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1. Introduction
The usage of Ultra Wide-Band (UWB) technolo-
gies for localization applications outside of mil-
itary purposes started to increase twenty years
ago. The higher frequency range was optimal
to be utilized in many indoor scenarios due to
the resistance to phenomena like multi-path fad-
ing and the reach of higher precision position-
ing trough the use of short pulses signals. Since
then, the number of fields in which this technol-
ogy could spread have become numerous: from
medical, security, road and driving management,
automotive and even sportive applications have
been deployed [4].
More than any other scenarios, indoor position-
ing is very challenging, more so if the tracking of
a moving target is involved. Many positioning
methods that can be extracted from the radio
signal have been tested: RSS based techniques,
ranging techniques using TOA (Time of arrival)
or TDoA (Time difference of arrival) needs to
be combined with adaptive algorithms in order
to localize a moving target with high accuracy,
exploiting also statistical approaches. Defining
the driving process of movement of the target is
fundamental and matching its statistical repre-

sentation with the actual information obtainable
from the devices, such as velocity or accelera-
tion data from inertial sensors, can increase the
probability of actually performing an accurate
positioning [1].

2. Objectives and contributions
The objective of this project is to test the per-
formances of UWB devices, provided by Track-
ing 4 Fun (T4F), and improve the functioning
in different scenarios with the use of tracking fil-
ters to increase the localization’s precision. The
main focus is the indoor application, where sev-
eral experiments were made in an environment
resembling an office-like or industrial scenario, in
order to test the system in in a highly disturbed
and cluttered situation.
In addition to the testing phase, the research
required the implementation of a tracking filter
(Extended Kalman filter) to improve the perfor-
mance of the devices and with respect to dif-
ferent methods, such as an LS algorithm and
the raw data extrapolated from the T4F ap-
plication. Comparing different motion models
and testing the reliability of the anchor’s auto-
localization algorithm was also part of the re-
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Figure 1: T4F system: the red boxes indicate
tag, anchor and master anchor.

quirements, providing a complete overview of
the system’s behaviour and the possible appli-
cable improvements.

3. System overview
The system shown in Figure1, is the one pro-
vided by T4F for the localization experiments
campaign.
The provided devices are a set of UWB anchors
and tags. The first represents a set of anten-
nas designed to transmit radio signals as well as
listening to packets coming from other anchors,
based on the time stamps they can elaborate
the information about the other anchor’s posi-
tions and the very target the system is aiming
to localize. The tag is an UWB device equipped
with an antenna that can use data sent by the
anchor’s packets to sand back information about
its position, successively calculated by the an-
chors. The idea is to create a system that is not
fixed in one place and can be easily configured
according to the user’s need.
The anchors are a set of UWB antennas com-
posed by the Decawave DWM1000 module,
which supports ranging measurements using
both Time of Flight (ToF) measurements based
on Two-Way Ranging (TWR), and Time Dif-
ference of Arrival (TDOA) measurements. The
devices are able to achieve a ranging accuracy
of ± 10 cm in Line of Sight (LOS) conditions,
supporting up to 6 channels ranging from 3.5
GHz to 6 GHz. The system is able to achieve
an overall maximum coverage of approximately
60 m by using the channel 4 of frequency range
and setting a bit rate of 850 Kb/s.

Figure 2: MADE building, Politecnico di Mi-
lano, campus Bovisa, office.

Figure 3: MADE building, Politecnico di Mi-
lano, campus Bovisa, AGV area.

The set of tags are equipped with the Decawave
DWM1001 module and supports only channel
5 providing a bit rate of 6.8 Mb/s. The loca-
tion rate depends on the number of active tags.
The devices uses TDMA (Time Division Mul-
tiple access) to coordinate between each others
the radio channel used making the location rate
dependent on the active tags, from 0.01667 to
10 Hz, corresponding to a number of active tags
of 9000 and 15 respectively. The maximum cov-
erage of the tag is approximately 60m.

4. Experimental set-up
The experimental campaign has been carried out
in the MADE structure at Politecnico di Milano,
campus Bovisa. The building is a 2.500 mq in-
door space used for co-working, teaching and
meetings providing a large number of environ-
ments fitting for the desired scenarios, involving
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Figure 4: MADE building map, Politecnico di
Milano, campus Bovisa. Highlighted the areas
where the office and AGV experiments were per-
formed.

many obstacles, as well as metal machines and
busy areas, perfect for testing a cluttered sit-
uation. As it is possible to see in Figure3, the
presence of challenging materials and busy areas
make the structure optimal for the experiments.
As shown in Figure4 the two main areas where
the experiments took place are an office room
(Figure2) inside the MADE structure, to test the
system in a small closeted environment involv-
ing a walking human target, and an open space
area in the building, tracking the movement of
an AGV (Automated Guided Vehicle) (Figure3)
to simulate the performance in a a factory-like
environment.

5. Tracking filter and motion
models

To track the position evolution of a moving tar-
get the most known tools are Bayesian tracking
filters. This family of filters represent the state
at time t by random variables xt, at each point in
time. The aim is to sequentially estimate a belief
(or guess) over the state space conditioned on all
information gathered up to the current time.
Kalman Filters (KF) are the most widely used
variant of Bayes filters. This type of filter is opti-
mal for linear-Gaussian systems. While a much
more fitting case is the Extended Kalman Filter
(EKF) which expands the solution for non-linear
systems (TDoA) [2]. Going step by step in the
EKF equations, it is possible to start with the
definition of both the prior and the posterior pdf

as Gaussian:

p(ut|y1:t−1) = N (ût|t−1,Pt|t−1) (1)

p(ut|y1:t) = N (ût|t,Pt|t) (2)

In case of TDoA measurement model, the lin-
earization is applied only around the mean value
computed in the prediction step ût|t−1:

ht(ut) ≈ ht(ût|t−1) +
∂ht(u)

∂u
|u=ût|t−1

∆ut (3)

ht(ut) ≈ ht(ût|t−1) +Ht(ût|t−1)∆ut (4)

where ∆ut = ut − ût|t−1. At each interval t,
the prediction step and update step are then
executed. Once the update step is completed,
the position of the target is estimated using the
MMSE estimator (equal to the MAP estimator
in this case) [2]. The prediction step is described
by the following equations:

ût|t−1 = Aût−1 (5)

Pt|t−1 = ATPt−1|t−1A+Q (6)

The update step is then described as follows:

Gt = Pt|t−1H
T
t (HtPt|t−1H

T +Rt)
−1 (7)

ût|t = ût|t−1 +Gt(yt − ht(ût|t−1)) (8)

Pt|t = Pt|t−1 −GtHt(ût|t−1)Pt|t−1 (9)

The position is then estimated as:

ût = uMMSE = ût|t (10)

To fulfil the goal of achieving a better localiza-
tion accuracy we can use a-priori information
about the target’s character of motion on the
filter. In the experiments three different motion
models are used[3]:
Random walk (RW) model: Considering the
complexity of the human walking process, it is
possible to adopt the simplest solution, using
then a Random Walk model, which is charac-
terized in the following way:

xt = ut =

[
ux,t
uy,t

]
(11)

{
ux,t = ux,t−1 + Twvx,t−1

uy,t = uy,t−1 + Twvy,t−1

(12a)
(12b)
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where wv,t−1 =
ut−ut−1

T is the driving process.
Random force (RF) model: In this case the
zero-mean driving noise is the position varia-
tion given the velocity measured. The equations
(12a) and (12b) become:{

ux,t = ux,t−1 + T (vx,t−1 + wvx,t−1)

uy,t = uy,t−1 + T (vy,t−1 + wvy,t−1)

(13a)
(13b)

with:

vt =

[
vx,t
vy,t

]
(14)

Random jerk (RJ) model:this model can be
described using the acceleration as a white noise
process w(t) = ȧ(t). The corresponding state-
space representation is:

ẋ(t) =

0 1 0
0 0 1
0 0 0

x(t) +

00
1

w(t) (15)

which we can write as discrete-time equivalent
as:

xk+1 = F3xk + wk (16)

with:

F3 =

1 T T 2

2
0 1 T
0 0 1

 (17)

in the state equation, we can then find the state
vector expressed as:[

x ẋ ẍ
...
x
]T (18)

where x, ẋ, ẍ,
...
x are respectively the position,

velocity, acceleration and jerk of the target.

6. Experimental results
The results were processed in the following way:
• Acquiring the TOA data using the T4F an-

chors and tags and converting it to TDoA.
• Analyze the data and remove possible out-

liers and missing measurements.
• Compute the measurement error, building

the covariance matrix.
• Generate a ground truth track to recon-

struct the real path of the related target.
The path was reconstructed trough the use
of video tapes acquired during the experi-
mental campaign and temporal time stamps
measurements trough motion sensors to de-
tect the passing of the target in a specific
position.

RW RF RJ
Velocity Acceleration Turn

Uffici 0.83 m/s 1m/s2 1 m/s3

AGV 1 m/ 1 m/s2 1 m/s3

Table 1: Table of the driving process variances
for all the used models.

• Calibrate the EKF, deriving the driving
process variance trough the comparison of
the position error, derived using the fil-
ter’s output and the ground truth’s differ-
ence. The Table1 show the obtained results,
reporting the values of the driving pro-
cess variances for each used motion model.
Respectively the Random velocity process
variance for the Random Walk model, the
Random acceleration process variance for
the Random Force model and the Random
turn process variance for the Random Jerk
model.

6.1. Office experiment results
As shown in Figure5, the positions extracted
from the use of the EKF random walk model
are reported, as well as the ones calculated from
an LS (Least square) Gauss-Newton algorithm
and the Raw data extracted from the T4F ap-
plication, provided directly from the devices.
The motion models visualization in Figure6 pro-
vides an actual confirmation of how the random
walk model is actually the one that best follows
the ground truth path, presenting a smoother
path and better following of the curved portions
of the trajectory. The model is in fact the most
suited for walking targets, thus is the one chosen
for the other confrontations. Figure5 provide a
visual representation of how the EKF algorithm
is improving the tracking of the target. In par-
ticular it is possible to observe how the path is
much smoother and more precise than the one
obtained by the LS and T4F.
The same experiment was also performed to
compare the different motion models introduced
in section 5.
The result is also evident by looking at the
CEP95 derived from the CDF (cumulative den-
sity function) of the position error. The circular
error probable measures the accuracy of a posi-
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Figure 5: Path difference of the office acquisition
for tag 1. With: EKF random walk model, LS
algorithm, T4F positioning data and estimated
ground truth path.

Figure 6: Plot of the different motion models
path used for the tag 1 of the office acquisitions.

EKF LS Raw T4F

Tag 1 0.41 m 1.02 m 1.23 m
Tag 2 0.48 m 1.02 m 2.03 m

Table 2: Table of the CEP95 values for the office
experiments

RW RF RJ

Tag 1 0.41 m 0.77 m 1.03 m
Tag 2 0.48 m 1.13 m 1.14 m

Table 3: Table of the CEP95 values for the office
experiments

tion in a localization system, giving in response
the measure of the radius of a circle contain-
ing the position estimate with a probability of
95%. In Table3 the CEP95 values are repeated
for both of the tags. While the following one is
reporting the values for the motion models used
for the same experiment: The EKF with Ran-

Figure 7: Paths of the AGV acquisition for tag
1. Highlighted EKF with a random walk, LS al-
gorithm, T4F result and estimated ground truth
path.

Figure 8: Plot of the different motion models
path used for the tag 1 of the AGV first acqui-
sition.

Figure 9: Paths of the AGV second acquisition
for tag 1. Highlighted EKF with a random walk,
LS algorithm, T4F result and estimated ground
truth path.

dom walk model is performing the best in all
cases.

6.2. AGV experiment
As for what concerns the AGV experiments the
same results are shown in Figure7, 8,9 and 10
for two acquisitions path of the vehicle.
The observations are the same resulting from the
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Figure 10: Plot of the different motion models
path used for the tag 1 of the AGV’s second
acquisition.

EKF LS Raw T4F

Acq 1 Tag 1 0.41 m 0.77 m 1.03 m
Acq 1 Tag 2 0.44 m 0.76 m 0.61 m

Acq 2 Tag 1 0.35 m 0.37 m 0.46 m
Acq 2 Tag 2 0.34 m 0.45 m 0.60 m

Table 4: Table of the CEP95 values for the office
experiments

RW RF RJ

Acq 1 Tag 1 0.13 m 0.25 m 0.33 m
Acq 1 Tag 2 0.44 m 0.6 m 0.58 m

Acq 1 Tag 1 0.44 m 0.6 m 0.59 m
Acq 1 Tag 2 0.34 m 0.34 m 0.28 m

Table 5: Table of the CEP95 values for the office
experiments

office experiments, and the EKF random walk is
still providing a better tracking solution. The
CDF results are also obtained with the respec-
tive CEP95 error values reported in Table4 and
for the motion models comparison in Table5.
Also this time the results are compatible with
what was expected. The EKF Random walk
scenario experience a superior performance with
respect to the others.

7. Conclusions
This thesis developed a Bayesian tracking fil-
ter (EKF) improving the T4F system’s perfor-
mances for possible busyness applications for the
localization of a moving target in an indoor clut-

tered environment. The exploited solution is in
fact improving the performance of the system.
The UWB technology already allow the overall
performance to reach good enough results, but
following the movement of a target with pre-
cision can only be reached by using an actual
tracking method and a fitting motion model.
The devices can improve the performance with
the utilization of more efficient inertial systems
unit (IMU). The presence of an accelerometer
can be used to provide more information to the
filtering process and improve the localization er-
ror. The acceleration measurement can be used
to detect possible outliers and predict position
fast changes and predict the target’s fast changes
of direction. For tracking human walking tar-
gets, a more useful tool can consist in the use of
a gyroscope, to keep track of the person’s head-
ing, or even consider the use of a sensor based
step length measuring system, adding informa-
tion to the overall walking features of the target
which might change based on the current moni-
tored activity.
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