
politecnico di milano

Facoltà di Ingegneria

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Master of Science in

Computer Science and Engineering

A ROS implementation of a 6-DoF EKF for
indoor drone Visual SLAM

Advisor: prof . matteo matteucci

Co-advisor: ing . simone mentasti

Master Graduation Thesis by:

diego emanuel avila

Student Id n. 903988

Academic Year 2019-2020

A mis abuelos, a quienes siempre llevo en mi corazón.

A C K N O W L E D G M E N T S

First of all, I want to thank Prof. Matteo Matteucci for trusting in me to work
in this project and for his infinite patience to guide me. Without his guide,
I would still be reading papers and trying to understand some processes
and results. I want to thanks Simone Mentasti and Gabriele Roggi for their
advises, I hope the next student find your advises and this work as useful as
I did.

Second, I want to thank my girlfriend and future wife, Victoria, for convinc-
ing me to start this journey, it wouldn’t be the same without you and your
support. Of course, I want to thank my family in Argentina, this wouldn’t be
possible without you either. Thank you for your support and encourage, it is
a pity that because of this pandemic you cannot be here with me. I miss you,
and I hope we can be together again.

Finally, I want to thank my friends, the ones I’ve made here in Italy and
those in Argentina, particularly to Andrés. You’ve being a mentor and a
guide, and without your advises and friendship I wouldn’t be here.

To all of you, thank you.

Diego.

v

A B S T R A C T

An implementation of a localization and mapping algorithm is proposed in
the context of the Leonardo Drone Contest, where specific constraints and
characteristics apply. The drone’s constraints include the prohibition of usage
of GNSS or laser devices, which enforces the need for the localization algo-
rithm to be robust enough. Moreover, the characteristics of the environment
make it possible to use a visual-based localization algorithm. On the other
hand, the contest requires to map specific landmarks in the environment in
order to be able to follow those landmarks mapped in a sequence of take-off
and landing in a specific order. In this sense, the algorithm is forced to map
these landmarks so their coordinates can be used later on.

The current work proposes an implementation of an EKF-SLAM algo-
rithm, and tries to shed some light on the importance of the usage of these
landmarks, while trying to identify implementation details that increase the
performance and robustness of the proposed algorithm.

vii

S O M M A R I O

Nell’ambito del Leonardo Drone Contest, dove si applicano vincoli e carat-
teristiche specifiche, viene proposta l’implementazione di un algoritmo di
localizzazione e mappatura. I vincoli del drone includono il divieto di utilizzo
di dispositivi GNSS o laser, che impone che l’algoritmo di localizzazione sia
abbastanza robusto. Inoltre, le caratteristiche dell’ambiente consentono di
utilizzare un algoritmo di localizzazione visuale. D’altra parte, il concorso
richiede di mappare punti di riferimento specifici nell’ambiente in modo da
poter seguire una sequenza di decollo e atterraggio, in un ordine particolare,
per quei punti di riferimento mappati. In questo senso, il concorso obbliga
l’algoritmo a mappare questi punti di riferimento in modo che le loro coordi-
nate possano essere utilizzate in seguito.

Il lavoro attuale propone un’implementazione di un algoritmo EKF-SLAM
e cerca di comprendere l’importanza dell’uso di questi punti di riferimento,
mentre cerca di identificare i dettagli di implementazione che aumentano le
prestazioni e la robustezza dell’algoritmo proposto.

viii

C O N T E N T S

Abstract vii
1 introduction 1

2 background 5

2.1 Robot Operating System . 5

2.1.1 Nodes . 5

2.1.2 Topics . 5

2.1.3 Services . 6

2.1.4 Tools . 6

2.1.5 MAVLink and MAVROS 7

2.1.6 RTAB-Map . 7

2.2 Transformations . 9

2.2.1 Translation . 9

2.2.2 Rotation . 10

2.2.3 Homogeneous transform 12

2.3 Kalman Filter . 13

2.3.1 Extended Kalman filter 14

2.4 Simultaneous Localization and Mapping 17

2.4.1 EKF-SLAM . 18

2.4.2 Adding new landmarks 21

2.5 Normalized Estimation Error Squared 23

3 ekf-slam implementation 25

3.1 The Drone . 26

3.1.1 Characteristics . 26

3.1.2 Reference frames . 28

3.2 Motion Model . 28

3.3 Observation Models . 32

3.3.1 Observation model for Poles 33

3.3.2 Observation model for Markers 34

3.3.3 Observation model for range sensor and height correction 37

3.4 Visual Process Pipeline . 38

3.4.1 Visual process for Poles 38

3.4.2 Visual process for Markers 39

3.5 Overall Architecture . 39

3.5.1 ROS nodes . 41

4 experimental results 45

4.1 The Environment . 46

4.2 Simulated Experiments . 46

4.2.1 Experiments A: The importance of poles 48

ix

4.2.2 Experiments B: The importance of markers 49

4.2.3 Experiments C: The height estimation 56

4.2.4 Experiments D: The importance of NEES test 59

5 conclusions and future work 65

5.1 Conclusions . 65

5.2 Future Work . 66

bibliography 69

a documentation 71

b user manual 75

x

L I S T O F F I G U R E S

Figure 1.1 Example of proposed environment 2

Figure 2.1 ROS basic concept . 6

Figure 2.2 Octomap example . 8

Figure 2.3 RTAB-Map example . 9

Figure 2.4 Rotation around origin 11

Figure 2.5 Rotation around axis z followed by rotation about axis x 12

Figure 2.6 Example of a Homogeneous transform 13

Figure 2.7 Linear and nonlinear transformation of a Gaussian
random variable . 15

Figure 2.8 Linearization applied in EKF 16

Figure 2.9 Example of SLAM problem 19

Figure 3.1 3DR Iris Quadrotor frame. 26

Figure 3.2 Main reference frames in the system. 29

Figure 3.3 NED to ENU conversion scheme 30

Figure 3.4 Range and Bearing example 34

Figure 3.5 Example of the drone observing a marker 35

Figure 3.6 Components diagram of the EKF Localization node . . 40

Figure 3.7 Class diagram of the EKFSLAM node 41

Figure 3.8 Detail of the EKF-SLAM node interactions 42

Figure 3.9 ROS graph of the system 43

Figure 4.1 Odometry only plot . 47

Figure 4.2 Gazebo simulated environment. 47

Figure 4.3 Localization using perfect pole observations. 50

Figure 4.4 Localization using real pole observations. 50

Figure 4.5 Localization with perfect and real marker observations 52

Figure 4.6 Detail of correction process with markers. 53

Figure 4.7 Localization using real pole observations and perfect
marker observations. 54

Figure 4.8 Localization using real pole and real marker observa-
tions. 54

Figure 4.9 Simultaneous localization and mapping using real pole
and marker observations. 55

Figure 4.10 Path followed by the drone when correction of height
is used. 57

Figure 4.11 Height estimation aggregated with range sensor infor-
mation . 58

xi

Figure 4.12 Detail of height estimation aggregated with range sen-
sor information . 58

Figure 4.13 EKF-SLAM behavior when NEES test is not used. . . . 60

Figure 4.14 EKF-SLAM behavior when χ2α=0.9 60

Figure 4.15 Discarded marker observations when χ2α=0.05 61

Figure 4.16 Discarded marker observations when χ2α=0.9 61

Figure 4.17 Accepted and discarded range sensor observations
when χ2α=0.9 . 62

Figure 4.18 Detail of accepted and discarded range sensor obser-
vations when χ2α=0.9 . 62

L I S T O F TA B L E S

Table 3.1 PixHawk 4 Specification 27

Table 4.1 Distance to true markers’ pose 55

Table 4.2 Marker’s estimated pose 56

A C R O N Y M S

EKF Extended Kalman Filter

ENU East-North-Up

IDL Interface Description Language

KF Kalman Filter

NED North-East-Down

NEES Normalized Estimation Error Squared

ROS Robot Operating System

RTAB-Map Real-Time Appearance-Based Mapping

RViz ROS Visualization

SLAM Simultaneous Localization And Mapping

UAV Unmaned Aerial Vehicle

UKF Unscented Kalman Filter

ViSP Visual Servoing Platform

xii

1
I N T R O D U C T I O N

In the last ten years the robotics industry has increased year by year, and
companies are seeing robotics as a decisive technology. According to ABI
Research’s [1] “State of the robotics market” report, during 2018 the total
investment in robotics was about 4.000 million U$S. Among these invest-
ments mobile robotics is recognized as one of the key trends, where the most
important one is automated guided vehicles that move around contained
environments, such as warehouses.

Within this context, Unmaned Aerial Vehicle (UAV) systems are a growing
industry, and although expectations were not fulfilled last years, they are
considered as an emerging market. The cited report states that “the largest
use case is undeniably for inspection and maintenance” [1]. Nevertheless, the
current pandemic has open a door to innovation, and UAVs are part of it [2].
Leonardo, one of the biggest Italian companies in the market, has noticed
that autonomous mobile systems will be important for its products in the
near future, and for this reason, have launched an Open Innovation project
aimed to UAVs [3].

The implementation presented in this work should be framed in the par-
ticipation of the Politecnico di Milano Colibrì Team for the Leonardo Drone
Contest. The team is a collaboration of the DEIB and the DAER departments,
and had very positive results winning the first edition of the contest.

the contest

The competition is composed of two phases. The map of the environment
is developed during the first phase, while throughout the second phase the
drone should follow a path of landmarks previously established. The drone
should not have a GNSS signal nor can it be guided, this way, the drone is
guaranteed to be fully autonomous, and as a result should complete both
phases without any intervention.

1

2 introduction

Figure 1.1: Example of proposed environment for the Leonardo Drone Contest.

The first phase the drone should map the environment, recognize the QR
markers in the floor, avoid any obstacle and return to the initial position.
During the second phase, and after the path of five landmarks is established,
the drone should take off and land for at least five seconds in all the pre-
defined markers in a specific order, and finally return to the initial position.
The drone able to do the path in the right sequence is the winner of the
competition.

The drone, as mentioned before, should not have any GNSS sensor nor
LiDAR sensors, hence the localization and mapping algorithm should be
based on visual information. The allowed sensors are inertial devices, like
IMU or a magnetometer, range sensors, cameras and speed sensors, with the
possibility of streaming capacity.

The indoor environment where the drone should move needs to have spe-
cific characteristics with obstacles and walls that delimit the space. Obstacles
have at most three meters height with passages of at least one meter. An
special QR marker of a size of one by one meter is disposed in the take-
off area. The environment is 20 meters by 10 meters length, with the walls
having a minimum of three meters height and made of net-like material.
Furthermore, six poles are displaced in the following way: one per each
corner and two in the middle axis, being each pole of different colors. The
floor is a black, textured, pavement-like material. Obstacles are made of a
high-visibility material, with a minimum volume of one cubic-meter.

introduction 3

This work aims to shed some light on the importance of the usage of dif-
ferent landmarks in the environment, and how the implementation reacts on
these different landmarks. Furthermore, it has the purpose to understand the
importance of different implementation decisions included in the algorithm
and how these decisions impacted on the results.

road map

The current work is divided in five chapters:

• Chapter 2 introduces background information useful to completely
understand the proposed implementation

• Chapter 3 explains and comments the implementation in the context of
the competition

• Chapter 4 exposes the different experiments done in order to evaluate
the implementation

• Chapter 5 discusses over the results of the experiments and comments
on possible future works and enhancements

2
B A C K G R O U N D

2.1 robot operating system

The Robot Operating System (ROS) [4] is an open source middleware that
provides inter-process communication through a message passing mechanism.
It is also a collection of libraries, tools and conventions with the aim of
simplify the development of software for robots. In this sense, one of the main
components of the framework are the nodes, which encapsulate processes
and/or algorithms.

2.1.1 Nodes

Nodes are processes that perform a specific computation. In the system the
nodes communicate between them using a publisher/subscriber infrastruc-
ture based on topics. A node subscribes to a particular topic, and it will
receive messages from a publisher node. This way, a publisher node is hid
to the subscriber, reducing the coupling between them. The advantage of
this mechanism is that nodes can be developed separately once the message
structure is defined, forcing developers to implement clear interfaces for
communication by using a message Interface Description Language (IDL).
Moreover, this enables a modular and distributed development of the robotic
system, while providing some fault tolerance and reduced code complexity.

2.1.2 Topics

As mentioned before, communication between nodes is done via a publisher-
subscriber architecture based on topics, which are named buses over which
messages are exchanged. There can be several publishers (as well as sub-
scribers) for a topic. A node that generates data publishes all its information
in a specific topic bus, consequently this information is consumed by those
nodes subscribed to that topic. The transport protocol used for exchanging
messages is defined at runtime and can be of two types: TCPROS or UDPROS.

5

6 background

TopicPublication Subscription

Node Node

Service invocation

Figure 2.1: ROS basic concepts. Two nodes communicate between them using the
messages published in a topic. One node is responsible of publishing the topic, while
the other subscribes and receives the messages of that particular topic. Furthermore,
the node in the left calls a service provided by the node in the right, so that node
will perform some computation and will return the result. [4]

The description of these protocols is beyond the scope of this document and
the reader is invited to read the ROS documentation for detailed information.

2.1.3 Services

As well as topics, services are a way to communicate nodes. The difference is
that topics are an asynchronous way of communication, while services are
synchronous. The key difference lies on the ability of nodes to decide when
to trigger a service. Hence, services are used in between nodes to retrieve
specific information or to request another node to carry out a computation
beyond caller’s node scope.

2.1.4 Tools

Regarding the tools provided by ROS, one that is crucial for debugging and/or
experimentation is the bag recording and playback. Since the exchange of
messages between nodes is anonymous (meaning that nodes communicate
between each others without knowing which node sent or received a mes-
sage) it is possible to record the messages during a period of time, without
taking into consideration which node sent a message and which node re-
ceived it. This recorder bag is useful for debugging since it can be played
back, hence reproducing a previous experiment. Also, it can be used for the
development of new nodes that depend on the messages contained in the bag.

Another useful tool provided is ROS Visualization (RViz), a 3D visualization
tool. With this tool it is possible to see the robot, orientation, reference frames,
covariance matrices, etc. In addition, it is possible to draw lines, arrows, text
and others, onto the environment in order to see useful information that
cannot be extracted from messages.

2.1 robot operating system 7

2.1.5 MAVLink and MAVROS

MAVLink [5] is a binary telemetry protocol designed for resource-constrained
systems and bandwidth-constraint links, more specifically for drones of all
kinds. As with ROS, it adopts a publisher-subscriber architecture, where data
streams are published as topics. MAVLink key features, as published in its
website are:

• Since its messages do not require any special framing, it is well suited
for applications with very limited bandwidth.

• It provides methods for detecting package drops, corruption and for
package authentication.

• Allows up to 255 concurrent systems on the network.

• Enables both offboard and onboard communications.

MAVROS [6] is the extension of MAVLink in ROS, with the addition of being
a proxy for Ground Control Station tool. Its main features, as published in its
website are:

• Communication with autopilot via serial port, UDP or TCP .

• Internal proxy for Ground Control Station (serial, UDP, TCP).

• Plugin system for ROS-MAVLink translation.

• Parameter manipulation tool.

• Waypoint manipulation tool.

• PX4Flow support (by mavros_extras).

• OFFBOARD mode support.

One characteristic that is worth mentioning, is that MAVROS translates the
North-East-Down (NED) reference frames into East-North-Up (ENU) reference
frames, and vice-versa, so as to be compliant with ROS standard reference
frames.

2.1.6 RTAB-Map

Real-Time Appearance-Based Mapping (RTAB-Map) is a RGB-D, stereo and
LiDAR graph-based Simultaneous Localization And Mapping (SLAM) ap-
proach based on an incremental appearance-based loop closure detector.
It allows to build a 3 dimensional map of the environment using a stereo
camera, a LiDAR sensor and/or the odometry estimation. The map is built

8 background

Figure 2.2: Octomap example. Octotree representation generated from data, showing
occupied voxels only. [7]

using a 3D occupancy grid by means of Octomap library, which builds a
tree-based representation of the mapped area. Octomap library “performs a
probabilistic occupancy estimation to ensure updatability and to cope with
sensor noise”[7].

The Octomap library generates an octotree, which is a hierarchical data
structure used to generate spacial subdivision in 3 dimensions. Each node
in an octotree represents a voxel, which is a cubic volume, which is at the
same time, subdivided in eight smaller cubes until a given minimum voxel
size called resolution. This way, the octotree data structure is used to build
an occupancy grid of a volume. An example of a octotree can be seen in Fig-
ure 2.2, where the color of each occupied voxel represents its height: higher
voxels are red-colored, while lower voxels are light-blue-colored.

RTAB-Map library, uses the Octomap library to store the 3D occupancy grid
of the environment. The rtabmap_ros node is the extension of the RTAB-Map

library for ROS. It uses the information of a stereo camera or a RGB-D camera
and/or a LiDAR information to create a cloud point that is used to build the
map. Furthermore, it uses the provided odometry to estimate and correct the

2.2 transformations 9

Figure 2.3: RTAB-Map example. An stereo camera or a RGB-D camera is used among
the odometry estimation. Both are used to generate a 3D occupancy grid using
Octomap library, and to correct the odometry estimation. [8]

robot’s pose into the 3D map. An example of this procedure can be seen in
Figure 2.3.

2.2 transformations

A robot, in this case the drone, can be considered as a rigid body that moves
and rotates around the environment. Hence, it is necessary to model the
drone displacement in space, and this can be done by decomposing the
movement as translations and rotations.

2.2.1 Translation

Given a vector b =
[
bx by bz

]T
that represents the center of mass of a

rigid body, a translation that displaces b parallel to itself of a given vector t
can be defined as:

b+ t =

bxby
bz

+

t1t2
t3

 =

bx + t1by + t2

bz + t3

 .

10 background

Given a point P represented in the reference frame Rm by vmP will be repre-
sented in the reference frame Rn by:

vnP = vmP + tnm ,

where vnP is the vector that represents the point P in the reference frame Rn,
vmP is the vector that represents the point P in the reference frame Rm, and
tnm is the vector that represents the translation from reference frame Rn to
reference frame Rm.

2.2.2 Rotation

In three dimensional space, any displacement of a rigid body is equivalent
to a single rotation of a given angle about some axis that contains the point.
It is possible to express the previous statement as v = u ∗ θ, being u a unit
vector representing the axis and θ the angle.

Unlike with translations, two or more rotations cannot be simply the sum
of the related vectors. A rotation can be described assuming a rigid body in a
reference frame with its origin fixed, while the unit vectors are changed under
the rotation. This way, a rotation is characterized by the mathematical relation
of these two reference frames. Hence, in order to represent a rotation, two
reference frames with a common origin are needed, as shown in Figure 2.4.
At the beginning the two reference frames coincide, then one of them is
rotated around the origin by an arbitrary angle. After this procedure, the two
reference frames are not coincident anymore, however, both share the same
origin.

The rotation by any angle around any axis can be represented in a matrix
form, Rm

n , where each column of the matrix represents the unit vector of Rn
in Rm, so it represents the rotated frame Rn with respect the fixed frame Rm
with common origin. Furthermore, it is possible to show that matrix Rm

n is
orthonormal, which means that its inverse is equal to its transpose.

Given the matrix representation of a rotation, it is possible to provide a way
to rotate a vector in the space. When the reference frames origins are the same,
the rotation of a vector is possible by multiplying it by the rotation matrix
around an axis: vm = Rm

n v
n. This kind of rotations are called elementary

rotations, and given that there are three axis in a 3D space, three different
elementary rotations can be defined:

2.2 transformations 11

Figure 2.4: Rotation around origin. The reference frame at the left is rotated around
Y axis and, as result, a new reference frame is obtained, both sharing the same origin.

1. Rotation around axis x:

Rx,θ =

1 0 0

0 cos (θ) − sin (θ)

0 sin (θ) cos (θ)

 .

2. Rotation around axis y:

Ry,θ =

 cos (θ) 0 sin (θ)

0 1 0

− sin (θ) 0 cos (θ)

 .

3. Rotation around axis z:

Rz,θ =

cos (θ) − sin (θ) 0

sin (θ) cos (θ) 0

0 0 1

 .

As mentioned, unlike translations, rotations cannot be summed. Hence, if
two consecutive rotations need to be performed around two axis, a multipli-
cation is needed:

Rz,x = Rx,α ∗Rz,β , (2.1)

where Rz,x is the rotation around axis z by an angle β followed by a rotation
around the new axis x by an angle α, as shown in Figure 2.5.

12 background

Figure 2.5: Rotation about axis z followed by rotation about axis x. The second
rotation is performed about the original axis z. This final rotation can be achieve by
multiplying R1 and R2.[9]

2.2.3 Homogeneous transform

A rotation and a translation can be accomplished as follow: v̂ = Rv + t. Nev-
ertheless, this can be achieve by using homogeneous coordinates, where the point

v, expressed in its homogeneous representation, is v =
[
vx vy vz 1

]T
.

This way, the rotation and translation of a point can be accomplished by
multiplying the 3D point with the homogeneous transformation matrix:

Tnm =

[
Rnm t

 1

]
, (2.2)

v̂n = Tnmv
m . (2.3)

The rotation component of Tnm needs to be defined. Several definitions are
possible, and in this work the RPY order is used. RPY order of rotations
establishes the order of the rotations applied to the three axis given three
different angles. Therefore, Rnm is a sequence of rotations around the X axis,
Y axis and Z axis, given φ, θ and ψ angles, which is the same as Rz,ψRy,θRx,φ.

As can be noticed in equation (2.2), the homogeneous transformation is
represented by a 4× 4 matrix, and unlike the pure rotation matrix showed in
Section 2.2.2, the inverse of the homogeneous transformation is not equal to
its transpose. The inverse of the homogeneous transformation is equivalent
to:

T−1 =

[
RT −RT t

 1

]
. (2.4)

2.3 kalman filter 13

Figure 2.6: Example of a Homogeneous transform. (a) Transformation T 0m is applied
to a point in reference frame R0 to express it in reference frame Rm. (b) The
inverse transformation is applied, so to express the point in reference frame Rm into
reference frame R0. [10]

2.3 kalman filter

Introduced by [11], the Kalman Filter (KF) provides a recursive method for
estimating the state of a dynamic system with presence of noise. It is a
technique for filtering and prediction in linear Gaussian systems and applicable
only to continuous states. One of its key features is that it simultaneously
maintains estimates of the state vector and the estimate error covariance. It
assures that the posteriors are Gaussian if the Markov assumption is hold, in
addition to three conditions. The Markov assumption states that the past and
future data are independent if one knows the current state; the other three
conditions are the following:

1. The state transition probability p (xt|ut, xt−1) must be a linear function
in its arguments. This is guaranteed by xt = Atxt−1 +Btut + εt. Here,
xt and xt−1 are the state vectors of size n, and ut represents the control
vector of size m at time t; At and Bt are matrices of size n× n and
n×m respectively. In this way, the state transition function becomes
linear in its arguments, hence KF assumes a linear system dynamics. εt
represents the uncertainty introduced by the state transition, and it is a
Gaussian random variable with zero mean and Rt covariance.

2. The measurement probability p (zt|xt) must be linear in its arguments.
This is guaranteed by zt = Ctxt + δt, where zt represents the measure-
ment vector of size k, Ct is a matrix of size k×n and δt is a Gaussian
noise with zero mean and Qt covariance.

14 background

3. The initial belief should be normally distributed.

Given these three conditions, we are guaranteed that the posterior probability
is Gaussian.

Algorithm 2.1: Kalman Filter algorithm

Input: µt−1, Σt−1, ut, zt

1 µ̂t = Atµt−1 +Btut

2 Σ̂t = AtΣt−1A
T
t + Rt

3 Kt = Σ̂tC
T
t

(
CtΣ̂tC

T
t +Qt

)−1
4 µt = µ̂t +Kt (zt −Ctµ̂t)

5 Σt = (I−KtCt)Σ̂t

6 return µt, Σt

The KF can be seen in Algorithm (2.1) and its input is the belief at time
t− 1, represented by its mean (µt−1) and its covariance (Σt−1), in addition
to the control vector (ut) and the observations (zt). As a result, it returns the
current belief characterized by its mean µt and covariance Σt.

The first step in the algorithm (lines 1 and 2), represents the prediction
step. It calculates the current belief before incorporating the observations, but
after adding the control vector. The estimated belief is characterized by its
mean, µ̂t , and its covariance Σ̂t.

The second step (from line 3 to 5) starts by calculating Kt, the Kalman gain,
which specifies the degree in which the observation is incorporated to the
new state estimate. Kt can be seen as the weighting factor that weights the
relationship between the accuracy of the predicted state estimate and the
observation noise. When Kt is large, the observations have more importance
in the final estimate; while if Kt is small, the observations do not have much
importance in the correction step. Following, at line 4, the new mean is
estimated by means of the Kalman gain and the innovation, which is the
difference between the observation zt and the expected measurement Ctµ̂t.
Finally, the new covariance is calculated.

2.3.1 Extended Kalman filter

The linearity conditions that make the KF to work are, in some cases, far
from reality: state transition functions and measurements are rarely linear
in practice. The Extended Kalman Filter (EKF) works through a process of

2.3 kalman filter 15

Figure 2.7: Linear (a) and nonlinear (b) transformation of a Gaussian random
variable. The lower right plot shows the density function of the random variable.
The upper right plot shows the transformation of the random variable. The upper
left plot shows the resulting density function. [12]

linearization, where nonlinear state transition and observation functions are
approximated by a Taylor series expansion.

The Figure 2.7a shows the linear transformation of a random Gaussian
variable, whose density function is N

(
x;µ,σ2

)
. Assuming that the random

variable is transformed using a linear function y = ax+ b, the resulting ran-
dom variable will be Gaussian with mean aµ+b and variance a2σ2. However,
as shown in Figure 2.7b, this does not happen if the transformation is not
linear. In this case, assuming the original random variable is transformed
using a nonlinear function g, the density of the resulting random variable is
not Gaussian anymore.

In the EKF the state transition probability and observation probabilities
are ruled by nonlinear functions g and h respectively. Matrices A and B are
replaced by function g (ut, xt−1) and matrix H is replaced by function h (xt),
making the belief not Gaussian. This is solved in EKF by approximating to the
true belief, not the exact one as happens with linear KF. The approximation is
done using a linearization method that approximates the nonlinear function
by a linear function that is tangent to it, thereby maintaining the Gaussian
properties of the posterior belief.

The used method is the first order Taylor expansion, which constructs a
linear approximation of a function g from g’s value and slope, which is given
by

g ′ (ut, xt−1) =
∂g (ut, xt−1)
∂xt−1

. (2.5)

16 background

Figure 2.8: Linearization applied in EKF. In this case, the nonlinear function g is
approximated using first order Taylor expansion, that is a linear function tangent to
g at the mean of the original density function. The linearization is not perfect, so it
adds an error, depicted in the upper left plot. This error is the difference between
the dashed line and the solid line. [12]

Since g depends on the control variable u and the state x, we need to
define a value for x, and the logical choice is the mean of the posterior in the
previous time step: µt−1. This way

g (ut, xt−1) = g (ut,µt−1) + g ′ (ut,µt−1) (xt−1 − µt−1) , (2.6)

where g ′ is the Jacobian of g, usually expressed as Gt, and it depends on ut
and µt−1, hence it changes through time.

The same linearization is applied to the observation function h:

h (xt) = h (µ̂t) + h
′ (µ̂t) (xt − µ̂t) , (2.7)

h ′ (µ̂t) =
∂h (xt)

∂xt
, (2.8)

where h ′ is the Jacobian of h, usually expressed as Ht. In this case, the
linearization is done around µ̂t, which is the state estimate just before com-
puting h.

The Figure 2.8 depicts the approximation of g by a linear function that is
tangent around its mean. The resulting density function is shown in the upper

2.4 simultaneous localization and mapping 17

Algorithm 2.2: Extended Kalman Filter algorithm

Input: µt−1, Σt−1, ut, zt

1 µ̂t = g (ut,µt−1)
2 Σ̂t = GtΣt−1G

T
t + Rt

3 Kt = Σ̂tH
T
t

(
HtΣ̂tH

T
t +Qt

)−1
4 µt = µ̂t +Kt (zt − h (µ̂t))

5 Σt = (I−KtHt)Σ̂t

6 return µt, Σt

left plot with a dashed line, that is similar to the original density function.

The EKF algorithm can be seen in Algorithm (2.2), and it is similar to
Algorithm (2.1). The difference lies in the use of the nonlinear functions g
and h and their Jacobians, Gt and Ht respectively.

2.4 simultaneous localization and mapping

Among all the problems faced by autonomous mobile robots, two of them are
relevant for this work: localization and mapping. The former one, is related
to the problem of where the robot is, while the later is related to building a
map of the environment. However, in order to accurately localize itself the
robot needs a map of the environment in which it is immersed in, and, in
order to build a map, it needs to know where it currently is, giving us a
chicken-egg situation. Hence, the SLAM problem appears when the robot has
no knowledge of its localization nor its environment map, while measure-
ments and controls are given.

The problem of building a map can be summarized in the following steps:

1. The robot senses the environment using its sensors

2. It creates a representation of the acquired data

3. It integrates the processed sensor data with the previously learned map
structure

While this process can be done by manually moving the robot around
the environment, it is more challenging to build the map while the robot is
moving autonomously.

On the other hand, assuming that the robot already knows the map, the
localization problem could be trivial if no noise is present at all. The sensors,

18 background

wheel encoders, different kinds of terrain, battery life, etc, all of these can
make the robot to increase its uncertainty related to where it is. As robot
moves around the environment it uses its sensors to estimate its position,
increasing its uncertainty regarding its position relative to the map. At some
point, the robot will "see" a known landmark or feature in the environment,
correcting its position while reducing the uncertainty.

The localization and mapping problems can be solved together by using a
SLAM technique, with which the robot will build the map while localizing it-
self in it. An example of this problem can be seen in Figure 2.9, where a robot
moves around the environment and sees some features or landmarks. The
uncertainty regarding its position is low when it starts, and keeps growing
while it moves around. At the end, it sees a known landmark (m0) making
the uncertainty to shrink. As can be seen in the figure, the robot adds new
landmarks to the map (m1 and m2) with their corresponding uncertainty,
and when the robot sees the first landmark, not only its own uncertainty
decreases, but also the two new landmarks’ uncertainty. In this way, the
robot’s position is correlated with the observations’ position estimates.

The idea of the SLAM problem is to estimate a posterior belief that involves
not only the robot pose, but also the map: p (xt,m|z1:t,u1:t), where xt is the
robot’s pose at time t, m is the map, z1:t are the measurements, and u1:t are
the controls given to the robot.

2.4.1 EKF-SLAM

The SLAM problem can be addressed, between others, using an EKF approach.
The algorithm proceeds in the same way as shown in Section 2.3.1, being
µ a state vector containing the information for the robot pose (qr) and the
landmarks’ pose (mi):

µ =
[
qr m0 . . . mn−1

]T
. (2.9)

One thing that is worth mentioning is that in EKF-SLAM maps are feature
based. This means that the features or landmarks are assumed to be points
in the space: if the robot sees, for example, a chair, it will store a point that
represents the chair in space. Also, as explained before, it assumes Gaussian
noise for the robot motion and observations.

The EKF-SLAM algorithm estimates the robot’s pose in addition to all
encountered landmarks’ poses along its way. Thus, there is a correspondence
between robot’s pose and landmarks, and that is why it is necessary to in-
clude the landmarks information into the state vector. Hence, the algorithm

2.4 simultaneous localization and mapping 19

Figure 2.9: At the beginning (a) the robot has low uncertainty regarding its pose.
As it moves around the environment its uncertainty, represented by the dark gray
ellipsis, grows (b), (c), (d), until it sees a known landmark (e), making the position
uncertainty to shrink. [13]

20 background

estimates the posterior p (µt|zt,ut).

Algorithm 2.3: EKF-SLAM algorithm

Input: µt−1, Σt−1, ut, zt

1 µ̂t = g (µt−1,ut);
2 Gt = computeJacobian (g);
3 Σ̂t = GtΣt−1G

T
t + Rt;

4 foreach landmark observation zit do

5 if landmark i has not being seen before then
6 addLandmarkToStateVector

(
zit
)

7 Hit = computeJacobian
(
hi
)
;

8 vi = zit − h
i (µ̂t);

9 S = HitΣ̂tH
iT
t +Qt;

10 Kit = Σ̂tH
iT
t S

−1 ;
11 µt = µ̂t +K

i
t

(
vi
)

;
12 Σt = (I−KitH

i
t)Σ̂t ;

13 return µt, Σt

Assuming the robot’s pose is composed by x, y, θ , the markers’ pose is com-
posed by x, y, and there are N markers, the state vector µ will have a length
of 3× 2N, and the covariance matrix Σ will have a size of (3× 2N)× (3× 2N).

The EKF-SLAM can be seen in Algorithm (2.3). From lines 1 to 3, it
computes the state vector and covariance matrix updates; the function
computeJacobian computes, indeed, the Jacobian matrix for the motion
model g, and the resulting matrix has the same size as the covariance matrix
and has the following characteristic:

Gt =

[
Gr 0

0 I

]
, (2.10)

Gr =

∂x ′

∂µt−1,x

∂x ′

∂µt−1,y

∂x ′

∂µt−1,θ
∂y ′

∂µt−1,x

∂y ′

∂µt−1,y

∂y ′

∂µt−1,θ

∂θ ′

∂µt−1,x

∂θ ′

∂µt−1,y

∂θ ′

∂µt−1,θ

 , (2.11)

where ∂x ′

∂µt−1,x
is the derivative of g along x ′ dimension, taken with respect to

x, y, and θ at µt−1.

2.4 simultaneous localization and mapping 21

At line 4, it iterates through every observation zt. At each time step t, a
sensor obtains a set of observations zi of one of the N landmarks. Each obser-
vation is associated with a map feature, and this association is accomplished
by a prediction of the measurement that each feature would generate and a
measure of the difference between the prediction and the sensor measure-
ment. The prediction of the measurements can be obtained by the observation
model hi, which result is a vector of predicted features. If the observation zi

comes from a landmark i, the following relation is hold:

zi = hi (xt) +w
i , (2.12)

where xt is the true state and wi is the observation noise with covariance Qt,
and assumed to be zero mean, Gaussian, additive, and independent of the
process noise. If the landmark is not already in the state vector, at line 6 it
is added by projecting the observation and calculating the landmark’s pose,
adding two new elements to the state vector and two new more columns and
rows to the covariance matrix. At line 7 the Jacobian of the observation model
is computed.

At line 8, the innovation is calculated while its covariance is calculated
at line 9. The innovation measures the discrepancy between the predicted
observation and the actual sensor measurement. At line 10 the Kalman gain
is computed, and at line 11 the state vector is updated. The gain propagates
the information through all the state vector, updating not only the robot’s
pose, but also the landmarks’ poses.

The fact that the Kalman gain is not sparse is important, because observing
a landmark not only improves the estimate of that landmark’s pose, but also
all the others, along with the robot’s pose. This effect can be seen in Figure 2.9,
with an additional explanation: most of the uncertainty of the landmarks’
poses is caused by the robot’s own uncertainty, so the location of those
previously seen landmarks are correlated. When the robot gains information
about its own pose, this information is propagated to the landmarks, and as
result it improves the localization of other landmarks in the map.

2.4.2 Adding new landmarks

So far, the existence and accuracy of a map was assumed. Nevertheless, this
is not always true, and the construction of a map should somehow be done.
EKF-SLAM algorithm includes the possibility of adding new landmarks to
the map while doing the localization process with known landmarks. This
process of adding new landmarks to the map is done via what is called in-
verse observation model, which handles the sensor measurements, identifies

22 background

the new landmark, and adds it to the state vector.

The inverse observation model will produce the coordinates of the new
landmark in the map, and this information will be added to the state vector,
which will increase its size (in this case) by two new elements.

h−1 (xr, z) =

[
xl

yl

]
, (2.13)

xt = y (x, z) =

[
x

h−1 (xr, z)

]
. (2.14)

In equation (2.13) xr refers to the elements in the state vector that corresponds
to the robot’s pose, and z refers to the observation elements, which can be,
for example, range and bearing data. Since the state vector has a variable
length, extending the covariance matrix is also needed whenever the robot
sees a landmark that has not being seen previously. The extension of the
covariance matrix is achieved as shown in equation (2.15).

Σ̂ = YxΣY
T
x +YzQtY

T
z , (2.15)

Yx =
∂y

∂x
=

[
∂x
∂x
∂h−1

∂x

]
=

[
I

Gx

]
, (2.16)

Yz =
∂y

∂z
=

[
∂x
∂z
∂h−1

∂z

]
=

[

Gz

]
, (2.17)

where matrices Gx and Gz are the Jacobian of function h−1 with respect to
the state vector and the observation vector respectively. By substituting the
Jacobians in equations (2.16) and (2.17) into equation (2.15), the following
matrix is obtained:

Σ̂ =

[
Σ ΣGTx

GxΣ GxΣG
T
x +GzQtG

T
z

]
. (2.18)

The linearized covariance update can be factored as shown in equa-
tion (2.19) by assuming that A ≡ 1, B ≡ 0, C ≡ 0 and D ≡ Gz[
A B

C D

][
P 0

0 Q

][
A B

C D

]T
=

[
APAT +BQBT APCT +BQDT

CPAT +DQBT CPCT +DQDT

]
, (2.19)

Σ̂ =

[

Gx Gz

][
Σ

 Qt

][

Gx Gz

]T
. (2.20)

2.5 normalized estimation error squared 23

2.5 normalized estimation error squared

The Mahalanobis distance is a measure of the distance between a point and a
distribution. It is a way to measure how many standard deviations is away
the point from the mean of the distribution. The Mahalanobis distance of an
observation x =

[
x1 x2 . . .

]
with mean µ =

[
µ1 µ2 . . .

]
, and covariance

matrix Σ is defined as:

D =
√
(x−µ)Σ−1 (x−µ) . (2.21)

Every time the drone observes a landmark, a node responsible of iden-
tifying it processes the features that distinguish it with respect to other
landmarks, and publishes these features as a message. In the case of poles,
range and bearing information is provided, while in the case of markers
the position and orientation information with respect to the camera frame
is provided. Given this, each observation z for a pole, is composed by three
measurements, and each observation of a marker is composed by six mea-
surements. After observing a landmark the Algorithm (2.3) calculates the
discrepancy between the observation i and the predicted observation by the
innovation (vi), and its covariance (S), as

vi = zit − h
i (µ̂t) ,

S = HitΣ̂tH
iT
t +Qt .

The square of the Mahalanobis distance can be used in order to establish
a correspondence between the observed measurements with the landmark
features if the following holds:

D2i = v
iS−1vi < χ2d,1−α , (2.22)

where d is the size of hi and 1−α is the desired confidence level. This test is
called individual compatibility, and when applied to the predicted state can
be used to determine the subset of observation features that are compatible
with the observation.

Furthermore, a state estimate is consistent if its state estimation error x− x̂

satisfies

E [x− x̂] = 0 ,

E
[
(x− x̂) (x− x̂)T

]
6 Σ .

When the ground truth x is available, a Normalized Estimation Error Squared
(NEES) can be performed to check the consistency of the filter. NEES test can

24 background

be defined as the squared Mahalanobis distance for the difference between x
and x̂, and consistency can be checked with a χ2 test

NEES = (x− x̂)Σ−1 (x− x̂) 6 χ2d,1−α .

However, the ground truth is only available in simulated environments
thus, the consistency of the filter is maintained by using observations that
satisfy the test in equation (2.22). This way, the filter will discard observations
that do not satisfy the innovation test, maintaining a consistent estimation of
the state and therefore, the map.

3
E K F - S L A M I M P L E M E N TAT I O N

In Chapter 2 the EKF-SLAM algorithm in the context of SLAM was explained.
As mentioned in Section 2.3, the algorithm can be summarized in two steps:
prediction and correction. The first stage involves the prediction of the next
state of the system, meanwhile, during the correction stage this estimation is
updated. However, differently from the Algorithm (2.3), the proposed imple-
mentation adds a NEES test with the objective of improving the consistency of
the filter. The updated version of the algorithm can be seen in Algorithm (3.1).

Algorithm 3.1: EKF-SLAM algorithm with NEES test

Input: µt−1, Σt−1, ut, zt

1 µ̂t = g (µt−1,ut);
2 Gt = computeJacobian (g);
3 Σ̂t = GtΣt−1G

T
t + Rt;

4 foreach landmark observation zit do

5 if landmark i has not being seen before then
6 addLandmarkToStateVector

(
zit
)

7 Hit = computeJacobian
(
hi
)
;

8 vi = zit − h
i (µ̂t);

9 S = HitΣ̂tH
iT
t +Qt;

10 Kit = Σ̂tH
iT
t S

−1 ;

11 e = vi
T
S−1vi;

12 if e < χ2α then
13 µt = µ̂t +K

i
t

(
vi
)

;
14 Σt = (I−KitH

i
t)Σ̂t ;

15 return µt, Σt

Line 11, computes the NEES value, and line 12 compares it with the χ2 value
for the specific landmark. If the NEES value is lower than the χ2 threshold,

25

26 ekf-slam implementation

Figure 3.1: 3DR Iris Quadrotor frame [6].

the observation is accepted and the state vector and covariance matrix are
updated.

In this chapter, an EKF-SLAM implementation is shown, starting from the
used drone characteristics, going through the motion and observation models,
visual process pipeline, and ending with the overall system’s architecture.

3.1 the drone

3.1.1 Characteristics

The drone considered for this analysis has a common characteristics, such as
four rotors disposed as an X. The drone frame is called 3DR Iris Quadrotor,
and can be seen in Figure 3.1.

3.1.1.1 Flight Controller

The flight controller used in this case is a PixHawk 4, and its characteristics
are shown in Table 3.1. It is worth mentioning that it includes an integrated
accelerometer, a gyroscope, a magnetometer and a barometer.

3.1.1.2 Additional Sensors

The drone was equipped with several sensors that are the input for localiza-
tion, mapping and path planning algorithms, among others.

The localization and mapping algorithm makes use, in an indirect way,
of monocular and stereo cameras, and range sensors. Four cameras were
mounted in order to be able to have 360 range view, with cameras mounted
every 90 degrees. Furthermore, two stereo cameras were mounted, one points

3.1 the drone 27

Item Description

Main FMU processor
STM32F765

32 Bit Arm® Cortex®-M7, 216MHz, 2MB memory, 512KB
RAM

IO Processor
STM32F100

32 Bit Arm® Cortex®-M3, 24MHz, 8KB SRAM

On-board sensors

Accel/Gyro: ICM-20689

Accel/Gyro: BMI055

Magnetometer: IST8310

Barometer: MS5611

GPS ublox Neo-M8N GPS/GLONASS receiver; integrated magne-
tometer IST8310

Interfaces

8-16 PWM outputs (8 from IO, 8 from FMU)

3 dedicated PWM/Capture inputs on FMU

Dedicated R/C input for CPPM

Dedicated R/C input for Spektrum / DSM and S.Bus with
analog / PWM RSSI input

Dedicated S.Bus servo output

5 general purpose serial ports

3 I2C ports

4 SPI buses

Up to 2 CANBuses for dual CAN with serial ESC

Analog inputs for voltage / current of 2 batteries

Power System
Power module output: 4.9 5.5V

USB Power Input: 4.75 5.25V

Servo Rail Input: 0 36V

Weight and Dimensions
Weight: 15.8g

Dimensions: 44x84x12mm

Operating temperature -40 to 85°c

Table 3.1: Technical specification of the PixHawk 4 flight controller.

28 ekf-slam implementation

forward in order to update the Octomap and the other points downwards in
order to see the markers; Also, both of them are used to build a 3-dimensional
map, used for obstacle avoidance and with the height estimation algorithm.
Furthermore, eight range sensors were mounted every 45 degrees, and one
PIX4Flow optical flow camera points downwards in order to measure the
distance to the ground.

3.1.2 Reference frames

This system is composed by three reference frames linked with each other, as
represented in Figure 3.2: map, odom and base_link. The map frame, also called
world or global frame, is the static reference frame, where the global drone’s
position and global markers’ position is set. The odom reference frame is
similar to the map frame, but the difference is that this frame drifts with
time, as happens with the pure odometry. Finally, the base_link frame, also
referred as body or local frame, refers to the center of mass of the drone.

As mentioned before, all transformations within these reference frames are
published by different nodes: the map to odom transformation is handled by
the rtabmap node, the odom to base_link is handled by mavros node. There
are many other transformations in the system, but they are mainly related to
the base_link reference frame and the different cameras and sensors in the
drone.

Finally, there is a transformation that is worth mentioning: the NED to ENU.
As mentioned in Section 2.1, ROS uses the ENU convention, while the conven-
tion adopted by the Aerospace community is the NED. Also, as mentioned in
Section 2.1.5, MAVROS is in charge of doing and publish this transformation.
In Figure 3.3 a simple scheme of the transformation can be seen. As explained
before, this transform consists on rotating the X-axis and the Y-axis by 90

degrees, hence the homogeneous rotation matrix will have the following
form:

RNEDENU =

0 −1 0 0

0 0 1 0

−1 0 0 0

0 0 0 1

 . (3.1)

3.2 motion model

During the prediction step, the motion model and the covariance matrix
update are computed. The motion model will update the state vector, which

3.2 motion model 29

Figure 3.2: Main reference frames in the system.

will store the position X, Y and Z in the global reference frame, and the
orientation in the Z-axis of the drone. MAVROS provides a node that makes
odometry estimation based on different sensors outputs. The messages pub-
lished by the odometry node, of type Odometry, provide the linear velocity,
the angular velocity and pose information. The velocity information is used
to estimate the position in X, Y and Z, and the drone’s orientation along the
Z-axis. However, the velocity estimation provided by MAVROS is relative
to the body reference frame, and this has to be transformed into the world
reference frame, so, before estimating the global position of the drone, it is
mandatory to do this transformation.

u =
[
vbx vby vbz ωbx ωby ωbz φb θb ψb

]T
, (3.2)

vw = T ∗

v
b
x

vby

vbz

 , (3.3)

where the control vector u is composed by the linear velocities in the body
reference frame (vbx , vby, vbz), the angular velocities in the body reference frame
(ωbx , ωby, ωbz) and the drone’s orientation (φb, θb, ψb). Additionally, T is the
homogeneous transform (see Section 2.2) using the current orientation of the
drone: φb, θb and µψ. Notice the third element of the orientation (µψ), this is
because the orientation over the Z-axis is estimated by the filter. As result, vw

30 ekf-slam implementation

Figure 3.3: NED to ENU conversion scheme. [6]

will be a column vector with the linear velocities in the global reference frame.

Given this, the motion model update can be summarized in the following
calculation:

µ̂ =

µt−1,xw

µt−1,yw

µt−1,zw

+∆t ∗ vw , (3.4)

µ̂ψ = µt−1,ψ +∆t ∗ωbz . (3.5)

Then, Gt, which is the Jacobian matrix of the motion model, should be
computed. As mentioned in Section 2.4.1, it has the following characteristic:

Gt =

[
Gr 0

0 I

]
, (3.6)

Gr =

1 0 0 Gr,14

0 1 0 Gr,24

0 0 1 0

0 0 0 1

 , (3.7)

Gr,14 = −∆t(vwy (cφ ∗ cψ + sθ ∗ sφ ∗ sψ) − vwz (cψ ∗ sφ − cφ ∗ sθ ∗ sψ)
+ vwx (cθ ∗ sψ)) ,

Gr,24 = −∆t(vwz (cψ ∗ sφ + cφ ∗ sθ ∗ cψ) − vwy (cφ ∗ sψ − sθ ∗ sφ ∗ cψ)
+ vwx (cθ ∗ sψ)) ,

where

cφ = cos
(
uφ
)
, cθ = cos (uθ), cψ = cos

(
µψ
)
,

sφ = sin
(
uφ
)
, sθ = sin (uθ), sψ = sin

(
µψ
)
.

3.2 motion model 31

The function g that models the motion of the drone is assumed to be perfect
and therefore noise free. So, before computing the covariance update, it is
necessary to compute the process noise covariance matrix (Rt) that encodes
the motion model noise which, in this case, is related to the underlying
dynamics of the drone flight. The noise is assumed to be additive and
Gaussian, and therefore, the motion model can be decomposed as:

xt = g(ut, xt−1) +N (0,Rt) , (3.8)

Rt = N ∗U ∗NT , (3.9)

the noise part in equation (3.8) relates to the acceleration component that is,
in this case, unknown. However, it is known from a theoretical perspective:
the acceleration component in an accelerated movement is 12∆t

2a, where a is
the body’s acceleration. Given this, we can assume that the noise component
in the motion model is:

N (0,Rt) =
1

2
∆t2Tbw

ax

ay

az

aψ

 , (3.10)

where Tbw is the transformation matrix from body to world reference frame.
The covariance of the process noise (Rt) can be decompose as shown in
equation (3.9), where matrix N is the Jacobian of acceleration term with
respect to the state vector, and matrix U is the estimated average acceleration.

N =
∂12∆t

2Tbwa
∂µ

, (3.11)

U = I ∗

aavg,x

aavg,y

aavg,z

aavg,ψ

 . (3.12)

The multiplication in equation (3.9) provides an approximate mapping
between the motion noise in control space and the motion noise in the state
space.

Finally, the covariance update should be computed as follow

Σ̂ = Gt ∗ Σ ∗GTt + Rt . (3.13)

32 ekf-slam implementation

3.3 observation models

While the drone is moving around the environment it senses different land-
marks that may be included or not in the state vector. These observations
will eventually improve the localization of the drone, and will improve the
landmarks’ poses if needed. The whole process involves the computation of
the Jacobian of the observation model for the seen landmark, the computation
of the Kalman gain, and the update of the state vector and covariance matrix.

To perform the correction step, EKF-SLAM needs a linearized observation
model with additive Gaussian noise. In the case studied in this work, there
are two kinds of landmarks and, therefore, two different observation models.
The main difference between these two type of landmarks, is that the position
of poles type is known, while it is not known in the case of markers. Hence,
every time the robot "sees" a pole, the algorithm will update the drone’s pose
and the known markers’ pose; while every time it "sees" a marker two course
of action are possible:

a) if the marker is not known, it is added to the state vector, enlarging it
along with the covariance matrix.

b) if the marker is known, its pose, the pose of all other markers, and the
drone’s pose are updated.

The observation model is, as with the motion model in equation (3.8),
assumed to be perfect and with an additive Gaussian noise. The noise here is
related to the observation process, and so, related to the used sensors.

zi = hi (xt) +N (0,Qt) . (3.14)

Consequently, the noise covariance matrix of the observation model cannot
be deducted as with the noise covariance matrix of the motion model. In
this case, the matrix should be constructed empirically based on the sensors’
characteristics, and it has the following characteristic:

Qt =

σ21 0

. . .

0 σ2n

 , (3.15)

where the diagonal elements σ1..n are the standard deviation of the sensor.
Depending on the sensor used, the diagonal elements can be the standard
deviation for the range and bearing components (distance, azimuth and
elevation), or others.

3.3 observation models 33

As shown in Algorithm (2.3) and Algorithm (3.1) several steps are followed
during the correction part of the algorithm. After computing the observation
model and its Jacobian matrix, the Kalman gain and the innovation should be
calculated, and finally, the state vector and covariance matrix updates should
be done.

3.3.1 Observation model for Poles

In the case of Poles, a range and bearing method is used. In this case, since
the poles have a known position, their information is not kept in the state
vector and therefore, this information will be used for localization purposes.

A ROS node will publish the range and bearing information every time
the drone sees a pole, and this information will be used to calculate the
innovation based on the predicted range and bearing. Hence, the observation
model used for poles is computed in the following way:

pbi,x

pbi,y

pbi,z

 = T−1
r

pwi,x

pwi,y

pwi,z

 , (3.16)

hi(µ̂t) =

pi,ρpi,α

pi,β

 =

√
p2
j,xb + p

2
j,yb

atan2

(
pbj,y,pbj,x

)
atan2

(
pbj,z,p

b
j,ρ

)
 . (3.17)

In equation (3.16), T−1
r corresponds to the inverse of the homogeneous

transformation matrix with respect to the current drone’s pose, and elements
pwi are the x, y and z coordinates of the i pole’s tip in the world reference
frame. This way, the global position of the pole i is projected to the body
reference frame. After that, the range (ρ), azimuth angle (α) and elevation
angle (β) are calculated, as shown in equation (3.17). In Figure 3.4 an example
of the range and bearing is shown.

Observing a pole affects only the drone’s pose, and therefore, the Jacobian
matrix of the observation model will have the following form:

Hi =

∂ρ ′

∂µx

∂ρ ′

∂µy

∂ρ ′

∂µz

∂ρ ′

∂µψ
. . . 0

∂α ′

∂µx
∂α ′

∂µy
∂α ′

∂µz
∂α ′

∂µψ
. . . 0

∂β ′

∂µx

∂β ′

∂µy

∂β ′

∂µz

∂β ′

∂µψ
. . . 0

 , (3.18)

where ρ ′ corresponds to the distance part of the observation model, α ′ is the
azimuth part, and β ′ the elevation part. The elements after the 4

th column
are all 0, which means, as said before, that the observation of a pole will not
affect the pose of the markers.

34 ekf-slam implementation

Figure 3.4: Range and bearing example. The drone observes a pole, process the
data from the sensors and estimates the distance (ρ), the elevation angle (β), and the
azimuth angle (α). The elevation angle is calculated based on the top extreme of the
pole.

3.3.2 Observation model for Markers

The observation model for the markers is a bit different. In this case a ROS

node is responsible of detecting, tracking and publishing the pose of the
markers with respect to the camera that has seen it. The ROS package respon-
sible of this process is called visp_auto_tracker, and publishes messages of
type PoseStamped, which provides the position and orientation of the seen
marker. An example of this situation can be seen in Figure 3.5.

Every time the camera that points down sees a known marker, the node
visp_auto_tracker will publish the pose of that marker. This published pose
is with respect to the camera which is not positioned at the drone’s center of
mass and so, a different transformation is needed. This process can be seen
in equation (3.19), in which the transformation of the marker’s pose in the

3.3 observation models 35

Figure 3.5: Example of the drone observing a marker. The camera visualize a marker
and the node visp_auto_tracker estimates its pose with respect to the camera
reference frame.

world reference frame is transformed to the pose in the camera reference
frame.

mci,x

mci,y

mci,z

mci,φ

mci,θ

mci,ψ

= (Tr ∗ Tc)−1 ∗ Tm , (3.19)

where, Tr is the homogeneous transformation matrix of the drone’s pose, Tc
is the homogeneous transformation matrix of the camera’s pose, and Tm is
the homogeneous transformation of the marker’s pose. The result is a vector
that contains the marker’s pose in the camera reference frame.

As mentioned before, observing a marker will update the drone’s pose
and that marker’s pose, and therefore the Jacobian matrix of the observation
model will have a different aspect from the pole’s case. Here, the Jacobian
can be split in two parts as shown in equation (3.20), where the left part, as

36 ekf-slam implementation

with the poles, affects the drone’s pose, while the right part of the matrix
affects the seen marker’s pose.

Hi =
[
∂hi(µ̂)
∂µr

. . . 0 . . .
∂hi(µ̂)
∂µmi

. . . 0 . . .
]

. (3.20)

The Jacobian matrices of the observation model with respect to the drone
state and with respect the marker pose can be seen in [14]. It is worth to
mention that the reason why this matrix only contains two sections different
to zero is because of the relations between markers: observing a marker does
not affect the pose of others, and therefore, the Jacobians of the observation
model for marker i with respect to marker i+ 1 or any other marker is 0.

Furthermore, unlike the case of poles, the markers’ pose is unknown the
first time, and therefore the algorithm will introduce their pose into the state
vector when the drone sees a previously unknown marker.

3.3.2.1 Adding new Markers

As mentioned in Section 2.4.2, to add new landmarks to the state vector
an inverse observation model is needed. In the current case, the inverse
observation model will project the observed marker’s pose from the camera
reference frame to the world reference frame. Equation 3.21 shows the inverse
observation model for markers where, similarly to the observation model, a
set of transformations are performed but, this time, in order to obtain the
pose of the seen marker in the world reference frame:

mwi,x

mwi,y

mwi,z

mwi,φ

mwi,θ

mwi,ψ

= Tr ∗ Tc ∗ Tm . (3.21)

As before, Tr is the homogeneous transformation matrix of the drone’s
pose, Tc is the homogeneous transformation matrix of the camera’s pose, and
Tm is the homogeneous transformation of the marker’s pose. The result is a
vector containing the marker’s pose in the world reference frame, and with
which will extend the state vector:

µt =
[
µt mwi,x mwi,y mwi,z mwi,φ mwi,θ mwi,ψ

]T
.

Furthermore, the covariance matrix should be updated in order to contain
the newly added marker. As shown in equation 2.15, the Jacobian of the

3.3 observation models 37

inverse observation model with respect to the drone’s state and the Jacobian
of the inverse observation model with respect to the marker’s state are
needed. Both Jacobian matrices can be seen in Appendix A. In this case, the
matrix Yx has a size of (|µ|+ 6)× (|µ|) where |µ| is the size of the state vector
before adding the projected pose of the seen marker. On the other hand,
the matrix Yz has a size of (|µ|+ 6)× 6. Given these two matrices, the new
covariance matrix Σ will be increased by 6 columns and 6 rows and will have
the following form:

Σ =

[
Σr,r Σr,m

Σr,m Σm,m

]
,

where Σr,r is the covariance matrix between the drone’s state variables, the
Σr,m and Σm,r is the covariance matrix between the drone and the markers’
state variables, and between the markers and the drone’s state variables, and
Σm,m is the covariance matrix between markers’ state variables.

3.3.3 Observation model for range sensor and height correction

With respect to the height estimation, it is corrected by poles, markers and
with a combination of PIX4Flow camera and Octomap. Both poles and mark-
ers update the altitude of the drone, but this estimation can be improved
by using the optical flow camera and the Octomap generated by the stereo
camera.

The Octomap is build with obstacle avoidance in mind, but it can be used
jointly with the optical flow to correct the drone’s Z position. To do so, the it
can be assumed that the range sensor provided by the PIX4Flow camera, plus
the Octomap voxel height below the camera should be equal to the drone’s
height. Hence, the range sensor model can be defined as:

h (µ̂t) = µ̂z + bias , (3.22)

and the observation is defined by:

ẑ = voxelz + rangedistance , (3.23)

where voxelz is the Z position of the voxel below the drone, and rangedistance
is the sensed distance provided by the range sensor.

Hopefully, the Jacobian is a vector composed by zeroes except for the
component related to the Z position of the drone:

H =
[
0 0 1 . . . 0 . . .

]
. (3.24)

Since the observation model is composed by a single variable, the Jacobian
is a row vector of the size of the current state vector.

38 ekf-slam implementation

3.4 visual process pipeline

As mentioned in Section 3.1, the drone is composed by several cameras,
specifically, two stereo cameras and four monocular cameras. These cameras
are used to identify and avoid obstacles and for localization purposes. The
localization process involves the identification of poles and markers, and
therefore, the usage of the before mentioned cameras: the four monocular
cameras are used to identify poles, while one stereo camera is used to identify
the markers.

3.4.1 Visual process for Poles

Four ROS nodes are responsible of determining whether a pole is being seen or
not. To do so, they subscribe to topics related to the camera information and
the camera image, and every time a new image arrives, each node process
it to identify a pole. Each pole is composed by two different colors, and
each pole has a different combination of colors making possible to uniquely
identify them. The overall process can be followed in Algorithm (3.2).

Algorithm 3.2: Poles localization algorithm

Input: image_raw, camera_info

1 Apply masks to image
2 Identify how many poles are in the image
3 if contours of poles where found then
4 foreach pole contour do
5 Find coordinates of contour
6 Identify pole
7 if the full width of the pole can be seen then
8 Compute Azimuth (α)
9 if the pole is not occluded then
10 Compute Range (ρ)
11 if the top of the pole can be seen then
12 Compute Altitude (β)

13 return α, β, ρ

Lines 1 and 2, applies a mask in order to identify the amount of poles
contours in the image. If there are pole contours in the image, at lines 5 and 6

the algorithm uniquely identifies the pole and its coordinates. If the width of
the identified pole can be seen, at line 8 the algorithm computes the azimuth

3.5 overall architecture 39

angle (α) by using the drone’s yaw and the center of the contour. At line 9, it
estimates the probability of occlusion of the pole by comparing the contour
shape with the form factor, computed as ymax−yminxmax−xmin

where ymax and ymin
are the bottom and the top coordinates of the contour, and xmax and xmin
are the right and left coordinates of the contour. If the probability is greater
that 75%, the range is computed based on the diameter of the contour. Finally,
if the top of the contour can be seen (line 11), at line 12 it computes the
altitude.

3.4.2 Visual process for Markers

The markers detection pipeline is performed by the Visual Servoing Plat-
form (ViSP) tracking package [15]. The package wraps an automated pattern-
based tracker based on ViSP library, which allows to estimate an object pose
with respect to the camera. In the case of this work a QR code is used as
marker, which is identified by the tracker.

The visp_auto_tracker node subscribes to the camera image and informa-
tion topics, and publishes the detected object’s pose. The camera messages
are provided by the stereo camera that points downwards.

3.5 overall architecture

The system is composed by several ROS nodes that specialize and perform a
wide range of operations. However, what is most interesting for this work is
the node that is in charge of the EKF-SLAM process.

In Figure 3.6 the components that interact around the EKF Localization node
can be seen. In the center of the figure the EKFSLAM component is placed, which
is responsible of running the EKF-SLAM algorithm. Every time an Odometry

message arrives, the prediction step takes place, and this happens every 30Hz.
Furthermore, every time a RangeAndBearingPoles or a QRCodeStamped arrives the
correction step takes place, and differently to the prediction step, this depends
on whether the drone observes or not a pole or a marker. Additionally, the
EKFSLAM component provides three services:

1. get_drone_state: takes no arguments, and returns the current localiza-
tion of the drone Pose message.

2. get_marker_state: takes as argument the id of a marker, and returns the
current estimated pose of that markerPose message.

40 ekf-slam implementation

Figure 3.6: Components diagram of the EKF Localization node. The EKFSLAM class
subscribes to different messages, between them the Odometry messages are used as
control variables, while the RangeAndBearingPole and QRCodeStamped messages are
used every time the drone observes a pole or a marker. Moreover, EKFSLAM class
publishes two types of messages: Odometry which provides the filtered localization
and QRCodeStampedArray which contains a list markers’ poses.

3. save_map: takes no arguments, and it saves the current map in a YAML
file. The map contains the pose of all the poles and all the markers seen
so far.

It is worth to mention that the messages of type QRCodeStamped are provided
by the QRCode node which is internal to the ekf_localization package. This
node is needed because the visp_auto_tracker, responsible of identifying the
markers and publish their poses, publish these data as separate messages: the
marker’s id as a String message and the pose as a PoseStamped message. Due
to this situation, the QRCode node is responsible of match both data together
and publish an QRCodeStamped message which contains the marker’s identifier
and its pose.

The main element of the EKF-SLAM node is the EKFSLAM class which is
responsible of keeping track of the state vector and execute the EKF-SLAM
algorithm. This class inherit from an abstract class called EKF, which is re-
sponsible of the implementation of the algorithm in a generic way, while the
specifics for the current problem is contained in its child.

There are several components that interact within EKFSLAM class, but proba-
bly the most interesting one is the MapManager class. This class is responsible
of maintaining an updated map of the environment with all the poles and
markers, and to save and retrieve the map from a YAML file.

3.5 overall architecture 41

Figure 3.7: Class diagram of the EKFSLAM node. The EKFSLAM class is composed
by a MapManager instance, which is composed by a list of Landmarks. The Landmark

class is abstract and its concrete classes are Range, Pole and Marker.

The MapManager class contains a list of Landmarks, and every time the state
vector is updated in EKFSLAM class, the MapManager class updates the infor-
mation about each Marker. As mentioned before, the pose of each pole is
known and needs no update. Furthermore, the Landmark class is specialized
in a Marker class, a Pole class and a Range class, each of which is responsible
of provide the observation model and the needed Jacobian matrices for the
algorithm associated to a specific type of landmark or observation, hiding
the implementation to the EKFSLAM class.

3.5.1 ROS nodes

Figure 3.8 shows the detail for the localization node, /ekf_localization_node,
with all its subscriptions. It is worth to mention the /qr_code_node, which pub-
lishes the markers position with its identifier, subscribes to /visp_auto_tracker

/code_message and /visp_auto_tracker/object_position, and publishes into
/visp_auto_tracker/stamped_object_position topic.

Regarding the ROS nodes that comprise the system, in Figure 3.9 all the
ones that interact with the localization node and all the others are shown.
The EKF-SLAM node, and as mentioned before, interacts with /mavros node,
all the poles identification nodes (/poles_vision_#), the /qr_code_node, and
the /rtabmap node that provides the Octomap messages. The message passing
is represented by arrows, where an incoming arrow means that a node
subscribes to the message topic, while an outgoing arrow means that the
node publishes that message topic. Arrows go from a node to a topic or
from a topic to a node, but do not go from node to node. Its reason lies
on the fact that nodes interact between each other using a message passing
interface as mention in Section 2.1. Furthermore, it is worth to mention that

42 ekf-slam implementation

Figure 3.8: Detail of the EKF-SLAM node interactions. Beside the /

ekf_localization_node, the /qr_node_code can be seen. This node, is responsible
of subscribing the /visp_auto_tracker messages in order to, then, publish the iden-
tifier along with the pose of the marker that has been seen. On the other hand, the
/ekf_localization_node subscribes to the /mavros, /octomap, /pole_localization
and /visp_auto_tracker messages.

in Figure 3.9 a /gazebo node is present. This node appears only on simulation
and represents the simulated environment, that is why it publishes all the
cameras and stereo cameras information.

3.5 overall architecture 43

Figure 3.9: ROS graph of the system. Nodes are depicted as ellipses, while message
topics are depicted as boxes. Each arrow means that a node publishes or subscribes
to a specific message topic.

4
E X P E R I M E N TA L R E S U LT S

In order to evaluate the algorithm proposed in Chapter 3, in the context of
the Leonardo Drone Contest, several experiments where performed. The aim
of these experiments were to evaluate:

• the importance of known poles and known and unknown markers in
the localization and mapping process

• the accuracy of markers’ pose estimation

• the importance of the range and Octomap measurements in the height
correction

• the importance of the NEES test to evaluate measurements and the
filter’s consistency

The whole process was tested using ROS bags in order to replicate an experi-
ment using different configurations.

An important thing to mention is that the ground truth is provided by a
Gazebo plug-in, only in a simulated environment. Odometry only, without
correction of any kind, is provided as control process and used to compare
the results.

Figure 4.1 shows the representation of the odometry used for control pur-
poses, as well as the MAVROS estimate and the ground truth. The figure
shows the drift in the MAVROS estimate and in the EKF-SLAM estimate. The
yaw estimate follows the ground truth with almost no drift in both MAVROS
and EKF-SLAM estimators, while the drone’s height does not follow the
ground truth at all in the EKF-SLAM process.

It is worth to mention that the negative sign in the Z position of the EKF-
SLAM process is due to negative velocities in the control signal. This is not
something to be concerned about and it is the expected behavior given the
linear velocities provided by MAVROS. The positive velocity while the drone
takes off is not hold during enough time to position the Z prediction near

45

46 experimental results

the ground truth. Furthermore, the linear velocity control signal for the first
25 seconds is negative, which makes the drone "fly below ground". The take
off starts at the second 25 and pushes the drone over the ground for some
seconds, while the linear velocity published by MAVROS oscillates in be-
tween positive and negative values, being the last ones more often. This does
not happen with the MAVROS estimator, because it has an own EKF filter
that produces the Z position estimation. Hence, the comparison in this case
is meaningless. The MAVROS EKF filter has nothing to do with the motion
model in the EKF-SLAM algorithm which does not correct the prediction in
any sense.

Less is the error in the position estimates in X and Y, where the MAVROS
estimation is near the ground truth despite it drifts over time. The EKF-SLAM
motion model drifts in a more evident way, both in X and Y: it starts at
the same position as the ground truth, but constantly moves away from it.
However, and unlike the Z position, both MAVROS and EKF-SLAM motion
model follow the ground truth position. Again, comparing the MAVROS
estimate with the EKF-SLAM prediction is meaningless as the first one is the
result of an EKF that uses the measurements provided by the flight controller
(IMU, rotors speed, etc.) to predict and update the state, while the second
one is composed only by the prediction resulting from the motion model.

4.1 the environment

The simulated environment can be seen in Figure 4.2, where all the obstacles,
poles and markers are disposed. Moreover, the walls define the limits of the
environment, making it impossible to go off the limits. The markers were
disposed arbitrarily around the world, while the poles are in the same place
as they should be in the competition: one in each corner, and two along the
middle axis of the space. The drone is placed at coordinates (−3; 0), and can
be depicted in the figure as the green circle in the middle left. As mentioned
before, the poles have a different combination of colors, where two poles do
not have the same combination. The markers, are QR codes framed in red,
while obstacles are brown and gray boxes around the environment. The walls
are made of a net-like material distinguishable from the obstacles, while the
floor is a pavement-like material.

4.2 simulated experiments

The following experiments were done using a simulated environment. The
system was run and a ROS bag was recorded in order to analyze different
aspects of the environment using the same simulation, and therefore, being

4.2 simulated experiments 47

Figure 4.1: Odometry only plot. It can be seen three different lines: the red one is
the ground truth, the yellow one is the MAVROS estimate and the green one is the
EKF-SLAM motion model presented in this work.

Figure 4.2: Gazebo simulated environment.

48 experimental results

able to compare between different configurations. Noise tuning was done
empirically using the ROS bag in order to obtain the best possible results,
while taking into consideration the fact that noise values have a physical
meaning.

Four sets of experiments with different objectives were conducted:

a) Experiments A: These experiments aim to show the importance of poles
in the localization process.

b) Experiments B: These experiments aim to show the importance of
markers in the localization and mapping process.

c) Experiments C: These experiments aim to show the importance of the
range sensor in the estimation of the drone’s height.

d) Experiments D: These experiments aim to understand the importance
of the NEES test in the acceptance of the observations.

All these experiments were carried out using the same bag, unless the contrary
is mentioned.

4.2.1 Experiments A: The importance of poles

The experiments presented in this section were done with the objective of
understanding the importance of poles in the localization of the drone in
the environment. Two experiments were performed: the first experiment was
carried out with perfect observations of poles, while the second experiment
was carried out using the real measurements taken from the ROS bag.

4.2.1.1 Procedures

As mentioned, the first experiment was performed with perfect observations
of poles, with the objective of showing the perfect localization compared
with the MAVROS localization and the ground truth. On the other hand, the
second experiment was performed with the real observations taken from the
ROS bag, in order to understand if the proposed implementation works as
well as with the perfect observations of the previous experiment.

In these experiments the same ROS bag is used, and the measurements are
taken during approximately 360 seconds. During the path, the drone visits
few markers and pass over some obstacles, both of which are not taken into
account in the localization process.

4.2 simulated experiments 49

4.2.1.2 Results

The results in these experiments are shown in Figure 4.3 for perfect pole
observations and in Figure 4.4 for real poles observations. With respect to
the first experiment, it can be said that the correction is almost perfect as the
path followed by the drone follows the ground truth all the time. However,
and as it is expected, in the second experiment the EKF-SLAM estimation
follows the ground truth but with more noise than in the previous one. There
are some moments in which the estimation is more noisy than usual: this has
to do with occlusions and far-from-true measurements.

4.2.2 Experiments B: The importance of markers

Differently from poles, markers are sporadically seen, and therefore, it can be
assumed that its contribution to the localization will be sparse. On the other
hand, one can imagine that using poles and markers for localization-only
purposes will improve the estimation seen in Figure 4.4.

A set of different experiments were carried out in this section, and all of
them aim to understand the importance of markers during the localization.
On the other hand, a subset of these experiments try to measure the mapping
process and the mapping process jointly with the localization.

4.2.2.1 Procedures

The experiments presented in this section were carried out using the same
ROS bag. The difference between them lies on the usage or not of real mark-
ers’ observations, and lies on the usage or not of a previously built map of
markers.

The experiments conducted are the followings:

1. The first experiment is similar to the ones presented in Section 4.2.1.
The drone follows the path and estimates its pose based on known
markers only. This means that the drone performs only the localization,
and no marker is added to the map.

2. The second experiment is similar to the previous one, but it uses mark-
ers and poles to localize. However, the main difference with the previous
experiments lies on the absence or not of a perfect map. This means
that when the map is not available, the algorithm will create it, while
if the map is available, the algorithm will use it to update the drone’s
pose.

50 experimental results

Figure 4.3: Localization using perfect pole observations.

Figure 4.4: Localization using real pole observations.

4.2 simulated experiments 51

3. Finally, the third experiment measures the distance between the true
position of markers and the one estimated by the algorithm in a context
of real observations, both for markers and poles.

4.2.2.2 Results

The first set of experiments related to the markers, aim to identify the
marker’s importance in the localization problem. Two plots are presented to
this purpose, and are shown in Figure 4.5a and Figure 4.5b. Figure 4.5a shows
the path followed by the drone while using only the perfect observations of
markers and a perfect map, while Figure 4.5b shows the path followed while
using real observations of markers with a perfect map. Having a perfect map
means that the markers’ poses are perfectly known, hence the true position
and orientation is given to the algorithm.

It can be seen in both figures that, even if the path taken by the drone does
not follow perfectly the ground truth, it accommodates when it sees a marker.
This behavior can be appreciated between seconds 180 and 220, and can be
seen in Figure 4.6.

The second set of experiments was designed to understand the importance
of markers and poles in the localization problem. In this case, the drone
follows the path and corrects its position using known poles and unknown
markers. As can be seen in Figure 4.7 and Figure 4.8, the drone follows the
path almost perfectly, and gets lost in the periods where it does not see any
marker. However, as the algorithm uses both poles and markers to update
the drone’s pose, it does not diverge when no marker is seen, making the
estimation more robust in these situations. The difference between Figure 4.7
and Figure 4.8 is that, in the first one perfect markers are seen, while in
the second one real markers are seen. This is particularly evident between
seconds 130 and 150, where accepted observations that are far from the true
marker position, make the filter to diverge from the ground truth. Insight
into this problem will be discussed later on in this chapter.

Something worth understanding is how different is the localization process
when the map is available, and when it is not. So far, the experiments shown
were developed using a map with the true pose of markers. However, this
is not always possible, and since SLAM is a two step problem (mapping and
localization), a map needs to be built first. In the Figure 4.9 it can be seen
the state estimation when no map is available, and real observations of both
poles and markers are used. When comparing Figure 4.9 with Figure 4.8 no
big differences can be appreciated.

52 experimental results

(a) Localization with perfect marker observations

(b) Localization with real marker observations

Figure 4.5: Localization with perfect (a) and real (b) marker observations. Between
seconds 180 and 220, seconds 260 and 320, and from second 350 to the end, no
marker is seen producing huge errors in the estimate.

4.2 simulated experiments 53

Figure 4.6: Detail of correction process in the case of markers-only localization.
As soon as the drone visualizes a marker, it corrects its pose according to the
observation.

Finally, the last set of experiments measure the distance between the true
markers’ pose and the one estimated by the algorithm. The Euclidean distance
(in meters) is calculated for the position of the markers, and the orientation is
shown as the relative rotation, needed to go from the estimated one to the true
one, expressed as φ, θ and ψ (in radians). The Euclidean distance is defined as

D =
√
(x− x̂)2 + (y− ŷ)2 + (z− ẑ)2 .

The results for those markers seen during the drone’s path are presented
in Table 4.1. The estimated pose and the ground truth can be seen in the
Table 4.2. It is worth mentioning that more than the 60% of the markers’
observations were accepted by the NEES test, and thus were considered for
updating the state:

• Marker 0: 69.36%

• Marker 1: 65.68%

• Marker 4: 70.21%

• Marker 5: 67.94%

54 experimental results

Figure 4.7: Localization using real pole observations and perfect marker observa-
tions.

Figure 4.8: Localization using real pole and real marker observations.

4.2 simulated experiments 55

Figure 4.9: Simultaneous localization and mapping using real pole and marker
observations. The EKF-SLAM algorithm estimates the drone’s pose while building a
map from unknown markers’ observations.

Marker ID Euclidean distance φ θ ψ

0 0.076 0.089 0.142 0.034

1 0.186 0.407 0.145 0.052

4 0.119 0.153 0.132 0.055

5 0.155 0.024 0.057 0.013

Table 4.1: Distance between true markers’ pose and the pose estimated by the EKF-
SLAM algorithm. The Euclidean distance between markers is expressed in meters,
while the distance between orientations is expressed in radians.

56 experimental results

Marker ID X Y Z φ θ ψ

0

-2.0 1.0 0.1 0.0 0.0 -3.142

-2.005 0.948 0.044 -0.088 -0.142 -3.108

1

3.0 2.0 0.1 0.0 0.0 3.142

3.138 1.980 0.223 -0.407 0.145 3.089

4

-2.0 -2.0 0.1 0.0 0.0 -3.142

-2.070 -1.912 0.062 0.153 0.132 -3.087

5

1.0 0.0 0.1 0.0 0.0 3.142

1.040 -0.053 -0.040 -0.024 0.057 3.128

Table 4.2: Marker’s estimated pose (blue) and marker’s real pose (green) compari-
son.

4.2.3 Experiments C: The height estimation

The height estimation of the drone is composed by two types of observations:
the Octomap generated based on the data provided by the front stereo cam-
era, and the range sensor measurements provided by the Pix4Flow device.
The proposed implementation takes care of this, with the solely condition
that the Octomap is complete at the current coordinates of the drone, and in
that case, the measurement is accepted and the correction step is triggered.

The experiment conducted in this section shows the importance of the
height correction using both the Octomap and the range sensor measurements,
but also, the importance of a well defined Octomap in order to avoid false
positives.

4.2.3.1 Procedures

As with the previous experiments, this one was performed using a ROS bag
with the range sensor and Octomap information. The drone follows the same
path as before, but this time using both measurements to correct its height.

4.2.3.2 Results

The path followed by the robot can be seen in Figure 4.10. The plots are
similar to those in Figure 4.8, however the height estimation is different from
around second 250. After this second, the Octomap information is available
and the correction step in the EKF-SLAM algorithm is triggered.

4.2 simulated experiments 57

Figure 4.10: Path followed by the drone when correction of height is used.

Figure 4.11 shows the same plot as before, with the aggregation of the
range sensor information. It can be seen that the drone flew over few obsta-
cles, and the range sensor outputs heights below the ground truth. Accepted
and discarded measurements can be appreciated in detail in Figure 4.12, and
some interesting conclusions can be deducted.

First of all, having an incomplete or noisy Octomap makes the altitude
estimation to reach wrong values, as can be seen between seconds 315 to 320.
During this 5 seconds, the Octomap returns values near 2.5 meters for the
voxels below the drone while the range sensor returns similar values, this
makes the algorithm to estimate the Z position to up to 4 meters.

On the other hand, when the Octomap returns values that are near the
ground truth and the drone is over an object, the estimate approaches the
ground truth. This can be seen between seconds 295 to 305, where the
accepted measurements make the EKF-SLAM algorithm to follow the ground
truth.

58 experimental results

Figure 4.11: Height estimation aggregated with range sensor information. This plot
shows the accepted and discarded observations in the height estimation.

Figure 4.12: Detail of height estimation aggregated with range sensor information.
This plot shows the detail of accepted and discarded observations when the Octomap
is available and the Z position correction is triggered.

4.2 simulated experiments 59

4.2.4 Experiments D: The importance of NEES test

Explained in Section 2.5, the NEES test helps to the consistency of the filter. In
the proposed implementation, the NEES test helps to discard measurements
too far from the estimated ones, and to accept those that are close to the
expected.

The experiments in this section are divided in two, and try to shed some
light over the following:

1. The importance of using (or not) the NEES test

2. The importance of the χ2 value

4.2.4.1 Procedures

Two experiments were conducted using the same ROS bag as before, using
the real observations for poles and markers and using the measurements of
the range sensor for the height estimation. Moreover, the path was followed
using localization only with a perfect map. The difference between these two
experiments lies on the usage or not of the NEES test to discard observations.

4.2.4.2 Results

With respect to the importance of the usage of NEES test the Figure 4.13

shows the estimation of position in X, Y, Z and ψ when no NEES test is
applied. This means that all the observations are used to update the state
vector. It is evident from Figure 4.13 that without the NEES test to filter out
the measurements far from the expected, makes the EKF-SLAM algorithm
inconsistent.

On the other hand, the second experiment aims to find good values for the
χ2 threshold, and therefore, its importance. The results presented so far have
used χ2 values that corresponds to α = 0.05, therefore a 95% of confidence
that the measurements are valid. However, different results can be achieve
if the threshold value changes, as shown in Figure 4.14 where a value of
α = 0.9, which corresponds of a confidence of 10% that the measurements
are valid, is shown.

This change produces an increment in the discarded observations, as it can
be seen in Figure 4.15 and Figure 4.16 for markers. As shown in Figure 4.16

the issue commented in Section 4.2.2.2 around seconds 130 and 150 has
vanished because those accepted measurements are discarded with the new
configuration.

60 experimental results

Figure 4.13: EKF-SLAM behavior when NEES test is not used.

Figure 4.14: EKF-SLAM behavior when χ2α=0.9 corresponding of a 10% of valid
observations.

4.2 simulated experiments 61

Figure 4.15: Discarded marker observations when χ2α=0.05 corresponding of a 95%
of valid observations.

Figure 4.16: Discarded marker observations when χ2α=0.9 corresponding of a 10%
of valid observations.

62 experimental results

Figure 4.17: Accepted (top) and discarded (bottom) range sensor observations when
χ2α=0.9 corresponding of a 10% of valid observations.

Figure 4.18: Detail of accepted and discarded range sensor observations when
χ2α=0.9

4.2 simulated experiments 63

Similarly, the noisy Octomap measurements and the wrong corrections
can be overcome thanks to the NEES test. This way, the χ2 value for one
degree of freedom can be reduced in order to accept measurements that
are more correlated to those estimated by the filter, hence discarding those
noisy Octomap measurements. This procedure can be seen in Figure 4.17,
and the detail in Figure 4.18. In these plots an acceptance of 0.9 was used,
and as shown the discarded measurements are more than in the ones shown
in Figure 4.11.

5
C O N C L U S I O N S A N D F U T U R E W O R K

In Chapter 3 the proposed implementation was presented and in Chapter 4,
experiments and their results were showed. This Chapter presents the con-
clusions related to the performed experiments, and some thoughts about the
proposed implementation.

Moreover, future lines of research are proposed for localization and map-
ping in the context of the Leonardo Drone Contest environment.

5.1 conclusions

The EKF-SLAM algorithm is a proved and extensively used algorithm for
localization and mapping problems in robotics. The KF introduced in 1960,
later refined for non-linear systems and introduced in [16] for localization and
mapping problems, is implemented by this work. The proposed implementa-
tion was developed in the context of the Leonardo Drone Contest, which has
specific characteristics.

Several experiments were conducted with the aim of identifying specific
characteristics and implementation details that are important for the objective
of the algorithm. In this sense, and as explained in Chapter 4, four set of
experiments were conducted, each of them with a specific objective. From
these experiments, some conclusions can be extracted.

The first two sets of experiments shed some light about the importance of
different types of landmarks, in this particular case, poles and markers. These
experiments showed the importance of poles in the correction of X, Y and Z
position and the orientation of the drone, and the importance of markers in
the localization process. Moreover, the correction of drone’s pose is important
also for the prediction of the markers’ poses as it can be seen in Table 4.1.
The average Euclidean distance of the four markers is 0.134, which is good
enough for the contest but also perfectible. The same can be observed in the

65

66 conclusions and future work

case of the orientation, which in the worst case is 3°.

The third experiment showed that the height estimation can be corrected
using a combination of Octomap and range sensor. As mentioned in Sec-
tion 4.2.3.2 a key component for the height estimation is the completeness and
correctness of the Octomap. This experiment showed that when the Octomap
and the sensor range produce good measurements, the height estimation
follows the ground truth. However, the experiment could be defined as not
conclusive since the amount of time with Octomap measurements is low:
only 70 seconds out of 363.

Finally, the last set of experiments showed the importance of the NEES

test for the consistency of the filter. As can be appreciated in Figure 4.13,
when no NEES test is used, the pose correction is not good enough to be used
in any environment. It can be concluded that NEES is needed to filter out
invalid measurements. However, a value of χ2 needs to be found in order to
achieve better performance. As showed in Figure 4.16, lower confidence of
valid measurements makes the filter discard truly bad measurements, but on
the other hand it can discard measurements that can be useful to correct the
drone’s pose. The χ2 value should be set for every type of landmark, thus it
becomes a new parameter to be tuned in the filter.

It can be concluded that the current implementation works well in the
current environment and in the context of the used ROS bags. However, a
fine tuning is needed in order to improve its performance in simulation. The
observation noise covariance matrices were barely tuned, and the χ2 values
used were the most common ones (confidence of 95%).

As mentioned before, EKF-SLAM is a proved algorithm and works with
a decent performance in the current environment. The proposed implemen-
tation sets the bases for future developments and improvements, and can
be used as baseline for comparison with more complex or novel algorithms.
Moreover, the proposed implementation can be extended in order to be
applied in other indoor or GNSS-denied environments with minimum mod-
ifications. Its architecture was thought to be slightly coupled and highly
extensible in the sense that new landmarks and observations types can be
added in an easy way.

5.2 future work

As stated in Chapter 1, the current implementation could not be deployed
and tested in the real drone, hence it would be an important step to evaluate
it. The real drone experimentation should be done considering both poles

5.2 future work 67

and markers for the localization. Moreover, the performance while mapping
the environment should be evaluated, as well as the height correction.

As already stated, the current implementation is perfectible and can be
improved in different ways. Fine tuning of the algorithm’s parameters to
improve its performance is needed. Another improvement could be a camera
self calibration procedure to improve the Z position estimation using poles
and markers. Also, extensive experimentation with Octomap and range sen-
sor for height update is needed.

Additionally, it could be possible to compare the current algorithm with
other algorithms like Error-State EKF-SLAM, or Unscented Kalman Filter
(UKF) SLAM, and evaluate their performance with the current implementation
as baseline.

B I B L I O G R A P H Y

[1] State of the robotics market. ABI Research, 2019. url: https : / / go .

abiresearch.com/lp-state-of-the-robotics-market (visited on
11/10/2020) (cit. on p. 1).

[2] 10 ways robots fight against the COVID-19 pandemic. euRobotics, Apr. 2020.
url: https://www.eu-robotics.net/eurobotics/newsroom/press/
robots-against-covid-19.html (visited on 11/10/2020) (cit. on p. 1).

[3] Open Innovation - Leonardo Drone Contest. Leonardo. url: https://
www.leonardocompany.com/en/innovation/open-innovation/drone-

contest (visited on 04/10/2020) (cit. on p. 1).

[4] Robot Operating System. Oct. 6, 2020. url: https://www.ros.org/
(visited on 06/10/2020) (cit. on pp. 5, 6).

[5] MAVLink. Oct. 6, 2020. url: https://mavlink.io/en/ (visited on
06/10/2020) (cit. on p. 7).

[6] MAVROS. Oct. 6, 2020. url: https://github.com/mavlink/mavros
(visited on 06/10/2020) (cit. on pp. 7, 26, 30).

[7] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and
Wolfram Burgard. “OctoMap: An Efficient Probabilistic 3D Mapping
Framework Based on Octrees.” In: Autonomous Robots (2013). Software
available at http://octomap.github.com (cit. on p. 8).

[8] Mathieu Labbé. “Simultaneous Localization and Mapping (SLAM)
with RTAB-Map.” Québec, Nov. 2015. url: https://introlab.3it.
usherbrooke.ca/mediawiki-introlab/images/3/31/Labbe2015ULaval.

pdf (cit. on p. 9).

[9] Kris Hauser. Robotic Systems. 2018. url: http://motion.pratt.duke.
edu/RoboticSystems (visited on 09/01/2020) (cit. on p. 12).

[10] Basilio Bona. Dynamic Modelling of mechatronic systems. CELID, 2018.
isbn: 8867890115 (cit. on p. 13).

[11] R. E. Kalman. “A New Approach to Linear Filtering and Prediction
Problems.” In: Journal of Basic Engineering 82.1 (Mar. 1960), pp. 35–45.
issn: 0021-9223 (cit. on p. 13).

[12] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics.
Intelligent robotics and autonomous agents. The MIT Press, 2006. isbn:
978-0-262-20162-9 (cit. on pp. 15, 16).

69

https://go.abiresearch.com/lp-state-of-the-robotics-market
https://go.abiresearch.com/lp-state-of-the-robotics-market
https://www.eu-robotics.net/eurobotics/newsroom/press/robots-against-covid-19.html
https://www.eu-robotics.net/eurobotics/newsroom/press/robots-against-covid-19.html
https://www.leonardocompany.com/en/innovation/open-innovation/drone-contest
https://www.leonardocompany.com/en/innovation/open-innovation/drone-contest
https://www.leonardocompany.com/en/innovation/open-innovation/drone-contest
https://www.ros.org/
https://mavlink.io/en/
https://github.com/mavlink/mavros
http://octomap.github.com
https://introlab.3it.usherbrooke.ca/mediawiki-introlab/images/3/31/Labbe2015ULaval.pdf
https://introlab.3it.usherbrooke.ca/mediawiki-introlab/images/3/31/Labbe2015ULaval.pdf
https://introlab.3it.usherbrooke.ca/mediawiki-introlab/images/3/31/Labbe2015ULaval.pdf
http://motion.pratt.duke.edu/RoboticSystems
http://motion.pratt.duke.edu/RoboticSystems

70 bibliography

[13] Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza. In-
troduction to autonomous mobile robots. Ed. by Ronald C. Arkin. 2nd.
Intelligent robotics and autonomous agents. The MIT Press, 2004. isbn:
978-0-262-01535-6 (cit. on p. 19).

[14] Gabriele Rogi, Matteo Matteucci, and Diego Avila. POLIBRI. url: https:
//github.com/AIRLab-POLIMI/POLIBRI (cit. on p. 36).

[15] E. Marchand, F. Spindler, and F. Chaumette. “ViSP for visual servoing:
a generic software platform with a wide class of robot control skills.”
In: IEEE Robotics and Automation Magazine 12.4 (2005), pp. 40–52 (cit. on
p. 39).

[16] Randall C. Smith and Peter Cheeseman. “On the Representation and Es-
timation of Spatial Uncertainty.” In: The International Journal of Robotics
Research 5.4 (1986), pp. 56–68 (cit. on p. 65).

[17] Howie Choset et al. Principles of robot motion: theory, algorithms, and
implementation. Ed. by Ronald C. Arkin. Intelligent Robotics and Au-
tonomous Agents. The MIT Press, 2005. isbn: 9780262033275.

[18] José A. Castellanos, José Neira, and Juan D. Tardós. Autonomous Mobile
Robots: Sensing, Control, Decision Making and Applications. Ed. by FRANK
L. LEWIS. CRC Press, 2006. Chap. 9. isbn: 978-0-8493-3748-2.

[19] Nikolaus Correl. Introduction to Autonomous Robots. Magellan Scientific,
2020. Chap. 11. isbn: 978-0692700877.

[20] J.L. Blanco. Derivation and implementation of a full 6D EKF-based solution
to bearing-range SLAM. Tech. rep. University of Malaga, 2008.

[21] Peter Corke. Robotics, Vision and Control. Ed. by Bruno Siciliano and
Oussama Khatib. Vol. 118. Springer, 2017. isbn: 978-3-319-54412-0.

[22] Mathieu Labbé and Francois Michaud. “RTAB-Map as an Open-Source
Lidar and Visual SLAM Library for Large-Scale and Long-Term Online
Operation.” In: Journal of Field Robotics (2018), pp. 1–31.

[23] Gregory Plett. Can we automatically detect bad measurements with a Kalman
filter? University of Colorado Boulder. url: https://www.coursera.
org/lecture/battery-state-of-charge/3-3-5-can-we-automatically-

detect-bad-measurements-with-a-kalman-filter-tc7ce (visited on
07/20/2020).

https://github.com/AIRLab-POLIMI/POLIBRI
https://github.com/AIRLab-POLIMI/POLIBRI
https://www.coursera.org/lecture/battery-state-of-charge/3-3-5-can-we-automatically-detect-bad-measurements-with-a-kalman-filter-tc7ce
https://www.coursera.org/lecture/battery-state-of-charge/3-3-5-can-we-automatically-detect-bad-measurements-with-a-kalman-filter-tc7ce
https://www.coursera.org/lecture/battery-state-of-charge/3-3-5-can-we-automatically-detect-bad-measurements-with-a-kalman-filter-tc7ce

A
D O C U M E N TAT I O N

An overall description of the proposed architecture can be seen in Section 3.5.
The main classes that belong to the localization and mapping node are: EKF,
EKFSLAM, MapManager, Landmark, Pole, Marker and Range.

If adding a new type of landmark is needed, the new class should extend
the Landmark class and override and implement the pure virtual methods:

• Eigen::VectorXd getObservationModel(const DroneState &drone_state) const

• Eigen::MatrixXd getJacobianWrtDroneState(const DroneState &drone_state

, int drone_state_size) const

Both methods are needed whatever the type of landmark is added. Moreover,
if the new type of landmark is going to be added to the state vector, it is
needed to override the following methods:

• Eigen::MatrixXd getJacobianWrtLandmarkState(const DroneState &drone_state

) const

• const Eigen::VectorXd & getInverseObservationModel(const DroneState

&drone_state, const Eigen::VectorXd &observation)

• Eigen::MatrixXd getInverseJacobianWrtDroneState(const DroneState &drone_state

, int drone_state_size) const

• Eigen::MatrixXd getInverseJacobianWrtLandmarkState(const DroneState

&drone_state) const

map

The map is a YAML file that can be found under map folder, with the name
landmarks.map.yaml. It has the following structure:

- LandmarkType:

- id: XXX

71

72 bibliography

x: XXX

y: XXX

z: XXX

roll: XXX

pitch: XXX

yaw: XXX

- id: YYY

....

- OtherLandmarkType:

..... �
parameters

A file used to configure the parameters of the node can be found under config
folder. The file is called params.yaml:

• ekf_localization_node:

– enable_poles_subscriber (bool): enable or disable the usage of
poles in the localization process.

– enable_markers_subscriber (bool): enable or disable the usage of
markers in the localization and mapping process.

– enable_range_subscriber (bool): enable or disable the usage of
range information to correct the height estimation.

– drone_pose_topic (string): defines the topic where the drone’s up-
dated odometry is published.

– markers_pose_topic (string): defines the topic where the node will
publish the markers’ state.

– initial_position_x (float): initial X position of the drone.

– initial_position_y (float): initial Y position of the drone.

– initial_position_z (float): initial Z position of the drone.

– initial_position_yaw (float): initial YAW orientation of the drone.

– avg_linear_vel (float): average drone’s linear velocity. This is used
in the estimation of the control noise covariance matrix

– avg_angular_vel (float): average drone’s angular velocity. This is
used in the estimation fo the control noise covariance matrix.

– range_noise_covariance (float): noise covariance value for range
sensor.

– poles_noise_covariance (list<float>): noise covariance matrix (3×3)
values for the poles observations.

bibliography 73

– markers_noise_covariance (list<float>): noise covariance matrix (6×
6) values for the markers observations.

– odometry_topic (string): topic used as control signal. It is used in
the prediction step and uses the velocities published in this topic.

– pole_landmark_topic (string): topic where the range and bearing
information is published for poles observations.

– marker_landmark_topic (string): topic where the markers observa-
tions is published.

– octomap_topic (string): topic where the Octomap information is
published.

– range_sensor_topic (stirng): topic where the range sensor informa-
tion is published.

B
U S E R M A N UA L

The implementation presented in this work can be downloaded from https:

//github.com/AIRLab-POLIMI/POLIBRI. As mentioned before, the ekf_localization

package’s objective is to estimate the localization of the drone using an EKF

filter and map the markers in the environment. The control variables are the
linear and angular velocities of the drone with respect to the map, and the
state is composed by the drone’s position with respect to the map, and the
markers’ position with respect to the map.

The transform tree can be seen in Figure 3.2. All the odometry messages
use the ENU or right hand convention, and all the measurement units are in
meters or meters/secs for velocities. Angle units are in radians.

There are currently two nodes: one, ekf_localization_node, is responsible
of the state estimation; and the other, qr_code_node, will stamp the messages
related to the QR markers. The qr_code_node node subscribes to the following
messages:

• /visp_auto_tracker/code_message of type std_msgs/String

• /visp_auto_tracker/stamped_message of type ekf_localization/StringStamped

• /visp_auto_tracker/object_position of type geometry_msgs/PoseStamped

and publishes the following messages:

• /visp_auto_tracker/stamped_object_position of type ekf_localization/

QRCodeStamped

• /visp_auto_tracker/stamped_message of type ekf_localization/StringStamped

The ekf_localization_node subscribes to the following messages (all these
messages can be configured in params.yaml):

• /gazebo/ground_truth or /mavros/local_position/odom

75

https://github.com/AIRLab-POLIMI/POLIBRI
https://github.com/AIRLab-POLIMI/POLIBRI

76 bibliography

• /visp_auto_tracker/stamped_object_position

• /pole_localization

and publishes

• /drone/pose

• /markers/pose

it also provides 3 services:

• /get_drone_state which provides the drone pose

• /get_marker_state which provides the estimated pose of a given marker

• /save_map which saves the landmarks map

simulator setup

To install and run the simulator refer to the README.txt in the Simulator folder
of the repository.

build and run the nodes

Dependencies

There are some dependencies needed to compile the code.

• Eigen 3: http://eigen.tuxfamily.org/

• YAML-cpp: https://github.com/jbeder/yaml-cpp

• Boost: https://www.boost.org/

Steps

Once you have set up the simulator, you can build the nodes.

1. Clone the repository on your ~/catkin_ws/src folder

2. If you are using catkin tools, from ~/catkin_ws run catkin build ekf_localization

. If you are using plain catkin, run catkin_make --only-pkg-with-deps

ekf_localization.

3. In different terminals run:

a) roscd px4 and then, no_sim=1 make px4_sitl_default gazebo

http://eigen.tuxfamily.org/
https://github.com/jbeder/yaml-cpp
https://www.boost.org/

bibliography 77

b) from ~/catkin_ws, run ./launch_gazebo.sh

c) roslaunch rtabmap_ros my_stereo_mapping_2.launch (if you want to
run RViz, you can add at the end rviz:=true)

d) roslaunch ekf_localization my_launch.launch, this will run the node
responsible of the state estimation and the one responsible of stamp
the marker’s information

e) If you want to run the planner scripts, you can run in different
terminals:

i. python Simulator/offboard/start_offboard.py

ii. python Simulator/offboard/path_generation.py

Build and run the nodes using a rosbag

The nodes can be debugged by launching the [debug.launch](launch/debug.launch)
file. To do so, you just need to run the following: $ roslaunch ekf_localization

debug.launch.

Several arguments can be passed to the launch file, like the folder to find a
rosbag, the name of the rosbag, record a new rosbag, specify topics to record,
launch RViz, etc.

	Acknowledgments
	Abstract
	Abstract
	Sommario

	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	2 Background
	2.1 Robot Operating System
	2.1.1 Nodes
	2.1.2 Topics
	2.1.3 Services
	2.1.4 Tools
	2.1.5 MAVLink and MAVROS
	2.1.6 RTAB-Map

	2.2 Transformations
	2.2.1 Translation
	2.2.2 Rotation
	2.2.3 Homogeneous transform

	2.3 Kalman Filter
	2.3.1 Extended Kalman filter

	2.4 Simultaneous Localization and Mapping
	2.4.1 EKF-SLAM
	2.4.2 Adding new landmarks

	2.5 Normalized Estimation Error Squared

	3 EKF-SLAM Implementation
	3.1 The Drone
	3.1.1 Characteristics
	3.1.2 Reference frames

	3.2 Motion Model
	3.3 Observation Models
	3.3.1 Observation model for Poles
	3.3.2 Observation model for Markers
	3.3.3 Observation model for range sensor and height correction

	3.4 Visual Process Pipeline
	3.4.1 Visual process for Poles
	3.4.2 Visual process for Markers

	3.5 Overall Architecture
	3.5.1 ROS nodes

	4 Experimental Results
	4.1 The Environment
	4.2 Simulated Experiments
	4.2.1 Experiments A: The importance of poles
	4.2.2 Experiments B: The importance of markers
	4.2.3 Experiments C: The height estimation
	4.2.4 Experiments D: The importance of NEES test

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	 Bibliography
	A Documentation
	B User Manual

