according to the TIR bit depth and operative detection temperature
range. The resulting detector response and offset values at the mean expected
temperature are shown respectively in Fig. 5.5a and 5.5b.

An example of pixels’ responses with large differences in offset and sensitivity
is shown in Fig. 5.6 for the whole operative detection temperature range. As
it can be noticed, the non-uniformity effects can be quite relevant. Thus,
their modeling shall be included for realistic thermal images generation. In
fact, for a real-time on board application, as the relative navigation treated
here, corrections might not applied to images or they might degrade in time,
becoming potentially dangerous to the navigation.
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(a) Modeled detector gain. (b) Modeled detector offset.

Figure 5.5: Modeled detector for blackbody scene at Tmean = 305 K. Base
texture from literature real sensor data[21].

Figure 5.6: Pixel response examples.

Generated images VIS images are generated by means of classical rendering
techniques, while TIR images are obtained from the the asteroid surface thermal
behaviour modeling. Examples of the VIS images, the generated temperature
field and the TIR images are shown for each case-study respectively in Fig. 5.7,
Fig. 5.8, Fig. 5.9 and in Fig. 5.10. What can be noticed is the large appearance
difference between the VIS and TIR images, not only in relation to form factor
and resolution, but also in the brightness distribution and presence of features
on different surface areas. Possible improvements to the generation process are
the inclusion of different emissivity values of the asteroids terrain and rocks
and the computation of the asteroid-pixel view factor Fa−p from a shape model,
instead of the spherical approximation.

In cases 1-3, due to the very low thermal inertia Γ of asteroid Ryugu, the
phase angle φ has a relevant influence on the thermal images as well. As a
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consequence, in the low φ case, the TIR observes mainly the hottest regions of
the surface; while in the high φ the coldest ones. Simulations have highlighted
that due to Ryugu low thermal inertia, the thermal images in eclipse are quite
dark and the brightness level is comparable to the noise. Being large areas of
the body neither visible in the optical band, neither from the thermal camera,
both bands result to be not useful for optical navigation in the high φ scenario.
In fact, considering that the simulated temperatures are in range 146 K to
397 K and that Hayabusa TIR covers temperatures in range 150 K to 460 K,
but can work properly only in the range 230 K to 420 K [14], such result is in
line with the mission data.

For this reason, the 4th study case is introduced, which is identical to case 3,
but considers a fictitious, even though realistic, physical property, i.e. a higher
thermal inertia, which leads to hotter temperatures in shadow. In this case,
VIS images have a bad quality in shadow, but the asteroid is observable with
the TIR camera.

(a) VIS image
(b) Temperature field. (c) TIR image.

Figure 5.7: Case 1: Low φ (light).

(a) VIS image
(b) Temperature field. (c) TIR image.

Figure 5.8: Case 2: High φ (shadow).
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(a) VIS image
(b) Temperature field. (c) TIR image.

Figure 5.9: Case 3: Mid φ (terminator).

(a) VIS image
(b) Temperature field. (c) TIR image.

Figure 5.10: Case 4: High φ (shadow), high Γ.

5.1.1.2 Navigation and mapping system results

The SLAM algorithm is then tested on the generated synthetic images.

Fig. 5.11a shows the reconstructed trajectory for the two different sensing
modalities, considering the low phase angle case study. The trajectory is
correctly retrieved by both the VIS and TIR mode. As expected, VIS images
still provide the best results in terms of navigation accuracy, having a larger
resolution. The localization error always tends to increase towards the end of
the sequence, that is a typical feature of any SLAM algorithm, since the pose
error accumulates despite bundle adjustment.

To quantify the navigation algorithm performances, the overall position error
is computed as:

eρ =
√

(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2 (5.1)
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(a) Reconstructed trajectory in Ryugu
body-fixed frame. (b) 3D Sparse map

Figure 5.11: SLAM results for case n. 1.

where x̂,ŷ,ẑ are the position components estimates. The attitude error is
instead computed following [87]:

eR = arccos

(
1− tr(I−AT Â)

2

)
(5.2)

with Â being the estimated rotation matrix. The Root Mean Square Error
(RMSE) is then reported in Table 5.3 for each test case scenario.

It has been noticed that the SLAM performance can vary depending on the
map initialization step, which in certain simulations leads to an immediate
failure of the algorithm. It is here clarified that the results in Table 5.3 report
the performance in cases in which the algorithm does not fail, as the focus of
the analysis is on the navigation accuracy that can be achieved with different
input data and not on the SLAM initialization robustness.

As previously mentioned, since both VIS and TIR images in eclipse tend to be
quite dark, the vision-based navigation algorithm cannot provide a meaningful
solution. When dealing with favorable illumination conditions, i.e. low phase
angle, VIS images still retain a clear advantage with respect to TIR ones, due to
their wider array size. However, considering a high phase angle, both VIS and
TIR images lead can not be employed for navigation purposes. In the fourth
case, a higher thermal inertia for Ryugu’s thermal model has been assumed,
which consequently led to a temperature field compatible with Hayabusa TIR
capabilities even on the eclipse side. In this last scenario, VIS images are still
too dark to be used for navigation purposes, while a TIR-based localization
solution becomes feasible.

Concerning now the mapping performances of the implemented SLAM algo-
rithm, it can be noticed that the best 3D sparse map is obtained using VIS
images with a high phase angle, despite the lower navigation accuracy. The
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Table 5.3: Localization error.

VIS TIR

eρ [m] eR [deg] eρ [m] eR [deg]
Case n.1 103.08 2.45 173.81 3.49
Case n.2 236.15 11.79 280.25 12.43
Case n.3 – – – –
Case n.4 – – 328.77 13.86

reason is that this illumination condition makes it possible to extract features
that are more evenly spread on the asteroid surface, which in turn translates
into a spatially uniform map. Fig. 5.11b shows the output 3D sparse map.
Please notice that due to the selected camera FoV it was not possible to
reconstruct the whole shape.

5.1.2 Conclusions

This analysis studies the possibility to exploit multispectral imaging sensors
for asteroids relative navigation.

The current technologies of photon and thermal detectors are examined and
accurately modeled. Based on the sensors’ characteristics and on the asteroids
spectral radiation emission and reflection profiles, the visible and thermal
LWIR bands are selected as the most promising.

A vision-based SLAM algorithm is selected as relative navigation architecture
and tested with visible and thermal synthetic images. A physics-based thermal
imaging generation process is employed, starting from the asteroid thermal
simulation up to the sensor response. The major outcomes of such analysis are
that:

• TIR sensors can be employed for navigating, offering an interesting
opportunity for relative navigation in close proximity of asteroids.

• While both VIS and TIR sensors are exploitable, they contribute in dif-
ferent ways to navigation: VIS imaging is superior in terms of navigation
accuracy and map quality, due to the higher resolution of the detectors
available for this technology; TIR imaging enables the navigation in new
scenarios, i.e. in the case of high phase angle with a high thermal inertia
asteroid.

• Both sensors can not be employed when images are too dark, being the
target comparable to the noise level of the image.
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Figure 5.12: Images fusion FUS architecture.

5.2 Visible-thermal images fusion

Images fusion In this section, it is proposed to enrich the multi-modal
VIS-TIR architecture for navigation and mapping in proximity of asteroids,
with a third possibility: the fusion of the two images, as shown in Fig. 5.12.
Visible (VIS) and thermal infrared (TIR) images are acquired from the on-
board imaging system. A fusion at image-level is performed, producing fused
(FUS) images via a multi-scale transform-based approach. Then, the images
sequence is processed by means of a Simultaneous Localization and Mapping
(SLAM) algorithm, whose main output is the estimated pose. The SLAM block
can be used to process VIS, TIR or FUS images: according to the operating
conditions the most suitable option shall be selected. Thus, three different
operative modes are available on board: VIS or TIR stand-alone navigation
and mapping or fused images FUS navigation and mapping.

Multiscale transform-based fusion Several methods exist for direct im-
age fusion, such as multi-scale transforms, sparse representation and neural
networks. In this architecture a multi-scale transform approach is adopted, be-
ing efficient, robust and widely used in other application fields [32]. Please note
that for the selected application, other successful methods as saliency-based
methods are not considered: their application in this context is not meaningful,
as the image of an asteroid does not contain any relevant geometric feature,
except from its own contour.

The selected image fusion pipeline is reported in Fig. 5.13. First, each source
image is decomposed into a series of multi-scale representations. Then, the
multi-scale representations of the source image are fused according to the
selected fusion rule. Finally, the fused image is acquired using corresponding
inverse multi-scale transforms on the fused representations.

5.2.1 Results

Images fusion results Two major methods for the transform have been
compared: the Laplacian transform and the wavelet transform, adopting the
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Figure 5.13: Images fusion method scheme.

choose-max as fusion rule. The methods are compared in Table 5.4 for the
fusion of a couple of Ryugu VIS-TIR synthetic images. The image entropy H
is exploited as fusion metric. The fused image shall contain the largest amount
of information and thus have the highest entropy [32], which is defined as:

H = −
L−1∑
l=0

hllog(hl) (5.3)

Where L is the number of gray levels and hl is the normalized histogram of
the image.

Results are reported in Table 5.4. Both methods are effective to increase the

Table 5.4: Images entropy for transform selection.

Transform HVIS HTIR HFUS

Laplacian 1.507 3.490 4.959
Wavelet 1.507 3.490 3.494

image entropy, being the Laplacian the best performing. Moreover, it has been
observed the presence of some aliasing using the Wavelet transform for some
images, around the asteroid contour, this the Laplacian transform is selected.
An example of fused image is shown in Fig. 5.14.
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(a) Synthetic VIS image. (b) Real TIR image. (c) FUS image.

Figure 5.14: Example of fusion application with a real TIR image and its
corresponding VIS synthetic image.

(a) Case 1: Low phase
angle φ (light).

(b) Case 2: Mid φ
(terminator).

(c) Case 4: High φ
(shadow), high Γ.

Figure 5.15: Example of fusion application with corresponding VIS and TIR
synthetic images.

Relative navigation performance results In the present analysis it is
assumed to have a VIS and TIR sensors with the same FoV and array size.
Since the technology with the most relevant limitations is the TIR one, TIR
characteristics presented in Table 5.2 are considered.

The same scenario and case studies as in Section 5.1 are considered. Results
for the navigation are reported in Table 5.5. Please note that with respect to
Section 5.1, the VIS sensors is now different.

Table 5.5: Localization error.

VIS TIR FUS

eρ [m] eR [deg] eρ [m] eR [deg] eρ [m] eR [deg]
Case n.1 106.36 2.91 173.81 3.49 258.89 5.37
Case n.2 317.92 7.24 280.25 12.43 225.53 7.74
Case n.3 – – – – – –
Case n.4-a – – 328.77 13.86 – –
Case n.4-b – – 204.21 7.97 165.44 4.47
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In case 1, the low φ case, it can be seen that FUS images allow navigation, but
their performance is similar, even if slightly lower than the VIS and TIR one.
This may be due to the fact that FUS images carry a larger noise and working
with row data results in a better performance. The reconstructed pose with
FUS images is shown in Fig. 5.16.

(a) Estimated trajectory. (b) Estimated attitude.

Figure 5.16: SLAM results with FUS images for case 1: Low phase angle φ
(light).

In case 2, FUS images show have the best performance for the translation part,
while the rotation error is similar to the VIS images. In case 3, when both VIS
and TIR images can not be exploited, also the FUS images do not allow the
navigation, as the SLAM does not provide any meaningful solution. Case 4
has been divided in two sub-case: case 4-a represents the whole trajectory arc,
while case 4-b includes only the first half of the arc. It has been noticed that
navigation with FUS images is less robust than with TIR images only (case
4-b), as SLAM diverges sooner. Nevertheless, when the trajectory is shorter,
FUS images do provide a best performance. Hence, FUS images can allow to
better the TIR performance, at the price of a lower robustness.

As a general conclusion of this analysis, it can be said that the FUS images
can lead to improvements to the SLAM performance. This analysis is the
first step to define how to exploit the 3 types of data depending on some
relevant mission parameters. The aim of this study was to provide an insight
on the relationship between some major variables (i.e. the illumination and
the thermal behavior of the body) and the navigation performance, as this
constitutes a first guideline for the design of vision-based GNC systems based
on a concurrent exploitation of multispectral imaging.
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Visual-LiDAR relative navigation systems

6.1 Visual-LiDAR pose estimation

An architecture to fuse the information from LiDAR and visual sensors to
perform pose estimation with respect to an uncooperative target is proposed in
Fig. 6.1. The point clouds of a dual-LiDAR scanning system are processed into
a LiDAR Odometry (LO) pipeline, while the consecutive frames coming from a
monocular camera are processed with a Visual Odometry (VO) pipeline. During
the close approach phases with an uncooperative spacecraft, a large robustness
needs to be granted. This requires not only a local pose estimation algorithm
but also a global pose estimation block to be used for initialization and for
lost-in-space cases. Hence, the architecture is provided with an initialization
or re-initialization module, based on a Point Completion Network (PCN) for
global pose estimation.

The rational behind such choices is to separate the tasks of local and global
pose estimation, in order to split the need for robustness, granted by the pose
initialization module, from the one of accuracy, provided by the VO and LO
pipelines, keeping them computationally light.
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Figure 6.1: Visual-LiDAR pose estimation architecture.

Please note that the hereby considered target is a known object, but this
framework can be extended to an unknown target, by adding blocks for the
object map initialization and refinement and by extending the PCN to the
usage with different objects classes.

In this Chapter, the blocks composing the LiDAR-based global pose estimation
and Visual-LiDAR local pose estimation will be described, presenting results
obtained with numerical and laboratory experiments.

6.2 LiDAR-based global pose estimation

6.2.1 Point Completion Network for pose initialization

The PCN architecture presented in Chapter 2 is employed for the global pose
estimation. In particular, the pose estimation is accomplished by writing a
codebook and a labelbook. After training the PCN with the target satellite point
clouds at different poses, instances of the PCN are run with the training data,
saving the global features v into the codebook and the associated ground truth
pose into the labelbook.

Two different algorithms are exploited for the pose estimation task. The first
one is based on the employment of the encoder part only. When a new test
pose is run into the PCN, the closest global feature in the codebook is found
with a cosine similarity. Then, the corresponding pose in the labelbook is read,
retrieving the relative translation t and rotation R.

Synthetic training dataset The synthetic dataset is built with the follow-
ing constraints:
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Figure 6.2: Pose estimation with PCN encoder.

Figure 6.3: Pose estimation with PCN encoder-decoder.
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• position of the LiDARs in front of the target;

• distance in range 1 m to 2.5 m;

• at least 50 % of the vertical LiDAR VFoV includes the target.

Except from the VFoV constraint, the attitude is randomly generated. The
dataset is split in the classical manner into 80 % for training and validation
and 20 % for testing. The synthetic dataset contains 16800 data points, and it
is shown in Fig. 6.4.

(a) Relative translation. (b) Relative rotations angles.

Figure 6.4: Synthetic dataset.

6.2.2 Point Completion Network results

Training results The training has been performed with the following pa-
rameters.

• Batch size: 32.

• Learning rate: 1e-4.

• Decay rate: 1e-6.

• Epochs: 300.

The used GPU is a NVIDIA R© Quadro R© GV100, and the training time 27 h.
The learning curve is reported in Fig. 6.5.

Performance on synthetic dataset Four different algorithms are com-
pared for the pose estimation purposes:

1. The architecture based on PCN encoder.

2. The architecture based on both PCN encoder and decoder.
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Figure 6.5: Learning curve.

3. The architecture based on PCN encoder, followed by a nested ICP to
refine the pose.

4. The architecture based on both PCN encoder and decoder, followed by a
nested ICP to refine the pose.

As it can be seen in Fig. 6.6, the PCN is capable to correctly predict the
translation, with a satisfying accuracy. The rotation estimation performance
is not accurate and some peaks can be observed at 60◦, 120◦ and 180◦. This
fact is related to the symmetry of the target, as the error on the symmetry
axis esym almost overlaps with the overall rotation error er. This is confirmed
by looking at the rotation error parametrizing the pose with Euler angles, as
shown in Fig. 6.9.

As it can be seen in Fig. 6.7 the pose estimation error largely benefits from the
ICP refinement. So it can be concluded that even if the PCN performance is
poor, it is nevertheless sufficient to allow the ICP convergence, thus providing
finally a proper and accurate initialization of the pose. The peaks related
to the symmetry axis are much more evident after the ICP, which converges
almost always to the closest peak, providing a better symmetry breaking.

Geometric ambiguities Concerning the geometric ambiguities related to
the symmetry, the PCN is capable of solving them up to 60◦. This is thanks
to the edges of the target spacecraft main body and to the 3 handles attached
to it. The spacecraft has also a grasping point, which could allow to break
the symmetry completely. It is observed that the grasping point in the point
clouds is not easily visible, either because it is not included in the grid of
points, or because it is not sufficiently thick to distinguish it from the external
ring. In conclusion, the symmetry breaking task could benefit as well from
the employment of both sensors, since the PCD is always capable to provide a
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(a) Encoder. (b) Encoder + Decoder.

Figure 6.6: PCN pose estimation error.

(a) Encoder. (b) Encoder + Decoder.

Figure 6.7: PCN + ICP pose estimation error.

(a) PCN dense point cloud
and input scan.

(b) PCN dense point cloud
and input scan.

(c) PCN dense point cloud
and reference model.

Figure 6.8: Comparison among reconstructed dense point cloud (blue), input
scan (red), and projected reference point cloud (green).
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(a) PCN. (b) PCN + ICP.

Figure 6.9: PCN rotation error, looking at Euler angles.

partial breaking of the symmetry, and the images could more easily provide the
information of semantic segmentation when the grasping point is in their FoV.

Experimental dataset acquisition The PCN module is tested in the OOS-
SIM with experimental data.

The data are acquired in the facility and saved without running the pipeline
online. The online run is still not ready to be performed for two main set-up-
related reasons:

1. The output of the LiDAR system in the OOS-SIM consists into a 360◦
scan. Given the sensors ground truth trajectory, the laboratory point
cloud needs to be processed to prune it from data points that would not
exists in space (i.e. the ones of the room and of the target satellite base),
as shown in Fig. 6.10.

2. Another problem is the time synchronization. This issue is solved by
means of an artifact: since the sensors are not synchronized with the
industrial arms logs, the two time clocks are aligned by recognizing when
the arm movement starts, from the log data, and when changes are seen
in the point clouds. This is done with an automatic procedure after the
data acquisition.

Six different trajectories have been acquired, as reported in Table 6.1. The
trajectories selection has followed the criteria of exploring different possible
use-cases, given the spatial constraints available in the facility. For the second
set of trajectories, it was possible to acquire both images and LiDAR scans.
Please note that the axes referred to in Table 6.1 are not the ones of the
sensors or satellites frames, but they are the ones of the industrial arms in the
laboratory.
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Figure 6.10: Cropping of the target satellite and its base.

Table 6.1: Real data sequences.

Sequence Description Points Data

SQ-01 1-axis rotation 34 L1-L2
SQ-02 2-axes translation 29 L1-L2
SQ-03 1-axis translation 39 L1-L2
SQ-04 3-axes roto-translation 27 + 270 L1-L2 + CL-CR
SQ-05 1-axis rotation 21 + 210 L1-L2 + CL-CR
SQ-06 1-axis translation 40 + 400 L1-L2 + CL-CR

Performance on real dataset A dataset composed by real data sequences
is created acquiring 6 sequences of data points, as reported in Table 6.1. The
acquired sequences correspond to possible trajectories in proximity of the
target. The global pose estimation algorithm shall be capable of initializing
the sequence not only for an initial case, but more generally along the whole
trajectory, in case of failure of the local pose estimation.

The estimation of the translation is still good with real data with the exception
of SQ-04. The PCN is challenged by the real data appearance and the rotation
estimation performance is degraded consistently. In particular, relevant errors
are introduced also in the roll angle. Concerning this analysis, it must be
highlighted that some of the sequences present data points that are outside the
position box exploited for the training dataset. It can be said that the PCN is
not robust for usage outside the training box, but a new real dataset shall be
built for a more proper testing.

The comparison of the obtained errors for the two datasets is reported in
Table 6.2.
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Figure 6.11: PCN position and attitude errors.

(a) PCN dense point cloud
and input scan.

(b) PCN dense point cloud
and input scan.

(c) PCN dense point cloud
and reference model.

Figure 6.12: Comparison among reconstructed dense point cloud (blue),
input scan (red), and projected reference point cloud (green).
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Mean Synthetic Real
error dataset dataset

et 0.287 cm 7.37 cm
eyaw 0.068◦ 2.96◦
eroll 0.280◦ 10.22◦

Table 6.2: Mean error for synthetic and real data.

Computational time The mean inference time of the PCN on a 8 GB
NVIDIA-GeForce GTX 1080 is 0.867 s.

Figure 6.13: Number of points in the point clouds composing the synthetic
dataset.

Some hints for reducing the computational time for an on-board implementation
are the following:

• Optimizing the PCN architecture, reducing the number of parameters.

• Resampling the point cloud to reduce the number of points, or set a
different resolution on the VLP-16 LiDAR, that can be lowered without
adding a resampling step in the algorithm.

• Retaining only the encoder part in the on-board algorithm.

Conclusions The final conclusions are that:

• The global pose estimation has an accurate performance for translation
on both synthetic and real data.

• The rotation estimation has a satisfying performance with synthetic data,
but the performance is severely degradated with real data.
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• The global pose estimation is capable to break the symmetry up to 60◦,
thanks to the combination of edges and handles. It could still benefit
by fusion with a visual information related to the identification of the
grasping point.

6.3 Visual-LiDAR local pose estimation

6.3.1 Visual-LiDAR Odometry

LiDAR Odometry The LiDAR Odometry takes in input a client scan
P1 from the vertical LiDAR and another scan from the horizontal LiDAR
P2. The two point clouds are stitched, composing the stitched point cloud
P12 = P1 + HL1

L2(P2). Where HL1
L2 is the transformation from L2 to L1 frame,

known from the system calibration.

Given a sufficiently close initial condition ĤL1
T , the reference model point cloud

Pref is transformed from the target (or client) frame TTCP into the L1 frame:

Pref,t0 = ĤL1
T Pref (6.1)

A nested ICP algorithm is employed to compute the sweep refinement HICP|t0
among P12,t0 and Pref,t0.

HL1
T |t0 = HICP|t0ĤL1

T (6.2)

The pose at the previous step is used as initial condition for the point cloud
registration to the known model.

Pref,tk = HICP|tk−1 . . . HICP|t0HL1
T |t0 Pref (6.3)

Hence the computed pose is always registered with respect to a known map,
but it depends on the initial guess from the previous step:

HL1
T |tk = HICP|tk . . . HICP|t0 ĤL1

T (6.4)

Visual Odometry The VO is initialized by extracting ORB features from
the first available frame. The features are then tracked among frames computing
the optical flow with the Lukas-Kanade Piramydal method.
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The keypoints in the image are undistorted with the camera intrinsic parameters,
known from the camera intrinsic calibration.

Then, the motion is estimated with 2D to 2D correspondences. The essential
matrix is computed by means of the 5-point algorithm, exploiting the RANSAC
method for removing outliers. The essential matrix is then decomposed with
Singular Value Decomposition and then the possible roto-translations are
recovered. The correct transformation (R, t) is selected by means of a Cheirality
check.

Once the motion is computed, the keypoints are triangulated to create the
current map. This step is necessary to retrieve the translation scale, which is
computed from the ratio between corresponding point pairs among the old and
new map.

Applying the scale to the translation, the transformation among subsequent
frames HCk

Ck−1
is thus computed. Then the transformations are concatenated

to retrieve the pose with respect to the initial frame:
HCk

C0
= HCk

Ck−1
. . . HC1

C0
(6.5)

Being the transformation of interest the one among servicer and target satellite,
only one reference frame is retained for the whole sensors system. In particular,
the L1 frame is selected. Therefore, the camera pose is reported in the dual-
LiDAR system reference frame and the initial pose with respect to the target
is exploited to finally get the transformation of interest:

HL1
T |tk = HL1

C HCk
C0

HC
L1 ĤL1

T (6.6)

where HC
L1 and its inverse are known from the system calibration.

Transforms integration Ideally the two pipelines can run at different fre-
quencies, for instance with the VO at a higher frequency.

The transformations can be integrated by resetting the initial condition for the
camera motion at each time when a new LO measurement is available:

HCk
C0

= HL1
T |tk HT

L1|t0 (6.7)
Of course this condition applies when all the sensors are fixed with the servicer
satellite.

6.3.2 Visual-LiDAR Odometry results

The VO and LO modules are tested in the OOS-SIM using the experimental
dataset already collected for the PCN.
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6.3.2.1 LiDAR Odometry

The results of the LiDAR Odometry are reported in Fig. 6.14 for the 6 trajec-
tories. The position is expressed in the L1 frame xL1

c−L1 = (x, y, z)T and the
rotation is parameterized in Euler angles RL1

c−L1 = Ry(β)Rz(γ)Rx(α), where α
is the roll angle, β the pitch angle and γ the yaw angle. The presented results
assume a perfect initial condition.

The LiDAR Odometry is successfully capable of computing the correct pose for
all the sequences. The algorithm is quite robust, never leading to a divergence.

In the sequences where the position or rotation variation is less evident, it is
possible to observe that the estimated pose presents an offset. The possible
origins of such an error are the following.

• Time synchronization artifact. The correspondence among the Li-
DAR scans and the ground truth time stamps is not exactly known. In
fact, it can be observed in Fig. 6.14 that the time axis of the ground
truth is not always coherent with the real scans time stamp. For instance,
such shift is visible in the SQ-01 x and y coordinates and corresponds
in this case to about 1.5 s. This error can vary from one trajectory to
another.

• Calibration accuracy. The visible offset is often of the same order of
magnitude as the calibration accuracy, i.e. about 3 cm in translation and
1.5◦ in rotation.

• Boom flexibility. The LiDARs are mounted on a flexible boom. Even
if the trajectories have been acquired in conditions with no apparent
vibration, the boom configuration could have been different than the
calibration condition or some minor vibrations or deformations not visible
by the human eye could be present along the trajectories.

• Data noise. As already shown, the client satellite point clouds present
a consistent noise, due to the MLI reflections. Such data noise influences
the ICP accuracy.

The error for the six sequences is shown in Fig. 6.16, with the statistics
reported in Table 6.3. The general observation is that both the translation and
rotation error standard deviations are low, compared to the mean error. Such
observation is related to the offset noticed in Fig. 6.14. Another note is that
the translation error is computed on vectors expressed in the L1 frame and
not in an inertial frame.
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(a) SQ-01.

(b) SQ-02.

(c) SQ-03.

Figure 6.14: LiDAR Odometry trajectories (blue: reconstructed, orange:
ground-truth).
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Table 6.3: LiDAR Odometry error statistics - real data.

Sequence µ(et) σ(et) µ(er) σ(er)
[cm] [cm] [deg] [deg]

SQ-01 5.29 1.00 3.54 0.20
SQ-02 3.24 0.34 2.86 0.39
SQ-03 6.59 1.21 3.18 0.22
SQ-04 7.37 3.68 2.66 0.37
SQ-05 4.33 0.22 1.91 0.34
SQ-06 6.70 1.11 2.02 0.37

Robustness: sensitivity to initial condition A Montecarlo simulation is
run to see the effect of a wrong initial condition on the LiDAR Odometry. For
each run, the random initial condition has a rotation error of 5◦ and 10 cm.

As it can be seen in Fig. 6.15, the algorithm is robust enough to deal with such
initial conditions. The result is reported for the SQ-04, which has the highest
mean translation error, but the robustness is verified for all the sequences.

Comparison with synthetic data The LO is also tested with synthetic
data. The same trajectories acquired in the laboratory are replicated with
the LiDARs simulator presented in Section 3.1. It can be observed from
Fig. 6.16 that all the sequences present a lower error with respect to real
data, as expected. In particular, the error is one order of magnitude lower
for both translation and rotation, with the exception on SQ-03, as reported
in Table 6.4. The SQ-03 is a one-axis translation motion towards the target,
so the subsequent point clouds are very similar with the exception of the
component in the target symmetry axis direction. Therefore, the possible
reason for this trajectory to be harder to be solved by the ICP could be related
to the particular geometry of this sequence.

Table 6.4: LiDAR Odometry error statistics - synthetic data.

Sequence µ(et) σ(et) µ(er) σ(er)
[cm] [cm] [deg] [deg]

SQ-01 0.06 0.02 0.13 0.09
SQ-02 0.07 0.02 0.11 0.07
SQ-03 2.74 2.71 0.29 0.69
SQ-04 0.08 0.02 0.09 0.07
SQ-05 0.07 0.02 0.16 0.11
SQ-06 0.07 0.02 0.09 0.05
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6.3.2.2 Visual Odometry

For what concerns the VO module, ORB features are extracted and tracked
correctly, as shown in Fig. 6.17, notwithstanding the MLI reflections, visible in
the images.

The performance results for VO are shown in Fig. 6.18. Three different
frequencies have been tested: 0.5 Hz, 1 Hz, 10 Hz. As it can be seen, for the
1 Hz SQ-04 the VO begins to diverge after about 10 s, whereas at 0.5 Hz it
is much more stable. It is evident that at 10 Hz the error accumulates fast.
Therefore it is noticed that the best performance is obtained with the lowest
frequency, while the error accumulates faster for higher frequencies. This might
be related to two reasons:

1. the 2D to 2D motion estimation is particularly hard at high frequencies
because the motion is very slow, and thus close to degenerate cases;

2. the error accumulation is related to the number of processing steps that
are performed.

Conclusion It is concluded that the LO is more robust and accurate than
the VO and that the integration of VO-LO can be advantageous only when the
frequency of the VO is higher than the LO one. Another observation is that
the performed tests were limited and did not include the case of a fast relative
dynamics with a high speed tumbling target. In that case, the performance of
VO could be the most robust and accurate one.
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(d) SQ-04.

(e) SQ-05.

(f) SQ-06.

Figure 6.14: LiDAR Odometry trajectories (blue: reconstructed, orange:
ground-truth).
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Figure 6.15: Example of LiDAR Odometry Montecarlo simulation: SQ-04.

(a) Real data. (b) Synthetic data.

Figure 6.16: Translation and rotation error for sequences from SQ-01 to
SQ-06.

(a) SQ-04. (b) SQ-05. (c) SQ-06.

Figure 6.17: Examples of tracked features for sequences from SQ-04 to SQ-06.
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(a) SQ-04 at 0.5 Hz (orange ground truth, blue VO).

(b) SQ-04 at 1 Hz (orange ground truth, blue VO).

(c) Error of SQ-04 at 10 Hz.

Figure 6.18: Translation and rotation error for sequence SQ-04.
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CHAPTER7
Conclusions

This dissertation dealt with relative navigation in proximity of uncooperative
space targets, with the clear objective of improving or enabling operations by
means of the clever exploitation of multiple sensors, namely visible cameras,
thermal cameras and scanning LiDARs. Guidelines for the navigation sensors
exploitation have been derived, highlighting the respective advantages and
limitations in some applications of interest. Given the vastness of this topic,
it has not been completely exhausted with this Ph.D. Thesis, which focused
on some specific techniques among all the possible methodologies and on
particular applications and scenarios. Nevertheless, the Thesis transversely
covered various aspects of the development, verification and testing of relative
navigation techniques with multiple sensors.

The starting topic tackled in the Thesis is the realistic sensor’s data generation
as preparatory part, necessary to the further studies and analyses. Visible
images were generated employing three different existing rendering programs.
Similarly, LiDARs scans are simulated employing an existing tool. Instead, due
to the lack of an available free software, an innovative approach is proposed
for the rendering of thermal images and specifically applied to small celestial
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bodies. The method starts from a simplified thermal simulation of the asteroid,
based on a coarse shape model. The output is then manipulated to obtain
the radiance data of the object model in matrix form, that is then converted
to a thermal infrared image by means of the sensor’s model. Experimental
activities are carried-out to gather visible images and LiDAR’s scans, in two
different space GNC labs. At PoliMi’s ARGOS, images of a Moon diorama and
of Envisat’s mock-up are taken at different illumination conditions and poses
for comparison with the corresponding synthetic images. At DLR’s OOS-SIM,
a multi-sensor calibration method is completed and performed to calibrate a
dual-LiDAR system in the lab.

A data-level comparison is performed among visible synthetic and experimental
images. A successful validation of the data is achieved; by means of comparison
some differences among synthetic and real data which could not be removed
are highlighted. The generated synthetic thermal images are compared with
real mission data from Hayabusa 2; the capability of the tool of representing
some major image features is shown, even if the low dimensional details are
not always well represented, and future improvements on the thermal model
are desirable. The multi-sensor calibration is successful and its accuracy is
derived, finding the major error sources in the process. The LiDAR’s scan
noise is characterized and a qualitative comparison with synthetic point clouds
is shown.

This concludes some preliminary activities that aim at critically contextual-
ize the validity of the data used for developing and testing the navigation
algorithms, subsequently investigated and proposed.

Dealing with relative navigation, the first part of the work focuses the employ-
ment of visible imaging. An Image Processing (IP) algorithm for the centralized
relative navigation of far-range CubeSats orbiting around a binary asteroid
system is designed, implemented and tested. Some major challenges are posed
by the utilization of the mothercraft navigation camera: the detection and
identification of multiple point targets over a starry background, the presence
of two large celestial bodies with a low Sun phase angle, the lack of control
over the mothercraft images, meaning the availability of low exposure images
only and related to an attitude pointing to the primary asteroid. The proposed
solution relies on the asteroids masking and then blobbing and centroiding
to find all the point objects; geometric features are exploited to find patterns
in the images, to be matched among two frames; the disparity of points is
then evaluated and the CubeSats are identified by distinguishing their motion
from the one of the stars. The IP has been numerically tested with synthetic
images and the results show a low number of false positives, with a good
accuracy of the CubeSats centroid identification. Among the many challenges,
the most relevant one has been found to be the visibility of the CubeSats in
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the images. A visibility analysis is performed to breakdown the causes of the
lack of observations, considering geometric occlusions, shadowing and also the
object brightness. It is observed that an improvement factor could be the
exploitation of a camera working in a different spectral band.

Always dealing with visible imaging, the problem of mapping the surface of an
asteroid with a camera is analyzed. In detail, an AI-policy for optimizing the
images collection process is verified and tested in a twofold manner. First, an
analysis is made verifying the AI-policy with input state beliefs, and then the
benefits to the mapping process are cross-checked implementing a simplified
ground-IP for the shape reconstruction. It is verified that the AI-policy leads
to some improvements with respect to a uniform imaging scheduling and it is
observed that the coverage of the body’s surface can not be always completed
because some areas persist to be in shadow. Again, some advantages could be
provided by concurrently using a multispectral camera.

In the second part of the work, the possible enhancement of relative navigation
with multispectral imaging is studied, considering the scenario of an unknown
uncooperative target, in particular an asteroid. Starting from the examination
and modeling of the current technologies of photon and thermal detectors, some
considerations about the asteroid spectral radiation emission and reflection
profiles are made and the visible and thermal LWIR bands are selected as the
most promising for navigation.

A multi-modal Simultaneous Localization And Mapping (SLAM) architecture
is selected and analyzed with the aim of defining the logic for switching from
one sensor to the other. The vision-based SLAM algorithm is tested with
visible (VIS) and thermal (TIR) synthetic images which correspond to realistic
orbital and environmental conditions. The analysis considers the variation of
relevant parameters which affect the appearance of the target in the visible
and thermal infrared band: the Sun phase angle and the thermal inertia of
the asteroid. The major outcomes of such analysis are the following. It is
found that TIR sensors can actually be employed for navigating, offering an
interesting opportunity for relative navigation in close proximity of asteroids.
While both VIS and TIR sensors are exploitable, they contribute in different
ways to navigation: VIS imaging is superior in terms of navigation accuracy
and map quality, due to the higher resolution of the detectors available for this
technology; TIR imaging enables the navigation in new scenarios, i.e. in the
case of high phase angle with a high thermal inertia asteroid. Both sensors
can not be employed when images are too dark, being the target comparable
to the noise level of the image.

Then, a third alternative is introduced, proposing to fuse VIS and TIR images
(FUS) and use them as a input to the SLAM algorithm. A multiscale trans-
form method is implemented for image-level fusion, quantitatively comparing
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the images obtained with a Laplacian and Wavelet transforms. The former
transform is selected, incrementing the more the image entropy. Finally, a
comparative analysis is made considering two sensors with the same FoV and
images with the same resolution, to focus on the spectral bands aspect only.
The major finding is that the FUS images can lead to improvements to the
navigation error, but cause more easily a divergence of the SLAM.

Finally, the employment of LiDAR sensors is studied. The problem of pose
estimation with a known uncooperative symmetric satellite is tackled by training
a Point Completion Network (PCN). A dataset of synthetic scans is generated
and used to train the PCN. After training, the global feature output by the
PCN encoder part is stored in a codebook and the corresponding ground truth
pose is saved in a labelbook. Two methods for pose estimation are compared:
one relying on the global feature encoding only and the other also on the
dense point cloud reconstructed by the PCN, deriving the relative translation
vector by centroiding the dense point cloud with a reference point cloud. In
both cases the pose is then refined with an Iterative Closest Point (ICP)
algorithm. The two methods are tested with a synthetic testing dataset and
compared. Both methods prove to be suitable for providing an initialization of
the pose, being the second method more accurate for the translation estimation.
The PCN accuracy enables the convergence of ICP, that allows to reach an
accurate solution. The global pose estimation is capable to break the symmetry
only partially, thanks to the combination of the target satellite’s edges and
handles. It could still benefit by fusion with a visual information related to
the identification of a grasping point present on the target, too thin to be
appreciable in the point clouds.

Considering the necessary computational time, the suggested employment of the
PCN architecture is the pose initialization, while another lighter method can be
used for the pose tracking. For this purpose, a Visual-Lidar Odometry (VO-LO)
is proposed and implemented. The LO has been tested on different trajectories,
starting from ideal and perturbed initial conditions; it is observed that the LO
successfully tracks the pose and is highly robust. A first implementation of
the VO module is tested; as first result it is observed that the error growth is
dependent on processed frames selected frequency. Hence it is deduced that a
key factor for transform integration with the LO module is the LiDAR versus
camera working frequency. In particular, the VO-LO integration can be useful
when the VO frequency is larger than the LO frequency.

A comparison of the performance with input synthetic and real point clouds
is carried-out. Regarding the pose initialization module, the global pose
estimation has an accurate performance for translation on both synthetic and
real data. The rotation estimation has a satisfying performance with synthetic
data, but the performance is severely degraded with real data. Concerning the
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pose tracking, the accuracy is quite good in both case, event if it is found the
LO error with real scans is about 2 orders of magnitude larger with respect
to synthetic sequences. Even if synthetic data allow to cover major aspects in
algorithms development and testing, even without a perfect sim2real framework,
it has been shown that real data do still affect in a relevant way the navigation
performance.

As a general conclusion, all the different approaches presented in this Thesis
provide possible answers to the main challenges of relative navigation with
uncooperative objects. It has been shown that proximity operations can benefit
from the usage of multiple sensors, deriving some guidelines and insights on
this vast topic. Based on the findings of the work, a road-map with indications
for future developments is here outlined:

• regarding the synthetic data generation, future work can try to further
reduce the gap with respect to experimental data, refining the modeling of
objects and their materials’ properties. For the thermal images generation,
analyses can be carried-out with a dedicated thermal modeling software,
to deal with higher resolution shape models and with artificial targets.
The extension of the tool developed in this Thesis is already on-going
at Politecnico di Milano [88], as the tool has been designed since its
first conception to be interfaced with the mentioned thermal analyses
programs.

• it can be interesting to investigate also other methods for fusing the
sensor’s information, comparing the approaches. For instance, methods,
that here were only in part investigated, can perform the fusion at
different stages (at data-level, within a tightly fused processing, after the
data processing, or within the navigation filter).

• the presented approaches can be consolidated with more thorough test
campaigns, expanding the test cases and considering not only data from
real sensors but proceeding also to Processor-In-the-Loop and complete
Hardware-In-the-Loop tests.
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