
Executive Summary of the Thesis

An EKF-SLAM approach to plant counting

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Erica Ceriotti

Advisor: Prof. Matteo Matteucci

Co-advisors: Paolo Cudrano, Simone Mentasti

Academic year: 2022-2023

1. Introduction
According to predictions, the global population
will surpass 9 billions people by 2050. The food,
and especially, the crop production needs to be
increased to satisfy the demand, but this comes
at a cost for the environment. Indeed, one of
the most used types of fertilizers, the Nitro-
gen, becomes dangerous when dispersed. Pre-
cision agriculture is a strategy which consists in
the collection and processing of data from the
fields in order to support management decisions.
It has been created to face the aforementioned
challenges and finds its application especially in
agricultural robotics, a field which has seen its
development in the last years due to the lack
of human workforce. Various platforms have
been created for performing plant monitoring
and other types of agricultural activities such as
weeding, seeding, harvesting, spraying. Nowa-
days, the first mentioned task is usually executed
manually, with high costs in terms of salaries and
time, especially for big realities where the neces-
sity to assess the plants status has to be repeated
several times. For example, the orchard nurs-
eries’ income depends on their capability of sat-
isfy the customers requests, which is related to
the up-to-date estimate of the amount of stock
available to be sold. Indeed, small plants can

perish due to natural factors and this has to
be taken into account in the decision making
process. This thesis presents an approach to
the automation of the plant counting task with
the EKF-SLAM algorithm, realized through the
Robot Operating System (ROS), to create a map
of the field, from which later assessing the num-
ber of plants, parallel to the estimation and cor-
rection of the robot trajectory.

2. State of the art
Different solutions have been proposed during
the years to address the task at hand, which
have been researched and divided depending on
the type of sensor employed.

2.1. Infrared sensing
In 2011, the use of an InfraRed (IR) Sensor has
been experimented [2]. The results showed that
the system overestimated the manual count of
less than 5%. The use of the plant width to
perform recognition in the collected data, how-
ever, showed to be susceptible to the presence of
weeds and plants foliage. Also, the sensor needs
to be positioned at a certain distance from crop
and at certain height to properly detect plants, a
condition which is not always possible to main-
tain especially in irregular terrains.

1



Executive summary Erica Ceriotti

2.2. Camera sensing
In [1] consumer-graded RGB camera has been
mounted on the side of a robot under the name
of "TerraSentia" which was driven through fields
of corns at various growth stages for assessing
the number of plants. The presented system ex-
ploited a Convolutional Neural Network (CNN)
to perform the recognition. Since CNNs require
computational power to operate, the authors
used a network of the family of MobileNets to
reduce the load. This project introduced the
problem of detecting multiple plants at the same
time, which was solved in counting the number
of plants inside a Region Of Interest (ROI). A
disadvantage of such methodology is that it re-
lies on the assumption of a minimum distance
between subsequent plants, which can not al-
ways be assured in presence of leaves.
Even if the system demonstrated good capabil-
ities, reaching an high Pearson Correlation in-
dex of 0.96, compared to the manual counting,
we still have to take into consideration that the
Neural Network required the collection of thou-
sands of images for training. Also, the quality of
cameras captures is sensitive to changes in light
conditions which are typical of an outdoor envi-
ronment, such as an orchard. Also, the work did
not presented any information about the battery
duration of the robot, which can be determinant
in the applicability of such system especially for
big orchards.

2.3. LiDAR sensing
Light Detection and Ranging (LiDAR) sensors,
of the category of Time-Of-Flight (TOF), emits
beams of light in the environment and detect
the distance of objects based on the time that it
takes for the light to scatter back to the sensor.
The result of this process comes in the form of
a point cloud, i.e. a set of points which contain
information about the position of the sensed el-
ement. These sensor are available in different
types and offer different resolutions depending
on the number of dimensions sensed, spanning
from 1D to 3D.
The usage of 2D and 3D LiDAR sensors in
plant counting has been demonstrated by dif-
ferent works. In particular, [5] described a 3D
LiDAR positioned on the front of a robotic plat-
form named BoniRob, coupled with a GPS for
location information. Since the ground was also

visible by the sensor, the Random Sample Con-
sensus (RANSAC) algorithm, i.e. an algorithm
for the segmentation of a geometric models from
a point cloud, in this case a plane, was employed
to search for and discard those points belonging
to the terrain. To perform plant detection, the
plant points were individuated by exploiting a
region growing algorithm. The so formed groups
of points, also called clusters, were filtered based
on their probability of being a plant based on a
model created for this purpose.
By using a LiDAR, however, the same plant was
visible multiple times. To avoid double counting
and improve localisation, a tracker was assigned
to each new plant detected and re-matched to
the same plant based on the distance from it.
With this system the detection and localisation
performance increased from 60-70% to 80-90%.
The main problems in the detection phase were
due to the plants not corresponding to the esti-
mated model.
Despite LiDARs are more costly from an eco-
nomical point of view with respect to cameras,
they are not affected so much by changes in
the light conditions as them. Considering the
fact the main environment for nurseries develops
outdoor, this sensor has been chosen for plant
counting also in this Thesis.

3. Proposed approach
We present an approach for the recognition and
counting of plants starting from the point cloud
registered by a 3D LiDAR. Therefore, the pro-
posed system can be used on already existing
agricultural machines, thus relieving the eco-
nomic cost that a full proprietary system would
require. Moreover, this comes with the advan-
tage of the possible parallization of the assess-
ment of the number of plants with other in-field
activities such as weeding.
Our approach includes mainly tree steps: plant
detection, plant mapping and finally plant
counting.

3.1. Plant detection
The process begins with the filtering of an area
of the point cloud unneeded for the computa-
tion and the detection of plants. As it happens
in [5], also in our case the ground is visible from
the point cloud, therefore to extract its points
we modelled the terrain as a plane as well and

2



Executive summary Erica Ceriotti

we used the RANSAC algorithm to find the co-
efficients in the equation of such plane:

ax+ by + c = d (1)

RANSAC does this task by exploiting a vot-
ing procedure: it selects a number of random
points equal to the one needed to estimate the
model, three for planes, it fits the plane to them
and it counts the total number of points in the
cloud which are close enough to the estimated
plane, called inliers, according to a given thresh-
old. Every time a new plane is found, the num-
ber of inliers is assessed and if it surpasses a
minimum number required for the model to be
considered good, the error of the model regard-
ing all of them is computed. The model is then
saved if the estimated error is less than the er-
ror found so far and all this phases are repeated
until the maximum number of iterations allowed
is exhausted.
The point cloud, however, changes from frame
to frame as the robot moves, therefore, we esti-
mate the plane equation at time t+ 1 by fitting
the equation found at t to the new point cloud
at t+1 and by searching for a new equation from
the inliers at t + 1. In this way we add consis-
tency to the plane estimation, since we expect
the plane to be reasonably at the same place in
the point cloud.
Once the ground points have been deleted from
the scene, the number of points is reduced to
keep only those near to the robot as the farer
ones are explored later. The plants points are
located through the use of the Density-Based
Spatial Cluster Algorithm (DBSCAN), which
gives the advantage with respect to other clus-
tering algorithms of properly defining the notion
of outliers as points not belonging to any clus-
ter. This algorithm groups the points by their
nearness and density. It scans the whole point
cloud in the search of "core points", i.e. points
which are surrounded in a certain distance ϵ by
a minimum number of other points, from which
to start the creation of clusters. The neighbor-
hood is added to the same cluster of the core
point and then it is inserted into a queue for
later inspection in search of other points to be
merged into the cluster. The process of adding
and analysing the new points added is repeated
for all those points that satisfy the requirement
of a minimum number of points within ϵ as it

happens for the core point. Whenever this test
is not passed, the cluster expansion stops. This
feature of DBSCAN makes it more appropriate
for situations where the distance between one
cluster and the other is not sufficient to tell them
apart, as it might happen with clusters for plants
that are too near each other, especially in the
leaves part.
The so found clusters are inspected and filtered
based on the maximum number of points, the
maximum width and the minimum height for a
cluster to be considered a plant. Such thresh-
olds can be imposed to eliminate small but dif-
ferent clusters, which might originate from the
same plant, or parts of the ground which have
passed through the ground detection phase. As
last part, the baricenter of the remaining clus-
ters expressed in sensor coordinates is computed
by averaging the points over the tree dimensions.

3.2. Plant mapping
When a plant is detected, it has to be followed
through its movements to avoid double count-
ing. In addition to this problem, in an orchard
environment the GPS signal might not be al-
ways available because of plant crowns blocking
it. In such case, we would need to rely only on
the odometry, i.e. a rough estimate of the po-
sition computed by sensors, such as rotary en-
coders, for the robot localisation. The odometry
trajectory, however, diverges from the real path
traversed over time. To address both of the men-
tioned issues, we followed a Simultaneous Local-
isation and Mapping (SLAM) approach to esti-
mate the map of the field, while correcting the
trajectory traced by the robot.
In particular, we used the EKF-SLAM algo-
rithm, which registers maps made by landmarks,
i.e. points of interest in the space, composed
in this case by the (xm, ym) position of each
plant detected. The backbone of EKF-SLAM
is made by the Extended Kalman Filter (EKF),
an algorithm for the estimation of unknown
state variables, here represented by the position
(xR, yR) and the orientation θ of the platform,
in non-linear dynamic systems. The EKF, start-
ing from noisy information sources, such as the
odometry, is able to produce a more accurate es-
timate for (xR, yR, θR) by integrating data com-
ing from other sensors, in this case the plants
baricenters of the previous step. In the Ex-

3



Executive summary Erica Ceriotti

tended Kalman Filter, the state is represented
by a multivariate Gaussian N (µt,Σt), in pres-
ence of multiple state variables.

Algorithm 1 EKF Algorithm
1: µ̄t = g(ut, µt−1)
2: Σ̄t = GtΣt−1G

T
t +Rt

3: Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)

−1

4: µt = µ̄t +Kt(zt − h(µ̄t))
5: Σt = (I −KtHt)Σ̄t

6: return µt,Σt

This algorithm updates the state by perform-
ing two steps, namely the prediction step and
the update step. The former includes Instruc-
tions 1-2 and predicts the next state µ̂t given
the current state µt according the evolution de-
scribed a motion model g(ut, µt−1) affected by
a Gaussian noise ϵt ∼ N (0, Rt). Since the EKF
algorithm works with linear models, the motion
model is approximated to the first order deriva-
tive evaluated in the robot state. The Gaussian
noise Σt is updated with the Jacobian Gt in the
Instruction 2, which also accounts for the pres-
ence of a Gaussian noise Rt, also called process
noise. In the EKF-SLAM algorithm these steps
are the same, with the exception that the state
of the filter contains both the robot pose esti-
mate and the landmarks position estimate. We
have chosen as motion model the odometry mo-
tion model [4] which describes each movement
as three consecutive phases according to Figure
1. The first type of movement is a rotation δrot1
which rotates the robot from its original posi-
tion θ towards the direction of movement. The
second, δtrans realizes the shift in position, the
third, δrot2, instead, rotates the platform again
to reach the final orientation. Mathematically,
the robot state is updated as illustrated in Equa-
tion 2.

xt+1 = xt + δ̂transcos(θ
t + δ̂rot1)

yt+1 = yt + δ̂transsin(θ
t + δ̂rot1)

θt+1 = θt + δ̂rot1 + δ̂rot2

(2)

The rotations and translations here are intended
as affected by a Gaussian noise dependent on the
space traversed by the robot. For the applica-
tion to EKF-SLAM algorithm we separated the

Figure 1: The tree type of movement composing
the odometry motion model: a rotation δrot1, a
transition δtrans and a final rotation δrot2 (Figure
5.7 in [4])

update of the state from the noise:xt+1

yt+1

θt+1

 =

xtyt
θt

+

δtranscos(θt + δrot1)
δtranssin(θt + δrot1)

δrot1 + δrot2

 (3)

where δrot1, δtrans and δrot2 are computed over
the control input, which is represented by the
odometry measurement. The Gaussian noise is
later added through the process noise matrix Rt,
a diagonal matrix which contains the variances
fixed over x, y and θ:

Rt =

σ2
x 0 0
0 σ2

y 0

0 0 σ2
θ

 (4)

During the correction step of the algorithm, In-
struction 3-5 in Algorithm 1, the landmarks are
used to perform a correction over the prediction.
However, the plants detected from the plant de-
tection phase can not be used directly as their
position is expressed in sensor coordinates, but
a conversion is needed to store them in the map
coordinates. The inverse sensor model takes care
of this task:[

xm
ym

]
=

[
cos(θt) −sin(θt)
sin(θt) cos(θt)

] [
xs
ys

]
+

[
xR
yR

]
(5)

Whenever a new plant is detected, its position in
the sensor coordinate frame is converted to the
map coordinate frame to be checked against all
the registered landmarks and see whether it is
already present or not. The landmark returned,
if any, would then be used during the update
phase in the computation of the matrix Ht. If no
landmark is selected, then the new landmark is

4



Executive summary Erica Ceriotti

added to the filter state. Since many landmarks
are sighted by the sensor at a time, instead of
updating the filter many times, we can update
it once by computing different matrices Hi by
filling only those fields relative to the robot pose
and the landmark i, leaving as zeroes all the
others, and by stacking them vertically to form
an unique matrix Ht. To compute the error
involved in the update, the returned matching
landmark is converted into the sensor coordinate
frame through the sensor model:[

xs
ys

]
=

[
cos(θt) sin(θt)
−sin(θt) cos(θt)

]([
xm
ym

]
−
[
xt
yt

])
(6)

To take into consideration the uncertainties
during the matching, we performed a χ-square
test between the entry point and all the stored
landmarks. This test computes the distance of
a point to a multivariate Gaussian using the
Mahalanobis distance. Since the Mahalanobis
distances of a Gaussian of N degrees of freedom,
in this case 2, follows the χ-square distribution
of the same degrees of freedom, we run this
test by comparing the Mahalanobis distance
to a critical value of the distribution, selected
based on a confidence level. A distance over the
threshold would result in the two measurements
being marked as different, while below they
would be associated. The first landmark passing
the test is returned.

3.3. Plant counting
The map produced in the previous step is post-
processed to assess the number of plants. We’ve
decided to wait for the map to be complete be-
fore starting the effective counting as there is the
possibility of the EKF-SLAM algorithm to de-
tect the same plant twice because of failure dur-
ing the landmark association process. Therefore,
we used the distance between one plant and the
other to mark a circular perimeter within which
any landmark present is considered as detection
for the same plant. The nearest landmark to the
plant position is then kept while the others are
discarded.

4. Experimental results
We conducted the evaluation of our algorithm
both in simulation and in a real world scenario

by using an external dataset recorded in a greek
vineyard [3]. Our purpose was to find the pa-
rameters for the EKF-SLAM algorithm in the
simulation and porting them to the real case.
As for the former, we built a world in a 3D sim-
ulation software, Gazebo, to try to resemble the
environment of a real orchard. We mounted the
3D LiDAR over a robotic platform and we drove
it along the plant rows. Since a noisy source
of odometry is not available in Gazebo, we cre-
ated one by exploiting the full odometry motion
model, which, with respect to the one previously
described, adds Gaussian noises to each of the
computed movement:

δ̂rot1 = δrot1 −N (0, α1δ
2
rot1 + α2δ

2
trans)

δ̂trans = δtrans −N (0, α3δ
2
trans + α4δ

2
rot2)

δ̂rot2 = δrot2 −N (0, α1δ
2
rot2 + α2δ

2
trans)

(7)

For assessing the performance of the system, we
run different tests using each time a different
noisy trajectory. We counted the number of
true positives, i.e. the plant correctly detected,
false positives, i.e. the detection which did
not correspond to any plant and the false
negatives, i.e. the plants not marked by any
landmark. The threshold for true positives was
marked by half the distance between one plant
and the successive one in the row. Then, we
computed precision and recall metrics, assessing
the number of plants rightfully registered
by the algorithm over the total amount of
detections and the total number of plants in
the field respectively. These metrics have been
reassessed also in post-processing, by discarding
the landmarks detected as double-counting
for the same plant. Also, we added to the
aforementioned metrics the mean average error
(MAE) in meters and the Root Mean Squared
Error (RMSE) in meters, to account for the
average distance between the detections and
the ground truth and the spreadness of the
measurements. Finally, we calculated the mean
distance of the estimated trajectory from the
real one traced by the followed. Although the
plane model was detected well, the average
results, reported in table [? ] show that the
presented system is not accurate as the ones
reviewed in literature, which, however did not
perform SLAM. By observing the details of each
run, the algorithm demonstrated overall to be
too sensitive in the changes in the type of noise

5



Executive summary Erica Ceriotti

Precision 0.65
Recall 0.70

Precision (Post-process) 0.69
Recall (Post-process) 0.7

MAE (m) 0.174
RMSE (m) 0.15

Mean distance (m) 0.298

Table 1: Average results obtained from the sim-
ulation

applied during the estimation, ranging from
almost perfect counting with 77 plants detected
over 78 to 45 or less plant detected. However,
it demonstrated a good performance by scoring
more than 90% in precision and recall in the
run of a noise similar to the one registered by
the visual odometry in the Greek environment.

Instead, regarding the testing over the real
dataset, he proposed algorithms could be eval-
uated only by performing a visual comparison
between trajectories because of the unavailabil-
ity of a field map and impossibility to estimate
one. We used as source of odometry the visual
odometry computed by a ZedNode present on
the robot and as ground truth a GPS. The robot
traversed the field in different rows, but we used
just the first one (forward-turn-turn-backward)
to assess the system performances. We slightly
adjusted the parameters found in the simulation
to account for a major noise in visual odome-
try. The algorithm detected poles and plants as
belonging to the same category since the plant
detection phase can not distinguish between dif-
ferent classes. Also, the detection of some of
them failed because of the resolution provided by
the employed LiDAR which captured the plants
with a number of points inferior to the one used
in simulation. The EKF-SLAM algorithm man-
aged to correct the length in the first straight
line traversed which was underestimated by the
ZedNode, but not the curve in the odometry
trajectory. However, it mismatched landmarks
when performing turns, thus derailing from the
ground truth trajectory when turning back to
the start point.

5. Conclusions
We proposed an approach to plant counting
by exploiting an EKF-SLAM approach, which,
however, scored less than the solutions present
in literature. Future developments of such algo-
rithm might include improvements in the plant
detection task, with the distinction between
plant and non-plant elements in the environment
and possibly with the assessment of plant health
status. Also, the SLAM algorithm might find
benefits from the recognition of rows of plants,
instead of single plants for the correction of the
trajectory, which can overcome the limitations
showed by the testing in the real world scenario.

References
[1] Erkan Kayacan, Zhongzhong Zhang, and

Girish Chowdhary. Embedded high precision
control and corn stand counting algorithms
for an ultra-compact 3d printed field robot.
06 2018.

[2] Joe Luck, Santosh Pitla, and Scott Shearer.
Sensor ranging technique for determining
corn plant population. 06 2008.

[3] Riccardo Polvara, Sergi Molina, Ibrahim
Hroob, Alexios Papadimitriou, Tsiolis Kon-
stantinos, Dimitrios Giakoumis, Spiridon
Likothanassis, Dimitrios Tzovaras, Grzegorz
Cielniak, and Marc Hanheide. Blt dataset:
acquisition of the agricultural bacchus long-
term dataset with automated robot deploy-
ment. Journal of Field Robotics, Agricultural
Robots for Ag 4.0. Under Review.

[4] Sebastian Thrun, Wolfram Burgard, and Di-
eter Fox. Probabilistic Robotics. The MIT
Press, 2005.

[5] Ulrich Weiss and Peter Biber. Plant de-
tection and mapping for agricultural robots
using a 3D LIDAR sensor. Robotics and
Autonomous Systems, 59(5):265–273, May
2011.

6


	Introduction
	State of the art
	Infrared sensing
	Camera sensing
	LiDAR sensing

	Proposed approach
	Plant detection
	Plant mapping
	Plant counting

	Experimental results
	Conclusions

