

EXECUTIVE SUMMARY OF THE THESIS

Computation of Flexible Skylines in a distributed environment

TESI MAGISTRALE IN COMPUTER SCIENCE AND ENGINEERING – INGEGNERIA INFORMATICA

AUTHOR: EMILIO DE LORENZIS

ADVISOR: DAVIDE MARTINENGHI

ACADEMIC YEAR: 2021-2022

1. Introduction

In recent years, as big data has grown, there has

been an attempt to find a way to search within ever

larger data sets for data that might be of interest

and to which one should pay special attention.

Skyline queries [1] provide an efficient and

effective method for selecting a subset of data from

large datasets. These queries selects tuples that are

not dominated by any other tuple, yielding a set of

data points that are considered more interesting.

We have that a tuple t dominates another tuple s if

and only if t is not worse in any attribute than s and

strictly better in at least one. Skylines offer a global

view of data that may be of interest, but they do not

account for user preferences as they treat all

attributes at the same level. In addition, skyline

sets may contain an excessive number of tuples,

which may not provide meaningful insights for

decision-making. To address these limitations, this

thesis also explores the concept of Flexible Skylines

[2]. Flexible Skylines incorporate constraints on

attributes, allowing for importance differentiation

between attributes. The concept of F-dominance

was introduced for this purpose: A tuple t F-

dominates another tuple s if and only if t is always

better than or equal to s according to all scoring

functions in F. Flexible skylines thus return a

subset of the skylines and are divided into 2

operators: ND which returns the subset of non F-

dominated tuples and PO which returns a subset

of ND representing all tuples that are potentially

optimal with respect to a scoring function in F. An

advantage of using Flexible skylines (F-skylines) is

that they can potentially reduce the cardinality of

the resulting tuples compared to traditional

Skylines. This is because F-skylines incorporate

constraints on attributes, allowing for greater

filtering of the data. When the constraints become

tighter, the resulting set of tuples gets smaller. In

this thesis, several algorithms will be presented for

computing Skylines and Flexible Skylines. It is

important for us to introduce parallel frameworks

to try to divide the computation of these sets into

several partitions that will be executed in parallel,

to try to speed up the execution time of this

algorithm w.r.t. the centralized version. Each

partition will have a part of the dataset and will

return a local skyline that will be equal to the

skyline set of that subset of points and not all the

dataset. Once all the local skylines have been

computed, they will merge and there will be a

sequential phase in which we will find the global

skyline from the local skylines found from each

Executive summary Emilio De Lorenzis

2

partition. Our important goal is to find the best

possible partitioning in order to have local skylines

as small as possible and thus reduce the final

sequential phase, which will be the slowest. Later

in this thesis we will present improvements to

these types of partitioning by performing an initial

filtering phase, thus decreasing the load on the

parallel part, and then we will see a method to

eliminate the sequential phase totally. One aim of

this thesis will be to implement the algorithms in

the parallel versions with all the types of

partitioning widely used for skyline queries and

apply them to our specific case of the Flexible

Skyline computation using the PySpark

framework [4], and to verify which algorithm

performs best and what conditions makes it

perform the best.

1.1. Thesis contributions

The main contributions of this thesis are:

1. Pre-existing algorithms for skyline

computation and Flexible Skyline

operators are introduced and tested using

Python as the programming environment.

Next, the Spark framework, used to

parallelize the computation of these

algorithms, is introduced.

2. Take some partitioning algorithms from

the literature applied so far only for

Skyline computation, and readapt them

for the computation of the Flexible Skyline

ND and PO operators.

3. Introduce some improvements to these

parallel algorithms, some taken from the

literature applied to the Skyline

computation, others introduced for the

first time in this thesis. Another

contribution will be to take this technique,

and readapt it to the computation of the

ND and PO sets with some improvements.

4. Introduce a parallel algorithm without a

sequential part that is good for the

computation of the two Flexible Skyline

operators ND and PO.

5. Implement all the algorithms using the

Pyspark framework and derive an

experimental analysis in which we will test

the efficiency of the various algorithms

and find the optimal setting to make them

work best using synthetically created

datasets.

2. Preliminaries

2.1. Skyline query

The skyline query was first introduced in [1] to find

all the best tuples in a database. It is based on the

concept of dominance, in fact a skyline query

returns all tuples (points) that are not dominated

within a dataset. In this thesis we consider smaller

values as better, but it is only a convention we use

here, the opposite could be used. Let us first

introduce the definition of dominance between

tuples.

Definition 2.1: Given two tuples t, u ∈ ℝd belonging

to the same dataset S, t dominates u, written t ≺ u,

if and only if t is not worse than u in all dimensions

and better in at least one. Equivalently:

𝑡 ≺ 𝑢 ↔ {
∀𝑖 ∈ [1, 𝑑] → 𝑡[𝑖] ≤ 𝑢[𝑖]

∃𝑗 ∈ [1, 𝑑] → 𝑡[𝑗] < 𝑢[𝑗]

Thus we have that the skyline set of a Dataset S,

denoted by SKY(s) is equal to:

𝑆𝐾𝑌(𝑠) = {𝑡 ∈ 𝑠|∄𝑢 ∈ 𝑠. 𝑢 ≺ 𝑡}

2.2. Flexible Skyline

From now on, we will introduce another type of

dominance between tuples that takes scoring

functions into account. A scoring function f is a

function that takes a tuple with non-negative real

values for attributes and returns a non-negative

real value representing the score.

Definition 2.3: (F-dominance) Let F be a non-empty

set of monotone scoring functions and t, u tuples

belonging to a dataset S, with t ≠ u. We have that t

F-dominates u, written as t ≺F u , if:

∀ 𝑓 ∈ 𝐹 → 𝑓(𝑡) ≤ 𝑓(𝑢)

2.2.1 Non-dominated Flexible Skyline (ND)

We now introduce the first Flexible Skyline

operator, called non-dominated Flexible Skyline

(ND), which is the set of all tuples that are not F-

dominated within a dataset.

Definition 2.5: The set of non-dominated Flexible

Skyline (ND) of a dataset s with respect to a set of

monotone scoring functions F ⊆ MF, is defined as:

𝑁𝐷(𝑠; 𝐹) = {𝑡 ∈ 𝑠 | ∄ 𝑢 ∈ 𝑠. 𝑢 ≺𝐹 𝑡 }

There are two main strategies for computing ND.

In the first one we have to solve a different LP

problem for each of the F-dominance Tests, the

Executive summary Emilio De Lorenzis

3

second strategy instead, involves computing the

dominance region of each point and eliminating all

points that are part of at least one of these regions.

2.2.2 Potentially Optimal Flexible Skyline (PO)

The second operator, called Potentially Optimal

Flexible Skyline (PO), returns a set of tuples

considered optimal (the best) according to some

monotone scoring functions F.

Definition 2.7: The set of Potentially Optimal

Flexible Skyline (PO) of a dataset s with respect to

a set of monotone scoring functions F ⊆ MF, is

defined as:

𝑃𝑂(𝑠; 𝐹) = {𝑡 ∈ 𝑠 | ∃𝑓 ∈ 𝐹 . ∀𝑢 ∈ 𝑠. 𝑢 ≠ 𝑡 →

𝑓(𝑡) < 𝑓(𝑠)}

We have that a tuple t that is potentially optimal is

certainly also ND, but the fact that it is not F-

dominated is only a necessary condition for t to be

potentially optimal and not sufficient. There are

two ways to find the PO set: start from the whole

dataset and find the set in one step or find the ND

set first and then compute PO from that. In both

cases, we have to solve some LP and there are two

strategies: solve the Primal or the Dual PO test.

3. Sequential Algorithms

3.1. Skyline Algorithms

The skyline algorithms seen in this thesis are Block

Nested Loop (BNL), SFS and SaLSa. For the

experimental results, we will only use SFS, which

is the fastest for Flexible Skylines computation.

SFS (Sort Filter Skyline). The SFS algorithm is an

improvement of the BNL algorithm. . The

algorithm is very similar to BNL, except that there

is a pre-processing of the data in which the tuples

are sorted using a monotone function f. By

performing this sorting, we are sure that no tuple

coming after a certain tuple t dominates it. So the

functioning of SFS is very simple, first the dataset

is ordered using a monotone function f, after that

we scan the sorted dataset and for each tuple t we

check whether or not it is dominated by the tuples

in SKY. If it is not dominated by any tuple in SKY

then we add t to SKY.

3.2. Flexible Skyline Algorithms

3.2.1. ND computation

There are two strategies for computing ND [2], the

first is to start from the skyline set and then

compute the ND set (2-phase), the second is to start

from the entire input dataset (1-phase). The main

steps can be summarized by first choosing the

number of phases: 1-phase if we want to compute

ND directly from the input dataset, 2-phase if we

want to compute ND after having computed the

Skyline. After that, we choose whether or not to

apply sorting ('U' for the unsorted version, 'S' for

the sorted version) to produce a topological sort

with respect to the F-dominance relation, i.e. if a

tuple t precedes a tuple u in the sorted input

dataset, then u ⊀F t. To get the topological sort, we

will use as sort function a weighted sum in which

the weights are the coordinates of the centroid of

the polytope W(C), where W(C) is the subset of all

normalized weight vectors that satisfies C that is a

set of linear constraints. Next, we choose the way

in which to verify F-dominance, and to do so we

have seen two alternatives: the first by solving an

LP problem, and the second by verifying whether

the tuple is part of the dominance region of another

tuple using the vertex enumeration of the polytope

W(C). We have seen that the fastest algorithm is the

one-phase algorithm using the VE technique. In

particular the SVE1F algorithm works by first

sorting the dataset and then scanning it one by one.

For each tuple we first check if it is simply

dominated by a point in the ND set, which is

initially empty, and then if not, if it is F-dominated.

If it is not dominated then it is added to the ND set.

3.2.2. PO computation

For the computation of PO [2], we start from the

ND set and we do the Optimality Test using the

Primal PO Test or the Dual PO Test. In both

algorithms, a heuristic optimization technique can

be used to try to reduce the number of optimality

tests, which will attempt to discard non-optimal

tuples using an incremental strategy.

4. Parallel Algorithms

These algorithms works by decomposing the

dataset into multiple partitions, where each

partition is responsible to compute a skyline

without having to consider all the points in the

dataset but only its assigned points. Subsequently,

Executive summary Emilio De Lorenzis

4

a sequential phase is performed, where the final

skyline set is determined by merging the

previously found local sets.

Random Partitioning. This technique has the goal of

ensuring that each set Si represents a sample of S

that has similar structural characteristics. To

achieve this, points are randomly distributed

among the various partitions, with the number of

points evenly allocated to the n partitions.

Grid Partitioning. This method involves dividing

the space into an nxn grid to enable parallel

computation on different partitions. In this

approach, each dimension is divided into n parts,

resulting in a total of nd partitions, where d denotes

the total number of dimensions. Using this

technique we have no control on how many points

the different partitions will have, and we have

limited control over the number of partitions, but

manage to group the points within partitions

better, managing to eliminate many points in the

parallel phase compared to random partitioning.

Angle-based Space Partitioning. This technique aims

to address the issue of local skylines containing an

excessive number of successively dominated

points and the problem of load sharing between

partitions, which was observed in previous

partitioning techniques. The technique involves

mapping the Cartesian coordinate space to a

hyperspherical space and partitioning the resulting

data space into N partitions based on the angular

coordinates. The angle-based approach can

achieve a better balance of workload, as each

partition includes both good and bad points in the

data space. This results in a larger number of points

being dominated in the parallel phase compared to

Grid partitioning and Random Partitioning. It

suffers from the same problem as Grid Partitioning

where we are limited in choosing the number of

partitions.

One-dimensional Slicing (Sliced Partitioning). The

basic idea is to overcome one of the limitations of

grid and angular partitioning methods which is

that we have no control over how many partitions

we can use and how many points there will be in

each partition. The idea of this partitioning

algorithm is to sort the dataset on one dimension

and divide it between the partitions equally, so that

each partition will have the same number of points

and we decide how many partitions to have.

5. Improvement of the Parallel

Algorithms

Here we introduces techniques to improve parallel

algorithms by reducing their execution time.

Representative Filtering. This technique involves

selecting a few points that will act as

representatives (better points) and will be used to

remove as many points as possible. The one

proposed in this thesis is to take the first n sorted

points of each partition after the angular

partitioning technique. As we will see, for

independent and correlated datasets, the proposed

method is better than the one proposed in [3]

which, instead, selects points according to the

largest dominance region, while with

anticorrelated datasets, the latter succeeds in

filtering more, so much that we prefer it since we

will be using anticorrelated datasets for our

experiments.

All Parallel Algorithm. This technique is used to

avoid performing the final sequential part, by

performing two parallel phases, passing in the last

one to each partition the union of the local skylines

found during the first parallel phase. We will see

how this technique has a positive impact on the

total duration of the algorithm, since the part that

takes the longest is the final sequential phase in

parallel algorithms.

6. Experimental Results

Our goal will be to evaluate the various parallel

algorithms seen and try to understand which

algorithms perform best and in what setting. The

various algorithms will be run on a virtual machine

with 30 cores [5]. All experiments are performed

using synthetically created anticorrelated datasets.

For both the skyline and ND computation (fig. 6.1

and 6.2), the best parallel algorithm is Sliced

Partitioning which manages to return the smallest

local set in the shortest possible time in both cases,

thus impacting less on the final sequential part.

Compared to the Angular Partitioning algorithm

for Skyline computation, we see that in the case

where an anticorrelated dataset with 4 dimensions

and 3 million points is taken into account, the

execution time goes from 244.97 seconds of

Angular to 184.55 seconds of Sliced Partitioning.

This increased speed is due to the size of the

Executive summary Emilio De Lorenzis

5

returned local set which goes from the 66251 points

of Angular to the 40251 of Sliced, thus having a

lighter and consequently faster sequential phase.

Fig. 6.1: Skyline computation Fig. 6.2: ND computation

Representative Filtering manages to eliminate

many more points bringing an advantage over the

standard version by returning a smaller local set.

Thanks to representative filtering, we are able to go

from 184.55 seconds for the version of Sliced

Partitioning without filtering to 164.1 seconds for

the version with filtering in the case of the skyline

computation with a 4-dimensional anticorrelated

dataset with 3 million points (fig. 6.3). The best

algorithm for all 3 types of skyline computation is

the All Parallel Algorithm. This algorithm is the

only one which, by eliminating the final sequential

phase and computing the global set in parallel,

manages to making the most efficient use of the

parallelization and, as we shall see, will take much

less time than the version of the same algorithm

with the final sequential part. In this case for the

skyline computation set we have a duration of

38.17 seconds, while the same algorithm with the

final sequential part has a duration of 164.1

seconds which is 4.29 times longer. For the

computation of the ND set instead, using a 2-

million point dataset manages to finish in 99.66

seconds, about 6.5 times faster than the same

version with the final sequential part (see fig. 6.3

and 6.4).

Fig. 6.3: Skyline computation using

improved Algorithms

Fig. 6.4: ND computation using

improved algorithms

As far as the computation of the PO set is

concerned, on the other hand, the best algorithm is

not Sliced Partitioning, which will perform worse

than both Random and Angular Partitioning since

for the computation of the PO set sorting on one

dimension is not important for the computation of

the global set, but Angular and Random

Partitioning succeeds in dividing the load equally

between the partitions (fig. 6.5). Regarding the All

Parallel PO algorithm as we can see from the figure

the best algorithm is Random Partitioning, which

manages to finish executing the All Parallel

algorithm in the shortest possible time (fig. 6.6).

Fig. 6.5: PO parallel Algorithms Fig. 6.6: All Parallel PO

Increasing the number of partitions in the parallel

algorithms we will have a faster parallel phase but

on the other hand, having more partitions the size

of the local skylines returned will be greater,

affecting the duration of the final sequential part.

Changing the number of dimensions, instead, we

have seen that the duration of the algorithms

follows an exponential trend because by increasing

the dimensionality of the dataset we will greatly

increase the size of the global Skyline set, resulting

in very high execution times. Finally, we have seen

that all the algorithms, by increasing the number of

cores, will decrease the execution time, with the

duration of the parallel part becoming smaller and

smaller as the number of cores increases, but since

they always have to perform a final sequential part,

this advantage is not so great. It is a different

matter for PO computation, which, since it has

partitions that have to compute many LPs, so we

will have a parallel part with a considerable

duration, thus increasing the number of cores

improves the execution time by a significant

amount. On the other hand, for the all parallel

algorithm, which manages to make the most of

parallelization, the change in the number of cores

helps reduce the duration by a factor of 2.37 for the

skyline computation, 2.28 for the computation of

the ND set and 3.53 for the PO set.

7. Conclusions

We have introduced several parallel algorithms

and applied them to the computation of Skylines

and the Flexible Skyline ND and PO operators

using the PySpark framework. For both skyline

computation and ND, the parallel algorithms

behave more or less the same in the case of

anticorrelated datasets. Random Partitioning does

Executive summary Emilio De Lorenzis

6

not perform very well because joining random

points does not bring any advantage, in fact the

computed local skylines is very large, thus

introducing a high overhead compared to the

others in the final sequential part. Grid

Partitioning, on the other hand, manages to

eliminate enough points in the parallel phase by

returning a smaller local set than Random

Partitioning, but in anticorrelated datasets, as we

have seen, it has some partitions that are much

heavier than others, thus incurring a fairly large

computation time for the parallel phase. Angular

partitioning succeeds in overcoming the problem

of Grid Partitioning by being able to divide the

dataset more evenly while returning small local

skyline sets. Finally, Sliced partitioning succeeds in

solving the problems of Grid and Angular

Partitioning by managing to partition the dataset

equally between partitions and still return the

smallest local set of all the parallel algorithms.

With the Representative Filtering the algorithms

manage to return a smaller local set than the

standard version, thus reducing the duration of the

global set computation in the final sequential part

by using a few "better" points to filter the dataset

before performing parallel computation. The best

algorithm however, is the All Parallel since it

manages to eliminate the final sequential part,

which is the longest. The algorithm manages to

finish execution 4.29 times earlier than the same

version with the final sequential part for the

skyline computation, 6.5 times earlier for ND and

2.1 times earlier for PO.

References

[1] S. Börzsönyi, D. Kossmann and K. Stocker,

"The skyline operator," Proceedings of

International Conference on Data Engineering

(ICDE), p. pp. 421–430, 2001.

[2] Paolo Ciaccia and Davide Martinenghi. 2020.

Flexible Skylines: Dominance for Arbitrary

Sets of Monotone Functions. ACM Trans.

Database Syst. 45, 4, Article 18 (December

2020), 45 pages.

[3] Etion Pinari, "Parallel Implementations of the

Skyline Query using PySpark", 2022.

[4] Apache Spark: "Spark overview"

https://spark.apache.org/docs/latest/

[5] Github repository with the implemented code:

“https://github.com/emilio99-del/Master-

Thesis

