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1. Introduction 

In recent years, as big data has grown, there has 

been an attempt to find a way to search within ever 

larger data sets for data that might be of interest 

and to which one should pay special attention. 

Skyline queries [1] provide an efficient and 

effective method for selecting a subset of data from 

large datasets. These queries selects tuples that are 

not dominated by any other tuple, yielding a set of 

data points that are considered more interesting. 

We have that a tuple t dominates another tuple s if 

and only if t is not worse in any attribute than s and 

strictly better in at least one. Skylines offer a global 

view of data that may be of interest, but they do not 

account for user preferences as they treat all 

attributes at the same level. In addition, skyline 

sets may contain an excessive number of tuples, 

which may not provide meaningful insights for 

decision-making. To address these limitations, this 

thesis also explores the concept of Flexible Skylines 

[2]. Flexible Skylines incorporate constraints on 

attributes, allowing for importance differentiation 

between attributes. The concept of F-dominance 

was introduced for this purpose: A tuple t F-

dominates another tuple s if and only if t is always 

better than or equal to s according to all scoring 

functions in F. Flexible skylines thus return a 

subset of the skylines and are divided into 2 

operators: ND which returns the subset of non F-

dominated tuples and PO which returns a subset 

of ND representing all tuples that are potentially 

optimal with respect to a scoring function in F. An 

advantage of using Flexible skylines (F-skylines) is 

that they can potentially reduce the cardinality of 

the resulting tuples compared to traditional 

Skylines. This is because F-skylines incorporate 

constraints on attributes, allowing for greater 

filtering of the data. When the constraints become 

tighter, the resulting set of tuples gets smaller. In 

this thesis, several algorithms will be presented for 

computing Skylines and Flexible Skylines. It is 

important for us to introduce parallel frameworks 

to try to divide the computation of these sets into 

several partitions that will be executed in parallel, 

to try to speed up the execution time of this 

algorithm w.r.t. the centralized version. Each 

partition will have a part of the dataset and will 

return a local skyline that will be equal to the 

skyline set of that subset of points and not all the 

dataset. Once all the local skylines have been 

computed, they will merge and there will be a 

sequential phase in which we will find the global 

skyline from the local skylines found from each 
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partition. Our important goal is to find the best 

possible partitioning in order to have local skylines 

as small as possible and thus reduce the final 

sequential phase, which will be the slowest. Later 

in this thesis we will present improvements to 

these types of partitioning by performing an initial 

filtering phase, thus decreasing the load on the 

parallel part, and then we will see a method to 

eliminate the sequential phase totally. One aim of 

this thesis will be to implement the algorithms in 

the parallel versions with all the types of 

partitioning widely used for skyline queries and 

apply them to our specific case of the Flexible 

Skyline computation using the PySpark 

framework [4], and to verify which algorithm 

performs best and what conditions makes it 

perform the best.  

1.1. Thesis contributions 

The main contributions of this thesis are: 

1. Pre-existing algorithms for skyline 

computation and Flexible Skyline 

operators are introduced and tested using 

Python as the programming environment. 

Next, the Spark framework, used to 

parallelize the computation of these 

algorithms, is introduced. 

2. Take some partitioning algorithms from 

the literature applied so far only for 

Skyline computation, and readapt them 

for the computation of the Flexible Skyline 

ND and PO operators. 

3. Introduce some improvements to these 

parallel algorithms, some taken from the 

literature applied to the Skyline 

computation, others introduced for the 

first time in this thesis. Another 

contribution will be to take this technique, 

and readapt it to the computation of the 

ND and PO sets with some improvements. 

4. Introduce a parallel algorithm without a 

sequential part that is good for the 

computation of the two Flexible Skyline 

operators ND and PO. 

5. Implement all the algorithms using the 

Pyspark framework and derive an 

experimental analysis in which we will test 

the efficiency of the various algorithms 

and find the optimal setting to make them 

work best using synthetically created 

datasets. 

2. Preliminaries 

2.1. Skyline query 

The skyline query was first introduced in [1] to find 

all the best tuples in a database. It is based on the 

concept of dominance, in fact a skyline query 

returns all tuples (points) that are not dominated 

within a dataset. In this thesis we consider smaller 

values as better, but it is only a convention we use 

here, the opposite could be used. Let us first 

introduce the definition of dominance between 

tuples.  

Definition 2.1: Given two tuples t, u ∈ ℝd belonging 

to the same dataset S, t dominates u, written t ≺ u, 

if and only if t is not worse than u in all dimensions 

and better in at least one. Equivalently: 

𝑡 ≺  𝑢 ↔  {
∀𝑖 ∈ [1, 𝑑] →  𝑡[𝑖] ≤ 𝑢[𝑖]

∃𝑗 ∈ [1, 𝑑] → 𝑡[𝑗] < 𝑢[𝑗] 
 

Thus we have that the skyline set of a Dataset S, 

denoted by SKY(s) is equal to: 

𝑆𝐾𝑌(𝑠) = {𝑡 ∈ 𝑠|∄𝑢 ∈ 𝑠.  𝑢 ≺  𝑡} 

2.2. Flexible Skyline 

From now on, we will introduce another type of 

dominance between tuples that takes scoring 

functions into account. A scoring function f is a 

function that takes a tuple with non-negative real 

values for attributes and returns a non-negative 

real value representing the score.  

Definition 2.3: (F-dominance) Let F be a non-empty 

set of monotone scoring functions and t, u tuples 

belonging to a dataset S, with t ≠ u. We have that t 

F-dominates u, written as t ≺F u , if: 

∀ 𝑓 ∈ 𝐹 → 𝑓(𝑡) ≤ 𝑓(𝑢) 

2.2.1 Non-dominated Flexible Skyline (ND) 

We now introduce the first Flexible Skyline 

operator, called non-dominated Flexible Skyline 

(ND), which is the set of all tuples that are not F-

dominated within a dataset. 

Definition 2.5: The set of non-dominated Flexible 

Skyline (ND) of a dataset s with respect to a set of 

monotone scoring functions F ⊆ MF, is defined as: 

𝑁𝐷(𝑠; 𝐹) = {𝑡 ∈ 𝑠 | ∄ 𝑢 ∈ 𝑠.  𝑢 ≺𝐹  𝑡 } 

There are two main strategies for computing ND. 

In the first one we have to solve a different LP 

problem for each of the F-dominance Tests, the 
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second strategy instead, involves computing the 

dominance region of each point and eliminating all 

points that are part of at least one of these regions. 

2.2.2 Potentially Optimal Flexible Skyline (PO) 

The second operator, called Potentially Optimal 

Flexible Skyline (PO), returns a set of tuples 

considered optimal (the best) according to some 

monotone scoring functions F. 

Definition 2.7: The set of Potentially Optimal 

Flexible Skyline (PO) of a dataset s with respect to 

a set of monotone scoring functions F ⊆ MF, is 

defined as: 

𝑃𝑂(𝑠; 𝐹) = {𝑡 ∈ 𝑠 | ∃𝑓 ∈ 𝐹 . ∀𝑢 ∈ 𝑠.  𝑢 ≠ 𝑡 → 

𝑓(𝑡) < 𝑓(𝑠)} 

We have that a tuple t that is potentially optimal is 

certainly also ND, but the fact that it is not F-

dominated is only a necessary condition for t to be 

potentially optimal and not sufficient. There are 

two ways to find the PO set: start from the whole 

dataset and find the set in one step or find the ND 

set first and then compute PO from that. In both 

cases, we have to solve some LP and there are two 

strategies: solve the Primal or the Dual PO test. 

3. Sequential Algorithms 

3.1. Skyline Algorithms 

The skyline algorithms seen in this thesis are Block 

Nested Loop (BNL), SFS and SaLSa. For the 

experimental results, we will only use SFS, which 

is the fastest for Flexible Skylines computation.  

SFS (Sort Filter Skyline). The SFS algorithm is an 

improvement of the BNL algorithm. . The 

algorithm is very similar to BNL, except that there 

is a pre-processing of the data in which the tuples 

are sorted using a monotone function f. By 

performing this sorting, we are sure that no tuple 

coming after a certain tuple t dominates it. So the 

functioning of SFS is very simple, first the dataset 

is ordered using a monotone function f, after that 

we scan the sorted dataset and for each tuple t we 

check whether or not it is dominated by the tuples 

in SKY. If it is not dominated by any tuple in SKY 

then we add t to SKY. 

3.2. Flexible Skyline Algorithms 

3.2.1. ND computation 

There are two strategies for computing ND [2], the 

first is to start from the skyline set and then 

compute the ND set (2-phase), the second is to start 

from the entire input dataset (1-phase). The main 

steps can be summarized by first choosing the 

number of phases: 1-phase if we want to compute 

ND directly from the input dataset, 2-phase if we 

want to compute ND after having computed the 

Skyline. After that, we choose whether or not to 

apply sorting ('U' for the unsorted version, 'S' for 

the sorted version) to produce a topological sort 

with respect to the F-dominance relation, i.e. if a 

tuple t precedes a tuple u in the sorted input 

dataset, then u ⊀F t. To get the topological sort, we 

will use as sort function a weighted sum in which 

the weights are the coordinates of the centroid of 

the polytope W(C), where W(C) is the subset of all 

normalized weight vectors that satisfies C that is a 

set of linear constraints. Next, we choose the way 

in which to verify F-dominance, and to do so we 

have seen two alternatives: the first by solving an 

LP problem, and the second by verifying whether 

the tuple is part of the dominance region of another 

tuple using the vertex enumeration of the polytope 

W(C). We have seen that the fastest algorithm is the 

one-phase algorithm using the VE technique. In 

particular the SVE1F algorithm works by first 

sorting the dataset and then scanning it one by one. 

For each tuple we first check if it is simply 

dominated by a point in the ND set, which is 

initially empty, and then if not, if it is F-dominated. 

If it is not dominated then it is added to the ND set. 

3.2.2. PO computation 

For the computation of PO [2], we start from the 

ND set and we do the Optimality Test using the 

Primal PO Test or the Dual PO Test. In both 

algorithms, a heuristic optimization technique can 

be used to try to reduce the number of optimality 

tests, which will attempt to discard non-optimal 

tuples using an incremental strategy. 

4. Parallel Algorithms 

These algorithms works by decomposing the 

dataset into multiple partitions, where each 

partition is responsible to compute a skyline 

without having to consider all the points in the 

dataset but only its assigned points. Subsequently, 
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a sequential phase is performed, where the final 

skyline set is determined by merging the 

previously found local sets. 

Random Partitioning. This technique has the goal of 

ensuring that each set Si represents a sample of S 

that has similar structural characteristics. To 

achieve this, points are randomly distributed 

among the various partitions, with the number of 

points evenly allocated to the n partitions. 

Grid Partitioning. This method involves dividing 

the space into an nxn grid to enable parallel 

computation on different partitions. In this 

approach, each dimension is divided into n parts, 

resulting in a total of nd partitions, where d denotes 

the total number of dimensions. Using this 

technique we have no control on how many points 

the different partitions will have, and we have 

limited control over the number of partitions, but 

manage to group the points within partitions 

better, managing to eliminate many points in the 

parallel phase compared to random partitioning. 

Angle-based Space Partitioning. This technique aims 

to address the issue of local skylines containing an 

excessive number of successively dominated 

points and the problem of load sharing between 

partitions, which was observed in previous 

partitioning techniques. The technique involves 

mapping the Cartesian coordinate space to a 

hyperspherical space and partitioning the resulting 

data space into N partitions based on the angular 

coordinates. The angle-based approach can 

achieve a better balance of workload, as each 

partition includes both good and bad points in the 

data space. This results in a larger number of points 

being dominated in the parallel phase compared to 

Grid partitioning and Random Partitioning. It 

suffers from the same problem as Grid Partitioning 

where we are limited in choosing the number of 

partitions. 

One-dimensional Slicing (Sliced Partitioning). The 

basic idea is to overcome one of the limitations of 

grid and angular partitioning methods which is 

that we have no control over how many partitions 

we can use and how many points there will be in 

each partition. The idea of this partitioning 

algorithm is to sort the dataset on one dimension 

and divide it between the partitions equally, so that 

each partition will have the same number of points 

and we decide how many partitions to have. 

 

5. Improvement of the Parallel 

Algorithms 

Here we introduces techniques to improve parallel 

algorithms by reducing their execution time.  

Representative Filtering. This technique involves 

selecting a few points that will act as 

representatives (better points) and will be used to 

remove as many points as possible. The one 

proposed in this thesis is to take the first n sorted 

points of each partition after the angular 

partitioning technique. As we will see, for 

independent and correlated datasets, the proposed 

method is better than the one proposed in [3] 

which, instead, selects points according to the 

largest dominance region, while with 

anticorrelated datasets, the latter succeeds in 

filtering more, so much that we prefer it since we 

will be using anticorrelated datasets for our 

experiments. 

All Parallel Algorithm. This technique is used to 

avoid performing the final sequential part, by 

performing two parallel phases, passing in the last 

one to each partition the union of the local skylines 

found during the first parallel phase. We will see 

how this technique has a positive impact on the 

total duration of the algorithm, since the part that 

takes the longest is the final sequential phase in 

parallel algorithms.  

 

6. Experimental Results 

Our goal will be to evaluate the various parallel 

algorithms seen and try to understand which 

algorithms perform best and in what setting. The 

various algorithms will be run on a virtual machine 

with 30 cores [5]. All experiments are performed 

using synthetically created anticorrelated datasets. 

For both the skyline and ND computation (fig. 6.1 

and 6.2), the best parallel algorithm is Sliced 

Partitioning which manages to return the smallest 

local set in the shortest possible time in both cases, 

thus impacting less on the final sequential part. 

Compared to the Angular Partitioning algorithm 

for Skyline computation, we see that in the case 

where an anticorrelated dataset with 4 dimensions 

and 3 million points is taken into account, the 

execution time goes from 244.97 seconds of 

Angular to 184.55 seconds of Sliced Partitioning. 

This increased speed is due to the size of the 



Executive summary Emilio De Lorenzis 

 

5 

returned local set which goes from the 66251 points 

of Angular to the 40251 of Sliced, thus having a 

lighter and consequently faster sequential phase. 

 

  
Fig. 6.1: Skyline computation Fig. 6.2: ND computation 

Representative Filtering manages to eliminate 

many more points bringing an advantage over the 

standard version by returning a smaller local set. 

Thanks to representative filtering, we are able to go 

from 184.55 seconds for the version of Sliced 

Partitioning without filtering to 164.1 seconds for 

the version with filtering in the case of the skyline 

computation with a 4-dimensional anticorrelated 

dataset with 3 million points (fig. 6.3). The best 

algorithm for all 3 types of skyline computation is 

the All Parallel Algorithm. This algorithm is the 

only one which, by eliminating the final sequential 

phase and computing the global set in parallel, 

manages to making the most efficient use of the 

parallelization and, as we shall see, will take much 

less time than the version of the same algorithm 

with the final sequential part. In this case for the 

skyline computation set we have a duration of 

38.17 seconds, while the same algorithm with the 

final sequential part has a duration of 164.1 

seconds which is 4.29 times longer. For the 

computation of the ND set instead, using a 2-

million point dataset manages to finish in 99.66 

seconds, about 6.5 times faster than the same 

version with the final sequential part (see fig. 6.3 

and 6.4). 

 
 

Fig. 6.3: Skyline computation using 

improved Algorithms 

Fig. 6.4: ND computation using 

improved algorithms 

As far as the computation of the PO set is 

concerned, on the other hand, the best algorithm is 

not Sliced Partitioning, which will perform worse 

than both Random and Angular Partitioning since 

for the computation of the PO set sorting on one 

dimension is not important for the computation of 

the global set, but Angular and Random 

Partitioning succeeds in dividing the load equally 

between the partitions (fig. 6.5). Regarding the All 

Parallel PO algorithm as we can see from the figure 

the best algorithm is Random Partitioning, which 

manages to finish executing the All Parallel 

algorithm in the shortest possible time (fig. 6.6). 

  

Fig. 6.5: PO parallel Algorithms Fig. 6.6: All Parallel PO 

Increasing the number of partitions in the parallel 

algorithms we will have a faster parallel phase but 

on the other hand, having more partitions the size 

of the local skylines returned will be greater, 

affecting the duration of the final sequential part. 

Changing the number of dimensions, instead, we 

have seen that the duration of the algorithms 

follows an exponential trend because by increasing 

the dimensionality of the dataset we will greatly 

increase the size of the global Skyline set, resulting 

in very high execution times. Finally, we have seen 

that all the algorithms, by increasing the number of 

cores, will decrease the execution time, with the 

duration of the parallel part becoming smaller and 

smaller as the number of cores increases, but since 

they always have to perform a final sequential part, 

this advantage is not so great. It is a different 

matter for PO computation, which, since it has 

partitions that have to compute many LPs, so we 

will have a parallel part with a considerable 

duration, thus increasing the number of cores 

improves the execution time by a significant 

amount. On the other hand, for the all parallel 

algorithm, which manages to make the most of 

parallelization, the change in the number of cores 

helps reduce the duration by a factor of 2.37 for the 

skyline computation, 2.28 for the computation of 

the ND set and 3.53 for the PO set. 

7. Conclusions 

We have introduced several parallel algorithms 

and applied them to the computation of Skylines 

and the Flexible Skyline ND and PO operators 

using the PySpark framework. For both skyline 

computation and ND, the parallel algorithms 

behave more or less the same in the case of 

anticorrelated datasets. Random Partitioning does 
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not perform very well because joining random 

points does not bring any advantage, in fact the 

computed local skylines is very large, thus 

introducing a high overhead compared to the 

others in the final sequential part. Grid 

Partitioning, on the other hand, manages to 

eliminate enough points in the parallel phase by 

returning a smaller local set than Random 

Partitioning, but in anticorrelated datasets, as we 

have seen, it has some partitions that are much 

heavier than others, thus incurring a fairly large 

computation time for the parallel phase. Angular 

partitioning succeeds in overcoming the problem 

of Grid Partitioning by being able to divide the 

dataset more evenly while returning small local 

skyline sets. Finally, Sliced partitioning succeeds in 

solving the problems of Grid and Angular 

Partitioning by managing to partition the dataset 

equally between partitions and still return the 

smallest local set of all the parallel algorithms. 

With the Representative Filtering the algorithms 

manage to return a smaller local set than the 

standard version, thus reducing the duration of the 

global set computation in the final sequential part 

by using a few "better" points to filter the dataset 

before performing parallel computation. The best 

algorithm however, is the All Parallel since it 

manages to eliminate the final sequential part, 

which is the longest. The algorithm manages to 

finish execution 4.29 times earlier than the same 

version with the final sequential part for the 

skyline computation, 6.5 times earlier for ND and 

2.1 times earlier for PO. 
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