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Abstract

The present Thesis work deals with the simulation of the attitude dynamical system com-
posed by two spacecrafts after their docking, and as case study, the mission extension
between MEV-1 and Intelsat-901 is considered for the simulations.
The final aim of the present work is, in fact, to create, simulate and validate a system
identification procedure to determine the mass and mechanical properties of an assembly
of already docked satellites.
The problem has been modeled following the rigid body model, which enabled the creation
of two dynamical models of increasing complexity: a single body model, which consid-
ers the assembly as a whole spacecraft, and a double body model, which considers each
spacecraft individually and is used to simulate the attitude dynamics.
The system identification is approached considering a white box model and the family of
fitting ode-coefficients as algorithms. The system identification procedure found is divided
in five phases, of which the first three phases follow the simplification of the single body
model, and are able to retrieve an accurate estimation of the inertia matrix as well as
the position of the center of mass of the whole assembly, while the fourth and fifth phase
retrieve respectively the inertia properties of each body and the mechanical properties of
the link between the two satellites.
The procedure found is then tested in three different environmental conditions: absence
of disturbance, Geosynchronous Earth Orbit and Medium Earth Orbit, and the behaviour
of the error is evaluated. To assess the robustness of the procedure, a sensitivity analysis
has been carried out towards the imprecision of torques and forces and the quality of the
angular velocity profile in input.
Finally, the effectiveness is evaluated by conducting a series of control tests to compare
the control precision before and after the identification procedures.
Keywords: System Identification, Docking, Satellite, White Box, Numerical Methods.





Sommario

Il lavoro della presente Tesi si occupa della simulazione dell’assetto di un sistema dinam-
ico composto da due veicoli spaziali dopo il loro attracco, e come caso di studio, nelle
simulazioni è considerata l’estensione della missione eseguita tra MEV-1 e Intelsat-901.
L’obiettivo finale di questo lavoro è, infatti, di creare, simulare e validare una procedura
di identificazione di sistema per determinare le proprietà meccaniche e di massa di un
assieme di satelliti attraccati.
Il problema ha preso come riferimento il modello di corpo rigido che ha consentito a
sua volta la creazione di due modelli dinamici di complessità crescente: il primo a corpo
singolo, che considera l’assiame come un veicolo unico; e un secondo a due corpi, che
considera individualmente ogni veicolo spaziale ed è usato per simulare la dinamica di
assetto.
L’identificazione del sistema considera un approccio "white box" e la famiglia di algo-
ritmi delle equazioni ordinarie differenziali adattative. La procedura di identificazione del
sistema trovata è divisa in cinque fasi, di cui le prime tre seguono la semplificazione del
modello di corpo singolo, e sono in grado di fornire una stima accurata della matrice di
inerzia e della posizione del centro di massa dell’assieme totale, mentre la quarta e quinta
forniscono rispettivamente le proprietà di inerzia dei singoli corpi e le proprietà mecca-
niche del collegamento fra i due satelliti.
La procedura trovata è successivamente testata in tre condizioni ambientali differenti: as-
senza dei disturbi, orbita geosincrona terrestre ed orbita terrestre media, così da valutare
il comportamento dell’errore. Per stabilire la robustezza della procedura, è stata eseguita
un’analisi di sensibilità considerando le imprecisioni di coppie e forze, insieme alla qualità
della velocità angolare in ingresso.
Infine, l’efficacia della procedura è valutata tramite una serie di test di controllo per
confrontare la precisione del controllo prima e dopo la procedura di identificazione del
sistema.
Parole chiave: Identificazione del Sistema, Attracco, Satellite, White Box, Metodi Nu-
merici
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1

Introduction

On-orbit satellite servicing refers to all activities that provide maintenance, repair, refu-
elling and mission extension services to a target spacecraft. Considering the history of on
Orbit Servicing (oOS), the most important missions have been the Hubble Space telescope
servicing missions[8], which allowed to replace and improve the equipment while in orbit.
In 2007, the Orbital Express mission[5] was launched, which consisted of two satellites,
ASTRO and NEXTsat, being the servicing and serviceable spacecraft respectively, which
tested the different phases of docking and the refuelling in orbit. More recently, the MEV-
1 and MEV-2 spacecrafts[6] have been launched and will extend the operational life of
several satellites in the next years.
In the recent years, an increase in interest for the oOS activities has been recorded. Many
satellites in Geosynchronous Earth Orbit are able to operate well beyond their design
lives of 15 years, and are decommissioned due to fuel depletion or ageing/malfunction of
the Attitude Determination & Control (ADCS) rather than other subsystems. Replacing
these "failing" satellites has a great cost in terms of design and launch, while the de-
velopment of new technologies, such as electric propulsion, allow for the development of
economically sound and safe oOS missions, capable of extending the operational life of
several different spacecrafts.
Specifically, extending the mission operational lifetime means to dock with the target
satellite, and then control the newly formed assembly. To generate an effective control
after docking, the knowledge of the whole structure intertial parameters is required, which
may either be provided by the ground or retrieved autonomously by the servicing space-
craft.
Parallel to the oOS, the space community has witnessed an increase in interest for more
operational autonomy of the spacecraft, since it is essential both for multi-spacecraft
missions, to allow for reduced dependency from ground stations, and for the success of
deep-space mission with multiple spacecrafts. As a matter of fact, in deep-space the time
delay for the communication is significant, and the increase in autonomy would reduce
latency and bandwidth constraints[19].
Considering these two raising tendencies in the aerospace sector, the study for Au-



2 | Introduction

tonomous on Orbit Servicing mission becomes an important research topic. Following
this trail, the Work presented in this Thesis aims at defining a system identification pro-
cedure to determine the inertial and mechanical parameters of the assembly formed after
the docking between the satellites. As benchmark for the procedure found, the analysis of
the case study of the mission extension between MEV-1 and Intelsat-901 has been carried
out.
The Work of the Thesis is developed through six different chapters. The introduction to
the problem, alongside with the description of the satellite assembly composed by MEV-1
and Intelsat-901 is presented in Chapter 1.
In Chapter 2 the environment of the simulation is defined, the external factors that
may impact the solution and the frames of reference are specified. Specifically, the orbit
model and data are disclosed, together with the environmental disturbance. The Solar
Radiation Pressure (SRP), Gravity Gradient (GG), Magnetic Torque (MT) and Sloshing
disturbances are presented in detail in this chapter, alongside the Numerical Simulation
Options (NSO) used to run the simulation.
The choices made during the modeling of the problem are presented in Chapter 3. The
two main dynamical models used inside the Work are presented: a first approximated
model, defined as Single Body Model (SBM), and a more complex model, Double Body
Model (DBM). The first and second model are used inside the system identification pro-
cedure, but only the DBM is used to run the simulation.
In Chapter 4, the approach to system identification is declared, then the system identifi-
cation procedure is presented. The procedure is divided in five main phases of increasing
complexity, and allow to estimate the mass properties of the spacecrafts.
Inside Chapter 5, the system identification procedure is simulated in three different con-
ditions of disturbance: absence, Geosynchronous Earth Orbit (GEO) and Medium Earth
Orbit (MEO) to define the robustness of the procedure. The results for each phase and
condition are then analyzed. Inside the same chapter, a sensitivity analysis has been
carried out considering mismatch in torque and thrust delivery, torque and thrust mis-
alignment, and a sensitivity analysis towards the angular velocity sample error.
To evaluate the utility of the solution provided by the system identification procedure,
two control tests are carried out in Chapter 6. Specifically, the first control test uses only
the parameters available before the system identification procedure, while the second uses
the parameters available after the system identification procedure. Each control test is
composed by three control modes: inertial pointing, repointing and tracking.
This concludes the Thesis.
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State of the Art

The present Work places itself in the framework of computer simulation studies conducted
on the Satellite System Identification and it specifically analyses the situation after the
docking between two satellites. The estimation problem of the inertia matrix of a rigid
body has been considered in several papers from the aerospace community, with least-
squares methods and several different kind of kalman filter being two of the most used
methods. For example, in [3] a recursive least-squares method has been considered to
identify both inertia matrix and thruster parameters, while in [13] a least correlation
method is used to estimate the inertia matrix, and in [15] the inertia matrix is estimated
by a constrained least-squares method. Considering the family of kalman filter meth-
ods, in [23] extended kalman filter are used to estimate the inertia matrix, while in [16]
extended kalman filters are combined with sun sensors, magnetormeters and gyroscopes
to determine the attitude of the spacecraft and coupled with a least squares method for
estimation of the inertia parameters.
On the contrary, the present work follows the trail of data fitting algorithms, as in [22],
which is based on white box model for the system identification approach.
To estimate the inertia matrix and the position of its own center of mass, this Work
proposes an out of the box solution, which combines analytical and numerical methods,
Non-Linear Programming (NLP) specifically. Moreover a least-squares method is used to
estimate the mechanical characteristics of the link between two docked spacecrafts. This
results in a procedure that requires only the measure of the angular velocity, requiring no
specific sensors or devices. Such characteristics allow the system identification procedure
found to be applicable to every kind of spacecraft, regardless of the lifetime and purpose,
and to every kind of docking, regardless of the spacecraft sizes and hook type.
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1| Chapter 1 - Problem Overview

In this Chapter, the Issue of Research is identified.

1.1. Introduction to the Problem

The Work is focused on defining a series of experiments and algorithms which are capable
of identifying the properties of a system of two already docked satellites, in terms of
inertial data and mechanical properties of the link connecting them.
This means that the objective of the Work is to to provide a procedure capable of delivering
an accurate estimation of the inertia properties of the whole assembly, as well as the
individual properties of each satellite, together with the mechanical properties of the link
connecting the two spacecrafts.
As a clarification note, inside the Assembly of Satellites, the 1st Satellite is considered
as the Controlling one, hence the terms "1st Satellite" and "Controlling Satellite" will be
used throughout the document interchangeably.
To ensure the solution of the System Identification, the complete knowledge of the 1st

Satellite is considered as given or to be available such as:

• J1: Inertia Matrix of the 1st Satellite centered in its CM1

• CM1: Position of Center of Mass of the 1st Satellite

• m1: Mass of the 1st Satellite

• rth: Position of the Thrusters of 1st Satellite

• Fth: Force and Direction of Thrusters of 1st Satellite

Due to the broad application of such study, the main driver to define the procedure has
been identified in using only sensors and actuators commonly present inside the ADCS
suites for spacecrafts: only IMUs, Momentum Exchange Device (MED) and Attitude
Thrusters are considered to be available. Moreover, the 2nd Satellite is considered as a non-
cooperative target, meaning that no data can be transferred between the two Satellites.
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1.2. Description of the Satellite Assembly

The Satellite Assembly is defined as composed from the 1st satellite, the active and con-
trolling one, and by the 2nd satellite, which is the non-collaborative and passive satellite,
connected by a mechanical Link. It necessary to define not only the inertial properties,
but also the orbital data and to quantify disturbing forces in space, which have to be
related between them self. To solve this problem, a real mission of on Orbit Servicing has
been taken as example. Moreover, this allows to properly test the algorithm in a relevant
environment.
The mission chosen is the On-Orbit Servicing mission between the "Mission Extension Ve-
ichle one" (MEV-1) and the "Intelsat-901" Satellites. Due to the lack of data for inertial
properties, low quality CAD models of both Satellites have been created. For Intelsat 901
size and mass was found in the launch press kit[1] and in [11] for the MEV-1; since no data
on the actual size was found for MEV-1, the CAD model used is based on both available
pictures and similar spacecrafts sizes, like Intelsat 901. In Fig.1.1 is shown the original
render / photos of MEV-1 and Intelsat while in Fig.1.2 are shown the CAD models used.

(a) Intelsat 901 as seen from MEV-1 (courtesy of
Northrop Grumman)

(b) Render of MEV-1 (courtesy of Northrop
Grumman)

Figure 1.1: Renders / photos of Intelsat 901 and MEV-1
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(a) CAD model of Intelsat 901 (b) CAD model of MEV-1

Figure 1.2: CAD model of Intelsat 901 and MEV-1

Mission Extension Intelsat 901 is a Communication Satellite equipped with 42 C-
band and 14 Ku-band transponders, which was launched on July 9th 2001 with a expected
operational life of 13 years[2]. In 2019 the Satellite was still perfectly operational but was
running low on fuel[12] and was removed from service to be transferred into a graveyard
orbit to dock with MEV-1.
Mission Extension Veichle One is a on Orbit Servicing Satellite produced by Northrop-
Grumman Group and launched on October 9th 2019 with an operational life span of 15
years[6].
MEV-1 and Intelsat 901 docked on February 25th 2020 with success, marking an historical
first docking between two commercial Satellites[12]. MEV-1 will provide station-keeping
and Attitude Control services to the Assembly for a period of 5 year after which Intelsat
901 will be placed into a graveyard orbit and MEV-1 will undock to provide on Orbit
Services to other Clients[6].
In Fig.1.3 both the original render and the CAD counterpart of the whole assembly are
shown.

(a) Rendering of the Assembly (b) CAD model of the Assembly

Figure 1.3: CAD & Render of the Assembly of Satellites(courtesy of Northrop Grumman)
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2| Chapter 2 - Environment of
Simulation & Frames of
Reference

Orbital data and model, as well as environmental disturbance models used to simulate
the Orbit and Attitude physics are presented in this Chapter, together with the frames
of reference used in this Work.

2.1. Orbit Model

The orbit model used is a simplified one, from "Orbital Mechanics for Engineering Stu-
dents" [9], which is useful to determine the position of the Earth, Sun and determine
the Local Vertical Local Horizontal (LVLH) frame. Specifically, the model chosen is the
restricted 2 Body Problem, in which the true anomaly of the Keplerian parameters is
integrated over time. Disturbances affecting the orbit trajectory are not considered, since
they do not impact the outcome of the results.
As stated in Section1.2, the orbital parameters chosen are those of the MEV-1 and Intelsat
901 oOS mission and are reported in Tab.2.1. Orbital data used in the orbit simulation
is taken after the docking between the two Satellites.

Orbital Keplerian Parameters

Semi-major
axis (a) [Km]

Eccentricity
(e) [-]

Inclination (i)
[deg°]

Anomaly of
the perigee
(ω) [deg°]

RAAN (Ω)
[deg°]

42165 0.0002 1.64 345 132

Table 2.1: Orbital Parameters, courtesy of [21]
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2.2. Frames of reference

In this section the main frames of reference used inside the simulation are presented.

2.2.1. Earth Centered Inertial Frame

The Earth Centered Inertial (ECI), is the main reference frame used for the simulation, its
origin is placed at the center of mass of Earth and its main direction, the x-axis, is defined
as the direction of the vernal equinox, while its z-axis is normal to mean equatorial plane
of Earth. It is a non-rotating frame of reference. In this thesis it is mainly used to define
orbits Degree of Freedom (DoF) (semi-major axis, eccentricity, inclination, anomaly of
the perigee, RAAN and true anomaly), the sun direction, as well as the position and
velocity of the satellites along the orbit.
Throughout the document, the all terms presented with the subscript N , will be referring
to the ECI frame (e.g. SN is the Sun direction in the ECI frame). Furthermore, it is used
to create the Attitude body matrix AB/N and the LVLH attitude matrix AL/N .

2.2.2. Body Frame

The body frame is a reference frame centered in the geometrical center of the controlling
spacecraft, and its main direction are parallel to the pitch, roll and yaw rotation axis of
the spacecraft. The geometrical center of the first spacecraft is taken as origin of the body
frame for two main reasons: the only Attitude knowledge available during the simulation
is the one from the controlling satellite and the position of the Center of Mass (CM) may
change during the mission.
Throughout the document, the all terms presented with the subscript B, will be referring
to the Body frame (e.g. SB is the Sun direction in the body frame). To simulate certain
aspects of the underlying physics, another 2 frames were developed; one for the second
satellite whose origin corresponds to the CM of the second satellite and aligned with its
own pitch, roll ad yaw axis called AB2/N . It is important to consider that at rest, the
main axis for AB/N and AB2/N are parallel. The second one is used to represent the whole
assembly: its origin is set on the CMtot and its axis are aligned as the pitch, yaw and roll
axis of the docked spacecrafts, called ABtot/N .
To define the attitude body frame over time, the rotations of the satellite are taken into
account through the kinematics.

Kinematics - Quaternions The purpose of kinematics is to represent the attitude
of the spacecraft over time starting from an initial configuration. The attitude is then
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propagated from the angular velocity retrieved by the dynamical model. There are many
methods to develop the kinematics such as: Direction Cosine Matrix (DCM), Euler angles
and Quaternions. Quaternions method has been chosen among the available methods,
since during its integration it does not incur in any singularity and are well suited for
onboard real-time computation, thus are commonly used[27] to evaluate spacecraft orien-
tation.
Since quaternions do not bear any physical or geometrical interpretation, they have to
be converted back into attitude matrix to gain physical meaning. The kinematics for the
Passive Satellite are not required in the simulation but have been implemented to check
its behaviour over time.

2.2.3. Local Vertical Local Horizontal Frame

The Local Vertical Local Horizontal (LVLH) frame is a reference frame defined by the
orbit of the spacecraft. Its origin is placed on the CM of the spacecraft, which is followed
along the trajectory. Its main direction, x-axis, is defined by the position vector from the
CM of the Earth to the CM of the spacecraft, y-axis is directed as the velocity vector and
z-axis is normal to the orbital plane.
Throughout the document, all the terms presented with the subscript L, will be referring
to the LVLH frame (e.g. SL is the Sun direction in the ECI frame).

2.3. Environmental Disturbance

In this section the simulation environment is presented. Disturbing torques that affect the
performance of the solution during the simulation are defined. The Numerical integration
is defined here as well since it affects the whole simulation, and affects the repeatability
of the exact results.

2.3.1. Solar Radiating Pressure

Solar Radiation Pressure (SRP) is a disturbing force and torque created by the radiation
emitted from the Sun and it acts on both the orbit trajectory and on the attitude of the
satellites. In this simulation only the disturbing torque is taken into consideration and,
as explained in Sec.2.1, not the effect onto the orbit trajectory. The SRP originates from
the interaction between the EM radiation coming from the sun with the surfaces of the
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spacecraft.
In this Work, only the contribution from the Sun is considered, since the radiation coming
from the planet Earth is very small and can be considered irrelevant due to the high height
of the orbit (GEO).
The force of SRP disturbance has been modelled using the following equation[26]:

F i = −Fs

c
Ai

(
Ŝb · N̂Bi

)[
(1− ρs)ŜB +

(
ρs

(
Ŝb · N̂Bi

)
+

2

3
ρd

)
N̂Bi

]
(2.1)

Where Fs is the Solar Radiation (1358 [kW/h] at Earth’s position, while c is the speed
of light (3 108 [m

s
). ŜB is the position of the sun in the body frame, N̂Bi is the individual

area normalized vector and Ai is the area of the i-th surface. ρs is the specular reflectivity
coefficient, estimated to be 0.5, and ρd is the diffuse reflectivity coefficient, estimated to
be 0.1 for spacecraft body, and 0.8 for the solar panels[18, 25].

To create a correct model of the SRP, the illumination condition has been considered
for each surface, and the torque evaluated with a cross product between the lever arm
and the force. Since both spacecrafts are free to rotate, the lever arm changes over time.
To reflect this variation, the lever arm is defined as:

ri = AB/N ∗ AT
Btot/NrCM−cm1 + r′i (2.2)

In which r′i is the distance from the center of mass of the first body to the point of appli-
cation of the radiating pressure force, while the term AB/N ∗ AT

Btot/N allows to transform
the distance between CMtot and CM1 into the system of reference of the first body. The
same applies to the second body.
The Sun position has been evaluated in relation with the date of the docking, the 25TH of
February, which is date of the docking between MEV-1 and Intelsat 901. This allows to
consider also the eclipsing condition, which has been modeled as three-dimensional conic
shape, thus the conditions for a satellite to see a total eclipse are the same of the transit
as seen from a the apex of the shadow cone[26].

SRP during simulation To show the behaviour of the SRP disturbance along the
orbit, a plot of the torque generated by SRP over time is presented in Fig.2.1, both for
the controlling and the passive satellite.
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(a) SRP torque for first satellite
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(b) SRP torque for second satellite

Figure 2.1: SRP torque over time for both spacecrafts

2.3.2. Gravity Gradient

The Gravity Gradient (GG) is a disturbance torque generated by the interaction between
Earth’s gravity field and a non-symmetrical object of finite dimensions. The model used
is simplified and considers the Earth to be a perfect sphere.
The GG has been designed considering the whole Assembly. This allows to correctly
evaluate the disturbance equation for each satellite and avoid over or under estimate of
the disturbing torque.
The GG is defined as in the book[26]:

TGG =
µmtot

R2
S

(R̂S × CMtot3) +
3µ

R3
S

[R̂S × (JtotR̂S)] (2.3)

In which CMtot3 is the distance from the center of geometry of the Assembly to the
CMtot, while RS is the distance from the CM of Earth. To define the torque regarding
the first and second body, the properties of each reference frame have to be considered.
Considering the vector relations between the geometrical center and the Center of Mass of
each frame, and taking into account the definition of Center of Mass (CM), the equation
for the GG disturbance torque can be written for each body:T1GG = 1

2
µmtot

R2
S
(R̂S × CMtot1) +

3µ
R3

S
[R̂S × (J1cmR̂S)]

T2GG = 1
2
µmtot

R2
S
(R̂S × CMtot2) +

3µ
R3

S
[R̂S × (J2cmR̂S)]

(2.4)

The first term CMtot1 is the center of mass expressed in terms of AB/N reference frame and
CMtot2 in terms of AB2/N reference frame, while J1cm and J2cm are the inertia matrices of
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the first and second body, respectively, in the center of mass. The term 1/2 allows to not
over estimate the effects of the disturbing torque during the simulation.
In these equations, RS is the distance from the Earth, and is considered to be the same
for each frame, since the distance between frames and the distance from the Earth are of
different magnitude order. RS over time is defined as the matrix product between AB/L

and [1 0 0]T , and AB2/L with [1 0 0]T for the first and second satellite respectively.

GG during simulation To properly understand the impact of the Gravity Gradient
disturbance torque, two plots, one for each spacecraft, show the intensity of the disturbing
torque over time during the simulation is shown in Fig.2.2.
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Figure 2.2: GG torque over time for both spacecrafts

2.3.3. Magnetic Torque

The Magnetic Torque (MT) is a disturbance torque resulting from the interaction between
the residual magnetic field of the spacecraft and Earth’s magnetic field. Three primary
sources are usually identified for the residual magnetic field of the spacecraft but in the
Work only the magnetic moments are considered, since the other sources produce negli-
gible effects.
The Magnetic Torque is defined as the cross product between mmagn, which is the space-
craft magnetic moment and B is the magnetic field in the body frame of each satellite.
In Tab.2.2 the values of mmagn for each spacecraft are shown.
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Magnetic moments coefficients

MEV-1 mmagn1 [Am] Intelsat-901 mmagn2 [Am]

[0.01 0.05 0.01]T [0.01 0.05 0.01]T

Table 2.2: Magnetic moment for each spacecraft

The Magnetic Field of Earth is similar to the one generated from a dipole, inclined of 10°
from the axis of rotation, it is not a fixed field, as a matter of fact it slowly rotates and
changes its intensity over time. Hence, models and measures are continuously updated
to fit the variations, which are regulated by International Geomagnetic Reference Field
(IGRF). The magnetic field is modeled following the magnetic dipole approximation,
which can be considered precise for height above 7000 km. The dipole model used to
simulate the magnetic field is taken from the [26], and the coefficient are taken from the
IGRF 2020 model[20].

Magnetic Torque during simulation To properly understand the impact of the MT
disturbance, two plots, one for each spacecraft, show the intensity of the disturbing torque
over time during the simulation is shown in Fig.2.3.
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Figure 2.3: MT torque over time for both spacecrafts

2.3.4. Propellant Sloshing

Propellant sloshing is the disturbance torque generated by the surface oscillations of a fluid
in a partially filled tank resulting from angular acceleration of the spacecraft. Sloshing may
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persist a long time, due to the low damping from the tank walls. Moreover various factors
influence the behaviour of the torque such as the tank geometry, propellant properties
and the acceleration field.
The real dynamics of the sloshing inside the tanks of a spacecraft are very complex and
outside the purpose of this Work, hence a simplified model has been developed. The
effects from sloshing have been treated as the ones from a passive ring dampener, due to
the similarities between the systems, thus the dynamic of two ring dampeners were used
inside the simulation, one for each spacecraft. The sloshing mass for each spacecraft is
considered to have ring shape, with the CM centered as the geometrical centers of each
spacecraft and able to rotate only around the yaw axis(Z) of each spacecraft reference
frame.
To simulate the sloshing disturbance torque, it necessary to include the dynamics of the
ring dampener in the EoM, which are shown in Sec.3.2.2. It is possible to use the equation
of Euler-Lagrange and the definition of the Lagrangian, to define the kinetic energy T as:

T (θ̇r, θ̇l) =
1

2
Jrθ̇

2
r +

1

2
Jlθ̇

2
l (2.5)

Where Jr and Jl are the inertia of the ring dampeners of the first and second satellite,
respectively, θr and θl their DoF.The potential energy U accounts for the damping poten-
tial energy from the ring dampeners.

U(θ̇r, θ̇l) = Cd(θ̇r, θ̇l)

Cd(θ̇r, θ̇l) =
1
2
Cr(θ̇r − θ̇1)

T (θ̇r − θ̇1) +
1
2
Cl(θ̇l − θ̇2)

T (θ̇l − θ̇2)
(2.6)

In which Cr and Cl are the damping coefficients of each ring dampener. It is now possible
to write the EoM: Jrθ̈r = Cr(θ̇r − θ̇1)

Jlθ̈l = Cl(θ̇l − θ̇2)
(2.7)

The disturbing torque due to sloshing can then be identified as:Ms1 = Cr(θ̇1 − θ̇r)

Ms2 = Cl(θ̇l − θ̇2)
(2.8)

which can be included directly in the Mext for each body. In Tab.2.3 the values for the
properties related to the sloshing disturbance are presented.
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Sloshing parameters

Jr [Kgm2] Cr [Nm
s
] Jl [Kgm2] Cl [

Nm
s
]

1.46 30 1.04 30

Table 2.3: Sloshing parameters

Sloshing during the simulation To properly understand the impact of the sloshing
disturbance torque, two plots, one for each spacecraft, show the intensity of the disturbing
torque over time during the simulation in Fig.2.4.
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Figure 2.4: Sloshing torque over time for both spacecrafts

2.3.5. Numerical Simulation Options

In this Section, the Numerical Simulation Options (NSO) are disclosed regarding the
Numerical Integration method, the mathematical programming environment used to build
and run the simulation, as well as the specifications for the calculator used during the
simulation.

Calculator To carry out the simulation of the whole system, a Personal Computer (PC)
has been used. The PC specifications are reported in Tab.2.4.
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Calculator Specifications

Processor AMD FX-7500 Radeon R7, 10 Compute Cores 4C+6G 2.10 GHz

RAM Installed 8 Gb (6.93 Gb usable)

System type OS 64 bit based, Processor based on x64

Operating System Windows 10 Home, version 21H2

Table 2.4: Specifics of the PC used to develop and run the simulation

Mathematical Programming Environment The Mathematical Programming En-
vironment chosen to create and run the simulation are Matlab and Simulink, from Math-
works Company.
Specifically, the Matlab environment is used to generate the input data for the simulation,
to elaborate the numerical methods of NLP and to post-process the data into useful plots
present in this document.
The Simulink environment is used to properly run the simulations, as a matter of fact
the Simulink environment is more suited than the one of Matlab for complex simulations,
because it allows to simultaneously integrate different ODE systems. The version used to
design and simulate is the Matlab 2021b release.

Integration method The Dynamical systems used in this thesis are systems of Or-
dinary Differential Equations (ODE) from a numerical standpoint. To propagate the
behaviour of the ODE over time, numerical integration method are required.
Matlab and Simulink are programming language that come with several built-in function
for numerical integration, called ODE solver, being each one useful in different situations.
Different solvers have been tested to run the simulation, and ode45 is the final choice to
carry out the simulation. ode45 is adequate for nonstiff problems and provides a medium
accuracy in providing the results. In Tab.2.5 only the different settings from the standard
ones for ode45 are presented.

ode45 Specifications

Relative Tolerance 10−3

Absolute Tolerance 10−6

Zero Crossing Control Algorithm Adaptive

Number of Consecutive Zero Crossing 1000

Table 2.5: List of setting used for ode45
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In this chapter the model used to elaborate the system identification procedure, as well
as to simulate the dynamics is reported.

3.1. Modeling choices

The choice of the most suitable model is critical, since it influences the development
of the system identification procedure, as well as the results from the tests. Two main
approaches can be found, the first one being the rigid body model, and the second being
the structural model.

• Rigid Body Model: the deformation of the body are not accounted for, which
allows to treat the body with a lumped parameters approach, meaning that the
properties of a body are defined only by its mass, inertia matrix and CM position.
As result, the model provides a first approximation, which is simple to develop and
does not require extensive knowledge of the body.

• Structural Body Model: the deformation, natural frequency and natural modes
are taken into account during the analysis, together with the lumped characteristics
of mass, inertia matrix and position of the center of mass derived from the rigid
body model. This method allows for a more precise and complex approximation of
the behaviour of a real body, but requires the extensive knowledge of the spacecraft,
since each part has to be modeled following the structural type of each element
(beam, plate for instance).

Considering the issue of research of Sec.1.1, the rigid body model has been chosen for the
modeling of the problem for four main reasons:

1. The structural model depends on the data coming from the rigid body model, in-
creasing the priority of this latter model in system identification order.
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2. The creation of a proper structural model requires the extensive knowledge of the
second spacecraft, which is not available during the system identification.

3. To identify the structure, a distributed suite of sensors would be required all over
the Assembly as in [14], which, even if present, would not be available, since the
satellites cannot communicate between each other.

4. To include the effects of the mechanical link between the two satellites, the struc-
tural model is not required since it is possible to create a lumped parameters repre-
sentation, since structural elements and contact forces[7] can be treated as spring-
dampener systems, and be introduced inside the rigid body model.

3.2. Attitude Dynamical Model

In this section the Dynamical Models used both in the solution logic and during the
simulation are presented, both in terms of Equations of Motion (EoM) and data.
Two main dynamical models have been developed: the Single Body Model (SBM), which
treats the Assembly as a whole body, and a Double Body Model (DBM), which considers
the effects of two distinct satellites.
It is important to underline that throughout the simulation the SBM was only used to
define the reasoning behind some phases of the system identification procedure, while the
DBM has always been used to both simulate the dynamics and to elaborate the phases
of the procedure.

3.2.1. Single Body Model

The Single Body Model is the first approximation and a reduction of the original problem,
in fact the assembly of satellites is considered as a whole. This means that the assembly
is identified by a total inertia matrix Jtot and a single CM, defined as CMtot.
This simplification of the problem is valid only under certain assumptions:

• Rigid link: The mechanical link between satellites can be considered as rigid,
meaning that:

– Forces exerted by the controlling satellite induce very small deformations to
the Assembly, which can be considered negligible.

• Negligible Dynamics of Appendages: Effects from dynamics of Appendages
are negligible/non-existent:

– Appendages are treated as jointed to their main structure.
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Starting from the knowledge of the Inertia matrix of the first and second body, J1 and J2

respectively, by using the Hyugens-Steiner theorem it is possible to evaluate both inertia
matrices into the Assembly CM, defined as J1cm and J2cm respectively. To properly use the
Hyugens-Steiner theorem, the vector distance from CM1 and CM2 to CMtot is required,
hence the position of CMtot has to be evaluated using its definition. Then, the total
inertia matrix Jtot can be found as the sum of J1cm and J2cm.
To define the dynamical model, the Equations of Motion (EoM) of the SBM are required.
The EoM considered is the Euler equation:

Jtotθ̈tot = Jtotθ̇tot × θ̇tot +Mtot (3.1)

In which Mtot accounts for the external couples, such as disturbances and controlling
torque, and θtot is the DoF.

3.2.2. Double Body Model

The Double Body Model is a more refined approximation of the problem, in fact the con-
trolling and the passive satellite are considered as two different bodies and the mechanical
connection between them is modeled as a set of 3 rotational springs and 3 rotational damp-
eners, aligned with the principal axis of the body frame. The Assembly is treated as a
multi-body system and its dynamics have to be developed from the CM of the whole As-
sembly, identified as CMtot, thus J1cm and J2cm are used instead of J1 and J2. Moreover,
the DoF for which the dynamic is developed are θ1 and θ2 which are vector representing
the absolute rotation of the first and second satellite, respectively, around the principal
axis.
This Dynamical model is considered valid under some assumption:

• Negligible Relative Translation: The translation between the First and Second
Satellites is considered as negligible/non-existent.

– The relative position between CMtot, CM1 and CM2 is fixed over time.

• Negligible Dynamics of Appendages: Effects from dynamics of Appendages
are negligible/non-existent:

– Appendages are treated as jointed to their main structures
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The Dynamical model for the DBM can be found starting from the equation of Euler-
Lagrange and the definition of Lagrangian. The kinetic energy T is defined as:

T (θ̇1, θ̇2) =
1

2
J1cmθ̇

T
1 θ̇1 +

1

2
J2cmθ̇

T
2 θ̇2 (3.2)

The potential energy U is defined as the sum of the potential elastic energy V and potential
damping energy Cd:

U(θ1, θ̇1, θ2, θ̇2) = V (θ1, θ2) + Cd(θ̇1, θ̇2)

V (θ1, θ2) =
1
2
K(θ2 − θ1)

T (θ2 − θ1)

Cd(θ̇1, θ̇2) =
1
2
C(θ̇2 − θ̇1)

T (θ̇2 − θ̇1)

(3.3)

Then the EoM in tensorial form for the DBM can be evaluated:J1cmθ̈1 = J1cmθ̇1 × θ̇1 +K(θ2 − θ1) + C(θ̇2 − θ̇1) +Mc1 +Mext1

J2cmθ̈2 = J2cmθ̇2 × θ̇2 +K(θ1 − θ2) + C(θ̇1 − θ̇2) +Mext2

(3.4)

Inside the EoM the terms of Mext1 and Mext2 represent the disturbing torques on the
first and second satellite, while Mc1 represent the control torque acting on the controlling
satellite.
This dynamical model underlines properties and quality of the mechanical link expressed
in terms of elastic and damping properties, represented respectively by K and C inside
the equation.

3.2.3. Body Data

In this subsection the relevant data required to simulate the dynamical model are pre-
sented, together with the initial conditions considered and required for integration.
The Inertia matrices, referred to the CM of their respective bodies are defined as:

J1 =

15349.21 0.00 −39.04

0.00 2954.76 0.00

−39.04 0.00 15827.90

 and J2 =

14770.95 39.04 0.00

39.04 14526.33 0.00

0.00 0.00 4092.54

 (3.5)

The mass of each Satellite and the position of their CM with respect to the body frame,
is shown in Tab.3.1.
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Mass & CM position

Mass [kg] CM [m]

MEV-1 2326 [0.5 0.4 − 0.3]T

Intelsat 901 1972 [3.2 0.3 − 0.4]T

Table 3.1: Mass and position of CM of each Satellite

Applying the Hyugens-Steiner Theorem it is possible to evaluate J1cm and J2cm:

J1cm =

15359 132 93

132 6529 −4

93 −4 19402

 and J2cm =

14782 194 155

194 18742 −5

155 −5 8308

 (3.6)

Using the calculation shown in Sec.3.2.1 the CMtot and Jtot are evaluated and presented
in Tab.3.2.

Mass, CM position and Inertia Matrix

Mass [kg] CM [m] Inertia Matrix [kg m2]

4298 [1.73 0.35 − 0.35]T

30141 327 249

327 25271 −10

249 −10 27711


Table 3.2: Mass, position of CM and inertia matrix of the whole Assembly

The mechanical properties of the mechanical link have been chosen keeping in mind that a
generic link between satellites should be designed as rigid as possible, with high stiffness
as priority. As a matter of fact a very stiff link would allow to treat the Assembly of
satellites as a whole, simplifying the control laws required. Values used in the simulation
are shown in Tab.3.3.

Visco-elastic coefficients

Elastic Coefficient K [Nm
rad

] Damping Coefficient C [Nm s
rad

]

[1200000 700000 850000]T [90000 80000 110000]T

Table 3.3: Elastic and Damping coefficient
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Initial Conditions To properly carry out a full simulation, the initial values are re-
quired. The initial value chosen for each element of the Eq.3.4 are presented in Tab.3.4,
together with the initial Attitude matrix.

Initial values

θ1 [rad] [0 0 0]T

θ̇1 [ rad
s
] [0 0 0]T

θ2 [rad] [0 0 0]T

θ̇2 [ rad
s
] [0 0 0]T

AB/N

1 0 0

0 1 0

0 0 1


Table 3.4: Initial conditions for the Simulation

3.3. Unmodeled factors

The Work presented in this Thesis concentrates on the system identification, hence many
factors, which are usually included in a Attitude Determination & Control (ADCS) sim-
ulation are not kept into account. Factors such as:

• Sensors internal dynamics : there exist very different kind of sensors with a
wide range of accuracy and noise, together with a series of techniques to increase
precision and reduce noise. Avoiding the modeling of internal dynamics allows to
obtain general results applicable to a wider range of spacecrafts.

• Attitude determination algorithms : similarly to sensors internal dynamics,
many techniques are available to increase the accuracy and filter the noise, and
avoiding the selection of a certain method allows to obtain more general results
applicable to a wider range of spacecrafts.

• Actuators internal dynamics : different kinds of actuators are available in the
market, and each one has different internal dynamics. Considering the torque acting
on the spacecraft as direct product of the control, allows to create a more general
model applicable on a wider range of spacecrafts. The internal dynamics of the
actuator has been considered only when it impacted or produced interesting results
for the system identification procedure or to support reasoning and choices made.
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Identification Procedure

In this chapter the system identification procedure found is presented.

4.1. System Identification approach

The System Identification is a branch of science which focuses on finding a suitable model
structure to build mathematical models, as well as to design experiments to fit a certain
model. Three main approaches can be identified:

• Black Box Model: no insight is available of the internal dynamics, and a flexible
dynamical model structure is chosen to fit the data.

• Gray Box Model: some insight is available for part of the internal dynamics, but
several parameters remain to be determined from data.

• White Box Model: the internal dynamics is perfectly known, and is constructed
from first principles.

Considering that the basic rule in estimation is "not to estimate what you already know" [24],
and that the dynamical model of the attitude of a spacecraft is known and reported in
Sec.3.2.1 and Sec.3.2.2, a white box model has been chosen as approach for the system
identification.
Considering the communities around the core of system identification[17], to set the al-
gorithms and make critical choices during the development of the Work, the procedure
presented onward belongs to the family of "Fitting ODE-coefficients". In fact this fam-
ily of algorithms takes advantage of the physical modeling, involving numerical methods
for the solution of Ordinary Differential Equations systems, which well fit the white box
approach selected for the system identification approach.
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4.2. Introduction to the Solution Logic

As stated in Ch.1, the Solution Logic is a procedure divided in phases capable to identify
the mechanical and mass properties of a system of already docked satellites. The workflow
of the procedure is presented into the next paragraph, and is here shortly summed up. The
idea behind the procedure, is to firstly identify the mass properties of the whole assembly
by using a simplified dynamical model (SBM), then the properties of the connection
between satellites are retrieved from using a more complex dynamical model (DBM).
This can be done given the full knowledge of the first satellite, as specified in Sec.1.1.

Figure 4.1: Solution Logic workflow

Workflow The procedure is divided in 5 phases, the first three phases follow the hy-
potheses of the reduced problem and their results are used in the remaining fourth and
fifth phase, which follow the complex problem model. The workflow starts with a set
of small perturbations aimed at generating a coarse estimation of the assembly inertia
matrix Jtot, while in the second phase a more precise estimation of the inertia matrix is
retrieved starting from the coarse value. With the accurate knowledge of Jtot, it is possible
to evaluate the position of the CM and the total mass of the assembly by executing two
angular accelerations involving thrusters. The knowledge of the CM and Jtot allows to
find the individual inertia matrices of the spacecrafts, and the mtot can be used to find the
m2(mass of the second body), CM2 (center of mass of the second body) and J2 (Inertia
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Matrix of the second body in its own CM2). At this point it is possible to define a final
test to retrieve the characteristics of stiffness K and damping C related to the mechanical
link. The workflow is schematized in Fig.4.1.

4.3. Reduced Problem

The Reduced Problem Solution Logic, considers the Assembly as a whole spacecraft and
uses the Single Body Model as dynamical model reported in Sec.3.2.1. Moreover, due to
the hypothesis behind the SBM, the angular velocity sampled from the first satellite can
be considered as the angular velocity of the whole satellite.

4.3.1. Phase I - Coarse Inertia

In the first phase of the system identification procedure, the Assembly is perturbed by
small torques. As a matter of fact, if the rotation velocity are small enough, the term
Jtotwtot×wtot inside Eq.3.1, which is a highly non linear term, becomes negligible and the
EoM of the Assembly change from Eq.3.1 to:

Jtotẇtot = Mtot (4.1)

The Eq.4.1 presents linearity between angular accelerations ẇtot and the Torques applied
Mtot to the Assembly. It can be considered that if the acceleration is linear, then there
exist a linearity between acceleration and velocity, thus the torque applied and the angular
velocity become linearly dependent:

wtot = J−1
totMtot∆t+ wtot0 (4.2)

Which is the kinematic equation for angular motion and wtot0 is the initial angular velocity.
Since the system can be defined as linear, it is possible to accelerate and brake the system,
if the accelerating and braking torque are equal, contrary and applied for the same amount
of time.
Thanks to this property, it is possible to create a set of 3 tests (one for each axis), in
which a single torque on a single axis can be exerted at a time, and by evaluating the final
angular velocity on the three axis, it is possible to determine the various components of
Jtot. If the initial angular velocity wtot0 is zero, the Eq.4.2 can be rewritten in the form:

J−1
tot = (Mtot∆t)−1wtot (4.3)
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Using the final value of angular velocity, the torque and time at the end of each acceleration
test, it is possible to evaluate the matrix of coefficients of J−1

tot . Considering that the J−1
tot

matrix is symmetric and full rank, it is possible to evaluate the inverse Jtot.

4.3.2. Phase II - Refined Inertia

In the second phase of the system identification procedure, a more complex and accurate
analysis is carried out, with the aim of increasing the estimation precision of the inertia
matrix Jtot. Differently from the phase I, the phase II takes advantage of the non-linearity
of the dynamical system by applying a set of constant torques to the Assembly. This
makes the term Jtotwtot × wtot inside Eq.3.1 more relevant, which is the main origin of
non-linearities in the system. During the acceleration, the angular velocity profile is
sampled and taken as parameter to be used inside the algorithm.
The Algorithm used is called "Inertia Refiner", uses a NLP numerical method with the
inertia matrix Jtot as optimization parameter and the coarse inertia matrix from the simple
tests as initial guess. The cost function is defined as the error between the sampled and
propagated profile of angular velocity during the acceleration. Then the cost function
is elaborated by a numerical method, specifically a constrained optimizer, to enforce the
symmetry property of the inertia matrix. In this way the optimizer iterates the inertia
matrix to better fit the velocity profile, this allows to filter out the disturbances and
improve the knowledge of the inertia matrix.
To implement the numerical method, Matlab offers different built-in functions to solve
NLP problems. Since both objective function and constrains are continuous function with
continuous first derivative, fmincon, a gradient-based numerical method, has been chosen
to carry out the optimization. Specifically fmincon can use different algorithms, to adapt
itself better to the problem, and interior-point was selected, since it can handle large,
sparse problems and satisfy the boundaries at every iteration. The Inertia Refiner pseudo
algorithm is presented in Alg.4.1.
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Algorithm 4.1 Inertia Refiner
1: Acceleration
2: Sampling of angular velocity
3: Use of the Constrained Optimizer
4: while Costfun(Jtot) >= Tolerance do
5: Generate new Jtot

6: Check constrains are satisfied
7: Propagation of angular velocity based on new Jtot

8: Error evaluation of angular velocity profile
9: end while

Once the refined version of the inertia matrix is obtained, the system can be stopped by
using a detumbling control law.

4.3.3. Phase III - Center of Mass

While the inertia matrix impacts every aspect of the angular velocity, the position of the
Center of Mass (CM) of the spacecraft defines the torque deriving from the force applied
to the spacecraft. As a matter of fact, the torque acting on a mechanical system is defined
as the cross product between the lever arm and the force vector.
To estimate the position of the CM, it is then required to perform a test involving forces
to exploit the CM properties. On a spacecraft, the most suitable actuator to carry out
such test are the thrusters from the ADCS, which can either be used to directly control
the attitude of the spacecraft or help unloading the wheels[26]. Using the same reasoning
of the first phase of the procedure, it is possible to perturb the Assembly and keep a linear
relation between torque and angular velocity as in Eq.4.2, and in this case, this property
can be used to evaluate the torque applied to the system, which can be used to retrieve
the lever arm between the CM and the position of the thruster.

Mtot = (J−1
tot∆t)−1wtot (4.4)

Due to the nature of the cross product, even with the knowledge of the torque and force
applied, it is not possible to recover the lever arm, if the force is oriented in a generic
direction. However, if the force applied is parallel to one of the principal axis, and it
becomes possible to evaluate the lever arm of the two remaining axis. As an example, if
a thruster is fired parallel to axis X, the knowledge of the lever arm in terms of Y and Z
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coordinate becomes available: Mx

My

Mz

 =

 0

rz Fx

−ry Fx

 (4.5)

Due to this characteristic, two tests, with different thrusters, placed in the same position,
firing in two different direction, are required to fully determine the lever arm between the
CM and the thruster.
Once the lever arm is known, it is possible to evaluate the position of CM. Since the
position of the thrusters is known (belonging to the first body), retrieving the position of
the CM is a matter of vector sum:

CMtot = rth − rcm−th (4.6)

Where rth is the position of the thruster from the center of the reference frame.
It must be noted that to perform such tests, Momentum Exchange Device (MED) are
required to brake the system at the end of each acceleration, since it is not possible to
directly control the resulting torque from thrusters without the knowledge of the CM.
This means that the momentum generated by the tests is loaded onto the MED during
braking. This increases the risks related to momentum saturation of the MED and the
consequential loss of functionality of the ADCS which can result in harming the mission’s
success.

Real torque As previously discussed in Sec.2.3.1, the lever arm during the simulation
of the real system is considered as in Eq.2.2, which can be rewritten as:

ri = AB/N ∗ AT
Btot/NrCM−cm1 + rth (4.7)

Which allows to consider the relative rotation between the Assembly reference frame and
the one of the bodies.

4.4. Complex Problem

The Complex Problem Solution Logic considers the Assembly as two different bodies, the
first and second satellite, and uses the Double Body Model as dynamical model, which
is reported in Sec.3.2.2. The objective of this section of Solution Logic is to identify the
characteristics of the mechanical link between the two satellites in terms of stiffness and
damping.
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4.4.1. Phase IV - Docked spacecrafts properties

Once the mass properties of the whole Assembly are known, it is possible to retrieve the
mass properties of each satellite. First of all it is possible to evaluate the J1cm (inertia
matrix of first satellite in CMtot), with the Hyugen-Steiner theorem, since the knowledge
of m1, rcm1−cm and J1 are known. Then it is possible to calculate J2cm, which is the Inertia
Matrix of the second body positioned in CMtot, as the difference between Jtot and J1cm.
Specifically J1cm and J2cm are required to evaluate the Double Body Model (DBM) in the
next phase of the procedure, because mechanical systems have to be developed starting
from the CM of the whole Assembly, in this case CMtot.

4.4.2. Second satellite system identification

Additional information about the mass properties of the second body, such as m2, CM2

and J2, can be retrieved. These are defined as additional information, since they are
not required to simulate/control the whole Assembly. Considering the third phase of
the system identification procedure, the linear acceleration during the thruster firing is
sampled by the on-board accelerometers, which are usually present in the IMU, together
with gyroscopes, which are required for the angular velocity measures.
From the second principle of dynamics it is known that the force is proportional to the
mass times the acceleration.
The acceleration is given from the IMU, while the Force is either known from the specifics
of the thrusters or from the throttling level selected, thus it is possible to recover the mtot.
Then the mass of the second satellite, m2, is found as the difference between mtot and m1.
Once m2 is found, it is possible to use the definition of center of mass and retrieve CM2 :

CM2 =
CMtotmtot − CM1m1

m2

(4.8)

It is now possible to apply the Hyugens-Steiner theorem and retrieve J2:

J2 = J2cm−m2[(Rcm−cm2 ·Rcm−cm2)I −Rcm−cm2 ⊗Rcm−cm2] (4.9)

It is important to point out that this test is just speculative and not evaluated inside
the simulator. As a matter of fact inside the simulation the acceleration would have
been evaluated with the second principle of the dynamics, hence the total mass would
have ended up in a perfect result each time, rendering useless the need for a simulation.
Moreover the data obtained in this way is not relevant for the mass properties of the
docked spacecrafts, which is the objective of this work.
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4.4.3. Phase V - Visco-Elastic Fitting

The fifth phase of the system identification procedure is similar to the second phase, pre-
sented in Sec.4.3.2. As a matter of fact, it takes advantage of the non-linearity coming
from both dynamical system and the mechanical link. Using a set of constant but different
torques it is possible to make the terms J1cmθ̇1× θ̇1, J2cmθ̇2× θ̇2, K(θ2−θ1) and C(θ̇2− θ̇1)

more relevant in Eq.3.4, which are the main source of non-linearities in the DBM.

Before the start of the acceleration, the spacecraft has to be stopped, in this way the
initial condition for both spacecraft are know. Specifically, the difference in angular ve-
locity, which regulates viscous phenomena, and the angular difference, which regulates the
elastic phenomena, between the two satellites can be assumed as zero. This is fundamen-
tal, since no information is available on the state of the second satellite. The Assembly of
spacecraft is then accelerated by a set of torques, and the angular velocity profile of the
first satellite is sampled and taken as parameter to be used inside the Algorithm.

The Algorithm is called "Visco-Elastic Fitting", and uses a numerical method with the
elastic parameter K and viscous parameter C as optimization variable. Similarly to the
second phase, the cost function is defined as the error between the sampled and the prop-
agated profile of angular velocity of first body during the acceleration. To be specific, the
propagation uses the DBM, using Eq.3.4 to simulate the dynamics. The cost function
is optimized by a numerical method, in this case a nonlinear least-squares solver which
allows to evaluate the error along time. This algorithm allows to iterate different times
the values of K and C, resulting in adequate fitting of the velocity profile of the first
body.
To implement the numerical method, the Matlab built-in functions have been used, specif-
ically lsqnonlin, which allows to solve nonlinear least-squares curve fitting problems, run-
ning trust-region-reflective as algorithm.
The "Visco-Elastic Fitting" pseudo algorithm is presented in Alg.4.2.
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Algorithm 4.2 Visco-elastic Fitting
1: Acceleration
2: Sampling of angular velocity of first body
3: Use of the Least squares Optimizer
4: while Costfun(C & K) >= Tolerance do
5: Generate new C & K

6: Propagation of angular velocity based on new C & K

7: Error evaluation of angular velocity profile of first body
8: end while

During the development of the Work, some peculiarities have arisen while researching this
algorithm, which define the field of application of this method, specifically:

Rigid Body Threshold : The stiffness and damping coefficients must be compatible
with the order of magnitude of the inertia matrix. Otherwise the Optimizer cannot
converge to a solution.
Compatibility is intended as belonging to a neighborhood with roughly the size of 3
orders of magnitude around the diagonal Inertia Matrix values. The neighborhood limit
is defined as the Rigid Body Threshold, since beyond a certain threshold of values of K
and/or C the system response does not change significantly. Specifically, this is due to
the fact that the system behaves like a whole rigid body. In return, the small difference in
system response makes the optimizer unable to converge, reducing its sensibility to error.

Initial guess not required : It is not required to produce a reasonable initial guess
for K and C for the optimizer to converge, but it is necessary that the initial guess
respects the condition of rigid body threshold. As a matter of fact, the initial guess for
the optimizer can be taken from the Jtot main diagonal to speed up the optimizer process.
This allows to avoid extra costs of a new set of tests or specific sensors to generate the
initial guess.
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Results of the Procedure

In this chapter the simulation and results obtained from the system identification proce-
dure of Ch.4 are presented and analyzed together with the choices made when performing
the tests. For each test the results coming from the ideal case, without disturbances,
together with the ones from the real case, typical disturbances of GEO, are presented.
To prove the effectiveness of the procedure, an additional simulation has been carried
out considering the environmental disturbances in a MEO and presented alongside the
main results. As a matter of fact, in the GEO environment, some disturbing torques
are reduced due to the greater height from the surface of planet Earth. For the MEO, a
semi-major axis of 1500 km has been considered, while the remaining orbital parameters
are unchanged.

5.1. Phase I - Coarse Inertia

The estimation of the inertia matrix for the whole assembly requires three tests to be
performed, one for each axis. To correctly perform these tests, some parameters such as
controlling torque and acceleration time have to be tuned to improve the quality of the
results. Specifically:

Torque The torque applied to the assembly by the first satellite, shall be some order of
magnitude higher than the order of magnitude of the disturbances, in this way the angular
velocity at the end of acceleration can be considered as direct result of the controlling
action, while the contribution from the disturbing torque becomes negligible. At the same
time, using a greater torque increases the risk of exciting non-linearities either from the
dynamics or either from the visco-elastic vibration of the mechanical link. Considering
these upper and lower limits, the value of 1 Nm has been chosen for the control torque
during each test.
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Acceleration Time Similarly to the torque, the acceleration time has upper and lower
limits. As lower limit, the acceleration time shall last for an amount of time compatible
with the disturbing and controlling torques, such that the angular velocity can be con-
sidered as direct result of the controlling action. On the contrary, non-linearities from
dynamics can arise over time, thus the acceleration time shall be short enough to avoid
them. Given these limits, a good compromise for acceleration time has been found as 10 s.
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Figure 5.1: Control torque over time for
Phase I - Coarse Inertia

Before showing the final results of the
test procedure, the torque profile used for
every simulation is presented in Fig.5.1,
while the angular velocity over time for
GEO and MEO cases are shown in Fig.5.2.
Angular velocity profile in absence of dis-
turbances is not show since it is too similar
to the one of the GEO case, and no major
difference are present.
It is interesting to notice the linearity
between the torque and angular veloc-
ity, which validates the solution logic of
Sec.4.3.1. In Fig.5.2b it is possible to eval-
uate the impact of the disturbances dur-

ing the braking phase and see that they impact the ability of the system to reach zero
angular velocity and that error gets accumulated over time and it is not rejected between
accelerations.
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Figure 5.2: Angular velocity over time for Phase I - Coarse Inertia
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The final results of Phase I - Coarse Inertia are presented in Tab.5.1. To appreciate the
overall difference with the presence of disturbances, the error has been evaluated in three
ways:

1. Plain Error: Plain difference between the original and estimated inertia matrix

2. Diagonal Error: Norm of the diagonal elements of the Plain Error matrix

3. Extradiagonal Error: Norm of the extradiagonal elements of the Plain Error
matrix

Inertia Matrix results

Inertia
Matrix [Kgm2]

Plain
Difference [Kgm2]

Diagonal
Error
[Kgm2]

Extra-
Diagonal
Error
[Kgm2]

Without
Disturbances

30141 326 249

326 25271 −10

249 −10 27711


0.008 0.303 0.012

0.303 0.585 −0.47

0.012 −0.47 0.001

 0.5 0.55

With GEO
Disturbances

30141 329 247

329 25277 −31

247 −31 27674


 0.12 −2.03 1.40

−2.03 −5.6 20.9

1.40 20.9 36.62

 37.04 21.04

With MEO
Disturbances

30143 319 240

319 25281 −634

240 −634 26590


−2.03 7.45 8.46

7.45 −9.51 −623

8.46 −623 1120

 1120 623.7

Table 5.1: Results from Phase I - Coarse Inertia

Considering these results, there is a clear relation between the environmental disturbances
level and the accuracy of the solution. Considering the plain difference, it is possible to
note that as the disturbances increase in magnitude, the error on the estimation of the
Izz and Iyz component increases significantly, and drive the rise of the diagonal and extra-
diagonal error. The origin of this behaviour can be found considering Fig.5.2b, where the
starting angular velocity for the third acceleration, which is around the z-axis, is not zero
due to the presence of disturbances.
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5.2. Phase II - Refined Inertia

The high quality estimation of the inertia matrix for the whole assembly requires a single
test, which exploits the non-linear components of the SBM dynamics, and to run the
Inertia Refiner algorithm. Both test and algorithm require some tuning to reach optimal
results such as torque selection, acceleration time, sampling time and algorithm precision.

Torque Selection The torque applied to the assembly shall make more relevant the
dynamical non-linearity, such as Jtotwtot × wtot, while avoiding the non-linearity coming
from the deformation of the mechanical link. A good compromise between these two
characteristics has been found by considering a set of different torques in the same range
of the one from the phase I of the system identification procedure, but simultaneously
applied to each axe. Thus the torque chosen is T = [1 2 3]T Nm.

Acceleration Time The acceleration time shall be chosen considering that non-linearity
can arise over time during an acceleration, thus an increased acceleration time can allow
for a more non-linear behaviour. On the other hand, longer acceleration time means a
greater number of samples of angular velocity, accordingly to the sample time, which can
result in either a stiffer problem to be solved by the algorithm or either a waste of time,
if the samples are discarded because they are more than the required. Considering these
factors, an acceleration time of 20 s has been chosen for this test.

Sample Time The sample time of the angular velocity has to be chosen considering
the Shannon-Nyquist theorem as lower limit, to avoid aliasing and loss of information,
while the number of samples to collect is the upper limit. To respect the Shannon-Nyquist
theorem, the knowledge of the maximum frequency of the angular velocity is required,
unfortunately the maximum frequency is dependant on both velocity and inertia matrix
at each time, thus calculating a precise frequency may not be convenient. Then sample
frequency can be taken considering that during the acceleration, the system starts from
a linear response, with zero max frequency, to a non-linear response, with a certain max-
imum frequency, meaning that the maximum frequency increases over time, and higher
the angular velocity, higher the maximum frequency. Considering these evaluations, a
value of 5 Hz was considered as sampling frequency, hence a 0.2 s sample time.

Algorithm Precision For the algorithm precision, the options of the constrained opti-
mizer fmincon were set, together with the solver options for the propagation. For fmincon
a number of 103 maximum function evaluation and a step tolerance of 10−8 were consid-
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ered, to increase the accuracy and to reduce the time required. For ode45, which is the
solver to propagate the dynamics, a relative tolerance of 10−3 and an absolute tolerance
of 10−6 were chosen. Moreover to speed up and improve the optimizer, the initial guess
inertia matrix was rendered dimensionless.
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Figure 5.3: Control Torque and Algorithmic error for Phase II - Refined Inertia

To better analyze the outcome of this test, in Fig.5.3a the torque used to accelerate the
system is shown, while in Fig.5.4 the angular velocity profile during the acceleration is
presented for GEO case, since the differences in between GEO and MEO case are not sig-
nificant. Moreover, to show the capabilities of the Inertia Refiner algorithm, in Fig.5.3b
the logarithmic error between the sampled and propagated angular velocity is presented.
The small logarithmic error suggests that the optimizer is able to fit the measured angular
velocity profile, which underlines the dependency between the quality of the velocity pro-
file given in input to the algorithm and the resulting error in estimation. Moreover, it can
be seen that the logarithmic error for the z axis is some order of magnitude greater than
the one of x axis, which is an expected behaviour.Two parallel effect have to be consid-
ered. In fact, the sloshing mass is positioned on the z-axis, and considering the dynamics,
it receives more torque during the acceleration, which results in a higher angular velocity
with respect to the other axis, since the diagonal terms of the inertia matrix are similar
in order of magnitude. An higher angular velocity means an higher evolution rate for the
dynamical system, which is directly related to the increase in error during a numerical
propagation, which explains the difference in order of magnitude of the error.
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Figure 5.4: Angular velocity over time for Phase II - Refined Inertia

The final results of Phase II - Refined Inertia are presented in Tab.5.2. As in the previ-
ous Section, the error has been evaluated in three ways, plain error, diagonal error and
extradiagonal error.

Inertia Matrix results

Inertia
Matrix [Kgm2]

Plain
Difference [Kgm2]

Diagonal
Error
[Kgm2]

Extra-
Diagonal
Error
[Kgm2]

Without
Disturbances

30142 327 249

327 25271 −10

249 −10 27711


−0.055 0.12 −0.01

0.12 0.47 −0.37

−0.01 −0.37 0.3

 0.56 0.4

With GEO
Disturbances

30141 326 250

326 25271 −9

250 −9 27710


0.6128 1.27 −1.06

1.27 0.37 −1.30

−1.06 −1.30 1.15

 1.36 2.11

With MEO
Disturbances

30072 317 277

317 25276 −12

277 −12 27635


69.77 9.75 −27.9

9.75 −3.79 1.28

−27.9 1.275 76.21

 103.4 29.53

Table 5.2: Results from Phase II - Refined Inertia

By comparing these results with the one in Tab.5.1, it is possible to assess the capability
and utility of this algorithm. Considering the diagonal and extra-diagonal error, it can be
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seen that the Inertia Refiner algorithm is capable to filter out the environmental distur-
bance affecting the spacecraft and to significantly improve the overall estimation of the
inertia matrix.
On the other side, considering the plain difference error, it can be noticed that the error
is more spread out between the single elements of the inertia matrix, meaning that the
accuracy in estimation for the singular element may decrease after the refinement pro-
cedure. This is an effect produced by the nature of the algorithm, which considers the
effects from the disturbing torque as part of the inertia matrix.

5.3. Phase III - Center of Mass

To estimate the position of the CM, two tests are required. The third phase shares not
only the reasoning of linearity with the first phase of the system identification procedure,
but also some parameters that impact the quality of the solution found, such as the
thruster torque and the acceleration time.

Thruster Torque The torque by itself needs to be chosen by considering the limita-
tion presented in Sec.5.1. As a matter of fact the controlling torque is required to be
some orders of magnitude greater than the disturbing torques, making negligible their
contribution to the final angular velocity, and at the same time a too intense torque may
excite dynamical and visco-elastic non-linearity. For the thruster torque it is not possible
to determine the relation between the torque and the force of the thruster without the
knowledge of the CM, and some critical evaluations have to be made. If the detumbling
process, which is executed by exchanging angular momentum with MED, is taken into
consideration together with the notion that fuel is very precious and limited during the
mission, the best choice for the thruster force is to select a small force if the thrusters are
throttable, or either the smallest thruster force available from the ADCS engines. Two
acceleration are required, and two force vector of F1 = [0.1 0 0]T and F2 = [0 0.1 0]T have
been chosen for the first and second acceleration, respectively.

Acceleration Time The acceleration time choice follows closely the considerations
stated in Sec.5.1, with an upper and lower limit. Considering the balance between con-
trolling and disturbing torques, it is required to choose an acceleration time value that
allows to consider the disturbing torque as negligible in determining the final angular
velocity. As upper limit, it is necessary to consider that dynamical non-linearities may
arise over time. Considering these upper and lower limits, a time of 10 s has been chosen
for acceleration time for each acceleration.
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Figure 5.5: Control torque over time for
Phase III - Center of Mass

To properly evaluate the outcome of the
tests procedure, the angular velocities for
GEO and MEO cases are shown in Fig.5.6.
Since the torque behaviour during these
tests is not known beforehand, a plot of
its profile is presented in Fig.5.5.
It is important to notice the linearity
between angular velocity and controlling
torque, since two torques are applied si-
multaneously in each test, meaning that
the gyroscopic term inside the EoM is
small enough to be negligible and validat-
ing the reasoning of Sec.4.3.1.

Comparing Fig.5.6 with Fig.5.2 for the MEO case, it is possible to ascertain the reduced
impact of the disturbing torque due to the fact that the spacecraft uses a detumbling con-
trol law during the braking phases, with the refined inertia matrix as control gain. This
allows the assembly to reach zero angular velocity and avoid the buildup error phenomena
that impacts the estimation accuracy of the coarse inertia matrix.
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Figure 5.6: Angular velocity over time for Phase III - Center of Mass

The final results from Phase III - Center of Mass are presented in Tab.5.3. Results are
presented considering the final value outcome, the plain error between the resulting value
and the original value, as norm of the error vector, and lastly by relative error as fraction
between the error and the norm of the original value. While considering these results, it
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is important to keep in mind that the precision of the final value is also determined by
the precision of the inertia matrix Jtot calulated by the previous tests.

Center of Mass results

Center of
Mass [m]

Plain
Error [m]

Absolute
Error
[m]

Relative
Error
[−]

Without
Disturbances

[1.74 0.35 −0.35]T [−0.008 0.001 0.01]T 0.01 2.9%

With GEO
Disturbances

[1.74 0.36 −0.36]T [0.003 − 0.002 0.009]T 0.01 2.7%

With MEO
Disturbances

[1.64 0.46 −0.36]T [0.1 − 0.1 0.01]T 0.14 29.6%

Table 5.3: Results from Simple tests - Center of Mass

Comparing the results in estimation of the center of mass position it can be noted that
the error does not increase between the without disturbance and the GEO cases, while
between the GEO and MEO cases the accuracy decreases as the environmental distur-
bances increase. The loss of CM position accuracy is not only connected to the increase
in disturbance torques, but can be mainly linked to the accuracy of the inertia matrix
estimation and not due to the increase interference from the disturbances. This relation
can be explained taking into consideration the angular velocity in Fig.5.6, where a very
similar angular velocity is reached at the end of the acceleration, meaning that the loss
in accuracy is only partially linked to the acting disturbances during the test.

5.4. Phase IV - Docked spacecrafts properties

The fourth phase of the system identification procedure is a mathematical one, since only
the values J1cm and J2cm are being evaluated, and are results of the estimation of the
inertia matrix and CM position. In Tab.5.4 and in Tab.5.5 the results for J1cm and J2cm

are presented, respectively.
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Inertia Matrix results for first body

Inertia
Matrix [Kgm2]

Plain
Difference [Kgm2]

Diagonal
Error
[Kgm2]

Extra-
Diagonal
Error
[Kgm2]

Without
Disturbances

15369 136 122

136 6536 −6

122 −6 19410


 −2.6 −3.8 −28.8

−3.8 −7 1.2

−28.8 1.2 −5

 9 29

With GEO
Disturbances

15360 126 119

126 6515 −5.6

119 −5.6 19390


 −1.7 6.4 −25.8

6.4 13.8 0.7

−25.8 0.7 16.32

 21.4 26.6

With MEO
Disturbances

15360 −147 121

−147 5970 7.8

121 7.8 18840


−5.9 280 −28

280 560 −12.7

−28 −12.7 560

 792 281.3

Table 5.4: Estimation of the inertia matrix J1cm

Inertia Matrix results for second body

Inertia
Matrix [Kgm2]

Plain
Difference [Kgm2]

Diagonal
Error
[Kgm2]

Extra-
Diagonal
Error
[Kgm2]

Without
Disturbances

14780 191 127

191 18730 −4

127 −4 8303


 2.6 3.9 28.7

3.9 7.5 −1.6

28.7 −1.6 5.3

 9.5 29

With GEO
Disturbances

14780 200 131.2

200 18760 −3.8

131 −3.8 8324


 2.3 −5.1 24.7

−5.1 −13.4 −2

24.7 −2 −15

 20.35 25.35

With MEO
Disturbances

14710 465 156

465 19310 −19.8

156 −19.8 8793


 75.7 −270 −0.12

−270 −563 14

−0.12 14 −485

 747 270

Table 5.5: Estimation of the inertia matrix J2cm

It is interesting to note that the error in each inertia matrix is higher than the estimation of
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the whole inertia matrix, and moreover, the error shows a symmetrical behaviour between
J1cm and J2cm. Both effects are caused by the estimation of the position of the CM, which
shows the great impact in accuracy of estimation for each case. As expected, the error
increases with the presence of environmental disturbance torque, following the trend of
the inertia matrix and the center of mass.
The properties of the second satellite are not here reported, as discussed in Sec.4.4.2. As
a matter of fact, the measure of the total mass would be always perfect, and thus the final
results on the identification of the second body would only depend on the estimation of
the inertia matrix and CM position of the whole Assembly, as J1cm and J2cm are.

5.5. Phase V - Visco-Elastic Fitting

The estimation of the visco-elastic coefficients requires a single test that makes use of
the non-linearities coming from both dynamics and the visco-elastic mechanical link be-
tween the two satellites. Similarly to Sec.5.2, torque, acceleration time, sample time and
algorithm precision are parameters to that can be tuned to reach optimal results.

Torque To select a proper torque, it is necessary to consider that both dynamical non-
linearities, such as J1cmθ̇1× θ̇1 and J2cmθ̇2× θ̇2, and visco-elastic non-linearities, K(θ1−θ2)

and C(θ̇1− θ̇2) , have to become more relevant inside the EoM. Considering the algorithm
and the propagation inside the optimizer, a great torque results in a reduction of the
precision of the propagation and an increase of the computational burden. Moreover the
limits in torque output from actuators have to be taken into account. To respect these
characteristics, a set of different torques simultaneously applied to each axe in a range
higher than the one used in the previous tests was considered. The final choice for the
torque is T = [10 20 30] Nm.

Acceleration Time To choose the acceleration time, it is important to consider that
dynamical non-linearity may arise over time, while the visco-elastic ones are more relevant
at the beginning of the acceleration, and may decrease if the acceleration is constant.
Moreover, the acceleration time regulates the number of samples taken, if the sample
time is set. This may result in an excessive or reduced sample size, which may impact the
performance and results of the algorithm, or may result in a waste of time if the excess
samples are discarded. Given these factors, an acceleration time of 10 s was chosen.

Sample Time The sample time of the angular velocity has to be chosen considering
the Shannon-Nyquist theorem, to avoid aliasing and loss of information, and the number
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of samples to collect is the upper limit. The Shannon-Nyquist theorem requires the
knowledge of the maximum frequency of the angular velocity oscillations. This maximum
frequency is dependant on both the gyroscopic term and the visco-elastic properties of
the mechanical link. Calculating a precise frequency may not be convenient since the
oscillations coming from the visco-elastic components are dependant from K and C, which
are yet to be found. A consideration can be made, from the conditions given by the
problem. If the values of K are in a neighborhood of three orders of magnitude around
the values of Jtot and recalling the equation of the proper frequency:

wn =

√
K

Jtot
(5.1)

Where wn is the natural frequency, the ratio K
J

shall be around 102 Hz, meaning that the
natural frequency shall less than 101 Hz. Considering these evaluations, a value of 10 Hz
was considered as sampling frequency, hence a 0.1 s sample time.

Algorithm Precision To set the algorithm precision, both options for the non-linear
least-squares curve fitting lsqnonlin and the solver to propagate the system ode45 are set.
For lsqnonlin the number of maximum function evaluations has been set as 103, the step
tolerance of 10−5, optimality tolerace of 10−14, function tolerance of 10−10 and a number
of maximum iterations of 30, which help increase the precision and reduce computational
time. For ode45 a relative tolerance of 10−3 and an absolute tolerance of 10−6 have been
set. To speed up and improve the optimizer, the initial guess was taken as the major
value inside Jtot which was rendered dimensionless.

To better analyze the outcome of this test, in Fig.5.7a the Torque used to accelerate
the system during the test is shown, while in Fig.5.8 the angular velocity profile dur-
ing the acceleration is presented for GEO cases, since the difference between GEO and
MEO are not significant. Moreover, to show the capabilities of the Visco-Elastic Fitter
algorithm, in Fig.5.7b the logarithmic error between the sampled and propagated angular
velocity is presented.
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Figure 5.7: Control Torque and Algorithmic Error for Phase V - Visco-Elastic Fitting

Considering the logarithmic error, it can be verified that the algorithm is able to fit the
angular velocity profile in input. Specifically it can be seen that the error at the beginning
of the profile is noisy, which suggests the predominance of visco-elastic effects which are
associated with the beginning of the step input torque. The error then smooths out during
the rest of the propagation since the input torque is constant. As in the Inertia Refiner
algorithm, the logarithmic error is greater on z component which is related to the presence
of the sloshing mass, together with the greater torque applied and higher velocity reached,
factors that increase the propagation error.
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Figure 5.8: Angular velocity over time for Phase V - Visco-Elastic Fitting

The final results of fifth phase of the system identification procedure are presented in
Tab.5.6 and in Tab.5.7 for the elastic and viscous coefficients respectively. The error has
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been evaluated as: plain error between the resulting value and the original value, norm of
the error vector, and lastly by relative error as fraction between the error and the norm
of the original values for each coefficient, K and C. It is important to point out that the
overall results are directly influenced by the results from the previous tests.

Elastic coefficient

Final
Value

Plain
Error

Absolute
Error

Relative
Error

Without
Disturbances

106[1.2 0.7 0.9] 103[10.4 2.4 2.6] 1.1 104 0.98%

With GEO
Disturbances

106[1.2 0.7 0.85] 103[6.5 −0.4 −1.77] 6.7 103 0.6%

With MEO
Disturbances

106[1.3 0.7 0.9] 104[−4.8 −1.7 −7.9] 9.4 104 10.4%

Table 5.6: Elastic coefficient from Phase V - Visco-Elastic Fitting

Viscous coefficient

Final
Value

Plain
Error

Absolute
Error

Relative
Error

Without
Disturbances

105[0.9 0.8 1.1] 102[5.6 4.2 10.6] 1268 1.26%

With GEO
Disturbances

105[0.9 0.8 1.09] 102[4.3 − 1.2 0.9] 4.5 102 0.5%

With MEO
Disturbances

105[1 0.86 1.17] 103[−9.7 −5.5 −7.2] 1.33 104 14.4%

Table 5.7: Viscous coefficient from Phase V - Visco-Elastic Fitting

Comparing the two tables of results for the estimation of the visco-elastic coefficients, it
can be seen that both values are estimated with a similar accuracy in different condition
of environmental disturbance, meaning that the algorithm makes no preference during
the optimization. Moreover it is possible to see that the accuracy decreases with a sig-
nificant leap between the GEO and MEO cases. This effect has its origin in the increase
in disturbance torque which impacts not only the angular velocity profile, but also the
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estimation of the inertia matrices of each body, J1cm and J2cm, which is strongly related
to the estimation of both Jtot and the CM position, leading to a buildup in error.
Strangely, a small improvement of the accuracy can be observed comparing the without
disturbance case and the GEO case. This phenomena can possibly be correlated with the
numerical optimization iteration, which convergence may be improved by using different
input data.

5.6. Sensibility Analysis

To understand the robustness and the limits of the system identification procedure, a series
of sensitivity analysis test have been carried out. This allows to identify the relationships
between the uncertainties expected in real-life scenarios with the results obtained, and
identify the sources of error.

5.6.1. Torque Delivery Mismatch

To evaluate the sensitivity of the system identification procedure to the mismatch in torque
delivery, such phenomena has been simulated considering a range of ±5% on the torque
delivered. In this case, the relative error has been considered as evaluation parameter and
is shown in Fig.5.9 as function of torque mismatch.
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Figure 5.9: Percentage Error as function of torque delivery mismatch

The system identification procedure is heavily impacted by torque delivery mismatch,
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specifically above ±0.5% the error increases significantly, remarking the strong relation
between the torque delivery precision and the accuracy of the results. It can be seen
that the torque delivery mismatch significantly affects all the results in a symmetrical
fashion from the zero, since the error is built up from the inertia matrix estimation to the
visco-elastic coefficients. Interestingly the percentage error of the diagonal elements of
the inertia matrix increases in the same way for both the coarse and refined estimations,
this can be traced back to the fact that the coarse inertia matrix is used as initial guess
for the Inertia Refiner algorithm, and that the objective for such algorithm is to filter out
disturbances that are much lower than the torque mismatch taken in consideration.

5.6.2. Force Delivery Mismatch

The force delivered by the thrusters is crucial in determining the position of the CM. To
evaluate the sensibility of the algorithm, a percentage error of ±5% of the thruster force
has been considered. The relative error has been considered as parameter evaluation and
its behaviour is presented in Fig.5.10.
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Figure 5.10: Percentage Error as function of torque delivery mismatch

As expected, the error in estimation of the inertia matrix is independent from the thruster
force, while the CM error behaves symmetrically from the zero. It is interesting to notice
that the behaviour of both K and C error changes together with the CM one, even if no
mismatch in torque magnitude is present during the angular velocity sampling. In this
case the error can be traced back to the determination of J1cm and J2cm, which relies on
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the position of the CM, and are crucial values for the Double Body Model propagation.

5.6.3. Torque Misalignment

As part of the sensibility analysis, the torque misalignment phenomena has been con-
sidered, which may occur due to installation, ageing and wearing out of the mechanical
and/or electrical parts. If the exact alignment of the axis is not accurate, large errors in
output torques may impact the attitude of the spacecraft[30]. To simulate the effects of
a misaligned torque, the misalignment model for a set of three reaction wheels has been
taken into consideration [4, 10], since it allows to directly control the misalignment by
using deviation angles.
To define the impact of the misalignment on the system identification performance, a
Montecarlo Analysis has been carried out. Considering that previous launched missions
have not surpassed 7° [28] in actuator angular misalignment, and that it is important to
study the behaviour around the zero angular misalignment, 100 set of 3 deviation angles
have been generated considering a normal distribution with zero mean, and a variance of
1°. The results of the Montecarlo analysis are reported in Fig.5.11 in terms of relative
error over the norm of the deviation angles.
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Figure 5.11: Montecarlo analysis for torque misalignment

It is interesting to notice that the results for the coarse estimation of the inertia matrix
does not suffer from the increase in angular deviation of the torque and provides a better
estimation than the refined one. The accuracy behaviour of the refined inertia matrix
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is shared with the estimation of K and C, for two main reasons: both estimations are
performed by using numerical methods and have uneven accelerating torque with greater
magnitude on the Z-axis, which creates a significant difference between samples with
similar norm of the deviation angles. The accuracy for CM estimation follows the one of
the refined inertia matrix, being its direct result, but similarly to the coarse estimation
of the inertia matrix, it is less dependant from the torque misalignment.
As final note, considering together Fig.5.10 and Fig.5.11, the sensibility of the refined
inertia matrix regarding torque accuracy can be assessed: if the knowledge accuracy
of the torque is insufficient, the refined inertia matrix is not able to provide a better
estimation than the coarse one.

5.6.4. Force Misalignment

The last step to perform a correct sensitivity analysis related to poor actuator knowledge
is to consider the misalignment phenomena regarding the thruster force. To simulate
the misalignment of the thruster force, rotation matrix have been developed to take into
account the deviation angles as used in [29, 31]. Similarly to the torque misalignment
sensitivity analysis, a Montecarlo analysis has been carried out. The misalignment angles
were generated by considering a normal distribution with zero mean and 1° variance,
which can be considered reasonable since the objective of the analysis is to study the
behaviour around the zero deviation angle. The results for the Montecarlo analysis are
presented in Fig.5.12 in terms of relative error over norm of the deviation angles.
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Figure 5.12: Montecarlo analysis for force misalignment
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As in Fig.5.10, the results from coarse and refined estimation of the inertia matrix are
not influenced by the misalignment of the thruster force, while the estimation error for
CM position increases with a linear pattern with the angular deviation. As expected,
the estimation error of K and C coefficients increases in a similar fashion as the one of
CM position, which is used to evaluate J1cm and J2cm. On the other side it is interesting
to notice that the K and C relative error increase is not as steep as the one of the
CM, meaning that the Visco-Elastic Fitter algorithm is capable of filtering out not only
uncertainties coming from the external environment, but also inaccurate data.

5.6.5. Angular velocity sensibility analysis

The measure of the angular velocity is crucial for the outcome of the system identification
procedure, being required for each estimation. Hence a sensitivity analysis has been
carried out considering two main factors that may affect the measure of the angular
velocity: offset error and noise error.

Angular velocity offset error Offset error has been simulated considering a steady
source of error to be added to the angular velocity measure. Considering the angular
velocity reached during the estimation process, a set of constant angular velocity error in
the range between 10−4 rad

s
and 10−8 rad

s
has been used for the sensitivity analysis. The

results from offset error are shown in Fig.5.13 in terms of relative error.
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Figure 5.13: Offset angular velocity error
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It can be seen that the relative error changes in a similar fashion with the increase of the
offset error for each estimation. In particular, a threshold can be identified at 10−6 rad

s
,

since the estimation does not improve significantly for smaller values of offset error, while
the error increases above the threshold. This phenomena can be addressed to the fact
that values of offset error greater than 10−6 rad

s
are in the similar order of magnitude with

the actual angular velocity reached during the estimation process, while smaller values
can be treated as effects from disturbances.

Angular velocity noise error The noise error that may affect the angular velocity
has been emulated by considering a random source of error which is added to the angular
velocity measure. The random source has been identified as a normal distribution with
zero mean, while a set of variances in the range between 10−4 rad

s
and 10−8 rad

s
have been

considered to simulate different order of noise intensity. The results in terms of relative
error over the angular velocity noise error are presented in Fig.5.14.
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Figure 5.14: Angular velocity noise error

This image presents some similarities with Fig.5.13, as a matter of fact a threshold on
10−6 rad

s
can be noticed, especially on the estimation of the inertia matrix. It can be seen

that for smaller variance values than the threshold, the coarse and refined estimations
of the inertia matrix do not improve significantly, meaning that the noise level is similar
to the effects on the angular velocity from the environmental disturbances, while for
greater variance values the relative error increases linearly. The estimation error of the
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visco-elastic coefficients and the CM on the other hand reduces linearly together with the
orders of magnitude of the variance up to 10−7 rad

s
, after which the improvement of the

relative error is reduced.
Comparing Fig.5.13 and Fig.5.14, it is possible to assess the sensitivity of the system
identification procedure, and to acknowledge the noise error as more relevant than the
offset error for the accuracy of the results.
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6| Chapter 6 - Control

Performance Comparison

In this chapter the control performance assessment of the results found in Ch.5 is pre-
sented. To assess the utilty of the new data available from the system identification
procedure, a set of control tests have been considered. The control tests are focused on
verifying and comparing the pointing accuracy of the whole Assembly in two cases: Be-
fore System Identification Procedure (BSIP) and After System Identification Procedure
(ASIP). In the first section the control laws and the rationale behind them are presented,
while in the second section the results and comparison are presented.

6.1. Control Modes and Control Laws

To assess the capabilities of the satellite assembly before and after the system identifica-
tion procedure, three control modes have been considered for the control tests: inertial
pointing, repointing and tracking. Before going through each control mode, the reacha-
bility and observability of the system have been verified to implement a feedback control.

6.1.1. Feedback Control

To assess the possibility of implementing a Feedback Control for the whole Assembly,
firstly the reachability and observability of the dynamical system has to be assessed.
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The EoM of the DBM, which is Eq.3.4, can be rewritten as a state-space system:


θ̈1

θ̇1

θ̈2

θ̇2

 =


−J−1

1cmC −J−1
1cmK J−1

1cmC J−1
1cmK

1 0 0 0

J−1
2cmC J−1

2cmK −J−1
2cmC −J−1

2cmK

0 0 1 0




θ̇1

θ1

θ̇2

θ2

+


J−1
1cm

0

J−1
2cm

0

u

y =
[
1 1 0 0

]

θ̇1

θ1

θ̇2

θ2



(6.1)

Which can be shortened in: ẋ = Alinx+Blinu

y = Clinx
(6.2)

In which Alin is the matrix of dynamic, Blin is the feed-through matrix and Clin is the
output matrix.

Reachability The reachability of a dynamical system refers to the capability of the
system to reach every possible state from any initial state in a finite amount of time,
moreover a dynamical system is said to be reachable if the reachability matrix is full
rank:

Rr = [Blin AlinBlin A2
linBlin A3

linBlin] (6.3)

In this case, the rank of the reachability matrix Rr is 4, meaning that the system is indeed
reachable.

Observability The observability of a dynamical system refers to the capability of re-
constructing the state of the system from a time-finite output of the system, specifically
a dynamical system is said to be reachable if the observabilty matrix is full rank:

Ossr =


Clin

ClinAlin

ClinA
2
lin

ClinA
2
lin

 (6.4)

In this case, the rank of the observability matrix Ossr is 4, meaning that the system is
indeed observable.
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Being the system both reachable and observable, implies the possibility to control the
state of the system, and to observe the state reached. This means that a feedback control
can be implemented as control law.

6.1.2. Inertial Pointing

The first control mode considered is the inertial pointing mode. The inertial pointing
mode requires the spacecraft to follow a certain angular velocity profile over time. This
control mode can be used either to point an inertial target, requiring stillness of the
spacecraft, or either to point a target with known velocity profile, for example a point on
the surface of the Earth during a transit of the spacecraft.
Considering simple feedback control laws, and the available data from sensors, the family
of Proportional Integrative Derivative (PID) control has been considered, specifically a
Proportional control based on the angular velocity of the first satellite:

Tc = −Kpwe + w1 × Jw1 (6.5)

Where Tc is the control torque, J is the inertia matrix, J1 for BSIP and Jtot for ASIP
cases, Kp is the gain for the proportional action and we is the angular velocity error:

we = wobj − w1 (6.6)

In which wobj is the target angular velocity and w1 is the angular velocity of the first
satellite.
The angular velocity of the first satellite was chosen as control parameter since it is a
measurement available for both BSIP and ASIP cases, while the gain parameters were set
individually for each case.
For the BSIP case, the gain coefficient is equal to J1, which is the inertia matrix of the
first satellite centered on the CM of the first satellite, in this way the first satellite con-
trols the whole Assembly as if only the first satellite were present. For the ASIP case,
the proportional coefficient is equal to Jtot, which is the inertia matrix centered on the
CM of the whole Assembly, allowing the first satellite to control the system as a whole
spacecraft. For this control mode the inertia matrices were used as gains since they can
make the control torque proportional to the order of magnitude of the dynamical system,
which is regulated by the inertia matrix itself.



60 6| Chapter 6 - Control Performance Comparison

6.1.3. Repointing

The second control mode considered is the repointing mode. In the repointing mode, the
spacecraft executes a slew manoeuvre, which is a rest-to rest motion between two different
attitude, and sets its attitude to point a certain target. In this case the chosen target is
the Sun, which would allow the spacecraft to recharge its batteries in an hypothetical real
mission scenario.
Considering simple feedback control laws, the classical control function for repointing were
considered, specifically the quaternion feedback control, while the gain coefficient for each
term has been treated as a Proportional Integrative (PI) control. Such control law is
defined in [27], and takes into consideration the quaternion error and the angular velocity
of the first body:

Tc = −Kiqe −Kpw1 + w1 × Jw1 (6.7)

In which qe is the quaternion error:
q1e

q2e

q3e

q4e

 =


q4c q3c −q2c −q1c

−q3c q4c q1c −q2c

q2c −q1c q4c −q3c

q1c q2c q3c q4c



q1

q2

q3

q4

 (6.8)

Specifically qe = [q1e q2e q3e]
T is used inside Eq.6.7, while qc are the objective quaternions,

which are obtained from the conversion of the target attitude matrix into quaternion
representation. The target attitude matrix AS/N is considered taking in consideration the
direction of the Sun in the inertial frame SN as x-axis, while for the y and z axis are
simply required to be linearly independent between each other. Then a generic direction
is taken, p = [1 0 0] and the target attitude can be generated:

s1 = SN

s2 =
s1×p
|s1×p|

s3 = s1 × s2

AS/N =

s1s2
s3

 (6.9)

The term w1 × Jw1 inside Eq.6.7, counters the gyroscopic term inside the Eq.3.1.
The angular velocity, together with the attitude of the first satellite were chosen as control
parameters since both measurements are available for both BSIP and ASIP cases.
While simulating the BSIP case, the gain coefficients Ki and Kp were set equal to J1,
meaning only with the knowledge of the inertial data of the first satellite. For the the
ASIP case, some adjustments have been made, and a slew rate limit has been introduced.
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Slew rate limit A classical slew manoeuvre is divided in three phases, acceleration,
coasting and deceleration. Considering the coasting phase, the slew rate, thus the angular
velocity, is constant, and acceleration is zero. Under these considerations both angular
velocity (θ̇2 and θ̇1) are equal, and the term C(θ̇2 − θ̇1) can be considered negligible, then
it is possible to write Eq.3.4 in this form:0 = J1cmθ̇1 × θ̇1 +K(θ2 − θ1) +Mext

0 = J2cmθ̇2 × θ̇2 +K(θ1 − θ2)
(6.10)

Which implies the relation:

K(θ2 − θ1) = J2cmθ̇2 × θ̇2 (6.11)

This means that the angular difference between the first and the second satellite during a
slew motion is directly influenced by the slew rate, thus limiting the slew rate limits the
angular difference. To develop a slew rate limit, it is fundamental to identify a maximum
angular velocity. Even if the maximum angular difference is set, due to the presence of
the cross product, Eq.6.11 has no single solution, and two different workaround can be
made. A first workaround would be to check Eq.6.11 continuously during the motion, and
put a deactivation condition on to the torque:Tc = −Kiqe −Kpw1 + w1 × Jw1

Tc = w1 × Jw1

if

J2cmθ̇1 × θ̇1 < K∆θmax

J2cmθ̇1 × θ̇1 >= K∆θmax

(6.12)

Where ∆θmax is the maximum angular difference. This workaround is inefficient since
it can slow down the computation due to the trigger if condition, which can affect the
smoothness of the motion.
A second workaround can be made considering the properties of the eigen axis angular
rotation:

∆θmax =

e1e2
e3

 ||∆θmax|| and w =

e1e2
e3

 ||w|| (6.13)

Where e1, e2 and e3 compose the Euler axis of rotation, while w is the generic angular
velocity. The components of the Euler axis of rotation can be put into relation with the
quaternion error vector at the beginning of the slew manoeuvre qe(0):

e1 =
|q1e(0)|
||qe(0)||

e2 =
|q2e(0)|
||qe(0)||

e3 =
|q3e(0)|
||qe(0)||

(6.14)
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It is now possible to rewrite Eq.6.11 and put into relation θ̇max, which is the maximum
slew rate during the manoeuvre with ∆θmax:

||θ̇max||2 = (J2cm

e1e2
e3

×

e1e2
e3

)−1K

e1e2
e3

 ||∆θmax|| (6.15)

Once the maximum slew rate is known, the control gains of Eq.6.7 can be defined :

Kp = Jtot and Ki = Jtot
|qie(0)|
||qe(0)||

||θ̇max|| (6.16)

This procedure allows for smooth control during the slew manoeuvre and a limited com-
putational burden, since Eq.6.15 is evaluated one single time.
Once the slew manoeuvre is executed, to reach a better pointing accuracy, the gain coef-
ficients have to change again. This is due to the fact that the term |qie(0)|

||qe(0)|| ||θ̇max|| creates
unbalanced control torque, which results in a reduced accuracy and noisy angular velocity.
When the quaternion error is lower than their normalization of Eq.6.14, both gain Ki and
Kp are equal to Jtot.

6.1.4. Tracking

The third control mode considered is the tracking mode. The tracking mode requires the
spacecraft to follow a time-dependant attitude over time, performing first a repointing
manoeuvre and then to track the attitude. For this control test, the LVLH reference
frame has been considered as the target attitude.
Similarly as the previous control modes, the quaternion feedback control, treated as PI
control has been chosen to carry out the tracking test, and is expressed by the equation:

Tc = −Kiqe −Kpwerr + w1 × Jw1 (6.17)

Where werr is the error of angular velocity calculated as:

werr = w1 − AB/Lwlvlh (6.18)

In which wlvlh is the angular velocity of the rotating LVLH frame. Since in this control
mode the predominant phase and action of interest is the tracking by itself and not the
repointing slew manoeuvre, the slew rate limit was not considered.
For the BSIP case both control gains and the inertia matrix J of the gyroscopic term were
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considered equal to J1. For the ASIP case both control gains and the inertia matrix J of
the gyroscopic term were considered to be equal to Jtot.

6.2. Control Performance Comparison

To compare the performance of the Before System Identification Procedure and the After
System Identification Procedure case, the error on the angular velocity and the attitude
error matrix over time have been considered as main parameter, together with the time
required to reach the requested performance.

6.2.1. Inertial Pointing

For the inertial pointing control mode, two tests have been carried out, each one divided
in two different phases. The first test defines a target angular velocity on the x axis in
the first phase, while in the second phase the target angular velocity on x axis changes
following a parabolic profile. The second test is similar, but the target velocity is a com-
bination of the angular velocities of x,y and z axis. Both tests are aimed at defining
the control accuracy of the assembly of satellite considering a simple motion in the first
test and a complex one in the second test, due to the presence of the gyroscopic term.
Moreover the presence of two phases allows to define the time needed and the available
precision to satisfy a certain performance, while the second phase allows to evaluate the
delay between the commanded state and the real state of the system.
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(a) Angular velocity for BSIP case.
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(b) Angular velocity for ASIP case.

Figure 6.1: Angular velocity during first inertial pointing test



64 6| Chapter 6 - Control Performance Comparison

X-axis test The results from the first test in terms of angular velocity and required
performance are presented in Fig.6.1a for the BSIP case and in Fig.6.1b for the ASIP
case, while for both cases the norm of the error is shown in Fig.6.2.
As expected, it can be seen that both ASIP and BSIP case are able to reach and maintain
the required performance, with a better accuracy and a reduced response time for the
ASIP case. The faster response time originates from the proportional gain coefficient
inside the control law, which allows to deliver greater and more precise torque to the
spacecraft from the actuator. The better accuracy during the inertial test can be traced
back to the ability of the control law to cancel the gyroscopic term Jtotw1 × w1 inside
the EoM, which acts as a disturbance during the motion. It is interesting to consider
that when the target angular velocity changes over time following the parabolic profile,
it generates a proportional delay, which results in a loss of accuracy for both cases in a
similar manner. This is a direct effect produced by the choice of the control law, and
introducing an integral action might reduce this delay effect.

0 20 40 60 80 100 120 140 160 180 200 220

10
-5

10
-4

10
-3

10
-2

10
-1

w
ASIP

w
BSIP

Figure 6.2: Norm of the error for BSIP and ASIP cases during first inertial pointing test

XYZ axis test The results from the second test in terms of angular velocity and re-
quired performance are presented in Fig.6.3a for the BSIP case and in Fig.6.3b for the
ASIP case, while for both cases the norm of the error is shown in Fig.6.4.
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(a) Angular velocity for BSIP case.
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(b) Angular velocity for ASIP case.

Figure 6.3: Angular velocity during second inertial pointing test

Considering the second inertial pointing control test, the true difference in performance
between ASIP and BSIP cases can be assessed. The system identification procedure
improves the control accuracy by a order of magnitude and the response time by a couple
tens of seconds compared with the BSIP case. Similarly to the first inertia pointing
control test, the response time is improved thanks to the increased proportional control
gain, which has two functions: it increases and proportionally distributes the control effort
delivered by the actuators.
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Figure 6.4: Error for BSIP and ASIP cases during second inertial pointing test

This distribution property comes from the nature of the inertia matrix itself, and the
BSIP case lacks this property as can be seen in Fig.6.3a, where the angular velocity along
y axis presents the most delay compared to x and z axis. The accuracy for the ASIP case
is increased, since the full knowledge of Jtot allows to cancel the gyroscopic term from the
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EoM, which affects the dynamics more and more, being dependant on the combination of
angular velocities.

6.2.2. Repointing

For the repointing test, a single test has been carried out. To evaluate the pointing
accuracy of the spacecraft, the error matrix Ae has been considered:

Ae = AB/NA
T
S/N (6.19)

Since the objective of the control is to make Ae = I, the extradiagonal elements of the
matrix Ae have been taken into account as measure of the pointing error. The quaternion
error vector has been discarded as measure of the error, since the quaternion representation
bears no physical meaning. The pointing error as norm of the extradiagonal elements of
matrix Ae is reported in Fig.6.5a while the norm on the error of the angular velocity of
the first body is shown in Fig.6.5b for both BSIP case and ASIP case.
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Figure 6.5: Pointing accuracy during repointing test

Comparing the angular velocity error and the pointing error, it can be seen that both
ASIP case and BSIP case are able to reach the same accuracy level, due to the fact that
the control gain chosen for each case are the same for both pointing and angular velocity
terms and when a certain accuracy is reached, they cancel each other out. Regarding the
response time, it is interesting to notice that even if the ASIP case presents a slew rate
limit, it is still able to reach the same level of accuracy in less time than BSIP case, due
to the greater control gains employed. Observing Fig.6.5b, and considering the oscillation
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pattern, the reduced oscillation for ASIP case is to be found in the ability of the control
law to cancel the gyroscopic term, directly related to the data coming from the system
identification procedure, which allows for a smoother slew manoeuvre.
To better analyze the behaviour of the spacecraft, the angular velocity of the first body
is presented in Fig.6.6a and in Fig.6.6b for the BSIP case and the ASIP case respectively.
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(a) Angular velocity for BSIP case.
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(b) Angular velocity for ASIP case.

Figure 6.6: Angular velocity during repointing test

It is interesting to notice in Fig.6.6b the presence of a saturation limit in angular velocity,
due to the presence of a slew rate limit. Comparing the two images, it can be seen that
the angular velocity in the BSIP case is almost an order of magnitude higher than the
one in ASIP case, meaning that a greater control torque effort is required to reach the
same performance in a longer time.

Slew rate limit effectiveness To evaluate the effectiveness of the slew rate limit, the
norm of the angular rotation over time has been computed using Eq.6.11 and is showed
in Fig.6.7 together with the angular limit chosen before the simulation.
To show the potentiality of such control system, an angular difference of 0.001° has been
chosen as upper limit. From the figure it is possible to see that the angular difference is
constant and lower that the angular limit during the coasting phase of the slew manoeuvre,
while two spikes can be noticed at the beginning and at the end of the manoeuvre. This is
an expected behaviour since the spikes correspond to the acceleration and braking phase
of the slew manoeuvre, which are not accounted for in the slew rate limit model.
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Figure 6.7: Norm of the angular rotation during slew manoeuvre during second inertial
pointing test

6.2.3. Tracking

The control performance from the tracking control test is expressed in terms of the norm
of the angular velocity error and in terms of the norm of the extra-diagonal elements of
the error matrix, which in this case is AB/L, since the target attitude is the LVLH frame.
The results of the test are shown in Fig.6.8a and in Fig.6.8b respectively for both BSIP
and ASIP case.
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Figure 6.8: Pointing accuracy during tracking test

The performance comparison for the tracking control mode is similar to the repointing
test. As a matter of fact it can be seen that the only parameter improved by the system
identification is the system response and the oscillations around the target performance.
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The system response time is improved by using greater and proportionate gains. Regard-
ing the oscillation phenomena, it is rooted in the ability of the control law to cancel the
gyroscopic term inside the EoM, only the ASIP case is capable to provide strong cancel-
lation, allowing for an almost smooth reorientation manoeuvre. The accuracy for both
cases is the same due to the fact that the control gains for the pointing control term and
angular velocity control term inside the control law are the same, and when the pointing
error and the angular velocity error are the same, then the control torque is zero.
To gain a better insight on the system behaviour, the angular velocity of the first body
is presented in Fig.6.9a for the BSIP case and in Fig.6.9b for the ASIP case.
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(a) Angular velocity for BSIP case
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Figure 6.9: Angular velocity during tracking test

The angular velocities presented in these two figure allow to make some considerations
regarding the torque and the general behaviour of the spacecraft. As in the previous
test, for the BSIP case the angular velocity on y-axis presents the largest amplitudes, and
reaches as last the target angular velocity. On the contrary, for the ASIP case all angular
velocity components reach simultaneously the target angular velocity. This behaviour
can be explained considering the control gains used, specifically the inertia matrix values,
which allows the use of adequate and distributed torque to reach the control objective.
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Conclusions & Future Development

The present Work aimed at studying the system identification process of two satellites
after the docking by the means of computer simulation. As case study, the on Orbit
Servicing mission between the MEV-1 and Intelsat-901 was taken into consideration, and
a procedure of system identification has been created considering both analytic and nu-
merical method. The rigid body model has been chosen to carry out the simulation and
a white box model has been considered for the system identification procedure. The first
phase of the procedure generates a coarse estimation of the inertia matrix of the whole
assembly through analytical consideration of the EoM, the estimation is then is refined
during the second phase using a NLP technique. In the third phase the position of the
center of mass for the whole assembly is assessed by analytical method, which allows to
define the inertia matrix of each satellite in the fourth phase. In the fifth phase of the
system identification procedure, a least-squares algorithm is used to identify the mechan-
ical properties of the link between spacecrafts in terms of visco-elastic coefficients. The
procedure was then used to estimate the mass properties of the MEV-1 & Intelsat-901
assembly in different environmental conditions and established the dependency between
environmental conditions and estimation accuracy. To assess the robustness of the sys-
tem identification procedure, a sensitivity analysis has been carried out, which resulted
in a strong relationships between estimation accuracy, knowledge of the input torque and
quality of the angular velocity profile. Lastly a performance comparison in the form of a
control test has been carried out to compare the ability to control the assembly of space-
crafts before and after the system identification procedure. The control test certified an
improvement in terms of time response after the system identification in each control
mode, and a significant improvement in accuracy only for inertial pointing mode.
Considering future developments, to improve the system identification procedure, addi-
tional phases with increasing complexity in dynamical model may be added to estimate
also the inertia matrices of the appendages, such as solar arrays, antennas or other plat-
forms. Alternatively, the estimation of disturbances as the sloshing mass, may be in-
tegrated in future developments. Moreover more elements characterizing the spacecraft
ADCS, as sensors and actuators could be implemented to study specific cases.





73

Bibliography

[1] Arianespace. Arianespace launchkit intelsat-901, 2001.

[2] Arianespace. Arianespace today lofted the intelsat 901 satellite for the intelsat
telecommunications organization, 2001. URL https://www.defense-aerospace.

com/ariane-launches-intelsat-satellite-june-11/.

[3] R. Bordany, W. Steyn, and M. Crawford. In-orbit estimation of the inertia matrix
and thruster parameters of uosat-12. 2000.

[4] W. Chen and Q. Hu. Sliding-mode-based attitude tracking control of spacecraft
under reaction wheel uncertainties. IEEE/CAA Journal of Automatica Sinica, pages
1–13, 2022. doi: 10.1109/JAS.2022.105665.

[5] DARPA. Orbital express fact sheet, 2007.

[6] ESA. Mev-1 & 2 (mission extension vehicle-1 and -2), 2020. URL https://www.

eoportal.org/satellite-missions/mev-1#spacecraft.

[7] A. Flores-Abad, M. Nandayapa, and M. A. Garcia-Teran. Force sensorless impedance
control for a space robot to capture a satellite for on-orbit servicing. In 2018 IEEE
Aerospace Conference, pages 1–7. IEEE, 2018.

[8] N. Geographic. The secret to hubble’s success, 2015. URL https:

//web.archive.org/web/20150428040059/http://www.nationalgeographic.

com/hubble-timeline/.

[9] D. C. Howard. Orbital Mechanics for Engineering Students. Elsevier aerospace, 2005.

[10] Q. Hu, B. Li, X. Huo, and Z. Shi. Spacecraft attitude tracking control under actuator
magnitude deviation and misalignment. Aerospace Science and Technology, 28(1):
266–280, 2013.

[11] Ilslaunch. E5wb/mev-1 mission overview, 2019.

[12] Intelsat. Northrop grumman successfully completes historic first docking of mission
extension vehicle with intelsat 901 satellite, 2020.

https://www.defense-aerospace.com/ariane-launches-intelsat-satellite-june-11/
https://www.defense-aerospace.com/ariane-launches-intelsat-satellite-june-11/
https://www.eoportal.org/satellite-missions/mev-1#spacecraft
https://www.eoportal.org/satellite-missions/mev-1#spacecraft
https://web.archive.org/web/20150428040059/http://www.nationalgeographic.com/hubble-timeline/
https://web.archive.org/web/20150428040059/http://www.nationalgeographic.com/hubble-timeline/
https://web.archive.org/web/20150428040059/http://www.nationalgeographic.com/hubble-timeline/


74 | Bibliography

[13] B.-E. Jun, D. S. Bernstein, and N. H. McClamroch. Identification of the inertia
matrix of a rotating body based on errors-in-variables models. International journal
of adaptive control and signal processing, 24(3):203–210, 2010.

[14] T. Kasai, I. Yamaguchi, H. Igawa, S. Mitani, T. Ohtani, M. Ikeda, and K. Suna-
gawa. On-orbit system identification experiments of the engineering test satellite-
viii. TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND
SPACE SCIENCES, SPACE TECHNOLOGY JAPAN, 7(ists26):Pc_79–Pc_84,
2009.

[15] J. Keim, A. Behcet Acikmese, and J. Shields. Spacecraft inertia estimation via
constrained least squares. In 2006 IEEE Aerospace Conference, pages 6 pp.–, 2006.
doi: 10.1109/AERO.2006.1655995.

[16] A. Kutlu, C. Haciyev, and O. Tekinalp. Attitude determination and rotational motion
parameters identification of a leo satellite through magnetometer and sun sensor data.
In 2007 3rd International Conference on Recent Advances in Space Technologies,
pages 458–461. IEEE, 2007.

[17] L. Ljung. Perspectives on system identification. Annual Reviews in Control, 34(1):
1–12, 2010.

[18] NASA. Spacecraft thermal control coatings references, 2005. For spacecraft body
SRP coefficients.

[19] NASA. Distribute spacecraft autonomy (dsa), 2020. URL https://www.nasa.gov/

directorates/spacetech/game_changing_development/projects/dsa.

[20] I. A. of Geomagnetism and Aeronomy. Igrf online page. URL https://www.ngdc.

noaa.gov/IAGA/vmod/igrf.html.

[21] OrbitalFocus. Mev-1 and intelsat 901 orbtial data, 2023. URL https://www.

orbitalfocus.uk/Diaries/US/MEV1.php.

[22] K. Schittkowski. Numerical data fitting in dynamical systems: a practical introduction
with applications and software, volume 77. Springer Science & Business Media, 2002.

[23] J. L. Schwartz and C. D. Hall. Comparison of system identification techniques for
a spherical air-bearing spacecraft simulator. Advances in the Astronautical Sciences,
116:1725–1741, 2004.

[24] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.-Y. Glorennec, H. Hjal-

https://www.nasa.gov/directorates/spacetech/game_changing_development/projects/dsa
https://www.nasa.gov/directorates/spacetech/game_changing_development/projects/dsa
https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
https://www.orbitalfocus.uk/Diaries/US/MEV1.php
https://www.orbitalfocus.uk/Diaries/US/MEV1.php


| Conclusions & Future Development 75

marsson, and A. Juditsky. Nonlinear black-box modeling in system identification: a
unified overview. Automatica, 31(12):1691–1724, 1995.

[25] SPECTROLAB. Space solar panels. How it was published, 7 2010. For spacecraft
panels SRP coefficients.

[26] J. R. Wertz. Spacecraft Attitude Determination and Control. KLUWER ACADEMIC
PUBLISHERS, 2002.

[27] B. Wie. Space Veichle Dynamics and Control. American Institute of Aeronautics
and Astronautics, Inc, 2008.

[28] B. Xiao, Q. Hu, D. Wang, and E. K. Poh. Attitude tracking control of rigid space-
craft with actuator misalignment and fault. IEEE Transactions on Control Systems
Technology, 21(6):2360–2366, 2013. doi: 10.1109/TCST.2012.2237403.

[29] B. Xiao, Q. Hu, D. Wang, and E. K. Poh. Attitude tracking control of rigid space-
craft with actuator misalignment and fault. IEEE Transactions on Control Systems
Technology, 21(6):2360–2366, 2013.

[30] H. Yoon and P. Tsiotras. Adaptive spacecraft attitude tracking control with actuator
uncertainties. The Journal of the Astronautical Sciences, 56(2):251–268, 2008.

[31] H. Yoon, Y. Eun, and C. Park. Adaptive tracking control of spacecraft relative
motion with mass and thruster uncertainties. Aerospace Science and Technology, 34:
75–83, 2014.




	Ringraziamenti
	Abstract
	Sommario
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Acronyms
	Introduction
	State of the Art
	Chapter 1 - Problem Overview
	Introduction to the Problem
	Description of the Satellite Assembly

	Chapter 2 - Environment of Simulation & Frames of Reference
	Orbit Model
	Frames of reference
	 Earth Centered Inertial Frame
	Body Frame
	Local Vertical Local Horizontal Frame

	Environmental Disturbance
	Solar Radiating Pressure
	Gravity Gradient
	Magnetic Torque
	Propellant Sloshing
	Numerical Simulation Options


	Chapter 3 - Approach & Model 
	Modeling choices
	Attitude Dynamical Model
	Single Body Model
	Double Body Model
	Body Data

	Unmodeled factors

	Chapter 4 - System Identification Procedure
	System Identification approach
	Introduction to the Solution Logic
	Reduced Problem
	Phase I - Coarse Inertia
	Phase II - Refined Inertia 
	Phase III - Center of Mass

	Complex Problem
	Phase IV - Docked spacecrafts properties 
	Second satellite system identification
	Phase V - Visco-Elastic Fitting


	Chapter 5 - Simulation and Results of the Procedure
	Phase I - Coarse Inertia 
	Phase II - Refined Inertia
	Phase III - Center of Mass
	Phase IV - Docked spacecrafts properties
	Phase V - Visco-Elastic Fitting
	Sensibility Analysis
	Torque Delivery Mismatch
	Force Delivery Mismatch
	Torque Misalignment
	Force Misalignment
	Angular velocity sensibility analysis


	Chapter 6 - Control Performance Comparison
	Control Modes and Control Laws
	Feedback Control
	Inertial Pointing
	Repointing
	Tracking

	Control Performance Comparison
	Inertial Pointing
	Repointing
	Tracking


	Conclusions & Future Development
	Bibliography

