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Abstract 

Manufacturing cell layout is one of the main layout configurations and it is formed 

by manufacturing cells, groups of machines which are dedicated on manufacturing 

part families. The problem of forming manufacturing cells is called Cell Formation 

(CF) problem and it can be solved by means of different methods. The scope of this 

thesis is in presenting several methods from 2000 to 2020 under the theoretical point 

of view, with the help of some examples taken by papers coming from the literature, 

comparing them and indicating their limits in terms of completeness and reliability. 

In fact, most of these methods are based on mathematical models, which are 

characterized by constraints and simplifications, moving them away from the real 

and more complex problem. What will arise from this analysis is a diffused lack of 

completeness among the methodologies, but in recent years it is evident a positive 

trend toward the integration of more aspects. 

 

Key-words: Manufacturing cell, cell formation problem, cell formation, cell layout, 

cell scheduling. 
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Abstract in lingua italiana 

Il layout delle celle di produzione è una delle principali configurazioni di layout ed è 

formato da celle di produzione, gruppi di macchine dedicate alla produzione di 

famiglie di parti. Il problema sulla formulazione delle celle di produzione è chiamato 

problema della formazione delle cellule (CF problem) e può essere risolto con diversi 

metodi. Lo scopo di questa tesi è presentare diversi metodi dal 2000 al 2020 dal punto 

di vista teorico, con l'ausilio di alcuni esempi tratti da articoli provenienti dalla 

letteratura, confrontandoli e indicandone i limiti in termini di completezza e 

affidabilità. Infatti la maggior parte di questi metodi si basa su modelli matematici, 

che sono caratterizzati da vincoli e semplificazioni, allontanandoli dal più complesso 

problema reale. Ciò che emergerà da questa analisi è una diffusa mancanza di 

completezza tra le metodologie, ma negli ultimi anni è evidente una tendenza 

positiva verso l'integrazione di più aspetti. 

Parole chiave: Cella di produzione, problema della formazione delle cellule, 

formazione della cellula, layout della cellula, pianificazione della cellula. 
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1. Introduction 

1.1 Introductory concepts 

Group technology (GT) is a manufacturing technique based on the principle of 

grouping parts into families according to similarities in design or manufacturing 

process. 

Cellular manufacturing (CM) is an application of GT in manufacturing and consists 

in machining one or more part families in a machine cell, which is formed by a group 

of machines or workstations. Cellular manufacturing combines the advantages of 

both the job shop and mass production approaches: in fact, it has the flexibility of the 

job shop and the efficient flow and high production rate of the mass production; 

giving it a good compromise between the two procedures. 

Especially with respect to the job shop [1]: manufacturing cell permits a lower setup 

between batches, due to the fact the machines inside a cell have to work similar 

products, allowing smaller batch size and thus improve flexibility, giving the ability 

to produce the right amount of parts in the right time span; physically grouping 

together different machines reduces the transportation time between processes, the 

part flows are more linear and rational and there are no intersections, which are 

frequent in a job shop; the machine cell enables the creation of multiskilled workers 

that are able to work on different machines or workstations, compared to the job 

shop where each worker is specialized in one type of machine (milling, turning, 

drilling etc.). 

The use of cellular manufacturing improves the flow time and tardiness performance 

of parts they process with respect to job shops [2,3], thus it is suitable in machining 

important part families. Other examples can be found in the millwork industry [4,5], 

where the transition from job shop to manufacturing cell is accompanied by a 

reduction on the order of 50% of lead time and scrap rate. 

The process of determining part families and machine groups is referred to as the 

Cell Formation (CF) problem. As pointed out by many papers [6–9] given a set of 

input data like part types, processing requirements, part type demand and available 
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resources (machines, equipment, etc.), the CF problem can be divided in three main 

steps:  

1. Cell formation, machines are grouped together to form cells and part families 

are assigned to cells; 

2. Cell layout, machines are rearranged inside the cell (intercell layout) and cells 

are repositioned inside the department (intracell layout); 

3. Cell scheduling, the production sequence of part families is formulated and 

jobs are scheduled in order to better exploit the available time of production.  

These steps will be better explained afterwards, in Chapter 4. Note that, based on the 

procedure that is adopted, it can happens that not all the abovementioned steps will 

be performed.  

To make the CF problem clear, let us take as an example the following 

manufacturing department: 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 1.1 it is possible to see a department divided in four shops (Drilling, 

Turning, Milling, Heat treatment) based on the process involved. Each shop contains 

machines of the same type: the Drilling shop has three drilling machines called A; the 

Milling one contains three multi axial CNC machines named B; the Turning shop 

accommodates four lathe machines labelled C; the Heat treatment shop contains one 

furnace named D. By means of red and blue arrows the flows of two possible part 

types are represented: the first part type follows the process path A-B-C-D; the 

second one the technological route B-A-C-D; it’s easy to notice that in this job shop 

In 

A A 

A 

Turning 

  

B B B 

C 

Milling 

C 

C C 

Drilling Out 

D 

Heat treatment  

Figure 1.1: Example of a Job Shop department. 
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intersections and jams between the part flows are frequent, causing a longer flow 

time for the products from the input to the output of the department, and an higher 

material handling cost due to the total distance traveled by parts. 

One possible solution to reduce flow time and costs is to rearrange the department in 

several machine cells, one for each part family. Once machine cells are formed in the 

cell formation step, cell layout step takes place, in which the designer must rearrange 

machines inside cells and the cells inside the department. The most used intercell 

layouts [10,11] are: linear single-row layout, where machines are positioned along a 

straight line; linear double-row layout, which is similar to the single-row layout, but 

has two lines of machines in parallel; u-shaped layout, it is similar to the single-row 

layout, in which machines are located along a circumference of an ellipse, very suited 

to enhance teamwork and communication among team members. These types of 

layouts can be seen in Figure 1.3, at the end of the paragraph. The solution will be 

characterized by more linear paths, with minimum intercellular flows between cells. 

However, the new department’s arrangement could be formed not only by machine 

cells, but also by a job shop (called remainder cell) that includes the remaining 

machines that were not assigned to any cell; in the literature this solution is called 

hybrid layout [2,3,11–14]. The remainder cell has the duty to manufacture the 

remaining parts that do not belong to any part family and can also contain machines 

that cannot be duplicated due to their weight/cost (like furnaces, big presses, 

painting shop). 

In Figure 1.2 is represented a feasible solution for the CF problem stated before. In 

the presented solution one part family is transformed by the machine cell called Cell 

1, composed by two machines A, one B and one C; the other part family is machined 

inside the manufacturing cell labelled Cell 2, formed by two machines B, one A and 

two C; the remainder cell is simply composed by the remaining machines that are not 

request by the two cells (i.e. the capacity required by the demand of the two part 

families is already reached), but still they will be useful in case of demand variations 

of the two part families, giving an extra capacity to cope with increasing demand, or 

in case of introduction of new parts in the manufacturing program. In the remainder 

cell is also present the furnace D, which cannot be moved from its initial location and 

cannot be duplicated to have one furnace on each cell due to its cost and occupied 

surface area. From this configuration, cell scheduling can be performed to improve 

lead time of part families. 
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(a) Linear single-row layout 

 

 

 

 

 

 

 

 

 

 

 

(b) Linear double-row layout 

 

 

 

 

 

 

 

 

 

 

 

(c) U-shaped layout 

Figure 1.3: Common manufacturing cell layouts. 
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Figure 1.2: Possible solution of the CF problem. 
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1.2 Scope of thesis 

The scope of the thesis is in trying to: 

1. Classify several CF methods, introducing them by means of theory and 

example sources. 

2. Compare them in terms of different criteria like completeness of the solution, 

complexity of the algorithm, speed (computational time). 

3. Discuss the limits of these methods in the real practice. 

What is not included in the discussion: 

 Supply chain, meaning that flows of parts entering the department and exiting 

the department are not considered, but only the flows within the single 

department; 

 Material handling system, the procedure of choosing and purchasing material 

handling systems is not argued; 

 Workspace layout, the specific space assigned to workers in not discussed. 

Thus, this thesis aims at helping the designer to choose the best method available 

among all the possible CF techniques to properly design the layout of the single 

department. The reader will learn the basic theory of several algorithms, their 

advantages and disadvantages, and their applicability on the real world. About this 

last point, the main doubt that will rise from the entire explanation is on the 

reliability of these methods and their solutions, due to the fact they are based on 

Mathematical Models made by simplifications that, in most of the cases, don’t 

consider data’s uncertainties. 

The originality of this thesis is in its broad view about this topic, that not only 

introduces different CF methods, but also tries to compare them and prove their 

applicability on the field. 

1.3 Structure of the thesis 

The thesis is divided is several chapters, with the aim of introducing step by step all 

the information that will be useful in the final discussion. 

Chapter 1 constitutes the introduction of the thesis, made by introductory concepts 

about what it a CF problem. 

Chapter 2 is about the research methodology followed during the preparation of the 

thesis, also presenting the sources employed. 
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Chapter 3 is the core of the thesis, devoted at classifying the CF methods and 

explaining them by means of basic theory and examples. 

Chapter 4 is characterized by the comparison between CF methods to infer what is 

the overall best method in terms of quality of the given solution and speed. 

Chapter 5 discusses the limits of CF methods in terms of applicability in real cases. 

Chapter 6 concludes the thesis with final remarks. 
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2. Literature review 

To explain the topic of CF problem, only the most recent sources are used, in order to 

be the most updated possible. That is why all the sources come from the range of 

years 2000-2021. In fact, as it will be possible to appreciate, the complexity and 

completeness of the methods grows thanks to the continuous evolution of calculators 

in terms of hardware and software, and also due to the market that requests dynamic 

and rapid manufacturing systems. 

The most used databases websites to gather sources are Web of Science 

(www.webofscience.com), the electronic archives of Politecnico di Milano 

(biblio.polimi.it), and Wikipedia. The keywords employed to find appropriate sources 

are “cell manufacturing”, “cell formation”, “cell layout”, “cell scheduling”, “review”, all 

the discussed methods like “mathematical programming”, “metaheuristics”, “Tabu 

search”, etc. 

Sources are classified in few macro categories: 

 Books: books are useful to study an argument by the theoretical point of view, 

in fact they will be employed in the central part of the discussion (chapter 3), 

where several methods will be presented. 

 Review papers: as for books, they can be used to introduce an argument in a 

general view, but they also provide important statements about the studied 

literature, therefore their contribution will be important in the concluding part 

of the thesis (chapter 4). 

 Study papers: study papers do research studies in specific topics, comparing 

for example different layout approaches [2–4], or introducing models to guide 

designers and managers to cope with worker assignment and worker issues 

[15–19]. Some of them also do literature review like it happens for review 

papers. 

 Method papers: in this category fall all the papers that explain one or more 

novel algorithms to solve CF problem. Some of them will be employed as 

examples to better clarify the CF methods in the core of the discussion 
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(chapter 3) and, afterwards, together with other research papers, to analyze 

what still needs to be done (chapter 4). 

 Notebook notes/slides: information coming from courses attended at 

university. 

In Figure 2.1, the 104 sources employed in the thesis are arranged based on their year 

of publication, sources employed for an image only or single images are not 

included: 

 

Figure 2.1: The distribution of the sources among the years. 

The year of review papers and method papers is given by the software Mendeley, and 

it coincides with the year of publication in a journal. Books are labeled by the year of 

last published edition. Handbook notes and slides are marked in the year when the 

courses were attended. From the figure above it can be appreciated the continuous 

interest of researchers about the topic of cellular manufacturing and CF problem. 

There are no sources coming from 2021.  

Method papers are the most diffused type of source, with 73 entries, followed by 

study papers and review papers, respectively with 14 and 13 entries, and lastly by 

books and notebook notes/slides with 2 entries each. Thus, it is of high interest 

classifying the method papers based on the model they rely on. As it will be 

explained in the next chapter (Chapter 3), the CF problem can be solved by means of 

several methods, each of them with their own characteristics. The distribution of 

proposed methods to solve the CF problem is depicted in Figure 2.2: 
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Figure 2.2: Distribution of proposed methods among the years. 

Different methodologies are employed to solve the CF problem. Among all the 

possible models, the algorithms of major interest in the research field are the ones 

contained in the Production Based Methods. As the name suggests, these methods 

rely on production data coming from the manufacturing department like the 

operation sequence of part types, machines’ capability (the ability of the machine to 

do a certain operation) and capacity, demand of part types etc., thus their chance to 

better meet the firm’s request to design a proper MC can be higher with respect to 

other methods like Visual Methods and Part coding analysis (PCA) that rely on 

geometrical and technological aspects only. A better explanation of all these 

approaches will be the focus of Chapter 3. 

In the diagram the methodologies of interest are labeled by means of their acronyms, 

that now will be quickly explained: 

 MP stands for Mathematical Programming, this category contains all the 

papers that propose mathematical models only [11,14,20–29]; 

 HE means Heuristics, a type of methods that are based on heuristic/practical 

equations [30,31]; 

 TS and SA denote respectively Tabu Search and Simulated Annealing, two 

local search approaches included in the Metaheuristics, that can be seen as 

structured/defined heuristics. [10,32,33] are Tabu Search models, while [34–39] 

are Simulated Annealing models; 

 GA, PSO and ACO respectively stand for Genetic Algorithm, Particle Swarm 

Optimization and Ant Colony Optimization, they are three global search 
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Metaheuristic approaches and, as their names suggest, are based on biological 

principles. Refer to [7,40–51] for Genetic Algorithm, to [52–55] for Particle 

Swarm Optimization, and to [56–59] for Ant Colony Optimization; 

 ANN means Artificial Neural Network and, together with Fuzzy Logic (FL), it 

is part of the Artificial Intelligence methodologies, that are techniques trying 

to mimic human’s thinking processing. ANN sources are the following [60–

63]; 

 Multi denotes all the papers than propose more than one model for the CF 

problem.[64] proposes GA, SA, and TS methods, while [65] GA and SA 

approaches, [66] proposes GA and PSO methods, ; 

 Hybrid stands for Hybrid algorithms, which are methods that couple together 

two different models in order to enhance their computational capabilities. 

There is a grand variety of hybrid methods, in fact [67,68] are TS-GA hybrid 

algorithms, [9,69–71] are SA-GA, [72–74] are GA-Local search (a sort of TS and 

SA), [75] is a GA-MP, [76] is a GA-ANN, [77] is a GA-FL, [78] is a GA-

AUGMECON (Augmented e-constraint method), [79] is a SA-MP, [80] is a 

PSO-MP, [81] is a FL-MP, [82] is a FL-ANN. 

The information contained in Figure 2.2 is rearranged to show the total number of 

papers per type of method sorted in a descending order as in Table 2.1: 

 

 

 

 

 

 

 

 

 

 

 

As it is possible to see, most of the papers are Hybrid, GA, or MP methods but, 

keeping in mind that most of the hybrid approaches proposed contain GA, GA seems 

to be the most used method. This hypothesis is confirmed by the literature. For 

example, the review paper [83] observed that 43% of the papers from 1990 to 2013 

Method 

type 
Total number of 

papers  

Hybrid  17  
GA 13  
MP 12  
SA 6  
ACO 4  
ANN 4  
PSO 4  
Multi 3  
TS 3 Sum 

HE 2 68 

Table 2.1: Proposed methods sorted by type 
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proposing methods to solve the CF problem were using GA and, in accordance with 

a more recent paper [84], GA is the most used method in Hybrid approaches and it is 

very frequent coupled with TS, SA and Local search methods. Other techniques like 

PSO, ACO and ANN are less common in both papers and in this study. Percentages 

of found method papers per method type can be seen in Figure 2.3, which has the 

same data of Table 2.1: 

 

Figure 2.3: Pie chart of proposed methods by type 
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3. Methods for CF problem 

From the concept of GT, introduced in the early 70s, a lot of work has been done in 

the field of CF problem, resulting in a spread of several methods that try to resolve 

this problem. Following the literature [6], a first classification of the several 

methodologies results in the three categories above: 

 Visual methods.  

 Part coding analysis methods.  

 Production based or Production flow analysis methods. 

3.1 Visual methods 

Visual methods or simply ‘‘eye-balling” methods rely on the visual inspection of 

products and identification of the correspondent part families and machine cells. 

This methodology is effective and easy to apply only when the number of parts and 

machines is small; otherwise, the identification task becomes impossible.  

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Stainless steel turned parts. 
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Taking as an example Figure 3.1 [85], it is easy to notice that all the parts, even if they 

are different at a first sight, are made by turning operations and have similar 

dimensions and shapes, and they are even made of the same material. Thus, in this 

case are present both geometrical (dimension, shape) and process (turning) 

similarities; from this statement is reasonable to group the parts in one single family 

and physically arrange together the required machines in a machine cell. 

3.2 Part coding analysis (PCA) 

Part coding analysis (PCA) methods rely on a coding system. The part code results 

after assigning numerical weights/digits to part characteristics and features 

according to the defined coding system. The part codes so formulated will be useful 

to identify part families. With respect to visual methods, PCA methods are 

standardized (less subjective), reproducible, can be digitalized (to have an archive 

accessible through a PC), can be used to categorize a larger number of parts; 

however, the coding task is more time consuming and complex to pursue. 

The most widely used codes are: Opitz, Brisch, MICLASS, CAMAC, CIMTEL [86]. 

As an example, the Opitz code is shown in Figure 3.2: 

 

 

Figure 3.2: The Opitz code's main structure. 

The Opitz code includes 9 digits representing a wide range of characteristics. 

Following this scheme, the user will be able to assign a code to each part. If CAD 

models of the products are available, this coding task can be done automatically by a 
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PC by means of a CAD reader [87]: the CAD reader reads the CAD model files, from 

which, by means of the feature recognition module, several features are identified in 

a form coherent with the chosen model signature (i.e. numerical code like the Opitz 

code); then the program can be used to compare different components employing a 

distance function between two Opitz codes, like the cosine coefficient SCos: 

 ���� = ∑ ��	�
���

 ∑ ���
��� 
	��

 (3.1) 

Equation (3.1) computes the cosine of the angle between two vectors (P and Q). The 

nominator is the scalar product between the two vectors in question, while the 

denominator is the product of the norms of the two vectors. This function results in a 

real number between 0 (no similarity) and 1 (high similarity). 

3.3 Production based methods 

The core classification is production based or production flow methods, which can 

further be classified as follows [6,88]: 

 Cluster analysis.  

 Graph partitioning approaches.  

 Mathematical programming methods.  

 Heuristic and Metaheuristic algorithms.  

 Artificial intelligence methodologies. 

 

3.3.1  Cluster analysis 

Mainly inspired by [86], the following considerations about Cluster analysis can be 

presented.  

Cluster analysis is a cell formation tool able to form clusters such that elements 

within a cluster have a high degree of similarity and a very low degree of similarity 

with elements of different clusters. Clustering techniques can be classified as array-

based clustering, hierarchical clustering, and non-hierarchical clustering techniques. 

In array-based clustering the technological route of each part is represented by the 

part/machine matrix formulation. Each element of the matrix (���) has zero or one 

entries. A ‘1’ entry in row i and column j indicates that component j has an operation 
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in machine i, instead a ‘0’ entry denotes no operation of part j in machine i. The 

objective is to rearrange columns and rows to find clusters (machine cells) 

characterized by a certain part family and machine group. A well-known array-based 

clustering technique in the academic environment is the Rank Order Clustering 

(ROC) introduced by King, J. R. in the ‘80s. Given an m-by-n (machines-by-parts) 

matrix, the ROC algorithm has the following steps: 

Algorithm 1 Rank Order Clustering (ROC) 

1: For each row i compute the number ∑ ��� ∗ 2�������  

2: Order rows according to descending numbers previously computed 

3: For each column j compute the number ∑ ��� ∗ 2�������  

4: Order rows according to descending numbers previously computed 

5: If on steps 2 and 4 no reordering happened go to step 6, otherwise go to step 1 

6: Stop 

As an example, five parts and their relative routes inside the facility are considered: 

 

 

 

 

 

 

(a) Step 1 

 

 

 

 

 

 

(b) Step 3 

 

 

 

 

 

 

(c) Final configuration 

Figure 3.3: Rank Order Clustering example 

Machines 1 2 3 4 5

A 1 0 0 1 0 18

B 1 0 0 0 0 16

C 0 0 1 1 0 6

D 1 1 0 0 1 25

E 0 1 0 0 0 8

F 0 0 1 0 1 5

Parts
Machines 1 2 3 4 5

D 1 1 0 0 1

A 1 0 0 1 0

B 1 0 0 0 0

E 0 1 0 0 0

C 0 0 1 1 0

F 0 0 1 0 1

56 36 3 18 33

Parts

Machines 1 2 5 4 3

D 1 1 1 0 0

A 1 0 0 1 0

B 1 0 0 0 0

E 0 1 0 0 0

F 0 0 1 0 1

C 0 0 0 1 1

56 36 34 17 3

Parts
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Two possible manufacturing cells are identified: the orange one (cell 1) with 

machines A, B, D, E and part family 1, 2, 5, and the green one (cell 2) with machines 

C, F and part family 4, 3. The red rectangles highlight that for parts 4 and 5 a further 

choice is needed: duplicate machines F and A, that will respectively go to cell 1 and 

cell 2, bringing to an higher purchasing cost of the machines; or allow intercellular 

flows to satisfy the technological routes of parts 4 and 5, causing higher flow time.  

Both hierarchical and non-hierarchical clustering use similarity or dissimilarity 

coefficients between the candidate objects for clustering, like machines in the CF 

problem; a list of these coefficients used in clustering can be found in [12]. After 

obtaining the similarity matrix containing few broad cells thanks to a clustering 

algorithm, by means of a graphical representation like a dendrogram is possible to 

sort every machine cell basing on its similarity coefficients and decide which 

manufacturing cells to form.  

Starting from a parts/machines matrix like the one in Figure 3.3a, the steps are the 

following: 

Algorithm 2 Clustering method with similarity coefficients 

1: Compute the similarity coefficients ��� = max ����
�� ; ���

�� � 

2: 
Join the couple of machines i*, j*with the highest similarity coefficient, thus forming 

the machine group k 

3: 

Substitute the original rows and columns of machines i* and j* with rows and 

columns of machine group k, then compute the similarity coefficient 

 � ! = max "� �∗; � �∗# 

4: 
Go to step 2 if the solution complies with the chosen criterion (i.e., single machine 

group, predetermined number of machine groups), otherwise go to step 5 

5: Stop 

The similarity coefficient ��� is the maximum value between the ratios 
���
��

 and 
���
��

, 

where: $�, $�  represent the number of part types that require to visit respectively 

machines i and j ; $�� means the number of part types that require to visit both 

machines i and j. Thus, the similarity coefficient is a value that goes from zero (no 

similarity) to one (high similarity). Employing a dendrogram like the one in Figure 
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3.4 [86] and defining the minimum similarity coefficients amongst the machine 

groups (like 0,75 in this example) is possible to form the final machine cells. 

 

Figure 3.4: Example of a dendrogram 

In this case three machine cells/groups are formed: A, F; B, D and C, E. 

The method described above is known as Single Linkage Clustering Algorithm 

(SLCA) [46], introduced by Sneath in 1957. The main drawback of SLCA is that it 

generates the same dendrogram of solutions without considering the specific 

optimization objective. Thus, using the same similarity coefficient does not provide 

an optimal solution for the specific problem. That is why recently there are studies 

about hybrid methods that embed the known SLCA with Genetic Programming 

(GP), also called GP-SLCA [45,46]. The GP, or Genetic Algorithm (GA), is an 

evolutionary computation method that, as evolution does, slightly modifies the 

solutions until an optimal solution is found. In the case of GP-SLCA, the GP employs 

a randomly generated population of similarity coefficients that generates a respective 

population of solution dendrograms. By evolving these similarity coefficients by 

means of typical evolutionary computation mechanisms, where the genetic material 

is exchanged and only the best performing individual survives, an optimal solution 

for the problem considered is found. Genetic Algorithms will be better explained 

afterwards. 

Although cluster methodologies are easy to implement and a solution can be found 

in a reasonable amount of time, they have a main drawback: as saw in the previous 

examples, the only data used as input is the parts/machines matrix, which gives us a 

simple but inaccurate idea about the possible route taken by each part type without 

telling us the operational sequence nor the operational times, therefore the retrieved 

solution may be valid only in limited/simple situations.  

 



19 

 

  

3.3.2  Graph partition approach 

Graph partitioning approach is very similar to cluster analysis: also in this case, the 

objective is to rearrange the part/machine incidence matrix in few broad cells. 

Following the paper [89], in this case more input data are given: besides the part 

routing for each part type, are also given the available number of individual 

machines of each type, the machine processing capabilities (which operations a 

machine can do), and the part-processing usage for each machine (how much of the 

utilization rate is used to do a certain operation on a part type). From these data 

desirability measures are calculated. Desirability measure is a value between zero 

and one that indicates the level of relationship that is between two individual 

machines: the higher the value (the closer to one), the higher is the traffic of parts 

between the two machines, and so the more convenient would be to put the two 

machines in the same machine cell. Then the desirability measures are used to 

construct the machine-machine (mc-mc) graph, with desirability measures as arc 

weights and machine usage as node weights. Giving the mc-mc graph to a heuristic 

algorithm that has the duty to move machines basing on desirability measures and 

given number of machine cells set by the user, is finally possible to obtain the desired 

machine cells.  

From the abovementioned paper this example is gathered: there are 16 machines 

(MC) of 9 different types (type) and 19 different part types. Collecting the data 

already explained both for machines and parts, a desirability measure matrix is 

obtained:  

 

Figure 3.5: Desirability measure matrix. 

Then, composing the mc-mc graph from this matrix and giving it to the heuristic 

algorithm, the final part-machine incidence matrix is represented in Figure 3.6:  
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Figure 3.6: Final part-machine incidence matrix. 

In this example two machine cells are formed. Notice that machines of the same type 

can stay in different cells. In this case there are exceptional parts, highlighted by the 

squares. 

In conclusion, graph partitioning approach can manipulate more data with respect to 

cluster methodologies and give to the user several alternative cellular configurations 

by setting the number of cells and the desired cell size. 

3.3.3  Mathematical programming 

In mathematical programming methods the designer must write a mathematical 

model for the specific problem that could be a nonlinear or linear integer model. The 

procedure can be explained in this way: the problem of a hypothetical firm is how 

many machines of each type it has to buy to satisfy a certain (deterministic) demand, 

knowing the costs and the constraints. A simple mathematical model can be 

formulated in the following way [90]: 

 %&$ '( ⋅ *
 s.t. + ⋅ * = ,

* - 0
 (3.2) 

Where: 

 * ∈ R1 is the vector of decision variables 

 + ∈ R231 is the matrix of technical coefficients 
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 ' ∈ R1 is the vector of cost coefficients 

 , ∈ R2 is the vector of right-hand side values 

The main objective of this model is to minimize the costs %&$ '( ⋅ * :for costs is 

possible to have purchasing cost to buy new machines, hiring cost to hire new 

workers, maintenance costs, material handling costs and many other costs; the more 

common decision variables are the number and types of machines to buy. 

Below the objective there are the constraints (s.t. means subject to) that must be 

respected to stay in the space of feasible solutions to our problem. In the matrix of 

technical coefficients A there are for example the production rates of each machine 

(how many parts per hour a machine can produce) and the space occupied by each 

type of machine, the vector b can include the monthly demand for each part type and 

limitations like maximum area that can be occupied and maximum number of 

machines of each type. The last constraint * - 0 allows only positive and integer 

number of machines. 

In the following some examples of mathematical models.  

[23] introduced an integer nonlinear programming model for the design of dynamic 

cellular manufacturing systems. In a dynamic environment, due to the variability of 

product mix and demand requirements on each period, what is optimal in a period 

may not be optimal and efficient for the next period. Thus, machines and workers 

must be flexible enough to satisfy each period. The objective function is to minimize 

the costs, which is the sum of different terms: machine maintenance and overhead 

cost, machine procurement cost, inter-cell travel cost, machine operation and setup 

cost, tool consumption cost, and system re-configuration cost. Among the 16 

constraints written there are the ones checking the capacity of the machines and the 

number of machines allowed in each cell, the operation sequences and workload 

balancing among the cells. The model exploits several techniques to generate a 

dynamic CMS: dynamic reconfiguration of cells by moving machines between cells 

and/or buying new machines, alternative routings to have a more flexible system, lot 

splitting by dividing large order into smaller batches providing the opportunity for 

simultaneous processing of orders to more than one work center. The main limitation 
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to this model is the computational time, which consequently limits the applicability 

of the model. In fact, can be used for relatively small problems, the biggest one 

reported is 2 planning period, 3 cells, 10 machine types and 25 part types; the model 

can also accommodate 3 periods with 3 cells, 6 machine types and 15 part types. The 

authors suggested the use of a heuristic method to find an optimal solution for bigger 

problems.  

[26] proposed a novel integer nonlinear programming model for dynamic CMS. This 

model is very similar to the one already presented in terms of objective function and 

constraints, but it has a further dimension: worker assignment. Thus, the time 

available for each worker, salary, hiring and firing are considered. In the model the 

objective is to minimize the costs, which is the sum of nine terms: holding cost, 

backorder cost, inter-cell material handling cost, machine cost, machine relocation 

cost, salary cost, hiring cost and firing cost. Each of these cost items are explained in 

the paper. In the constraints the demand of each period, capacity and number of 

machines and workers on each cell and the workload balancing among the cells are 

considered. The authors explain that the main limitation to the model is 

computational time to find the optimal solution (i.e., the biggest data set used is 3 

machine types, 6 part types, 4 worker types and 3 periods and optimal solution 

found in 980 minutes) thus other techniques must be applied like metaheuristic 

approach. Further reasoning about this cubic space of machine–part–worker can be 

found in [28] by the same authors. 

[21] formulated a mathematical model to solve a different kind of problem: starting 

from an already existing CMS, satisfy the demand avoiding or limiting the redesign 

of it. Considering exceptional elements within the CMS like bottleneck machines and 

exceptional parts, the one-period model has as objective function the minimization of 

the costs related with the exceptional elements. These costs include new equipment 

purchases by machine duplication, intercellular transfers, and the incremental costs 

of subcontracting. Minimizing these costs, the model has the duty to retain the 

current cellular formation. Constraints consider the capacity of machines and the 

number of machines in each cell; operation sequences and workload balancing 
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constraints are not included. Even in this case the model is used for a small problem 

including 9 machine types and 10 part types. 

From all the examples above is evident that mathematical programming can be used 

only for small problems. Due to the NP-hard nature of the CF problem heuristic, 

metaheuristic and hybrid metaheuristic approaches have been successfully proposed 

producing acceptable solutions in reasonable time. In computational complexity 

theory, NP-hard means non-deterministic polynomial-time hard, a class of complex 

problems that cannot be solved by normal computers in polynomial time. Further, 

the decision making process in a manufacturing system often involves uncertainties 

and ambiguities. Under such circumstances, fuzzy methodologies have proved to be 

effective tools for taking fuzziness into consideration. Moreover, neural networks 

have been employed successfully for CF due to their robust nature [6].  

3.3.4  Heuristic programming 

Heuristic algorithms don’t give an optimal solution, only sub-optimal solutions, but 

they are useful in providing an acceptable solution in a reasonable time. As the name 

suggests, Heuristics are less rigorous with respect to Mathematical Programming 

and their algorithms are based on practical equations. 

[30] developed a heuristic algorithm that takes as input a machine-part incidence 

matrix containing operation sequence information. Starting from this matrix, by 

means of 15 steps (also represented by a flow chart), the algorithm has the duty to 

minimize the intercellular and intracellular movements. In fact, intracellular 

movements (movements inside a machine cell) must be regulated: from a production 

planning and control perspective, reverse movements within a cell and skipping of 

workstations are undesirable, as they tend to increase the complexity of planning and 

control. Costs are not calculated, but it is obvious that rationalizing part flows has a 

beneficial effect on both costs (i.e., material handling costs) and scheduling. The 

algorithm is applied to a problem composed by 25 machine types and 40 part types. 
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[31] starting from a mathematical model, that has as objective the minimization of 

intracell and intercell material flow costs, the authors formulated a heuristic 

algorithm composed by three stages: 

1. form the temporary machine group plan according to the alternative process 

routings of each part: once the expected process routing of each part is found, 

an adjacency matrix to represent the material flows of all parts between two 

machines is constructed. This matrix, that has dimension M x M where M is 

the number of machines, is the input to a code that gives in output the 

temporary machine group plan Gλ. 

2. select the appropriate process routing of each part with respect to the over-all 

material movement cost: starting from Gλ, the material flow cost 45  of each 

part a in its own process routing r is calculated, and the appropriate process 

routing chosen τ for each part a is the one that minimizes the material flow 

cost 456 = %&$  45 . 

3. configure the regular manufacturing cells based on the appropriate process 

routing: similarly to the first step, based on the appropriate process routings 

found in step 2, an adjacency matrix is formed and finally the final machine 

groups and part families are determined. 

This three-steps heuristic method is applied to an industrial case formed by 41 

different types of machines and 27 part types, forming 6 machine cells. This result is 

obtained in 326.447 s (about 5 minutes and a half). Thus, comparing it for example 

with [26], explained before, is evident the large difference between mathematical 

programming and heuristic algorithm: the second one is able to display a larger sub-

optimal solution in a very minor time with respect to the first approach. 

3.3.5  Metaheuristic programming 

Metaheuristics are a group of several optimization techniques. They rely on the 

following basic principle: the search for optimum actually simulates either the 

behavior of a biologic system or the evolution of a natural phenomenon, including an 

intrinsic optimality mechanism [91].  
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In general, all metaheuristics are using a pseudo-random engine to select some 

parameters or operations that yield estimation of optimal solution. Thus, the method 

used to generate pseudo-random numbers is crucial in metaheuristics.  

Despite the large number of existing metaheuristic algorithms, they can be divided 

into two groups: local methods, also called trajectory methods, that choose a global 

optimal solution among the candidate solutions found by local search in narrow 

subsets; global methods, also called population-based methods, which aim at finding 

the optimal solution by performing a search in several zones of the search space. 

The two most important local methods are Tabu Search and Simulated Annealing. 

Global methods try to simulate a mechanism called natural selection: as it happens 

with living beings, which evolve towards the fittest individual, it also happens in 

metaheuristic algorithms, where the search for the optimum in the searching space is 

performed in parallel by a population of entities. These entities could be 

chromosomes, particles, bacteria, ants, fireflies, bees, etc., with their corresponding 

evolution strategy represented by the algorithms. 

Among the several global methods existing, basing on [6,84,92], the most widely 

used are genetic algorithms, particle swarm optimization and ant colony 

optimization. 

In the following, a diagram of the metaheuristics’ large population [93] and the 

metaheuristics this thesis is focusing on are depicted in Figure 3.7 and Figure 3.8 

respectively: 
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Figure 3.7: Euler diagram of the different classifications of metaheuristics. 

 

Figure 3.8: Metaheuristics of interest. 

It is important to highlight that most of the theoretical part about Metaheuristics is 

based on the book [91]. 
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Tabu Search (TS) 

Tabu search is based on the Greedy descent algorithm: the search starts from a 

possible solution xi of the search space, then the focus is on finding a better solution xj 

on a local vicinity V(xi) able to decrease the function f. The vicinity is a set of possible 

solutions that can be reached after a movement from xi and it is built by a random 

number generator. The drawback with Greedy descent algorithm is the risk of 

stopping the search on a local minimum.  

Tabu search is an improvement of the previous algorithm because it introduces some 

further rules to avoid premature search’s stops: like before, the algorithm starts from 

a feasible starting point xi, but movement to a worse solution xj in the vicinity V(xi) is 

permitted, even if the function gets worse 8"*�# > 8:*�;; in this way the algorithm is 

able to explore more search areas. To avoid infinite search loops, once a point 

(solution) has been searched, it enters in a taboo list and it is never focused again on 

the future, it becomes untouchable, “taboo” (that gives the name to the method). 

Once a solution is in the taboo list, it cannot be accepted in the vicinity of the next 

iteration. 

The size of taboo list is an important parameter of search: if it is too large, there is a 

bigger risk of avoiding the global optimum (less accuracy); if it is too small, changes 

are the algorithm is slowed down by loops (more time consuming). Thus, a balance 

between accuracy and computational time must be found. Usually, the taboo list is of 

constant length, so once the maximum number of solutions in the taboo list is 

reached, in the new iteration the older solution goes out of the list and the new 

solution enters the list, in a last-in-first-out (LIFO) behavior. There are also 

applications where the taboo list length is modified at each iteration between a 

minimum Nmin and a maximum Nmax. 

In a simple, non-exhaustive way, the tabu search algorithm can be written like this: 

Algorithm 3 Tabu Search (TS) algorithm 

1: Input data: 

 Search space S (space of interest that contains the global optimum). 

 Function f to be optimized. 

 Types of allowed movements starting from a solution. 

 Minimum number of solutions for the current vicinity, Nν. 

 Bounds of taboo list length: Nmin and Nmax. 

 Upper boundaries of counters 

 Maximum number of iterations, K. 

 Accuracy threshold, ε > 0. 

2: Initialization: 
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a) Select at random the starting point x0,0 ∈ S. 

b) Evaluate the starting point performance: f(x0,0). 

c) Initialize the optimal solution: xopt = x0,0. 

d) Initialize the taboo list: T0,0 = {x0,0}. 

e) Set to zero all the counters. 

f) Set the position of the initial solution: i = 0. 

3: 

 

At the iteration k ∈ (0, K-1): 

Starting from the current solution, specify the finite set of all the possible movements. 

Initialize the vicinity of current solution. 

While the vicinity includes less than Nν points do 

Call the random number generator to select a possible movement. 

If the new point belongs to the search space but does not belong to the taboo list then 

add the point to the vicinity. 

If the vicinity includes at least one point do 

Search the better solution among the points of the current vicinity. 

Update the new solution: xk+1,j = xk,j, where xk,j is the new solution and j its 

position. 

Add the new solution to the taboo list: T!=�,� = T!,� ∪ @*!=�,�A. 

Update the solution position: i = j. 

If the performance of the new solution f(xk+1,j) is better than the current optimal 

performance f(xopt) do: 

Update the optimal solution: xopt = xk+1,j. 

If the termination conditions are met (threshold counter) go to final stage 

(no. 4). 

Update the taboo list removing the older solutions 

Otherwise, the optimal solution does not change and then 

If the termination conditions are met (blocking counter) go to final stage 

(no. 4). 

Proceed with the next iteration: k ⇽k +1 

Otherwise, since the current vicinity is void, the procedure is blocked and the main 

loop has to be broken. Go directly to final stage (no. 4). 
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4: Return: 

 The current optimal point: xk. 

 The current optimal performance: f(xk). 

The code parts about the counters are represented by the formulation “If the 

termination conditions are met, go to final stage (no. 4)”, a more exhaustive 

explanation can be found in [91]. However, two counters are used in this algorithm: 

the threshold counter m, which counts the found solutions that comply with the 

accuracy threshold (if C8"*!=�,�# D 8:*EFG;C H I, increment the threshold counter: m 

⇽m +1) and stops the search when % > J maximum number; the blocking number 

n, that counts the number of iterations during which the optimal solution did not 

change and stops the search when $ > K. 

Notice: as said previously, tabu search can accept solutions that are worse than the 

previous one, in fact in string 3.4.2. the (new) updated solution could be worse than 

the old one, but still it is added to the taboo list and the position is updated, allowing 

the user to search an optimal solution in other regions.  

A flow chart can explain in a more effective way how Tabu Search works: 

 

Figure 3.9: Flow chart of Tabu Search algorithm 

[10] the authors present a Pareto-optimality-based multi-objective tabu search 

(MOTS) algorithm to the machine-part CF problem. In the case of a multi-objective 
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problem (more than one objective function), an optimal solution can be stated by the 

Pareto optimality: a solution is optimal if it is non-dominated, meaning the values of 

its objective functions are better (minimum or maximum depending on the objective) 

than the ones of any other solution. 

The objective functions to minimize are three: the sum of the total investment cost 

and the inter and intra-cell transportation cost; the intra-cell machine loading 

unbalance and the inter-cell loading unbalance. The main constraints regard the 

machine capacity and number, the operation sequence and the workload balancing.  

In the case of CF problem, a solution handled by the tabu search algorithm consists 

of cells containing several machines. The tabu search produces new neighborhood 

solutions through two kinds of movement operations. One operation is an insertion, 

in which a machine is randomly chosen from its current cell and reassigned to the 

other cell. Another is a swap operation, in which randomly chosen machines in two 

different cells are interchanged with each other. In this paper, only one of the 

operations is done in iteration. The algorithm exploits a taboo list called external 

archive P’ able to sort, add and eliminate solutions based on the values of objective 

function they give. In the following algorithm, v is the predetermined maximum size 

of P’, s(=(0.1-0.2)v) is the number of the solutions executing a new search in each 

iteration, The tabu search can be schematized in this way: 

Algorithm 4 Pareto-optimality-based multi-objective tabu search (MOTS) algorithm 

1: Initialize counters. 

2: Stochastically generate an initial feasible solution satisfying all constraints, reproduce 

the initial solution s-1 times and assign them into P’. 

3: Add all parts into the part list T. Based on counters, do the following on the current 

solution or on a solution of P’: 

4: Randomly move machines into cells to satisfy a constraint about the number 

of machines into cells, according to the allowed movements 

5: Find parts with the lowest inter- and intra-cell transportation cost from the remaining 

parts in the part list T and assign all operations of the part to the corresponding 

machine, compute again the actual capacity of those machines and delete the part 

from the part list. Repeat the procedure until the part list T is empty. 

6: Calculate the objective function vector of the new solution. 

7: Rearrange the archive P’. 

8: If the termination conditions are met stop, otherwise proceed with the next iteration and 

go to step 3. 
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The algorithm finally gives the best result in terms of minimum objective function. 

The result is represented by a certain number of cells (set by the user) containing 

machines already in the correct sequence. In the paper, the higher problem is made 

by 18 machine types, and the method is able to provide different solutions based on 

the layout (linear single-row layout and linear double-row layout) and number of 

cells (from 3 to 5). The computational time is very short, a little less than 10 s.  

[67] is about the resolution of the CF problem by means of a tabu search based on 

similarity coefficient combined with a genetic algorithm. The problem takes as main 

inputs the alternative process routings for each part type and the machine reliability, 

represented by the mean time between failures (MBTF). The objective function is the 

minimization of the sum of total intercellular movement cost and the machine 

breakdown cost.  

The proposed tabu search procedure consists of two stages: the initial solution 

construction and the improvements stage.  

In the first step a similarity coefficient-based method is used: for each pair of 

machines a similarity coefficient Sij can be calculated by means of Equation (3.3): 

 ��� = K��
K� + K� D K��

 (3.3) 

where Ni, Nj and Nij are respectively the production volumes of machine i, machine j 

and of the couple between the two machines. With the term production volume of 

machine i and machine j is intended the total number of parts, coming from different 

part types, that cross each machine. Instead Nij is the total number of parts that travel 

both machine i and machine j. Then, based on the similarity coefficient of each pair of 

machines, a similarity matrix is formed and the machines with a higher similarity 

coefficient are put in the same cell. In the step the alternative routings that result in a 

lower sum of intercellular movement costs and machine breakdown costs are chosen. 

Finally, after the formation of part families done in a way equal to cluster analysis, 

the initial solution is found.  

In the second step there is the tabu search combined with genetic algorithm. From 

the current solution, a neighborhood, that is the set of all feasible solutions reachable 
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by an insertion-move, is generated. The insertion-move is an operation that moves a 

machine from its current cell to a new cell. All the solutions reached by the algorithm 

are added to the taboo list, and the best solution among the ones in the neighborhood 

is selected as the current solution. After a certain number of iterations, if the solution 

does not improve (i.e., a stagnating area of solutions has been reached; higher risk of 

local minima) the mechanism of mutation takes place: a machine is reassigned to any 

cells other than the current one based on a chosen probability. Thus, all machines are 

probable to change cell when mutation is applied. Notice that the mutation must 

satisfy the upper and lower limits of cell size. Thanks to mutation is possible to 

explore more search areas. Finally, the algorithms stop after reaching a maximum 

number of iterations or if the result does not improve within a certain number of 

iterations. This method is used in big problems like 30 machine types, 70 part types 

and 149 alternative routings (more or less 2 alternative routings per part type) with a 

computational time of around 8 s.  

A similar tabu search genetic algorithm method can be found in [33] by the same 

authors. 

 

Simulated annealing (SA) 

Simulated annealing owes its name by the physical phenomenon exploited in 

metallurgy: annealing. Especially used for steel, annealing is a series of cooling and 

heating to bring the molten material to its final state, with the right amount of 

elasticity and stiffness. The solid obtained corresponds to a global minimum of 

internal energy. Without annealing, if the metal is cooled down too fast, a stiff but 

fragile metal is obtained, instead if the cooling is too slow, an elastic but too soft solid 

is produced.  

The simulated annealing algorithm reproduces this phenomenon in a simplified way. 

The internal energy is here the objective function to minimize, whereas the temperature is a 

parameter directly related to the convergence. As the temperature decreases, the state of 

minimum of internal energy is wanted, until the global minimum is found.  

A diffused model of simulated annealing is Kirkpatrick’s model of thermal annealing, 

introduced by Kirkpatrick Scott in 1983. The objective function to minimize f, is 
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referred to as energy. Starting from an optimal solution xi of energy M� = 8:N�;, 

another neighbor state xj can or cannot be select as the next optimal state depending 

on its energy, M� = 8:N�;. If the energy decreases M� H M�, then xj substitute xi as the 

new optimal solution. Otherwise, if M� > M�, xj can replace xi only if a requirement is 

met.  

If the energy variation ΔE�,� = E� D E� is positive, then: 

 Q"ΔE�,�, R# = exp �D ΔE�,�
R � (3.4) 

is the probability to obtain this shifting from xj to xi at temperature R > 0. By 

normalizing the energy difference and the temperature, the probability surface can 

be drawn [91]: 

 

Figure 3.10: Probability surface of Kirkpatrick's model. 

From the diagram, it follows that at higher temperatures larger energy variations are 

more probable that at lower temperatures. In this way, the more the algorithm goes 

towards the minimum (the more the temperature decreases), the less is the algorithm 

prone to change area of search, preferring lower energy variations. In practice, a 

random number generator generates a probability threshold U� ∈ :0,1;. If 
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Q"ΔE�,�, R# > U� then xj will replace xi, otherwise the algorithm will search for a new 

state in the neighborhood of xi.  

If no improvement is obtained after a certain number of iterations, the search is 

restarted at a lower temperature T. After some cooling steps, if also decreasing the 

temperature does not improve the result, the search is stopped. 

As previously done for Tabu Search, a simple Simulated Annealing algorithm can be 

written: 

Algorithm 5 Simulated Annealing (SA) algorithm 

1: Input data: 

 Search space. 

 Energy f. 

 Accuracy threshold, ε > 0. 

 Upper boundaries of counters. 

 Max temperature to test, T. 

2: Initialization: 

a) Select a random starting state x. 

b) Evaluate the initial state energy: M = 8:N;. 

c) Set the first minimal solution N��� = N and M��� = M. 

d) Set to zero all the counters. 

3: 

 

Perform cooling down. For the current state x: 

Randomly generates a feasible offset and a direction: ∆x. 

Define N WX = N + ∆x as the state that might replace the current state 

Compute the energy difference with respect to the current minimal state: ΔE = M WX D
M���. 

If ZM H 0 then 

Replace the current minimal state and energy: N��� = N WX and M��� = M WX. 

Replace the current solution: N = N WX and M = M WX.  

If the termination conditions are met (energy counter) go to final stage (no. 4). 

Otherwise, the energy of the possible new solution is higher or equal to the energy of 

the current solution and then 

If the immobility counter $ ≤ K do 
Compute the energy difference with respect to the current state ΔE =
M WX D M. 
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Compute the Kirkpatrick probability Q:ΔE, R;. 

Generate a random number U ∈ :0,1;. 

If \:ZM, R; > U replace the current solution: N = N WX and M = M WX. 

Otherwise, keep the current solution. 

Otherwise, the temperature has to be decreased: 

Randomly generate a new temperature, a smaller one, in the interval 

:]R, R;, where α is set by the user. 

If the termination conditions are met (temperature counter) go to final stage 

(no. 4). 

Resume the search from step 3. 

4: Return: 

 The minimal current state: N���. 

 The current minimal energy: M��� = 8"N���#. 

In this case the counters that prevent infinite loops are three: the temperature counter 

k, which counts how many temperature changes are necessary before replacing the 

current state; the energy counter m, that counts the number of successive states that 

cannot improve the energy beyond the accuracy threshold; the immobility counter n, 

which counts the number of attempts to change the minimal state at constant 

temperature. 

[34] is a simulated annealing based on similarity coefficients. The two types of 

similarity coefficients are: machine chain similarity coefficients (MCS), based on the 

production volume between two machines; parts similarity coefficients (PS), that 

consider the similarities in terms of shared machines (by looking at the process 

routings) between two parts. These coefficients are done for each pair of machines 

and each pair of part type. 

Unlike the general algorithm of Simulated Annealing explained above, the authors 

introduced a temperature length L, that is a fixed number of iterations that can be 

done at each temperature level. Thus, the performance of the algorithm is influenced 

by this parameter, together with other parameters like the initial temperature T0, that 

should be high enough to accept in the first iterations also worst solutions (to search 

more areas of solutions), and the temperature-reducing function, that generally is 

geometric: R� = ^R��� and C is typically 0.7 ≤ ^ ≤ 0.95. 
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The proposed algorithm has three main steps: finding the best alternative routings, 

grouping machines, and grouping parts. Each step has its specific SA algorithm.  

In the first part, taking as input the production volumes and the alternative process 

routings for each part, an initial solution is generated randomly in the form of a 

vector c = d��, ��, … , �fg, where ai is a part type, N is the number of part types, and 

each part type can take an alternative routing 1 ≤ �� ≤ U� where pi is the number of 

possible alternative routings for each part type. Then, at each iteration the 

neighborhood solution is generated randomly by inverting the components of vector 

A. The output of this phase is the best combination of the parts routings.  

In the second step, the objective function is to maximize the similarity of machines 

that belong to the same cell. The inputs of this phase are the best parts routings 

found in the first phase, the maximum number of machines allowed in a single cell, 

the number of cells, and the production volume of each part. In this way, starting 

from the MCS matrix, derived from MCS coefficients, a block diagonal form of the 

MCS matrix is obtained, which shows the machines set belonging to each cell. 

In the third phase parts are assigned to cells, found in the previous phase, in a way 

that the total intracellular movement is minimized. 

This SA algorithm was used for a problem made by 17 machine types and 30 part 

types, and a solution was found in 446s (≅7.5 minutes). 

[39] presents a parallel multiple search path Simulated Annealing for the CF 

problem. Starting from an existing layout made of 25 square-shape locations, the 

authors have the duty to assign locations to cells and machines to cells, minimizing a 

weighted sum of costs made by material handling costs between all pairs of locations 

and intercellular movement costs. 

An important aspect of SA is the definition of the solutions, that must be consisted 

with the algorithm’s code. Each solution is represented by a string of values, divided 

in three segments: the left-hand side segment (LHS-Segment), that contains the 

information about which cells are assigned to which locations; the middle-segment 

(MDL-Segment), tells which location machines are installed; the right-hand side 

segment (RHS-Segment) encodes the part route and size of sublots in each route. 
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Afterwards, pseudocodes for randomly generate a solution and evaluate its 

performance are presented. Then, the singularity of this SA algorithm is explained: to 

find the solution, instead of using a single-search path (like could be the one 

presented at the beginning of the paragraph), a multiple search path is exploited; in 

this way, a local minimum is less probable to be the optimal solution, and the 

algorithm is faster in terms of computational time. In practice, the search is divided 

in p processes (that is one computing unit, core, or cpu), each of them has S search 

paths. Thus, each search path starts with its own randomly generated solution, in 

order to cover more search areas. For better result, the search paths within a process 

may communicate every Z1 iteration to start the search from the best solution so far 

known within that process at the current temperature level. Moreover, the processes 

may communicate every h� ≫ h� iteration to restart their search paths from the best 

solution so far known across all the processes. The paper demonstrates the benefits of 

these interactions in reducing the value of the objective function. 

This algorithm is used for a very large problem composed by 192 machine types and 

600 part types.  

 

Genetic algorithms (GA) 

Genetic algorithms (GA) are the first evolutionary metaheuristics that will be 

discussed. GA are used to simulate the evolution of microscopic beings like 

chromosomes. To explain this method, a vocabulary taken from natural genetics is 

used: 

 Chromosome: is a long DNA molecule containing all the genetic material of 

an organism. For the scope of simplicity, a chromosome can be seen as a 

binary chain composed by zeros and ones. 

 Gene: is a functional block of a chromosome that encodes a specific protein. 

Each gene defines a characteristic of the living organism like height, eye 

color, nose shape etc. The position of a gene is extremely important, 

modifying its position is possible to have important changes in the basic 

characteristics of the body. Returning to the binary schematic, the 
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chromosome can be divided in smaller groups called genes, which are the 

building blocks of the binary chain. 

 

 

 

 

 

 

 

In Figure 3.11 the binary schematization of a chromosome is showed. 

During evolution, the chromosomes’ group or population develops, generation after 

generation, by means of reproduction and mutations, until a global optimum (the 

resolution of the problem) is found. The genetic code is transferred from the older 

generation to the new one by means of three genetic operations: 

 Crossover: exchange of genes between two parents. The result are two 

offspring (children) that have genes from both parents. The genes that are 

exchanged are chosen by two parameters: the pivot, which indicates the 

position in the chromosome and the length, which sets the number of 

positions involved in the crossover. Usually, these two parameters are 

randomly chosen. This is what happens for example in animals’ 

reproduction. Crossover operation is depicted in Figure 3.12. 

 Mutation: random change of one or more positions in a chromosome. The 

outcome is a mutated chromosome (mutant). The aim of this operation is 

to prevent a local minimum: by generating mutants, almost always worse 

than the previous individuals, and breed them with more capable 

individuals by crossover, the resulting offspring would be quite away from 

the current search zone. In this way, the local minimum trap is avoided. 

From this operation the initial chromosome and the mutant are obtained. 

Mutation operation is showed in Figure 3.13a. 

1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 

Chromosome 

Gene 

Figure 3.11: Chromosome schematized as a binary chain. 
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 Inversion: inversion in the sequence of the genes inside the chromosome’s 

chain. As in crossover, pivot and length parameters must be specified. 

Inversion can be seen as a type of mutation. From this operation the initial 

chromosome and the inverted one are get. Inversion operation is displayer 

in Figure 3.13b. 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

Figure 3.13: a) Mutation and b) Inversion genetic operation 

The crossover probability Pc is much larger than the others of mutation Pm and 

inversion Pi; usually �j ∈  d0.5,0.95g and ��, �� ∈ d0.005,0.1g. In fact, while the main 

job in searching the optimum is done by crossover, mutation and inversion are 

adopted to keep a certain diversity in the population. 

After the genetic operations of crossover, mutation and inversion, it must be checked 

that the offspring fall inside the search space, if not, the quicker operation from a 

computational point of view is not to remove them but to adjust their form to make 

them viable. 

Figure 3.12: Crossover genetic operation. 

Pivot Length 

1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1

0 1 1 0 0 1 1 1 0 10 1 0 1 0 0 1 1 0 1

1 0 1 0 0 1 1 0 0 1

1 1 1 0 1 1 1 0 0 0

Pivot Length 

0 1 0 1 0 0 1 0 0 1

0 1 1 0 0 1 0 0 0 1
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Another issue to answer is which are the chromosomes available for reproduction. 

To measure the performance of each individual, a fitness function is used. In fact, the 

best, more performant chromosomes are the ones having a high value of fitness 

function which has the duty to represent the objective function that, based on the 

problem, could be a maximizing or a minimizing one. In nature, usually only the 

strongest individuals (with a high level of fitness) are capable to reproduce; in GA 

instead, also a certain percentage of less capable individuals (low level of fitness) are 

chosen in order to keep a certain diversity in the population, avoiding the local 

minimum trap, but not too much to avoid the scattering of the population and 

therefore a too slow search of the optimum. Thus, in GA there must be a trade-off 

between the diversity of the population (the exploration capacity) to search more 

areas and the evolution speed (the exploration capacity) to quickly find the optimum 

solution. There are several selections (rules) to choose from, they can be checked in 

the book [91]. 

After reproduction, a too large group of chromosomes is obtained, made by parents, 

offspring and mutants. In fact, in GA the population (total number of chromosomes) 

remains equal at every generation, thus a selection rule for survival is necessary. For 

this purpose, the main rules are: generational selection, where only offspring and 

mutants survive, with the risk of losing the current global optimum (if it was of the 

previous generation); elitist selection, where the best individuals are maintained in 

the population while the other chromosomes are replaced with their offspring and 

mutants; and the generational elitist selection, that combines the advantages of the 

previous two. 

Another important issue is the selection of the configuring parameters, which are the 

ones that influence the performance of the GA, in terms of computational time and 

quality of the solution. Some of these parameters are: population size; number of 

genetic operations to apply at each generation; probability of crossover, mutation 

and inversion genetic operation; method for reproducers selection; method for 

survivals selection; stop tests (termination conditions) selected.  

The general GA structure can be depicted in Figure 3.14: 
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Figure 3.14: Flow chart of Genetic Algorithm. 

For more information about the GA consult the book [91]. 

[41] is a multi-objective GA (MOGA). The aim of this model is to form manufacturing 

cells, grouping machines, considering the cells inside the layout and operations 

scheduling in a way that minimizes the total transportation cost of parts and 

makespan. Makespan is the time that passes from the start to the finish of a job. 

Minimizing this time, the firm would be more efficient, reducing the work-in-

progress (WIP) level, and can satisfy tighter customer request. 

The GA works in this way: the population evolves through generations by 

maximizing a fitness function based on minimizing the first objective function (total 

transportation cost); when the best solution is found, it is added to the set of Pareto 

optimal solutions, and its second objective (makespan) is calculated. Then a new era 

(a sequence of generations) begins, and the fitness function used is based on the 

makespan calculated from the optimal solution of the previous era. Thus, era after 

era, the upper bound made by the makespan is more and more restrictive, allowing 
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only solutions that are increasingly more performing in terms of minimum total 

transportation cost and minimum makespan. 

An important step in GA is the definition of the chromosomes. The chromosomes 

have two main sections: the machine one, and the part one. The machine section, of 

length 3m, where m is the number of machines, is further divided in 3 subsections of 

length m, where the first two subsections depict respectively the abscissa and 

coordinate positions of each machine in a Cartesian reference system, and the third 

subsection indicates the allocation of machines to cells. The part section has length n, 

where n is the number of part types, and represents the scheduling sequence for 

parts. Directly from the paper, a chromosome following this definition can be 

depicted: 

 

 

 

Horizontal 

distance 

Vertical 

distance 

Machines 

allocation 

Parts sequence 

1 2 1 2 1 1 2 2 1 2 1 2 3 5 2 1 6 4 

Figure 3.15: Chromosome representation for the first GA example. 

The problem consists of 4 machines disposed in 2 cells and 6 part types. Taking as an 

example machine two, it is at horizontal distance 2, vertical distance 1, and is 

allocated in cell two. The parts sequence tells which part must be machined first, in 

this case part number four. From this description derives that parts are not grouped 

in part families and sent to the specific cell, they can be seen as jobs. In fact, this parts 

sequence can be directly translated into a scheduling sequence.  

The first two subsections are implemented to avoid overlapping cells and promote 

rectangular-shaped cells. 

Machine section Part section 
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The higher problem solved is made by 20 machines, divided in 5 cells, and 25 part 

types.  

[42] is an Adaptive GA (AGA). The term adaptive means that the probabilities of 

crossover and mutation Pc and Pm are adaptive to achieve a good trade-off between 

the exploration and the exploitation abilities of the GA without burdening on 

computational time. The objective function to minimize is the sum cost of three 

terms: machine utility cost, crossflow cost, and the intercell cost. 

As usual, the chromosome’s definition is a major aspect of the GA: 

 

 

C Cell 1 Cell 2 Cell 3 C = 2 C = 3 

2 1 1 0 1 1 1 1 0 0 1 1 1 1 1 2 2 1 1 1 3 2 2 1 1 

 

 

Figure 3.16: Chromosome representation for the second GA example 

Looking at Figure 3.16, in this example there are 4 machines, 6 parts, and the 

maximum number of cells allowed is 3. 

C is a random integer between 2 and the maximum number of cells Cmax, and stands 

for the allowed number of machine cells in the solution. Thus, from the same run of 

GA is possible to explore several solutions with different number of cells. C = 1 is not 

included because it is the trivial solution (all the machines are grouped in one single 

cell). 

In the machine section the machines are randomly assigned to the cells by means of a 

binary system, where “1” stands for machine m is assigned to cell c, and “0” means 

the machine m is not assigned to cell c. This section is long J 3 ^�5k, where M is the 

number of machines. Each subsection (cell) is long M. From this definition, 

Excluded because the number of cells is 2 (C=2) 

Machine section Part section 
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duplication of machines is allowed, for example machine two is placed in cell 1, 2 

and 3. 

In the part section, part types are randomly assigned to cells by placing the cell 

number (that goes from 1 to Cmax). 

The individuals for reproduction are selected based on their fitness value: 

chromosomes are ranked by fitness value and divided in three equally distributed 

groups called Best, Medium, and Worst Group. In the Best Group, the most 

performant individual becomes the elite individual and is preserved for the next 

generation. Randomly, from all the three groups, individuals for the mating pool are 

selected, half of which comes from the Best Group and the rest from Medium and 

Worst Groups. In this way, without excluding entirely the worst solutions a good 

trade-off between exploration and exploitation is achieved. Then, the inheritors 

(offspring and mutants) substitute the individuals of the previous generation. 

The larger problem managed by this GA is 20 machines divided in 3 cells, and 25 

part types. 

Other applications of GA besides CF problem can be found in [94,95]. 

Particle Swarm Optimization (PSO) 

In Particle Swarm Optimization (PSO), entities called particles are adopted. These 

particles, that together form the swarm, are both autonomous and social entities and, 

communicating with each other, are able to find an optimum (or near-optimum) 

solution to the problem. 

At first, the particles are uniformly distributed inside the search space, that for 

example could be a hypersphere or a hypercube; each position covered by a particle 

is a solution characterized by its fitness value. Then, iteration after iteration, each 

particle moves independently based on the information collected by itself in its own 

path (points/solutions touched by the particle) and by the particles around him, 

called informants. In fact, these particles have both the abilities to evaluate the quality 

of their own position and keep in memory their best performance (cognitive 

consciousness), and to ask to the other particles about their positions and best 
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performances (social consciousness). The particles are mutually attracted towards the 

optimal solution (with high value of fitness) that at the end is found.  

 

Figure 3.17: Principle of Particle Swarm Optimization. 

From the figure above [91], is possible to notice the unique trip that each particle 

takes and that, in the end, the particles agglomerate around the optimal solution. 

How does a particle move? Iteration after iteration, a particle p moves from position 

NX! (k is the iteration) to position NX!=� with a certain speed lX! in a certain time 

interval ∆RX!, as depicted in Equation (3.5): 

 *X!=� = *X! + mX!ΔRX!, ∀o ∈ p (3.5) 

Speed and time interval are two crucial quantities that must be computed at each 

iteration. The time interval ∆RX! can be constant (i.e., unit time ∆RX! = 1) or a random 

number, uniformly distributed in a range d0, Rg a priori known, and can be employed 

to make the new position *X!=� viable. In fact, there is the possibility of the new 

position to be outside the search space, thus the time delay can be reduced to put 

back the new position inside the allowable space.  



46 

 

 

The speed lX! is composed by three terms: the adventurous vector speed lX!, that 

represents the autonomous will of the particle to continue the journey at the current 

speed; the conservative vector speed lX,j! , that stands for the conservative tendency of 

the particle to go in the direction of the best position found by the particle itself on its 

own path; the panurgian vector speed lX,�! , which takes into account the social 

consciousness of the particle that blindly follows the direction to the best 

performance as indicated by the informants. The speed update of each particle can be 

represented in Equation (3.6): 

  

mX!=� = qX!mX! + rX,j! mX,j! + rX,�! mX,�! , ∀U ∈ 1, Pttttt, ∀o ∈ ℕ 

 

(3.6) 

Where: 

 P is the total number of particles 

 qX!,  rX,j! , rX,�!  are scalars representing respectively the adventurous, 

conservative and panurgian tendencies of the single particle. qX! varies in the 

interval d0,1g, instead  rX,j!  and rX,�!  in the interval d0,2g. They can be constant, 

randomly chosen, or adaptively updated based on the dynamic of the particle 

swarm, this last version is called Adaptive PSO algorithm. 

Thus, a particle’s speed is a compromise between its own consciousness and the 

influence of the other particles. Controlling the speed (especially the 

scalars qX!,  rX,j! , rX,�! ), is possible to decrease the computational time and have a good 

exploration-exploitation trade-off. 

As said, informants influence the particle’s movement. At each iteration k, an 

informant group MX! is formed for each particle. There are several strategies to choose 

the informants. They could be the entire particle swarm but the particle itself, 

however this choice causes a computational burden for the algorithm; an elite of 

particles, having a high fitness value, with the drawback of exaggerate the 

exploitation at the expense of exploration (local minima trap); a trade-off of the two 
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previous strategies, an informant group composed by the best particle, with the 

higher fitness value, and other particles randomly chosen.  

From the original PSO algorithm, different algorithms based on biology were born. 

Instead of particles fireflies, bats and bees are adopted: 

­ Fireflies algorithm is based on the mating process of fireflies. Fireflies 

communicate among them by means of brightness, which is directly related to 

fitness value. Thus, the fireflies with the higher brightness (higher fitness 

value) are the more attractive. The movement of the fireflies and the way they 

perceive light are based on biology. 

­ Bats algorithm is inspired by the bats’ swarm searching for food. By means of 

ultrasounds, bats are able to locate and catch the prey by analyzing the 

amplitude and the rate of the signal bouncing back from obstacles or preys. If 

the rate decreases, there is the presence of a prey (optimal solution), and the 

bats fly towards him, otherwise the bats randomly move based on the average 

amplitude of the ultrasounds sent by the other bats. 

­ Bees algorithm is based on the cooperative behavior of bees in finding flowers 

to pollinate. Bees of the same colony are divided in two major groups: scouts, 

which have the duty to find the best flower beds (solutions with high value of 

fitness); and foragers, that are hired by the scouts to sample the surroundings 

of the best flower beds, possibly to find a better solution of the ones suggested 

by the scouts.  

For the sake of simplicity, the three algorithms above are considered PSO algorithms, 

as opposed to other review papers like [92], that consider them separately.   

For more information about PSO, Adaptive PSO, fireflies, bats and bees algorithms 

consult the book [91]. 

[54] is a fireflies algorithm applied to CF problem. The objective function to minimize 

is the number of exceptional elements. In fact, by doing something very similar to the 

ROC, starting from a parts/machines matrix formulation, the algorithm has the duty 
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to find the optimal block diagonal matrix depicting the best cells configuration with 

the minimum number of exceptional elements.  

The fireflies used for the purpose are built in the following way: the position covered 

by the firefly i in iteration k can be written as v�! = "w���! , w���! , … , w��j! #, where m is the 

number of machines, c is the number of cells, w��x! = 1 if machine j of firefly i is placed 

in the cell t at iteration k and 0 otherwise. Thus, if for example the firefly has w���! =
w��y! = w�yy! = w�z�! = 1 and the other terms equal to 0, it is representing the following 

configuration: 

 

Cell (t) 

1 2 3 

Machine 

(j) 

1 1 0 0 

2 0 0 1 

3 0 0 1 

4 0 1 0 

Table 3.1: Possible firefly for the fireflies algorithm. 

By looking at the structure of fireflies, it derives that the search space of possible 

solutions/configurations is made by only machines and cells. In fact, the partition of 

parts in part families and their distribution among the cells is made by combining a 

solution with the information coming from the parts/machines matrix, which 

contains the operations needed by each part. The number of cells is set by the user by 

specifying the maximum number of machines per cell, so is not possible to search 

solutions with different number of machine cells with the same run. 

The larger problem dealt by the algorithm is made by 20 machines, divided in 6 cells, 

and by 51 part types. 

[80] is an hybrid algorithm composed by PSO and linear programming to solve the 

integrated CF and worker assignment problem. Linear programming is a 

mathematical programming based on a mathematical model made by linear 

relationships.  

The objective function is the minimization of the sum cost made by many terms like 

material handling cost, machine procurement cost, several workers costs, 

subcontracting cost.  
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The search space covered by particles is made by two decision variables called N! X{j 

and | X. 

The first term N! X{j = 1 if the kth operation in the rth routing of type p part is 

processed by type w worker in cell c, and 0 otherwise; the second term | X = 1 if the 

rth routing of type p part is selected for self-manufacturing (as opposed to 

subcontracting), and 0 otherwise. Thus, by combining these two terms, each particle 

represents a possible configuration, characterized by part types taking their 

alternative route inside the machine cells made by possible amounts and types of 

machines and workers. Then, the linear programming takes the information coming 

from the particles of the PSO to calculate other important quantities like the 

quantities of machines of type m and of workers of type w to assign to each cell c, the 

quantities of type p parts to subcontract or to self-manufacture, and the objective 

function. Finally, if the termination conditions (i.e., max number of iterations 

reached, the optimal solution does not change after a certain number of iterations) 

are satisfied, an optimal solution which minimizes the objective function is found.  

The larger problem set tackled by the hybrid algorithm is 30 machines and 15 

workers spread between 6 cells, and 40 part types with 89 alternative routings (more 

or less 2 routings per part type). The problem is solved in 23 minutes and 41 seconds, 

quite high with respect to other metaheuristics, but it is justified by the complexity of 

the problem (CF + worker assignment problem) and, as explained by the authors, by 

the better results with respect to the standard PSO algorithm. 

 

Ant Colony Optimization (ACO) 

In Ant Colony Optimization (ACO) the swarm is no more represented by particles 

like in PSO, but by ants. In nature, ants communicate by means of pheromone to 

report the shorter route from the nest to the food source. Initially, ants move by 

random around the nest, each ant releases part of the pheromone on the route it is 

taking and part at the nest, based on the information found. Finally, the shorter 

(optimal) route that ants must follow to the food source is the one with the higher 

pheromone’s trail. From this description, is possible to notice that ants’ behavior is 

based on a continuous improvement made possible by the indirect communication 

between ants by means of pheromones. 

Inspired from the ants’ natural behavior, the ACO algorithm is organized in the 

following way. As in PSO, the search space, that could be a hypercube or a 

hypersphere, is divided in nodes. To construct a route, the ant moves between nodes 

along arcs, until a predefined number of nodes is not reached. At each iteration, each 

ant starts from a random point in the search space and, node after node, constructs a 
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possible route. After all the ants have taken a feasible route, these routes are 

evaluated, based on the distance, on the cost, or on both two. The best route of the 

iteration in terms of minimum distance and cost will release the higher amount of 

pheromones along its arcs. Iteration after iteration, the ants will follow with a higher 

probability the arcs with a higher pheromones’ trail, until an optimal route is found. 

The components of ACO algorithm and its basic functioning are depicted in the 

following figure: 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

Figure 3.18: General structure of ACO: a) Components of ACO, b) Example's optimal 

solution. 

In this example all the ants start from the same point, the nest N, and cooperate to 

find the shortest route from the nest to the food F. To do so, the route to take must 

have the nodes N, F, and three intermediate nodes, one for each Step. In this case, the 

starting point at each iteration remains the same, but in the general case all the ants 

start from random nodes in the search space. 

N F 

Step 1 Step 2 Step 3 

i 

j 
. 
. 
. 

Arc aij(dij,cij,τij) 

 

N F 
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Nodes are divided in parents and children. The children are the possible nodes that 

can be reached from the parent node. In this example, node i of Step 1 is a parent for 

the children nodes j of Step 2. In fact, due to the structure of the problem, nodes of 

Step s (� ∈ d1,2g) are parents of nodes of Step s+1. Nodes are connected by means of 

arcs, depicted by arrows. An arc aij, which stands for arc from node i to node j, is 

characterized by its own distance dij, cost cij, and pheromones trail τij. Thus, to travel 

from node i to node j using arc aij, the ant must walk for a certain distance dij and pay 

a certain cost cij, and obviously the objective of ACO is to minimize the total distance 

and the total cost given by summing the contributions of all the arcs. In the above 

example, arcs do not have costs since they are not relevant, but only distances. Unlike 

dij and cij, τij varies its value iteration after iteration, with an intensity update formula 

like Equation (3.7): 

 }�� ← :1 D �;}�� + �  
�∈���

Δ}��:f; (3.7) 

Where: 

 � ∈ :0,1; is the pheromone evaporation factor. As in nature, the pheromone’s 

trail evaporates to allow the exploration of new routes. In the algorithm it is 

added to have a good trade-off between exploration and exploitation. In fact, 

without evaporation there would be an excessive accumulation of 

pheromone’s trail in specific arcs, causing a higher exploitation at the expense 

of exploration, with a high risk of local minimum trap. 

 Δ}��:f; is the amount of pheromone’s trail releases by the ant on the arc aij. 

 ��� is the set of the ants that traveled in the arc aij in the same iteration. 

From the definitions above, is possible to say that the most prominent arcs, that 

together will define the optimal route, are the ones with a higher τij, in other words 

the most travelled arcs. The equation above is also called local intensity update, it is 

done at the end of every iteration, after all the ants have travelled a route. In some 

papers is possible to find also global intensity update formulas, it is used after the 

local one, with the aim of distinguish clearer the optimal route (with its arcs) of the 

current iteration, adding more pheromone’s trail. The optimality of a route could be 

based on distance, cost, a value of fitness etc. according to the problem. 

As said, pheromone’s trail τij, together with dij and cij, influences the ant in the choice 

of the next node to take by means of a formula like Equation (3.8): 

 ��� = }��� ���
� ���

�

∑  �∈�� }��� ���
� ���

� , $ ∈ �� (3.8) 
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Where: 

 Pin is the probability that the ant chooses the child node n among the set of 

child nodes Ej of parent node i. 

 ��� = �

��

 is the inverse of the arc’s distance din. 

 ��� = �
j��

 is the inverse of the arc’s cost cin. 

 ] - 0, � - 1, � - 1 are weights expressing the importance of pheromone’s 

trail, distance, and cost. 

 The denominator ∑  �∈�� }��� ���
� ���

�
 is added to have a probability ��� ∈ :0,1;. 

Thus, the nodes and corresponding arcs with a higher probability to be visit are the 

ones with low distance din, low cost cin, and high pheromone’s trail τin. 

Once the stopping criterion are met, the optimal route for the example above, with 

the shorter distance from the nest N to the food F, is the one depicted by a red line. 

[56] is an ACO for scheduling virtual cells. For virtual cell is indicated a set of 

machines that are not physically grouped together in a manufacturing cell but, as a 

manufacturing cell does, they produce a part family. Virtual cell turns out to be more 

flexible with respect to manufacturing cell due to the fact they can be formed at any 

time a new job/part is available and machines are not moved inside the department, 

but it will cause a higher material handling costs because the machines can be distant 

from each other. 

The objective function is in fact the minimization of the total travelling distance of 

materials and component parts for manufacturing. At each iteration, ants start from a 

random node. Nodes represent operations of jobs. The route that is constructed by 

each ant it’s a possible operation sequence that must be satisfied by the virtual cells. 

For example, if Job1 has two operations Job1.OP1 and Job1.OP2 and Job2 has three 

operations Job2.OP1, Job2.OP2, and Job2.OP3, a possible route or operation sequence 

depicted by an ant could be {Job2.OP1, Job2.OP2, Job1.OP1, Job2.OP3, Job1.OP2}. 

Then, from each tour, workstations are assigned by means of a simple heuristic code 

that considers the capability (the ability of the machine to do a certain operation) and 

the capacity of each machine. From these results, each tour is evaluated in terms of 

total travelled distance by materials and components, and the best ones are awarded 

with a higher release of pheromone’s trail in their arcs. Finally, an optimal operation 

sequence is found. Another heuristic code is implemented to properly schedule the 

production. 
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The higher problem solved by the algorithm is made by 12 machines and 10 part 

types produced by means of 10, 30, 60, 90, and 120 jobs. The computational time is in 

the order of few seconds for each case. 

[59] is an ACO for the CF problem. Starting from the part/machine matrix, the 

objective is to find the block diagonal matrix that maximizes the grouping efficacy: 

 � = � D M
� + � (3.9) 

Where A is the number of operations, E is the number of exceptional elements, and V 

is the number of voids. For exceptional element is intended when machine i could do 

an operation on part j (depicted by a “1” in the matrix), but both of two are not 

assigned to the same cell. There is a void when machine i can’t do an operation on 

part j (depicted by a “0” in the matrix), but anyway they are assigned to the same 

cell. Thus, grouping efficacy is a way to evaluate the “wasted capacity” of a possible 

cell configuration. 

Routes are constructed in this way: at each iteration, each ant starts from a random 

node, at each node the ant randomly chooses a cell and, by means of a probability 

distribution based on part/machine similarities and pheromone’s trail, randomly 

chooses an operation to assign to the cell. The route is built when all the operations 

are assigned to the cells. Then, by means of a heuristic called Local Search, machines 

are assigned to operations and the solution found is evaluated. Based on the 

evaluation, the pheromone’s trails are updated, giving an award to the iteration-best 

route, the one with the higher grouping efficacy. Finally, once the termination 

conditions are met, the optimal configuration is found. 

The higher problem set faced by the algorithm is made by 50 machines and 150 part 

types and is solved in 20 seconds.  

3.3.6  Artificial Intelligence Methodologies 

Artificial Intelligence (AI) is the branch of computer science that studies the 

fundamental theory and applications of computers’ hardware and software that 

mimic human cognitive functions like learning and thinking. 

The two most used AI methodologies in CF problem are Artificial Neural Networks 

(ANN) and Fuzzy Logic (FL). 
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Artificial Neural Networks (ANN) 

ANN functioning is inspired by the biological neural networks of the animal brains. 

Nodes called artificial neurons are connected by means of synapses. These artificial 

neurons communicate between them using signals, real numbers computed by nodes 

by means of non-linear functions. ANN can be classified in three broad categories 

[96]: 

 ART (Adaptive Resonance Theory). 

 SOM (Self Organizing Map). 

 Other traditional neural network. 

ART “is a cognitive and neural theory of how the brain autonomously learns to 

categorize, recognize, and predict objects and events in a changing world” [97]. 

Taking as an example one of the five senses, the sight, ART tries to mimic the way 

the brain of humans and other animals receive the information coming from new 

objects that are discovered: the bottom-up information coming from the eyes is 

received by the brain and is categorized based on top-down information (long term 

memory) coming from experience. In other words, the new object will fall in the 

category of similar objects already discovered by the animal. The main framework of 

ART can be simply explained by the two-layer model depicted in Figure 3.19 coming 

from the paper [98]: 

 

Figure 3.19: Main structure of Adaptive Resonance Theory (ART). 
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The input vector I, that in case of the simplest ART model, ART1, is a binary vector, 

is read by the first layer of nodes F1 (i.e., the eyes), which elaborates the input to 

produce a feasible signal, adjusted by the bottom-up weights, that is sent to the 

nodes of the second layer F2. Some nodes of F2 layer are activated by this signal and 

interact with the F1 layer nodes by sending another signal modified by the Top-

down weights. A Reset unit, characterized by a vigilance parameter ρ, is used to filter 

out noises coming from these signals. What happens is a cyclic learning process 

between F1 layer and F2 layer, where in the end the weights are adjusted to better 

match the input vector and the input vector itself is categorized.  

The ART neural network can be trained by using a set of training inputs and then can 

be exploited to solve problems like the CF problem. In fact, giving as input a 

part/machine incidence matrix, the ART model can categorize machines and parts 

basing on similarities and grouping them into cells.  

[63] is a modified ART1 algorithm able to solve the CF problem. Taking as input a 

part/machine incidence matrix containing both process sequence and operational 

time, this algorithm gives as output the part families (the categories given by the 

nodes of ART), and then a heuristic code assigns machines to part families to form 

manufacturing cells. The objective function is the maximization of grouping efficacy, 

similar to the grouping efficacy already discussed in [59], in a form that takes also 

into account the operational times. The larger problem solved by the proposed model 

is made by 35 machines and 90 part types, and it is solved in 1,85 seconds. 

[62] is another example of modified ART1. It works similarly to the previous 

example, with the only difference that takes as input part/machine incidence matrix 

with operation sequence only. Also in this case the objective is the maximization of 

grouping efficacy (or efficiency as called in the paper). 

ART, and especially ART1, is the simplest and most diffused ANN approach applied 

to CF problem. To learn more about SOM and other traditional neural networks it is 

recommended to consult the review article [96]. 
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Fuzzy Logic (FL) 

FL is a tool used by decision makers when facing uncertainties and imprecision [99]. 

Uncertainties can come from internal factors like machines, humans, system issues, 

and from external factors like varying demand, market forces, competitive behaviors. 

Exist also data that are not numerically quantifiable as in the case of “linguistic 

variables” like small/large, low/medium/high. Due to these uncertainties, the 

decision/plan made by the firm could be outdated, imprecise, not cost effective, and 

updates along the way (i.e., in terms of capabilities and capacities) will be necessary, 

with all the related costs. Thanks to FL, the user can employ a tool that mimics the 

reasoning of human mind when facing uncertainties, giving as response an 

approximate but realistic solution. 

The basic model of fuzzy logic reminds the mathematical formulation already 

presented in Mathematical programming paragraph: 

 %&$ '( ⋅ *
 s.t. + ⋅ * = ,

* - 0
 (3.2) 

but in the case of fuzzy logic the vector cost coefficients (objective function 

coefficients) c, the vector of right hand-side values (vector of resources) b, and the 

matrix of technical coefficients A could be fuzzy, and they are depicted by the apex ~ 

(tilde): �̃, ��, ��. Based on the problem, only one or more of these data are fuzzy.  

Considering the generic fuzzy number �� (d stands for data), it can be represented as 

a triangular fuzzy number in the following way: 

 �� = :��, ��, �y; (3.10) 

Where: 

 �� = % D ], �� = %, �y = % + �, where a1 is the lower bound value, a2 is the 

mean value, a3 is the upper bound value. 

 m is the mean value, ], � - 0 are scalars. 

Thus, each fuzzy number can be seen as a range of values, due to the fact the decision 

maker doesn’t have enough data to define a precise value. For example, due to poor 
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quality data, the processing time pij of part i on machine j is given in the form U�� =
:3, 5, 8; (in minutes), meaning that the process takes at minimum 3 minutes and 8 

minutes at maximum.  

How can triangular fuzzy numbers be employed in the mathematical model? They 

must be defuzzied for example by means of strong probability factor: 

 �� = �� + 4�� + �y
6  (3.11) 

In this way, from the initial range of values the fuzzy number is reduced to a single 

number that can be managed by the algorithm. 

The main applications of FL are in scheduling, aggregate planning and 

manufacturing flexibility, and recently in CF problem. 

[77] is a fuzzy genetic algorithm (FGA) to solve the dynamic CF problem in a multi-

period planning horizon. In a dynamic environment, the cell composition changes at 

each period, in a manner that follows the variable demand. However, changing the 

cell configuration would rise several problems related to higher material handling 

cost and reconfiguration costs, which are costs to purchase new tools and set-up the 

machine for the new job. That is why the bi-objective of the problem is the 

minimization of intercellular movements and reconfiguration cost. 

The chromosomes of the GA are constructed in a way that consider which machines 

are in which cells in each period. The GA works as usual (initial population, 

crossover, mutation, generational replacement etc.), the only difference is that genetic 

operators (crossover and mutation) are enhanced by fuzzy logic. In fact, each 

chromosome contains all the configurations in each period, thus is possible to judge 

is the subsequent configurations are similar or not, based on flow matrices (how 

many parts flow from one machine to another one) and on reconfiguration cost. By 

using a linguistic variable Similarity, formed by terms {Weak, Medium, Great}, 

crossover and mutation cut and swap positions accordingly. 

The larger problem faced by the algorithm is made by 20 machines, 25 part types and 

6 periods. This problem was solved in 817.64 seconds (13 min 38 sec). 
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3.4 Comparison between proposed methods for CF 

problem 

After the theoretical discourse about methods to resolve CF problem, with the help of 

some examples, is now possible to discuss the advantages and disadvantages of 

these methods, extracting also the main dark spots not clearly resolved by this 

taxonomy. 

As initially said, the three major categories of CF methods are Visual methods, Part 

coding analysis, and Production based methods. Is possible to assert that: 

 Visual methods and Part coding analysis are simpler than Production based 

methods, they can be done “by hand” without the help of a software, or they 

can be automatized by the help of a CAD-reader [87] or of an AI able to read 

and categorize the real parts to divide in part families. 

 Visual methods and Part coding analysis don’t take into consideration any 

manufacturing information like processing time, process routing, costs, layout 

constraints etc.; they only care about process requirements, shape and size of 

the final product, without any reasoning about the routing to take to produce 

it, and maybe material. Thus, the results obtained by these two methods 

would be not optimal or feasible in practice. 

 Part coding analysis is a more schematic and standardized way to proceed 

with respect to Visual methods, there is less risk of committing mistakes and 

the result is more rational and less subjective. 

 Visual methods and Part coding analysis are feasible for small scale problems, 

where the number of parts is small or the variability in shape, size, process 

requirements is small among the products. Thus, they are a simple and good 

option for small-medium size companies and for companies with few 

products. 

Due to these reasons, Production based methods seem to be the most promising to 

solve larger CF problems in a more effective way. They are further divided in five 

categories: Cluster analysis, Graph partitioning approaches, Mathematical 
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programming methods, Heuristic and Metaheuristic algorithms, and Artificial 

intelligence methodologies. Other reasonings arise from these: 

 Cluster analysis, that is further divided in the simpler array-based clustering 

(ROC), and in the more sophisticated hierarchical and non-hierarchical 

clustering (similarity coefficients), is the simpler method to apply among the 

Production based methods. The main drawback is that it only takes as input 

the part/machine incidence matrix, too little information with respect to the 

real-life industrial environment. 

 Graph partitioning approach is a more complete technique with respect to 

Cluster analysis. In fact, as already seen in the example [89], a part from the 

part/machine incidence matrix it can accept more data like the available 

number of individual machines of each type, the machine processing 

capabilities and the part-processing usage for each machine, and it can refine 

the result in terms of minimum intercell movements by means of an heuristic. 

However, the still limited amount of data demands for the usage of more 

complex techniques. 

This further refinement leads to the core of the discussion: the search of the most 

promising method among Mathematical programming methods, Heuristic and 

Metaheuristic algorithms, and Artificial intelligence methodologies. With the help of 

the examples already presented, the scope of this section is to gather some key 

differences among the different methods. Table 3.2 enlists all the example papers 

used, and Table 3.3, that is largely inspired on a table presented by [6], compares the 

different methods based on main aspects. 
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No. Ref. Source No. Ref.Source 

        

1. Defersha and Chen (2006) 11. Defersha et al. (2017) 

2. Mahdavi et al. (2010) 12. Arkat et al. (2012) 

3. Mahdavi et al. (2012) 13. Jawahar and Subhaa (2017) 

4. Brown (2015) 14. Sayadi et al. (2013) 

5. Mahadavi et al. (2008) 15. Feng et al. (2017) 

6. Liu et al. (2010) 16. Mak et al. (2007) 

7. Lei and Wu (2005) 17. Li et al. (2010) 

8. Chung et al. (2011) 18. Pandian and Mahapatra (2009) 

9. Chang et al. (2013) 19. Yang and Yang (2008) 

10. Arkat et al. (2007) 20. Boulif and Atif (2008) 

        

Table 3.2: List of used example papers 

By means of Table 3.3 some first considerations about the performances can be done: 

 Mathematical Programming can manage only small problems, in the order of 

a few dozen among machines and part types, and the solution (optimal or 

sub-optimal) is found after many hours. Instead, all the other methods 

comprehending heuristics, metaheuristics and artificial intelligence 

approaches can face larger problems and solve them in less than 1h. 

 The optimal solution is found only in few papers. In fact, especially for 

heuristics and metaheuristics, what is obtained is always a sub-optimal 

solution. Looking at the theory, among the metaheuristics the Global methods 

are the ones with a better chance to find a lower minimum with respect to 

Local methods thanks to their ability to probe the entire search space. Instead, 

Mathematical programming, due to the fact is based on a mathematical model, 

it is more inclined in finding the optimal solution. However, the check symbol 

(✓) on the OS column was added on the sources that presented the joint 

keyword “optimal solution” many times, even without verifying if it really 

was the optimal solution or not. Given these considerations, the data 

presented in the OS column are not reliable. 

 Most of the authors compare their method with other existing methodologies 

on a base of reference problems found in literature. All the presented methods 

performed as or better compared to the older ones. Doing this kind of  
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No. Performances Tool

Obj1 Obj2 Obj3 C1 C2 C3 C4 C5 MP H TS SA GA PSO ACO ANN FL DS CT OS Comp

1. ✓ ✓ ✓ ✓ ✓ ✓ ✓ (10 x 25) N Lingo

2. ✓ ✓ ✓ ✓ ✓ ✓ (3 x 6) 16h 20m ✓ N Lingo 8.0

3. ✓ ✓ ✓ ✓ ✓ (7 x 10) Y Lingo

4. ✓ ✓ ✓ ✓ (9 x 10) Y Lingo

5. ✓ ✓ ✓ (25 x 40) Y

6. ✓ ✓ ✓ ✓ ✓ (41 x 27) 5m 26s Y Matlab 7

7. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ (18 x ?) 9,7s Y C++ 6.0

8. ✓ ✓ ✓ ✓ ✓ (30 x 70) 8,5s ✓ Y

9. ✓ ✓ ✓ ✓ ✓ (25 x 40) 2,1s ✓ Y

10. ✓ ✓ ✓ ✓ (17x30) 7m 26s Y

11. ✓ ✓ ✓ ✓ ✓ ✓ ✓ (192x600) Y C++

12. ✓ ✓ ✓ ✓ ✓ (20x40) ✓ Y C#

13. ✓ ✓ ✓ ✓ ✓ (20x25) 16,8s ✓ Y MatlabR2010

14. ✓ ✓ ✓ ✓ (20x51) Y

15. ✓ ✓ ✓ ✓ ✓ ✓ ✓ (30x40) 23m 41s Y

16. ✓ ✓ ✓ ✓ ✓ ✓ (12x10) 1s Y C++

17. ✓ ✓ ✓ ✓ (50x150) 20s Y

18. ✓ ✓ ✓ (35x90) 1,9s Y C++

19. ✓ ✓ ✓ (46x105) ✓ Y

20. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ (20x24) 13m 38s Y C++

Objectives Constraints Method used

Notes: 

(I) Major objectives (column two). 

Obj1 = minimum costs. 

Obj2 = minimum intracell and/or intercell movement. 

Obj3 = maximum grouping efficacy (minimum number of exceptional elements, minimum number 

of voids). 

(II) Major constraints considered by different methods (column three). 

C1 = Considering capacity of machines/workers in each cell. 

C2 = Considering allowed number of machines/workers in each cell. 

C3 = Considering multi-period planning. 

C4 = Considering operation sequences. 

C5 = Considering workload balancing among cells. 

(III) Method used (column four). 

MP = Mathematical Programming   H = Heuristic. 

TS = Tabu Search   SA = Simulated Annealing. 

GA = Genetic Algorithm   PSO = Particle Swarm Optimization. 

ACO = Ant Colony Optimization   ANN = Artificial Neural Networks   FL = Fuzzy Logic. 

(IV) Performances (column five). 

DS = Largest data set used (machines x parts)   CT = Computational time for the previous data set. 

OS = provides optimal solution when largest data set used   Comp = is compared to other existing 

methodologies (Y = Yes, N = No). 

Table 3.3: Comparison of example papers 
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comparison is a good way to validate its own method and to track the 

evolution of CF methodologies towards the optimal solution. 

Instead looking at the first three columns (Objectives, Constraints, Method used) is 

possible to assert that: 

 There is a grand variety of models, that can be mono-objective, bi-objective, 

multi-objective, and considering from one to many constraints. Obviously, the 

higher is the number of objectives and the number of constraints, the more 

complete and reliable but also more complex is the model. 

 The most frequent objective function is the minimum costs (Obj1). This cost 

could be a single term, like material handling cost, or the sum cost of several 

terms like in the examples [23,26]. Obviously, costs are often the leading factor 

in the design process of many manufacturing fields, and they must be 

minimized to save money. The other two objectives, that are the minimization 

of intracell and/or intercell movements (Obj2), and the maximization of 

grouping efficacy (Obj3) are less frequent. Obj2 and Obj3 are both related to 

layout and scheduling issues and, in an implicit way, to costs. Frequencies of 

appearance of Obj1, Obj2 and Obj3 in all the methods can be seen in Figure 

3.20a. 

The most frequent major constraints are the ones considering allowed number 

of machines/workers in each cell (C2) and the ones considering operation 

sequences (C4). These two kinds of constraints can be seen as the bare 

minimum to formulate a comprehending all the machines or the presence of 

more than one machine type on a cell. Then, the other two types of constraints 

that consider the capacity of machines/workers (C1) and the workload 

balancing among the cells (C5) are less frequent and both can be seen as an 

improvement of C2 and C4, and thus they are more complex to model. Only 

few methods consider constraints about multi-period planning (C3). This 

means that most of the solutions found are static solutions, which don’t 

consider the dynamic environment that the Manufacturing sector is. Thus, the 

configurations found would be not enough flexible to accept for example a 
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changing product mix or new products. Frequencies of appearance of C1, C2, 

C3, C4, C5 in all the methods can be seen in Figure 3.20b. 

 Most of the papers start their explanation by introducing a mathematical 

model (MP checks are put on the methods with a mathematical model) that, as 

it is known, is made by the formulation of objective function and constraints. 

In fact, a mathematical model is a schematic and effective way to properly 

define the problem. The mathematical model is used as the foundation to 

properly build a method that for example could be a heuristic or metaheuristic 

method. In case of ANN, the two presented papers exploiting ART1 technique 

don’t introduce a mathematical model because ANN is based on a comparison 

algorithm that categorizes the input problem in classes to find the optimal 

solution depicted by the block diagonal matrix. 

 

 

(a) Frequency of Obj. Fun. in ex. papers 

 

(b) Frequency of constraints in ex. papers 

Figure 3.20: Frequencies of a) Obj. fun. and b) Constraints in the ex. papers 

At this point of the discussion is possible to state that, even if Mathematical 

Programming is the only one theoretically able to find the optimal solution to the CF 
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problem, it underperforms from a computational point of view with respect to the 

other techniques, which are heuristics, metaheuristics, and AI methodologies.  

However, both the theoretical introduction and the analysis above don’t give any 

hint about the best method to adopt. As noticed by both this research and the review 

paper [83], few research papers provide a clear reason in choosing one method with 

respect to another one. Following the article cited above, due to historical reasons the 

most used algorithm is the GA, one of the first metaheuristics to be adopted for the 

CF problem, followed by SA thanks to its simplicity of implementation. Another 

variable to add is the utilization of hybrid algorithms. Obviously, hybrid techniques 

combine the best characteristics of two methods to form a more performant and 

effective algorithm.  

In conclusion, the most promising methods are: 

1. Metaheuristics, which range from simpler algorithms like TS and SA to more 

complex methods like GA, PSO, and ACO. Heuristics can be seen as simple 

codes used to help larger algorithms for example in scheduling, like defining 

the Gantt chart. However, Metaheuristics, especially the ones deriving from 

biology like PSO and ACO, suffer for a more complicated definition which 

requires a preliminary study of the algorithms themselves. In particular PSO, 

that can be further divided in Fireflies, Bat, Bees, etc. algorithms, it is a forest 

of methods from which the designer can choose. Among the Metaheuristics, 

global methods are the most preferable, especially GA that seems to be the 

more immediate to understand. 

2. AI methodologies, composed by ANN and Fuzzy Logic. These two methods 

have the peculiarity to mimic the cognitive functions of animals’ brain. 

Among all the ANN techniques only ART1 was analyzed. What is striking 

about it is the absence of a Mathematical model thanks to its different 

approach to the problem, based on comparing the input data with a list of 

training data registered in the long term memory. Thus, further studies on 

ANN must be pursued. About Fuzzy Logic, it introduces in a Mathematical 

model fuzzy, uncertain data. In this way, the solution found can be a more 
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flexible and realistic solution that considers all the uncertainties coming from 

inside and outside the firm. 

3. Hybrid algorithms, which combine together two different methods. In this way, 

more articulated and useful algorithms can be employed. The most combined 

methods are GA and FL [83]. However, the high variety of combinations don’t 

permit a further investigation on this topic. 

In the next chapter, a discussion about the feasibility of the solutions found with 

these methods will be addressed. In fact, up to now the implementation of 

manufacturing cells on the field was not considered as well as the presence of 

workers (human factor) inside the cell.  
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4. Theory vs reality 

In this chapter the issue about the feasibility of the solutions given by the CF 

methods is discussed. In fact, as it is possible to infer from the previous analysis in 

chapter 3, most of the results are based on methodologies characterized by a single 

objective function, by a mono-period approach (constraint C3 is the least considered) 

and by a lack of other constraints (like C1 and C5), making the reader suspect a lack 

of completeness and realism of these methods. 

Anticipating the content of the chapter, the three steps composing the CF problem 

(cell formation, cell layout, cell scheduling) are better explained; then, further topics 

quite recurrent in the methodologies like human factor, multi-period and multi-

objective are presented and added to the discussion. Finally, some important 

conclusions are made based on presented papers and literature.  

4.1 CF problem criteria 

CF problem is composed by three major steps:  

1) Cell formation: starting from manufacturing data like the Part/machine 

incidence matrix, machine cells are formed by grouping together machines 

and by constitute part families. Even if this seems enough to solve the CF 

problem, in reality there are other aspects to consider like layout and 

scheduling. In fact, by doing cell formation only, the only information 

gathered are the types of machines and part families composing cells, with no 

hint about the intercell and intracell fluxes of parts inside the department 

2) Cell layout: by solving the cell formation, cells are formed without knowing 

the exact position of each machine inside the cell (intercell layout) and of each 
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cell inside the department (intracell layout). As already seen in the 

introductory part of the thesis (chapter 1), there are several possible intercell 

layouts to choose from, like linear single-row layout, linear double-row 

layout, u-shaped layout, and each of these requires the exact sequence of 

machines, from the input to the output of the cell. About intracell layout there 

could be many goals like creating rectangular, non-overlapping cells [7,41], 

that must be mostly independent (minimum intercell movements) and 

balanced on their workload. Thus, by solving the cell layout step the designer 

will place machines and cells in the optimal positions and he will be more 

aware about the part flows inside the facility and, as a consequence, more 

reliable decisions can be taken about for example the material handling 

system to adopt or the ubication of possible warehouses.  Even in this case, the 

solution found is not complete, there are no hints about job scheduling and 

lead time for each part type. 

3) Cell scheduling: the last but not least aspect to formulate a more complete 

solution is scheduling. Without scheduling, the firm would manufacture parts 

“at random”, with a high probability of delivering the final product to the 

customer too late (after the deadline), due to a non-optimal exploitation of the 

available time, causing delay cost (legal costs set by the job’s contract) and, in 

the worst scenario, loss of the customer. It is quite understandable that even a 

perfect cellular layout, able to minimize all the possible costs, which is not able 

to satisfy customer’s demand is useless. Scheduling must not be confused with 

production planning: while scheduling is a tactic decision managed every day, 

where the main focus is which part to produce in which cell, production 

planning is a strategic decision managed every week or month, with the 

purpose of planning how many parts to produce for a customer and how 

much raw material to purchase.  

Besides cell formation, cell layout, and cell scheduling, other aspects to formulate an 

effective cell configuration can be studied. To keep the analysis simple enough, only 

other three criteria are taken into account, and they are human factor, multi-period 

planning and multi-objective:  
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 Human factor: humans and machines work together to build the final 

product. Thus, it is of crucial importance to assign workers to machine cells 

based for example on their skill level, while assuring a healthy and safe 

environment in the workplace. 

 Multi-period planning: to formulate a reliable and flexible configuration, a 

multi-period planning is necessary. In fact, by means of multi-period 

planning, an “average” configuration that can accept small changes between 

periods is found. Without it, a new CF problem and the related configuration 

must be formulated for each new period and theoretically for each new job, 

causing troubles in the case machines and/or material handling systems 

cannot be reconfigured in a simple way. 

 Multi-objective: by taking a holistic point of view, the business’ performance 

will be affected by the interaction of several terms like humans, machines, 

parts, cells, material handling systems, and so on. These interactions would be 

hard to quantify in terms of importance and related costs and benefits 

(economies of scale). Thus, an algorithm that considers Pareto-optimality has 

better chances to provide a more complete and reliable solution, due to the 

fact it takes into account various aspects of the manufacturing world. Among 

the possible objective functions, the ones already presented, and the most 

common, are minimum costs, minimum intracell/intercell movement, and 

maximum grouping efficacy. Other less common objective functions faced by 

the sources are minimum intercell/intracell workload unbalancing and 

minimum makespan.  

These other three aspect were added because they seem to be quite recurrent among 

the CF methods. In the next paragraphs, these six criteria will be further discussed, 

and by means of the method papers presented in the literature review (chapter 2) 

and of the remaining literature about the topic conclusions will be stated. 
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4.2 Cell formation, cell layout and cell scheduling 

The first three criteria, which form the three main steps of CF problem, are analyzed 

together. It is quite obvious to state that the more steps are addressed, the more 

complete and reliable will be the configuration found. Thus, integrated methods 

(methods that consider more than one step) are preferable with respect to simpler CF 

models that address cell formation only. 

By means of method papers it is possible to construct a table to get an idea about the 

level of integration of these three steps in the models. To search the presence or not 

of these steps in the papers, the keywords “formation”, “layout”, and “scheduling” are 

checked. 

Model 

type 
Total number of 

papers 
% 

F 47 69 
F+L 10 15 
F+S 7 10 
F+L+S 3 4 
L 1 2 

Sum 68 100 

Table 4.1: Level of integration of method papers. 

As it is possible to see from  

Model 

type 
Total number of 

papers 
% 

F 47 69 
F+L 10 15 
F+S 7 10 
F+L+S 3 4 
L 1 2 

Sum 68 100 

Table 4.1, most of the proposed methods consider cell formation only (F means cell 

formation), followed by integration models of cell formation and cell layout (F+L), 

cell formation and scheduling (F+S), and finally the complete integration of the three 

steps (F+L+S) is addressed by three method papers only. Only one method paper 

addresses cell layout only (L) [36] because it is about a layout improvement method 

of an already existing manufacturing cell.  

Due to the relative low number of papers considered, other sources coming from the 

literature are taken into account. Many method papers and review papers [6–
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9,38,50,83,100] confirm the hypothesis already supposed: in the literature there is a 

greater attention towards cell formation, which is the first, obligatory step to take in 

order to formulate a possible manufacturing cell configuration; still there is a lack in 

the literature for what concerns integration procedures of two or three steps. 

A common procedure to cope with this lack of completeness is to apply other 

algorithms after the completion of the cell formation, in order to find the proper cell 

layout and cell scheduling [8]. In this case is not possible to speak of integration, 

because layout and scheduling steps are done successively and are based on an 

incomplete cell formation algorithm. 

4.3 Human factor 

Human factor is a crucial aspect in MC, especially in case of labor-intensive MC, 

where the presence of humans takes an important role in manufacturing parts, as 

opposed to capital intensive MC, where the main contribution is done by fixed assets 

like machines. In fact, the performance of MC improves over time, from its 

implementation to its full capacity, by solving both technical issues (i.e., allocating 

parts and machines to cells) and human issues [5,16]. The three major human issues 

are communication, teamwork and training [15], indeed it is quite understandable 

that the major role in a CM is not assigned to the single individual but to the whole 

team: the group’s members must cooperate among them (teamwork), dividing the 

work based on a skill level continuously improving (training), resolving conflicts 

using a clear communication (communication). As it is possible to realize, human 

factor is a complex topic, that considers qualitative/non-quantifiable aspects of the 

human behavior that evolve over time.  

Even in this case, method papers are filtered by means of keywords like “worker” and 

“human” to find methods that account for human factor aspect. A pie chart like the 

one in Figure 4.1 is constructed. Papers that contain workers’ issues fall in the 

category “Yes”, otherwise in the “No” category. 
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Figure 4.1: Presence of human factor among method papers. 

Some integration methods that combine together cell formation with worker 

assignment exist and they are based only on one or more quantifiable measures like 

skill of workers, number of workers, available time of a single worker, related costs 

(salary, hiring, firing, training costs) [18,24,26,28,38,66,68,71,78,80,81,101]. Talking 

about human skill, it means the capability of a worker to do a certain task on a 

specific machine, thus the skillful operator is the one able to perform the higher 

number of tasks inside the cell. In a more sophisticated model, human skill accounts 

also for the processing time of a worker to do a specific job, composed by mean and 

variance [18], and so the most skillful operator is the one able to complete a certain 

task in the shortest time possible (following a stochastic distribution). The common 

path to deal with human factor is by means of algorithms subsequent at the cell 

formation, meaning at cells already formed. Workers are assigned to cells based on 

their skill level, and training programs are scheduled to follow the technological 

evolution in Manufacturing [19,102]. Apart from skill level, human relationships 

among team members (team leader and other workers) must be monitored to solve 

possible conflicts, as well as controlling the compliance with work standards in order 

to assure a minimum quality of production [17]. For what concerns Occupational 

Safety and Health (OSH) issues, each country has its own set of standards established 

by public organizations, like could be the Occupational Safety and Health 

Administration (OSHA) in the United States, to which are also added other 

standards provided by the International Labour Organization (ILO). 

Yes

10; 15%

No

58; 85%
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4.4 Multi-period 

Historically, designers opted a static approach to cell formation [6,13,71], meaning 

that cells once designed need not be redesigned for a considerable length of time. 

However, in the last decade, it can be appreciated an increasing interest about 

Reconfigurable Manufacturing Systems (RMS) [14,83], comprehending also CM 

systems (CMS). An RMS is a dynamic manufacturing system that can quickly change 

and respond to the variable demand by changing its production capacity and 

capability. In case of CMS, in response to a change in the part families demand, the 

system must be able to rapidly move machines and workers from one cell to another 

one, purchase new machines, hire new workers etc.  

It is of great interest to couple multi-period criteria with the three steps of CF 

problem and show the trend of proposed method papers over the years like in Figure 

4.2: 

 

Figure 4.2: Integration of multi-period and CF problem steps among method papers. 

The integration of multi period with cell formation (M-P+F) is the most searched, 

with 8 papers, followed by the integration with layout (M-P+L) with 4 entries and by 

integration with scheduling (M-P+S) with only 2 entries. 
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4.5 Multi-objective criteria 

Multi-objective feature can be seen as adding further dimensions to the stated 

problem: while the other aspects refine the solution in a vertical way, concentrating 

on only one objective, adopting a multi-objective approach helps in expanding the 

view about CF problem in a horizontal way. Thus, by means of a multi-objective 

method is possible to better account reality, that is composed by a series of 

relationships between different elements, more or less deterministic. In fact, the 

optimal solutions, that can be more than one for the problem, follow the Pareto-

optimality, which in practice states that the optimal solutions are a trade-off among 

the objective functions.  

 

 

 

Figure 4.3: Presence of multi-objective among method papers. 

The majority of proposed method papers are mono-objective. The bi-objective and 

multi-objective papers are only 13 out of 68. 

Multi-objective algorithms are more complex to formulate, and this is why 

historically researchers are more inclined in introducing single objective methods, 

both in static and dynamic (multi-period) configurations [6,71]. However, it can be 

seen an increasing interest towards multi-period methods for what concerned 

dynamic facility layout [84]. 

Yes

13; 19%

No

55; 81%
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4.6 Final discussion about applicability of CF problem 

methods 

From the analysis made in the previous sections, some important statements can be 

exposed: 

 The most searched aspect about CF problem is the cell formation step, 

followed by cell layout and cell scheduling topics. Integrating algorithms 

considering more than one step exist, but in a lower amount; 

 Most of the methods are mono-period, mono-objective models. This would 

limit their applicability in the case of a dynamic environment like today’s 

market. 

 Human factor is a quite complex topic and it is ignored by the majority of 

studies, even if is quite evident the important contribution of the worker in 

CM performance.  

 The common practice to enhance the solution is to use different methods at 

manufacturing cells already formed, this is the case of cell layout, cell 

scheduling and worker reassignment (human factor). In particular for human 

factor aspect, teamwork and good practices to improve the cell’s performance 

can be pursued by means of Lean Production (LP) concepts [17,103]. 

However, from the sources analyzed is possible to state that a positive trend 

towards the integration of more aspects of the problem is in place, especially 

more importance is given to the multi-period aspect [14,83], which is crucial in 

the design of dynamic systems. An improvement of these methods can be 

appreciated starting from the last decade (2010-2019), thanks to the evolving 

knowledge about the topic and to the impressive improvement of computers in 

terms of hardware and software and the utilization of new architectures like 

quantum computing, which can be used for optimization problems [104]. 
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To demonstrate the improvement over the years of CF methods, one point is 

assigned to each method paper every time one criteria among the six discussed is 

accounted to a total of six points (full integration). The comparison is done 

between method papers published in 2000-2009 and 2010-2019. The results are 

showed in Figure 4.4 and Table 4.2: 

 

(a) 2000-2009 

 

(b) 2010-2019 

Figure 4.4: Improvement of methods complexity 

Points 2000-2009 2010-2019 

1 21 8 

2 8 10 

3 7 8 

4 0 5 

5 0 1 

58%22%

20%

1 2 3

25%

31%

25%

16%

3%

1 2 3 4 5
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Sum 36 32 

Table 4.2: Counter of points among method papers. 

If in the past only cell formation was accounted, in recent years more and more 

integration attempts has been formulated. 

 

 

 

 

 
 

5. Conclusions and future development 

This thesis presented and discussed the CF problem and the main methodologies to 

solve it. The CF problem consists of three main steps: 

 Cell formation, where machines and part families are chosen to form the 

manufacturing cells; 

 Cell layout, in which machines are positioned in the optimal way inside the 

cell, and cells are distributed inside the department; 

 Cell scheduling, where decisions about the sequence of part families to 

manufacture are taken. 

After a quick introduction about the manufacturing cells, their characteristics and 

their advantages with respect to other manufacturing layouts, the core of the 

discussion is about the classification of CF methods and the general theory behind 

them.  
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The main classification of CF methodologies is: 

 Visual methods; 

 Part-coding analysis methods, like the Opitz code; 

 Production based or Production flow analysis methods, further divided in: 

□ Cluster analysis, array-based clustering (ROC), hierarchical clustering, 

and non-hierarchical clustering;  

□ Graph partitioning approaches.  

□ Mathematical programming methods.  

□ Heuristic and Metaheuristic algorithms, the second one composed by 

local methods like TS and SA, and by global methods like GA, PSO, 

and ACO.  

□ Artificial intelligence methodologies, formed by ANN and FL. 

As the reader noticed, there is a grand variety of methods to adopt and for many of 

them, like Metaheuristics, it is not quite clear the reason to choose one among the 

others. Then, the methodologies are classified based on performance like 

computational time and data set dimension (machines x parts). From this 

comparison some important statements are highlighted: 

 Visual methods and part-coding analysis methods are simple but unreliable 

because they don’t use important data like processing time, process routing, 

costs, layout constraints etc., and unfeasible for large problems: 

 Cluster analysis and Graph partitioning approaches suffer of a lack of data in 

input, they mostly rely on the machine/part incidence matrix, thus they cannot 

provide complete solutions in terms of layout and scheduling; 

 Mathematical programming underperforms the other methods in terms of 

computational time and size of data set managed; 

 Methaeuristics, especially the global ones, AI approaches and Hybrid 

algorithms are the most prominent methodologies thanks to their better 

performances and the continuous research aiming at better integrate/complete 

solutions. 
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In the last part of the discussion, limits of the CF methods in the real world and 

possible improvements by means of other procedures are pointed out. In particular: 

 There is still a big gap between what is requested by the market and what is 

offered by these methods, in fact most of them investigate cell formation only, 

are mono-period and mono-objective, resulting in partial and static solutions 

to a problem that is complex and dynamic. Moreover, human factor is quite 

ignored by most methods. 

 The common practice to improve the solution is to apply further algorithms at 

cells already formed and follow good practices like the ones given by Lean 

Production.  

However, there is a positive trend toward integration of more aspects of CF problem. 

Possible future developments of this work could be: 

 Increasing the number of analyzed papers, to have a wider consciousness 

about the topic and to rely less on review papers; 

 Increasing the pool of presented methods, introducing for example Scatter 

Search (SS) and other ANN; 

 Extending the analysis by adding other criteria to the ones already considered, 

like for example maintenance and production planning; 

 Extending the discussion by better explaining how the manufacturing cells 

evolve once implemented, or how the material handling system is chosen and 

organized inside and between cells. 
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A. Appendix A 

List of employed method papers  

No. Formation Layout Scheduling 
Human 

f 
Multi-

per.  
Multi-

obj     

1 1  1    2007 ACO 
2 1      2008 ACO 
3 1      2010 ACO 
4 1      2010 ACO 
5 1      2001 ANN 
6 1    1  2007 ANN 
7 1      2008 ANN 
8 1      2009 ANN 
9 1      2000 GA 

10 1     1 2001 GA 
11 1      2001 GA 
12 1      2004 GA 
13 1     1 2005 GA 
14 1 1     2006 GA 
15 1  1  1  2006 GA 
16 1 1 1    2007 GA 
17 1      2009 GA 
18 1 1 1   1 2012 GA 
19 1 1 1    2012 GA 
20 1  1    2017 GA 
21 1  1    2019 GA 
22 1 1     2008 HE 
23 1      2010 HE 
24 1      2001 hybrid FL+ANN 
25 1   1 1 1 2011 hybrid FL+MP 
26 1   1  1 2014 hybrid GA 
27 1    1 1 2013 hybrid GA+ANN 
28 1    1 1 2008 hybrid GA+FL 
29 1      2004 hybrid GA+Local 



  

  

search  

30 1      2007 
hybrid GA+Local 

search  

31 1      2013 
hybrid GA+Local 

search  
32 1      2006 hybrid GA+MP 
33 1   1   2017 hybrid PSO+MP 
34 1      2009 hybrid SA+GA 
35 1      2009 hybrid SA+GA 
36 1  1    2016 hybrid SA+GA 
37 1   1 1 1 2016 hybrid SA+GA 
38 1      2000 hybrid SA+MP 
39 1      2011 hybrid TS+GA 
40 1   1 1 1 2016 hybrid TS+GA 
41 1      2005 MP 
42 1 1   1  2006 MP 
43 1 1   1  2006 MP 
44 1   1 1  2009 MP 
45 1    1  2009 MP 
46 1   1 1  2010 MP 
47 1    1  2011 MP 
48 1  1    2014 MP 
49 1    1 1 2015 MP 
50 1  1  1  2015 MP 
51 1      2015 MP 
52 1   1   2012 MP 
53 1   1 1 1 2017 multi GA, PSO 
54 1 1   1  2016 multi GA, SA 
55 1    1  2005 multi GA, SA, TS 
56 1      2006 PSO 
57 1    1  2011 PSO 
58 1      2013 PSO 
59 1      2014 PSO 
60 1      2007 SA 
61 1      2008 SA 
62  1     2009 SA 
63 1 1   1  2012 SA 
64 1 1  1 1 1 2016 SA 
65 1 1     2017 SA 
66 1      2001 TS 
67 1 1    1 2005 TS 
68 1 1         2013 TS 
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