
i
i

“thesis” — 2022/10/20 — 22:40 — page 1 — #1 i
i

i
i

i
i

POLITECNICO DI MILANO
DEPARTMENT OF MECHANICAL ENGINEERING

DOCTORAL PROGRAMME IN PROGNOSTICS AND HEALTH MANAGEMENT IN
MACHINE TOOLS AND MANUFACTURING INDUSTRY

ROBUST PROGNOSTICS APPROACHES FOR MACHINE

TOOLS UNDER VARIABLE OPERATING CONDITIONS

Doctoral Dissertation of:
Luca Bernini

Matr. Nr. 947673

Supervisor:
Prof. Albertelli Paolo

Tutor:
Prof. Giglio Marco

The Chair of the Doctoral Program:
Prof. Bernasconi Andrea

2022 – XXXV



i
i

“thesis” — 2022/10/20 — 22:40 — page 2 — #2 i
i

i
i

i
i



i
i

“thesis” — 2022/10/20 — 22:40 — page 1 — #3 i
i

i
i

i
i

Un ringraziamento speciale va al professor Albertelli. Il primo ad aver creduto in
me, accompagnandomi dalla laurea magistrale fino al termine di questo percorso di
dottorato.

Grazie al team del MUSP, e in particolar modo al professor Monno, che mi hanno
ospitato presso il loro centro di ricerca, permettendomi di svolgere tutte le attività in un
clima accogliente e familiare.

Grazie alla mia famiglia che mi ha sostenuto e supportato in questi anni, anche
passando momenti difficili, portandoci a questa soddisfazione immensa!

Grazie a tutti gli amici. A chi mi è stato accanto più da vicino, ma anche nonostante
la distanza mi ha sempre saputo far sorridere e divertire.



i
i

“thesis” — 2022/10/20 — 22:40 — page 2 — #4 i
i

i
i

i
i



i
i

“thesis” — 2022/10/20 — 22:40 — page I — #5 i
i

i
i

i
i

Abstract

DIGITAL MANUFACTURING relies on the support of data analysis tools to in-
crease reliability, safety and performances of manufacturing systems and ma-
chine tools. In this context, Prognostics and Health Management (PHM) pro-

poses a set of digital tools with the final objective of predicting components remaining
useful life. Variable operating regimes and the need for a high volume of experimental
tests makes PHM for machine tools tough and challenging for an effective industrial
implementation. In this thesis, an operational regime robust PHM architecture, based
on low experimental effort, is proposed both for cutting tools and machine tool aux-
iliaries. The PHM strategy was conceived in order to describe tool wear by taking
into account the phenomenological aspects of metal cutting. Thus, a solution based
on process modelling was adopted. Physical mechanistic features were provided to an
advanced real-time monitoring system, robust with respect to the operational regime. A
further step ahead was taken through the development of an artificial intelligence tool
capable of managing unmodeled process variability. A hybrid approach for tool wear
was developed to adapt to unseen degradation curves. The approach was conceived
having in mind the effect of cutting parameters on the tool degradation rate. Chang-
ing the problem perspective, process and tool monitoring was performed on the basis
of machined surface images processing. Inference on the cutting parameters was per-
formed based on milling technological signature. A PHM solution was also conceived
for machine tool auxiliaries, with reference to machine tool hydraulic unit. Having in
mind PHM challenges, the solution was developed with the support of physical models
(digital twin) in order to reduce the experimental effort.
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CHAPTER1
Introduction

Manufacturing systems and, more specifically, machine tools are the means responsible
for everyday goods production. In the last decades, manufacturing industries tried to
face the growing demand of manufactured goods through the transition towards robo-
tised and automated plants. Concurrently, reliability and safety standards are contin-
uously improving, intrinsically leading to more complex production plants, composed
by a higher number of parts [162]. As any other system or object of our world, ma-
chine tools and their components are affected by degradation processes which slowly
or suddenly lead to failures. Component failures play crucial roles for the economical
aspects of both manufacturing companies and their customers.

Prognostics and Health Management (PHM) of systems started to gain more at-
tention from the industrial sector, since component failures play a crucial role for the
satisfaction of increased production, reliability and safety demands. PHM represents
the most advanced maintenance policy currently available; ideally, it autonomously
identify when a repair is needed, based on signals acquired from the sensors installed
on the machines.

Developing PHM approaches for the machine tool scenario is the general objective
of this thesis work, with a special focus on tool condition monitoring (TCM) and prog-
nostics. In this chapter an overview of the PHM framework is firstly proposed (section
1.1); further insights are given into TCM and hydraulic units prognosis (sections 1.1.2
and 1.1.1); the challenges related to the conceived approaches are summarised (section
1.2); concluding with the outline of the thesis structure (section 1.3).

1
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Chapter 1. Introduction

1.1 PHM overview

PHM is addressed as a maintenance policy that allows for the prediction of the Remain-
ing Useful Life (RUL) of a component. Actually, PHM consists of a set of consecutive
modules, that perform different tasks [14]. These modules are reported by increased
complexity and amount of output information:

• monitoring;

• diagnosis;

• prognosis.

Depending on the input data availability, the desired output level of information and
the application scenario, some of these modules, may or may not be implemented.
Preliminary analysis is thus mandatory, since it regards the collection of information
about the component or system under investigation. It is needed to understand which
of the components should be analysed through PHM (monitoring, diagnosis and/or
prognosis methodology) or traditional policies like reactive or preventive maintenance.
Indeed, several techniques may be used to perform this categorisation: failure-mode
and effect analysis (FMEA), fault-tree analysis (FTA) and root cause analysis.

FMEA is a specific tool for identifying the most relevant, and thus critical, failure
modes of a system. It studies the criticalities at different system levels, i.e. it considers
the machine as an ensemble of main sub-units and increases the analysis depth until the
component level is reached [161]. Furthermore, the effect of each failure is analysed
with respect to system performances. The main limitation of FMEA is that no interac-
tion between the failure modes is caught [14]. FTA is a complementary tool with re-
spect to FMEA, by describing the interaction and causality between failure modes [94].
Root cause analysis tries to find what generated a particular failure. All these tools al-
low for a proper design of the maintenance policy, determining which failure modes of
a system require a PHM strategy or not. PHM is implementable only on components
that have a massive impact on the system repair costs, even including production losses.

The first step of a PHM policy consists in the implementation of a monitoring strat-
egy. Monitoring is at the basis of the PHM structure. It allows for a fast identification of
a fault initiation. Indeed, monitoring approaches may represent the trigger for succes-
sive steps of PHM, in the case of progressive degradation of a component [14], or they
are responsible for a prompt detection of a catastrophic sudden failure [156]. Monitor-
ing can be performed with different kind of approaches, being Statistical Process Con-
trol (SPC) (and its control charts [39, 156]) the most used tool [20]. Of course, other
fields of data analysis have treated the monitoring problem. The exploding growth of
artificial intelligence (AI) application is for sure the most relevant one. In this context,
AI approaches tend to be addressed as anomaly detection algorithms or novelty detec-
tion ones. Monitoring and anomaly detection are based on the collection of a proper
dataset, acquired in nominal condition for the machine/system. This dataset constitutes
what is often referred to as "baseline" [14].

The second PHM step responds to the diagnosis problem. Diagnosis is the oper-
ation of recognising and discerning different failure modes (isolation). Meanwhile,
diagnosis has the objective of assessing the criticality level of an initiated fault (quan-
tification) [14, 20, 162]. Thus, diagnosis turns out to be either a pattern recognition

2
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1.1. PHM overview

or classification problem [14]. Classification problems require a dataset in order to be
applied and they are traditionally solved through machine learning approaches (also
referred to as data-driven or black-box approaches). In general, two main categories of
algorithms can be applied in the diagnostics phase: supervised and unsupervised ones.
Within the supervised scenario, the dataset is constituted by organised samples, each
of them assigned to a particular class, and thus, having a dedicated label. The input
data are referred to as predictors. Based on the values assumed by the predictors, the
objective of a classification algorithm is to infer the output class, i.e. responses [79] (in
this case, the fault kind and its associated criticality level). Within this framework, each
algorithm undergoes a training procedure, by which a degree-of-error is computed for
each prediction, and the algorithm parameters are updated accordingly. In opposition to
supervised learning approaches, unsupervised algorithms need to tackle a supplemen-
tary phase. In fact, the dataset is unlabelled and the algorithm attempts to find similarity
regions in the distribution of data (clustering) [14, 79]. Once clustering is performed, a
supervised classification approach can be applied to assign a new and unseen sample to
the most similar cluster. Nevertheless, traditional machine learning algorithms are not
directly applicable to raw data. In fact, they rely upon a human-based feature extraction
and selection strategy. Feature extraction is the process of synthesising and reducing
the dimensionality of raw data, trying to keep the highest amount of useful information.
Feature selection is a further compression step [14], where the initial pool of extracted
features is reduced either by transformation or ranking strategies.

Several machine learning approaches have been designed and adopted for super-
vised and unsupervised learning frameworks. K-Nearest Neighbours [57,58,180], Sup-
port Vector Machines [60,91,180], Linear Discriminant Analysis [82], Artificial Neural
Networks [242] and Random Forest Classifiers [24] can be found among the most used
algorithms for supervised problems, whereas K-means is just an example of clustering
technique [79]. With analogous tasks, recently a new group of approaches started to be
successfully implemented, namely deep learning algorithms. With respect to traditional
machine learning approaches, deep learning embeds both feature extraction and selec-
tion procedures, avoiding the need for data-preprocessing performed by humans. At the
same time, they require a huge amount of data samples, which are not always available
especially in PHM applications [209]. Convolutional Neural Networks belong to this
category, consisting of a deep set of hidden layers [86].

The last step of PHM maintenance policy consists in the prognosis phase. Progno-
sis has the objective of predicting the future evolution of a degradation characteristics,
forecasting RUL of machine or components. RUL is computed as the difference be-
tween the prediction instant and the predicted failure time. Indeed, RUL is the PHM
output containing the deepest level of information, since it allows not only to have an
assessment of the component condition but also allows to anticipate the time of failure.
Of course, being capable of predicting RUL requires high quantity and quality of in-
put data. In opposition to diagnosis, prognosis falls within the scenario of time series
prediction problems. Scientific literature agrees in categorising prognostics approaches
in four main groups: knowledge-based, statistical-based, model-based and data-driven
approaches [14,162]. The first category deals with the implementation of models based
on expert knowledge of faults. Approaches of this kind try to translate experts knowl-
edge in a set of IF-THEN rules (the case of Expert Systems), or to model the system

3
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Chapter 1. Introduction

in a linguistic fashion (the case of fuzzy logics) [14]. Statistical-based approaches (or
grey box models) describe degradation in the form of a stochastic process, bringing
to a relevant formal advantage, compared with respect to the other categories. In fact,
statistical based approaches allow for the estimation of RUL probability density func-
tion. This provides support to the decision making phase, since it allows to consider
the degradation process uncertainties. Furthermore, the prediction of RUL probability
density function is suggested by the internation standards [96]. Filtering-based tech-
niques belong to this category: Kalman Filter [64] and its extensions [65]; particle
filters, capable of relaxing all their assumptions [137, 203]. Another example is consti-
tuted by Hidden Markov Models [220]. Model-based approaches guarantee the highest
prediction performances, by modelling the degradation phenomenon starting from first
principles [14]. Being the degradation formulation known a priori, fewer parameters
must be estimated with respect to grey-box models, but they are available only in few
applications. Some of them are reported as examples in the following: exponential
lifetime prediction model for ball screw mechanisms under different feed modes [35],
differential models for tool wear evolution in milling [235] and wear model for flank
wear in turning [168]. At last, black-box models are represented by AI approaches
and machine/deep learning techniques. They can learn complex non-linear relations
within data, providing really flexible tools for prognostics. Their main shortcoming is
associated to the amount of data necessary to build the model itself. On one hand, no
physical law of the degradation process is needed to build the model, on the other hand,
they lack of physical interpretation. ANN, Self-Organising-Maps (SOM) [37,142,193]
and deep learning algorithms, SVM and Relevance Vector Machines (RVM) [88] are
just a few examples of artificial intelligence techniques.

More recently, despite the rigorous grouping system, some of these main categories
are combined in what are referred to as hybrid approaches, in order to enhance the
strengths of the involved categories and reduce their shortcomings [20].

The above overview of PHM methodologies is valid for a general machine or sys-
tem, independently from the field of application. Anyway, PHM can be applied at
different levels of the system. Sub-units can be considered as a first subdivision, as
shown in figure 1.1. Following the figure, in this thesis the focus is reserved to the two
critical units/components of a machine tool: hydraulic units and cutting tools. In the
next sections, some insights into PHM for these two areas are given.

1.1.1 Hydraulic units prognostics

The role of machine tools consists in the correct positioning of the end-effector which is
typically a cutting tool. In order to reach this objective, machine tools are constituted by
several units (or functional groups, fig. 1.1). Machine tool auxiliaries are represented
for instance by spindle unit or by the feed-drive system. By the study of reliability
analysis of CNC machine tools, the hydraulic unit resulted to be one of the most faulty
ones and the cause of unexpected breakdowns and downtimes [29, 161]. Several CNC
lathes were analysed in a five year period, from 2009 to 2014, and the hydraulic subsys-
tem showed the highest failure rate (22.9% of the total failures) [29]. Twelve machining
centres in another five year project, between 2005 and 2010, confirmed the result [217].
The necessity for the development of PHM on machine tool auxiliaries was highlighted
by other two works [62, 63], addressing them as sources of unexpected downtimes,

4
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reader attention.
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Chapter 1. Introduction

with comparable losses to main machine tool components, thus the ability to foresee
an incipient failure would certainly be a significant advantage for any customer [14].
In machine tools, several hydraulic circuits are present: high-pressure circuits are typi-
cally dedicated to the automatic tool changing unit; low pressure circuits are in charge
of lubrication of main transmission and motors; other mid or low pressure circuits may
be present for other auxiliary tasks, like hydraulic brakes. Finally, machine tools also
feature a refrigerant hydraulic circuit and one for the addition of lubro-refrigerant cut-
ting fluid [14]. Despite the above, research literature on PHM for hydraulic units and
its components (e.g. pumps with their motor, pipes, valves, accumulators, and actua-
tors) are scarce. In the aeronautic field, few works dealt with hydraulic circuit leakages.
Research papers on oil monitoring can be found, but prognosis works are limited [198].
Despite some paper dealt with pump prognostics, not all the different kinds of pumps
have been treated. For instance, gear pumps, commonly installed on machine tools,
were not investigated yet [14].

1.1.2 Tool condition monitoring and prognosis

Tool condition monitoring (TCM) is a branch of PHM which makes reference to cutting
tools. Indeed, the main objective of this policy regards the assessment of the cutting
tool condition. Tool condition monitoring and prognosis impact on a manufacturing
company is twofold: economical and environmental. In fact, the use of TCM solu-
tions allow to optimally exploit tool life, avoiding dramatic failure and reducing early
changes. This could be easily integrated with a resharpening policy, leading to dramat-
ical advantages in terms of economical savings (for cutting tool users), while bring-
ing increased profits (tool manufacturers), critical material reduction (e.g. Cobalt and
Tungsten), CO2 emissions and energetic footprint decreases. An example analysis of
the impact of a combination of these two strategies is presented in the following1. Prog-
nostics may allow an extension of 10% of cutting tool lives and the cost of resharpened
cutting tools is assumed to be the 80% of a new one, resulting in a saving of 12% on
the cutting tools cost (no production gain and scrap reduction is accounted for). On
average a cutting tool can be resharpened about 4 times, with a 25% chance that a tool
can not be resharpened at all. Resharpening doesn’t need any additional material (thus,
reducing of 80% Tungsten and Cobalt consumption) while recycling after 4 resharpen-
ings allows saving the 95% of the employed Tungsten. Emitted CO2 accounts for about
70% (when resharpening) with respect to a new one, while only 40% of the CO2 (with
respect to a new one) is emitted when recycling a cutting tool. The energetic footprint
of a resharpened tool corresponds to about 30% out of the energetic footprint of a new
cutting tool (75% when recycling a tool).

In literature, tool wear is addressed as a complex stochastic phenomenon [233],
since it is the effect of several different causes. Thus, in order to make forecasts of
its evolution, it is necessary to define a significant indicator that can well describe the
status of the tool. Flank wear measurement is the most relevant and common degrada-
tion indicator for cutting tools [119, 156], so that almost any direct or indirect tool is
benchmarked with its value.

1Assumptions are based on cutting tool market trends by the European Remanufacturing Network
(https://www.remanufacturing.eu/), Sandvik Coromant (https://www.sandvik.coromant.com/en-gb/pages/default.aspx),
MCM S.p.A. (https://www.mcmspa.it/?lSite=en), HTS Dynamics AS (https://www.htsdynamics.no/), ZUBIOLA S. Coop.
(https://www.zubiola.es/en/inicio)
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1.1. PHM overview

Literature treats TCM by means of two main algorithm categories: techniques either
based on direct wear measurements or indirect wear measurements [60]. The first class
of approaches relies on the analysis of quantities directly correlated to the degradation
of the cutting edge, i.e. they are typically based on flank wear width measurements
or on its extrapolation from cutting edge pictures. Direct inspection could be obtained
through point wise scanning, profilometric acquisitions [151] or by 2D/3D calibrated
pictures analysis [55, 139, 151]. Direct inspection methods have the advantage of pro-
viding a more robust tool for the assessment of tool condition, since the extrapolated
flank wear measurement is slightly influenced by process parameters. Nevertheless,
direct methods still have some shortcomings, like the accuracy of the inspection system
and the post-processing of the measurements (e.g. image processing sensibility to light
exposure, brightness, metal residuals and material reflectiveness). A second limitation
in their applicability regards the fact that machining processes should be stopped every
time the cutting tool have to be exposed to the inspection system. Direct measure-
ments based approaches are not suitable for in-process monitoring. Nevertheless, the
inspection task could be performed at periodic stops in masked time, for instance at tool
changes, or triggered by user defined events according to optimised production strate-
gies, providing useful tools to be integrated with indirect methods. Indirect methods
are based on the observation of process related quantities, carrying indirect information
of tool wear. The commonly adopted variables include axis torque or current [104],
vibrations [194], acoustic emissions [211] and cutting forces [156]. Their advantage
lays in a non-invasive measurement, thus being adequate tools for in-process TCM.

As said above, TCM generally performs only an assessment of tool condition, thus
telling to the operator whether the tool is in acceptable conditions or not, at the assess-
ment instant. Recently, following the PHM architecture, prognosis tools were applied
in order to perform the prediction of the evolution of tool wear during the cutting pro-
cess, i.e. to compute the remaining useful life (RUL) of cutting tools. The most used
category of prognosis approaches is machine learning or data-driven methods. Flank
wear evolution was described by the application of Support Vector Regression, starting
from cutting forces, vibrational signals and machined surface pictures [34]. DenseNets,
from the deep learning field, were used in order to correlate flank wear to cutting forces,
vibrations and acoustic emission signals [73]. Convolutional neural networks were in-
troduced to predict RUL of cutting tools starting from current, vibrations and acoustic
emission signals [227]. Wang et al. conceived a hybrid methodology based on ma-
chine learning capable of integrating heterogeneous data (process parameters, power
profiles and tool wear images). Wear severity was assessed by a convolutional neural
network, while RUL prediction were performed by a recurrent neural network [207].
Even model-based solutions are emerging, for instance by including tool wear infor-
mation in cutting force models. The model-based approach could be used for tool
flank predictions through cutting force and temperature measurements [140]. Hidden
Markov Models were applied for the prediction of tool flank wear, starting from indi-
rect measurements (vibrations and acoustic emission signals) [220]. Particle filter was
used to update the parameters of a linear degradation model by in-process vibrational
measurements [224].

7
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Chapter 1. Introduction

1.2 Challenges and objectives

PHM obviously received a great boost with the advent of the Industry 4.0 paradigm,
through the availability of low cost sensors of any kind, the increased available compu-
tational resources, the interconnection between machine through the Internet of Things
and the newly available Big Data analysis techniques. Nevertheless, the application
of PHM strategies in the manufacturing field is still at its infancy. Several researches
have proposed interesting solutions for the applicability of PHM in this field, but few of
them were tested or found an application in a real industrial scenario [14, 162]. There
are commonly agreed challenges that mine a robust application of PHM in the manu-
facturing industrial sector (also highlighted in fig. 1.1):

1. availability of data: despite the increasing effort towards a digitalisation of the
manufacturing systems, it is worth noting that building prognosis-enabling datasets
is far from being an easy task. The sensorisation of manufacturing systems and
machine tools is just the first step of a bigger process. The creation of datasets
for supervised learning approaches requires tons of data coming from the nominal
and faulty machine. Furthermore, in order to be able to predict the RUL through
prognosis approaches requires not only clustered datasets (i.e., the ones necessary
for the application of diagnosis), but run-to-failure datasets. It must be pointed out
that run-to-failures are experimental tests where a system, machine or component
is operative from its infancy up to its failure. These experimental tests constitute
the main limitation in the creation of prognosis datasets both for their economi-
cal and temporal impact on companies. Thus, the minimisation of experimental
run-to-failures is the first objective for this thesis work.

2. operating conditions: most of the PHM works published within the scientific com-
munity regard applications with a single operating regime. Indeed, this context is
the reference for high-volume production, where a large stock of identical prod-
ucts is produced. In this scenario, the acquired signals refer to the exact same op-
erations through time, enabling the creation of effective prognosis datasets. How-
ever, the manufacturing field is full of low-medium volume production companies,
where goods are produced in small batches or even as one-of-a-kind (e.g. aeronau-
tical sector). This is the typical context for machine tools application. It must be
highlighted that this challenge is strictly connected to the first one. A proper prog-
nosis dataset should in fact contain run-to-failures performed in multiple working
regimes. Thus, the creation of an operational regime robust PHM framework
is the second main objective of this work.

3. static approaches: most of the literature methods rely upon static algorithms for
the estimation of components health and their evolution forecast. This means that
models are built (or learned, when referring to data-driven ones) and then applied
as is. This has a twofold implication on the approaches effectiveness: the amount
of data (even bigger than the training set) received during the implementation
of the machine is not exploited; models for health predictions are not updated
as long as data arrive from the system. For these reasons, developing a hybrid
and adaptive PHM framework for the machine tool field, constitutes the third
objective of this thesis.
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1.3 Thesis structure

In order to present the thesis outline, it is useful to make reference to its graphical repre-
sentation reported in figure 1.2. The thesis is composed of two main areas, highlighted
with blue and grey backgrounds in figure 1.2.

The first area constitutes the main part of the thesis work and regards the devel-
opment of a full PHM framework in the context of cutting tools wear, from process
modelling up to tool wear prognostics. The choice of focusing on cutting tools is re-
lated to two central reasons. The first one is associated to the economical (and en-
vironmental) impact of tool consumption and substitution on manufacturing compa-
nies. Cutting tool provides large cost saving possibilities; up to 40% could be achieved
through the monitoring of its health [185], while about 20% of the downtimes of ma-
chine tools was attributed to tool failures, resulting in reduced productivity and eco-
nomic losses [121, 227]. The second reason is that the first two previously identified
challenges are of paramount importance within the application of PHM to cutting tools.

Chapter 2 lays the foundation for tool condition monitoring (TCM). The idea is to
develop a prognosis framework based catching the phenomenological aspects of metal
cutting. Thus, process modelling becomes a useful mean to extract physical features,
independent from the cutting conditions. Indeed, an analytical mechanistic force model
for high-feed mills was developed, since they were employed for the experimental run-
to-failures and a reference model is still not available in literature. These cutting tools
featured a double-phased cutting edge with very low lead angles, that needed a proper
formulation in order to take into account the variable engagement condition of the tool
along the mill axial coordinate. The mechanistic model allowed to properly identify
specific force coefficients (SFC) through traditional mean forces approaches. Chapter
3 makes the transition towards TCM. SFC are now identified in real time regressing
instantaneous cutting forces acquisitions. SFC will represent a meaningful tool wear
indicator, highlighting brittle degradation phenomena, while being theoretically inde-
pendent from the cutting conditions. Chapter 4 regards the implementation of an unsu-
pervised AI approach to deal with the residual variability included in the SFC estima-
tion. This technique will allow for unsupervised description of gradual wear evolution
of cutting tools. At last, in chapter 5 a hybrid and adaptive prognosis approach will be
developed for cutting tool RUL prediction. The proposed algorithm will be capable of
estimating the RUL probability density function, being updated online through direct
wear measurements of turning cutting tools. The statistical and AI hybrid approach will
estimate RUL in variable cutting conditions, learning just from one run-to-failure test
(i.e., from a fixed set of cutting parameters and lubricating condition).

The second area is constituted by two parallel activities related to PHM in the ma-
chine tools context. In chapter 6, a full PHM framework was developed and presented
for machine tool auxiliaries. Hydraulic unit was chosen as the subject for this activ-
ity, since it is recognised as one of the most critical parts and the cause of unexpected
breakdowns and downtimes for machine tools [29, 161, 217]. Despite the above, re-
search on PHM is rare for such subsystem. The conceived solution is based on the
development of a digital twin of the system, capable of reproducing variable operating
regimes and multiple concurring component faults. Datasets are built by digital twin
simulations, while a diagnosis and prognosis solution is conceived and tested on them.

9
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Figure 1.2: Graphical representation of the thesis structure. Two main areas constitute the thesis struc-
ture: blue coloured areas refer to the tool wear PHM framework; grey areas include chapter 6
regarding a PHM strategy for machine tool auxiliaries, and chapter 7 for tool condition monitoring
performed from the workpiece perspective.

10



i
i

“thesis” — 2022/10/20 — 22:40 — page 11 — #21 i
i

i
i

i
i
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Table 1.1: Fault states and associated HI for each component.

Title A novel prognostics solution for machine tool sub-units: the hydraulic case
Authors Bernini L., Waltz D., Albertelli P., Monno M.

Journal Proceedings of the Institution of Mechanical Engineers,
Part B: Journal of Engineering Manufacture

Status Published [20]
Chapter 6

Title Mechanistic force model for double-phased high-feed mills.
Authors Bernini L., Albertelli P., Monno M.
Journal International Journal of Mechanical Sciences
Status Pre-proof published [18]
Chapter 2

Title Mill condition monitoring based on instantaneous identification
of specific force coefficients under variable cutting conditions

Authors Bernini L., Albertelli P., Monno M.
Journal Mechanical Systems and Signal Processes
Status Published [19]
Chapter 3

In chapter 7, TCM is carried out within another perspective. The analysis of machined
surfaces is performed through the construction of a deep learning convolutional neural
network classifier. The proposed solution is capable of distinguishing between nominal
and undesired effects, such as tool chippings and excessive run-out.

At last conclusion and possible future works are reported in the thesis conclusions
(chapter 8).

1.4 Publications

Publications are mapped on thesis chapters through table 1.1:
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CHAPTER2
Tool wear: analytical mechanistic force model

development

In this chapter, the framework of tool wear prognosis begins. The idea is to develop
a solution where features for tool monitoring and prognosis catch physical and phe-
nomenological aspects of the cutting process as well as tool wear. On this basis, mech-
anistic force models allow to describe through cutting condition independent coeffi-
cients the ongoing cutting process. Such coefficients will thus constitute the subject
of the analysis of the next thesis chapters. Here, the analytical mechanistic model is
conceived for high-feed mills in order to cover the associated research gap.

2.1 Introduction

Milling is a flexible chip removal process that allows for the production of several kind
of goods such as aeronautical and biomedical ones [28]. The capability of predicting
the forces acting on the tool is of fundamental importance. In fact, cutting forces in-
fluence on the milling operation is twofold: on one hand, they are representative of
the performances of the operation; on the other hand, they allow for the estimation of
related quantities, such as torque and power [231], that are needed to check the fea-
sibility of the milling operation on the available machine [66], as well as to compare
multiple operations in a sustainability perspective. Cutting forces are the cause for ma-
chine tool vibrations, that can be either forced [221], being responsible for reduced
workpiece surface quality and geometrical accuracy, or regenerative [44], mining the
process stability [2,201,202,204]. Indeed, cutting force models are the main sources of
information and mathematical tools for stability analysis [9,178,218] and even chip for-
mation mechanism determination [31]. Furthermore, within the Industry 4.0 paradigm,
cutting forces and related quantities can be used to predict the remaining useful life of
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Chapter 2. Tool wear: analytical mechanistic force model development

the milling tool [2, 47, 140, 159]. Being able to predict cutting forces beforehand, al-
lows to compare them with nominal ones. At last, cutting forces are the main source of
information to analyse the energetic behaviour of a process in terms of specific cutting
energies, which represent the main focus of this chapter.

In literature, force prediction models in milling applications are grouped in three
main categories: physical models, numerical models and mechanistic models. The first
category tries to link the cutting forces to the mechanical properties of the material and
the geometrical configuration of the cut. Representative of this category is the famous
work by Merchant [150]. In opposition to such methods, numerical approaches try
to predict the cutting forces by studying the interaction between the tool and the work-
piece [66]. In between the above categories, mechanistic models try to fuse the physical
and empirical worlds. They relate cutting forces to geometrical quantities involved in
the cutting process through empirical coefficients that need to be identified (specific
force coefficients, SFC). In literature, there are two well established formulations: ex-
ponential models and linear models. Exponential models consider cutting forces as
an exponential function of the average chip area. Models of this kind can be found
in [25, 43, 216]. Linear models divide the cutting forces into two contributions instead.
The first one is directly linked to the shearing action on the shear plane and friction on
the rake face of the tool and it is proportional to the undeformed chip cross-sectional
area by a specific cutting energy or cutting pressure. The second contribution is rep-
resented by the ploughing actions under the flank face of the cutter on the workpiece.
This term is proportional to the cutting edge length through the edge SFC [26].

In literature, several works dealt with mechanistic modelling of different kind of
mills: square shoulder mills, which feature the simplest geometry, and end mills.
Square shoulder mills were the reference case for the Altintas model [26]. Research
deeply analysed this kind of mills proposing several upgrades to the Altintas theory.
More specifically, the main improvements on the Altintas model regarded the geomet-
rical properties of the trajectory of the mill and its cutters. In fact, the original theory
was based on some important assumptions: the cycloidal trajectory of each tooth does
not allow for a closed solution for the chip thickness, which was approximated through
a sinusoidal function of the feed per tooth, then. A second assumption regarded the
cutter run-out: teeth were considered evenly spaced and featured by the same radius.
These assumptions brought Wan et al. [199], firstly, Kumanchick and Schmitz [118],
secondly, and Matsumura and Tumura [144], lastly, to propose extensions of the model,
even considering different cutter geometries, e.g. end-mills. Cutting forces were de-
composed in a nominal contribution and a run-out contribution (that vanishes in the co-
efficients identification); cycloidal motion of the mill teeth was introduced with higher
order approximations, improving both the accuracy of the chip thickness formulation
and the tooth path description. In [7] and [69], helical flute geometry was introduced,
considering the helix angle in order to move from orthogonal cutting SFC to oblique
cutting context; furthermore, more general tool geometries were considered, i.e. ball,
ball nose, taper and ball taper mills. With [157], tool wear started to be included in
mechanistic formulations of cutting forces. Actual chip-tool contact area and rubbing
forces were included in the prediction of cutting forces.

Later, Zhu and Zhang proposed a tool wear model with adjustable coefficients. Once
included in the mechanistic formulation, prediction of cutting forces reached a 98.5%
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2.1. Introduction

agreement with experimental instantaneous cutting forces [241]. Zhang et al. pro-
posed a model that took into consideration teeth trochoidal trajectories, run-out and
tool wear [233]. Even textured tools were analysed [33], where thin shear zone the-
ory and unified cutting mechanics allowed to predict a reduction in the cutting thrust
force. In order to compensate cutting forces measurements, inverse-based filtering with
the inclusion of a mechanistic model considering workpiece deflection was introduced
in [116]. With the objective of assessing cutting operation stability, structural dynamics
of both tool and workpiece, and tool orientation were included in the analysis [129].
Sahoo et al. proposed a hybrid mechanistic approach, considering trochoidal tool tra-
jectory, tool run-out, minimum chip thickness and all preceding teeth trajectories; SFC
were extracted from FEM simulations [169]. Modification of mechanistic models were
found even in exotic applications, like turn-milling [158], or like bone milling, where it
was possible to include osteon orientation, tool geometry and edge effect with unified
mechanics approach. Furthermore, heat flux was used to model surface temperature,
too [138]. Some other improvements were proposed in the framework of micro-milling.
Edge radius and material strengthening effects, together with overlapping tooth en-
gagements, were firstly introduced [184]. Li et al. proposed a general undeformed
chip thickness model accounting for trochoidal trajectory, tool run-out and the material
removed by multiple preceding teeth [130]. Later, radius size-effect, tool deflection,
variable entry and exit angles and minimum uncut chip thickness were added to the
model [230]. Li and Wu presented cutting coefficients as functions of the instantaneous
chip thickness, estimating them from FEM simulations [128], while Zhou et al. in-
cluded the elastic recovery of the material in the uncut chip thickness formulation [238].
Run-out, tilt offset and tooth trajectory were integrated in the cutting force model by
Zhang et al., considering a distributed load on the tool to predict its deflection [232].
Jing et al. proposed a formulation including variable entry and exit angles, minimum
chip thickness, tool run-out and elastic recovery. The mechanistic model assumed a
hybrid fashion, estimating SFC through FEM simulations. They found that elastic re-
covery plays an important role only at low feed rates [106]. Wan et al. investigated the
effects of uncut chip thickness on the shearing and ploughing force components. They
proposed a formulation based on a combination of plastic formation theory and slip-
line field theory, allowing to compute the shape of the dead metal zone [200]. More
recently, the inclusion of cutters run-out, radius size-effect and variable entry and exit
angles were also proposed for average uncut chip thickness formulations [234]. Zhou
et al. introduced wear-varying cutting edge with non-linear associated behaviours, i.e.
non-linear tool-chip friction and strain gradient plasticity effects, in order to estimate
the shear flow stress [237]. Even the numerical computation of curved chip thickness
models was introduced, capable of mimicking the chip flow on the rake face of the cut-
ting insert [76]. At last, Kilic and Altintas proposed a generalisation of mechanics and
dynamics of metal cutting operations, capable of simulating operations such as turning,
milling, boring and drilling, while accounting for general cutter geometries, run-out
and tool-workpiece relative vibrations [113, 114].

Altintas model allowed also for the identification of the proportionality coefficients.
The coefficient estimations are typically performed through multivariate linear regres-
sion models on the average forces [156]. Different works recently dealt with the identi-
fication of the SFC of mechanistic models from various cutting tests based on the exten-

15



i
i

“thesis” — 2022/10/20 — 22:40 — page 16 — #26 i
i

i
i

i
i

Chapter 2. Tool wear: analytical mechanistic force model development

sions of the model [28, 54, 72]. Guo et al. provided a mathematical formulation for the
mechanistic model of a five-axis ball-end mill together with the identification method
for the model coefficients [74]. Gonzalo et al. proposed an instantaneous approach to
fit the SFC for end-mills. They compared the identified coefficients with those obtained
from orthogonal turning tests with the average identification procedure. Identified SFC
resulted to be in accordance with those from orthogonal turning tests, providing a better
physical description of cutting forces with variable chip thickness [66].

The design procedure of machining processes conducts to an optimisation problem.
Typically, in order to obtain the lowest cutting times, the function to be optimised is
the material removal rate. It depends on the axial depth of cut, the radial depth of cut
and the feed rate. The analysis of machine tool vibrations identified the axial depth
of cut as the main source of instability, namely chatter instability [6, 26, 222]. This
discovery led tool manufacturers towards newer directions for the maximisation of the
material removal rate. Indeed, they started to develop more complicated geometries for
the cutters. Such tools are known as high-feed mills.

High-feed mills are a specific kind of High-Efficiency Milling (HEM) tool with
a specialised profile, which rely on chip thinning in order to reach higher feed per
tooth values. Indeed, high feed mills are devoted typically to roughing operations,
with the objective of maximising the material removal rate and extend their life. They
operate under really low axial depth of cuts, with the cutting action taking place mainly
under the edge of the bottom profile. Thus, their geometrical characteristics allow for a
reduced radial load on the spindle (lower tool deflection, too), while generating higher
axial forces during the cut. Reduced radial loads make them a cutting tool suitable for
thin wall milling and deep pocket contouring. High-feed mills are suited for ploughing
operations, especially for light alloys machining (e.g. titanium alloys).They are also
very practical for copy mill machining uneven surfaces and are highly effective in cavity
milling and moulds and dies manufacturing. Researchers address cutters as "high-feed"
when they can achieve up to ten times the feed rate and three times the material removal
rate compared with conventional mills [49]. Such cutters may reach feed per tooth
over mill radius ratios ranging from 0.03 up to 0.4 [49, 75, 89, 103, 141, 143, 235]. This
capability was obtained through the use of really low lead angles and, more specifically,
using double-phased cutters, i.e. cutters featured by two consecutive sections with
different lead angles. Really low lead angles demand for such aggressive feed rates
in order to avoid increased friction due to rubbing between the cutting edge and the
workpiece. This would be the main root cause for increased cutting temperatures and
lower tool lives. Furthermore, when adopted for face milling, they leave scallops on the
machined surface, due to their geometrical characteristics. Scallops profiles are related
to the radial overlap of subsequent passes. Low mill radial engagement (i.e., high radial
overlap) leads to smaller (even null) scallops, while full radial engagements may cause
the scallops to have a height equal to the axial depth of cut.

Literature analysis revealed absence, to the best of authors knowledge, of mechanis-
tic modelling of high-feed mills. Furthermore, the improvements related to cycloidal
trajectory of the tooth were relevant and appreciable for mills with a really high feed per
tooth over mill diameter ratio, i.e. for micro-milling operations and not for high-feed
milling, where this ratio is still considerably lower [118]. All the other improvements
allowed for a better representation of the uncut chip thickness, and thus, to better cutting
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force predictions. Anyway, they all introduced complex geometrical and mathematical
formulations that needed numerical approaches based on discretisation (e.g. [76]) or
time integration [113, 114], leading to slow computational operations. On the contrary,
the conceived approach is completely analytical and in closed form, allowing for the
exact solution of the equations with fast computational times, while keeping high pre-
diction capabilities and outperforming literature analytical approaches. The developed
model considers the variable entry and exit angles, while parametrically considering
high-feed cutter geometries. At last, the conceived model allows for the identification
of SFC based on average cutting forces. In this chapter, the analytical formulation of
the mechanistic model for high-feed mills (that will be consistently indicated as HF) is
introduced, while the differences with respect to the classical Altintas model (CL) will
be analysed. In section 2.2 the HF model is presented, providing the main analytical
formulas of the model. The mean fitting procedure is described, showing the con-
struction procedure of the design matrix. The design of experiments is then explained
together with the performed statistical analysis, including model fitting and uncertainty
propagation on validation quantities. In section 2.3, the whole regression analysis out-
put is furnished and its in-depth discussion is performed. In section 2.4, the novelties
and contributions of the work are highlighted. At the end of the chapter, the theoretical
background is included in appendix 2.A, with the equations related to the CL model.
Two appendixes, 2.B and 2.C, describe the proof of the instantaneous and mean forces
derivations, respectively.

2.2 Materials and methods

In this section, the whole work procedure was described following the order of figure
2.1. The HF model development is firstly presented, highlighting formulation differ-
ences with respect to the CL model (appendix 2.A). Then, the experimental set-up and
the experimental campaign are introduced. The methods for the identification of the
SFC and the validation analysis will conclude this section.

2.2.1 High-feed analytical model

The development of the HF model is presented in this section (fig. 2.1C-D). High-feed
mills are featured by double-phased low lead angles cutters, as can be seen in figure
2.2a. The mill nominal radius is rnom, while the number of cutters is N. The machining
process is featured by the feed per tooth c and the rotational speed n. The formulation
starts by defining the position in time of the cutters [54] through equation 2.1:

ϕ j(t) = ϕ0 +
2π ( j−1)

N
+2π nt (2.1)

where t is the time; j = 1,2, ...,N denotes the j-th cutter; ϕ0 is the angular position of
cutter 1 at t = 0. The dependence on time of the cutter angles will be omitted in the
following. The instantaneous chip thickness removed by cutter j is approximated by
equation 2.2:

h(ϕ j) = c sinϕ j (2.2)

In the proposed model, no run-out formulation is included. Thus, all the cutters are
assumed to be placed at the same radial distance from the mill axis. This choice was
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Figure 2.1: Graphical representation of the developed work. From left to right: literature (A) and high-
feed (C) mill cutters; reference (B) and proposed (D) analytical formulations allow to estimate SFC
through a Multivariate Linear Regression Problem (E-F); the estimation is performed by cutting tests,
designed to vary feed per tooth, cutting speed and axial depth of cut (G); the estimated SFC and their
confidence intervals are compared in terms of mean and variance through multivariate hypothesis
tests (H-J); the proposed model is validated and compared with the literature model through the
prediction of mean forces (I), torque (K) and power (L).

Mill rotation 
axis

Minor edge

Double-phased 
cutting edge

(a) Representation of the double-phased cutter ge-
ometry and its relative nomenclature.

(b) Top view of the proposed model, with nomenclature and
representation of the previous and current cutting tool ref-
erence circles.

Figure 2.2: High-feed model reference figure. The cutting insert profile is shown relatively to the previ-
ous cutter position for a generic cutter angle ϕ . Each vertex of the double-phased cutting edge can
be projected on the top view, and can be seen as the associated circle of radius ri.
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based on two main reasons. Firstly, when dealing with high-feed, the effect of run-
out on the instantaneous chip thickness is negligible compared to the feed per tooth
effect. Secondly, introducing a higher order term such as run-out, would lead to a not-
trivial analytical closed formulation for cutting forces, and, as it will be explained in the
next chapters, to a more complex identification of specific force coefficients (through
instantaneous methods). For the next steps, it is necessary to make reference to figures
2.2a and 2.2b for the cutter geometry description. Looking at the plane z−r that passes
through the mill axis at the current position and the radius at given ϕ angle from the
y-axis (fig. 2.2a), the cutter profile coordinates in actual and previous position (zext
and zint , respectively), are defined as functions of the radial coordinate r from the mill
actual axis of rotation:

zext(r) =


0, if r1 ≤ r ≤ r2

z3
r3−r2

(r− r2) , if r2 < r ≤ r3

z3 +
z4−z3
r4−r3

(r− r3) , if r3 < r ≤ r4

(2.3)

zint(r,ϕ) =



z3
r3−r2

[r− r2 +h(ϕ)] ,

if r2 −h(ϕ)< r ≤ r3 −h(ϕ)

z3 +
z4−z3
r4−r3

[r− r3 +h(ϕ)] ,

if r3 −h(ϕ)< r ≤ r4 −h(ϕ)

z4,

if r4 −h(ϕ)< r ≤ r4

(2.4)

where ri and zi, with i = 2,3,4 are shown in figure 2.2a and z1 = z2 = 0; the j index
was omitted for simplicity. As can be seen from equations 2.3 and 2.4, high-feed mills
present a radial extension of the cutter profile. This feature implies that ϕst is a function
of the axial coordinate z (fig. 2.3a-2.3b). The developed model, in opposition to the
CL model, takes into account this effect. First of all, the radial depth of cut b is defined
with respect to the nominal radius of the mill rnom (this is done to match what an
operator does practically). A reference circle associated to each particular radius (i.e.
ri and i = 1,2,3,4) can be drawn in the reference model (figure 2.2b). It is possible to
determine different critical angles, computed with respect to the y-axis, at which the
radius of each circle ends on the edge of the workpiece (eq. 2.5):

ϕi,ext = arccos
b− rnom

ri
, i = 2,3,4

ϕi,int = arctan
ri sinϕi,ext − c

b− rnom
, i = 2,3,4

(2.5)

Such angles determine the transition regions from an undeformed chip shape to a dif-
ferent shape (due to the engagement of a different section of the cutter profile, fig.
2.3a-2.3b). The possibility to introduce transition regions in the mathematical formula-
tion of the model represents a difference with respect to the CL model. The axial depth
of cut introduces the last two critical angles, at which the cutter profile is engaged at
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Chapter 2. Tool wear: analytical mechanistic force model development

Distances: Angles:

(a) a ≤ z3 case.
Distances: Angles:

(b) a > z3 case.

Figure 2.3: Previous (dashed) and current (dash-dotted) cutting tool reference circles. Circles with solid
lines are generated by the axial engagement. The critical angles ϕi,int and ϕi,ext determine the regions
where the shape of the undeformed chip changes. On the right the chip shapes vary according to the
angular position of the tool. A different chip shape is obtained when the tool radius passes between
two points (indicated as pairs over the chip shape itself).

its maximum height. It is necessary to introduce the radii of intersection between the
external and internal cutter profiles with the axial depth of cut line (eq. 2.6):

ra,ext =

{
r2 +

r3−r2
z3

a, if a ≤ z3

r3 +
r4−r3
z4−z3

(a− z3) , if a > z3

ra,int(ϕ) = ra,ext −h(ϕ)

(2.6)

It must be pointed out that ra,int(ϕ) is not a radius, but just the radial distance between
the actual mill centre and the intersection of the previous cutter profile with the axial
depth of cut line. It is then possible to compute the critical angles associated to ra,ext
and ra,int(ϕ) (eq. 2.7):

ϕa,ext = arccos
b− rnom

ra,ext

ϕa,int = arctan
ra,ext sinϕa,ext − c

b− rnom

(2.7)
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At this point, the area and the edge contact length differentials can be defined by equa-
tion 2.8:

dA(r) = [zint(r)− zext(r)] dr =
= dAint(r)−dAext(r)

dl(r) =
dr

cos χ(r)

(2.8)

where χ(r) is the lead angle at the current r radial coordinate.
The three components of the cutting forces (i.e. tangential, radial and axial) acting

on cutter j are expressed in differential form (eq. 2.9):

dFt, j(ϕ j) = Kt,c dA(ϕ j)+Kt,e dl(ϕ j)

dFr, j(ϕ j) = Kr,c dA(ϕ j)+Kr,e dl(ϕ j)

dFa, j(ϕ j) = Ka,c dA(ϕ j)+Ka,e dl(ϕ j)

(2.9)

where Kd,c and Kd,e, with d = t,r,a, are the cutting and edge specific force coefficients
(SFC), respectively. The first ones account for the shearing action on the shear plane
and the friction effect on the rake face of the cutting edge, whereas the edge SFC are
related to the ploughing action under the flank face of the cutting edge [54].

Substituting equation 2.8 in equation 2.9 and integrating it in the radial direction,
leads to the expression of the instantaneous forces. The integration bounds are equal to
r2 − h(ϕ) and rϕ(ϕ), that is the length of the segment connecting the actual centre of
the mill to the workpiece end (eq. 2.10):

rϕ(ϕ) =

{b−rnom
cosϕ

, if ϕ ≤ ϕa,ext

ra,ext , if ϕ > ϕa,ext
(2.10)

Since the engagement condition was already considered in the differential terms, the
instantaneous cutting forces are:

Ft, j(ϕ j) = Kt,c
[
Aint(ϕ j)−Aext(ϕ j)

]
+Kt,e l(ϕ j)

Fr, j(ϕ j) = Kr,c
[
Aint(ϕ j)−Aext(ϕ j)

]
+Kr,e l(ϕ j)

Fa, j(ϕ j) = Ka,c
[
Aint(ϕ j)−Aext(ϕ j)

]
+Ka,e l(ϕ j)

(2.11)

The force components are then projected in the feed, normal and axial direction of
the milling operation, and the contribution of each cutter is summed up in equation
2.12:

Fx(t) =−
N

∑
j=1

Ft, j(ϕ j) cosϕ j −
N

∑
j=1

Fr, j(ϕ j) sinϕ j

Fy(t) = +
N

∑
j=1

Ft, j(ϕ j) sinϕ j −
N

∑
j=1

Fr, j(ϕ j) cosϕ j

Fz(t) = +
N

∑
j=1

Fa, j(ϕ j)

(2.12)

Forces are expressed as functions of time since ϕ j = ϕ j(t).
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Chapter 2. Tool wear: analytical mechanistic force model development

In order to identify experimentally the six SFC, a procedure based on mean cutting
forces was developed [54, 166]. Equation 2.11 is then substituted in equation 2.12 and
integrated over one period of revolution TP of the mill. The resulting expressions for
mean forces are reported in equation 2.13:

Fx =
N
2π

(−a11 Kt,c −a12 Kt,e −a13 Kr,c −a14 Kr,e)

Fy =
N
2π

(a21 Kt,c +a22 Kt,e −a23 Kr,c −a24 Kr,e)

Fz =
N
2π

(a35 Ka,c +a36 Ka,e)

(2.13)

where ado are constant terms depending on the mill geometry, the feed per tooth (c) and
the depths of cut (a and b).

The computation of the torque, requires more steps than for the CL model. This
is due to the fact that the distance of the infinitesimal tangential force has an increas-
ing arm with respect to its z coordinate of application. Starting from the infinitesimal
tangential force, the associated infinitesimal torque is:

dTj(r) = Kt,c r dA j(r)+Kt,e r dl j(r) (2.14)

By integrating equation 2.14 over the radial coordinate of the undeformed chip and
summing up the contributions of the N cutters, the resulting torque is constituted by
two terms:

T (t) =
N

∑
j=1

{
Kt,c r∗A, j

[
Aint(ϕ j)−Aext(ϕ j)

]
+Kt,e r∗l, j l(ϕ j)

}
(2.15)

where r∗A, j and r∗l, j are the radial coordinates of the centre of mass of the undeformed
chip area and edge contact length, respectively. The cutting power is computed by sub-
stituting equation 2.15 in equation 2.A.7. Complete expressions for Aint , Aext , l, r∗A, j
and r∗l, j were reported in appendix 2.B, while ado terms in 2.C, due to their complex-
ity. The different implementation of the CL and HF models was summarised in figure
2.4. The figure represents the step-by-step computations to be performed in order to
calculate instantaneous cutting forces, torque and power.

2.2.2 Experimental set-up and Design of Experiments

The experimental set-up available was shown in figure 2.5. A Mandelli M5 machining
centre was used, equipped with a Mitsubishi AJX06R203SA20S high-feed mill, with
three JOMT06T216ZZER-JL MP9140 cutting inserts. The adopted cutters presented
a nominal diameter equal to 20 mm. Their geometry featured two consecutive phases
with lead angles equal to 12.5◦ and 24.5◦. The cutter parameters after the geometrical
simplification introduced by the model discussed in section 2.2.1 were reported in table
2.1. A Kistler 9255B dynamometric plate was adopted for the milling forces measure-
ment, followed by a Kistler 5070 charge amplifier. A three-phase power meter was used
to acquire the spindle power (with three LEM LF 205-S/SP3). These quantities were
acquired through a NI cRIO 9039, with a NI 9215 acquisition card for cutting forces
and NI 9205 acquisition card for spindle power. Siemens SinuCom NC was used to
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Figure 2.4: Flow chart representing the needed steps to compute instantaneous cutting quantities
(forces, torque and power) for the CL (appendix 2.A) and HF (section 2.2.1) models. Estimation
of the SFC (dashed boxes) must be performed beforehand.

Table 2.1: Cutter geometrical parameters.

r1 r2 r3 r4 z1 z2 z3 z4
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

5.35 6.57 8.53 9.03 0 0 0.40 0.62

acquire the spindle quadrature current and speed, axis positions and speeds. Cutting
forces were acquired at high frequency (5 kHz), while SinuCom quantities were ac-
quired at 250 Hz. In order to experimentally identify the SFC from the two analytical
models (i.e. CL and HF), a set of 48 experiments was designed, constituted by 4 repli-
cates of 12 different cutting conditions (table 2.2, fig. 2.1G). Tests were performed on
a Ti6Al4V rectangular workpiece of dimensions 255x262 mm. DoE consisted of two a
levels: 0.4 and 0.6 mm. The a levels were chosen so that the first one was keeping only
the first phase of the cutting edge engaged, while the highest level included also the
cutting edge second phase. Five levels of c were adopted: 0.60, 0.65, 0.70, 0.75 and
0.80 mm/tooth. Three levels of cutting speed vc were chosen 50, 60 and 70 m/min.
All the tests were performed at b = 13 mm. The number of experiments was chosen in
order to allow for a good estimation of SFC, following [51, 71, 92, 181, 188]. Five lev-
els of c were chosen to explore the range of applicability of the tool, suggested by the
tool manufacturer, and catch the trend of mean forces [71]. Cutting speed was varied
in order to take into account the process variability. The parameter combinations were
shown in table 2.2. The cuts with ID 4 and 10 were chosen as validation data. This
was in accordance with reference literature in similar applications (e.g. SFC identifica-
tion [166]) and linear regression problems [3]. Validation tests featured parameters that
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A

B C

Figure 2.5: Experimental set-up: A) Ti6Al4V workpiece and mill; B) Mitsubishi high-feed mill; C) DAQ.

Table 2.2: Design of Experiments parameter combinations.

ID c a vc n Replicates Model use
[mm/tooth] [mm] [m/min] [rpm]

1 0.75 0.40 50 796 4 fitting
2 0.80 0.40 50 796 4 fitting
3 0.60 0.40 50 796 4 fitting
4 0.65 0.40 55 955 4 validation
5 0.70 0.40 70 1114 4 fitting
6 0.70 0.40 50 796 4 fitting
7 0.75 0.60 50 796 4 fitting
8 0.80 0.60 50 796 4 fitting
9 0.60 0.60 50 796 4 fitting

10 0.65 0.60 55 955 4 validation
11 0.70 0.60 70 1114 4 fitting
12 0.70 0.60 50 796 4 fitting

were unseen in model fitting experiments in terms of c and vc. This choice was taken
in order to verify linearity hypothesis and checking prediction accuracy. The regressor
values for validation were determined in order to use the linear regression model for
interpolation, and not for extrapolation (being this a general rule of applicability for
linear regression models). In fact, by using the model for extrapolation, the assump-
tions can’t be verified and the prediction intervals (PI) naturally increase [186]. The
axial depth of cut a was considered as a block factor, while all the tests were casualised
within each block.

Model Identification

Model identification procedure was firstly proposed by Altintas [26]. It consists in
a multivariate linear regression problem (from which the notation is adopted [186]).
This allows estimating the SFC (fig. 2.1E-F). The fitting procedure exploits the mean
cutting forces measured during the experiments. The systems of linear equations 2.A.5
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and 2.13 can be written in matrix fashion (eq. 2.16):


Fx

Fy

Fz

=

x11 x12 ... x16

x21 x22 ... x26

x31 x32 ... x36

 ·


Kt,c

Kt,e

Kr,c

Kr,e

Ka,c

Ka,e


(2.16)

If M tests are experimented, the identification problem can be rewritten in a multivariate
linear regression fashion (eq. 2.17):

Fx,1

Fy,1

Fz,1

Fx,2

Fy,2

Fz,2

...

Fx,M

Fy,M

Fz,M



=



x11,1 x12,1 ... x16,1

x21,1 x22,1 ... x26,1

x31,1 x32,1 ... x36,1

x11,2 x12,2 ... x16,2

x21,2 x22,2 ... x26,2

x31,2 x32,2 ... x36,2

... ... ... ...

x11,M x12,M ... x16,M

x21,M x22,M ... x26,M

x31,M x32,M ... x36,M



·



Kt,c

Kt,e

Kr,c

Kr,e

Ka,c

Ka,e


+


ε1

ε2

...

εM



y = Xk βββ k + εεεk

(2.17)

where k = CL,HF ; y is the vector of responses, i.e. mean forces; Xk is the design
matrix of either CL and HF model; βββ k is the vector of regression coefficients, i.e. SFC;
εεεk is the vector of residuals with εm,k ∼ N (0,σ2

k ) uncorrelated random variables. The
Ordinary Least Squares estimates for SFC are given by equation 2.18:

β̂ββ k =
(
XT

k Xk
)−1 Xk y, k =CL,HF (2.18)

The reconstructed responses are (eq. 2.19):

ŷk = Xk β̂ββ k, k =CL,HF (2.19)

The estimated residuals are (eq. 2.20):

ek = y− ŷk, k =CL,HF (2.20)

It is then possible to estimate the variance of the process errors as (eq. 2.21):

σ̂
2
k =

eT
k ek

np − p
, k =CL,HF (2.21)

where np is the number of data points (i.e. 3M) and p the number of regression coeffi-
cients (i.e. 6 SFC). It is possible also to compute the covariance matrix of the regression
coefficients ΣΣΣβββ k

(eq. 2.22):

ΣΣΣβββ k
= σ̂

2
k Ck, k =CL,HF (2.22)
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where Ck is the matrix
(
XT

k Xk
)−1. Process variance allows for the computations of the

regression coefficients 100(1−α)% confidence intervals (CI) through equation 2.23
(fig. 2.1H):

β̂k,o − tα/2,np−p

√
σ̂2

k Coo,k ≤ βk,o ≤ β̂k,o + tα/2,np−p

√
σ̂2

k Coo,k (2.23)

where k =CL,HF ; α is the significance level, Coo,k is the o-th element of the diagonal
of matrix Ck; tα/2,np−p is the upper α/2 percentage point of a t distribution with np− p
degrees of freedom. Such limits are then the CI extrema for SFC.

2.2.3 Model Validation

Four main procedures were followed for the assessment and validation of the developed
HF model (fig. 2.1I-J-K-L).

First validation step

This procedure consisted in the prediction of mean forces on model fitting and vali-
dation data (fig. 2.1I). 100 · (1−α)% PI for single new response observations were
computed through equation 2.24 [186]:

ŷ(x0,k)− tα/2,np−p

√
σ̂2

k

(
1+xT

0,k Ck x0,k

)
≤ y0 ≤

ŷ(x0,k)+ tα/2,np−p

√
σ̂2

k

(
1+xT

0,k Ck x0,k

)
(2.24)

where x0,k is the new point for which an estimated response is required, with k =

CL,HF ; ŷ(x0,k) is the estimated response xT
0,k β̂ββ k.

Second validation step

This validation procedure consisted in the multivariate hypothesis testing of SFC esti-
mates (fig. 2.1J). Since the CL and HF models are based on SFC carrying the same
physical meaning, a statistical hypothesis testing procedure was applied to test whether
or not the two models shown any statistically appreciable difference. In this case, two
steps were applied: first of all, the Box M test for covariance equality [23] was applied
to the two SFC groups. Since Box M test rejected the covariance equality in null hy-
pothesis at 0.05 significance, an alternative to the Hotelling’s Two-Sample T-squared
test for difference in means was used. Nel and van der Merwe [155] procedures to solve
Behrens-Fisher multivariate tests were adopted at 0.05 significance. Simultaneous CI
for each difference between CL and HF SFC were computed at 0.05, highlighting the
directions of meaningful differences.

Third and fourth validation steps

These steps were reported in the same section due to their similar methodology. The
difference between the two, is that they are based on the prediction of two different
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physical quantities: the mean spindle cutting torque (fig. 2.1K) and the mean spindle
cutting power (fig. 2.1L). Such quantities were used for validation since none of them
was introduced in the model fitting procedure. In this way, a more robust validation
approach was introduced. The new variables were expressed as functions of the SFC,
in order to make predictions. Starting from the CL model, mean torque and mean power
follow equation 2.25 and 2.26:

T̂CL = rnom
{

x35,CL x36,CL 0 0 0 0
}

β̂ββCL =

= aT
T,CL β̂ββCL

(2.25)

P̂CL = 2π nrnom
{

x35,CL x36,CL 0 0 0 0
}

β̂ββCL =

= aT
P,CL β̂ββCL

(2.26)

where xdo,CL is the predictor in row d and column o of the matrix in equation 2.16 for
the CL model, computed at the nominal cutting parameters of a given experiment; aT

T,CL
is defined as

{
x35,CL x36,CL 0 0 0 0

}
and aT

P,CL is defined as 2π nrnom aT
T,CL.

For the HF model, it is necessary to take the mean over a tool revolution of the in-
stantaneous torque (eq. 2.15) and power (substituting equation 2.15 in equation 2.A.7):

T̂ HF =
1
TP

∫ TP

0
T (t) dt = aT

T,HF β̂ββ HF (2.27)

P̂HF =
1
TP

∫ TP

0
P(t) dt = aT

P,HF β̂ββ HF (2.28)

where the integrals can be expressed as two vectors aT
T,HF and aT

P,HF multiplied by the
estimated SFC. It is then possible to propagate the uncertainty of the SFC estimations
to the new variables of interest (eq. 2.25-2.28). Being the mean torque and mean
power linear combinations of the SFC, the uncertainty is propagated through equation
2.29 [192]:

s2
q,k = aT

q,k ΣΣΣβββ k
aq,k (2.29)

where q stands for the quantity of interest, i.e. either T or P; k stands for the reference
model, i.e. CL or HF; s2

q,k is the variance associated to the quantity q prediction using
the k-th model; aq,k is the vector that transforms SFC in the variable of interest (eq.
2.25-2.28); ΣΣΣβββ k

is the covariance matrix of the SFC coefficients (2.22).

2.3 Results and discussion

In this section, the results of the analysis of the experimental campaign data will be
reported and discussed. The presentation of the results will start with the instantaneous
forces prediction capabilities, followed by the three validation steps described in section
2.2.

2.3.1 Model identification

The model fitting procedure allowed to identify the SFC values and the associated 95%
CI, which are reported in table 2.3. The fitting procedures computational times resulted
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Table 2.3: Identification of SFC for CL and HF models, together with their associated 95% CI.

CL HF
SFC Lower Mean Upper Lower Mean Upper

Kt,c [MPa] 969.7 1696.5 2423.3 1084.5 1255.2 1426.0
Kt,e [N/mm] -114.8 262.1 639.1 70.0 86.5 103.1
Kr,c [MPa] -523.5 203.3 930.0 135.5 306.3 477.0

Kr,e [N/mm] -181.8 195.1 572.0 -0.9 15.7 32.2
Ka,c [MPa] 190.2 845.8 1501.4 -194.1 -39.2 115.8

Ka,e [N/mm] 422.8 746.9 1070.9 191.7 205.9 220.2

to be 12.3 ms and 46.7 ms for the CL and HF models, respectively. The computational
times included the design matrix construction and the SFC identification. In order to
provide a reliable estimate, they were reported as the average over 10000 cycles. Fur-
thermore, such cycles were performed using Matlab® on a Dell XPS 15 7590 featuring
an Intel® Core™ i7-9750H CPU @ 2.60GHz. It is clear how the developed HF model
is capable of better catching the physical phenomenon underneath the cut than the CL
one. In fact, identified SFC with HF model present narrower 95% CI. This means that
the uncertainty in the estimation of the SFC is lower and it is confirmed even by the
significance tests for the single regressors. Such tests can be checked directly from the
CI of each regressor: a regressor results to be significant on the associated hypothesis
test at 0.05 significance level (i.e. the regression coefficient is significantly different
from 0), if its 95% CI doesn’t include 0. Analysis of Variance (ANOVA) tables for the
CL (table 2.4a) and HF (table 2.4b) regression models were computed through Minitab
software.

The p-values of the single regression coefficient significance were explicitly shown
in such tables. Using CL model, three SFC were not significant at 0.05 significance
level (i.e. Kt,e, Kr,c and Kr,e), whereas only two using the HF model (i.e. Kr,e and Ka,c).
It is possible also to note the amount of variance explained by the two regression mod-
els, i.e. R-squared (on model fitting data), looking at the regression row in contribution
field. For both the models, R-squared is really high and comparable: 98.92% for the
CL model versus 99.87% for the HF model. Usually, even adjusted R-squared, predic-
tion R-squared and Test R-squared are computed, since they provide a more reliable
information on the performances of the regression models. Adjusted R-square takes
into account also the number of used predictors (in this case both the models use six
regressors, so adjusted R-squared and R-squared provide the same information in the
comparison of the two models). Prediction R-squared is computed by leaving out one
sample per time from the fitting procedure, and tells how good a model is in explaining
the variance for new predictions. Such coefficient is related to a leave-one-out cross-
validation procedure for evaluating the model prediction capabilities and makes use of
the PRESS statistic [5, 191]. Test R-squared has the same meaning of R-squared but
it is computed only on model validation data, so it tells how much variability is ex-
plained by the model on a completely new set of data. The comparison between these
coefficients for both the models is reported in table 2.5. Nevertheless, the two mod-
els are not comparable from the performances point of view. An anticipation of the
Maximum Absolute Error, Root Mean Squared Prediction Error (RMSPE) and Mean
Absolute Percentage Error (MAPE) is reported in figure 2.6. As can be seen, the con-
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Table 2.4: ANOVA tables comparisons for CL and HF regression models.

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value

Regression 6 20203366 98.92% 20203366 3367228 1743.79 0.000
Ktc 1 8566401 41.94% 41291 41291 21.38 0.000
Kte 1 265945 1.30% 3665 3665 1.90 0.171
Krc 1 74264 0.36% 593 593 0.31 0.581
Kre 1 2030 0.01% 2030 2030 1.05 0.307
Kac 1 11254475 55.11% 12612 12612 6.53 0.012
Kae 1 40252 0.20% 40252 40252 20.85 0.000

Error 114 220132 1.08% 220132 1931
Lack-of-Fit 18 201960 0.99% 201960 11220 59.27 0.000
Pure Error 96 18172 0.09% 18172 189

Total 120 20423498 100.00%
(a) CL model.

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value

Regression 6 20396977 99.87% 20396977 3399496 14612.50 0.000
Ktc 1 8738358 42.79% 49331 49331 212.05 0.000
Kte 1 60524 0.30% 24944 24944 107.22 0.000
Krc 1 132467 0.65% 2936 2936 12.62 0.001
Kre 1 821 0.00% 821 821 3.53 0.063
Kac 1 11274175 55.20% 58 58 0.25 0.617
Kae 1 190632 0.93% 190632 190632 819.42 0.000

Error 114 26521 0.13% 26521 233
Lack-of-Fit 18 8349 0.04% 8349 464 2.45 0.003
Pure Error 96 18172 0.09% 18172 189

Total 120 20423498 100.00%
(b) HF model.

ceived model outperforms the CL model in the prediction of mean forces, mean torque
and mean power. Further comments and discussions on this will be provided in the
dedicated following sections.

Figures 2.7a and 2.7b represent instead the diagnostics of the regression analysis
performed with CL and HF models, respectively. The top-left graph (A) is the quantile-
quantile graph for normal distributions. It is used to check qualitatively the normality
assumption of residuals together with the bottom-left graph (C), which represents the
discrete probability density function of residuals. If data follow a normal distribution,
they fall close to the red straight line. These graphs are typically accompanied by nor-
mality hypothesis tests. Here, Anderson-Darling (AD) normality test was performed on
model fitting residuals. The results of the tests were reported in table 2.6. AD test as-
sumes under the null hypothesis that the data follow a normal distribution. The p-value

Table 2.5: Model performance summaries comparison.

Model S R-sq R-sq(adj) PRESS R-sq(pred) AICc BIC Test S Test R-sq

CL 43.9429 98.92% 98.87% 240795 98.82% 1257.28 1275.80 41.1673 98.89%
HF 15.2526 99.87% 99.86% 29221 99.86% 1003.33 1021.84 15.2180 99.85%
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Figure 2.6: Summary of error metrics for a comparison of HF and CL models. Maximum absolute error,
root mean squared prediction error and Mean absolute percentage error metrics are reported for
force (left), torque (centre) and power (right) predictions. Darker colours describe the CL model,
while lighter bars refer to the HL model. Blue colours refer to left axes, whereas orange refers to
right axes.

Table 2.6: Anderson-Darling normality tests.

Model Mean StDev N AD p-value

CL 6.470 42.52 120 0.995 0.012
HF 0.279 14.93 120 0.505 0.199

for CL residuals is 0.012 meaning that at 0.05 significance level, the null hypothesis
is rejected. AD didn’t reject the null hypothesis for the developed HF model, having
a p-value of 0.199. This is another proof that the HF model is better representing the
mean force data. The top-right graph (B) shows the residuals of regression versus the
fitted values of mean forces. The interpretation of such graph is similar to the one in
the bottom right corner (D), representing the residuals versus the experiment number.
Looking at figure 2.7, it seems that homoscedasticity (i.e. model fitting residuals con-
stant variance) is verified for both the models. Independence of model fitting residuals
is not verified for the CL model, where residuals from observation number 1 to 60 are
over the 0 line, while residuals from 61 to 120 are below the 0 line.

The different behaviour of the two models is also evident in the predicted instan-
taneous cutting forces. Figures 2.8a and 2.8b highlight the improved accuracy of the
developed model in the description of the variable entry angles of the cutting inserts.
In fact, the CL model features a portion of about 12◦ where no cutting inserts were
engaged. On the contrary, the HF model correctly identifies a continuous cutting con-
dition, where a cutting insert starts engaging the workpiece right in the moment where
the previous one is exiting from it. This came from a peculiar choice in the nominal en-
gagement b, determined to have exactly one cutter per time engaged in the workpiece.
Nevertheless, it must be noted that the model catches a nominal behaviour of the in-
stantaneous cutting forces, while experimental forces didn’t show a null instantaneous
force sample. This should be attributed to the dynamical components of the cutting pro-
cess and to the run-out of the cutting tool. Radial vibrations of the tool tip cause small
deviations in the radial engagement of the mill, causing a small delay between the entry
of a cutter and the exit of the previous one. Radial cutters run-out causes small changes
in their entry and exit angles, providing a similar effect. Furthermore, two other main
considerations have to be brought to the reader attention: (i) the conceived model is,
in general, better predicting the magnitude of the cutting forces; (ii) the HF model pre-
dictions for instantaneous cutting forces are featured by narrower 95% PI, due to the
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(a) CL model.
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(b) HF model.

Figure 2.7: Diagnostics of regression analysis. Quantiles-quantiles normality plot (A): the more residu-
als follow a normal distribution, the more the blue points lay on the red line. Residuals versus fitted
responses (B): blue points should be randomly distributed around the red line to indicate their inde-
pendence. Residuals histograms (C): should be as close as possible to a gaussian probability density
function. Residuals versus observation (D): they should be randomly distributed and show constant
variance.
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(a) Test ID 4: a = 0.4mm, c = 0.65mm/tooth and vc =
55m/min.

(b) Test ID 10: a = 0.6mm, c = 0.65mm/tooth and vc =
55m/min.

Figure 2.8: Instantaneous force predictions of CL (dashed red line) and HF (solid blue line) models with
respect to the mill angle. Coloured bands represent prediction intervals of the forces components and
are drawn with analogous line style and colour.

higher confidence in the regression coefficients estimation.

2.3.2 Model validation first step

The behaviour pointed out in the last section is associated to the change in the axial
depth of cut. For a = 0.4mm the model is underestimating the mean cutting forces,
while for a = 0.6mm the model is overestimating them. The HF model is instead ca-
pable of well representing the mill cutting operation under both the axial depths of cut.
This behaviour of the two models can be easily identified by looking at the mean force
regression surfaces in the plane a− c. Such graphs are reported in figures 2.9a-2.9b,
for the CL and HF models, respectively. In fact, the developed HF model includes two
different behaviours, related to a lower then z3 and a bigger than z3 (i.e. the begin-
ning of the engagement of the cutting edge second phase). Such distinction is visi-
ble in the response surface of the HF model (2.9b, red arrow). In correspondence of
a = z3 = 0.4mm, the response surface is featured by a sudden transition, due to the sec-
ond cutting edge phase and to the modified chip geometry included in the model. The
same wasn’t observed in the CL model. This novelty allows the HF model to catch the
different behaviours of the HF mills at different a values and not to under/overestimate
the mean forces in the tested conditions. This phenomenon is even clearer while look-
ing at the response curves of the two models at the tested a values, in a two-dimensional
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(d) Spindle torque: CL and HF models.
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(e) Spindle power: CL and HF models, a = 0.4mm.
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(f) Spindle power: CL and HF models, a = 0.6mm.

Figure 2.9: Comparison summary between the CL and HF model for all the validation steps. (a) and (b)
represent the first validation step, comparing the prediction capability of the two models with respect
to mean forces. (c) summarises the second validation step, comparing the confidence intervals for the
SFC estimation. (d) compares the prediction capabilities with respect to the mean torque, while (e)
and (f) with respect to the mean power (thus, constituting the summary of the third validation step).
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(a) CL model: a = 0.4mm.
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(b) HF model: a = 0.4mm.
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(c) CL model: a = 0.6mm.
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(d) HF model: a = 0.6mm.

Figure 2.10: Mean force responses of CL and HF models versus c at the tested a values. Black solid
lines represent the predicted mean axial forces, blue dashed lines describe normal forces, while red
dashed-dotted lines represent feed forces. Circles represent data used for model fitting, whereas
crosses represent validation data. Coloured bands represent prediction intervals of the forces com-
ponents, being drawn with analogous line style and colour.

plot (figures 2.10a-2.10d). From these figures, it is evident the difference between the
two models. To quantitatively compare the two models, the Root Mean Squared Pre-
diction Error (RMSPE - root mean squared error on the prediction of model validation
data) was computed [22, 172]. The proposed model resulted to be remarkably more
precise than the CL model, with an RMSPE of 15N against 41N, respectively. The
associated model validation maximum errors (in module) were 44N for HF and 79N
for CL. Narrower SFC confidence intervals presented in table 2.3 translate in more
accurate PI for the mean forces. Then, HF model is able to more reliably predict the
mean cutting forces than the CL model. These results were confirmed also by the Mean
Absolute Percentage Error (MAPE) metric [67, 111]. In fact, the MAPE obtained with
the CL model was 9.9%, whereas the HL model allowed to reach a smaller value of
4.6%. Thus, the HF model dramatically decreased the MAPE on the validation tests,
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Table 2.7: Box M test for covariances equality.

DF1 DF2 F p-value

21 187857 142.00 0.000

Table 2.8: Nel and van der Merwe procedures for Behrens-Fisher multivariate test for mean equality.

DF1 DF2 F p-value

6 169 17090.49 0.000

providing reliable predictions of mean forces.

2.3.3 Model validation second step

In order to statistically evaluate the difference between the two models, multivariate
hypothesis testing was applied to the estimated regression coefficients. Literature pro-
poses two approaches in order to compare the regression coefficients of two models [4].
The first one consists in the application of univariate 2t-tests on each pair of regression
coefficients mean [40]. The second approach uses a joint ANOVA on the data, adding a
categorical variable that assigns the data to the correspondent model. Interaction terms
must be included in such regression problem [38]. The first approach is less conser-
vative and tends to refuse the null hypothesis more frequently. This comes from the
fact that the SFC are treated in a univariate fashion, while they are actually part of the
same covariate set. Here, an extension of the method was proposed applying a multi-
variate approach. Box M test results were reported in table 2.7. The test refused the
null hypothesis and, then, covariance equality of the CL and HF SFC. Because of such
result, it was not possible to apply the classical Hotelling’s T-squared test. The com-
parison between the means of the SFC was carried out through Nel and van der Merwe
procedures to Behrens-Fisher multivariate tests [155]. The results of the test were re-
ported in table 2.8. The p-value of the test was null, underlying statistical evidence
about the difference in the HF and CL SFC means. It was then possible to compute the
95% simultaneous confidence intervals for the differences between each SFC pair. The
intervals were reported in table 2.9. The intervals for the difference in means didn’t
include the zero, except for Kr,c. Then, the means of the SFC between CL and HF
models were statistically different except for Kr,c. Such results confirmed that the CL
model was not able to catch the physical phenomenon underneath high-feed milling

Table 2.9: 95% confidence intervals for mean differences between CL and HF SFC.

SFC Difference Lower Upper

∆Kt,c [MPa] -566.5 -316.0
∆Kt,e [N/mm] -238.9 -112.3
∆Kr,c [MPa] -22.3 228.2

∆Kr,e [N/mm] -242.7 -116.1
∆Ka,c [MPa] -998.0 -772.0

∆Ka,e [N/mm] -595.4 -486.5
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and further supported the need for the developed HF model. The difference between
the estimated SFC using CL and HF models was highlighted by figure 2.9c. It is clear
also from this figure that Kr,c was the only equal SFC. The identified HF Kt,c resulted
to be significantly lower than the CL one. This difference is probably due to the fact
that the HF model takes into account a much longer edge contact length, reflecting in
a wider contribution of the ploughing effect under the flank face of the cutting edge.
Of course, being the edge contact length longer, even the Kt,e assumes a lower value.
The axial force is dominated by the ploughing effects. The opposite occurs for the ra-
dial components which are basically constituted by the shearing action on the shearing
plane.

2.3.4 Model validation third and fourth steps

To further validate the model, the prediction of variables of technological interest not
included in the fitting procedure was carried out. Spindle torque and power are in fact
useful to assess the feasibility of an operation on the available machine tool. The pre-
diction surfaces of the spindle torque for the CL and HF model were reported in figure
2.9d. It is evident that the HF model outperformed the CL one both in the mean torque
prediction as well as in the confidence of the prediction. The better performance of the
HF model in the prediction of this quantities lies in two main contributions: on one
hand, it is related to the better estimation of the SFC; on the other hand, on the fact
that the contribution to the torque of an infinitesimal piece of cutting edge is propor-
tional to its distance from the mill axis. The second factor was in fact considered in the
HF model, while it was not present in the original CL model. Furthermore, the higher
confidence in the prediction of spindle torque was due just to the first of the two con-
tributions. In fact the prediction uncertainties were obtained from the SFC confidence
intervals propagation. Being more confident on the SFC turned of course in a higher
confidence in the prediction. The RMSPE for the torques were equal to 0.33Nm and
1.25Nm, for the HF and CL respectively. The associated validation maximum errors
(in module) were 0.44Nm for HF and 1.61Nm for CL. The MAPE metric relative to
spindle torque underlined the improvements introduced with the HF model, assuming
values of 9.7% and 34.8% for the HF and CL models, respectively. The same rea-
sonings were valid for the spindle power. Figures 2.9e and 2.9f represented the spindle
power versus the cutting speed and the feed per tooth under a= 0.4mm and a= 0.6mm,
respectively. For the cutting power, RMSPE resulted to be 29W and 120W , for the HF
and CL respectively. The associated validation maximum errors (in module) were 44W
for HF and 161W for CL. The associated MAPE values were 8.1% for HF and 32.8%
for CL.

2.4 Conclusions

In this chapter, a novel analytical mechanistic model for double-phased high-feed mills
was proposed. Double-phased cutters allow to reach high feed per tooth values, while
keeping a low axial depth of cut; this permits to increase the material removal rate
of face-milling operations and, at the same time, to avoid cutting instability. The new
formulation extended the reference literature model to include complex cutter geometry
and variable engagement conditions along the axial coordinate of the tool. A longer
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2.A. Theoretical background

edge contact length led to lower specific force coefficients and to the predominance of
ploughing under the flank face of the cutting insert.

The developed high-feed model introduced the above improvements while keeping
the formulation analytical and in closed form, both for instantaneous and mean cutting
forces expressions. The model computational time remains low, relying upon neither
discretisation nor time integration. The model fitting procedure on mean forces takes
46.7ms for the proposed model, whereas 12.3ms for the literature one.

A reliable estimate of the specific force coefficients was achieved, with narrower
confidence intervals with respect to the literature model, underlining a better repre-
sentation of the phenomenon. Based on this, the developed model outperformed the
literature one in mean forces fitting and prediction, while respecting all the regression
assumptions. The same high-feed model could be used for multiple cutting conditions:
low (0.4mm) and high (0.6mm) axial depth of cuts. The Root Mean Squared Prediction
Errors were 15N and 41N, with associated validation maximum errors (in module) of
44N and 79N for the proposed and literature model, respectively.

The literature model was outperformed also in the prediction of spindle torque and
power. The developed model predictions were considerably more accurate in terms of
mean, reaching Root Mean Squared Prediction Errors of (0.33Nm, 29W ), compared
with (1.25Nm, 120W ) of the literature one, respectively. The associated validation
maximum errors (in module) were (0.44Nm, 44W ) for proposed model and (1.61Nm,
161W ) for the literature model. Narrower specific force coefficients confidence inter-
vals translated into reduced uncertainties in the prediction of the above quantities. This
allows for reliable comparisons between operations within a sustainable perspective.

Future works will regard the application of the developed model for energetic com-
parison between conventional and high-feed milling, as well as its application for the
monitoring and prognostics of high-feed tools.

2.A Theoretical background

In this appendix, the CL model developed by Altintas [26] is presented (fig. 2.1A-B).
The tool geometry is described by the diameter of the mill D and the number of cutters

𝑗

𝑗 + 1

Figure 2.A.1: Reference figure for the literature mechanistic model by Altintas. Figure represents the
nomenclature of a simple milling operation: the angular position of cutters in the feed-normal refer-
ence frame, the radial engagement of the mill and the cutting forces in the cutter reference frame.
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Chapter 2. Tool wear: analytical mechanistic force model development

N (fig. 2.A.1). The machining process is featured by the feed per tooth c and the
rotational speed n. The formulation starts by defining the position in time of the cutters
as for the HF model (eq. 2.1). The instantaneous chip thickness removed by cutter j
is approximated by equation 2.2, too. Two angles are defined to determine whether the
j-th cutter is processing material or not: ϕst determines the angular position at which
the cutter starts to work, ϕex determines the angular position at which the cutter exits
the workpiece. The engagement function is then defined (eq. 2.A.1):

g(ϕ j) =

{
1, if ϕst < ϕ j < ϕex

0, otherwise.
(2.A.1)

The three components of the cutting forces (i.e. tangential, radial and axial) acting on
cutter j are expressed in differential form as for the HF model (eq. 2.9). dA and dl are
instead the infinitesimal chip area and edge contact length and are defined through (eq.
2.A.2):

dA(ϕ j) = h(ϕ j) dz
dl(ϕ j) = dz

(2.A.2)

Substituting equation 2.A.2 in equation 2.9, and integrating in dz from 0 to the axial
depth of cut a, the expressions for the three forces components are obtained:

Ft, j(ϕ j) = g(ϕ j)
[
Kt,c ah(ϕ j)+Kt,e a

]
Fr, j(ϕ j) = g(ϕ j)

[
Kr,c ah(ϕ j)+Kr,e a

]
Fa, j(ϕ j) = g(ϕ j)

[
Ka,c ah(ϕ j)+Ka,e a

] (2.A.3)

Each force term must be multiplied by g(ϕ j) to include the engagement condition in
the workpiece. The force components are then projected in the feed, normal and axial
direction of the milling operation, and the contribution of each cutter is summed up
through equation 2.12.

The identification of the six SFC is based on mean cutting forces as for the HF
model [54, 166]. Indeed, the three force components are integrated over one period of
revolution TP of the mill (eq. 2.A.4):

Fd =
1
TP

∫ TP

0
Fd(t) dt (2.A.4)
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2.B. Mathematical computations: instantaneous forces terms

where d = x,y,z. The resulting mean forces expressions are reported in eq. (2.A.5):

Fx =
N ac
8π

[Kt,c cos2ϕ −Kr,c (2ϕ − sin2ϕ)]|ϕex
ϕst

+

+
N a
2π

(−Kt,e sinϕ +Kr,e cosϕ)|ϕex
ϕst

Fy =
N ac
8π

[Kt,c (2ϕ − sin2ϕ)+Kr,c cos2ϕ]|ϕex
ϕst

+

− N a
2π

(Kt,e cosϕ +Kr,e sinϕ)|ϕex
ϕst

Fz =
N a
2π

(−Ka,c c cosϕ +Ka,c ϕ)|ϕex
ϕst

(2.A.5)

Equation 2.A.5 represents the mean cutting forces according to the CL model. Cutting
torque T is defined in an instantaneous fashion through equation 2.A.6:

T (t) =
D
2

N

∑
j=1

Ft, j(t) (2.A.6)

Cutting power P is instead (eq. 2.A.7):

P(t) = 2π nT (t) (2.A.7)

2.B Mathematical computations: instantaneous forces terms

Equation 2.11 included three terms that were not expanded in the body of the chapter,
for clarity reasons. The scope of this appendix is to provide the mathematical expres-
sions and derivations of such terms. The terms that are needed for the computation of
the instantaneous forces in equation 2.11 are Aint(ϕ j), Aext(ϕ j) and l(ϕ j). Since the
formulation does not depend on the cutter index j, such index will be omitted in the
next formulas.

2.B.1 Undeformed internal chip area Aint(ϕ)

This term corresponds to the area underneath the previous cutter position graph in
radial-axial chart. The reference graph is shown in figure 2.B.1. The two cases repre-
sent the condition whether a ≤ z3 (fig. 2.B.1a) or a > z3 (fig. 2.B.1b). This distinction
is needed since it determines whether the second-phase of the cutter is engaged or not.
In case a ≤ z3, Aint(ϕ) can be expressed as a sum of areas of triangles and trapezoids:

Aint(ϕ) =



0 if 0 ≤ ϕ ≤ ϕ2,int

1
2
[rϕ (ϕ)−r2+h(ϕ)]

2

r3−r2
z3 if ϕ2,int < ϕ ≤ ϕa,int

1
2 a
[
ra,int(ϕ)− r2 +h(ϕ)

]
+a
[
rϕ (ϕ)− ra,int(ϕ)

]
if ϕa,int < ϕ ≤ ϕa,ext

1
2 a
[
ra,int(ϕ)− r2 +h(ϕ)

]
+a
[
ra,ext − ra,int(ϕ)

]
if ϕa,ext < ϕ ≤ π

0 if π < ϕ < 2π

(2.B.1)
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Chapter 2. Tool wear: analytical mechanistic force model development

(a) Case a ≤ z3. (b) Case a > z3.

Figure 2.B.1: Representation of the main quantities defining the chip shape. The red area is Aint(ϕ);
violet area is the superimposition of Aint(ϕ) and Aext(ϕ); green solid line is l(ϕ); red dashed line is
rϕ(ϕ) and red solid line is rϕ(ϕ) = ra,ext ; blue dashed line represents the axial depth of cut limit.

Instead, if a > z3, the formulation becomes:

Aint(ϕ) =



0, if 0 ≤ ϕ ≤ ϕ2,int

1
2
[rϕ (ϕ)−r2+h(ϕ)]

2

r3−r2
z3, if ϕ2,int < ϕ ≤ ϕ3,int

1
2 (r3 − r2)z3 +

[
rϕ (ϕ)− r3 +h(ϕ)

]
z3 +

1
2
[
rϕ (ϕ)− r3 +h(ϕ)

]2 z4−z3
r4−r3

, if ϕ3,int < ϕ ≤ ϕa,int

1
2 (r3 − r2)z3 +

1
2 (z3 +a)

[
ra,int(ϕ)− r3 +h(ϕ)

]
+a
[
rϕ (ϕ)− ra,int(ϕ)

]
, if ϕa,int < ϕ ≤ ϕa,ext

1
2 (r3 − r2)z3 +

1
2 (z3 +a)

[
ra,int(ϕ)− r3 +h(ϕ)

]
+a
[
ra,ext − ra,int(ϕ)

]
, if ϕa,ext < ϕ ≤ π

0, if π < ϕ < 2π

(2.B.2)

2.B.2 Undeformed external chip area Aext(ϕ)

The same cases are also valid for Aext(ϕ), which represents the area under the graph of
the current insert cutting edge in the radial-axial chart. Figures 2.B.1a and 2.B.1b are
again the references. In case a ≤ z3, Aext(ϕ) is:

Aext(ϕ) =



0, if 0 ≤ ϕ ≤ ϕ2,ext

1
2
[rϕ (ϕ)−r2]

2

r3−r2
z3, if ϕ2,ext < ϕ ≤ ϕa,ext

1
2 a(ra,ext − r2), if ϕa,ext < ϕ ≤ π

0, if π < ϕ < 2π

(2.B.3)

Instead, if a > z3, the formulation becomes:

Aext(ϕ) =



0, if 0 ≤ ϕ ≤ ϕ2,ext

1
2
[rϕ (ϕ)−r2]

2

r3−r2
z3, if ϕ2,ext < ϕ ≤ ϕ3,ext

1
2 z3 (r3 − r2)+ z3

[
rϕ (ϕ)− r3

]
+ 1

2 (z4 − z3)
[rϕ (ϕ)−r3]

2

r4−r3
, if ϕ3,ext < ϕ ≤ ϕa,ext

1
2 z3 (r3 − r2)+

1
2 (z3 +a)(ra,ext − r3), if ϕa,ext < ϕ ≤ π

0, if π < ϕ < 2π

(2.B.4)
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2.B. Mathematical computations: instantaneous forces terms

2.B.3 Edge contact length l(ϕ)

This term represents the length of the cutting edge which is involved in the cut of the
chip. It is the length of the engaged part of the actual cutter. The same computations
as before are done also for l(ϕ) (fig. 2.B.1a and 2.B.1b). Here, a supplementary term
is added to the integral, which is the minor cutting edge contribution. The resultant
formulas for a ≤ z3 are:

l(ϕ) =



0, if 0 ≤ ϕ ≤ ϕ2,int

rϕ (ϕ)− r2 +h(ϕ), if ϕ2,int ≤ ϕ ≤ ϕ2,ext

h(ϕ)+
[
rϕ (ϕ)− r2

]√
1+
(

z3
r3−r2

)2
, if ϕ2,ext ≤ ϕ ≤ ϕa,ext

h(ϕ)+
√
(ra,ext − r2)2 +a2, if ϕa,ext ≤ ϕ ≤ π

0, if π < ϕ < 2π

(2.B.5)

In case a > z3:

l(ϕ) =



0, if 0 ≤ ϕ ≤ ϕ2,int

rϕ (ϕ)− r2 +h(ϕ), if ϕ2,int ≤ ϕ ≤ ϕ2,ext

h(ϕ)+
[
rϕ (ϕ)− r2

]√
1+
(

z3
r3−r2

)2
, if ϕ2,ext ≤ ϕ ≤ ϕ3,ext

h(ϕ)+
√

(r3 − r2)2 + z2
3 +
[
rϕ (ϕ)− r3

]√
1+
(

z4−z3
r4−r3

)2
, if ϕ3,ext ≤ ϕ ≤ ϕa,ext

h(ϕ)+
√

(r3 − r2)2 + z2
3 +
√

(ra,ext − r3)2 +(a− z3)2, if ϕa,ext ≤ ϕ ≤ π

0, if π < ϕ < 2π

(2.B.6)
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Chapter 2. Tool wear: analytical mechanistic force model development

2.B.4 Torque area equivalent radius r∗A(ϕ)

Furthermore, two more quantities need to be expressed for equation 2.15. The first one
is r∗A(ϕ). Starting with case a ≤ z3:

r∗A,int(ϕ) =



0, if 0 ≤ ϕ ≤ ϕ2,int

r2 −h(ϕ)+
2[rϕ (ϕ)−r2+h(ϕ)]

3 , if ϕ2,int < ϕ ≤ ϕa,int

1
Aint (ϕ)

{[
r2 −h(ϕ)+ 2(ra,int (ϕ)−r2+h(ϕ))

3

]
a[ra,int (ϕ)−r2+h(ϕ)]

2 +

+
[rϕ (ϕ)+ra,int (ϕ)]a[rϕ (ϕ)−ra,int (ϕ)]

2

}
,

if ϕa,int < ϕ ≤ ϕa,ext

1
Aint (ϕ)

{[
r2 −h(ϕ)+ 2(ra,int (ϕ)−r2+h(ϕ))

3

]
a[ra,int (ϕ)−r2+h(ϕ)]

2 +

+
[ra,ext+ra,int (ϕ)]a[ra,ext−ra,int (ϕ)]

2

}
,

if ϕa,ext < ϕ ≤ π

0, if π < ϕ < 2π

r∗A,ext(ϕ) =



0, if 0 ≤ ϕ ≤ ϕ2,ext

r2 +
2[rϕ (ϕ)−r2]

3 , if ϕ2,ext < ϕ ≤ ϕa,ext

r2 +
2·(ra,ext−r2)

3 , if ϕa,ext < ϕ ≤ π

0, if pi < ϕ < 2π

r∗A(ϕ) =


r∗A,int (ϕ)·Aint (ϕ)−r∗A,ext (ϕ)·Aext (ϕ)

Aint (ϕ)−Aext (ϕ)
, if Aint(ϕ)−Aext(ϕ) ̸= 0

0, if Aint(ϕ)−Aext(ϕ) = 0

(2.B.7)
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2.B. Mathematical computations: instantaneous forces terms

While in case a > z3, it is defined as follows:

r∗A,int(ϕ) =



0, if 0 ≤ ϕ ≤ ϕ2,int

r2 −h(ϕ)+
2[rϕ (ϕ)−r2+h(ϕ)]

3 , if ϕ2,int < ϕ ≤ ϕ3,int

1
Aint (ϕ)

{[
r2 −h(ϕ)+ 2(r3−r2)

3

]
(r3−r2)z3

2 +
[r3−h(ϕ)+rϕ (ϕ)][rϕ (ϕ)−r3+h(ϕ)]z3

2 +

+

[
r3 −h(ϕ)+

2(rϕ (ϕ)−r3+h(ϕ))
3

]
(z4−z3)[rϕ (ϕ)−r3+h(ϕ)]

2

2(r4−r3)

}
,

if ϕ3,int < ϕ ≤ ϕa,int

1
Aint (ϕ)

{[
r2 −h(ϕ)+ 2(r3−r2)

3

]
(r3−r2)z3

2 +
[r3−h(ϕ)+ra,int (ϕ)][ra,int (ϕ)−r3+h(ϕ)]z3

2 +

+
[
r3 −h(ϕ)+ 2(ra,int (ϕ)−r3+h(ϕ))

3

]
(a−z3)[ra,int (ϕ)−r3+h(ϕ)]

2 +

+
[ra,int (ϕ)+rϕ (ϕ)][rϕ (ϕ)−ra,int (ϕ)]a

2

}
,

if ϕa,int < ϕ ≤ ϕa,ext

1
Aint (ϕ)

{[
r2 −h(ϕ)+ 2(r3−r2)

3

]
(r3−r2)z3

2 +
[r3−h(ϕ)+ra,int (ϕ)][ra,int (ϕ)−r3+h(ϕ)]z3

2 +

+
[
r3 −h(ϕ)+ 2(ra,int (ϕ)−r3+h(ϕ))

3

]
(a−z3)[ra,int (ϕ)−r3+h(ϕ)]

2 +

+
[ra,int (ϕ)+ra,ext ][ra,ext−ra,int (ϕ)]a

2

}
,

if ϕa,ext < ϕ ≤ π

0, if π < ϕ < 2π

r∗A,ext(ϕ) =



0, if 0 ≤ ϕ ≤ ϕ2,ext

r2 +
2[rϕ (ϕ)−r2]

3 , if ϕ2,ext < ϕ ≤ ϕ3,ext

1
Aext (ϕ)

{[
r2 +

2(r3−r2)
3

][
z3(r3−r2)

2

]
+

z3[rϕ (ϕ)+r3][rϕ (ϕ)−r3]
2 +

+

[
r3 +

2(rϕ (ϕ)−r3)
3

]
(z4−z3)[rϕ (ϕ)−r3]

2

2(r4−r3)

}
,

if ϕ3,ext < ϕ ≤ ϕa,ext

1
Aext (ϕ)

{[
r2 +

2(r3−r2)
3

][
z3(r3−r2)

2

]
+

z3(ra,ext+r3)(ra,ext−r3)
2 +

+
[
r3 +

2(ra,ext−r3)
3

]
(z4−z3)(ra,ext−r3)

2

2(r4−r3)

}
,

if ϕa,ext < ϕ ≤ π

0, if π < ϕ < 2π

r∗A(ϕ) =


r∗A,int (ϕ)·Aint (ϕ)−r∗A,ext (ϕ)·Aext (ϕ)

Aint (ϕ)−Aext (ϕ)
, if Aint(ϕ)−Aext(ϕ) ̸= 0

0, if Aint(ϕ)−Aext(ϕ) = 0

(2.B.8)
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2.B.5 Torque edge contact length equivalent radius r∗l (ϕ)

The second term that needs to be expressed for equation 2.15 is r∗l (ϕ). In case a ≤ z3,
this term is equal to:

r∗l (ϕ) =



0, if 0 ≤ ϕ ≤ ϕ2,int

rϕ (ϕ)+r2−h(ϕ)
2 , if ϕ2,int ≤ ϕ ≤ ϕ2,ext

1
l(ϕ)

{[
r2 − h(ϕ)

2

]
h(ϕ)+ [rϕ (ϕ)+r2][rϕ (ϕ)−r2]

2

√
1+
(

z3
r3−r2

)2
}
, if ϕ2,ext ≤ ϕ ≤ ϕa,ext

1
l(ϕ)

{[
r2 − h(ϕ)

2

]
h(ϕ)+ ra,ext+r2

2

√
a2 +(ra,ext − r2)2

}
, if ϕa,ext ≤ ϕ ≤ π

0, if π < ϕ < 2π

(2.B.9)

In case a > z3:

r∗l (ϕ) =



0, if 0 ≤ ϕ ≤ ϕ2,int

rϕ (ϕ)+r2−h(ϕ)
2 , if ϕ2,int ≤ ϕ ≤ ϕ2,ext

1
l(ϕ)

{[
r2 − h(ϕ)

2

]
h(ϕ)+ [rϕ (ϕ)+r2][rϕ (ϕ)−r2]

2

√
1+
(

z3
r3−r2

)2
}
, if ϕ2,ext ≤ ϕ ≤ ϕ3,ext

1
l(ϕ)

{[
r2 − h(ϕ)

2

]
h(ϕ)+ (r3+r2)(r3−r2)

2

√
1+
(

z3
r3−r2

)2
+

+
[rϕ (ϕ)+r3][rϕ (ϕ)−r3]

2

√
1+
(

z4−z3
r4−r3

)2
}
,

if ϕ3,ext ≤ ϕ ≤ ϕa,ext

1
l(ϕ)

{[
r2 − h(ϕ)

2

]
h(ϕ)+ (r3+r2)(r3−r2)

2

√
1+
(

z3
r3−r2

)2
+

+
(ra,ext+r3)(ra,ext−r3)

2

√
1+
(

z4−z3
r4−r3

)2
}
,

if ϕa,ext ≤ ϕ ≤ π

0, if π < ϕ < 2π

(2.B.10)

2.C Mathematical computations: mean forces terms

Equation 2.13 presented ten terms which were not presented due to space issues. The
goal of this appendix is to present the formulation of each term. Actually, only a subset
of these terms must be defined, in fact some relationships can be found:

a11=
∫ 2π

0 [Aint(ϕ)−Aext(ϕ)]cosϕ dϕ a12 =
∫ 2π

0 l(ϕ)cosϕ dϕ

a13 =
∫ 2π

0 [Aint(ϕ)−Aext(ϕ)]sinϕ dϕ a14 =
∫ 2π

0 l(ϕ)sinϕ dϕ

a21 =
∫ 2π

0 [Aint(ϕ)−Aext(ϕ)]sinϕ dϕ = a13 a22 =
∫ 2π

0 l(ϕ)sinϕ dϕ = a14 (2.C.1)

a23 =
∫ 2π

0 [Aint(ϕ)−Aext(ϕ)]cosϕ dϕ = a11 a24 =
∫ 2π

0 l(ϕ)cosϕ dϕ = a12

a35 =
∫ 2π

0 [Aint(ϕ)−Aext(ϕ)]dϕ a36 =
∫ 2π

0 l(ϕ)dϕ

This means that only six terms are independent and need to be computed. Each term
was computed for the two cases a ≤ z3 and a > z3.
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2.C.1 The case of a ≤ z3

For the sake of clarity, the derivation was presented just for the first terms. For the
area terms, the integral was split into two parts, one related to the internal profile and
one to the external profile. These terms were referred with ado,A and ado,B respectively.
Starting from a11, substituting equations 2.B.1 and 2.B.3 in the integral and splitting it,
it follows:

a11,A =
∫

ϕa,int

ϕ2,int

[
rϕ (ϕ)− r2 + csinϕ

]2 z3 cosϕ

2(r3 − r2)
dϕ +

∫
ϕa,ext

ϕa,int

{
a
[
ra,int(ϕ)− r2 + csinϕ

]
2

+

+a
[
rϕ (ϕ)− ra,int(ϕ)

]}
cosϕ dϕ +

∫
π

ϕa,ext

{
a
[
ra,int(ϕ)− r2 + csinϕ

]
2

+a
[
ra,ext − ra,int(ϕ)

]}
cosϕ dϕ =

=

{
z3 (b− rnom)

2

2(r3 − r2)
ln

1+ sinϕ

cosϕ
+

z3 r2
2 sinϕ

2(r3 − r2)
+

z3 c2 sin3
ϕ

6(r3 − r2)
− z3 r2 (b− rnom)ϕ

r3 − r2
+

− z3 c(b− rnom)cosϕ

r3 − r2
− z3 r2 csin2

ϕ

2(r3 − r2)

}∣∣∣∣ϕa,int

ϕ2,int

+

{
a(ra,ext − r2)sinϕ

2
+(b− rnom)aϕ+

−ara,ext sinϕ +
casin2

ϕ

2

}∣∣∣∣ϕa,ext

ϕa,int

+

{
a(ra,ext − r2)sinϕ

2
+

acsin2
ϕ

2

}∣∣∣∣π
ϕa,ext

a11,B =
∫

ϕa,ext

ϕ2,ext

[
rϕ (ϕ)− r2

]2 z3 cosϕ

2(r3 − r2)
dϕ +

∫
π

ϕa,ext

ra,ext acosϕ

2
dϕ =

=

{
z3 (b− rnom)

2

2(r3 − r2)
ln

1+ sinϕ

cosϕ
+

r2
2 z3 sinϕ

2(r3 − r2)
− r2 z3 (b− rnom)ϕ

r3 − r2

}∣∣∣∣ϕa,ext

ϕ2,ext

+

+

{
(ra,ext − r2) asinϕ

2

}∣∣∣∣π
ϕa,ext

a11 = a23 = a11,A −a11,B
(2.C.2)

The second term is instead solved in the following:

a12 =
∫

ϕ2,ext

ϕ2,int

[
rϕ (ϕ)− r2 + csinϕ

]
cosϕ dϕ +

∫
ϕa,ext

ϕ2,ext

{
csinϕ +

[
rϕ (ϕ)− r2

]√
1+
(

z3

r3 − r2

)2}
cosϕ dϕ+

+
∫

π

ϕa,ext

[
csinϕ +

√
(ra,ext − r2)

2 +a2
]

cosϕ dϕ =

=

{
(b− rnom)ϕ − r2 sinϕ +

csin2
ϕ

2

}∣∣∣∣ϕ2,ext

ϕ2,int

+

{
csin2

ϕ

2
+(b− rnom)

√
1+
(

z3

r3 − r2

)2
ϕ+

− r2

√
1+
(

z3

r3 − r2

)2
sinϕ

}∣∣∣∣ϕa,ext

ϕ2,ext

+

{
csin2

ϕ

2
+

√
(ra,ext − r2)

2 +a2 sinϕ

}∣∣∣∣π
ϕa,ext

a12 = a24
(2.C.3)
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The third term is expressed as follows:

a13,A =

{
z3 (b− rnom)

2

2(r3 − r2)cosϕ
−

z3 r2
2 cosϕ

2(r3 − r2)
+

c2 z3 cosϕ
(
cos2 ϕ −3

)
6(r3 − r2)

+
z3 r2 (b− rnom) lncosϕ

r3 − r2
+

− z3 cr2

r3 − r2

(
ϕ

2
− sin2ϕ

4

)
+

z3 c(b− rnom)

r3 − r2

[
ln tan

(
ϕ

2
+

π

4

)
− sinϕ

]}∣∣∣∣ϕa,int

ϕ2,int

+

{
−

a(ra,ext − r2)cosϕ

2
+

−a(b− rnom) lncosϕ +ara,ext cosϕ +ac
(

ϕ

2
− sin2ϕ

4

)}∣∣∣∣ϕa,ext

ϕa,int

+

{
−

a(ra,ext − r2)cosϕ

2
+

+ac
(

ϕ

2
− sin2ϕ

4

)}∣∣∣∣π
ϕa,ext

a13,B =

{
z3 (b− rnom)

2

2(r3 − r2)cosϕ
−

r2
2 z3 cosϕ

2(r3 − r2)
+

r2 z3 (b− rnom) lncosϕ

r3 − r2

}∣∣∣∣ϕa,ext

ϕ2,ext

+

{
−

(ra,ext − r2)acosϕ

2

}∣∣∣∣π
ϕa,ext

a13 = a21 = a13,A −a13,B
(2.C.4)

The fourth term is then presented:

a14 =

{
− (b− rnom) lncosϕ + r2 cosϕ + c

(
ϕ

2
− sin2ϕ

4

)}∣∣∣∣ϕ2,ext

ϕ2,int

+

{
c
(

ϕ

2
− sin2ϕ

4

)
+

− (b− rnom)

√
1+
(

z3

r3 − r2

)2
lncosϕ + r2

√
1+
(

z3

r3 − r2

)2
cosϕ

}∣∣∣∣ϕa,ext

ϕ2,ext

+

{
c
(

ϕ

2
− sin2ϕ

4

)
+

−
√

(ra,ext − r2)
2 +a2 cosϕ

}∣∣∣∣π
ϕa,ext

a14 = a22

(2.C.5)

The fifth term is reported in the following:

a35,A =

{
z3

2(r3 − r2)

[
(b− rnom)

2 tanϕ + r2
2ϕ +

c2ϕ

2
− c2 sin2ϕ

4
−2r2 (b− rnom) ln(tanϕ + secϕ)+

−2c(b− rnom) lncosϕ +2r2 ccosϕ

]}∣∣∣∣ϕa,int

ϕ2,int

+

{
a(ra,ext − r2)ϕ

2
+a(b− rnom) ln(tanϕ + secϕ)+

−ara,extϕ −accosϕ

}∣∣∣∣ϕa,ext

ϕa,int

+

{
a(ra,ext − r2)ϕ

2
−accosϕ

}∣∣∣∣π
ϕa,ext

a35,B =

{
z3

2(r3 − r2)

[
(b− rnom)

2 tanϕ + r2
2ϕ −2r2 (b− rrnom) ln(tanϕ + secϕ)

]}∣∣∣∣ϕa,ext

ϕ2,ext

+

+

{
(ra,ext − r2)aϕ

2

}∣∣∣∣π
ϕa,ext

a35 = a35,A −a35,B

(2.C.6)
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The last term is expressed as in the following:

a36 =

{
(b− rnom) ln(tanϕ + secϕ)− r2ϕ − ccosϕ

}∣∣∣∣ϕ2,ext

ϕ2,int

+

{
− ccosϕ+

+

√
1+
(

z3

r3 − r2

)2 [
(b− rnom) ln(tanϕ + secϕ)− r2ϕ

]}∣∣∣∣ϕa,ext

ϕ2,ext

+

{
− ccosϕ+

+

√
(ra,ext − r2)

2 +a2 ϕ

}∣∣∣∣π
ϕa,ext

(2.C.7)

2.C.2 The case of a > z3

All the computations performed for the a ≤ z3 case were carried out using the defini-
tions of Aint(ϕ), Aext(ϕ) and l(ϕ) in the a > z3 case, producing different formulations
for the ten terms of equation 2.13. Starting from a11, substituting equations 2.B.2 and
2.B.4 in the integral and splitting it, it follows:

a11,A =

{
z3 (b− rnom)

2

2(r3 − r2)
ln

1+ sinϕ

cosϕ
+

r2
2 z3 sinϕ

2(r3 − r2)
+

z3 c2 sin3
ϕ

6(r3 − r2)
− r2 (b− rnom) z3ϕ

r3 − r2
+

− z3 c(b− rnom)cosϕ

r3 − r2
− z3 r2 csin2

ϕ

2(r3 − r2)

}∣∣∣∣ϕ3,int

ϕ2,int

+

{
(r3 − r2)z3 sinϕ

2
+ z3 (b− rnom)ϕ+

− z3 r3 sinϕ +
cz3 sin2

ϕ

2
+

(z4 − z3)(b− rnom)
2

2(r4 − r3)
ln

1+ sinϕ

cosϕ
+

r2
3 (z4 − z3)sinϕ

2(r4 − r3)
+

+
(z4 − z3)c2 sin3

ϕ

6(r4 − r3)
− (z4 − z3)(b− rnom)r3ϕ

r4 − r3
− r3 c(z4 − z3)sin2

ϕ

2(r4 − r3)
+

− c(b− rnom)(z4 − z3)cosϕ

r4 − r3

}∣∣∣∣ϕa,int

ϕ3,int

+

{
(r3 − r2)z3 sinϕ

2
+

(z3 +a)(ra,ext − r3)sinϕ

2
+

+a(b− rnom)ϕ −ara,ext sinϕ +
acsin2

ϕ

2

}∣∣∣∣ϕa,ext

ϕa,int

+

{
(r3 − r2)z3 sinϕ

2
+

+
(z3 +a)(ra,ext − r3)sinϕ

2
+

acsin2
ϕ

2

}∣∣∣∣π
ϕa,ext

a11,B =

{
z3 (b− rnom)

2

2(r3 − r2)
ln

1+ sinϕ

cosϕ
+

z3 r2
2 sinϕ

2(r3 − r2)
− z3 (b− rnom)r2ϕ

r3 − r2

}∣∣∣∣ϕ3,ext

ϕ2,ext

+

{
z3 (r3 − r2)sinϕ

2
+

+ z3 (b− rnom)ϕ − z3 r3 sinϕ +
(z4 − z3)(b− rnom)

2

2(r4 − r3)
ln

1+ sinϕ

cosϕ
+

(z4 − z3)r2
3 sinϕ

2(r4 − r3)
+

− (z4 − z3)(b− rnom)r3ϕ

r4 − r3

}∣∣∣∣ϕa,ext

ϕ3,ext

+

{[
(r3 − r2)z3

2
+

(z3 +a)(ra,ext − r3)

2

]
sinϕ

}∣∣∣∣π
ϕa,ext

a11 = a23 = a11,A −a11,B

(2.C.8)
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The term a12 is then expressed as follows:

a12 =

{
(b− rnom)ϕ − r2 sinϕ +

csin2
ϕ

2

}∣∣∣∣ϕ2,ext

ϕ2,int

+

{
csin2

ϕ

2
+(b− rnom)

√
1+
(

z3

r3 − r2

)2
ϕ+

− r2

√
1+
(

z3

r3 − r2

)2
sinϕ

}∣∣∣∣ϕ3,ext

ϕ2,ext

+

{
csin2

ϕ

2
+

√
z2

3 +(r3 − r2)
2 sinϕ+

+(b− rnom)

√
1+
(

z4 − z3

r4 − r3

)2
ϕ − r3

√
1+
(

z4 − z3

r4 − r3

)2
sinϕ

}∣∣∣∣ϕa,ext

ϕ3,ext

+

{
csin2

ϕ

2
+

+

√
z2

3 +(r3 − r2)
2 sinϕ +

√
(ra,ext − r3)

2 +(a− z3)
2 sinϕ

}∣∣∣∣π
ϕa,ext

a12 = a24

(2.C.9)

The third term is presented in the following:

a13,A =

{
z3 (b− rnom)

2

2(r3 − r2)cosϕ
−

z3 r2
2 cosϕ

2(r3 − r2)
+

z3 c2 cosϕ
(
cos2 ϕ −3

)
6(r3 − r2)

+
z3 r2 (b− rnom) lncosϕ

r3 − r2
+

− z3 r2 c
r3 − r2

(
ϕ

2
− sin2ϕ

4

)
+

z3 (b− rnom) c
r3 − r2

[
ln tan

(
ϕ

2
+

π

4

)
− sinϕ

]}∣∣∣∣ϕ3,int

ϕ2,int

+

{
− (r3 − r2) z3 cosϕ

2
+

− z3 (b− rnom) lncosϕ + z3 r3 cosϕ + cz3

(
ϕ

2
− sin2ϕ

4

)
+

(z4 − z3)(b− rnom)
2

2(r4 − r3)cosϕ
+

−
(z4 − z3) r2

3 cosϕ

2(r4 − r3)
+

(z4 − z3)c2 cosϕ
(
cos2 ϕ −3

)
6(r4 − r3)

+
(z4 − z3)(b− rnom)r3 lncosϕ

r4 − r3
+

+
(z4 − z3)(b− rnom)c

r4 − r3

[
ln tan

(
ϕ

2
+

π

4

)
− sinϕ

]
− r3 c(z4 − z3)

r4 − r3

(
ϕ

2
− sin2ϕ

4

)}∣∣∣∣ϕa,int

ϕ3,int

+

+

{
− (r3 − r2) z3 cosϕ

2
−

(z3 +a)(ra,ext − r3)cosϕ

2
−a(b− rnom) lncosϕ+

+ara,ext cosϕ +ac
(

ϕ

2
− sin2ϕ

4

)}∣∣∣∣ϕa,ext

ϕa,int

+

{
− (r3 − r2) z3 cosϕ

2
+

−
(z3 +a)(ra,ext − r3)cosϕ

2
+ac

(
ϕ

2
− sin2ϕ

4

)}∣∣∣∣π
ϕa,ext

a13,B =

{
z3 (b− rnom)

2

2(r3 − r2)cosϕ
−

z3 r2
2 cosϕ

2(r3 − r2)
+

z3 (b− rnom)r2 lncosϕ

r3 − r2

}∣∣∣∣ϕ3,ext

ϕ2,ext

+

{
− z3 (r3 − r2)cosϕ

2
+

− z3 (b− rnom) lncosϕ + z3 r3 cosϕ +
(z4 − z3)(b− rnom)

2

2(r4 − r3)cosϕ
−

(z4 − z3)r2
3 cosϕ

2(r4 − r3)
+

+
(z4 − z3)(b− rnom)r3 lncosϕ

r4 − r3

}∣∣∣∣ϕa,ext

ϕ3,ext

+

{
−
[
(r3 − r2) z3

2
+

(z3 +a)(ra,ext − r3)

2

]
cosϕ

}∣∣∣∣π
ϕa,ext

a13 = a21 = a13,A −a13,B
(2.C.10)
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The fourth term is then shown:

a14 =

{
− (b− rnom) lncosϕ + r2 cosϕ + c

(
ϕ

2
− sin2ϕ

4

)}∣∣∣∣ϕ2,ext

ϕ2,int

+

{
c
(

ϕ

2
− sin2ϕ

4

)
+

− (b− rnom)

√
1+
(

z3

r3 − r2

)2
lncosϕ + r2

√
1+
(

z3

r3 − r2

)2
cosϕ

}∣∣∣∣ϕ3,ext

ϕ2,ext

+

{
c
(

ϕ

2
− sin2ϕ

4

)
+

−
√

z2
3 +(r3 − r2)

2 cosϕ − (b− rnom)

√
1+
(

z4 − z3

r4 − r3

)2
lncosϕ + r3

√
1+
(

z4 − z3

r4 − r3

)2
cosϕ

}∣∣∣∣ϕa,ext

ϕ3,ext

+

+

{
c
(

ϕ

2
− sin2ϕ

4

)
−
√

z2
3 +(r3 − r2)

2 cosϕ −
√

(ra,ext − r3)
2 +(a− z3)

2 cosϕ

}∣∣∣∣π
ϕa,ext

a14 = a22
(2.C.11)

The fifth term is reported in the following:

a35,A =

{
z3

2(r3 − r2)

[
(b− rnom)

2 tanϕ + r2
2ϕ +

c2ϕ

2
− c2 sin2ϕ

4
−2r2 (b− rnom) ln(tanϕ + secϕ)+

−2(b− rnom)c lncosϕ +2r2 ccosϕ

]}∣∣∣∣ϕ3,int

ϕ2,int

+

{
z3 (r3 − r2)ϕ

2
+(b− rnom)z3 ln(tanϕ + secϕ)+

− r3 z3ϕ − cz3 cosϕ +
z4 − z3

2(r4 − r3)

[
(b− rnom)

2 tanϕ + r2
3ϕ +

c2

2
− c2 sin2ϕ

4
+

−2(b− rnom)r3 ln(tanϕ + secϕ)+2r3 ccosϕ −2(b− rnom)c lncosϕ

]}∣∣∣∣ϕa,int

ϕ3,int

+

+

{
(r3 − r2)z3ϕ

2
+

(z3 +a)(ra,ext − r3)ϕ

2
+a(b− rnom) ln(tanϕ + secϕ)−ara,extϕ+

−accosϕ

}∣∣∣∣ϕa,ext

ϕa,int

+

{
(r3 − r2)z3ϕ

2
+

(z3 +a)(ra,ext − r3)ϕ

2
−accosϕ

}∣∣∣∣π
ϕa,ext

a35,B =

{
z3

2(r3 − r2)

[
(b− rnom)

2 tanϕ + r2
2ϕ −2r2 (b− rnom) ln(tanϕ + secϕ)

]}∣∣∣∣ϕ3,ext

ϕ2,ext

+

+

{
z3 (r3 − r2)ϕ

2
+ z3 (b− rnom) ln(tanϕ + secϕ)− r3 z3ϕ +

z4 − z3
2(r4 − r3)

[
(b− rnom)

2 tanϕ+

+ r2
3ϕ −2(b− rnom)r3 ln(tanϕ + secϕ)

]}∣∣∣∣ϕa,ext

ϕ3,ext

+

{
(r3 − r2)z3ϕ

2
+

(z3 +a)(ra,ext − r3)ϕ

2

}∣∣∣∣π
ϕa,ext

a35 = a35,A −a35,B
(2.C.12)

The last term is instead equal to:

a36 =

{
(b− rnom) ln(tanϕ + secϕ)− r2ϕ − ccosϕ

}∣∣∣∣ϕ2,ext

ϕ2,int

+

{
− ccosϕ+

+

√
1+
(

z3

r3 − r2

)2
[(b− rnom) ln(tanϕ + secϕ)− r2ϕ]

}∣∣∣∣ϕ3,ext

ϕ2,ext

+

{
− ccosϕ +

√
z2

3 +(r3 − r2)
2
ϕ+

+

√
1+
(

z4 − z3

r4 − r3

)2
[(b− rnom) ln(tanϕ + secϕ)− r3]

}∣∣∣∣ϕa,ext

ϕ3,ext

+

{
− ccosϕ +

√
z2

3 +(r3 − r2)
2

ϕ+

+

√
(a− z3)

2 +(ra,ext − r3)
2

ϕ

}∣∣∣∣π
ϕa,ext

(2.C.13)
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CHAPTER3
Tool wear: real-time cutting tool monitoring

In the context of prognostics and health management, this chapter describes an ad-
vanced real-time monitoring strategy for cutting tools. Based on the model developed
in the previous chapter, a strategy for the real-time estimation of specific force coeffi-
cients is conceived. Their evolution in time allows for a phenomenological detection of
out-of-control cutting conditions, related to tool wear. Identified specific force coeffi-
cients may also be integrated as features for cutting tool prognosis.

3.1 Introduction

The complexity of manufacturing systems has been increasing in order to accomplish
the high reliability and safety that industry demands [162]. Furthermore, plants require
high-quality machining and high-quality tools for automation. The development of
condition monitoring solutions for machine tool components and processes became
means to reach these goals [2]. Thus, research has been focusing on the study of cutting
tool condition monitoring (TCM) and prognostics approaches [14]. This was related to
the fact that the cutting tool provides large cost saving possibilities; up to 40% could
be achieved through the monitoring of its health [185]. Furthermore, about 20% of
the downtimes of machine tools was attributed to tool failures, resulting in reduced
productivity and economic losses [121, 227]. TCM strategies represent also transition
means towards sustainable manufacturing. Tool wear assessment and prediction can be
an important resource to feed process parameter optimisation algorithms [12, 119, 120,
229]. In fact, a proper optimisation of cutting parameters during the cut can extend
their remaining useful life, reducing the amount of waste materials [233, 236].

Basically, two strategies can be adopted for TCM, either based on direct measure-
ments or indirect ones: the first one, where the assessment of the tool is carried out
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Table 3.1: Commercial TCM tools by sensor type [102].

Physical quantity Suppliers
(sensor type) Artis Brankamp Kistler Montronix Nordmann Prometec TMAC

Power X X X X X X
Torque X X X
Strain X X X X X
Distance/displacement X X
1-3 axis force sensor X X X X X
Measuring plate X X X
Acoustic emission X X X X X X
AE fluid sensor X X
Rotating AE sensor X X X
Vibration and ultrasound X X X X
Camera X X
Laser X X

by measurements of a wear characteristics (e.g. flank wear), whereas the second one,
where quantities of potential interest are measured from the machine tool, such as cut-
ting forces, spindle torque, etc. [121]. Despite the first methods provide accurate as-
sessments of the tool condition (based on vision systems or proximity measurements,
[240]), they are limited in application since it is necessary to quit the machining opera-
tions and in most of the cases the measurements are time consuming [121, 125]. Thus,
in the recent years, the main contributions have regarded indirect TCM methods, due
to their in-process applicability. Most of the indirect TCM applications exploit cutting
forces (and related quantities, [228]), vibration measurements [34] or acoustic emission
signals [208, 211, 236] in order to track the condition of the tool [119]. Many different
machining applications have been investigated: drilling [105], turning [34, 125] and
milling [109, 148, 185, 227]. Commercial tools are available for TCM, exploiting indi-
rect measurements. Table 3.1 shows some important commercial TCM solutions and
their mapping with respect to the used sensors [102]. The most common solutions are
those relying upon cutting forces related quantities, acoustic emissions and vibrations.
In table 3.2, commercial solutions (Artis, Brankamp, Kistler, Montronix, Nordmann,
Prometec and TMAC1) are mapped upon the monitoring strategies [102]. Six strate-
gies are available for commercial tools. Simple fixed limits are constant thresholds
applied to the monitored variable; when overcome they trigger an alarm. Time de-
fined limits are similar to fixed limits, but they assume multiple values depending on
specific regions of a cutting operation. Part signature imposes thresholds which are
functions of time, representative of specific components cutting. Pattern recognition
stores particular signals shapes, when tool breakage has occurred; it continuously com-
pares current signal profile with stored breakage profiles. Wear estimator estimates the
flank wear in turning based on the relation of the three cutting forces components. Dy-
namic limits apply local thresholds following current signal trends, acting as a fixed
thresholding system when abrupt signal changes occur (tool breakage). Cutting forces
are typically measured through dynamometric plates, which are not affordable for an
industrial implementation [14]. To avoid the use of dynamometers, indirect methods
for cutting forces estimation [2] and novel integrated sensors [225] were developed

1Caron Engineering
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Table 3.2: Commercial TCM tools by monitoring strategy [102].

Strategy
Suppliers

Artis Brankamp Kistler Montronix Nordmann Prometec TMAC

Simple fixed limits X X X X
Time defined limits X X X
Part signature X X X X X
Pattern recognition X
Wear estimator X
Dynamic limits X

and proposed. In order to extract wear related information, several feature extraction
strategies can be applied to the measurements from time (e.g. mean, skewness and root
mean square, [132]), frequency (e.g. maximum amplitude and average amplitude) or
time-frequency domains (e.g. energy of each decomposed wavelet) [148, 227]. Such
features are then fed into anomaly detection algorithms (monitoring), classification al-
gorithms (diagnostics) or regression models (prognostics) [20]. Nevertheless, the above
commercial TCM methods and traditional tool wear features are strongly influenced by
the machining parameters. Thus, they can be applied only under fixed milling param-
eters and repetitive cutting operations [159]. In recent studies, most of the approaches
makes use of machine learning [185] or deep learning algorithms, such as Convolu-
tional Neural Networks [227]. Since a large set of high-quality data taken in a wide
range of cutting conditions is requested, their application to real industrial scenarios
is challenging [73, 135]. Scientific works were mapped in table 3.3, according to sev-
eral classes, highlighting some useful aspects of the proposed methodologies like the
algorithm domain.

Consequently, the necessity to develop solutions based on process modelling, either
physical or mechanistic is evident. From this perspective, different models with various
grades of complexity have been used in literature to predict the cutting forces for a given
machining operation. Physical-based approaches are based on slip-line field analysis
to model the chip formation mechanism (e.g. [53]); an extended review of state-of-art
approaches of this kind can be found in [11]. Conversely, mechanistic models exploit
simplified description of the process, but model coefficients (specific force coefficients,
SFC) need to be experimentally identified [8]. The main feature of the SFC is that they
are theoretically independent from some process parameters. At the same time, by rep-
resenting the material shearing, the friction and ploughing effects involved in the cut-
ting process, they carry the information about tool wear, becoming a relevant resource
for TCM. Anyway, their identification is still based on multivariate linear regression on
mean cutting forces measured during variable feed milling tests [8]. The Altintas model
was widely studied and even upgraded with some additional features, such as improved
chip thickness formulation including cutter run-out and cycloidal path [118,144] or the
inclusion of tool wear modelling in cutting forces expressions [140,241], while several
researches analysed SFC dependence with respect to the cutting parameters in multiple
applications: square shoulder mills [28, 156] and ball-end milling [74]. Nouri et al.
estimated such coefficients (exploiting mean forces) online during run-to-failure exper-
iments. This was possible since cutting was executed continuously varying the feed per
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DoE and run-to-failure tests Principal Component Regression - PCR

(SFC Iden ca on)

Unsupervised Tool Wear Monitoring

Mul variate Linear Regression - MLR

(SFC Iden ca on)

Self-star ng Tabular

Cusum Control Charts

Chip Area

Edge Contact

Length

Instantaneous

Cu�ng Forces

Machine Tools:

Lubrica�on:

Cu�ng speeds: 50, 70, 125 /���

�1

�2

�
Linearly dependent 

regressors

High regression 

coe�cients (SFC)

es�mate variability

Tool Wear Tool Wear

vs.

SFC SFC

MLR PCR

Observa�on No.

CL
UCL

LCL

CL
UCL

LCL

Rake

SFC

Figure 3.1: Overall framework of the work. Left branch represents the high-feed cutters used and the
experimental campaign parameters. Middle branch shows the comparison between the methods used
for Specific Force Coefficients identification. Right branch shows the application of control charts
for the unsupervised tool wear monitoring of critical tool chipping and notch wear.

tooth, that cannot be guaranteed in real production scenarios [156]. To overcome this
limitation, new approaches based on the identification of SFC from instantaneous cut-
ting forces were developed and tested [54]. Nevertheless, up to the authors’ knowledge,
no-one still demonstrated the efficacy of such approaches for the real-time identification
of SFC from instantaneous cutting forces in run-to-failure experiments and considering
multiple cutting conditions.

The proposed work is intended to verify the applicability of SFC identification from
instantaneous cutting forces in a TCM context. The chapter structure is organised as
follows. In section 3.2, the whole methodology is presented. A background of the
mechanistic model for square shoulder mills and an innovative mechanistic formula-
tion for high-feed mills are reported in sections 3.2.1 and 3.2.2. The SFC identification
through multivariate linear regression and principal component regression are discussed
in sections 3.2.3 and 3.2.4, respectively. Self-starting tabular cusum control charts for
the detection of out of control cutting processes are reported in section 3.2.5. In section
3.3 the experimental set-up and campaign are described. In section 3.4, the applica-
tion of the conceived approach to the experimental data is presented and discussed with
respect to the specific literature. In section 3.5, the main introduced novelties are high-
lighted and future works are outlined.

3.2 Methods

For sake of clarity, the approach adopted in this work is summarised in figure 3.1.
Materials are summarised in the left branch of the figure, including a representation of
the cutting tool and the experimental campaign (with two machine tools, conventional
and cryogenic lubrication, and variable cutting speeds). The identification methods for
the SFC are presented in the middle branch, while the goal of the proposed work is
shown in the right branch of figure 3.1. In the following sections, all these points are

56



i
i

“thesis” — 2022/10/20 — 22:40 — page 57 — #67 i
i

i
i

i
i

3.2. Methods

�

�

ℎ

�

��

�

�

�

�	


���

�

Figure 3.2: Reference model for the geometry of milling operations.

Table 3.4: Cutter geometrical parameters.

r1c [mm] r2c [mm] r3c [mm] z1 [mm] z2 [mm] z3 [mm]

6.57 8.53 9.03 0 0.40 0.62

thoroughly explained.

3.2.1 Theoretical background

The proposed solution is based on the identification of SFC during high-feed mill tests.
Since a reliable mechanistic model for such mills is still not available, a specific formu-
lation starting from [8] is developed and here presented. The mill cutter positions are
described in time through equation (3.1):

ϕi (t) = ϕ0 +
2π i
N

+2π nt, i = 1, ...,N (3.1)

where ϕi is the angular position of the i-th cutter in the x-y reference plane (fig. 3.2); i
is the cutter identifier; t is time; ϕ0 is the initial phase of the first cutter; N is the number
of teeth of the mill and n is its rotational speed. From now on, the time dependence
is neglected. Altintas defines the instantaneous thickness h of the chip removed by a
cutter as a function of the feed per tooth c, eq. (3.2):

h(ϕ) = c sinϕ (3.2)

The expression for the tangential and radial cutting forces on a cutter, keeping in con-
sideration the engagement conditions, are given by equation (3.3):

Ft = g(ϕ)(Ktc ah+Kte a)
Fr = g(ϕ)(Krc ah+Kre a) (3.3)

where Ft and Fr are the tangential and radial forces acting on a single cutter; Ktc, Kte,
Krc and Kre are the SFC: the first and second are the tangential ones, the third and fourth
are the edge ones; a is the axial depth of cut; g(ϕ) is the engagement function defined
by eq. (3.4):

g(ϕ) =

{
1, if φst < ϕ < φex

0, otherwise.
(3.4)
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and φst , φex are the entry and exit angles determined by the engagement conditions of
the mill (e.g. for downmilling, they are exressed by eq. (3.5)):

φst = π − arccos
(

1− 2b
D

)
φex = π (3.5)

where b is the radial depth of cut; D is the diameter of the mill.
The single cutter contributions must then be projected on the x-y reference frame

and summed up (eq. (3.6)):

Fx =
N

∑
i=1

(−Ft,i cosϕi −Fr,i sinϕi)

Fy =
N

∑
i=1

(+Ft,i sinϕi −Fr,i cosϕi) (3.6)

3.2.2 High-feed model

In this work the experimental campaign was conducted using high-feed mills, featured
by a double-phased profile. Their shape is schematically shown in figure 3.3a. The
proposed high-feed mechanistic model makes reference to figure 3.3a, from which the
maximum allowable chip shape is derived. This shape corresponds to the region com-
prised between the current and previous tooth profiles, shifted by the chip thickness h.
In order to describe the chip shape, it is necessary to define the cutter geometry. The
geometry of the profile is uniquely defined in the radial-axial plane (r-z), figure 3.3b.
The quantities r1c, r2c, r3c, z1, z2 and z3 are known for a given high-feed cutter, and they
represent the radial and axial coordinates of the current (c) cutter fundamental points,
defining the two phases of the cutting edge; χ1 and χ2 are the lead angles of the two
cutter phases. The values associated to the cutters used for the experimentation are
reported in table 3.4. The intersection of the axial depth of cut (a) line with the cutter
geometry originates another important point, having coordinates (rac;a), given by eq.
(3.7):

rac =

{
r1c +

a
tan χ1

, if a ≤ z2

r2c +
a−z2
tan χ2

, if z2 < a ≤ z3
(3.7)

r1p, r2p, r3p and rap are the radial coordinates of the analogous points on the previ-
ous (p) cutter profile (i.e. related to the previous pass), and thus, they are determined
through eq. (3.8):

r jp (ϕ) = r jc −h(ϕ) , j = 1,2,3,a (3.8)

where r jp is a function of the position of the correspondent cutter angle ϕ; for the sake
of conciseness this dependence will be omitted in the following. The radial engagement
of the cutter is given by the radial depth of cut b, here expressed with reference to the
cutter nominal radius R (figure 3.3c). Thus, each of the current and previous fundamen-
tal points is engaged when the cutter position reaches the critical corresponding angles
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Figure 3.3: Reference figure for the high-feed model: (a) derivation of the maximum allowable chip
shape; (b) maximum allowable chip shape and high-feed cutter reference points; (c) derivation
scheme for current and previous critical angles; (d) derivation scheme for current and previous chip
area and chip edge length for an example case (a <= z2, φ1p ≤ ϕ ≤ φap).

φ jc and φ jp (eq. 3.9):

φ jc = arccos
b−R

r jc

φ jp = arctan
r jc sinφ jc − c

b−R
(3.9)

with j = 1,2,3,a. As a consequence, when a cutter position overcomes one of these
angles, the chip shape changes. These relations are easily determined from the scheme
reported in figure 3.3c through trigonometry.

It is important to define the actual radial engagement of a tooth rb(ϕ), given its
current position (eq. 3.10):

rb (ϕ) = min
(

b−R
cosϕ

,rac

)
(3.10)

rb(ϕ) is initially limited by the workpiece (radial engagement) until it reaches the maxi-
mum engaged radial distance (determined by the axial depth of cut. The switch happens
in correspondence of ϕ = φac. From here on, the ϕ dependences will be omitted. All
the above-mentioned variables are needed to compute the actual chip area A and edge
contact length l, taking in consideration even the progressive radial engagement of the
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cutter. A and l are the results of the integration of the infinitesimal chip area dA and
chip edge length dl (eq. (3.11)) over the radial coordinate from r1p to rb.

dA(r) = [zp (r)− zc (r)] dr = dAp (r)−dAc (r)

dl (r) =
dr

cos χ (r)
(3.11)

where zp(r) is the axial coordinate of the point on the previous cutter profile at a generic
radial distance r from the mill axis (fig. 3.3d); zc(r) is the same as zp(r), but computed
on the current cutter profile; dr is an infinitesimal variation in the radial direction;
dAp(r) and dAc(r) are the infinitesimal areas below the previous and current tooth pro-
file at radial coordinate r, respectively; χ(r) is the lead angle at the r radial coordinate.
Thus, eq. (3.3) is modified in equation (3.12) and then, it can be introduced in eq. (3.6):

Ft = Ktc (Ap −Ac)+Kte l
Fr = Krc (Ap −Ac)+Kre l (3.12)

where Ft , Fr, Ap, Ac and l dependencies on ϕ were omitted; Ap, Ac and l are the integrals
of the above-mentioned differentials dAp, dAc and dl, respectively. Ap, Ac and l must
be defined for the two cases a ≤ z2 and z2 < a ≤ z3.

Case 1: a ≤ z2

The value of Ap is given by eq. (3.13):

Ap =



1
2

(
rb − r1p

)2 tan χ1, if φ1p < ϕ ≤ φap
1
2

(
rap − r1p

)
a+(rb − rap)a, if φap < ϕ ≤ φac

1
2

(
rap − r1p

)
a+(rac − rap)a, if φac < ϕ ≤ π

0, otherwise.

(3.13)

While Ac is given by eq. (3.14):

Ac =


1
2 (rb − r1c)

2 tan χ1, if φ1c < ϕ ≤ φac
1
2 (rac − r1c)a, if φac < ϕ ≤ π

0, otherwise.

(3.14)

l is given by eq. (3.15):

l =


rb − r1p, if φ1p < ϕ ≤ φ1c

h+ rb−r1c
cos(χ1)

, if φ1c < ϕ ≤ φac

h+ rac−r1c
cos(χ1)

, if φac < ϕ ≤ π

0, otherwise.

(3.15)

The example scheme for retrieving the first case of each of these terms is shown in
figure 3.3d. Other cases can be obtained by moving rb progressively towards higher
values.
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Case 2: z2 < a ≤ z3

The value of Ap is given by eq. (3.16):

Ap =



1
2

(
rb − r1p

)2 tan χ1, if φ1p < ϕ ≤ φ2p

1
2 (r2c − r1c)z2 +

(
rb − r2p

)
z2 +

1
2

(
rb − r2p

)2 tan χ2, if φ2p < ϕ ≤ φap
1
2 (r2c − r1c)z2 +

1
2

(
rap − r2p

)
(z2 +a)+(rb − rap)a, if φap < ϕ ≤ φac

1
2 (r2c − r1c)z2 +

1
2

(
rap − r2p

)
(z2 +a)+(rac − rap)a, if φac < ϕ ≤ π

0, otherwise.
(3.16)

While Ac is given by eq. (3.17):

Ac =



1
2 (rb − r1c)

2 tan χ1, if φ1c < ϕ ≤ φ2c
1
2 (r2c − r1c)z2 +(rb − r2c)z2 +

1
2 (rb − r2c)

2 tan χ2, if φ2c < ϕ ≤ φac
1
2 (r2c − r1c)z2 +

1
2 (rac − r2c)(z2 +a), if φac < ϕ ≤ π

0, otherwise.

(3.17)

l is given by eq. (3.18):

l =



rb − r1p, if φ1p < ϕ ≤ φ1c

h+ rb−r1c
cos(χ1)

, if φ1c < ϕ ≤ φ2c

h+ r2c−r1c
cos(χ1)

+ rb−r2c
cos(χ2)

, if φ2c < ϕ ≤ φac

h+ r2c−r1c
cos(χ1)

+ rac−r2c
cos(χ2)

, if φac < ϕ ≤ π

0, otherwise.

(3.18)

It must be noted that the proposed model uses a circular approximation of the tooth
trajectory. This choice was based on the fact that high-feed mills may reach up to
ten times conventional milling feed over mill radius ratios [49], but they present a
relatively low non dimensional cutting parameter [118], not comparable with micro
milling ones. In case of really aggressive cutting processes, actual tool tip trajectory
can be introduced following [118] and [54]. Nevertheless, critical angles in equation
(3.9) must be adapted accordingly.

3.2.3 SFC identification

The identification of SFC is typically carried out by a multivariate linear regression
based on average cutting forces in milling tests with variable feed per tooth. This pro-
cedure is well established in literature and references for performing such identification
can be found in [8] as well as in [54].

In the proposed work, the fitting procedure was based on instantaneous cutting
forces, following a procedure proposed by [54]. SFC estimation is performed every
3 tool revolutions (where, 3 was chosen to keep the SFC estimation reliable), and the
estimation number is indicated with the o index. For each estimation, Ns measurement
samples are used and index s will indicate the sample number for the o-th estimate.
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Thus, for a given estimate number o, s will range from 1 to Ns. o ranges from estima-
tion number 1 to the total number of estimates No. The model for the o-th SFC estimate
is represented by eq. (3.19):

y(o) = X(o)
βββ
(o)+ εεε

(o) (3.19)

where y(o) is the response vector; X(o) is the design matrix; βββ
(o) is the vector of regres-

sion coefficients and εεε(o) is the vector of residuals [153] that considers the modelling
errors. The elements of εεε(o) are assumed to be drawn from an uncorrelated random
variable and εεε(o) is assumed to have null expected value and variance σ2. The response
vector y(o) is a 2Nsx1 vector containing instantaneous cutting forces as in eq. (3.20):

y(o) =
{

Fx,1 Fx,2 ... Fx,Ns Fy,1 Fy,2 ... Fy,Ns

}T (3.20)

The column vector βββ
(o) of regression coefficients contains the SFC to be identified at

the o-th estimation instant (eq. (3.21)):

βββ
(o) =

{
K(o)

tc K(o)
te K(o)

rc K(o)
re

}T
(3.21)

The design matrix at o estimation number is derived by stacking column-wise the ma-
trix in eq. (3.22) for each of the Ns instants, resulting in a 2Nsx4 design matrix:

xs =

[
x11s x12s x13s x14s

x21s x22s x23s x24s

]
(3.22)

where the single elements are reported in eq. (3.23):

x11s =−
N

∑
i=1

A(ϕis) cosϕis x21s =
N

∑
i=1

A(ϕis) sinϕis

x12s =−
N

∑
i=1

l(ϕis) cosϕis x22s =
N

∑
i=1

l(ϕis) sinϕis

x13s =−
N

∑
i=1

A(ϕis) sinϕis x23s =−
N

∑
i=1

A(ϕis) cosϕis (3.23)

x14s =−
N

∑
i=1

l(ϕis) sinϕis x24s =−
N

∑
i=1

l(ϕis) cosϕis

where A = Ap −Ac and l are the high-feed chip area and edge contact length. The least
square solution for this problem gives the o-th estimation of the SFC, eq. (3.24):

β̂ββ
(o)

= (X(o)T X(o))−1X(o)T y(o) (3.24)

thus, the SFC (β̂ββ
(o)

) estimated through this formula will be indicated as K̂(o)
tc , K̂(o)

te , K̂(o)
rc

and K̂(o)
re . Actually, at the beginning of each cut, the initial tool phase ϕ0 is unknown.

The estimation of ϕ0 can be obtained solving Nq regressions with a different tool phase
ϕ0q (eq. (3.25)):

ϕ0q =
2π

N
q
R
, q = 1, ...,Nq (3.25)

The regression with minimum least square error gives the best estimates for ϕ0 and
SFC [54].
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3.2.4 Principal Components Regression

As it will be explained in section 3.4, the β̂ββ estimation (for this particular problem)
tends to suffer from the multicollinearity phenomenon, which turns into a high vari-
ability of the estimated regression coefficients. In order to limit this effect, Principal
Components Regression (PCR) was introduced [85]. PCR performs a multivariate lin-
ear regression on a subset of principal components of the design matrix. At first, each
column of the design matrix and the response vector are standardised to have null mean
and unitary standard deviation [79], bringing to the X̃ matrix and ỹ vector (omitting o
dependency, eq. (3.26)):

X̃ =
[

x1−x1
σx1

x2−x2
σx2

x3−x3
σx3

x4−x4
σx4

]
ỹ =

y− y
σy

(3.26)

Then, PCA is performed on the matrix X̃. This is achieved through the computation
of the eigenvalues λλλ and eigenvector matrix V of the covariance matrix ΣΣΣ of X̃. The
standardised design matrix X̃ is projected on the principal components (PCs) directions
by eq. (3.27):

Z = XV (3.27)

The principal components matrix Z is then used to perform a multivariate linear regres-
sion on the response vector ỹ. The o-th regression coefficients estimate performed by
PCR (eq. (3.28)) is α̃αα

(o)
f ull:

α̃αα
(o)
f ull = (Z(o)T Z(o))−1Z(o)T ỹ(o) (3.28)

At this point, it is necessary to remove the PCs with the lowest eigenvalues (i.e. the
ones describing the lowest part of variability in the data). This is achieved by setting
the last elements of α̃αα

(o)
f ull to zero and obtaining α̃αα

(o)
PCR [85]. In the studied case, two

coefficients are set to zero, eq. (3.29):

α̃αα
(o)
PCR =

{
α̃
(o)
1, f ull α̃

(o)
2, f ull 0 0

}T
(3.29)

Finally, it is possible to transform α̃αα
(o)
PCR back to the original space through eq. (3.30):

β̃ββ
(o)
std = V(o)

α̃αα
(o)
PCR (3.30)

Due to the standardisation of the data, the estimated coefficients must be scaled to
match the original dimensions. The transformation gives the final set of regression

coefficients β̃ββ
(o)

and it is given by eq. (3.31):

β̃ββ
(o)

=

{
β̃
(o)
1,std

σ
(o)
x1

β̃
(o)
2,std

σ
(o)
x2

β̃
(o)
3,std

σ
(o)
x3

β̃
(o)
4,std

σ
(o)
x4

}T

σ
(o)
y (3.31)

thus, the SFC (β̃ββ
(o)

) estimated through this method will be called as K̃(o)
tc , K̃(o)

te , K̃(o)
rc

and K̃(o)
re .
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3.2.5 Self-starting Tabular Cusum control chart

The regression coefficients become here the object of the monitoring strategy. As it
will be explained in section 3.4, the K̃re coefficient is the most stable and correlated
to the tool wear. Here, it will be used as a tool wear indicator to be monitored. The
monitoring strategy is based on a statistical process control tool, that is a Self-starting
Tabular Cusum control chart. This choice was based following Nouri et al., who applied
Cusum control chart to monitor SFC identified through a mean identification procedure.
Cusum chart directly incorporates all the information in the sequence of sample values
by plotting the cumulative sums of the deviations of the sample values from a target
value [156]. When the process is in control, the mean of the monitoring variable corre-
sponds to the target value. The Tabular Cusum works by accumulating deviations from
the mean which are above and below the target. Secondly, with respect to a traditional
Shewhart control chart, Cusum control charts are very sensible to mean drifts. This
peculiarity is a consequence of the fact that a Shewhart control chart takes in consid-
eration just the last drawn sample to check if the process is in control, while Cusum
control chart works on the whole process history. The responsiveness and sensitivity of
the Cusum is of fundamental importance when applying them in a self-starting fashion.
In fact, the design phase is substituted with an online estimation of process mean and
variance. If the control chart is not fast enough to detect an out of control process,
the online estimation of mean and variance will include out of control conditions, not
allowing for a successive detection. Thus, following the work by Farhadmanesh et al.
the moving range related to the K̃(o)

re estimation is computed through eq. (3.32) [54]:

MRo = |K̃re,o − K̃re,o−1| (3.32)

The moving range is then averaged on 15 samples batches (eq.(3.33)), leading to the
variable vn:

vn =
15

∑
o=1

MRo

15
(3.33)

vn is then fed to a self-starting tabular Cusum control chart [152]. First of all, the run-
ning average is updated as soon as the n-th observation vn becomes available (eq.(3.34)):

vn = vn−1 +
vn − vn−1

n
(3.34)

The sum of squared deviations is updated, too (eq.(3.35)):

wn = wn−1 +
(n−1)(vn − vn−1)

2

n
(3.35)

The running standard deviation becomes (eq.(3.36)):

sn =

√
wn

n−1
(3.36)

The n-th observation is then standardised through eq. (3.37):

Tn =
vn − vn−1

sn−1
(3.37)
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It turns out that the quantity Un is distributed as a standard normal random variable (if
the monitored variable v is normally distributed), where Un is defined by eq. (3.38):

Un = Φ
−1 [CDFt,n−2 (an Tn)] (3.38)

where Φ−1 (·) is the inverse normal cumulative distribution; CDFt,n−2 (·) is the cumula-

tive t distribution with n−2 degrees of freedom; an =
√

n−1
n [152]. Thus, it is possible

to apply the tabular Cusum control chart on Un.
The Cusum control chart is based on the computation of two cumulative derivation

with above and below the target value, C+
n and C−

n , respectively. They are initialised
to be null: C+

0 = 0 and C−
0 = 0. Every time a Un becomes available, the following

expressions are computed (eq.(3.39)):

C+
n = max

[
0,Un − (µ0 +K)+C+

n−1
]

C−
n = max

[
0,(µ0 −K)−Un +C−

n−1
]

(3.39)

where K is typically set to 1
2σ0; µ0 and σ0 are the mean and standard deviation of U

random variable, thus µ0 = 0 and σ0 = 1. The process is considered out of control
when either C+

n or C−
n overcome the threshold H, commonly set to 5σ0 [152].

3.3 Materials

The experimental session was carried out on two different machine tools: a Mandelli
M5 machine tool and a Sigma Flexi FFG group machine tool; both of them, featur-
ing a Mitsubishi AJX06R203SA20S high-feed mill, with three JOMT06T216ZZER-
JL MP9140 cutting inserts. The available set-ups were presented in figure 3.4. During
the milling test, Kistler 9255B dynamometric plate was adopted to measure the cut-
ting forces during the milling operations. The dynamometer was connected to Kistler
5070A charge amplifier (fig. 3.4c). The cutting forces were acquired through a NI
cDAQ-9174, with a NI 9215 acquisition card. The sampling frequency of the acqui-
sition was set to 5kHz. For the inspection of wear on cutters, a Keyence VHX-7000
microscope was used (fig. 3.4d).

The experimentation consisted of 5 run-to-failure tests (i.e. machining the work-
piece until the cutters were completely worn out). The run-to-failure experiments
were performed until either mean flank wear reached 300µm or maximum flank wear
reached 600µm. The acquisition of the experimental tests was subdivided in subsequent
stops in order to perform the flank wear assessment (fig. 3.4). The workpiece consisted
of a 255x262mm block made of Ti6Al4V , grade 5. The experimentation was carried
out in different cutting conditions, i.e. changing machine tool (M5 and Flexi), cutting
speed (50m/min, 70m/min and 125m/min) and lubrication set-ups (lubricant and cryo-
genic). The decision to use two different machine tools was based on the information
about the portability of the conceived method. In fact, testing the methodology upon
two different machine tools, with the same algorithm settings allows to understand how
the algorithm is robust within a scenario closer to the industrial one. Manufacturing
companies or production systems generally include more than one machine tool and
having a monitoring system that works properly on all of them is strategic. The axial
depth of cut a was set to 0.4mm, the radial depth of cut b was set to 13mm, while the
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Figure 3.4: Experimental set-up: a) Mandelli M5, Mitsubishi mill, Kistler dynamometer and cryogenic
set-up; b) Sigma Flexi FFG group, Mitsubishi mill, Kistler dynamometer and conventional cooling
set-up; c) DAQ system; d) Keyence microscope. Run-to-failures are performed through stops, in
order to assess the flank wear.
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3.4. Results and discussion

feed per tooth c was fixed to 0.7mm. The cutting test descriptive data are reported in ta-
ble 3.5. As can be seen in the table, a cutting test at 50m/min with traditional lubricant
was not performed. This was associated to the experimental cost of such test. 50m/min
is the optimal cutting speed for titanium alloys machining with conventional lubrication
techniques. Lubricants main advantage is to reduce the friction between tool and work-
piece and to remove heat from the cutting tool, thus dramatically increasing tool life.
Additionally, high-feed mills work at really high material removal rates, thus leading
to a not affordable economical cost of the test (in terms of material cost and machine
tool cost). The same is not valid for cryogenic, which is not stable like conventional
lubrication and has the strongest effects at high cutting speeds.

Table 3.5: Design of Experiments

Test vc [m/min] n [rpm] v f [mm/min] Lubrication Machine

1 50 796 1671 Cryogenic Flexi
2 70 1114 2340 Cryogenic Flexi
3 70 1114 2340 Lubricant Flexi
4 125 1989 4178 Lubricant M5
5 125 1989 4178 Cryogenic M5

3.4 Results and discussion

3.4.1 SFC estimation and cutting forces prediction

The novel high-feed mill formulation was fitted on the whole dataset of experimental
data. Since the fitting procedure worked on instantaneous cutting forces, the accuracy
of the model in the time interval used to retrieve the SFC is really high. An example
of fitted cutting forces, compared with experimentally measured forces is reported in
figure 3.5. For the example set of forces (taken from test 1), the R-squared was equal
to 0.979 (following R-squared definition for regression through the , [50]). Obviously,
the high fitting capability of the instantaneous cutting forces-based procedure, is con-
strained to the time interval in which it is computed. The prediction capabilities may be
comparable or slightly worse than an average cutting forces-based procedure in terms
of forecasting new cutting forces, especially when different cutting parameters are used.
Nonetheless, for the conceived unsupervised approach, only a local/instantaneous esti-
mation of SFC is of interest (i.e. regression coefficients) and not the prediction of new
cutting forces.

3.4.2 MLR and PCR comparison

In figure 3.6, the evolution of the considered four SFC along the execution of all the
tests using MLR and PCR is represented. Figures 3.6a, 3.6c, 3.6e, 3.6g and 3.6i showed
the evolution of the SFC estimated through ordinary least squares solution of multivari-
ate linear regression. It can be noted that the identification of SFC through this method
suffers of high variability. This effect is linked to a multicollinearity phenomenon. Such
phenomenon occurs when the regressors (i.e. the columns of the design matrix) tend to
be linearly dependent one with respect to the other. This translates in a large variance
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Figure 3.5: Comparison between the o-th fitted instantaneous cutting forces and the o-th experimentally
measured ones (thus including 3 mill revolutions). The example set of forces was taken from test 1:
Flexi machine tool, vc = 50m/min, c = 0.7mm/tooth, cryogenic, n = 796rpm, v f = 1671mm/min.

in the estimation of regression coefficients. The multicollinearity problem is typically
solved by implementing biased regression methods. In general, these methods dramat-
ically reduce the estimation variance of the regression coefficients, hopefully leading
to a better bias-variance trade-off on the estimation; thus, to a more reliable estimation
of the SFC. Here, as described in section 3.2, the Principal Component Regression al-
gorithm is proposed to reduce the variance associated to the estimated SFC. The output
of PCR is presented for all the tests in figures 3.6b, 3.6d, 3.6f, 3.6h and 3.6j. It must
be noted, how PCR enhanced the reliability of the SFC estimation (i.e. by reducing the
estimation variability), providing an intrinsic highlight of the wear phenomenon. On
the other hand, PCR introduced a high bias in the cutting SFC (i.e., K̃tc and K̃rc) which
were reduced of almost three orders of magnitude. This is a result of the dimensional-
ity reduction implemented by PCR; forgetting about the last two principal components
(as explained in section 3.2), caused the cutting coefficient contributions to be almost
removed. Furthermore, it is evident that K̃re is the coefficient presenting early signs and
higher correlation with respect to tool degradation. This was expected and in agreement
with literature analysis developed on mean forces-based estimation approaches, such as
in [156].

3.4.3 Tool wear detection

Based on the results presented in section 3.4.2, it was decided to apply the self-starting
control charts directly on K̃re, as explained in section 3.2. The application of this kind of
control charts allowed to build a completely unsupervised strategy to monitor the tool
wear status along run-to-failures. In fact, they don’t need a design phase to determine
the variability and target of the monitored variable, but they are developed such that
they estimate them as long as the data become available. The results of the application
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Figure 3.6: Evolution of the specific force coefficients during the execution of tests. SFC on the left are
obtained through multivariate linear regression (MLR) and ordinary least squares solution. SFC on
the right are obtained through Principal Component Regression (PCR).
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of self-starting control charts on the K̃re moving range on the full set of tests are shown
in figure 3.7. The figure for each experimental test the computed self-starting control
chart main quantities. The red bar represents the first out of control observation of the
process. Control charts graphs are accompanied by the flank wear and, if relevant, rake
crater pictures at the stop before (pictures in the middle) and after (pictures on the right)
the detection, in order to highlight the meaning of an out of control observation.

The evolution of the mean moving range (blue triangles) in figure 3.7 presents two
different regions: a first stage, related to the initial tool life, where this coefficient is
more or less stable, similar to the aspect of a random variable; a second stage with
an increasing trend, higher variance and outliers. This behaviour is in agreement with
the results found by Nouri et al., who observed that the mean moving range of the
Kre (estimated through a mean forces-based approach) faced a dramatic change in vari-
ance after a given number of performed cuts. They reported that this change in the
behaviour of the moving range was correlated to either the occurrence of chipping on
the cutting edge of tool inserts or a 3-dimensional evolution of the wear zone on the tool
insert [156]. This was due to the sum of variations of infinitesimal cutting force direc-
tions along the worn cutting edges. The pictures of the cutting tool edges in figure 3.7
seem to be in agreement with the same hypothesis. The detection of the out of control
observation falls in between the two stops corresponding to the proposed middle and
right images. For what concerns tests 1, 2 and 3, the detection occurs when the cutting
edge starts to feature an enhanced V wear shape, which is a 3D geometrical feature
connecting the rake and flank faces (figures 3.7a, 3.7b and 3.7c). This phenomenon is
associated to the occurrence of notch wear. After an initial period of regular flank land
increase, localised accumulation of damages due to adhesion modify the cutting edge
geometry leading to the formation of a notch. The notch is a 3D geometrical feature
connecting the crater and the flank land and can be identified from a V shape on the
flank surface. The proposed monitoring algorithm detects an out of control point when
the notch wear starts to become critical. Regarding tests 4 and 5, the cutting inserts
feature small chippings on the flank face, accompanied by bigger chippings on the rake
face (as can be seen in figures 3.7d and 3.7e).

3.4.4 The influence of cutting conditions

The algorithm detects an out of control cutting process when the chipping phenomenon
takes place on the rake face. The difference between the first three tests and the last
two seems to be correlated to the adopted cutting speeds. Low speed machining brings
to more intensive adhesion phenomena [4], favouring notch wear occurrence. Further-
more, a difference between the two lubrication conditions was found at these cutting
speeds. Cryogenic lubrication brought workpiece material to attach to the cutting edge
(built-up-edge) on the cutting insert. Conversely, the cutting edge of conventional cool-
ing at low speeds seemed cleaner, despite presenting notch wear, too. At high cutting
speeds (125m/min) the differences in the behaviour of the two lubrication conditions
was less visible, bringing to small distributed chippings along the cutting edges. De-
spite these different phenomenological behaviours, the conceived algorithm behaved
properly and was able to detect critical tool failures.
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(b) Test 2: Control Chart - V Bm,d = 499µm (detection); V Bm,1 = 386µm (before); V Bm,2 = 675µm (after).
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(c) Test 3: Control Chart - V Bm,d = 373µm (detection); V Bm,0 = 0µm (before); V Bm,1 = 475µm (after).
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(d) Test 4: Control Chart - V Bm,d = 293µm (detection); V Bm,1 = 293µm (before); V Bm,2 = 295µm (after).
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(e) Test 5: Control Chart - V Bm,d = 166µm (detection); V Bm,0 = 0µm (before); V Bm,1 = 180µm (after).

Figure 3.7: Control chart detections among the tests. Photos represent the tool wear at the stop before
(middle) and after (right) the control chart detection.
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Chapter 3. Tool wear: real-time cutting tool monitoring

3.4.5 Maximum flank wear measurements and sensitivity analysis

In figure 3.7, control charts were accompanied by the measured flank wears at the
detection instants reported in the captions. It must be highlighted that flank wear mea-
surements do not participate at all in the tool monitoring strategy. By the way, flank
wear measurements were reported in order to contextualise the results of the proposed
monitoring tool and to analyse from all the perspectives the out of control detections.
The flank wear was computed making reference to the approaches explained in [3, 4]
and standard ISO 3685 [93]. Thus, for the cutter i at the k-th stop, a set of N f local
measurements of the flank width, indicated as V Bik, f , was available. The maximum
flank width of the i-th cutter at the k-th stop is indicated as V Bm,ik and is computed
through eq. (3.40):

V Bm,ik = max
f∈[1,N f ]

V Bik, f (3.40)

Then, the maximum flank wear between the cutting inserts at the k-th stop is computed
and reported as V Bm,k (eq. (3.41)):

V Bm,k = max
i∈[1,N]

V Bm,ik (3.41)

The maximum flank wear values at the stop before and after the detection point (in
figure 3.7 reported as V Bm,k and V Bm,k+1, with k assuming the corresponding stop
number) are linearly interpolated to obtain maximum flank wear at the detection point
(reported as V Bm,d). Thus, the detection point d falls between stops k and k+1. Let’s
call the observation numbers of these three points nd , nk and nk+1, respectively. Maxi-
mum flank wear in correspondence of the detection point V Bm,d is computed as follows
(eq. (3.42)):

V Bm,d =V Bm,k +
V Bm,k+1 −V Bm,k

nk+1 −nk
(nd −nk) (3.42)

In order to properly discuss the out of control detections, a sensitivity analysis of the
algorithm was performed with respect to the control charts threshold. The results of
such analysis were summarised in table 3.6. The first column of the table represents the
case were H = 5σ0. Such value is the standard one for a control chart of this kind [152].
Thus, these results are obtained without any kind of training procedure or supervision.
The reference V Bm is 600µm, which is the flank wear threshold at which the run-to-
failures were physically stopped (in accordance with ISO 3685, [93], and [156]). The
results are compared with the ones obtained by Nouri et al. in [156]. Five steel cutting
tests were considered by the authors of the work. In order to compare results between
the two condition monitoring systems, the reference mean flank wear was set to 300µm,
which was the tool wear criterion set by the researchers in accordance with the stan-
dard. Their results are reported for completeness in the last column of table 3.6. As
can be seen, the mean of the relative percentage error (RPE) of the proposed method
is −45% with respect to the reference threshold of 600µm. This means that the con-
ceived tool monitoring strategy is conservative with respect to the tool wear criterion
suggested by the flank wear. Anyway, it is of primary importance to underline that, as
presented in section 3.4.3, an out of control detection is corresponding to severe dam-
ages on the cutting tools (such as micro chippings, chippings and notches), which lead
to more severe implications for workpiece quality and operator safety than progressive
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tool wear [135]. This is a symptom of the higher order of information carried by the
cutting force signals with respect to a single information provided by flank wear [219].
Furthermore, particular attention must be given to test 5 (the test facing the maximum
relative error of −72%). In fact, the flank wear measurement is really low (166µm)
compared to the reference threshold (600µm). This behaviour must be contextualised
in the challenging cutting conditions of the test: cryogenic lubrication (which is not uni-
form as a conventional lubrication) and really high cutting speed (125m/min). These
parameters led to the formation of micro chippings in the cutting edge. Moreover, it
was found that cryogenic lubrication lowers the frictional effect on the cutting tool, jus-
tifying a low flank wear. Compared to Nouri et al. results, the proposed method is less
conservative (−45% with respect to −57% mean RPE). The uniformity in the detection
outputs is similar, by looking at the RPE standard deviations (20% and 13% in favor of
Nouri et al. method). The higher variance can be explained on the basis of two reasons:
Nouri et al. method is based on mean cutting forces (from which more stable stable
SFC can be inferred) and a mean flank wear indicator (in opposition to the maximum
flank wear of the proposed study). Anyway, their method can’t be used in any context,
since continuously variable feed per tooth must be adopted. Furthermore, it has to be
noticed that the method is providing a relatively uniform indication of tool wear in an
unsupervised way, while changing machine tools, cutting conditions, lubrication me-
dia and degradation phenomena. Nouri et al. lower variability reflects also in a lower
maximum RPE of −66%.

Relaxing the hypothesis of a fully unsupervised monitoring tool, it is possible to
change the threshold of the control chart. This assumption can be relaxed either in
presence of a training dataset or as long as data from the operational field are collected.
In these cases it would be possible to tune the control chart threshold. Thus, in table
3.6, a sensitivity analysis of the proposed method with respect to the threshold of the
control chart is proposed. It is possible to notice that test 5 (the one that presented the
maximum RPE) is always detected to be out of control at 166µm. This is a symptom
of the fact that a severe modification of the signals was recorded. By analysing figure
3.7e, it is possible to notice that when the detection occurred, an evident degradation
of the mean moving range was triggered, justifying the results of the sensitivity analy-
sis. Cryogenic lubrication introduced a more complex degradation phenomenon in the
cutting tool, which was the formation and propagation of micro cracks and edge chip-
pings (visible on the rake face of fig. 3.7e). This result is important since highlights the
higher content of information carried by the cutting force signals. Furthermore, moving
towards higher control chart thresholds allows to reduce how much the method is con-
servative (leading to lower mean RPE). This could be helpful in case of light machining
operations, instead of hard-to-cut materials machining, such as Ti6Al4V .

3.5 Conclusion

In this chapter, an unsupervised tool wear monitoring strategy was conceived and vali-
dated. The proposition of a high-feed mechanistic model, an instantaneous forces-based
specific force coefficients (SFC) fitting procedure (following [54]) and a self-starting
tabular cusum control chart to detect an out of control cutting process were the key
aspects. The main results of this work included:
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Chapter 3. Tool wear: real-time cutting tool monitoring

Table 3.6: Control chart threshold sensitivity analysis results. Mean, standard deviation and maximum
of relative percentage errors (RPE) are computed with respect to a threshold of V Bm = 600µm (max-
imum is computed using the absolute value of RPE, but is reported with the sign in order to keep the
underestimation/overestimation case). For Nouri et al. [156] cases, RPE is reported with reference
to V Bmean = 300µm.

Test
H = 5σ0 H = 4σ0 H = 6.5σ0 H = 7.5σ0 H = 10σ0 Nouri

(−20%) (+30%) (+50%) (+100%) V Bmean,d
V Bm,d [µm] V Bm,d [µm] V Bm,d [µm] V Bm,d [µm] V Bm,d [µm] [µm]

1 305 121 308 308 331 130
2 499 472 501 544 552 198
3 373 244 412 414 426 103
4 293 293 293 293 294 116
5 166 16 166 166 166 104

R
PE

Mean [%] -45 -62 -44 -43 -41 -57
St. Dev. [%] 20 29 21 24 24 13

Max [%] -72 -97 -72 -72 -72 -66

• a new analytical mechanistic model for double-phased high-feed mills. The model
includes the description of variable and gradual engagement of these cutting tools
inside the material, while providing a parametric description of their geometry.
The new formulation allows to identify SFC, where generic milling models can’t.

• an improvement of the SFC fitting procedure proposed by [156] and [54]. It in-
cludes an instantaneous identification of SFC, removing the need for continuously
variable feed per tooth during the cutting operation [156]. A principal component
regression (PCR) approach was used in order to reduce the variability in the es-
timated SFC, due to the multicollinearity phenomenon. Multicollinearity doesn’t
allow to distinguish between the effects of the regressors. Thus, a small change
in the experimental data may cause the coefficients to change according to what
is referred to as see-saw effect. PCR implementation was proven to be efficient
in limiting the multicollinearity phenomenon and naturally highlighting the tool
wear information carried by SFC.

• an improvement of the solution proposed by [156] in terms of potentialities. In-
deed, the conceived approach can be used to monitor the SFC with any occurring
engagement condition, not relying on continuously variable feed during the work-
piece machining in order to fit SFC. SFC can in fact be estimated directly from a
small package of instantaneous cutting forces.

• the robustness with respect to working conditions. The conceived approach demon-
strated to be valid among different cutting speeds (and thus degradation rates),
lubrication conditions (i.e. conventional cooling and cryogenic, and thus chip for-
mation mechanisms and wear phenomena) and machine tools, representing solid
bases for solution portability.

• the correlation of the detection of out of control cutting process with 3D wear
zones (notch wear phenomena) and chippings of the cutting edges. Providing a
reliable and consistent detection of critical wear phenomena. Thus, the proposed
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solution resulted in a prompt detection of these brittle degradation phenomena
which were critical for the continuation of Ti6Al4V cutting [228].

• a complete unsupervised solution. The solution does not present any tuning or
training procedure. The algorithm does not require any training datum in order to
be fully operative. Control charts were implemented in a self-starting fashion and
thresholds were chosen to be standard.

• relatively uniform prediction of gradual wear, indicated through maximum flank
wear. The fully unsupervised monitoring strategy resulted in a flank wear mean
relative prediction error of −45% with respect to a threshold of 600µm (run-to-
failure end). The peak relative error reached −72%. Reference literature ap-
proaches reached a mean and peak relative error of −57% and −66% [156], re-
spectively. The proposed method resulted to be less conservative than literature
approach, while showing a higher variance in the detection. This was justified
by the challenging variable conditions (different machine tools, lubrication media
and cutting speeds) and the use of instantaneous cutting forces instead of mean
ones.

• a sensitivity analysis of the control chart threshold with respect to the maximum
flank wear at the detection point was performed. This resulted in a mean relative
prediction error of −62% (when the threshold was reduced by the 20%, and of
−41% (when the threshold was increased by 100%). These results give indica-
tions about how the predictions vary by tuning the control chart threshold in a
supervised environment (if data from the field are collected and used to train the
algorithm). Thus, the algorithm can be chosen to be either less conservative or
more.

Future works of the proposed method include the introduction of prognostics solutions
to estimate the Remaining Useful Life of the cutting tool and the SFC estimation based
on more affordable measures like spindle currents (less invasive for industrial scenar-
ios). Furthermore, research should focus on the correlation between the SFC evolution
and the quality of cut left on the material surface.
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CHAPTER4
Tool wear: robust tool wear monitoring

The previous chapters of this thesis laid the basis for a cutting condition independent
prognostics and health management tool. Nevertheless, the insurgence of unmodeled
phenomena during the cutting process, such as different axes dynamics or tool run-out,
may reduce the effectiveness of the previously presented real-time monitoring tool.
Thus, a prognostics and health management layer capable of managing the process
variability is here proposed by means of a robust artificial intelligence-based monitoring
tool.

4.1 Introduction

Manufacturing systems require more and more accuracy, flexibility and reliability to
face market demand. Thus, being capable of assessing the tool condition in real-time,
is receiving increasing attention from the production system manufacturers [20]. Tool
condition monitoring (TCM) techniques allow for the detection of worn cutting tools ei-
ther from direct wear measurements (i.e., quantities directly associated to the tool wear
like cutting edge pictures) or from indirect wear measurements (i.e. from quantities un-
derlying information about wear). The development of an indirect TCM solution is the
main focus of this chapter. In general, tool condition monitoring and prognostics strate-
gies belong to four categories [14, 162]: knowledge-based, model-based, statistical-
based and data-driven. Knowledge-based approaches include fuzzy logics and expert
systems, trying to translate experts’ knowledge in rules. Model-based approaches ex-
ploit dynamical models of wear evolution: they typically outperform other methods but
generally they are not available for complex degradation phenomena. Statistical-based
methods allow to identify model parameters from the data, introducing the concept of
confidence of the tool condition estimation. Data-driven approaches build the model
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Chapter 4. Tool wear: robust tool wear monitoring

and estimate the model coefficients directly from data, learning complex correlations
between signals and degradation but, in general, preventing model interpretation.

Dealing with milling operations, the main limitation associated to TCM techniques
based on indirect measurements regard the management of variable regimes or process
conditions. The most used signals in TCM are vibrations (e.g. [34,145]), cutting forces
or torque (like in [34,39,105,145]) and acoustic emissions [145,211]. These quantities
are dependent on process parameters, such as depth of cuts, feed per tooth as well as
lubricating conditions and materials; this represents the main limitation for a consistent
application of TCM approaches in industrial scenarios. Indeed, it would be necessary
to perform run-to-failure tests with all the parameter combinations.

In this chapter, an unsupervised TCM strategy for gradual wear assessment is pro-
posed, based on the online identification of Specific Force Coefficients (SFC) and arti-
ficial intelligence. SFC are estimated from the mechanistic milling model introduced in
chapter 2 and 3, making reference to the Altintas’ model [8]. Mechanistic milling mod-
els include a geometric description of the cutting process, thus, relating undeformed
chip thickness formulation to the cutting forces based on the SFC. Many improvements
have been introduced by researchers to the Altintas model: Kumanchik and Schmitz,
together with Matsumura and Tumura included run-out and teeth trochoidal trajectory
in the model [118, 144]; Wan et al. decomposed the cutting forces in nominal and
run-out effects [199]; Kilic and Altintas developed a general model for chip removal
operations including machine dynamics and run-out [113, 114]; Li et al. included the
contribution of more than one previous teeth in the computation of undeformed chip
thickness [130]; Zhang et al. included minimum chip thickness [230] while Zhou et al.
introduced elastic recovery and variable entry/exit angles [238]; Zhang et al. proposed
the associated average uncut chip thickness formulation [234]; at last, Hajdu et al. pro-
posed a curved uncut chip thickness formulation [76]. In the conceived approach, the
used mechanistic milling model considers variable engagement along the mill axis and
cutter double-phased geometry.

SFC were selected as monitoring features for the tool condition by Nouri et al. [156],
using a method based on mean forces, following the classical approach from [8]. Any-
way, this method required experimental tests with continuously varying feed (not the
typical case of parts production). Recently, methods based on instantaneous forces
were introduced, relaxing such need [54, 74]. Nevertheless, such method brings to a
higher uncertainty of estimated cutting coefficients, both due to machine dynamics,
non-homogeneous materials and imperfect cutting models. Thus, it is necessary to
properly analyse instantaneous SFC data.

In this chapter, a TCM method based on instantaneous SFC mapping is introduced,
not requiring a predefined database of cutting operations for all the cutting combina-
tions. The uncertainty in the estimation of SFC with instantaneous forces is shown to
prevent a correct detection of an out-of-control cutting process. Thus, an unsupervised
clustering technique (growing self-organising maps - GSOM) is introduced to deal with
the estimation variability, adapting the solutions from [37, 142]. The chapter structure
follows: in section 4.2, the developed procedure is explained in details, starting from
the experimental campaign, followed by the algorithm development and the validation
procedures; in section 4.3, the results are presented for two scenarios: optimisation
on the full set of experiments; an industrial portability context. In section 4.4, final
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FX Experimental FX Iden�fica�on

FY Experimental FY Iden�fica�on

(a) Design of Experiments

• Machine Tools
(M5 - Flexi)

• Lubrica�ng Condi�ons
(Conven�onal - Cryogenic)

• Cu�ng speed
( )

(c) Specific Force Coefficients Iden�fica�on

(b) Instantaneous forces regression (d) GSOMs clustering and
self-star�ng control charts

Figure 4.1: Chapter framework: design of experiments in variable conditions (a); the multivariate
regression approach based on instantaneous cutting forces (b-c); the unsupervised clustering of SFC
based on GSOM (Growing Self-Organising Map), where a self-starting control chart is run inside
each GSOM’s region (d).

considerations about the developed approach are drawn to the reader attention.

4.2 Materials and methods

The experiments and the developed methodology explanations are presented following
figure 4.1.

4.2.1 Experimental set-up and campaign

The experimental campaign was conducted on two different machine tools for milling
applications. The first one is a Mandelli M5 machine tool (M5, from now on), fea-
tured by a horizontal spindle system. The other machine tool is a Sigma Flexi FFG
group (Flexi, from now on), featuring a vertical spindle unit. The tooling system was
composed of a Mitsubishi AJX06R203SA20S milling tool, mounting three high-feed
cutting inserts (JOMT06T216ZZER-JL MP9140). The machine tools, M5 and Flexi,
were shown in figure 4.2, together with the mill.

The high-feed cutting inserts are featured by a double-phased cutting edge, thus
made of two consecutive sections with different lead angles (12.5◦ and 24.5◦). Both
the machines were equipped with two lubrication systems: a conventional lubrication
system and a cryogenic system. Measurement set-up consisted of two hardware parts.
From the machine side, the SinuCom NC acquisition system from Siemens was used
to access and store quantities (axis positions, speeds and torques) from the Numeric
Control of the machine tools at a frequency of 250Hz. On the workpiece side, a dy-
namometric plate was installed in order to measure the cutting forces generated during
the milling operations. The dynamometer is a Kistler 9255B, connected to a Kistler
5070A charge amplifier. The cutting forces were acquired through a NI cDAQ-9174,
with a NI 9215 acquisition card with a sampling frequency of 5kHz. For the inspection
of wear on cutters, a Keyence VHX-7000 microscope was used.
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(a) Mandelli M5. (b) Sigma Flexi FFG group.

SFC Es�ma�on

(c) Qualitative example of axes dy-
namics effect on SFC estimates.

Figure 4.2: Adopted machine tools (a-b) and effect of unmodeled terms in specific force coefficients
estimation.

A set of experimental run-to-failure tests was performed, bringing any cutter from
a "new" condition to a fully degraded condition. Run-to-failures were considered as
concluded either when an average flank wear of 300µm or a maximum flank wear of
600µm was reached. The set of experimental tests consisted of five run-to-failures, for
which the variable cutting conditions were reported in table 4.1. The workpiece was a
255x262mm block made of Ti6Al4V , grade 5. The experimentation was performed with
variable cutting conditions, i.e. changing machine tools (M5 and Flexi), cutting speeds
(50m/min, 70m/min and 125m/min) and lubrication set-ups (lubricant and cryogenic).
The axial depth of cut a was set to 0.4mm, the radial depth of cut b was set to 13mm,
while the feed per tooth c was fixed to 0.7mm. A summary of the design of experiments
is reported in figure 4.1a.

Table 4.1: Design of Experiments

Test vc [m/min] n [rpm] v f [mm/min] Lubrication Machine

1 50 796 1671 Cryogenic Flexi
2 70 1114 2340 Cryogenic Flexi
3 70 1114 2340 Lubricant Flexi
4 125 1989 4178 Lubricant M5
5 125 1989 4178 Cryogenic M5

4.2.2 SFC estimation

The conceived approach is based on the estimation of SFC during the milling test by
means of multivariate linear regression on instantaneous forces (fig. 4.2b-c). Since the
geometrical features of the mill cutter are not traditional, it was necessary to use an ad-
equate formulation for the uncut chip thickness. In this case, the reference model is the
same proposed in chapter 3, within section 3.2.2. Thus, the mathematical formulations
for the high-feed tangential (Ft) and radial (Fr) instantaneous cutting forces are here
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reproposed (from eq. 3.12):

Ft = Ktc (Ap −Ac)+Kte l
Fr = Krc (Ap −Ac)+Kre l (4.1)

where Ktc, Kte, Krc and Kre are the SFC; Ap and Ac are the areas underneath the previous
and current tooth passes; l is the chip edge length. Cutting forces in the feed (Fx) and
normal (Fy) directions are obtained by projecting and summing up each cutter contri-
bution, following eq. (3.12). At this point it is possible to formulate the instantaneous
SFC identification procedure.

The SFC estimation β̂ββ
(o)

for the generic o-th package of cutting forces consisting of
3 mill rotation is (from eq. (3.24)):

β̂ββ
(o)

= (X(o)T X(o))−1X(o)T y(o) (4.2)

where the SFC estimated through this formula will be indicated as K̂(o)
tc , K̂(o)

te , K̂(o)
rc

and K̂(o)
re ; X(o) is the design matrix presented in eq. (3.22)-(3.23); y(o) is the vector

containing the instantaneous cutting forces samples.

4.2.3 Growing Self-Organising Maps adaptation

Beside the approach conceived in the previous chapter, where principal component re-
gression was used to reduce the effect of multi-collinearity, an AI approach capable
of mapping similar behaviours of SFC and managing the SFC variability may be ap-
propriate. Furthermore, this may also apply to different sources of variability for the
SFC: the variability in machine dynamics along the cutting axis, tool variable run-outs,
material heterogeneity are just some examples of possible causes for SFC variability
issues. Here, an adaptation of the GSOM is proposed (fig. 4.2d).

The GSOM is an unsupervised neural network that divides the input space in a
variable number of regions (i.e. creating a map), trough the Voronoi tessellation [142].
Each region Vm is defined by a centroid ξξξ m with m = 1,2, ...,M (being M the total
number of regions), eq. (4.3):

Vm = {x : min
m∈[1,M]

∥x−ξξξ m∥} (4.3)

where x is a point belonging to the input space. Thus, a point of the input space belongs
to the region with the nearest centroid. The centroids have the possibility to move
over time, giving the self-organisation property to the map. Differently form Self-
Organising Maps, GSOM are allowed to grow, i.e. to increase the number of centroids
(and consequently regions) as time passes. This makes GSOM a particularly suitable
tool for unsupervised learning scenarios. For the purposes of this thesis, the GSOM
process begins with an initialisation phase. In this phase, the input space for the GSOM
deployment is firstly selected. The input vectors are assumed to be constituted by p
elements (here p = 6), as reported in eq. (4.4):

xT =
{

K̂tc K̂te K̂rc K̂re c φc
}

(4.4)

where c is the feed per tooth and φc is the angle between the feed direction and the
x-axis in the x-y reference frame (i.e. the cutting direction). It has to be notice that
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any other cutting parameter or measured quantity may be included here. Obviously the
more the input space dimension is increased, the slower the algorithm is. The feed per
tooth was included since it may influence the estimation of the SFC (e.g. as assumed by
exponential mechanistic models [25,43,216]), whereas the cutting direction influences
cutting forces due to the different dynamical compliance of the machine tool in the x
and y directions. The initialisation phase includes also the choice relative to the initial
number of regions M (here, M = 1 is selected) and the definition of the associated cen-
troid (here, the first measured input vector is proposed as the centroid initial position).
From here on, the deployment of the GSOM takes place.

A new SFC estimation is available every 3 mill revolutions, as described in chapter
3. Indeed, an input vector x(o) is ready, too. First of all, the GSOM computes the Best
Matching Unit (BMU, eq. (4.5)):

bmu = arg min
m∈[1,M]

∥x(o)−ξξξ
(o−1)
m ∥ (4.5)

bmu represents the index of the region with the nearest centroid to the input vector
(according to the Euclidean distance). Once the BMU is selected, the input vector is
assigned and stored only within the BMU. A first hyper-parameter n of the network is
here defined and referred to as memory factor. n is the number of past input vectors
retained within each region. Once a region collects n input vectors, their mean value
xm and their estimated covariance matrix Sm are computed. In order to decide whether
the GSOM should enter in a growing phase or a learning phase, the squared Maha-
lanobi’s distance d2

M

(
x(o),x(o−1)

bmu

)
between the input vector x(o) and x(o)bmu is computed

(eq. 4.6)):

d2
M

(
x(o),x(o−1)

bmu

)
=
(

x(o)−x(o−1)
bmu

)T (
S(o−1)

bmu

)−1(
x(o)−x(o−1)

bmu

)
(4.6)

where
(

S(o−1)
bmu

)−1
is the inverse of the previously estimated covariance matrix Sm for

the BMU at sample o. Eq. (4.6) represents a measure of how far the new input vec-
tor is from the distribution of the previous n samples. Since matrix Sm may result to
be singular, the generalised inverse is computed. Thus, the eigenvalues (λm,i) and the
eigenvectors (νννm,i) of the matrix Sm are firstly derived such that Smνννm,i = λm,iνννm,i.
Each eigenvalue is then normalised in order to represent the fraction of described vari-
ance by ρm,i =

λm,i
∑i λm,i

. The generalised inverse is then computed trough eq. (4.7):(
S(o−1)

bmu

)−1
= ∑

i,ρm,i ̸=0

1
λm,i

νννm,iννν
T
m,i (4.7)

Based on Mahalanobi’s distance it is possible to generate a prediction region for a
new input vector:

(n− p)n
(n−1)p

d2
M(x(o),µµµ(o−1)

bmu )∼ F (p,n− p) (4.8)

where F (p,n− p) is a Fisher distribution with a numerator having p degrees of free-
dom and a denominator having n− p degrees of freedom. This relation is valid for nor-
mally distributed past input vectors and creates an elliptical region in the input space:
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4.2. Materials and methods

thus, fixing a confidence level α , the associated ellipse squared radius is given by the
F1−al pha,n,n−p quantile. If this assumption is not verified, the ellipse radius can be
tuned, for example through Monte-Carlo approaches. Since in this context, no assump-
tions can be made on the distribution of the past input vectors, the ellipse radius will be
referred to as Rt (growth threshold). The left hand side term in eq. (4.8) will be referred
to as R. Thus, the GSOM is allowed to grow only when R > Rt . This condition, implies
that the input vector is dramatically changed with respect to the previous n, thus repre-
senting a different cutting condition. It is assumed that gradual wear produces a more
progressive evolution of the input vector.

It has to be noticed that eq. (4.6) can be computed only once n input vectors are
stored in the BMU. Thus, the GSOM is allowed to grow only when a significant sample
size is collected within the BMU. If the n samples are not yet collected, or if R ≤ Rt ,
the BMU is only allowed to learn. The learning phase consists of a smoothing process
where the centroid ξξξ bmu is shifted towards the current input vector by eq. (4.9):

ξξξ
(o)
bmu = ξξξ

(o−1)
bmu +η

(
x(o)−ξξξ

(o−1)
bmu

)
(4.9)

where η is a hyper-parameter called learning rate [142] and governs the nervousness of
the centroids.

The described procedure, allows to automatically cluster the input vectors and con-
sequently the SFC as soon as they arrive to the GSOM. From here, a post-process of
the SFC is carried out online, inside each region. When x(o) is assigned to the BMU,
and the growth or learning phases are performed, the computation of two important
synthetic coefficients is carried out following the approach presented in [156]. These
two coefficients (K(o)

t and K(o)
r ) are computed through eq. (4.10):

K(o)
t =

K(o)
tc K(o)

te

KtcKte

K(o)
r =

K(o)
rc K(o)

re

KrcKre

(4.10)

where Ktc, Kte, Krc and Kre are the SFC means computed on the first N input vectors
collected in the BMU. It is then possible to compute a summary indicator K(o), starting
from K(o)

t and K(o)
r :

K(o) =

√(
K(o)

t

)2
+
(

K(o)
r

)2
(4.11)

while K(o)
t and K(o)

r are representative of the effect of tool wear on the tangential and ra-
dial forces, respectively, K(o) carries global wear information [156]. These coefficients
are computed in order to try to reduce the multicollinearity effect previously introduced
in chapter 3.

From now on, the focus is redirected inside the bmu region. Indeed, the index o−1
will refer to the last element of the bmu collected before the o-th one. The moving
range of K(o) is computed through eq. (4.12):

MR(o)
bmu = |K(o)

bmu −K(o−1)
bmu | (4.12)
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Following the processing method proposed in [156], every N samples collected by the
BMU, it is possible to compute a mean moving range which will be the monitored
variable vk,bmu (eq. (4.13)):

vk,bmu =
N

∑
o=1

MR(o)
bmu

N
(4.13)

Thus, each time N samples are collected within a region of the GSOM, a sample for
the monitored variable vk,bmu becomes available. The monitoring process is performed
through a self-starting control chart within each region of the GSOM. It has to be no-
ticed that in the GSOM, only one region per time is activated and monitored. The
control chart is thus reported following chapter 3 and [152]. The running average is
updated once vk,bmu becomes available (eq. (4.14)):

vk,bmu = vk−1,bmu +
vk,bmu − vk−1,bmu

k
(4.14)

The sum of squared deviations becomes (eq.(4.15)):

wk,bmu = wk−1,bmu +
(k−1)(vk,bmu − vk−1,bmu)

2

k
(4.15)

The running standard deviation is updated through eq.(4.16):

sk,bmu =

√
wk,bmu

k−1
(4.16)

The k-th observation undergoes a standardisation performed through eq. (4.17):

Tk,bmu =
vk,bmu − vk−1,bmu

sk−1,bmu
(4.17)

where Tk,bmu is the standardised monitored variable. Following chapter 3 and [152], the
Uk,bmu variable computed through eq. (4.18) is distributed as a standard normal:

Uk,bmu = Φ
−1 [CDFt,k−2

(
ak,bmu Tk,bmu

)]
(4.18)

where Φ−1 (·) is the inverse normal cumulative distribution; CDFt,k−2 (·) is a k − 2

degrees of freedom cumulative t distribution; ak,bmu =
√

k−1
k . A tabular Cusum control

chart is then applied on Uk,bmu.
The accumulation of the two deviations above (C+

k,bmu) and below (C−
k,bmu) the target

value are initialised to be null (C+
0,bmu = 0 and C−

0,bmu = 0) and updated as follows
(eq.(4.19)):

C+
k,bmu = max

[
0,Uk,bmu − (µ0 +Kcc)+C+

k−1,bmu

]
C−

k,bmu = max
[
0,(µ0 −Kcc)−Uk,bmu +C−

k−1,bmu

]
(4.19)

where Kcc is set to 1
2σ0; µ0 and σ0 are the mean and standard deviation of U (µ0 = 0

and σ0 = 1). Then, the BMU is considered out of control when either C+
k,bmu or C−

k,bmu
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overcome the threshold H, which becomes here a GSOM hyper-parameter (typically
set to 5, [152, 156]). If a region goes out-of-control, it is not allowed to return an in-
control output for future samples. Having generated a clustered growing map of SFC
values, it is necessary to define a method for determining the out-of-control state at the
GSOM level (not only at a regional level). Thus, a combination of the out of control
outputs of each region is proposed through eq. (4.20):

∆
(o) =

M(o)

∑
m=1

δ
(o)
m

n(o)m,bmu

o
(4.20)

where ∆(o) is the combined GSOM output indicator at the current o-th sample, varying
between 0 and 1; m is the region index, while M(o) is the current number of regions
in the GSOM; δ

(o)
m is a quantity equal to 0 or 1, if the m-th region is, at the current

sample, in control or out of control, respectively; n(o)m,bmu is the current number of times
that region m was selected as the BMU; o is the current sample number. This indicator
takes into account the control condition of each region through a weighted mean oper-
ation. The weight is heavier if the region is older and more frequented. The GSOM is
considered out-of-control when ∆(o) overcomes the threshold ∆t , which constitutes the
last hyper-parameter of the GSOM.

4.3 Results

The whole algorithm, starting from the SFC estimation up to the GSOM and control
charts, was implemented in Python from scratch, using standard libraries (Numpy, Pan-
das, Scipy and Matplotlib). The analysis were performed on a Dell XPS 15 7590 fea-
turing an Intel® Core™ i7-9750H CPU @ 2.60GHz.

As presented in section 4.2, a set of five run-to-failure tests was run. The instan-
taneous cutting forces of the five tests were used to fit the mechanistic force model
presented in chapter 3. In figure 4.3, the estimations of SFC were presented for the
whole experimental set. The evolution of the SFC based on instantaneous cutting forces
shows some peculiarities. The SFC in fact present the multicollinearity effect1. As ex-
plained in chapter 3, the instantaneous identification process, tends to confuse between
the effects of the four regressors on the predicted output (cutting forces). This implies
a phenomenon in the SFC which is referred to as see-saw effect. This phenomenon
consists in a correlation between the oscillations of the SFC. For instance, when the
estimated Ktc increases, the Kte decreases. Such phenomenon is particularly evident in
tests 2 (fig. 4.3b) and 3 (4.3c). This phenomenon is responsible for a high variabil-
ity and instability of the SFC estimation over time, which hides tool wear influence
on their values. Nevertheless, the oscillations are governed by unmodelled phenomena
that cause cutting forces measurements to vary during workpiece machining. These
phenomena may be related to run-out, cutting temperature, or by the different dynamic
compliance of the machine tool with respect to the cutting directions.

1From a geometrical perspective, multicollinearity is easily explained in a bivariate regression problem. When two regressors
are correlated, during the acquisition of a sample the points tend to be aligned in the 2D input space. Indeed, the regression curve
(a plane) should be fitted to a cloud of points distributed nearly as a line. This means that random errors (points farther from the
line) have a strong influence on the plane orientation, which is defined by the regression coefficients.
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(a) Test 1
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(b) Test 2
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(c) Test 3
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(d) Test 4
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(e) Test 5

Figure 4.3: Specific force coefficients estimation based on instantaneous cutting forces fitting. For each
test, a pair of graph is showed: on the left, the cutting SFC; on the right, edge SFC.

In order to face the undesired variability of the SFC, the GSOM was introduced. A
visual representation of the GSOM application to each experimental test was shown in
fig. 4.4. Figure 4.4 is a qualitative figure, summarising most of the information included
in the GSOM clustering. The hexagonal cells are the representation of the regions
created by the GSOM. In general, the number of generated cells is correlated to the
overall variability of the estimated coefficients and to the number of samples of the test.
In fact, when a sudden difference is found in two consecutive input vectors, it is more
probable that the Mahalanobi’s distance overcomes the growth threshold. Furthermore,
the longer is the test, the higher is the probability of finding high variations in data.
A second level of information is provided by the background colour of the cells. The
figure shows the state of the GSOM map when a GSOM level out of control detection
is observed. Thus, a grey cell background colour stands for an in-control cell at the
end of the detection process; on the contrary, a red background colour represents an
out-of control cell. Test cases number 2 and 3 present GSOM maps, where all the
cells are out-of-control at the end of the process; whereas the remaining tests show also
in-control cells. This behaviour is associated to the fact that the GSOM level out-of-
control indicator ∆(o) returns a detection when a ∆t threshold is overcame. ∆(o) varies
between 0 and 1. Being ∆t less than 1 (in this case, it is set to 0.7), it is not necessary
that all the cells are out-of-control. Another useful point of view is represented by the
scatter plots drawn inside any cell. These plots represent the pairs of Kr and Kt summary
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(a) Test 1 (b) Test 2

(c) Test 3

(d) Test 4

(e) Test 5

Figure 4.4: Representation of the GSOM maps at the GSOM level out of control condition. Regions are
represented by hexagonal cells. Grey background stands for in-control cells, red for out-of-control
cells. 2D scatter plots represent the evolutions of the Kr and Kt coefficients in a normalised fashion.
The colour represents the sample number from the first (blue) to the last (red).
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Chapter 4. Tool wear: robust tool wear monitoring

coefficients collected in the associated cell. The two coefficients are normalised and
centred in the cell, thus no absolute values can be retrieved from the graph. At the same
time, the scatter plots are drawn with progressive colours: blue points represent samples
from the early stages of the cutting tool life, while red points refer to samples near the
GSOM out-of-control detection. The scatter plots provide two levels of information.
The first level is related to the efficacy of the region in describing the wear degradation.
This can be noticed by a shift of the distribution of the two coefficients from the initial
phases (blue), towards the cutting tool end-of-life (red). A strong separation within
the data points represents a clear correlation with tool wear. This is also supported by
the fact that, by construction, a cell can represent only a gradual progression of the
coefficients. In general, diverging distribution of coefficients correlate to out-of-control
cells, as expected. The frequency at which a cell is chosen as BMU represents a second
level of information. The amount of times in which the cell was chosen as BMU is
representative of the experience of the cell. In fact, frequently visited cells may be
older than others, or more representative than other cells. It is important to notice that
the ∆(o) coefficient was thought to give more attention to cells with more experience.
In this way, false positive and false negative cells have a lower effect on the overall
performance of the GSOM. Some cells that present a meaningful trend of coefficients
may be in-control because a significant number of expert cells already detected an out-
of-control condition. The opposite case occurs in figure 4.4b, where the cell on top
seems not to highlight a relevant shift in the coefficients, but it is still supported by
expert out-of-control cells.

The results presented in the previous paragraph where obtained after an optimisation
process of the GSOM hyper-parameters. More specifically, the results were optimised
with respect to an average flank wear of 200µm. This choice was related to the chosen
cutting conditions following ISO standards indications [93] and scientific literature [4].
First of all, Ti6Al4V is a hard-to-cut titanium alloy. Cryogenic lubrication is a relatively
new cooling technology, still more unstable than conventional media. Furthermore,
some tests were performed at very high cutting speed. All these aspects support a more
conservative choice of the flank wear threshold. The optimisation results are reported
according to two different industrial scenarios: the first one, used for the above reported
figures represents the optimisation of the approach over the full set of experiments; the
second one represents the case where the solution is optimised for a machine tool and
ported to another one.

4.3.1 Full set optimisation

As previously explained, the proposed GSOM algorithm is a completely unsupervised
solution for automatically clustering high variability SFC estimations and detecting the
correct end-of-life of the cutting tool. Here, the hyper-parameters of the GSOM are
optimised in order to detect a tool with 200µm mean flank wear. An optimisation
procedure over the full set of experimental run-to-failures is performed and the pre-
diction error is measured on the full dataset. The optimisation method was performed
through a two phases grid-search procedure [34]. A grid of parameters was selected
and fully explored in order to reduce the searching space. A second grid was deter-
mined to find the combination leading to the minimum root mean squared percentage
error (RMSPE, [22]). The hyper-parameter combinations of the grids are reported in
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Table 4.2: Grid-search hyper-parameters combinations for the two steps of optimisation. The optimisa-
tion algorithm tests all the combinations of hyper-parameter values.

η Rt n N H ∆t

1) 0.050, 0.075, 0.100 F (6,n−6), 6, 7, 8 10, 20, 50 10, 15, 30 3, 5, 10 0.3, 0.5, 0.7
2) 0.035, 0.045, 0.050 7, 8 10, 20, 50 30, 35 5, 7, 10 0.5, 0.6, 0.7

Table 4.3: Relative percentage errors on the run-to-failure. Both scenarios are compared between the
optimised GSOM and the optimised reference control chart (CC).

Optimisation kind Test 1 Test 2 Test 3 Test 4 Test 5

Full set (GSOM) -23.0% -5.2% -2.6% -9.1% 14.9%
Full set (CC) -84.7% -35.5% -49.6% -51.1% -47.0%

Portability (GSOM) -3.9% (TR) 1.77% (TR) -2.8% (TR) -40.6% (TE) -27.1% (TE)
Portability (CC) -86.3% (TR) 12.0% (TR) -52.6% (TR) -51.6% (TE) -75.2% (TE)

table 4.2. The grid-search optimisation procedure consists in the evaluation of the full
set of hyper-parameter combinations. The combination with the minimum RMSPE is
chosen as the best. For this scenario, the best combination was: η = 0.045, Rt = 7,
n = 50, N = 35, H = 7 and ∆t = 0.7. The algorithm was capable of predicting the end-
of-life time with a RMSPE of 13.2%, with a tendency to underestimate the end-of-life
of cutting tools. The relative percentage errors for the single tests are instead reported
in the first row of table 4.3. In this scenario, the GSOM was capable to predict well
almost all the tests. Only the first and last test presented a relative percentage error
higher than 10%. The last cutting test remains the worst one, being overestimated with
a relatively high error. Nevertheless, it must be underlined that the algorithm performed
well despite the different cutting conditions of the tests. Furthermore, the solution is
completely unsupervised, and the map is self generated along the evolution of each test.
The results of the conceived approach were compared to the control chart presented in
chapter 3, applied to the SFC estimated with multivariate linear regression, in order to
make them comparable. The control chart was not applied with standard threshold and
15 samples as averaging dimension, as presented in chapter 3, but an optimisation of
the two parameters was performed. Here, the control chart was optimised with respect
to the full set of tests. The prediction results for the reference control chart showed an
underestimation behaviour with a RMSPE of 56.1%. The predictions improvement of
the GSOM were not negligible. Furthermore, in table 4.3 it is possible to compare the
two algorithms on each test, by looking at the first two rows of the table. The GSOM
improved the prediction performances on every test, even if on Test 5 the GSOM leads
to an overestimation of the cutting tool life.

4.3.2 Portability scenario optimisation

This second scenario faces the case where the conceived solution is firstly optimised
on the tests performed on a single machine tool (Flexi) and then, the algorithm needs
to be used also for another machine tool. The proposed scenario allows to evaluate
the portability of the conceived solution. The phases for the algorithm optimisation are
the same and the associated hyper-parameter combinations can be found in table 4.2.
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In this case, the algorithm is optimised in order to minimise the RMSPE on the first
three run-to-failures, run on the Flexi machine tool. The performances of the algorithm
are then tested on the fourth and fifth run-to-failures, performed on the M5 machine
tool. The optimal combination of parameters was: η = 0.035, Rt = 7, n = 50, N = 30,
H = 10 and ∆t = 0.7. The RMSPE on the optimised set of tests was found to be
2.9%, with a tendency to underestimate the cutting tool end-of-life. When testing the
algorithm on the M5 set of run-to-failures, the predictions were underestimating the
end-of-life with a RMSPE of 34.5%. The relative percentage errors for this scenario
were reported in the third row of table 4.3. In this context, a really high performance
was reached on the first three experiments. The algorithm was accurate with negligible
errors. Of course, when testing the algorithm on unseen run-to-failures, the prediction
errors rose. The algorithm underestimated both the tests. Nevertheless, the last two tests
consisted of a double change in the cutting parameters. First of all, the machine tool was
changed; secondly the cutting speed was almost doubled. These two changes increased
the complexity of the estimations. Furthermore the optimisation set was constituted
by a low number of tests. As for the previous scenario, the results of the conceived
approach were compared to the control chart presented in chapter 3. The control chart
was optimised with respect to the Flexi tests and tested on the M5 run-to-failures. An
underestimation with RMSPE of 58.8% and 64.5 were obtained, respectively. Thus,
GSOM led to dramatical improvements of the predictions. In table 4.3 the algorithm
performances were compared on each test, by looking at the third and fourth rows.
The GSOM improved the prediction performances on every test, both on Flexi and M5
machine tool.

4.4 Conclusions

In this chapter, a Growing-self Organising Map (GSOM) algorithm was introduced in
order to perform tool condition monitoring in an unsupervised learning scenario. The
algorithm was capable of managing the variability within the specific force coefficients
(SFC) estimation, generated from the multicollinearity phenomenon and induced by
unpredicted sources of variability, like machine tools dynamics dependent on the cut-
ting direction or run-out. The conceived approach allowed to:

• cluster the SFC, by the automatic creation of regions with a similar behaviour of
the coefficients. Thus, each region tends to monitor a gradual evolution of the
SFC, while separating fast and sudden variations in their estimations.

• monitor the tool wear according to a voting system. Control charts are run inside
any region and each of them contributes to a combined out-of-control indicator.
The weight associated to each region is based on the region experience, i.e. based
on its rate of being chosen as the best matching unit and the time of its creation.
The voting system gave stronger weights to expert regions.

• outperform the prediction results of an optimised version of the chapter 3 control
chart, in two different scenarios. The first scenario analysed the performances of
the GSOM and the reference approach when optimised on the full set of available
run-to-failures. The GSOM reached a RMSPE of 13.2%, generally underestimat-
ing the tool life, whereas the optimised control chart was capable to reach only
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a 56.1% RMSPE, highlighting the improvements introduced by the algorithm. A
second scenario tested the portability of the algorithm. Both the approaches were
optimised on a machine tool and tested on run-to-failures performed on a differ-
ent one. The GSOM RMSPE were of 2.9% and 34.5%, respectively, whereas the
control chart application resulted in 58.8% and 64.5.
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CHAPTER5
Tool wear: hybrid adaptive direct tool wear

prognosis

In previous chapters a robust tool monitoring approach based on process modelling was
conceived. In this chapter, a hybrid prognosis tool is formulated in order to accomplish
the estimation of cutting tool remaining useful life. Since cutting speed, and more gen-
erally process parameters, influences the rate of tool degradation, an adaptive prognosis
strategy is presented on the basis of flank wear measurements. The proposed algorithm
could also be adapted to integrate physical features like specific force coefficients with
direct wear measurements.

5.1 Introduction

Digital manufacturing represents the synergy of production processes and data ac-
quisition systems [147, 205]. Acquired data can be employed to support different
phases of the production process. Prognostics and Health Management (PHM) is
one of these. PHM consists in the monitoring, diagnosis and prognosis of machine
faults [14, 20, 162]. Monitoring consists in the detection of abnormal states, i.e. devia-
tions from normal operating conditions; diagnosis reflects in the classification of such
deviations, performing the isolation and quantification of the abnormal states; at last,
prognosis performs the prediction of abnormal states evolution up to a total failure [14].

Indeed, the main goal of prognosis is to predict the Remaining Useful Life (RUL) of
faulty components, as well as the estimation of its probability density function (PDF)
and thus, its uncertainty bounds [96]. The prediction of faults is beneficial both in
terms of cost savings on materials and tools, but most importantly it allows to decrease
maintenance time. When dealing with cutting tools, the estimation of failure before
their occurrences may end up in saving up to 40% of maintenance costs [185] and about
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20% of downtimes of machine tools [121, 227], responsible for production losses.
The focus of this chapter is on the prognostics of cutting tools for turning operations.

Turning is a widespread technology that allow to produce axial symmetric solids of
rotation. The turning process is a subtractive manufacturing technique which has been
widely studied and modelled in the last decades. However, the possibility of developing
adaptive strategies to estimate the remaining useful life of tools is a challenging task
that has not been investigated deeply enough yet. Tool wear is a complex stochastic
phenomenon [233]. In order to make forecasts of its evolution, it is necessary to define
a significant indicator that represents it. Flank wear measurement is the most relevant
and common degradation indicator for cutting tools [119, 156].

Two main branches of research deal with the prognosis of cutting tool wear: namely,
indirect and direct tool wear approaches [60]. Indirect methods consist in the evalua-
tion of tool wear degradation through the use of cutting process quantities. The com-
monly adopted variables include axis torque or current [104], vibrations [194], acoustic
emissions [211] and cutting forces [156]. Main advantage of most indirect estimation
techniques is that they could be developed to work in real-time, such that while ma-
chine is running, an updated wear indicator is available. However, all indirect methods
are limited by the fact that there are lot of other effects greater in magnitude than tool
wear. This makes indirect observation method still immature for general cutting con-
ditions [14], even if it is possible to find some research works that try to deal with the
normalisation of indirect quantities with respect to cutting parameters [47,156]. On the
other hand, direct measurement of flank wear is more robust against the cutting process
variability. Direct inspection could be obtained through point wise scanning, profilo-
metric acquisitions [151] or by 2D/3D calibrated pictures analysis [55,139,151]. Direct
methods still have some shortcomings. Firstly, uncertainties are related to the accuracy
of the inspection system and the post-processing of the measurements. Secondly, in
general machining processes should be stopped and the cutting tool exposed to the in-
spection system in order to measure the tool-tip status. Nevertheless, the inspection
task could be performed at periodic stops in masked time, for instance at tool changes,
or triggered by user defined events according to optimised production strategies.

When dealing with prognosis approaches, several researches tried to apply machine
learning or data-driven methods for the prediction of tool wear. Cheng et al. applied
Support Vector Regression in order to predict flank wear evolution, starting from cut-
ting forces, vibrational signals and machined surface pictures [34]. Guo et al. proposed
a DenseNet algorithm in order to correlate flank wear to cutting forces, vibrations and
acoustic emission signals. A multi-step encoder-decoder system predicted the short-
term and long-term evolution of the flank wear [73]. A CNN was proposed by Zhang
et al. to predict the RUL of cutting tools starting from current, vibrations and acoustic
emission signals [227]. Wang et al. conceived a hybrid methodology based on machine
learning capable of integrating heterogeneous data (process parameters, power profiles
and tool wear images). Wear severity was assessed by a convolutional neural network,
while RUL prediction were performed by a recurrent neural network [207]. Liu et al.
proposed a cutting force model including tool wear information. The model-based ap-
proach could be used for tool flank predictions through cutting force and temperature
measurements [140]. From statistical-based approaches, Yu et al. applied a weighted
HMM framework for the prediction of tool flank wear, based on vibrations and acous-
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tic emission signals [220]. Zhang et al. proposed a particle filter scenario including a
linear degradation model. Its parameters are updated online from in-process vibrational
measurements [224]. Scientific works were mapped in table 5.1, according to several
classes, highlighting some useful aspects of the proposed methodologies like the avail-
ability of RUL PDF, the number of needed run-to-failures, and algorithm domain.

Despite the amount of research works on tool prognostics, several challenges are
common between them:

• need of several run-to-failure experiments to train machine learning or data-driven
models

• robustness of the solution with respect to cutting parameters

• prediction of the RUL PDF is missing

• algorithms are static, not updated through on-line measurements

Having in mind these challenges, a direct wear prognostic approach is here conceived.
The solution is based on a hybrid adaptive algorithm, fusing the statistical framework
with the data-driven world. In fact, a particle filter state observer is used to adapt on-
line the weights and biases of a multi-layer perceptron, which maps the flank wear
degradation curve with respect to time. The algorithm is assumed to take as input flank
wear measurements, typical of direct tool condition monitoring systems.

The structure of this chapter is organised as follows: in section 5.2, the experimental
set-up and campaign are firstly described, then the conceived adaptive and hybrid prog-
nosis methodology is formulated, together with the description of the used performance
metrics. In section 5.3 the analysis of the experimental data is reported together with
its discussion. At last, conclusions are drawn in section 5.4.

5.2 Materials and methods

In this section, the experimental set-up and campaign are firstly explained; then all the
elements constituting the conceived approach and the computed prognostics metrics are
described, following the workflow of figure 5.1.

5.2.1 Experimental set-up and campaign

The experimental campaign consisted of a set of five run-to-failures in turning appli-
cations. The tests were performed on a SOMAB UNIMAB 400 lathe, equipped with
an analogical numerical control. A carbide tool with a lead angle of 95◦ was adopted
(ISO standard code: TNMG220404-M5 5625, tool radius equal to rε = 0.4mm, rake
angle of 13◦ and a relief angle equal to 0◦, with Al2O3 −TiCN coatings) and fixed on
tool holder, ISO code MTJNL2525M22. Hardened and tempered steel bars of UNI
39NiCrMo3 were used to perform the wear tests. Run-to-failures were performed with
conventional lubrication, using cutting fluid (oil-water emulsion with 5% of HOCUT
795 SC), adduced through nozzle on the cutting zone, in order to reproduce realistic
industrial production scenarios.

Experimental tests were performed according to a full factorial design with one
central point and no replicates (thus one test per corner and a central point test), fol-
lowing [153]. Two factors were chosen, namely cutting speed and feed per revolution.
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Figure 5.1: Workflow for the conceived methodology. From tool pictures up to the estimation of the
cutting tool Remaining Useful Life.

Table 5.2: Run-to-failure turning tests process parameters: cutting speed (vc) and feed rate ( f ) are the
two factors of the full-factorial design. Tool life (TL) is also reported.

ID vc [m/min] f [mm/turn] TL [s]

1 220 0.1 765.6
2 220 0.3 345.6
3 190 0.2 798.2
4 160 0.1 2736.5
5 160 0.3 1062.1

These two parameters were chosen since they have strong influences on the cutting
tool lives [107]. The factor levels for the run-to-failures were reported in table 5.2.
The radial depth of cut was set to 2mm. Direct measurement of tool flank wear were
performed through recurrent visual inspection. Starting from calibrated macro pictures
of cutting edges, the VB was computed with a manual procedure. Anyway, this step
doesn’t limit the application of the conceived prognostic approach, since similar results
can be obtained through machine vision algorithms, as in [55, 139, 151]. It is impor-
tant to have high quality pictures of clean cutting edges and properly define a region of
interest. Then, thresholding, contouring, aligning and measuring should be performed.
A Stereomicroscope Optika SZN-T with Motic SMZ-168T support was used to take
flank wear width (VB) images during the cutting tests. The end-of-life of a cutting
edge was set to a V B = 0.15mm. The corresponding end-of-life-time of the tool (TL)
was reported in table 5.2 (fig. 5.2). The threshold was lower than what is suggested by
ISO 3685 [93]. Anyway, the threshold was chosen in order to avoid too high dispersion
of the results in terms of insert duration, seen in preliminary tests. This choice was
taken to limit the experimental effort, too. In fact, carrying out many experiments up to
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Figure 5.2: Graphical representation of the design of experiments and tool life as a function of the
selected cutting parameters.

Figure 5.3: Main quantities involved in the flank wear computation.

a VB of 0.3mm would have required too many machining tool hours, considering the
fact that flank wear measurements take an amount of time comparable or higher than
the effective machining time [211]. Optimal cutting speeds, feed rates were adopted
under conventional lubrication of steel cutting, which would have lead to unsustainable
experimental costs. The computation of the VB is performed following international
standards [93] (fig. 5.3). [t] As can be seen from figure 5.3, the flank wear width deter-
mination starts from a set of nV B local measurements V Bv. The region of interest starts
at a distance from the edge equal to the tool radius. Each measurements accounts for
a differential width ∆lv. Thus, the average flank wear VB can be computed over the
region of interest by eq. (5.1):

V B =
1

nV B

nV B

∑
v=1

V Bv∆lv (5.1)

5.2.2 PF-MLP definition

In this section, the hybrid (statistical-based and data-driven) adaptive approach for tool
wear prognosis is presented. The solution is based on a combination of particle filter
(PF) state observer, to set-up a bayesian update framework for a set of multi-layer per-
ceptrons (MLP). The approach (in similar fashions) was investigated in other applica-
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Figure 5.4: Proposed MLP architecture. The input neuron propagates time values. The hidden layer
features three neurons, while VB is the result of the output layer.

tions (such as crack growth prediction and lithium-ion batteries prognostics), highlight-
ing its interesting adaptive capabilities [27,175]. Furthermore, this algorithm allows for
the prediction of the cutting tool RUL PDF, required by the international standards [96]
but rarely available on state-of-art approaches. In order to present the approach it is
necessary to start with the description of the MLP.

Multi-layer Perceptron

In the conceived scheme, the MLP represents a non-linear mapping of the VB evolution
with respect to time. MLP was chosen due to its demonstrated universal fitting capabil-
ities [41] but other functions (such as polynomials) may be used. The MLP features a
brain-inspired architecture, with an input layer, at least one hidden layer and an output
layer. In this case, the complexity of the network is reduced at minimum: the input
and output layers are composed of one single neuron; only one hidden layer is present
composed of three neurons. The structure and nomenclature of the MLP is shown in
figure 5.4. MLP has a feed-forward structure, i.e. the input of the network (time t)
is propagated through the layers, undergoing several processing operations. t may be
also seen as the output of the input layer. The net input n(l)i of a neuron i in layer l is
computed through eq. (5.2):

n(l)i =
n j

∑
j=1

(
w(l)

i j o(l−1)
j +b(l)i

)
(5.2)

where j indicates the neuron of the preceding layer l −1; w(l)
i j is the weight of layer l,

that multiplies the output o(l−1)
j of the previous layer l − 1; bi is the i-th neuron bias.

Then, the net input is passed through the activation function g(i)(·) obtaining the layer
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output o(l)i (eq. (5.3)):
o(l)i = g(l)(n(l)i ) (5.3)

In the conceived scheme two different activation functions are used, depending on the
layer. In the hidden layer, Elliot-sigmoid function (eq. (5.4)) was used [52]:

g(1)(u′) =
u′

1+ |u′|
(5.4)

where u′ is a generic variable. In the output layer a pure linear (i.e., identity function)
was used instead. Thus, considering the fact that first layer input (and output) is time t
and the output of the last layer is the flank wear VB, the MLP non-linear function can
be written as eq. (5.5):

V B(t) =
3

∑
j=1

w(2)
1 j ·g

(1)(w(1)
j1 t +b(1)j )+b(2)1 (5.5)

Eq. (5.5) represents a non-linear parametric function of time, whose parameters are the
weights and biases of the MLP. Weights and biases are randomly initialised. During the
application of the algorithm, these parameters will be trained upon a single tool wear
degradation curve.

Particle Filter

PF is a state observer able to relax all the Kalman Filter main assumptions. In Kalman
Filter the distributional properties of the state of a dynamical system is assumed to
follow a Gaussian distribution; the process disturbances and measurement noise are
assumed to follow a Gaussian distribution, too; the system dynamics and observa-
tion processes are assumed to be linear [14, 54, 64]. PF removes these assumptions
allowing for non-linear dynamical systems and non-gaussian states, disturbances and
noises [14, 203]. In the proposed prognostics scheme, the MLP describes a possible
degradation curve of the tool (describing the flank wear evolution in time). Although
the degradation curve is initialised upon a historical run-to-failure, it may not represent
the actual degradation of the current cutting tool. Thus, the MLP architecture should be
updated with online measurements of the cutting tool flank wear. In order to perform
such operation, the weights and biases are thus assumed to be states of a dynamical
system, capable of evolving during time (eq. (5.6)):

xk+1 = xk +ωωωk (5.6)

where the index k represents the discrete time step; xk is the state vector at the current
discrete time step, containing the whole set of weight and biases of the MLP; ωωωk is a
vector of random variables assumed to have variance proportional to the corresponding
weight or bias ωωωk ∼ N (0,ΣΣΣkkk); where the s-th element of ΣΣΣkkk diagonal is Q · xk,s; Q
represents disturbance intensity. Q is a hyper-parameter in PF framework: it should be
large enough to explore all the possible degradation curves, but limited in order not to
generate unrealistic degradation curves. Eq. (5.6) is referred to as process equation.

The observation process should associate the state vector to the system measure-
ments, i.e. in this case, flank wear. Thus, the observation equation is represented by
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the MLP function (eq. (5.5)). The MLP function will be now referred to as h in the
observation equation (eq. (5.7)):

yk = h(tk,xk)+ηk (5.7)

where yk is the predicted flank wear through MLP; tk is the current cutting time; ηk is
the measurement noise, following a normal distribution with null mean and standard
deviation equal to R.

Objective of the PF is the description of the posterior PDF of the MLP parameters,
conditioned on the observed data p(xk|y0:k) [27].

The PDF of the MLP parameters is approximated by a set of Np samples, referred
as particles. In practice, a particle, represents a realisation of the stochastic evolution
of a MLP. Thus, in the PF framework, Np MLP are generated, each of them creating a
different map between time and VB. A PF iteration consists in two subsequent phases:
a prediction phase and an update phase. The prediction phase consists in the estima-
tion of the new particle values according to the process equation. For each particle, a
realisation of the process disturbances is computed to explore the MLP feasible maps.
Indeed, at the end of this step a full set of new MLP is obtained. This step doesn’t make
any use of information or measurement from the field, thus the new set of particles
represents the "a priori" distribution of the MLP parameters.

The update phase is implemented to improve the PDF of the particles. A likelihood
equation L(y0:k|xk) is computed for each particle by keeping in consideration all the
measurements up to the discrete time step k (eq. (5.8)):

L(y0:k|xk) = exp

(
− 1

2R2

k

∑
z=0

(
yz −h(tz,xz)

2)) (5.8)

where z is the index used to represent each discrete time step up to k. This equation
expresses the likelihood of observing the measured VB curve, depending on the state xk
described by a particle. Thus, the likelihood help us to determine how much should we
trust that particular particle (i.e, that particular MLP). Indeed, a weight uk,s is given to a
particle s, equal to the associated measurement likelihood. Then, each particle weight
is normalised such that they sum up to 1 (eq. (5.9)):

uk,s =
L(y0:k|xk,s)

∑
Np
s=1 L(y0:k|xk,s)

(5.9)

where xk,s is the state represented by particle s. Particle weights represent a probability
density function for particles, since they are now summing up to 1. The resampling
stage is then performed: the cumulative density function (CDF) of particle weights Uk,s
is generated through eq. (5.10):

Uk,s =
s

∑
z′=1

uk,s (5.10)

where index z′ is used here to represent each particle up to the s-th one. A new set
of particles is obtained from the CDF Uk,s, through Monte-Carlo sampling. Monte-
Carlo resampling stage works as follows: a random number r is drawn from a random
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uniform distribution U (0;1]; the s-th particle for which Uk,s overcomes r is chosen; the
extraction of r and the identification of the particle to be redrawn are repeated until a
full set of new particles is extracted. The new set of particles represents the discrete
approximation of the posterior PDF p(xk|y0:k) of the MLP parameters. At this point
the PF iteration is finished. The prediction and update stages are repeated every time a
new flank wear measurement is available.

Cutting tool RUL prediction

At each time instant tk, the diagnosis phase can be performed after the update phase.
Each particle provides the estimate for the cutting tool flank wear V Bk,s, by evaluating
the associated MLP curve at tk. Thus, the full set of particles provides the approximated
posterior PDF of the flank wear p(V Bk|y0:k). In order to realise the final objective of
PHM, prognosis must be integrated. With this aim a threshold value V Bt for the limit
flank wear was set to 120µm. This choice was taken in order to guarantee MLPs to de-
scribe increasing fitting curves above the threshold. In fact, MLP fitting curves are sum-
mations of sigmoid-like functions which have a horizontal asymptote. If MLP curves
do not overcome the threshold, infinite RUL would be predicted, causing convergence
problems. In an industrial application scenario, the training test should be run to reach
a VB slightly higher with respect to the desired limit threshold for the tool. At every
discrete time step k, after the update phase, it is possible to compute the estimated time
of end-of-life tEoL,k,s of each particle s. This is performed by evaluating the associated
MLP function for future values of time, until the predicted VB intersects the threshold
line. The time at which the MLP non-linear map crosses the threshold gives the tEoL,k,s
estimate. The set of estimated end-of-life times, constitutes the approximated proba-
bility density function p(tEoL,k|y0:k). RUL is computed as the difference between the
time of end-of-life estimate tEoL,k,s and the prediction instant tk, for every particle. As
for the time of end-of-life, the set of RUL estimations gives the approximated posterior
probability p(RULk|y0:k).

5.2.3 Prognostic metrics

Prognostics metrics are a valuable tool for measuring the performances of a prognosis
approach. In addition to quantitative assessment they also offer a comprehensive visual
perspective that can be used in designing the prognostic system. Furthermore, they
allow to compare the performances of an algorithm with respect to others. Here, three
main prognostics metrics [173] are used to analyse the behaviour of the conceived
approach on the experimental tests and to compare the performances across the cases.

The first metric is the absolute prediction error (APE). APE is computed as the
absolute value of the difference between true RUL and the expected value of the ap-
proximated posterior RUL PDF. APE is here computed as a function of the normalised
cutting tool life (λ ). APE formula is reported in equation (5.11):

APE(λ ) = |RULtrue −E[RULk]| (5.11)

where λ = tk/tEoL,true. APE furnishes a direct measure of the RUL prediction error
during the cutting tests. Here, it is used in place of relative accuracy, since RULtrue
tends to zero for λ close to 1, leading by definition to a null accuracy. The second
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Table 5.3: Chosen hyper-parameters for the conceived approach: number of MLP corresponds to the
number of particles; number of neurons per layer; R is the measurement noise standard deviation; Q
is the process disturbances intensity; V Bt is the prognosis threshold; α is the admissible prediction
error; β is the minimum acceptable probability mass.

No. MLP [−] MLP neurons [−] R [−] Q [−] V Bt [µm] α [−] β [−]

250 1-3-1 3 10-2 120 0.2 0.2

metric of interest is the prognostics horizon (PH) [173]. PH has been proposed in two
fashions. Here, the probabilistic one is computed1. PH is defined by equation (5.12):

PH = tEoL,true − tkαβ
(5.12)

where tkαβ
is defined as:

tkαβ
= min

k

∫
α+

α−
p(RULk,y0:k)dt ≥ β (5.13)

where α− = tEoL,true(1−α) and α+ = tEoL,true(1+α), with α representing the al-
lowable prediction error; β is the minimum admissible probability mass. Here, PH is
normalised with respect to the tEoL,true. Indeed, PH represents the percentage of tool
life at which the required prognostics accuracy is met. The higher PH is, the more time
is available to intervene before the tool failure.

The last prognosis metric is convergence (C). Convergence is a meta-metric quanti-
fying the speed of decay of another prognosis metric [173]. Here, the convergence of
the APE is proposed. It is defined by equation (5.14):

CAPE =
√

APE2
x +APE2

y (5.14)

where APEx and APEy are the x and y coordinates of the centre of mass of the area
under the APE(λ ) curve. CAPE thus represents the euclidean distance from the origin
of such centre of mass. The closer is this point with respect to the origin, the faster is
the convergence of its metric (i.e., APE). Convergence is effective only for decreasing
metrics [173].

5.3 Results and discussion

Results are presented in two phases. In a first section, the adaptability of the conceived
approach, RUL estimation and metrics will be discussed for a single train-test run-to-
failures combination. The reference case is when the MLP is initialised on test 5 and
the algorithm is applied for cutting tool prognosis on test 2. A second section will
regard the discussion of the whole set of results, thus all the combination of train and
test run-to-failures. In both the cases, the hyper-parameters selected for the algorithm
are reported in table 5.3.

1This version of PH can be adopted only for prognosis algorithms providing PDF estimates of the RUL. A deterministic version
of PH is described in [173] for algorithms providing only RUL point estimates, too.
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(a) Prediction at 10% of true end-of-life.

0 50 100 150 200 250 300 350 400 450

Cutting time [s]

0

20

40

60

80

100

120

V
B

 [7
 m

]

MLP
Train
Test not av.
Test av.
Threshold

(b) Prediction at 50% of true end-of-life.
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(c) Prediction at 90% of true end-of-life.
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Figure 5.5: RUL predictions when training on test 5, and testing on test 2. (a), (b) and (c) figures
represent the adaptability of the prognosis approach. Grey diamond points represent the training
data for MLP initialisation. Green circles are the already available flank measurements. Blue points
are the upcoming experimental points. Red line is the end-of-life threshold. Grey dotted lines are the
MLP non-linear functions generated by each particle. (d) represents the evolution of the estimated
RUL (blue solid line) and associated confidence bounds (dashed blue line), compared to the true RUL
(solid red line). Red dotted lines describe the allowable prediction bounds.

5.3.1 Single train-test combination

In this section, the performances of the algorithm and the prognostics metrics are anal-
ysed for a reference combination of train-test run-to-failures. More specifically, the
train test is 5 and the test run-to-failure is 2. This particular combination, allows to
clearly identify the adaptivity characteristic of the conceived approach and to clearly
discuss the adopted metrics. The discussion of this section makes reference to figure
5.5. The MLP configuration and evolution along the run-to-failure, as a consequence
of the PF update, are presented at three different instants, i.e. 10% (fig. 5.5a), 50%
(fig. 5.5b) and 90% (fig. 5.5c) of the testing cutting tool life. This choice was taken
for conciseness reasons, while keeping enough information content. First of all, in fig.
5.5a, it is possible to see the difference between the training and test flank wear evo-
lutions (diamonds and circular data points, respectively). Such difference is associated
to the cutting parameters adopted for the cutting tests: training test 5 was performed at
a high feed rate and low cutting speed, whereas test 2 was performed at high cutting
speed and high feed rate. As expected run-to-failure 2 is faster than 5. At the top of the
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graph, a solid red line represents the selected prognosis threshold, thus the flank wear
forecast objective for prognosis. Diamond grey points were used to initially train the
MLP. Thus, in a practical scenario, diamond data points constitute the only historical
run-to-failure needed to train and run the approach. Green circles represent the data
points received by PF from the field up to the current prediction time. As long as the
run-to-failure goes on, more experimental data (blue points) will become available. The
grey dotted lines show the MLP curves associated to the particle distributions. 10% of
cutting tool life, represents a condition in which the algorithm is still very confident
about the initialisation phase. Thus, the set of MLP faithfully pursuit the training run-
to-failure data. Nevertheless, the process equation disturbances are already trying to
further explore the MLP fitting space. Being the prediction time so early in the tool
life, the spread of the MLP curves at the threshold flank wear is quite big. By sec-
tioning the MLP curves with a vertical line at the prediction time (corresponding to
the last green circle), and representing their intersections through a histogram, would
provide the graphical representation of the approximated posterior PDF of flank wear
p(V Bk|y0:k). The same can be performed with the intersection of MLP curves with the
threshold line, providing a visual representation of estimated RUL PDF at the current
prediction time p(RULk|y0:k). As long as time passes, more experimental data are ex-
ploited by the algorithm to adapt to the current tool degradation rate. In fact, at 50% of
tool life (5.5b), the MLP curves are already laying on the experimental data, better rep-
resenting the new degradation rate of the tool. Nevertheless, the cutting tool will face a
sudden increase in the speed of degradation, as described by future experimental data
(blue points). The algorithm is thus underestimating cutting tool RUL. It must be noted
that the algorithm started growing more confident about its predictions, allowing for
more similar MLP curves. Near the end-of-life of the cutting tool (5.5c), the algorithm
is fully adapted to the tool wear trend and correctly predicts its RUL. This evolving
behaviour of the algorithm is summarised in figure 5.5d. Here, main quantities related
to p(RULk|y0:k) are drawn as a function of k: namely, RUL estimate expected value
(blue solid line), 2.5% and 97.5% percentiles, representing the 95% confidence bounds
of the predictions (dashed blue lines). Their evolution is compared to the ground truth
(true RUL red dash-dot line). Of course, the same behaviour explained above can be
found here. An initial low confidence overestimating phase can be found up to 50s of
cutting tool life; an underestimation phase between 50s and 180s; the final accurate
RUL prediction for a cutting time bigger than 180s.

As previously explained, prognostic metrics allow to quantify the performances of
the algortihm, compare different algorithms and different scenarios. Here, the metrics
are computed with respect to the reference train-test combination. The first metric
(APE(λ )) is reported in figure 5.6. APE gives an immediate visual idea on how the
algorithm is converging to the ground truth RUL. The same phases described above
can be identified here. A first part of the run-to-failure, where the algorithm was still
confident about the training data can be found in the first 25% of cutting life (λ = 0.25).
A second phase where the algorithm underestimated the RUL can be found in the APE
hill between λ = 0.25 and λ = 0.8, keeping in mind that APE is the absolute value
of prediction errors. In the last part of the tool life, where λ > 0.8, the prediction
error almost became null. The convergence of APE is also graphically represented. Its
value is equal to 71.9. This value provides a benchmark for the convergence time of
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Figure 5.6: Absolute prediction error APE (blue solid line) as a function of the normalised cutting time
λ . Its convergence is represented with the red circle and red dashed line. This is the case in which
training was performed on test 5 and validation on test 2.

the algorithm in case other algorithms are tested on the same test. In the next section,
convergence will be discussed much further in order to compare different train-test
scenarios. The prognosis horizon is partially represented in figure 5.5d. In fact, the
two red dotted lines represent the allowable prediction bounds, determined by α . PH
is defined as the percentage of cutting tool life in which the beta criterion in eq. 5.13
is respected. In this case, the criterion is satisfied from 50s up to the cutting tool end-
of-life. PH is thus equal to 81% of cutting tool life. This means that when the 19% of
cutting tool life is expired, the algorithm starts to correctly predict the RUL. If PH is
high, more time for preparing a maintenance action is available.

5.3.2 Full set performances

In this section, a cross-validation inspired approach is presented, with some modifica-
tions. Since the objective of the conceived algorithm is to reduce as much as possible
the experimental effort to perform prognostics, the results presentation is carried out
on a grid of cases. The grid is composed by different combinations of train and test
run-to-failures. Thus, at each iteration, one of the test in table 5.2 is used for MLP ini-
tialisation, while the others are used to discuss the adaptivity performances of the hybrid
methodology. In this sense, the proposed validation approach differs from Leave-One-
Out Cross-Validation (LOO-CV), since LOO-CV consists of iteratively training the
algorithm on all the tests but one (used for validation). Anyway, here, the idea is to
analyse how the algorithm works with different training conditions and also suggest for
the training run-to-failure best cutting parameters choice.

Two figures are reported representing this scenario: the first one reports the RUL
predictions, the bounds for PH computation, true RUL and flank wear data for the
training and test run-to-failures (fig. 5.7); the second one is the summary of prognostics
metrics for the whole set of combinations (fig. 5.8). In both graphs the training run-
to-failure number corresponds to the row index, while the test one to the column index.

The first results to be observed, are the ones on the main diagonal of figure 5.7.
These represent the cases where the train test is the same as the validation one. It
can be seen that, as expected, the RUL predictions are accurate and the confidence
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Figure 5.7: Row index corresponds to the train test number, whereas column index to the test run-to-
failure number. RUL predictions (blue solid lines) and their confidence bounds (blue dashed lines)
are compared to the true RUL (red dash-dot line) and the allowed prediction bounds (dotted lines).
Training (orange dashed line) and test (orange solid line) flank wear measurements are also com-
pared.
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Figure 5.8: Row index corresponds to the train test number, whereas column index to the test run-to-
failure number. Prognostic metrics (APE(λ ) and CAPE ) are represented for each train-test combina-
tion.

109



i
i

“thesis” — 2022/10/20 — 22:40 — page 110 — #120 i
i

i
i

i
i

Chapter 5. Tool wear: hybrid adaptive direct tool wear prognosis

Table 5.4: Run-to-failure turning tests process parameters: cutting speed (vc) and feed rate ( f ) are the
two factors of the full-factorial design. Tool life (TL) is also reported.

(a) Prognostics horizon.

Test
1 2 3 4 5

Tr
ai

n

1 100% 19% 100% 0% 100%
2 44% 100% 29% 0% 29%
3 0% 19% 100% 0% 100%
4 0% 13% 24% 100% 29%
5 0% 81% 47% 45% 100%

(b) Convergence.

Test
1 2 3 4 5

Tr
ai

n

1 2.7 87.1 29.5 157.5 14.8
2 86.9 2.3 75.8 ∞ 80.5
3 72.8 79.6 20.6 156.7 26.7
4 145.0 213.6 179.9 34.7 145.6
5 237.9 71.9 147.5 124.0 8.2

bounds are almost completely enclosed in the allowable prediction bounds. This is
confirmed by table 5.4a, where the prognosis horizons of all the diagonal terms are
100%, meaning that from the beginning of the test, RUL is computed correctly. Also
from the convergence of APE, it is possible to see that diagonal elements are minimum
ones (tab. 5.4b).

The second possible analysis regards the identification of critical tests and the as-
sociated cutting parameters. In order to perform such analysis it is necessary to look
at a column per time. In fact, a column represents a validation test in all the train-
ing scenarios. By looking at figure 5.7, two columns only present more difficulties in
the adaptivity of the prognosis approach: namely, column 1 and column 4. The first
column is well estimated when training is performed with the first two tests. Predic-
tions become less accurate with training on test 3 and 4, while creating instability when
training on test 5. This behaviour is highlighted even from the metrics perspectives 5.8,
where APE tends to remain almost constant (training on 3 and 4), or diverges (training
on 5). Column 1 of table 5.4a provides the same information, telling that for these three
training cases, test 1 represents a critical condition from the prognosis horizon perspec-
tive. Convergence (table 5.4b) faces an increasing value, reaching the global maximum
exactly when training is performed on test 5. Thus, high cutting speed tests and low
feed rates tend to create adaptability problems.

Test 4 represents instead the worst case. In three training cases (1, 2 and 3) the
algorithm is not capable of following the true RUL trajectory. Convergence of the APE
provides the same information (table 5.4b), resulting in really high values (close to the
global maximum) and even a non-convergent result (training on test 2). Furthermore,
differently from test 1, the algorithm predictions seem to be rigid, with a null or small
adaptation rate. This phenomenon is explained by the flank wear evolution visible
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in fig. 5.7, where the test VB features constant degradation rate for the main part of
tool life (up to 100µm), when a sudden change in the rate is found. For the main
part of the tool life, the training and test curves almost overlap, telling the algorithm
that the current MLP curves are really good predictors and no adaptation is required.
Despite this, the last parts of MLP curves (the ones responsible for RUL predictions) are
dramatically underestimating tool life. Nevertheless, these data points are not available
to the algorithm until the end-of-life is near, not giving enough time to the PF-MLP
algorithm to adapt to the new rate. Test 4 was performed at low feed rate and low
cutting speed. The results seem to converge to the fact that longer run-to-failures (low
feed rates and low cutting speeds) are more critical to adapt to. No other critical tests
were found.

The last analysis to be performed is the selection of the best training experiment
case. From a practical perspective, this analysis helps a company to decide how to select
the parameters for the training run-to-failure(s) to be performed. To this objective, it
is necessary to have a look at figures 5.7, 5.8 and table 5.4 row-wise. In fact, once the
row is fixed, the corresponding training test is set and the performances on all the other
tests are verified. By looking at table 5.4a, rows 3 and 4 are excluded from being the
best options. Training on test 3 is the only choice that leads to two null PH. Thus, it
it is the only scenario in which two cutting tool RUL cannot be predicted correctly in
advance. Furthermore, it presents also PH = 19% for test 2, which is one of the worst
PH found in the whole set of combinations. Training on test 4 features only one critical
test (test 1), but all the PH assume low values. On the contrary, within the scenario with
test 1 as training sample, the algorithm performs really well on three run-to-failures.
In these cases the RUL predictions are accurate right from the beginning. The same
is confirmed by the RUL histories in fig. 5.7, and APE in fig. 5.8. The second best
scenario is represented by row 5. Here, the algorithm performs fairly well on all the
run-to-failures but test 1. PH assume quite high values (table 5.4a), all greater then
45% (which still means that RUL prediction is reliable at half of the tool life, leaving
enough room for maintenance actions). Test 2 and test 5 presented really high PH.
Row 5 seems to represent the context in which the prognosis algorithm adaptivity is
enhanced (higher differences between training and test flank wear evolutions), even if
PH are in general smaller with respect to case 1. Nevertheless, case 1 represents a safer
option since the algorithm, at worst, underestimates the tool life. Test 1 and 5 represent
intermediate conditions in which high feed rate or high cutting speeds are adopted,
providing some indications about which cutting parameters should be adopted in order
to train the PF-MLP algorithm.

5.4 Conclusions

The conceived approach allowed to develop a Prognostics and Health Management
framework for tool wear monitoring and prognosis. A hybrid solution was conceived
as a combination of the statistical world and the artificial intelligence world. From this
perspective, the resulting methodology provided advantages with respect to the origi-
nal separated components. Particle filter led to two benefits with respect to a standard
multi-layer perceptron implementation: the capability to predict the remaining useful
life in a statistical fashion, providing its probability density function estimation; the
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adaptability of the multi-layer perceptron to the ongoing flank wear degradation, in
opposition to its typical static implementation [14]. On the other hand, multi-layer per-
ceptron increased the flexibility of particle filter for remaining useful life prediction. In
fact, in order to implement particle filter for online prognosis, a dynamical degradation
model must be known for the particular application. A combined implementation of
particle filter and multi-layer perceptron doesn’t require any dynamical formulation of
the degradation process.

The main results obtained through the implementation of the proposed approach
regards:

• a reduced experimental effort for the training dataset. The conceived approach
was trained on a single run-to-failure experiment in order to test its adaptability.
The algorithm was capable to follow online new degradation rates of cutting tools.
In an industrial application scenario, the performances of the algorithm can be
improved by adding new MLP initialisations to the initial particles, as long as
cutting tools are worn out. This can be done also for a hybrid (direct and indirect)
scenario, in which signal features (like specific force coefficients) are passed as
inputs of the MLP. In fact, if a direct measurement tool is available to estimate
flank wear, it is possible to automatically label indirect features. The same is not
possible within a fully indirect approach.

• generalisation with respect to different cutting conditions. The adaptability feature
of the conceived approach allowed to perform prognosis with fairly well perfor-
mances on all the run-to-failures carried out with unseen cutting parameter com-
binations, limiting the needed training set dimension.

• estimation of the remaining useful life probability density function: specification
required by international standards [96], but rarely satisfied in practical applica-
tions. This allowed to compute more robust prognosis metrics (prognostics hori-
zon, [173]), as well as to support maintenance decision making, since remaining
useful life prediction bounds were available, too [14].

• optimal remaining useful life prediction for already seen cutting parameters. The
prognostics horizon for equal train and test data was always equal to 100%. The
remaining useful life prediction was thus reliable for the whole cutting tool life.

• great adaptability to other cutting parameters. A combination of many train-test
set highlighted the good performances on unseen tests. Only 6 combinations out
of 25 train-test run-to-failure pairs didn’t allow to correctly estimate tool remain-
ing useful life. Three of them resulted in tool life underestimations (i.e. false
positives), which represented a safer error condition with respect to overestima-
tion. Only three PH fell under 20%. It is reasonable to expect the algorithm to
perform well within the cutting parameters suggested by the tool manufacturer.
Thus, the algorithm is expected to work properly when no abrupt wear phenom-
ena occur (i.e., when the tool is used within the suggested technological region of
applicability).

Regarding future works, an interesting challenge could be to join an adaptive real-
time in process indirect estimation algorithm with a pit-stop direct measurement tech-
nique such that Prognostics and Health Management could be responsive and more
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robust. Furthermore, the inclusion of process parameter data in the multi-layer percep-
tron architecture could increase the reliability of the predictions.
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CHAPTER6
Machine tool auxiliaries prognostics

Within this chapter, the focus is directed to machine tool auxiliaries prognostics and
health management. Here, the objective is the development of a prognosis framework,
not requiring any experimental run-to-failure for algorithm training. With this goal, a
digital twin of the system is built. A hybrid adaptive algorithm is proposed, fed by a
diagnosis layer trained upon digital twin simulations.

6.1 Introduction

In manufacturing systems, productivity targets are demanding to ensure maximum re-
liability and availability of machine tools [29], while breakdowns and failures need to
be fully avoided [56, 161]. Due to these requirements and increased system complex-
ity, preventive maintenance represents a conspicuous fraction of the total costs in an
industrial scenario [99]. Consequently, the attractiveness of Prognostics and Health
Management (PHM) solutions rises.

International standards describe the PHM framework [94–98] that consists of four
modules: preliminary analysis, profile monitoring, diagnosis and prognosis [14]. The
first regards the collection and investigation of all possible faults of the analysed system.
The second performs the fault detection, i.e. the observation of a statistical discrepancy
between the ongoing and a pre-recorded healthy working condition. The third deals
with fault isolation and quantification, i.e. the localisation of the faulty component and
its wear level assessment, respectively. The last step deals with the prediction of the
Remaining Useful Life (RUL) of the component, i.e. the remaining time for which the
component can perform the assigned task. RUL estimation should also contain infor-
mation about its uncertainty through the estimation of its probability density function
(pdf) [14].
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Two steps are needed to create a proper dataset for PHM strategies: feature extrac-
tion and feature selection. The first consists of the computation of statistical quantities
from sensor data. It enables dimensionality reduction of collected data, trying to con-
dense the information as much as possible. Features can be computed in many domains:
time, frequency and time-frequency domain [82, 83, 99]. Feature selection allows for
a further reduction of the features pool. Spearman’s and Pearson’s correlation coeffi-
cients can be used to rank features and keep the most correlated ones [82,83]. ANOVA
could be applied when data are collected in classes [61].

Once the dataset is created, profile monitoring techniques can be adopted. Statistical
Process Control (SPC) [152] is the typical tool, as proposed by Liu et al. [142] and
Colosimo et al. [39].

Diagnosis is a classification problem. Several types of algorithms could be used
to localise and identify the nature of the fault: Linear Discriminant Analysis (LDA),
Support Vector Machines (SVM) [112], Mahalanobis-Taguchi Systems [183], filtering
techniques, e.g. Unscented Kalman Filter (UKF) [165] and Artificial Neural Networks
(ANN) are just a subset of possible solutions [79, 83, 242]. An innovation in this field
could be progressive learning, introducing the capability of increasing the number of
clusters during online learning [196]. Additionally, utility theory can be applied to
introduce probabilities of critical conditions. It was successfully implemented to sup-
port decision making in maintenance actions on bearing faults in a sewage treatment
plant [112].

Dealing with prognostics, four main algorithm categories can be distinguished de-
pending on the data availability and the approach to the problem [14, 162]:

• Knowledge-based models: expert knowledge is translated in simple rules that the
system can interpret. Such methods can be used only if robust knowledge of the
degradation phenomenon and the machine is available. Expert systems, in which
rules assume the form of IF-THEN, and fuzzy logic, giving a linguistic description
of the system, are part of this category [14, 162];

• White-box models (model-based): they rely on a physical model of the degrada-
tion phenomenon [162]. Although the model structure is known a priori, experi-
mental data are necessary to identify the model parameters [14]. Exponential life-
time prediction model for ball screw mechanisms under different feed modes [35],
differential models for tool wear evolution in milling [235] and wear model for
flank wear in turning [168] are just examples of this;

• Grey-box models (statistical-based methods): they rely on a dynamic stochastic
description of the degradation phenomenon. The model is selected by the user
and its coefficients are estimated through experimental data [14]. Their advantage
is related to a statistical description of the RUL and, indeed, a strong support
for decision making on maintenance actions. Filtering-based approaches such as
Kalman filters [64] and its variations [65], or particle filters [137, 203] are all
examples of grey-box approaches, as well as Hidden Markov Models (HMM) and
Hidden semi-Markov Models [14]. Linear regression models can even be applied
for RUL prediction [45].

• Black-box models (data-driven): they "learn" and describe the problem directly
from the collected data. Data quantity and quality of both faulty and fault-free
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data are of fundamental importance for successful implementation [94]. ANN,
Self-Organising-Maps (SOM) [37, 142, 193] and deep learning algorithms, SVM
and Relevance Vector Machines (RVM) [88] are just a few examples of artificial
intelligence techniques.

Hybrid approaches have recently emerged, fusing multiple areas and exploiting their
synergies. For instance, Sbarufatti et al. developed a prognostic solution for Li-ion
batteries using particle filters to update Radial Basis Function Neural Networks. This
solution could predict the RUL pdf, providing adaptiveness to new data [175]. Scientific
works were mapped in table 6.1, according to several classes, highlighting some useful
aspects of the proposed methodologies like the algorithm domain [14].

Actually, different challenges prevent PHM techniques to find a robust implementa-
tion in manufacturing:

• the system under analysis needs to be sensorised to provide meaningful signals
regarding the fault conditions. No rules have been designed to choose the right
ones;

• experimentation is needed: all the techniques available nowadays require training
data (data from all the fault combinations or run-to-failures). Typically, only fault-
free data are largely available and experimentation can be extremely expensive and
time-consuming;

• developed solutions are often working-cycle dependent. This is a critical problem
in many applications, e.g. with machining centres;

• how to estimate and deal with the uncertainty of the RUL prediction, i.e. the
determination of its pdf.

Furthermore, scientific research is still lacking in the manufacturing field. The hy-
draulic unit is one of the most critical parts and the cause of unexpected breakdowns
and downtimes [29, 161]. From a reliability analysis of ten CNC lathes from 2009
to 2014, the hydraulic subsystem showed the highest failure rate (22.9% of the total
failures) [29]. A similar project on twelve machining centres between 2005 and 2010
confirmed the result [217]. Two other contributions highlighted the necessities of per-
forming PHM on machine tool auxiliaries, being sources of unexpected downtimes
and of comparable loss of production costs with respect to machine tool main compo-
nents [62, 63]. Despite the above, research on PHM of CNC machines is rare in such
subsystems, especially on hydraulic units. A case study on monitoring the filter’s health
state in an oil mist separator was recently presented in 2019 [62]. Authors trained ma-
chine learning on healthy data to model the environmental effects on the measured fan
power. The reconstruction error was used as the health index (HI) of the filter. Instead,
PHM in the machine tools field mainly focuses on tool monitoring and prognostics.
Specific force coefficients were addressed as cutting-condition independent and tool-
wear sensitive features by Nouri et al. [156]. Cheng et al. proposed a machine learning
methodology based on cutting forces, vibration signals and machined surfaces’ image
features, typically used separately, to monitor the wear of different turning tools over
various materials and cutting conditions [34]. McLeay et al. applied a Mahalanobis
distance-based unsupervised algorithm to detect anomalies in the cutting process to as-
sess the tool life in milling applications under fixed working conditions. The advantage
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of being an unsupervised method relies on the fact that only the normality condition is
experimented for the training phase [145]. DaSilva et al. investigated tool wear evolu-
tion in the drilling of high-strength compacted graphite cast irons and individuated the
spindle current signal as the best cost-benefit monitoring variable for tool wear [42].
HMM were also applied in different fashions for tool wear applications [194, 220].
Other subsystems are investigated by research literature to a lesser extent, such as those
of the spindle and feed-drive. Chen et al. developed an overall machine tool moni-
toring method based on the frequency analysis of energy, intended as the collection of
power, thermal, current and vibration measurements. Analytical modelling of screw,
guide rail and bearing frequencies allowed the health status of the components to be es-
timated [32]. Moore et al. presented a test scenario in which machine learning and deep
learning classifiers were applied for machining defects and machine tool failure-mode
classification. Besides this, unsupervised algorithms for clustering were tested for novel
failure-mode recognition [154]. Xia et al. developed a diagnosis solution for multiple
units of flexible production line machining centres, including feed axes, spindles and
converters. A neural network scheme was adapted to each machining centre to avoid
the combination explosion of learning rules and miss-classification [215]. Multiple
polynomial regression [170], the Mahalanobis-Taguchi System [182] and SOM [137]
were applied to predict the RUL of rolling element bearing failures in the spindle sys-
tem. Feed-drive system health and its influence on tool wear was investigated through
a long-term operational modal analysis of vibration signals [104].

The focus of this chapter is mainly concentrated on the challenges mentioned above.
A novel approach to deal with PHM was presented, trying to avoid run-to-failures
through the use of a Dymola® model of the hydraulic unit of a machine tool. In sec-
tion 6.2, the system and the model were described, together with its validation. The
proposed solution was explained in section 6.3, supported by a graphical representa-
tion of the whole approach. Starting from the simulation of different working regimes
(6.3.1), the creation of the datasets was described in subsection 6.3.2. The novel struc-
ture of the diagnostics phase, exploiting different algorithms for any component, was
presented in subsection 6.3.5. In subsection 6.3.6, the innovative developed prognosis
algorithm was presented, being set free from run-to-failures. Lastly, in section 6.4, a
critical analysis of the entire process was carried out, while future developments and
conclusions were reported in section 6.5.

6.2 Materials

6.2.1 System and model description

The system is the hydraulic unit of Mandelli’s Spark machining centres. It is constituted
by a high pressure (HP) sub-unit (that drives the tool clamping system and the braking
system); a medium pressure sub-unit (that cools down and lubricates the biggest organs
in the machine); a low pressure sub-unit (that cools down the oil by pumping it to the
chiller).

One of the novelties at the basis of this research was to reproduce the faulty be-
haviour of the system through simulations. All the described sub-units were modelled
together with different fault states of the system. A schematic representation of the
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Table 6.2: Fault states and associated HI for each component.

Pump Leakage
HIP [%] Sensor offset

HIS [%] Valve natural
HIV [%]

( ṁl
ṁnom

100 [%]) [bar] frequency [Hz]

0.0 100 0.0 100 29.8 100
0.6 80 0.5 80 25.0 50
1.2 60 1.0 60 21.2 0
1.8 40 1.5 40
2.4 20 2.0 20
3.0 0 2.5 0

digital twin developed in Dymola®1 was shown in figure 6.1. As explained above, the
system digital twin consisted of three main parts as the hydraulic unit, in addition to
each corresponding user. Each sub-unit works separately from the others a part from
the fact that they share the oil coming from the same tank. In order to model the system
under investigation different standard libraries of Dymola called Modelica and Cooling
have been used, modifying all the components in order to make them suitable for the
system under exam:

• Cooling is a library providing access to thermodynamical components, suitable
for application requiring a fluid medium. It can be used for compressible and
incompressible fluid applications; in this case, hydraulics. Standard components
have a dedicated model, like pumps, compressors, basic valves, tanks, etc. The
used oil was modelled following a standard fluid template with the corresponding
physical characteristics;

• Modelica is a Dymola library containing all the basic blocks for signal generation
and processing: constants, step sources, noise sources, addition blocks, integra-
tors, etc.;

• at last, many components, e.g. those for governing the control logics of the actu-
ated elements of the system have been generated from scratch.

The tuning procedure was based on the implementation of general characteristics of the
components installed on the real hydraulic unit. Fine tuning was performed manually,
optimising important system level behaviour characteristics of the hydraulic unit, as it
will be later explained in section 6.2.2.

In order to focus only on relevant faults, the history of 15 years of maintenance
reports was analysed. They contained data from several similar machines and different
faults. The evolution of the fault occurrences over the 15 years was shown in figure
6.2. Although filter faults were the ones that occurred the most, they were typically
subject to ordinary maintenance. Then, pump, sensor and valve faults were the most
frequent and relevant ones. A HP pump leakage (fig. 6.1a), a pressure-switch offset (fig.
6.1b) and an increased opening time for the servo-valve of the tool clamping actuators
(fig. 6.1c) were introduced in the model of the system [83, 84]. The pump was a

1Dymola is a commercial product of Dynasim AB (Dassault System) based on the open source modelling language Modelica.
Dymola is a multi-domain modelling environment for simulation of complex dynamical systems. The advantage of this modelling
environment is that the language is acausal. Acausal language means that blocks are not described by their inputs and outputs,
but, instead a symbolic formula represents a component, providing dramatic advantages in the model formulation. Inversion and
solution of complex formulae is managed directly by the integrated solver of the program.
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Figure 6.1: Digital twin layout. Top-left and bottom right arrows represent the link from the digital twin
to the measurement system. In the three dashed boxes, the components under analysis: a) HP pump;
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Figure 6.2: Evolution of fault occurrences over the 15 years maintenance reports

positive displacement VIVOIL XV1/P-4.9D. The sensor, the subject of the analysis,
was a pressure-switch used to keep the HP system between 85 and 95 bar. The HP
pump was controlled in a closed-loop by this sensor (IFM PN7071 025-MPa).

The HP pump was modelled through the following equations:

ω =
dφ

dt
(6.1)

τ =
Vdisp ·d p ·ηv

2π ·ηg
(6.2)

where ω and φ are the angular speed and position of the pump shaft, respectively;
τ is the torque applied to the shaft; Vdisp is the displacement of the pump; d p is the
pressure difference between the pump ports; ηv and ηg are the volumetric and global
efficiencies, respectively. The mass balance equation is:

ṁin =−ṁout = ṁ (6.3)

where ṁin and ṁout represent the mass flows at the inlet and outlet pump ports respec-
tively; ṁ is the module and the minus sign represents a flow exiting the port. Specific
enthalpies at the two ports are related to pressures by:

hout = hin +dh (6.4)

pout = pin +d p (6.5)

ρin = ρ (6.6)

dh =
d p

ρ ·ηg
(6.7)
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where ρ is the working fluid density, defined as the inlet port oil density ρin. The mass
flow and the pump power are:

ṁ = ρ ·V̇ =
ρ ·ηv ·Vdisp ·ω

2π
(6.8)

P = ṁ ·dh (6.9)

The pump leakage was introduced in the model as a valve described by the following
equations:

ṁleakage = posleakage ·Av ·
√

d p ·ρ (6.10)

Av =
ṁnom√

d pnom ·ρnom
(6.11)

where ṁleakage is the leakage flow; Av is the valve coefficient; d pnom, ρnom and ṁnom
are nominal values for the fully opened valve; posleakage represents the opening degree
of the valve and regulates the leakage flow.

Since the pressure switch is a sensor, its output is just the pressure of the oil at the
inlet port. It commands the HP pump through an on/off switch. It turns on the pump
when the pressure decreases below the lower threshold thl , whereas it turns off the
pump when the pressure increases over the upper threshold thu. Being aux an auxiliary
variable:

aux =

{
thl, when p <= thl

thu, when p >= thl
(6.12)

where p is the pressure measured by the pressure switch. If p is outside the two control
thresholds thl and thu, the command y is:

y =

{
1, if p <= thl

0, if p >= thu
(6.13)

If p is in between the two control thresholds, then:

y =

{
0, if aux > thl+thu

2

1, otherwise.
(6.14)

The pressure switch offset was introduced by adding a bias to the real pressure of the
system, so that:

p = preal +b (6.15)

where p is the actual reading of the sensor, preal is the real pressure at the sensor inlet
port and b is the bias term.

The servovalve was modelled as two separated valves with complementary opening
positions. The first one linked the HP port P to the actuator port A, the second one
linked the actuator port A to the return line R (fig. 6.1c). The equations governing the
servovalve behaviour are:

ṁPA = posPA ·Av ·
√

d p ·ρ (6.16)

ṁAR = posAR ·Av ·
√

d p ·ρ (6.17)
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Figure 6.3: Comparison between pressures and mass flows of the HP pump with and without leakage
fault

Av =
ṁnom√

d pnom ·ρnom
(6.18)

where ṁPA and ṁAR are the oil flows through the valves; Av is the valve coefficient;
d pnom, ρnom and ṁnom are nominal operating points for fully opened valves. posPA
and posAR are second order dynamic responses [167] to the positioning error of the
actuator normalised on the actuator stroke. They are constrained to be in the range of
0 and 1. The servovalve fault was introduced by changing the natural frequency of
the second order transfer functions. The simulated fault states, with the associated HI
were reported in table 6.2. An example of the difference in the physical quantities of
the system caused by the faults was shown in figure 6.3. The pressure at the outlet of
the HP pump and the mass flow of the pump were compared in a full-health behaviour
and in the 100% pump leakage case. The leakage implied a longer time to reach the
required pressure and the pressure at the outlet port was quickly discharged.

6.2.2 Digital twin experimental validation

The validation of the digital twin was conducted by means of power acquisitions per-
formed on a Mandelli’s Spark 1600 machining centre:

• power absorbed by the HP pump electric motor;

• power absorbed by the chiller;

The experimental setup (fig. 6.4) was composed of a three-phase acquisition system for
phase voltages and currents for each of the above units. Six LEM LF 205-S/SP3 and
three NI9205 acquisition cards from National Instruments™ were adopted.

A brief comparison between the experimental and the simulated physical quantities
during a healthy cycle was shown in figure 6.5a. Both the duty cycle and power con-
sumption of the HP pump were respected during the idle time. The validation of the
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a) b)

d)c)

Figure 6.4: The entire experimental setup: a) DAQ system and power meter; b) LabView® acquisition
software; c) Hydraulic unit; d) electrical cabinet and LEM installation
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duty cycle and power consumption of the chiller was reported both for the machine
warm-up phase (the spindle is activated to reach a steady-state thermal condition, fig.
6.5b) and idle state (fig. 6.5c).

6.3 Methods

6.3.1 Synthetic data generation

In the machine tools scenario, collecting fault data could be a difficult task, perhaps
infeasible. A digital twin of the system was used to recreate all possible combinations
of fault states (fig. 6.6A) for the components under analysis while operating under
different working regimes (fig. 6.6B), following scientific literature [1, 122, 126, 146,
174, 197] and analogously to what Helwig et al. did experimentally [82–84]. Indeed,
in industrial scenarios, machine tools present high flexibility in working conditions.
Hydraulic unit working cycles depend on various parameters such as the occurrence of
tool changes, the duration of the machining operations and the loading condition (i.e.
the heat transferred to the oil from the machine head/spindle during the operation). It
is assumed that a single working cycle for PHM could be acceptable when the machine
is dedicated to a single task (e.g. in mass-production industries), while this is not the
case for most manufacturing companies. Different working regimes can cause dramatic
changes in sensor outputs and, as a consequence, in the classification accuracy [83].

Then, as a novelty with respect to typical literature approaches, two kinds of work-
ing cycles were simulated to test the robustness of the proposed solution: stationary
and non-stationary ones, which represented a machine conceived for a specific and a
more flexible task, respectively (fig. 6.6B). Non-stationary cycles were created by mix-
ing stationary cycles in fixed proportions, representing more realistic scenarios for a
machine tool. Two stationary (SC1 and SC2) and two non-stationary working cycles
(NSC1 and NSC2) were simulated:

• SC1 was composed of 300 seconds of machining (tool clamped) and 15 seconds
for tool change (tool released), fig. 6.7a. The loading condition was represented
by the average heat flow of 5kW removed from the head/spindle. This cycle com-
prised stationary subsequent phases of machining and tool changes;

• SC2 was composed of 150 second and 10 second phases respectively (figure 6.7b).
The average heat flow absorbed by the oil was 3kW.

• NSC1 was composed of 70 percent of SC1 and 30 percent of SC2.

• NSC2 was composed of 30 percent and 70 percent respectively.

Figure 6.7c represented a qualitative structure of non-stationary cycles. Two datasets
were created, one including SC1 and SC2, the other including NSC1 and NSC2. The
output of the digital twin consisted of 41 physical quantities, theoretically measurable
through sensors to be mounted on the machine. A total of 108 simulations for each
dataset were generated combining all the HI listed in table 6.2. Indeed, the datasets
covered all the possible scenarios: all components at full health, single faults and mul-
tiple occurring faults.
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Figure 6.5: Comparison between experimental and simulated power
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Figure 6.7: Qualitative structure of the simulated working cycles in terms of machining duty cycle, tool
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6.3.2 Feature extraction

Three global features (from the whole cycle) were extracted for each signal: mean,
Skewness and Kurtosis coefficients (fig. 6.6C). Global features provide a significant
reduction of the dimensionality, but in some applications, they are not enough to obtain
good results and local ones (from parts of the cycle) should be introduced. The features
were then normalised to have null mean and unitary standard deviation [183]. For each
fault combination, 20 repetitions were obtained adding random Gaussian noise propor-
tional to signals’ RMS. Resulting datasets consisted of 2160 rows and 123 columns
(fig. 6.6D).

6.3.3 Feature selection/Machine sensorisation

An innovative aspect presented in this chapter regards the use of feature selection to
obtain useful tips for machine sensorisation. Although applying dimensionality reduc-
tion techniques such as Principal Component Analysis or LDA leads to a smaller space
to work on, the entire set of features is used and no sensor selection can be done. The
proposed feature selection strategy was divided into two steps (fig. 6.6E). The first was
dedicated to sensor selection. The score of each feature with respect to the components
was computed separately through the One-Way-ANOVA F-statistic [153]:

Fk =
∑

r
j=1 n j(x j,k − xk)

2/(r−1)

∑
r
j=1 ∑

n j
i=1(xi j,k − x j,k)2/(N − r)

(6.19)

where r is the number of HI of a component; n j is the number of samples in the j− th
group; x j,k is the sample mean of the k− th feature of the j− th group; xk is the mean
of the k− th feature; xi j,k is the value of the k− th feature in the i− th repetition of the
j− th group; N is the total number of rows of the dataset (fig. 6.8).

At the same time, the correlation matrix between features was computed, using Pear-
son’s correlation coefficient:

ρk,m =
Cov(Fk,Fm)

σFk ·σFm

(6.20)

where ρk,m is the correlation coefficient between the features k−th and m−th one; Cov
is the sample covariance between features Fk and Fm; σFk and σFm are the sample stan-
dard deviations of features Fk and Fm. Starting from the feature with the highest score,
up to ten features for each component were selected if each correlation with respect to
those already selected was below a threshold of 0.42. A final features pool was created
by concatenating selected features for each component and excluding duplicates.

The second step consisted of reiterating the computation of the ANOVA scores only
on the new features pool and selecting the best features for each component. The nov-
elty of this approach was not only the use of non-correlated features but also the se-
lection of which feature, and consequently which sensor, provided the most valuable
information. This step could have consequences on the design of the machine sensori-
sation. By identifying the best features for the diagnosis purpose, only useful sensors

2There is not an absolute value for correlation cut-off. However, in the work proposed by Vatcheva et al., the authors indicated
that usually correlation cut-offs for regression can range from 0.5 - 0.8 [195]. Here, the idea is to be more conservative, being in a
classification scenario. Furthermore, the aim is to also reduce the number of features as much as possible.
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Figure 6.8: Graphical representation of ANOVA dataset subdivision and scoring

were traced back: seven sensors were used to compute the selected features pool rep-
resenting 17% of the initial pool. Only the second step of feature selection was needed
for the final implementation of the algorithm.

6.3.4 Undersampling/Design of experiments

The undersampling technique was applied to reduce the number of experiments for a
future validation of the model under faulty conditions. Experimental campaigns can be
time-consuming and expensive (e.g. Helwig et al. conducted a total of 2,205 tests on
a test bench [83]). With regard to the objective of creating an experimental campaign
based on the real system, selecting which scenarios to experiment first was needed.

Undersampling, typically applied to imbalanced datasets [15], was extended to iden-
tify the most valuable fault combinations for the classification purpose and conse-
quently for the future experimentation on the real machine (fig. 6.6E). This technique
could be applied since a classification model was developed for each component. The
dataset was reduced three times (one for each component) and all the shared combi-
nations were stored. In case a particular label is missing after this process, a fault-
combination must be reintroduced manually to preserve all the classes of each com-
ponent. Based on the nearest neighbours rule, NearMiss [15], the used undersampling
technique selected a given number of samples from cluster A which were closest to
each instance in cluster B.
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Table 6.3: Time required by different algorithms to perform a 10-fold cross-validation, training and
testing of a single sample for each component analysed. The algorithms’ complexity is also reported
following computational performance metrics [173]: p, number of features; r, number of classes; t,
number of trees; N, number of samples; e, number of training epochs; i, j, k, l, number of neurons in
each layer.

LDA 10F-CV [s] Training [s] Testing [s] Complexity

Pump 0.190 0.015 <0.001
Sensor 0.189 0.022 <0.001 O(rp)
Valve 0.160 0.015 <0.001

RFC 10F-CV [s] Training [s] Testing [s] Complexity

Pump 9.935 0.300 <0.001
Sensor 6.559 0.416 <0.001 O(N2 pt)
Valve 4.710 0.263 <0.001

ADB 10F-CV [s] Training [s] Testing [s] Complexity

Pump 8.972 0.579 <0.001
Sensor 178.669 17.289 0.005 O(pNt)
Valve 362.898 33.593 0.009

CNN 10F-CV [s] Training [s] Testing [s] Complexity

Pump 68.730 0.858 <0.001
Sensor 97.438 0.900 <0.001 O(eN(i j+ jk+ kl))
Valve 125.235 1.094 <0.001

QDA 10F-CV [s] Training [s] Testing [s] Complexity

Pump 0.213 0.015 <0.001
Sensor 0.232 0.015 <0.001 O(p2r)
Valve 0.080 0.010 <0.001

As a result, 41 fault combinations were deleted, representing almost 38% of those
that were started with. Undersampling was not needed for the final implementation of
the algorithm.

6.3.5 Diagnostics

In this work, a tailored diagnosis solution was developed for each component fault (fig-
ure 6.6F). In literature, only one algorithm is selected and tuned for all the components
under study. Here, a pool of algorithms was selected: LDA, Random Forest Classi-
fier (RFC), Convolutional Neural Network (CNN), Quadratic Discriminant Analysis
(QDA) and AdaBoost Classifier (ADB). The application scenario allowed for super-
vised learning techniques. In fact, the built datasets consisted of features values for
known fault combinations (class labels). Two phases were needed: a training proce-
dure, to update classifier parameters on training data, and a testing procedure to evaluate
their performances. In order to compare the algorithms and select the most appropriate
one for each component, classification accuracy (or classification rate) was introduced
due to its easy interpretation. Performances were investigated both on stationary and
non-stationary cycles. For the first ones, a 10-fold cross-validation (CV) was selected,
according to the literature [79]. The mean of the accuracy was computed for each
classification algorithm. For non-stationary cycles, algorithms were trained upon the
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Figure 6.9: Different strategies for prognosis in the presence, or not, of run-to failure data

stationary dataset and tested on the non-stationary one. In this way, the robustness of the
solution was validated on unseen and different working regimes. The time required by
the algorithms to perform a 10-fold cross-validation, training and testing was reported
in table 6.3, together with their complexity.

The algorithm with the highest final classification rate with respect to a given com-
ponent was selected as its classifier (in case of a draw, the fastest one was chosen).
Diagnosis was then run online at fixed intervals, providing HI as output for the three
components.

6.3.6 Prognostics

The proposed prognosis solution can be applied in case run-to-failures or statistical
data are available or not. The two associated procedures and algorithm structures were
represented in figure 6.9.

A novelty of this prognosis approach is that it is based on the output of the diagnosis
module, i.e. a set of HI representing the separated health status of the components. In-
deed, the approach is able to take into consideration single fault scenarios and multiple
occurring faults. By the way, it’s worth noting that in this way, diagnosis performances
have an impact on the prognostics solution. Diagnosis returns, at regular intervals of
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time ∆td , a discrete estimate HI− of the real HI degradation pattern (i.e. ideally the
nearest severity used for diagnosis training, figure 6.10a in red). Discretisation depends
on how many fault states the classification algorithms were trained on. The gap between
two levels of classified HI is:

δHI =
100%
r−1

(6.21)

where r corresponds to the number of fault states considered. For instance, for the
pump leakage, the HI can be classified to be only 0%, 20%, 40%, 60%, 80% or 100%
(δHI = 20% and r = 6). A prognosis module is generated for each component and
acts independently of the others. Furthermore, the prognosis is triggered when the HI
goes below 100% (fig. 6.9). For the sake of clarity, just one model is considered and
explained.

End of Life (EoL) time point estimate

The procedure in the left branch of fig. 6.9 could be completely liberated from experi-
mental tests and gives a point estimate of the RUL of a component.

At the end of the degradation process, a monotonic decreasing stair-like HI history
is constructed ranging from 100% to 0%. When a new value of the HI is available, it
is compared to the previous one. A set of three variables ti, HI−(ti) and HI+(ti) (eq.
6.24) was stored whenever:

HI−(ti)< HI−(ti −∆td) (6.22)

and holds:
ti = ki∆td (6.23)

HI+(ti) = HI−(ti)+δHI (6.24)

with i = 0, . . . , r− 1 (fig 6.10a). At the end of the component life, a set of r instants
and r pairs of HI were collected (starting from the instant t0 = 0, HI−0 = 100% and
HI+0 = 100%+δHI).

Except for the starting time instant t0, at any ti, an updated estimation of the EoL
time is performed as follows (fig. 6.6G-H-I):

1. Compute the line between the last two HI+ and HI− as a function of time t:

HI−(t) =
HI−(ti)−HI−(ti−1)

ti − ti−1
(t − ti)+HI−(ti) (6.25)

HI+(t) =
HI+(ti)−HI+(ti−1)

ti − ti−1
(t − ti)+HI+(ti) (6.26)

with i = 1, . . . , r−1.

2. Compute the EoL estimates imposing:

HI−(t̂−EoL,i) = 0 (6.27)

HI+(t̂+EoL,i) = 0 (6.28)
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Figure 6.10: Monte Carlo graphical representation

from which:
t̂−EoL,i = ti −HI−(ti)

ti − ti−1

HI−(ti)−HI−(ti−1)
(6.29)

t̂+EoL,i = ti −HI+(ti)
ti − ti−1

HI+(ti)−HI+(ti−1)
(6.30)

with i = 1, . . . , r−1.

3. Compute the unbiased i− th point estimate for the EoL time:

t̂PE
EoL,i =

t̂−EoL,i + t̂+EoL,i

2
(6.31)

with i = 1, . . . , r−1.

The last step is necessary since t̂−EoL,i tends to underestimate the real EoL time, while
t̂+EoL,i tends to overestimate it.
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Monte Carlo RUL pdf estimation

If run-to-failure tests or statistical data were available, a statistical method for RUL pdf
estimation is obtained through the Monte Carlo approach in the right branch of fig. 6.9.
This method is based on the definition of a monotonic decreasing piecewise function
which represents the "real" degradation trend of the HI of a component fault. This is
true when a linear degradation pattern with different working loads is operated on the
machine. The Monte Carlo approach was designed to extract a set of M completely
new degradation patterns (Monte Carlo simulations) HI j(t) with j = 1,2, ...,M (see
figure 6.10b). The variability was introduced by sampling the degradation rate of each
single piece of the function from a Gaussian distribution and sampling the duration of
each single piece ∆t from another Gaussian distribution (see figure 6.10a). Applying
equations 6.22-6.31 to all the M Monte Carlo samples, it was possible to extract the
distribution relative to the i− th EoL point estimate as the collection of the t̂PE

EoL,i, j. It
was also possible to define all the last time instants of the real patterns HI j(t):

tEoL,true, j ⇒ HI j(t = tEoL,true, j) = 0 (6.32)

with j = 1,2, ...,M and their collection tD
EoL,true. The prediction error is defined as:

ei, j =
t̂PE
EoL,i, j − tEoL,true, j

t̂PE
EoL,i, j

(6.33)

while the error distribution associated with the i− th estimate eD
i is the collection of the

ei, j with j = 1,2, . . . ,M. tEoL pdf can instead be computed as:

t̂D
EoL,i = t̂PE

EoL,i(1− eD
i ) (6.34)

The described Monte Carlo approach (up to eq. 6.33) was used to test the performances
of the point estimate module, either in terms of estimation error mean or variance. Here,
distributions shown in figure 6.10a were hypothesised.

6.4 Results

6.4.1 Diagnosis

Diagnosis results for all types of working cycle were shown in table 6.4. The column
labels are explained in the following:

• SC12: classification rates for each component based on 10-fold CV for stationary
working cycles 1 and 2;

• NSC1 and NSC2: classification rates for non-stationary working cycles with train-
ing done using stationary working cycles 1 and 2;

• suffix FS indicates that the classification rates were obtained with the application
of the feature selection.
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6.4. Results

Table 6.4: Classification rates of the five best algorithms.

LDA SC12 NSC1 NSC2 SC12 FS NSC1 FS NSC2 FS

Pump 100.00% 99.79% 99.42% 100.00% 100.00% 99.98%
Sensor 64.14% 78.03% 76.23% 65.79% 75.21% 77.50%
Valve 72.18% 76.85% 69.91% 72.31% 79.00% 75.97%

RFC SC12 NSC1 NSC2 SC12 FS NSC1 FS NSC2 FS

Pump 95.88% 97.62% 96.50% 100.00% 100.00% 100.00%
Sensor 79.10% 56.85% 56.60% 79.10% 56.85% 56.60%
Valve 88.10% 67.94% 60.74% 88.10% 67.94% 60.74%

ADB SC12 NSC1 NSC2 SC12 FS NSC1 FS NSC2 FS

Pump 100.00% 99.91% 99.79% 100.00% 100.00% 100.00%
Sensor 69.84% 70.84% 79.84% 71.32% 74.28% 76.62%
Valve 73.73% 77.34% 74.05% 73.73% 77.34% 74.05%

CNN SC12 NSC1 NSC2 SC12 FS NSC1 FS NSC2 FS

Pump 99.49% 100.00% 99.76% 99.98% 100.00% 99.97%
Sensor 81.23% 79.67% 85.16% 79.75% 90.94% 82.61%
Valve 76.62% 77.61% 77.82% 74.93% 81.62% 81.57%

QDA SC12 NSC1 NSC2 SC12 FS NSC1 FS NSC2 FS

Pump 96.76% 99.86% 99.00% 100.00% 100.00% 100.00%
Sensor 63.70% 49.75% 54.98% 70.12% 66.18% 73.87%
Valve 71.13% 81.27% 75.51% 71.41% 79.00% 76.41%

6.4.2 Prognosis

In order to evaluate the performances of the algorithm, a Monte Carlo based analysis
was carried out. In figure 6.11, the evolution of the EoL time distributions with respect
to the estimation number were shown. Parameters of the distributions shown in figure
6.10a were hypothesised. As expected, as long as the time of the estimate is approach-
ing the real End-of-Life time of the component, the distributions of the estimated EoL
time are getting better, both in terms of expected value and variance. It is worth noting
that the first estimate is underestimating the real EoL time. This is due to the fact that, at
time instant t0 = 0, the algorithm is considering HI−0 = 100% and HI+0 = 100%+δHI.
This leads to an overestimation of the real HI(t) pattern (fig. 6.12). At t0 = 0, HI− is
coincident with the real pattern, while in other ti, the real pattern is exactly the mean
value of HI−i and HI+i . This operation is lifting up the first point of the pair over which
the linear interpolation is computed at t1. The overestimated pair of HI then leads to an
excessively negative predicted rate of degradation which turns into an underestimation
of the RUL. This issue can be easily addressed by adding a correction term in HI−0 and
HI+0 :

HI−0 = 100%− δHI
2

(6.35)

HI+0 = 100%+
δHI

2
(6.36)

By adopting this correction, the lift effect due to the first HI, overestimation could
be softened. However, the prognostic solution was, estimate by estimate, converging
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Chapter 6. Machine tool auxiliaries prognostics

Figure 6.11: Estimates distribution of tEoL evolution with respect to the estimate number. Note that the
estimates are ten but just three are shown in order not to make graphical confusion due to superim-
position. Also, the distribution of the real EoL time of Monte Carlo samples is shown
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Figure 6.12: The underestimation problem of the first estimate is due to the different selection criteria
of the HI+0 and HI−0 . The corrected HI are shown by asterisks

on the true EoL time. Such a phenomenon was also evident in the distribution of the
prediction errors. In figure 6.13, the bias of the first estimate is evident, while the
progression of the estimate is reducing the errors. The error mean and the 95% interval
of error trends during the life of the component were plotted and showed the tendency
to become null and decrease respectively over the time. Furthermore, the behaviour of
the algorithm with respect to the different number of levels adopted in the classification
procedure was analysed. In this case, 7, 9, 10, 11 and 13 levels of classifiers were
tested.

In figure 6.13, an insignificant difference between the different classifiers is shown:
the classifier with the lowest number of fault states shows slightly smaller error in-
tervals, but at the same time, the last estimate is much earlier during the life of the
component. In this way, the last estimate of the classifiers with a higher number of
fault states are further towards the component EoL allowing a narrower error interval
(note that the first estimate is performed earlier but with a bigger error interval). On
the other hand, classifiers with a higher number of fault states, require a higher number

140



i
i

“thesis” — 2022/10/20 — 22:40 — page 141 — #151 i
i

i
i

i
i

6.5. Conclusions

0 2000 4000 6000 8000 10000 12000

Time of prediction [h]

-140

-120

-100

-80

-60

-40

-20

0

20

E
rr

o
r 

d
is

tr
ib

u
ti
o
n
 [
%

] 
(9

5
%

 i
n
te

rv
a
l)

7 lvls classifier

9 lvls classifier

10 lvls classifier

11 lvls classifier

13 lvls classifier

Figure 6.13: 95% error intervals for different classifiers during a component’s life. Five different clas-
sifiers are tested with 7, 9, 10, 11, 13 fault states

of tests for training and tend to be more critical in the diagnosis phase. Analysis of
performances of the algorithm with respect to other distributions is out of the scope of
this chapter and will be a matter for future work by the authors.

6.5 Conclusions

In this chapter, a PHM solution for a machine tool hydraulic unit was presented. Despite
the hydraulic unit being one of the most critical part of machine tools [29, 161, 217],
scientific literature was still lacking in this research field. The unavailability of a large
amount of faulty data in the life of a machine tool brought about the decision to imple-
ment a digital twin of the hydraulic unit. The model was used to generate simulations
of the healthy and faulty machine during multiple working cycles:

• such a solution was demonstrated to be efficient in addressing the working regime
variability, i.e. the main limitation for the applicability of prognosis approaches
in industry;

• the use of a digital twin allowed the support of the sensorisation and the design of
experiments for a future validation of the model under fault conditions;

• a tailored multi-classifier solution was developed for any component, whereas typ-
ical literature solutions are based on a single classifier approach. QDA performed
an excellent pump fault diagnosis, while CNN was the best classifier for sensor
and valve faults.

• the proposed prognosis solution took into account the interaction between differ-
ent faults, exploiting diagnosis outputs trained on all the fault combinations.
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Chapter 6. Machine tool auxiliaries prognostics

• the developed algorithm was able to estimate the RUL probability density function
through a Monte Carlo approach.

Proposals for future works include the deployment of the algorithm on a test rig of
the system, experimental validation of the digital twin in the presence of faults based on
feature selection and undersampling support, and robustness tests on new and unseen
working cycles.
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CHAPTER7
Process and tool monitoring through machined

surfaces images

This chapter proposes a high-level monitoring and diagnosis tool oriented to production
management, both for cutting process and tool. Starting from the analysis of machined
surface images, the technological signature of the process is analysed to diagnose the
status of the cutting process or the cutting tool. The proposed approach allows to make
inference about the process, detecting suitable and not-suitable cutting parameters. Un-
desired effects such as tool chipping or excessive run-out are detected, too.

7.1 Introduction

Industry 4.0 introduced the paradigm of smart manufacturing plants and machining
centres. The term smart underlies the capability of manufacturing technology to use
advanced data analytics to improve the machining performances and supporting the
operator [147, 205]. In the last decades, many techniques were developed to deal with
this goal, most of them being part of the world of artificial intelligence. Research in
artificial intelligence received a boost especially due to advancements in information
processing technology and in machine learning techniques, capable of learning mod-
els and decision rules on training sensorial or pictorial data [115]. Machine learning
algorithms will constitute the benchmark for the approach conceived in this chapter.
With the advent of cheaper sensors, increased storage capacities and more powerful
computers, deep learning started to gain attraction with the implementation of neural
networks and the discovery of more effective training algorithms for them. Deep learn-
ing represented the natural evolution of machine learning, gaining the capacity to auto-
matically identifying discriminatory characteristics of signal and pictures from training
data [160, 209]. Machine learning firstly, and deep learning, secondly, were involved
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Chapter 7. Process and tool monitoring through machined surfaces images

in many fields related to image processing and classification ranging from land-use
categories classification [78], object recognition and classification in road scans [124],
traffic signs recognition [149], texture analysis in turning processes [59] and surface
defects recognition [58, 180, 190], prediction of car prices from images [30], robot as-
sembly operations [30] and manufacturing trajectory smoothing [127].

In this chapter, a deep learning approach is proposed with the aim of improving the
choice of machining parameters and to detect undesirable machining conditions. The
conceived approach is based on a shallow convolutional neural network (CNN) capable
of detecting wrong cutting speeds, feed per tooth, machining conditions as well as
technological parameters from machined workpiece surface images. Thus, from the
CNN, the operator can retrieve useful information on how to take corrective actions on
process parameters to reach higher production quality levels for the following parts to
be machined.

The structure of this chapter is set as follows: in section 7.2, a state-of-the-art of
traditional texture descriptors, machine learning and deep learning classifiers is pre-
sented; in section 7.3 the setup, the experimentation and the dataset presentation are
thoroughly explained, together with the definition of the f1-score performance met-
ric; in section 7.4.1, state-of-the-art texture descriptors extraction and machine learning
classifiers with application similar to those of this chapter (with benchmark purposes)
are described; in section 7.4.2, the conceived CNN architecture and hyper-parameters
selection is set out; in section 7.5, the f1-score performance metric (mean and standard
deviation) is compared among the state-of-the-art approaches and the developed CNN,
together with a proper discussion of the results; at last, conclusions are drawn at the
end of the chapter, in section 7.6.

7.2 State-of-the-art

7.2.1 Traditional texture descriptors

In order to prepare images for machine learning classification, it is necessary to manu-
ally extract features from them. Traditional texture features may belong to the spectral,
structural and statistical world [59] or coming from fractal analysis [110]. When deal-
ing with milled surface images, statistical features are the most used and relevant for
the analysis. Three of them are the most used: Gray-Level Co-Occurrence Matrix
(GLCM), Histogram of Oriented Gradients (HOG) and Local Binary Pattern (LBP).

GLCM is a second-order statistical texture descriptor, i.e. accounting for the rel-
ative position of two pixels. In fact, GLCM computes the number of occurrences of
pairs of pixels with a given intensity and a given displacement [59]. GLCM was in-
troduced by Haralick et al. [78] and was widely used in many image classification and
analysis problems, while being selected as a benchmark for deep learning algorithms
performances evaluation [58, 59, 190]. HOG computes the frequency of occurrence of
the orientation of the gradient in a localised portion of an image. HOG was created
for object detection in images and was adopted in image classification and analysis
problems [30, 60, 160] (even as a benchmark). LBP computes the histogram of a trans-
formation to decimal number of 8 digit binary numbers obtained on 3x3 pixel cells of
the image. LBP was identified as one of the most used and effective statistical descrip-
tors for classification tasks on textures. Its success was related to its invariance with
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respect to grayscale and rotation. Several modifications to its definition were also de-
veloped to overcome some related challenges, e.g. noise sensitivity [180]. LBP found
applications in several contexts, not only related to machining: Song et al. applied it
for defect recognition [180], Garcia-Ordas et al. employed it for tool wear monitor-
ing based on computer vision [60], Fu et al. used it as a benchmark for steel surface
defect classification [58] and Hou et al. used it as a benchmark for cancer sub-types
classification [86].

7.2.2 Machine learning classifiers for texture descriptors

Machine learning classifiers are based on the manual extraction of features/descriptors.
Thus, GLCM, HOG and LBP are given as input to machine learning approaches to
assign classes to the original data. Machine learning approaches can perform such task
without being explicitly programmed, but by proper learning on training data [115].
Some of the most common machine learning approaches for classification purposes
are k-Nearest Neighbours (KNN), Support Vector Machine (SVM) and Random Forest
(RF) classifiers [13, 68].

KNN is a simple classifier based on the maximum occurring class in the k nearest
training data according to a specific distance measure [57]. It was widely used in lit-
erature for classification tasks, such as steel surface defects detection [58, 180]. SVM
finds the optimal hyperplane to separate features belonging to two or more groups. It
found applications in the medical sector through image classification [91], steel surface
defects detection [180], object detection in road environments [124], tool wear classi-
fication [60] and benchmarking [30, 58, 176, 212]. RF combines a set of trivial classi-
fiers (called decision trees) and select the output class based on a voting system [24].
RF were used in classification tasks such as object detection of RGB-D images (RGB
images with depth information), unordered point set context prediction [70] and as a
benchmark [160].

7.2.3 Convolutional Neural Networks are end-to-end classifiers

Deep learning methods typically assume the shape of deep neural networks. Deep
learning has the advantage, over machine learning, to automatically extract discrimina-
tory features and descriptors from the training data. In this way, they directly operate
on the raw input data/images. Nevertheless, they typically require a huge amount of
training data to learn how to classify the provided data [209], thus generally preventing
its use for limited datasets. The most used architecture for the classification of im-
ages is the CNN [86]. CNNs are based on stacked convolutional layers that perform
automatic extraction of low-level and high-level features across the layers, while simul-
taneously classifying images with the last one. During the recent years, many standard
architectures have succeeded each other, trying to solve commonly faced problems
and increase CNNs performances. The deeper the network is, the more accurate and
powerful it is. Based on this evidence, He et al. [80] introduced the Residual Neural
Networks (ResNets). ResNets allowed to overcome the problem related to the fact that
a deeper and more sophisticated network architecture may collapse on its shallower
counterpart simply with a layer learning the identity function [80]. Facing the problem
of gradient vanishing effect during training of deeper and deeper CNNs, Huang et al.
proposed Dense Networks (DenseNets) by connecting with short paths multiple layers
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of CNNs [90]. Such architecture reached ResNets performances with fewer parameters,
less computational costs and less optimisation difficulties. Tan et al. introduced a novel
compound method to uniformly scale networks architectures, developing the Efficient
Networks (EfficientNets) [189]. Howard et al. proposed a new generation of Neural
Networks specifically designed for their efficiency, i.e. computational costs. They were
thought to work on mobile devices and were thus called Mobile Networks (MobileNets
V3) [87]. At last, several researches tried to deal with large images and high resolution
images, that naturally lead to computationally expensive CNN networks. Patch-based
CNNs were introduced by analysing patches of large images [149, 176].

CNNs, with all their architectures, were applied on several classification tasks based
on pictorial input data: object classification, street view house numbers recognition [90],
industrial inspection and surface defect detection [160, 209], face detection and image
recoloring [213], traffic signs detection and recognition [149] are just few examples.

Differently from state-of-the-art CNN architectures, typically featured by wide and
deep structures, a shallow architecture made of 3 stacked convolutional blocks is intro-
duced in this chapter. The choice was taken to respond to common challenges of deep
learning approaches, i.e. to rely on large and exhaustive training datasets (typically fea-
turing more than 50000 images). The CNN is thought to learn from patches of images
in order to contain the number of parameters and reduce the architecture complexity
when facing high-resolution images. Moreover, a CNN was never used as a mean to in-
fer the goodness of cutting conditions, in terms of process parameters, from images of
the machined surfaces. This will open, in the future, the possibility to retrieve process
parameter corrective actions from the CNN for adaptive control strategy purposes.

7.3 Materials

This section presents the milling parameters of interest for this work and how the ability
of producing many specimen influenced the overall classifier development process in
terms of data preprocessing and evaluation metric.

7.3.1 Experiments

The research activity was focused on developing models that are able to recognise and
classify different process and technological parameters for milling operations by lever-
aging only images of machined surfaces. The parameters of interest were:

• process parameters: machining conditions, feed rate and cutting speed;

• technological parameters: tool diameter and insert nose radius.

An experimental campaign was designed and carried out in order to produce the
specimens necessary to collect the images to be analysed with the classification mod-
els. The specific values of the parameters of interest to the purpose of this work were
reported in Table 7.1. To reduce the required number of specimens, machining costs
and times, it was decided to mill up to 2 sides of the prismatic specimens, and to
machine different portions of the same surface with different combinations of cutting
parameters (fig. 7.1).

The starting dataset consisted of 100 very high resolution (on average about 8 megapix-
els) RGB images with a portrait aspect ratio, similar to the one reported in Fig. 7.3.
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7.3. Materials

Figure 7.1: Example of a specimen used for the milling tests. Red arrows show machined sides. The
surfaces are machined in portions with different combinations of cutting parameters indicated by
black braces.

Table 7.1: Parameters of interest for which the experimental campaign was carried out.

Parameter type Parameter Values

process
machining conditions nominal, run-out, chipped tooth
feed rate [mm/tooth] 0.10, 0.15, 0.20, 0.60, 0.70, 0.80

cutting speed [m/min] 80, 150, 220

technological
tool diameter [mm] 27.9, 32.0
nose radius [mm] 0.4, 0.8, 1.0, 1.2, 1.5

The images were collected with a Keyence VHX-7000 digital microscope focused on
a machined area of the specimen (using 20x magnification). Different combinations
of milling parameters lead to different patterns on the surfaces, and some of these pat-
terns can be recognised with ease, some can not. The objective of the classifiers was to
correctly recognise the aforementioned parameters by analysing the input images. The
use of a digital microscope allowed to have a uniform light exposure of taken images.
A similar solution could be achieved for an industrial online system. In this case, a
semi-autonomous robotic arm was prepared for a future application and validation of
the solution. An ABB robot was set-up to work on the side of the machine tool pallet.
It features an AVT Prosilica GT2300 cam with optics, assisted by a proper lighting sys-
tem (four LED Bar CCS in addition to a LED Ring CCS). This set-up (fig. 7.2) has the
objective to reproduce a favourable industrial environment for the conceived approach.

7.3.2 Data preprocessing and dataset preparation

The collected images featured a very high resolution (about 8 megapixels). Indepen-
dently of the classification approach, dealing with a high number of pixels would be
cumbersome and, more importantly, would imply excessive computational costs. For
context, state-of-the-art classification models were trained with image sizes ranging
from 32x32 [30, 80, 90, 160, 209] to 600x600 pixels [189], with one of the most com-
monly adopted being 224x224 pixels [13, 30, 58, 80, 87, 90, 189]. Furthermore, due to
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Figure 7.2: Robotic arm set-up for a future validation of the conceived approach in an industrial envi-
ronment.

experimental costs related to machining, the resulting dataset was quite small, and con-
sisted of 100 total samples. For reference, to train state-of-the-art classification neural
networks, researchers leveraged datasets such as Imagenet [46], CIFAR-10 [117] and
MNIST [123] consisting of 14 million, 60000 and 70000 images, respectively.

To overcome these limitations, it was decided to split each raw image into smaller
patches [60,86,149,176] with a dimension of 224x224 pixels. Thanks to this operation,
it was possible to:

• reduce the dimensions of the input images, dramatically decreasing the computa-
tional costs required to develop and evaluate the models;

• increase the number of samples in the dataset, since each raw image got split in
about 150 patches.

With that being said, it must be highlighted that patches from the same image should
not be treated as completely distinct samples: as visible from Fig. 7.4, two neighbour-
ing patches were likely characterised by similar patterns. If one of those patches would
be used to train the classifier while the other one to test it, their similarity could be a
source of information leakage, i.e. leading to an overestimation of the model prediction
capabilities and hiding the model actual prediction performances. Therefore, to avoid
any information leakage between train and test partitions, it was decided to proceed as
follows:

1. for each parameter of interest, separate the 100 available raw images into train and
test partitions;

2. split each raw image into as many 224x224 pixels patches as possible.

Consequently, the image preprocessing pipeline is completed by the following steps,
which are commonly adopted in the literature [190]:

1. convert the images’ color space from RGB to grayscale;
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Figure 7.3: Raw sample image of milled surface.

2. scale the pixels values of each sample from the range [0,255] to the range [0,1];

3. centre each sample by subtracting the mean pixel value (this mean value is com-
puted from the training partition only and then applied to both training and testing
partitions).

A factor that can negatively influence the performance of the classifiers is the dif-
ferent percentage of samples within each class, which leads to unbalanced datasets.
For instance, in the case of the machining condition parameter, collecting data from
undesired machining conditions is not trivial and can be expensive as well as risky.
Thus, among the 100 available samples, a large portion belonged to nominal condi-
tions, whereas only a limited number of samples to chipped tooth and run-out. Having
less samples for a given class means that the classifier will struggle to learn relevant
features for that class, hindering its overall performance. To compensate this limita-
tion the classifiers were developed leveraging a 5-fold cross-validation process. This
process consisted in evaluating a classifier by looking at a metric averaged over 5 dif-
ferent train-test splits. At each split, a different set of 20% of the available samples
was reserved for testing. Furthermore, since some target parameters (i.e. process and
technological ones) presented classes populated by a very limited number of samples
(less than 10), a stratified split approach was used to preserve the percentage of samples
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Figure 7.4: Preprocessed sample image of milled surface: patches of 224x224 pixels are extracted from
the image, then converted to grayscale. If this sample image is selected for training purposes, then
all of its patches are assigned to the training set.

for each class in each train-test split.

7.3.3 Evaluation metric

Because of its simplicity and interpretability, the accuracy is the most widely used
classification metric, and it is defined as:

accuracy =
correct predictions
total predictions

(7.1)

However, this metric is not suitable for unbalanced datasets. For instance, if a model
was to be trained with a dataset consisting of 99 images collected from nominal ma-
chining conditions and 1 image collected from run-out, it could simply learn to assign
the 100 samples to the first class and still score 99% accuracy. Once deployed to pro-
duction, it would still assign any new sample to the first class, since it did not learn how
to distinguish between different machining conditions.

For this reason, a different classification metric was chosen to better quantify the
performance of the classifiers when dealing with unbalanced datasets: the f-score. This
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metric is defined in [36] as the harmonic mean of precision and recall:

Fβ =
(β 2 +1)(P ·R)

β 2(P+R)
(7.2)

where:

• β is a parameter that controls a balance between precision and recall;

• P is precision, defined as true positive
true positive + f alse positive ;

• R is recall, defined as true positive
true positive + f alse negative .

When the same weight is assigned to precision and recall, meaning β = 1, the f-score
becomes what is commonly referred to as f1-score [171]:

F1 =
2PR
P+R

(7.3)

Considering the previous example, the classifier returns an f1-score equal to 0, high-
lighting the fact that it actually did not learn anything useful and can’t be deployed to
production.

In Section 7.5, the classifiers performance will be evaluated, for the 5-folds, in terms
of mean value and standard deviation of testing f1-score.

7.4 Methods

This section presents the traditional texture descriptors, namely LBP, HOG and GLCM,
that were used to train the machine learning models (SVM, KNN, RF) to classify the
milled surfaces images according to the parameters of interest (explained in Section
7.3.1). The results obtained through these approaches will constitute the benchmarks
for the conceived deep learning approach performances. As a final remark, it is nec-
essary to remind that the data preprocessing steps implemented before computing the
texture descriptors are the same presented in Section 7.3.2, and the evaluation metric is
the one presented in Section 7.3.3.

7.4.1 Theoretical background

Traditional texture descriptors: LBP, HOG, GLCM

From a general point of view, the common starting point for each traditional texture de-
scriptor are the preprocessed images. Once the descriptors are computed, it is possible
to proceed in two ways:

1. use the resulting images as inputs to the ML models;

2. perform a further step and compute features from the resulting images, and use
those features as input to the ML models.

Because the ML models implemented in this chapter are not compatible with images
(images in the form of 2D arrays), it was decided to implement option 2. It could be ar-
gued that the images can be converted into a stack of 1D arrays, but this implies working
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Chapter 7. Process and tool monitoring through machined surfaces images

Figure 7.5: Left: 500x500 pixels bottom-left corner of a sample image. Right: 500x500 pixels of the
same portion plotted in terms of LBP values.

with very large inputs, that increase dramatically the computational costs. Furthermore,
it would lead to the state where the number of features vastly exceeds the number of
samples, commonly referred to as curse of dimensionality [16]. Consequently, once the
LBP, HOG and GLCM descriptors were computed for each starting sample, a further
step was added to obtain a set of feature vectors.

LBP computes a histogram with the distribution of the binary configurations of the
pixels of the image, based on thresholding the surrounding window of each pixel with
the intensity of the centre pixel. Generally, the LBP descriptor works on 3x3 pixels
cells, and the centre pixel’s value sets the threshold. Each neighbouring pixel is con-
verted into a binary value according to this criteria:

• if the neighbouring pixel’s value is larger than the threshold (i.e., 3x3 window
central pixel value), the pixel is converted to 1;

• if the neighbouring pixel’s value is smaller than the threshold (i.e., 3x3 window
central pixel value), the pixel is converted to 0.

The resulting sequence of zeros and ones is converted to a binary number and thus to
an integer number (according to the binary conversion system). This value is assigned
to the centre pixel of the starting 3x3 cell; the same procedure is repeated for all the
other pixels in the image to obtain an output image. Figure 7.5 clarifies how a sample
500x500 pixels window changes when LBP is computed, while Figure 7.6 is relative
to a 100x100 pixels window from the same original sample. A histogram of the output
image was computed and its histogram bin values were selected as the feature vector.
The idea is that surfaces that show different patterns should present different LBP his-
tograms, and thus, the bins should have different values. Indeed, it should be possible
to train ML classifiers to recognise those differences.

HOG descriptors are mainly used to describe the structural shape and appearance of
an object. However, since HOG is able to capture the local intensity gradients and edge
directions, it is even a good texture descriptor. By focusing on the gradient and orien-
tation of the edges (magnitude and direction), it is possible to understand if the pixels
belong to an edge and find its orientation. The idea is to leverage the edges and their
orientations to distinguish between different cutting parameters that generate different
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Figure 7.6: Left: 100x100 pixels bottom-left corner of a sample image. Right: 100x100 pixels of the
same portion plotted in terms of LBP values.

patterns on the metallic surfaces. The orientations were calculated in localised portions,
meaning that the starting image was decomposed into smaller regions (or cells) and, for
each region, the gradients and orientations were calculated. Consequently, a histogram
for each region was generated from the gradients and orientations of the pixel values.
An example output from the HOG descriptor is reported in Fig. 7.7 for a window of size
500x500 pixels and Fig. 7.8 for a window of size 100x100 pixels. Moreover, from Fig.
7.8 it is possible to see how the starting image was decomposed into smaller regions
(with dimensions 32x32 pixels) and a total of 9 possible orientations was set. To limit
the issues caused by the very high dimensionality implied by the adoption of this tex-
ture descriptors, it was decided to pass the HOG values through a principal component
analysis (PCA) [108] stage to obtain a feature vector with length 8 for each sample.

GLCM consists in computing statistical experiments on the matrix (or matrices) con-
taining the co-occurrences of the pixel intensities at given angles and distances. Such
statistics experiments intuitively provide measures of properties such as smoothness,
coarseness and regularity on the distribution of pixels on the texture. By definition a
GLCM is the probability of the joint occurrence of gray-levels i and j, where i ≤ G

Figure 7.7: Left: 500x500 pixels bottom-left corner of a sample image. Right: 500x500 pixels of the
same portion plotted in terms of HOG.
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and j ≤ G and G identifies the gray-level depth of the image, within a defined spatial
relation in an image. This spatial relation is defined in terms of a distance D and an
angle θ . From the GLCM, it is possible to compute statistical features that can then
be stacked together to build the feature vector. In particular, the features evaluated
according to [77] were:

• contrast;

• dissimilarity;

• homogeneity;

• energy;

• correlation.

In this work, to compute the 5 features it was decided to set D equal to 100 and θ

equal to 0°. Those values might not be the best ones, and evaluating the best possible
combination is actually very time consuming since a sweep of all possible combinations
would be required. This is one of the disadvantages of trying to classify images when
leveraging highly engineered features such as GLCMs. An example of the evaluated
GLCM was reported in Fig. 7.9 for two different values of cutting speed. It is possible
to notice that the resulting GLCMs were slightly different, and these matrices were
leveraged to compute the statistical parameters mentioned above. In this example, the
difference between the two raw samples was highlighted by the contrast feature, while
the other features didn’t highlight large differences.

Machine learning classifiers: SVM, KNN, RF

To establish a performance baseline for the classification problem presented in this
chapter, it was decided to utilise three of the most widely known supervised machine
learning classifiers, namely SVM, KNN and RF.

Considering a binary classification problem, meaning classifying between just two
classes, the objective of the SVM was to find the hyperplane that maximises the distance
to the nearest input data point of any class, as per Fig. 7.10 (the distance is called

Figure 7.8: Left: 100x100 pixels bottom-left corner of a sample image. Right: 100x100 pixels of the
same portion plotted in terms of HOG.
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Figure 7.9: Top: two raw samples representing different cutting speed values (a: high cutting speed, b:
low cutting speed). Middle: GLCM from raw samples (a) and (b). Bottom: features computed from
GLCM (a) and (b) respectively.
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Chapter 7. Process and tool monitoring through machined surfaces images

Figure 7.10: SVM defines the hyperplane that maximises margin between the samples of the two classes.

margin, the nearest sample is called support). SVMs showed to be able to perform both
linear and non-linear classification; for the latter, a kernel trick [21] is exploited to map
the input data onto a higher dimensional space. The idea behind the kernel trick is that
if the input data are not linearly separable in the current space, they may be separable
in a higher dimensional one, as shown in Fig. 7.11, computed via combinations of
simple functions and the starting input data. Two of the most known kernel functions
are polynomial and gaussian radial basis functions. The disadvantage of the kernel trick
is that by increasing the dimensionality of the problem, the testing error increases, too;
thus, to compensate this, more data are required to train the SVM.

The KNN classification algorithm [57] is quite intuitive: for any new sample, a dis-
tance metric is computed to find the k-nearest samples and assigns it to a class according
to a voting mechanism based on the most recurring class among the k-neighbours. The
main parameter that requires to be tuned is k, which sets the number of neighbours
considered to classify a new sample (i.e. participate in the voting mechanism):

• if k is too high the testing error increases because the boundaries between classes
are less distinct. This means that samples of different classes can be mixed to-
gether and assigned to a single region (underfitting). When a new sample falls

Figure 7.11: SVM: example of kernel trick application and how it allows to define a plane that separates
the two classes in a higher dimensional space.
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7.4. Methods

Figure 7.12: KNN: example of classification with different neighbours number.

within that boundary, it may be incorrectly classified because the most recur-
ring class among its k-neighbours is actually different from the one of the region
(which is the correct one).

• if k is too low the computational cost and time increase dramatically, especially if
the dataset is large and the samples have high dimensionality. Furthermore, KNN
may end up learning the noise (overfitting).

So, k is usually tuned by applying some optimisation methods that test different possible
values and evaluate the performance of the KNN classifier accordingly.

Random forest classifiers are built by combining multiple decision trees that operate
as an ensemble [24]. The main features that characterise the random forest classifiers
are:

• bootstrap aggregating algorithm (bagging) is leveraged to assign the input data to
each decision tree;

• each decision tree operates on a random subset of features to reduce the correlation
between different trees;

• the classification output of the random forest is selected based on the most voted
class by the decision trees.

To better adapt the random forest classifier to the specific task it is possible to tune a
variety of parameters, such as: the number of estimators (decision trees), the number
of features for each estimator and the maximum depth of each estimator. The number
of estimators sets the number of decision trees that will be used to build the random
forest classifier. It is not always clear if this parameter should be tuned or set to the
maximum value possible given the available computing resources [163]. The number
of features for each estimator sets the number of features that will be leveraged by each
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decision tree to classify any given sample, and it is usually set equal to the square root
of the number of total features available. The depth of the estimators can be limited to a
maximum value to avoid overfitting the training data and to improve the bias-variance
trade-off (very deep decision trees lead to very good performance at the expenses of
becoming very sensitive to small variations in the input data, which leads to large vari-
ations in the predicted class).

From an operative perspective, the three algorithms (SVM, KNN, RF) were tuned
and trained with a common strategy that leveraged a combination of cross-validation
and grid-search. As reported in the pseudo-code in Algorithm 1, the first step was load-
ing the data (meaning the raw images) and computing a set of traditional feature de-
scriptors such as LBP, HOG or GLCM. The different sets of tunable hyper-parameters
characterising each model in this work were the following:

• SVM: C, kernel, polymonial kernel degree;

• KNN: number of neighbours, weights, power parameter for Minkowski distance;

• RF: number of estimators, maximum number of features,

For each hyper-parameter multiple possible values were set. The second for loop split
the dataset in 80% -20% training-testing proportion. In the third for loop the model was
tuned and trained. Here, two approaches were deployed at the same time: grid-search
was used to generate all possible hyper-parameters’ values combinations, 5-folds cross-
validation was used to evaluate which combination led to the best testing results. The
third for loop was actually repeated 20 times (see line 7 in Algorithm 1): the objective
was to find the most recurring best architecture from the grid-search cross-validation
process to limit as much as possible the detrimental effects of imbalanced datasets.

Algorithm 1 SVM, KNN, RF train-test loop
1: set parameters
2: set models
3: for parameter in parameters do
4: load data
5: compute feature (LBP, HOG, GLCM)
6: set hyper− parameters grid boundaries
7: for i in range(20) do
8: stratified train-test split of data (80-20)
9: initialise Grid-Search as gs

10: initialise Strati f iedShu f f leSplit as sss
11: initialise Cross-Validation as cv
12: for model in models do
13: initialise model
14: train and tune model with gs, sss and cv
15: compute F1score
16: save tuned model architecture
17: end for
18: end for
19: find most recurring model architecture
20: end for
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Figure 7.13: Compact CNN architecture overview.

7.4.2 Custom CNN for surface classification

This section explains the proposed CNN model architecture, highlighting some of the
design choices that were to compensate the limitations introduced in Section 7.3.2.

It is possible to notice from the graph of Fig. 7.13 that the proposed CNN was very
shallow and consisted in a series of stacked convolutional blocks. This went against the
design trends of deeper (and sometimes wider) models that characterised recent state-
of-the-art convolutional neural networks for image classification such as ResNets [80],
DenseNets [90] and EfficientNets [189], just to name a few.

Keeping the network shallow and limiting the number of trainable parameters was
necessary due to the dataset shortcomings highlighted in Section 7.3.2:

• training deep models, with many trainable parameters, leveraging only a limited
number of samples would inevitably lead to overfitting. This overfit tendency
would hinder the model performances when deployed to production;

• having a model with few traininable parameters facilitates the training and infer-
ence processes when dealing with limited computing resources.

Nonetheless, if necessary, it is possible to increase the depth of the proposed model by
stacking more convolutional blocks. Similarly, the model can be widened by increasing
the number of filters generated by each convolution operation.

From an operative perspective, the input images were fed to a first convolutional
block (stem block), with the purpose of increasing the number of channels while de-
creasing the spatial dimensions. The stem was very similar to implementations found
in the literature, consisting of a convolutional layer with a large filter size followed
by batch-normalisation, rectified linear unit (relu) activation function and a max pool
operation for further downsampling. The resulting outputs were passed through a
stack of three inverted residual linear blocks (called conv block, inspired from Mo-
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Chapter 7. Process and tool monitoring through machined surfaces images

Figure 7.14: Convolutional block detailed view.

bileNetV3 [87] and EfficientNets) detailed in Fig. 7.14: the conv blocks were char-
acterised by state-of-the-art features such as depth-wise convolutions, squeeze-excite
blocks, residual connections and hard-sigmoid activation function. The inverted resid-
ual linear block was integrated in the proposed CNN and custom developed to:

• be lightweight;

• optimise the accuracy-latency trade off on limited resources (mobile devices),
which are desirable features for the conceived research purposes;

• efficiently generate feature maps that synthesise meaningful information from
each sample, making it possible to recognise the different machining parameters
of interest.

The last stage of the proposed CNN was the classifier block, where the output filters
were averaged and passed through a combination of convolutional layer and softmax
layer in order to obtain the predicted classifications.

A detailed summary of all the parameters that defined the architecture of the pro-
posed CNN (dimensions, kernel sizes, filters, strides, activation functions) was reported
in Table 7.2. Some further details: the squeeze-excite block adopted convolutional
layers as weights layers and was characterised by the absence of batch-normalisation
layers, the reduction factor was set to 8; in the classifier block the dropout layer had a
survival probability of 90%. The proposed CNN model was trained with stochastic
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Table 7.2: Custom CNN architecture.

Output size Layers Activation
54x54 conv, 11x11, 32, stride=4 relu

26x26 max pool, 3x3, stride=2

13x13


conv,1x1,64

dwconv,3x3,64,stride = 2

conv,1x1,48

 x1 relu

7x7


conv,1x1,96

dwconv,3x3,96,stride = 2

conv,1x1,64

 x1 hard-sigmoid

7x7


conv,1x1,128

dwconv,3x3,128,stride = 2

conv,1x1,64

 x1 hard-sigmoid

1x1
global average pool

dropout

1x1 conv, 1x1, classes softmax

gradient descent algorithm (SGD) with initial learning rate 0.9 and momentum 0.9; the
learning rate was adjusted after every batch according to the OneCycle policy [179].
Number of epochs was set to 20 and batch size to 128.

7.5 Results

In this section the classification results obtained with two approaches were reported,
being them:

• traditional texture descriptors (LBP, HOG, GLCM) and machine learning classi-
fiers (SVM, KNN, RF);

• end-to-end classifier model (CNN).

For each process (machining condition, feed rate, cutting speed) and technological
(tool diameter, tool nose radius) parameter, the classifiers performance was evaluated
through the f1-scores over the 5-fold cross-validation process. The results in the follow-
ing tables described the classification performances in terms of testing f1-score mean
value and its standard deviation.

7.5.1 Machining condition classification results

Table 7.3 reported the testing performances of each model when classifying the samples
according to the machining conditions. It is reminded that the available samples in the
dataset were collected for 3 machining conditions:

• nominal;
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• run-out;

• chipped tooth (insert).

When classifying the three machining conditions, the best performing model was
the proposed end-to-end CNN, which was marginally outscoring the combinations
KNN+GLCM and RF+LBP (0.86838 compared to 0.86667 and 0.86364). It is in-
teresting to notice how the CNN showed slightly more reliable testing performance,
highlighted by a lower standard deviation than KNN+GLCM (±0.02786 vs ±0.03275).
This could be an indicator of the better CNN’s generalisation capabilities compared to
KNN+GLCM, and of its effectiveness in learning synthetic features that capture mean-
ingful information within each sample. With that being said, the classifier and feature
pairs were able to perform very well on average, with f1-scores comfortably above the
80% threshold. An unexpected behavior was shown by SVM when paired with LBP
and GLCM: SVM was completely unable to properly separate the samples when lever-
aging features obtained from these two texture descriptors, and this was true across
the different parameters analysed (see tables in the next pages). Considering that the
SVM’s hyper-parameters were tuned via grid-search approach and that the samples
were cycled through cross-validation, it is fair to assume that this phenomenon is due
to a poor choice in the features selection process (namely in terms of type of features
and quantity of features). It is also true that LBP and GLCM features did perform well
when leveraged to train other ML models, so this problem appears to be limited to the
SVM.

Table 7.3: Machining condition classification results.

ML algorithm Texture descriptor F1-score (5-fold)

SVM
LBP 0.10000±0.00000
HOG 0.84375±0.03204

GLCM 0.10000±0.00000

KNN
LBP 0.80714±0.07319
HOG 0.85385±0.04770

GLCM 0.86667±0.03275

RF
LBP 0.86364±0.02335
HOG 0.85455±0.01508

GLCM 0.82083±0.04502

CNN 000...888666888333888±±±000...000222777888666

7.5.2 Feed rate classification results

Table 7.4 reported the testing performances of each model when classifying the samples
according to the feed rate. It is reminded that the available samples in the dataset were
collected for a total of 6 different feed rates:

• 0.10 mm/tooth;

• 0.15 mm/tooth;
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• 0.20 mm/tooth;

• 0.60 mm/tooth;

• 0.70 mm/tooth;

• 0.80 mm/tooth.

For this classification task, the best performing model was the proposed CNN,
clearly outscoring all the tested models-texture descriptors combinations by quite some
margin (the second best model-texture descriptor combination is
SVM+HOG, trailing by more than 10 basis points). As noticed for the machining con-
ditions classification, the proposed CNN was very stable, registering the second-lowest
f1-score spread (±0.04601). With that being said, it is possible to notice how each
model was struggling to correctly classify the samples according to the feed rate. The
proposed CNN was the only model that achieved meaningful performances, with the
remaining models registering very low f1-scores (below 50%). This is likely due to the
models assigning most of the testing samples to just one or two classes (out of the six
available), therefore the training process didn’t have the expected impact. One other
reason could be that recognising this cutting parameter simply by looking at an image
is hard even for human experts. This may be amplified for models trained on a limited
number of samples.

Table 7.4: Feed rate classification results.

ML algorithm Texture descriptor F1-score (5-fold)

SVM
LBP 0.28182±0.05600
HOG 0.40000±0.12649

GLCM 0.15000±0.03780

KNN
LBP 0.32500±0.05244
HOG 0.45625±0.12082

GLCM 0.39167±0.09432

RF
LBP 0.37143±0.09063
HOG 0.35000±0.06124

GLCM 0.28889±0.06009

CNN 000...555888222000555±±±000...000444666000111

7.5.3 Cutting speed classification results

Table 7.5 reported the testing performances of each model when classifying the samples
according to the cutting speed. It is reminded that the available samples in the dataset
were collected for a total of 3 different cutting speeds:

• 80 m/min;

• 150 m/min;

• 220 m/min.
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Similarly to the previous classification tasks, the best performing approach for the
cutting speed classification was the proposed CNN, registering a mean f1-score of
0.85294 over the 5-folds. The second best performing approach was represented by the
combination KNN+LBP with a mean f1-score of 0.81429. Once again, the proposed
CNN showed very stable classification performance, highlighted by a testing f1-score
standard deviation of ±0.04400 which is the tightest across all other models-feature
combinations. For reference, the KNN+LBP combination shows a f1-score spread that
is almost 50% wider (±0.06268) than the one of the proposed CNN. The overall test-
ing performances of all models were acceptable, with most model-feature combinations
registering f1-scores above the 70% threshold, signaling that it is feasible to recognise
different values of the cutting speed parameter.

Table 7.5: Cutting speed classification results.

ML algorithm Texture descriptor F1-score (5-fold)

SVM
LBP 0.66667±0.05590
HOG 0.74412±0.07682

GLCM 0.63636±0.08090

KNN
LBP 0.81429±0.06268
HOG 0.78750±0.11087

GLCM 0.59167±0.11583

RF
LBP 0.74167±0.07360
HOG 0.73750±0.09910

GLCM 0.64375±0.08210

CNN 000...888555222999444±±±000...000444444000000

7.5.4 Tool diameter classification results

Table 7.6 reported the testing performances of each model when classifying the samples
according to the tool diameter. It is reminded that the available samples in the dataset
were collected for a total of 2 different tool diameters:

• 27.9 mm;

• 32.0 mm.

For this classification task it is possible to see that all the approaches performed
very well, registering testing f1-scores above the 90% mark. With that being said, the
benchmark was set by the SVM+HOG combination, showing a mean test f1-score of
0.98636 which slightly outperformed the proposed CNN model (0.97464). At the same
time, the proposed CNN showed excellent performance reliability
across the 5-folds: it registered a test f1-score deviation of just ±0.00785, which was
a third of the deviation registered by SVM+HOG combination. This confirmed both
the effectiveness of the features generation and learning processes and the generalisa-
tion capabilities of the proposed CNN model, even when classifying a technological
parameter such as the tool diameter. It has to be reminded that this classification task
was somewhat simpler compared to the other 4 tasks, since it required to distinguish
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between just 2 classes. Consequently, since the total number of samples was fixed and
equal to 100, more samples were available to describe each class, which is something
desirable to effectively train machine learning models.

Table 7.6: Milling tool diameter classification results.

ML algorithm Texture descriptor F1-score (5-fold)

SVM
LBP 0.89333±0.07528

HOG 000...999888666333666±±±000...000222333333555
GLCM 0.80000±0.04472

KNN
LBP 0.91000±0.02236
HOG 0.98462±0.02402

GLCM 0.82188±0.05468

RF
LBP 0.93333±0.04330
HOG 0.96429±0.04756

GLCM 0.79286±0.08381

CNN 0.97464±0.00785

7.5.5 Nose radius classification results

Table 7.7 reported the testing performances of each model when classifying the samples
according to the insert nose radius. It is reminded that the available samples in the
dataset were collected for a total of 5 different nose radii:

• 0.4 mm;

• 0.8 mm;

• 1.0 mm;

• 1.2 mm;

• 1.5 mm.

The proposed CNN model was the best performing approach when classifying the
samples according to the nose radius of the milling tool’s inserts. It managed to outper-
form the SVM+HOG combination, registering a mean test f1-score of 0.79475 com-
pared to 0.76250. As previously shown across the other classification tasks, the pro-
posed CNN was a very reliable approach, with a test f1-score deviation of ±0.04724,
which is almost half the one scored by the SVM+HOG combination (±0.08561). Over-
all, the results were mixed: HOG features were those leading the machine learning
models to the best performances, while LBP and GLCM were unable to generate fea-
tures that correctly identify the different nose radii from the surface images. It should be
noted that, similarly to the feed rate, recognising different values of nose radii through
vision only is a complex task even for experts.

7.5.6 Average classification results

From a global perspective, it was possible to notice that the proposed CNN was per-
forming very well across the spectrum of classification tasks: it was the best performing
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Table 7.7: Milling tool insert’s nose radius results.

ML algorithm Texture descriptor F1-score (5-fold)

SVM
LBP 0.50000±0.08165
HOG 0.76250±0.08561

GLCM 0.59000±0.09947

KNN
LBP 0.67727±0.10574
HOG 0.71429±0.08522

GLCM 0.48571±0.08187

RF
LBP 0.57000±0.13038
HOG 0.76000±0.08216

GLCM 0.47143±0.07559

CNN 000...777999444777555±±±000...000444777222444

model in the case of machining conditions, feed rate, cutting speed, nose radius clas-
sification, and it is marginally outperformed in the case of tool diameter (−1.2% w.r.t.
SVM+HOG combination). This can be seen from Table 7.8, where the average perfor-
mances of the different model-feature combinations and proposed model across the 5
classification tasks were reported:

• the proposed CNN was, on average, the best performing model across all tasks,
with an average f1-score of 0.81455. It was the most consistent too, highlighted
by a f1-score spread of ±0.12996;

• the second best approach was, on average, the KNN paired with HOG features.
This approach showed an average f1-score of 0.75930 (-5.5% w.r.t. the proposed
CNN) and a standard deviation of ±0.17571 (+4.6% w.r.t. the proposed CNN);

• the worst approach were, on average, the SVM paired with GLCM features or
LBP features (as anticipated when discussing the machining conditions results);

• from the texture descriptor point of view the most effective one appears to be
the HOG (it is reminded that this feature was paired with PCA), while the least
effective one was the GLCM.

7.6 Conclusions

In this chapter, a deep learning approach for machined surface classification tasks is
presented. A shallow end-to-end Convolutional Neural Network (CNN) classifier was
built and trained upon 100 raw surface very high resolution images, split in 224x224
pixels batches. The CNN learned to classify images for 5 classification tasks: machin-
ing conditions, feed rates, cutting speeds, tool diameters and nose radii. The proposed
approach was compared to state-of-the-art machine learning techniques (Support Vec-
tor Machines, k-Nearest Neighbours and Random Forests), fed with traditional sur-
face feature descriptors (Local Binary Patterns, Histogram of Oriented Gradients and
Gray-Level Co-Occurrence Matrix). The developed approach resulted to outperform
state-of-the-art machine learning techniques in all the classification tasks, except for
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Table 7.8: Average classification performances across parameters of interest (machining condition, feed
rate, cutting speed, tool diameter, nose radius).

ML algorithm Texture descriptor Global F1-score

SVM
LBP 0.48836±0.27908
HOG 0.74735±0.19355

GLCM 0.45527±0.27900

KNN
LBP 0.70674±0.20472
HOG 0.75930±0.17571

GLCM 0.63152±0.18542

RF
LBP 0.69601±0.20383
HOG 0.73327±0.20770

GLCM 0.60355±0.20057

CNN 000...888111444555555±±±000...111222999999666

the milling tool diameter showing a mean f1-score of 97.5% (just 1.2% less than the
best state-of-the-art algorithm). Furthermore, the CNN results were 5.5% better then
the best machine learning approach when considering the average classification perfor-
mances. Thus, the proposed CNN structure demonstrated to be robust, reliable, flexible
and accurate enough for a possible industrial deployment. Nevertheless, there are still
margins of improvement especially regarding the feed rate classification, where the
CNN still struggles to reach optimal performances. This will be the subject of authors’
future works, together with the deployment of the conceived approach in an adaptive
process control framework (i.e. the CNN will suggest milling parameter changes and
tool failure detection).
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CHAPTER8
Conclusions

In this thesis, the main objective was to develop prognostics and health management
solutions for the manufacturing scenario, with particular attention to the machine tool
system. The main branches were three and focused: on the cutting tool, from the anal-
ysis of machine signals; on machine tool auxiliaries, with particular attention to the
hydraulic unit; on workpiece quality and cutting tool diagnosis with the analysis of
machined surfaces. The cutting tool was chosen due its temporal and economical im-
pact on the manufacturing systems: researchers affirmed that 40% savings could be
recovered through tool condition monitoring [185]; about 20% of machine tools down-
times was attributed to tool failures, resulting in reduced productivity and economic
losses [121, 227]. Tool condition monitoring and prognosis have an economical and
environmental impact on manufacturing companies. In fact, cutting tool life can be
optimised through TCM solutions, avoiding dramatic failure and reducing early tool
changes. This allows to couple them with a cutting tool resharpening policy, leading to
economical savings (for cutting tool users), while bringing increased profits (tool man-
ufacturers), critical material reduction (e.g. Cobalt and Tungsten), CO2 and energetic
footprint decrease. The hydraulic unit was chosen in representation of machine tool
auxiliaries. This was based on several research findings, which highlighted the crucial
role of hydraulic units in machine tool reliability [29, 161, 217].

Three main challenges were identified, preventing a diffused and effective imple-
mentation of PHM strategies in the manufacturing sector. Typical literature solutions
were based on the creation of huge supervised learning datasets, requiring several run-
to-failures to be performed. These experimental tests resulted in strong economical and
temporal impacts for companies. The second main challenge regarded the variability
of operating conditions, especially for machine and cutting tools and typical of low-
medium volume production companies. That is the case where goods are manufactured
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in small batches or even as one-of-a-kind products (e.g. aeronautical sector). Further-
more, modifications in signals related to varying cutting conditions or parameters tend
to be stronger than degradation effect. Last challenge consisted in the fact that literature
approaches are, in general, static. This translated in models built on training data and
not capable to adapt to the data coming from the field.

Derived from these challenges, the objective of the thesis were set to minimising
the need for experimental tests, and conceiving an operational regime robust PHM
architecture in a hybrid and adaptive fashion.

Regarding to the cutting tool thesis section, in chapter 2 the foundations for an oper-
ational regime robust PHM solutions were laid. In fact, a novel analytical mechanistic
model for double-phased high-feed mills was formulated and proposed. A mechanistic
model allows to predict useful cutting quantities (e.g. cutting forces, torque and power)
based on specific cutting force coefficients, which represent specific energies or cutting
pressures. In chapter 2, a specific formulation for double-phased cutters was developed,
in order to be capable of predicting quantities of interest in high feed milling operations.
The new formulation extended the reference literature model to include complex cutter
geometry and variable engagement conditions along the axial coordinate of the tool.
The predominance of ploughing action under the flank face of the cutting insert, led
to lower specific force coefficients. The new formulation allowed to estimate specific
force coefficients in a more reliable manner, underlying the better representation of
the cutting process with respect to the application of the reference one. The literature
model was outperformed also in the prediction of spindle torque and power. This was
true both in terms of mean value predictions, and in terms of their prediction bounds.
This effect was strictly associated to the narrower confidence intervals related to the
specific force coefficients estimation.

Chapter 3, represented the first link between the developed mechanistic model to
a tool condition monitoring system. In fact, in this context, specific force coefficients
were adopted as tool wear correlated features, but being normalised from the opera-
tional regime. Indeed, this chapter strictly dealt with the first two objectives of the
thesis. A fully unsupervised tool wear monitoring strategy was conceived based on
the instantaneous forces-based specific force coefficients (SFC) fitting procedure. In
fact, the identification method presented in the second chapter of the thesis would have
required continuously changing feed rate run-to-failures to be applied in a tool condi-
tion monitoring or prognosis framework. Thus, the PHM solution would have resulted
in no advantages on the experimental effort and limited application scenarios. On the
contrary, the identification procedure of chapter 3, relying upon the instantaneous cut-
ting forces, allowed to estimate specific force coefficients without the need of a training
dataset. A principal component regression approach was needed in order to reduce
the variability in the estimated specific force coefficients brought by the multicollinear-
ity phenomenon. Multicollinearity would prohibit to separate univocally the effects of
the regressors. Thus, small changes in the experimental data would have caused the
see-saw effect on the specific force coefficients, generating a correlation among their
oscillations. Principal component regression implementation proved to be efficient in
limiting this phenomenon and strengthened their correlation to tool wear. Self-starting
tabular cumulative control charts provided an effective fully unsupervised tool to detect
out of control cutting samples. The detections provided by the developed tool condition
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monitoring system were connected to the development of tool chippings and notches.
Another important result was related to the robustness of the conceived approach with
respect to multiple cutting speeds, lubrication conditions and machine tools, responding
to the first two main objectives of the thesis.

In chapter 4, another tool condition monitoring strategy was proposed. In this case,
the objective was related to the indirect assessment of flank wear starting from the
specific force coefficients of mechanistic force models. Instantaneous identification
procedures resulted to be subjected to the multicollinearity phenomenon, as previously
reported. The multicollinearity phenomenon is strengthened by not modelled physical
phenomena such as tool run-out or machine tool variable dynamic compliance, leading
to different tool tip vibrations when cutting along different directions. An artificial
intelligence-based unsupervised approach was implemented for online clustering of
specific cutting force coefficients. Growing self-organising maps allowed to group data
as soon as they became available. Different cells of the map contained progressive
evolutions of specific force coefficients, separating sudden changes in their value. Self-
starting control charts in each region constituted a voting system to detect cutting tool
flank wear critical values. This chapter was complementary with chapter 3; together,
they represented brittle and gradual tool wear monitoring strategies, respectively. Even
in this chapter, multiple machine tools, cutting speeds and lubrication conditions were
successfully analysed.

The last phase of prognostics and health management of cutting tools was presented
in chapter 5. A prognosis approach was developed and applied to perform predictions
of cutting tool flank wear degradation curves in turning applications. It was based on
direct measurements of flank wear, obtainable through camera images and their post-
processing. The conceived approach combined particle filter, coming from the statisti-
cal world, and multi-layer perceptron, from artificial intelligence. The hybridisation of
the algorithm permitted to leverage on the advantages of the two fields. On one side, the
solution provided adaptability to online flank wear measurements and unseen cutting
tool degradation curves. On the other side, remaining useful life was estimated together
with its confidence intervals and its probability density function. The approach didn’t
need for tool wear dynamical models, but leveraged on only one run-to-failure. Never-
theless, it performed well on validation sets presenting unseen tool degradation rates,
caused by variable cutting parameters. In this chapter, the construction of a prognostics
and health management framework for cutting tools was brought to a conclusion, con-
tributing to all the main challenges and objectives of the thesis work. The developed
prognostics and health management framework can be applied in most of the metal
cutting operations such as milling, turning and drilling.

In chapter 6, the subject of the analysis switched to machine tool auxiliaries. A
machine tool hydraulic unit digital twin was developed in order to respond to the ne-
cessity of training data. No experimental run-to-failures were needed since a set of
simulations was performed for stationary and non-stationary cycles. The digital twin
included also the possibility to simulate faulty components. Three different elements
of the high pressure circuit of the hydraulic unit were modelled in nominal conditions
and with multiple levels of fault severity. A full prognostics and health management
architecture was developed for this case. A supervised learning framework was set up
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for diagnosis starting from digital twin simulations. This phase allowed to detect, iso-
late and quantify the failures, while the prognosis phase was able to account for the
interaction between different faults. In fact, it was based on the output of diagnosis,
which was trained on all the fault combinations. Remaining useful life and its probabil-
ity density function were estimated through a Monte Carlo approach. The solution was
thus conceived to achieve all the main thesis objectives, with special regard to the first
two. The robustness of the solution was verified by training the data-driven algorithms
on stationary cycles and testing them on non-stationary ones.

Chapter 7 changed the perspective of the thesis, looking at prognostics and health
management from the workpiece side. Very high resolution images of machined sur-
faces where collected through a digital microscope. The images were taken for machin-
ing processes performed with different technological and cutting parameters. Different
depths of cut, cutting speeds, feed rates, tool nose radii and diameters were investi-
gated. Furthermore, some samples were performed considering undesired machining
conditions such as excessive tool run-out and tool chipping. A convolutional neural
network, from the deep learning pool of algorithms, was conceived and applied to the
analysis of image patches. The proposed algorithm structure demonstrated to be robust,
reliable, flexible and accurate enough in the recognition of all the above cases, allowing
for a possible industrial implementation. This last chapter contributed to the robustness
with respect to variable working regimes challenge, providing a tool both for cutting
tool and process diagnosis.

8.1 Future works

The conceived prognostics and health management framework for cutting tools was
applied to milling operations, since they represent the worst case scenario in terms of
cutting condition variability from a practical perspective. Despite prognosis was per-
formed on turning run-to-failures, direct tool prognosis algorithm would be unchanged
for milling. Furthermore, the developed tools provide useful methods also for other
metal cutting operations. Possible future works are thus associated to the adaptation
and validation of the single modules to other cutting processes.

The vision for the proposed prognosis method regards the use of specific force co-
efficients in place of the flank wear measurements, or in combination with them. This
would allow for a continuous indirect prognosis of the cutting tool life. Furthermore,
other cutting process quantities could be included. Specific force coefficients were esti-
mated starting from cutting forces measurements. They are typically measured through
dynamometers which may not be affordable in industrial applications. The solution
should be integrated in indirect cutting forces estimation systems, otherwise other pro-
cess measurements should be used for the specific force coefficients estimation, e.g.
cutting tool vibrations or cutting torque measurements.

The developed adaptive approach is currently estimating remaining useful life of
tools based on direct wear measurements. Nevertheless, the integration of indirect tool
wear indicators like specific force coefficients could be included in the formulation.
The hybrid architecture didn’t exploited any supplementary information from the cut-
ting process context, like machining parameters. Furthermore, the developed approach
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could be improved in such a way that new run-to-failures coming from the field pos-
sibly increase its adaptability and fitting capability. This may be done by including
new data in the starting multi-layer perceptron particles. When direct measurements
are available from the field this can be done automatically.

Research should also focus on the correlation between the SFC evolution and the
quality of cut left on the material surface. This links also to the workpiece side moni-
toring and diagnosis. The performances of the conceived prognostics and health man-
agement approach (and literature approaches) could be enhanced by the fusion of man-
ufactured product features and finishing. The tool condition predictions as well as the
process monitoring and diagnosis could be implemented in an adaptive process control
scenario, defining production objectives to be met, subjected to machine tool compo-
nent lives, cutting tool life and surface quality constraints.
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