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Abstract 

In recent years, generation of energy using renewable resources such as wind or sun 

radiation has become popular due to pollution reduction policies and economic 

benefits involved. In the case of solar generation, initially large fields containing several 

photovoltaic panels were needed to produce energy at large scale; typically these 

systems were owned by energy generation companies. However, production of energy 

at small scale using panels on condominiums is also gaining popularity because of bill 

reduction for the residents. Due to the natural uncertainty of renewable generation and  

electrical demand, these systems are used together with a storage system to make use 

of the energy stored when the solar irradiation is not enough to satisfy the demand and 

to store energy when the energy generation is greater than the demand. The operation 

of the storage impacts in the performance of the microgrid, hence in this thesis a 

control strategy to manage the storage of a microgrid is proposed. The proposed 

control strategy is based on Model Predictive Control (MPC) which aims to control the 

system optimally according to certain objectives and subjected to operational 

restrictions. MPC is based on solving an optimization problem at each time instant and 

in this thesis the optimization problem is formulated as a mixed integer linear 

programming (MILP).    The control strategy is evaluated through simulations and two 

different microgrids are considered which differ in the type of storage system, but 

equivalent storage capacity is considered. One of them is based on regeneration of 

hydrogen through electrolysis whereas the other storage system is based on batteries. 

Additionally, for each microgrid two objectives are considered in the optimization 

problems: minimization of energy exchange with the grid and minimization of energy 

costs. Then, a simpler heuristic algorithm based on logical rules is presented with the 

sole purpose to compare the performance of both control systems. The results of the 

simulations show the effectiveness of the proposed control strategy and that each type 

of storage system is suitable for a certain objective. 
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Sommario 

Negli ultimi anni, la produzione di energia usando risorse rinnovabili come il vento o 

la radiazione solare è diventata piuttosto comune grazie alle politiche di riduzione 

dell’inquinamento e anche dei benefici economici. Nel caso della produzione solare, 

inizialmente erano necessari per la produzione di energia in larga scala ampi spazi che 

contenessero una moltitudine di pannelli fotovoltaici; tipicamente questi sistemi erano 

di proprietà delle compagnie di produzione energetica. Tuttavia, oggigiorno, la 

produzione di energia in piccola scala mediante pannelli all’interno di condomini sta 

diventando sempre più comune grazie alla riduzione dei costi in bolletta per i residenti. 

A causa della naturale incertezza della produzione rinnovabile e della domanda di 

corrente elettrica, questi sistemi vengono usati insieme a un apparato di 

immagazzinamento per poter fare uso di tale energia ogni qual volta la radiazione 

solare non sia sufficiente per soddisfare la richiesta e per poterla immagazzinare nei 

casi in cui la produzione energetica sia maggiore della domanda. L’operazione di 

stoccaggio influisce sulla performance della microgrid: è per questo che in questa tesi 

si propone una strategia di controllo per gestire l’immagazzinamento di energia di tale 

sistema. La strategia di controllo proposta è basata sul Model Predictive Control (MPC) 

che ambisce a controllare in modo ottimale il sistema secondo diversi obiettivi e 

sottostando ad altre restrizioni operative. L’MPC si basa sulla risoluzione e 

sull’ottimizzazione del problema in ogni istante di tempo, e in questa tesi il problema 

dell’ottimizzazione è formulato come un Mixed Integer Linear Programming (MILP). 

La strategia di controllo è valutata tramite simulazioni, e sono considerate due diverse 

microgrid che differiscono per tipologia del sistema di stoccaggio, ma sono equivalenti 

se viene considerata la capacità di stoccaggio. Una di esse è basata sulla rigenerazione 

dell’idrogeno mediante elettrolisi, mentre l’altro sistema di immagazzinamento è 

fondato su batterie. In più, per ogni microgrid, nei problemi di ottimizzazione, si 

considera due obiettivi: la minimizzazione dello scambio di energia con la rete e la 

minimizzazione dei costi dell’energia. Viene presentato, inoltre, un più semplice 

algoritmo euristico basato su regole logiche con il solo proposito di comparare la 

performance dei due sistemi di controllo. I risultati delle simulazioni mostrano 

l’efficacia della strategia di controllo proposta e che ogni tipo di sistema di stoccaggio 

è più adatto a un obiettivo diverso. 

  



Table of Contents  

 

III 
 

Table of Contents 

Abstract ................................................................................................................................. I 

Sommario ............................................................................................................................ II 

Table of Contents .............................................................................................................. III 

List of Figures .................................................................................................................... VI 

List of Tables ...................................................................................................................... IX 

Chapter 1 Introduction ............................................................................................... 10 

Theoretical background .................................................................................................... 12 

Chapter 2 Electrical microgrids ................................................................................ 12 
2.1 Introduction....................................................................................................... 12 
2.2 Basic concepts .................................................................................................. 13 

2.3 Benefits ............................................................................................................. 14 
2.4 Architecture ...................................................................................................... 15 

2.5 Management system ......................................................................................... 16 

2.6 Energy sources .................................................................................................. 16 

2.7 Energy storage systems..................................................................................... 18 
2.7.1 Regenerative Hydrogen Fuel Cell ................................................................. 19 

2.7.1.1 Electrolyser ........................................................................................ 20 
2.7.1.2 Fuel cell .............................................................................................. 24 
2.7.1.3 Hydrogen storage tank ....................................................................... 27 

2.7.2 Battery ........................................................................................................... 28 

2.7.2.1 Main concepts .................................................................................... 28 
2.7.2.2 Model description .............................................................................. 30 

Chapter 3 Numerical optimization ............................................................................ 32 
1.1 Introduction....................................................................................................... 32 
3.1 Mixed integer linear programming (MILP) ...................................................... 33 

3.2 Branch and bound algorithm ............................................................................ 33 
3.3 MILP modelling................................................................................................ 35 

3.3.1 Continuous variable taking discontinuous values ......................................... 35 
3.3.2 Modelling of piecewise affine (PWA) function ............................................ 36 
3.3.3 Piecewise affine linearization ........................................................................ 38 

Chapter 4 Model predictive control (MPC) .............................................................. 42 
4.1 MPC formulation .............................................................................................. 42 

4.2 MPC of linear systems ...................................................................................... 44 



Table of Contents  

 

IV 
 

Contribution ....................................................................................................................... 49 

Chapter 5 System description and control strategy ................................................. 49 
5.1 Systems description .......................................................................................... 49 

5.1.1 Microgrid with regenerative hydrogen fuel cell ............................................ 50 
5.1.2 Microgrid with battery ................................................................................... 51 

5.2 Control architecture .......................................................................................... 51 
5.2.1 Hydrogen based microgrid ............................................................................ 52 
5.2.2 Battery based microgrid................................................................................. 53 

5.3 System modelling for RHFC ............................................................................ 53 
5.3.1 Alkaline electrolyser ...................................................................................... 53 

5.3.2 PEM fuel cell ................................................................................................. 59 
5.3.3 System equation ............................................................................................. 67 

5.4 System modelling for battery............................................................................ 69 

5.4.1 System equation ............................................................................................. 69 
5.5 Energy exchange with the grid ......................................................................... 71 

5.5.1 Balance of energy .......................................................................................... 71 
5.5.2 Purchase and sale of energy........................................................................... 72 

5.5.3 Prices of energy ............................................................................................. 73 
5.6 Constraints ........................................................................................................ 74 

5.6.1 Storage bounds .............................................................................................. 74 
5.6.2 Ramp rate ....................................................................................................... 75 

5.6.3 Interaction with the grid logical constraints .................................................. 75 
5.6.4 Start up and shutdown ................................................................................... 76 
5.6.5 Variation of power exchanged with the grid ................................................. 76 

5.6.6 Tracking the reference of energy level in the storage ................................... 77 
5.6.7 Tracking the reference of power exchanged with the grid ............................ 78 

5.7 One day-ahead scheduling ................................................................................ 78 
5.7.1 Cost function for system based on hydrogen................................................. 79 

5.7.2 Cost function for system based on battery..................................................... 80 
5.8 MPC control problem ....................................................................................... 81 

5.8.1 Cost function for system based on hydrogen................................................. 83 

5.8.2 Cost function for system based on battery..................................................... 83 
5.9 Generation of photovoltaic generation data ...................................................... 84 
5.10 Generation of electrical demand data ............................................................... 86 

5.11 Alternative management algorithm .................................................................. 88 

Chapter 6 Simulations and results ............................................................................. 91 
6.1 Comparison criteria .......................................................................................... 91 

6.1.1 Energy exchange with the grid ...................................................................... 91 

6.1.2 Energy costs ................................................................................................... 92 
6.1.3 Grid power variation ...................................................................................... 92 

6.2 Minimization of energy exchange with the grid ............................................... 92 

6.2.1 Microgrid with storage based on hydrogen ................................................... 93 
6.2.1.1 Planification one-day ahead ............................................................... 93 

6.2.1.2 MPC ................................................................................................... 94 
6.2.1.3 Heuristic algorithm ............................................................................ 96 

6.2.2 Microgrid with storage based on batteries ..................................................... 98 



Table of Contents  

 

V 
 

6.2.2.1 Planification one-day ahead ............................................................... 98 
6.2.2.1.1 MPC .......................................................................................... 99 

6.2.2.2 Heuristic algorithm .......................................................................... 101 
6.2.3 Comparison .................................................................................................. 102 

6.3 Reduction of energy costs ............................................................................... 103 

6.3.1 Microgrid with storage based on hydrogen ................................................. 103 
6.3.1.1 Planification one-day ahead ............................................................. 103 
6.3.1.2 MPC ................................................................................................. 104 
6.3.1.3 Heuristic algorithm .......................................................................... 104 

6.3.2 Microgrid with storage based on batteries ................................................... 105 

6.3.2.1 Planification one-day ahead ............................................................. 105 
6.3.2.2 MPC ................................................................................................. 106 

6.3.2.3 Heuristic algorithm .......................................................................... 108 

6.3.3 Comparison .................................................................................................. 109 

Chapter 7 Conclusions and future works ............................................................... 111 

Bibliography ..................................................................................................................... 113 



 

List of Figures 

VI 
 

List of Figures 

Fig. 2.1: Architecture of a microgrid ................................................................................................ 15 

Fig. 2.2: Control hierarchy scheme ................................................................................................... 16 

Fig. 2.3: Scheme of regenerative hydrogen fuel cell ........................................................................ 19 

Fig. 2.4: (a) interconnection of cells in parallel, (b) interconnection of cells in series ..................... 20 

Fig. 2.5: relationship between current density and cell voltage for an alkaline electrolyser .......... 22 

Fig. 2.6: Operation principle of PEM fuel cell ................................................................................... 24 

Fig. 2.7: Scheme of principle when a discharging a battery ............................................................. 28 

Fig. 2.8: Scheme of principle when charging a battery .................................................................... 29 

Fig. 3.1: piecewise linearization of non-linear function ................................................................... 38 

Fig. 3.2: Non-linear convex function ................................................................................................ 40 

Fig. 3.3: Piecewise linear approximation of convex non-linear function ......................................... 41 

Fig. 5.1: Scheme of microgrid with RHFC considered in the simulations ......................................... 50 

Fig. 5.2: Scheme of microgrid with battery considered in the simulations ..................................... 51 

Fig. 5.3: General control architecture .............................................................................................. 51 

Fig. 5.4: Control architecture for system with storage based on hydrogen .................................... 52 

Fig. 5.5: Control architecture for system with storage based on batteries ..................................... 53 

Fig. 5.6: Scheme of local operation of an electrolyser ..................................................................... 54 

Fig. 5.7: Scheme of inputs and output of the electrolyser model.................................................... 54 

Fig. 5.8: Simulation of the fuel cell model ........................................................................................ 56 

Fig. 5.9: Variations of power due to changes of temperature - electrolyser ................................... 56 

Fig. 5.10: Scheme of the complete model for the electrolyser ........................................................ 57 

Fig. 5.11: Relationship between Faraday efficiency and current for the electrolyser ..................... 58 

Fig. 5.12: Linear relationship between power setpoints and production of hydrogen ................... 58 

Fig. 5.13: Scheme of local operation of a PEM fuel cell ................................................................... 59 

Fig. 5.14: Input and outputs of the PEM fuel cell model ................................................................. 60 

Fig. 5.15: Current input for PEM fuel cell model validation ............................................................. 61 

Fig. 5.16: Result of PEM fuel cell model validation .......................................................................... 62 

Fig. 5.17: relation between power and current - PEM fuel cell model ............................................ 63 

Fig. 5.18: Relation between concentration cell voltage and current - PEM fuel cell model ............ 63 

Fig. 5.19: Linearity of current as function of power - PEM fuel cell model...................................... 64 

Fig. 5.20: Scheme of the complete model for the PEM fuel cell ...................................................... 65 

Fig. 5.21: Relationship between production of hydrogen and power - PEM fuel cell model .......... 65 

Fig. 5.22: Energy prices over 24 hours ............................................................................................. 74 

Fig. 5.23: Photovoltaic generation data produced by the BRIGHT model ....................................... 86 

Fig. 5.24: Architecture considered by the CREST model to generate electrical demand data ........ 87 

Fig. 5.25: Main interface of CREST demand model .......................................................................... 87 

Fig. 5.26: Electrical demand data produced by the CREST demand model ..................................... 88 

Fig. 5.27: Flow chart of the heuristic algorithm for the storage system based on battery ............. 89 

Fig. 5.28: Flow chart of the heuristic algorithm for the storage system based on hydrogen .......... 90 



 

List of Figures 

VII 
 

Fig. 6.1: Percentage of hydrogen in the tank according to planification one-day ahead for 

minimization of energy exchange with the grid .............................................................................. 93 

Fig. 6.2: Profile of power exchanged with the grid produced by prior planification for minimization 

of energy exchange with the grid .................................................................................................... 93 

Fig. 6.3: Evolution of the amount of hydrogen in the tank when using the MPC on the microgrid 

for minimization of energy exchange with the grid ......................................................................... 94 

Fig. 6.4 Power exchanged with the grid when using the MPC for minimization of exchange with 

the grid ............................................................................................................................................. 95 

Fig. 6.5: Comparison between power exchanged with the grid when using MPC for minimization 

of energy exchange and not using any storage ............................................................................... 95 

Fig. 6.6: Power references for the electrolyser and fuel cell produced when using MPC for 

minimization of energy exchange with the grid .............................................................................. 96 

Fig. 6.7 Evolution of the amount of hydrogen in the tank when using the heuristic algorithm for 

minimization of energy exchange .................................................................................................... 96 

Fig. 6.8: Power references for the electrolyser and fuel cell when using the heuristic algorithm for 

minimization of energy exchange with the grid .............................................................................. 97 

Fig. 6.9: Power exchanged with the grid when using the heuristic algorithm for storage based on 

hydrogen for minimization of energy exchange .............................................................................. 97 

Fig. 6.10: SOC evolution produced by one-day ahead planification for minimization of energy 

exchange .......................................................................................................................................... 98 

Fig. 6.11: Power exchanged with the grid profile produced by one-day ahead planification for 

minimization of energy exchange .................................................................................................... 98 

Fig. 6.12: SOC evolution when using the MPC for minimization of energy exchange ..................... 99 

Fig. 6.13: Power exchanged with grid when using MPC for minimization of energy exchange ...... 99 

Fig. 6.14: Comparison between power exchanged with the grid when using MPC for minimization 

of energy exchange and not using any storage ............................................................................. 100 

Fig. 6.15: Power reference for the battery when using MPC for minimization of energy exchange

 ........................................................................................................................................................ 100 

Fig. 6.16: Evolution of the SOC of the battery when using the heuristic algorithm for minimization 

of energy exchange ........................................................................................................................ 101 

Fig. 6.17: Power exchanged with the grid when using the heuristic algorithm for battery for 

minimization of energy exchange .................................................................................................. 101 

Fig. 6.18: Power references for the battery when using the heuristic algorithm for minimization of 

energy exchange ............................................................................................................................ 102 

Fig. 6.19: Energy level of the tank when using the prior planification for reduction of energy costs

 ........................................................................................................................................................ 103 

Fig. 6.20: Energy level in the tank when using the MPC for reduction of energy costs................. 104 

Fig. 6.21: Energy level in the tank when using the heuristic algorithm for reduction of energy costs

 ........................................................................................................................................................ 104 

Fig. 6.22: SOC evolution when using the planification one-day ahead for reduction of energy costs

 ........................................................................................................................................................ 105 

Fig. 6.23: Energy exchanged with grid profile produced by the planification one-day ahead for 

reduction of energy costs ............................................................................................................... 105 

Fig. 6.24: Energy level in the battery when using MPC for reduction of energy costs .................. 106 

Fig. 6.25: Power exchanged with grid when using MPC for reduction of energy costs ................. 106 



 

List of Figures 

VIII 
 

Fig. 6.26: Comparison between the energy exchanged with grid when using MPC for reduction of 

energy costs and not using any storage ......................................................................................... 107 

Fig. 6.27: Power references for the battery when using MPC for reduction of energy costs ....... 107 

Fig. 6.28: Evolution of SOC when using the heuristic algorithm for reduction of energy costs .... 108 

Fig. 6.29: Energy exchanged with the grid when using the heuristic algorithm reduction of energy 

costs in a microgrid with storage based on battery ....................................................................... 108 

Fig. 6.30: Comparison between the power exchanged with the grid produced by the heuristic 

algorithm in a microgrid with battery for reduction of energy costs and not using any storage .. 109 

Fig. 6.31: Power references for the battery when using the heuristic algorithm for reduction of 

energy costs ................................................................................................................................... 109 

 

 



 

List of Tables 

IX 
 

List of Tables 

 

Table 1: Comparison between battery technologies ....................................................................... 30 

Table 2: Technical specification of the alkaline electrolyser ............................................................ 55 

Table 3: Empirical parameters considered in the electrolyser model ............................................. 55 

Table 4: Lookup table to transform power references into current for the electrolyser ................ 57 

Table 5: Technical specification of PEM fuel cell ............................................................................. 60 

Table 6: Conditions of the experiment for validation of the PEM fuel cell model .......................... 60 

Table 7: Empirical parameters considered in the PEM fuel cell model ........................................... 61 

Table 8: Lookup table to transform power references into current for the fuel cell ...................... 64 

Table 9: Breakpoints for the piecewise linearization of fuel cell function ....................................... 66 

Table 10: Polynomial coefficients for the piecewise linearization of fuel cell function .................. 66 

Table 11: Parameters used in the BRIGHT model to produce irradiance data ................................ 85 

Table 12: Parameters to transform irradiance into power .............................................................. 85 

Table 13: Quantitative comparison for the case of energy exchange minimization ..................... 102 

Table 14: Quantitative comparison for the case of reduction of energy costs .............................. 110 

 

  



 

Introduction 

10 
 

Chapter 1 Introduction 

In recent years there has been a continuous increase in the use of renewable energy at 

low scales. Due to the nature of these kind of resources, the maximum levels of 

generation does not coincide with the maximum levels of consumption so they are 

often used together with other components such as gas generators and energy storage 

which can be regulated to provide energy when there is deficit and store energy when 

there is surplus. The combination of different devices that can produce and consume 

energy locally is known as a microgrid. However, the management of these controllable 

devices cannot be aleatory otherwise its use may imply greater economic costs, 

undesired technical behaviour, or simply suboptimal performance. In this context, the 

objective of this thesis is to present a control structure for the efficient management of 

an electrical microgrid. This control structure is based on a technique called Model 

Predictive Control (MPC) which is based on numerical optimization. This thesis 

considers two kind of microgrids: one with energy storage based on hydrogen and 

other that uses batteries as storage. Then, for each microgrid different objectives are 

stated: minimization of energy exchange with the grid and reduction of energy costs. 

Simulations based on mathematical models are performed to show the behaviour of 

the proposed control strategy.  

 

This thesis is structured as follows: 

 

• In chapter 2 theoretical background concerning microgrids is presented. It 

describes the concept of microgrids, their benefits, types, main components, and 

the mathematical models of the components used in this thesis.  

• In chapter 3 theoretical background corresponding to numerical optimization 

is presented. In this thesis mixed integer linear programming is used, so in this 

section is described this kind of optimization problem and how to cast functions 

or expressions as a mixed integer linear program. It is also described the 

Branch& Bound methods which are main algorithm used to solve this kind of 

problems. This description allows to understand how the optimization problem 

statement affects the computation time to solve these problems. 
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• In chapter 4 is introduced theoretical background of MPC, its formulation for 

linear systems and how to include it in the formulation of a mixed integer linear 

program 

• Chapter 5 describes the microgrids considered and their mathematical models 

are validated and then simplified for their use in MPC. Then the control strategy 

is described. The cost functions for each objective and microgrid are presented 

as well as the operational constraints for each case. Next, it is presented how is 

generated the photovoltaic generation and electrical demand data used in the 

simulations. Finally, an alternative simpler algorithm is described is described 

to compare it with the performance of MPC. 

• Chapter 6 defines comparison criteria and shows the results of simulations. The 

results are compared with the previous define criteria and some comments are 

given for these results. 
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Theoretical background 

Chapter 2 Electrical microgrids 

2.1 Introduction 

A conventional grid electrical grid is a system whose main objective is to provide 

electrical energy to consumers and is conventionally based on three stages: generation, 

transmission, and distribution. Power plants generate large amounts of electric energy 

by transforming primary sources of energy found in nature into electric energy. These 

plants are usually located near the natural resources and far from consumers, so 

energy is transported to urban areas by transmission networks.  These networks move 

electric energy for long distances, so they operate at high voltage to minimize the 

power losses due to Joule effect. Once in urban areas, there are electrical distribution 

substations which step down voltage to user levels and then electrical energy is 

delivered to final users [1].  

An important characteristic of current electrical grids is that considerable part of total 

electric energy is generated by using natural resources which release 𝐶𝑂2 to the 

environment and contribute to global warming. For this reason, electrical generation 

using renewable energy resources (RER) such as sunlight and wind, which have 

experienced a high development in recent years, appear as an interesting solution to 

reduce 𝐶𝑂2emissions [2]. Moreover, the introduction of these resources in the 

generation of energy makes the prices of electrical energy less dependent of the 

fluctuating price of fossil fuels providing in this way financial stability [3]. However, 

the use of these resources also has some drawbacks. An issue is their relatively high 

investments costs since they are a technology which is not yet consolidated, so 

economic incentives are needed. Although they have gained great popularity in recent 

years and are in continuous development, so these costs are expected to decrease in 

time [3]. Another disadvantage is that electrical power produced by RER’s cannot be 

controlled because these resources are intermittent i.e. electrical power depends on 

external factors such as the availability of sunlight or speed of wind. In a grid with only 

conventional resources, power is regulated to satisfy the demand. However, when RER 



 

Electrical microgrids 

13 
 

generation is included these resources have a priority over other types of generation 

types in the scheduling, i.e. they produce all the energy they can provide and variability 

of RER’s is assumed by regulating power of plants that work with conventional 

resources. So far in most countries participation of RER’s in conventional grids is 

relatively small so their intermittency can be assumed by other generation types; 

although, an increase of participation of RER’s in a conventional electrical system will 

degrade power reliability because the intermittency of RER’s will predominate in the 

grid and generation-demand balance will be harder to achieve [3]. On the other hand, 

another inconvenient of current electrical grids is that distribution networks 

experience significant power losses in form of heat since they transport electricity at 

relatively low voltages. A solution for this issue could be distributed generation (DG) 

which stands for the installation of small generation plants close to consumers to avoid 

the losses due to transportation [4]. Although small power plants based on RER’s can 

be installed, the problem of their intermittency remains and therefore is still present 

the degradation of power quality if RER predominate on the grid. In this context, 

microgrids appear as a concept to facilitate the integration of RER’s and DG in electrical 

grids. In this chapter basic notions of microgrids will be given as well as description of 

the main components putting more emphasis in the qualitative description and 

mathematical models of the components that will be used in this thesis   

 

2.2 Basic concepts 

In the EU research project [5] the following definition is given: 

 

Microgrids comprise LV distribution systems with distributed energy source, such as 

micro-turbines, fuel cells, PV’s, etc ... together with storage devices, i.e. flywheels, 

energy capacitors and batteries, and controllable loads, offering considerable control 

capabilities over the network operation. These systems are interconnected to the 

Medium Voltage Distribution network, but they can also be operated isolated from the 

main grid. 

 

From this definition it can be derived that a microgrid is a small electrical system that 

operates at relatively low voltages and integrates small sources of generation, small 

consumers, storage systems and a control system. The term “small” is relative since 

microgrids can operate with generation of few kW to satisfy domestic electrical 

demands for a residence or can also work with generation of several kW to satisfy 

electrical demand for example in a commercial centre [6]. The difference with a 

conventional grid is that there is a storage system that allows to store excess of 

generated energy when it is not needed and use it later when there is a deficit of 



 

Electrical microgrids 

14 
 

generation. In this way it allows to introduce RER’s massively despite of their 

intermittency. Another difference is the inclusion of DG where generation units are 

physically close to the load, so power flows through the distribution networks are 

reduced and therefore the power losses are also reduced. An important component is 

the management system which constantly monitors the operation of the microgrid and 

uses these measurements together with algorithms to make decisions and operate the 

grid in an efficient way according to certain objectives.  

2.3 Benefits 

Adoption of microgrids leads to economic, technical, environmental, and social benefits 

[6]: 

 

Economic benefits 

• Storage of energy generated in excess for later use leads to reduction of bills 

paid by users. 

• Microgrids can assume the expected growing demand so investments needed to 

build or renew infrastructure are reduced. 

• The price of energy becomes more independent from the price of fossil fuels 

which makes the electrical sector financially less vulnerable to fossil fuels price 

fluctuations. 

 

Technical benefits 

• Installation of generation units close to the loads decreases power losses in the 

distribution network, so the electrical system becomes more efficient. 

• Storage devices can help the grid by mitigating power disturbances making it 

more reliable. 

• Power fluctuations inherent to intermittent nature of RER’s is reduced so the 

adoption of RER’s is favoured. 

• Availability of energy in case of partial or total failures in the main grid. 

 

Environmental benefits 

• Decrease of the 𝐶𝑂2 emissions due to increase of use RER’s. 

 

Social benefits 

• Electrification of remote small areas where the installation of transmission lines 

represents an elevated cost 
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2.4 Architecture 

A microgrid is typically constituted by [6]: 

 

• Controllable energy sources: The power output of these resources can be 

regulated as requested. Example of these plants are small gas generators for 

domestic microgrids or small hydro plants for greater applications. 

• Non-controllable energy sources: The power output cannot be regulated since 

it depends on external factors. Example of these plants are photovoltaic panels 

and wind generators. 

• Controllable loads: Also known as non-essential loads and refer to devices 

whose power consumption can be curtailed or shifted for some amount of time 

by a management system. Example of these loads can be water heaters and air 

conditioning. 

• Non controllable load: The operation of these devices can only be controlled 

manually by the users.  

• Energy storage system: System that can store and provide energy according to 

the setpoint requested by the management system. Examples of these are … 

• Monitoring and control system: It is the management system that monitors the 

components of the grid and regulates the power outputs of the controllable 

loads, energy sources and energy storage to achieve an optimal operation of the 

plant according to certain objective.      

 

Fig. 2.1: Architecture of a microgrid 
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2.5 Management system 

The management system is the responsible for the monitoring and control of the 

microgrid. This system is composed of several controllers each of them performing a 

specific control function. These control functions operate at different timescales, so a 

hierarchical structure is used [3]. A common structure is to divide controllers in two 

groups:  

 

• Primary controllers: They perform control functions that have fast behaviour 

and operate in timescales that range from milliseconds to seconds. These 

devices control a single device and examples of their functions can be voltage 

control and current control. 

• Secondary controllers: They perform control functions that do not need to 

operate fast, so they operate at timescales that range from minutes to hours. 

These controllers acquire measurement signals from primary controllers and 

give them back reference signals. Examples of their control functions can be 

storage management and power flows optimization.  

 

The following scheme represent this hierarchical structure: 

 

 

Fig. 2.2: Control hierarchy scheme 

2.6 Energy sources 

There are several types of natural resources used for generation of energy and the 

definition of microgrids does not restrict the type of natural resource used for power 

generation. So, production of energy using non-renewable sources is also possible. In 

general, natural resources can be classified in two groups: those that allow regulation 

of power and those that are intermittent by nature and therefore cannot regulate their 

power output. Furthermore, depending on the type of resource there is the necessity 
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of certain power electronics interfaces to make the output of generation compatible to 

the grid voltage level. Those systems which generate AC electricity usually use a DC 

rectifier and then an inverter to obtain the desired voltage and frequency; whereas 

systems that produce DC electricity only need the inverter. Some sources of energy 

used in microgrids will be described. 

 

Solar power generation 

Sun emits radiant light and heat that can be used directly or indirectly to produce 

electricity [7]. On the one hand, heat from sun can be used to boil water which produces 

steam that can be used in a steam turbine to generate electricity whereas on the other 

hand, photovoltaic panels made of semiconductor materials can take advantage of 

sunlight irradiance to produce electricity. Among these options to transform solar 

energy, photovoltaic generation has gained popularity in recent years. 

In [7], the following definition is given: 

 

The main element of photovoltaic generation is a solar cell which is basically a PN junction 

diode. Solar radiation causes a large number of electron-hole pairs to be created in the 

semiconductor material. The asymmetry in a PN junction provides a built-in electric field at the 

junction, therefore the generated electrons and holes flow from the P-side to the N-side and 

from the N-side to the P-side, respectively. A voltage appears across the diode, which can drive 

current into an external circuit and deliver power to it.   

 

Cells are combined in series and parallel to form a module with desired voltage and 

power. The adoption of this technology involves the following benefits [7]: 

• Conversion of energy is quiet, so it does not disturb users 

• Their costs are continuously falling in recent years due to their popularity 

• At small-scale generation, solar panels can be installed on the roofs of 

residences, so their installation is relatively easily when compared with other 

types of generation. This feature facilitates their adoption by small users. 

 

In [8], the following equations are given to compute the photovoltaic generation: 

 
 

𝑇𝐶 = 𝑇𝑎 + 
𝑁𝑂𝐶𝑇

800
⋅ 𝐺 

(2.1) 

 

  

𝜂𝑡ℎ = 1 − 𝛼𝑡ℎ ⋅ (𝑇𝑐 − 25) 
(2.2)  

𝑃𝐴𝐶
𝑃𝑛𝑜𝑚

= 𝜂𝐷𝐶−𝐴𝐶 ⋅  
𝐺

1000
⋅ 𝜂𝑡ℎ 

(2.3)  



 

Electrical microgrids 

18 
 

 

where 𝑇𝑎 is the temperature of the air in °C, NOCT is the nominal operating cell 

temperature, G is the solar irradiance in W/𝑚2, 𝑇𝐶  represents the cell temperature, 𝜂𝑡ℎ  

represent the reduction of production due to cell temperature and 𝛼𝑡ℎ is an empirical 

parameter that allows to calculate this loss,  𝜂𝑡ℎ  represents the losses due to the 

conversion of energy from DC to AC.  

This model allows to convert solar irradiance into a dimensionless value that 

represents the ratio between the produced power and the nominal power. 

 

2.7 Energy storage systems 

In conventional grids the balance between generation and load is achieved by 

regulating power from generators by using frequency as feedback signal. At operating 

conditions, variations of electrical frequency are inversely proportional to changes of 

load, i.e. when the load increases the frequency of the grid tends to decrease and vice 

versa. So, the controllers of the generators automatically regulate power to maintain 

frequency constant as much as possible. However, this mechanism only works for small 

variations of load and therefore base generation is prior scheduled based on load 

forecasts. In this way, generation is regulated to satisfy the energy balance between 

generation and demand. As explained before, power output from renewable resources 

is highly variable and cannot be regulated, therefore conventional generation needs to 

be capable to deal with uncertainties coming not only from demand but also from 

renewable generation. Moreover, congestion of energy in the grid and peaks of 

renewable generation occur at different interval of hours. For these reasons, renewable 

generation cannot predominate in a conventional grid. In this context, the availability 

of energy storage systems can solve these issues.  

There are many types of storage systems used in microgrids among which can be 

found: hydrogen compressed and batteries. To compare these storage technologies the 

following criterions can be used: 

 

Self-discharge losses: Losses of stored energy while power is not consumed. 

Roundtrip efficiency: Ratio between the energy that can be obtained from the storage 

and the energy needed to charge the storage. 

Cycle lifetime:  The number of charge-discharge cycles obtained from a storage system 

in its lifetime. 

Energy density: Space of a storage system to store certain amount of energy. 
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 In the following sections hydrogen-based storage and batteries will be described in 

more detail.  

2.7.1 Regenerative Hydrogen Fuel Cell 

The use of hydrogen as a mean to store hydrogen is today a technology in development 

and it is expected to play an important role in the energy sector in the future. The 

following characteristics make it an attractive mean to store energy [4] [9]: 

• It has the highest energy density than other energy storage types. 

• Its adoption by small users is possible since it does not have geographical 

restrictions as other technologies such as pumped hydro 

• It has a low self-discharge rate which makes it an interesting option for seasonal 

storage, e.g. solar energy produced in summer can be stored for months and 

then used in winter when solar irradiance levels are low 

 

In this context an important technology that uses hydrogen to store energy is 

Regenerative Hydrogen Fuel Cell (RHFC). It is a system that accumulates hydrogen 

when there is a surplus of electrical energy and when needed produces electrical 

energy consuming the stored hydrogen. It consists of three main components: 

electrolyser, storage tank and fuel cell. At a first stage the electrolyser absorbs 

electrical energy and water to produce hydrogen and oxygen by electrolysis of water. 

Then, hydrogen is stored in a tank. Finally, the fuel cell absorbs hydrogen from the tank 

and oxygen to produce electricity and water. Fig. 2.3 obtained from [9] depicts the 

operation of this system: 

 

 
Fig. 2.3: Scheme of regenerative hydrogen fuel cell 

 

However, all the benefits of hydrogen are overshadowed by the low round-trip 

efficiency of this system, which is particularly low - around 30% - when compared with 
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other technologies. This low value is due to the low efficiencies of electrolyser and fuel 

cell with typical values of 70% and 47% respectively [9].  

2.7.1.1 Electrolyser 

An electrolyser is a device that receives electrical current and water flow as inputs and 

produces hydrogen. It is based on water electrolysis by which a water molecule is 

separated into hydrogen and oxygen by applying current [10]. The following 

expression represents the electrolysis reaction for an electrolyser: 

 

𝐻2𝑂 →  𝐻2 + 
1

2
 𝑂2  (2.4)  

 

 

This chemical process is endothermic, i.e. the process absorbs heat and is also non-

spontaneous, i.e. for the reaction to take place it needs an external source of energy. 

The electrolysis cell is the basic unit of an electrolyser, and since the values of voltage 

and current of a single cell are small, cells are interconnected to use a desired voltage 

and current. The interconnection of cells can be in series or parallel, but series 

connections are nowadays the most adopted solution by manufacturers. Fig. 2.4 

obtained from [10] depicts these types of connections: 

 

 
Fig. 2.4: (a) interconnection of cells in parallel, (b) interconnection of cells in series  
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The electrolysis chemical reaction depends on ion-conductivity, so electrolysers can be 

classified depending on the technology used to allow ion mobility. In this thesis alkaline 

electrolyser will be used which use an alkaline solution to allow the chemical reaction. 

For this case, the chemical reactions are: 

 

Cathode: 2𝐻2𝑂 + 2𝑒
− → 𝐻2 +  2𝑂𝐻

− 

 

  

(2.5) 

 

Anode: 2𝑂𝐻− → 
1

2
𝑂2 +  2𝑒

− 

 

(2.6)  

At low levels of power supply, there is hydrogen contamination in the oxygen stream 

due the low permeability of liquid electrolyte which is flammable mixture. For these 

reason safety shutdowns occur when the power supply is lower than a certain 

percentage of the nominal power [10]. 

 

Model description 

In this section the model described in [11] for an alkaline electrolyser is presented.  

 

a) Thermodynamical sub model 

The reversible voltage (𝑈𝑟𝑒𝑣) is the minimum required voltage for electrolysis to take 

place. At standard conditions of temperature and pressure, i.e. 1 atm and 25°,  𝑈𝑟𝑒𝑣 = 

1.229 V  

b) Electrical sub model 

In this model is considered an empiric relation between current and voltage. This 

relation is described in the following equation: 

 

𝑈𝑐𝑒𝑙𝑙 = 𝑈𝑟𝑒𝑣 + 
𝑟

𝐴
 𝐼 + 𝑠 ⋅ 𝑙𝑜𝑔(

𝑡

𝐴
 𝐼 + 1) 

 

 (2.7) 

 

Where r, s and t are empirical parameters; I is the current of each stack and A is 

electrolyser stack area.  

In [12] is presented Fig. 2.5 that shows that the relation between current and voltage 

depends on temperature: 
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  Fig. 2.5: relationship between current density and cell voltage for an alkaline electrolyser 

 

The main difference between the curves is due to overvoltage which is caused by 

temperature so to describe better the process, temperature is included in the second 

and third terms of equation (2.8): 

 

𝑈𝑐𝑒𝑙𝑙 = 𝑈𝑟𝑒𝑣 + 
(𝑟1 + 𝑟2 ⋅ 𝑇)

𝐴
 𝐼 + 𝑠 ⋅ 𝑙𝑜𝑔(

(𝑡1 + 𝑡2 ⋅ 𝑇 + 𝑡2 ⋅ 𝑇
2)

𝐴
 𝐼 + 1) 

 

  

(2.8) 

 

Since electrolysers are built with arranges of cells connected in series and parallel, the 

voltage of the electrolyser is defined by the product of the cell voltage by the number 

of cells in series, while the current passing through each stack in parallel multiplied by 

the number of cells in parallel is equal to the current of the electrolyser. Then the power 

of the cell is the product of the current and voltage. 

 

The Faraday efficiency’s definition is the ratio between the real and maximum 

theoretical production of hydrogen by the electrolyser. The following empirical 

expression describe this efficiency: 

 

𝜂𝑓 = 
(𝐼/𝐴)2

𝑓1 + (𝐼/𝐴)2
𝑓2 

 

  

(2.9) 

 

where 𝑓1 and 𝑓2 are empirical parameters 

 

The production rate of hydrogen is directly proportional to the electrical current. Since 

typically an electrolyser is formed by cells connected in series the hydrogen production 

rate can be described by the following expression: 
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𝑚̇𝐻2 = 𝜂𝑓
𝑛𝑐𝐼

𝑧𝐹
 

 

  

(2.10) 

 

where  𝑛𝑐  is the number of cells in series, z is the number of electrons of hydrogen 

(z=2) and F represents the Faraday constant which is 96485. The production of 
hydrogen 𝑚̇𝐻2is expressed in 𝑚𝑜𝑙 𝑠⁄  

 

c) Thermal sub model 

As mentioned before, temperature has an effect on the voltage of the cell, so it is 

important to model the behaviour of temperature in this process.  

The thermal energy balance can be expressed as: 

 

𝐶𝑡
𝑑𝑇

𝑑𝑡
=  𝑄̇𝑔𝑒𝑛 − 𝑄̇𝑙𝑜𝑠𝑠 − 𝑄̇𝑐𝑜𝑜𝑙 

 

  

(2.11) 

where 𝑄̇𝑔𝑒𝑛 refers to the heat released by electrolysis, 𝑄̇𝑙𝑜𝑠𝑠 represent the heat 

exchange to the ambient due to the system operates at a higher temperature; and 

𝑄̇𝑐𝑜𝑜𝑙is due to external cooling of the system. The following equations describe these 

terms: 

𝑄̇𝑔𝑒𝑛 = 𝑛𝑐(𝑈 − 𝑈𝑡𝑛)𝐼 

 

(2.12) 

 

where 𝑛𝑐  is the number of cells, U is the voltage of the stack, 𝑈𝑡𝑛 thermoneutral voltage 

and I the current of the stack 

 

𝑄̇𝑙𝑜𝑠𝑠 =  
1

𝑅𝑡
(𝑇 − 𝑇𝑎) + ℎ𝑓(𝑇 − 𝑇𝑎) + ℎ𝑛(𝑇 − 𝑇𝑎) 

(2.13) 

 

where 𝑅𝑡 is the thermal resistance of the electrolyser, hf is the film coefficient for forced 

convection, hn is the film coefficient for natural convection, T is the operating 

temperature and 𝑇𝑎 is the ambient temperature.  

 

For the cooling term, the model described in [11] considers a fan to evacuate heat and 

it is based on hysteresis to maintain the temperature inside a range. The amount of 

heat that the fan can evacuate should be higher than the heat produced by electrolysis.   
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2.7.1.2 Fuel cell 

 

A fuel cell, inversely to an electrolyser, is a device that produces electrical energy when 

is fed with gas rich in hydrogen and oxygen. The following expression represents this 

chemical reaction [13]: 

2𝐻2 +  𝑂2   →  𝐻2𝑂 (2.14) 

 

Inversely to the electrolyser, this chemical reaction is exothermic and spontaneous 

which implies that it does not need to absorb energy to occur.  

The basic configuration of a fuel cell consists of an electrode in contact with  𝑂2 and 

another electrode in contact with 𝐻2 and an electrolyte in contact with both electrodes. 

The reactions taking place at each electrode depend on the type of fuel cell. In this 

thesis, a PEM (proton exchange membrane) fuel cell is considered and its main 

characteristic is that the electrolyte consists of a solid membrane that is impermeable 

enough to separate oxygen and hydrogen but has high ion conductivity to  allow 

protons flow. The chemical reactions for these fuel cells are the following [14]: 

 

Anode: 𝐻2 →  2𝐻+ +  2𝑒− (2.15) 

 

Cathode: 
1

2
𝑂2 +  2𝐻

+ + 2𝑒− → 𝐻2𝑂 

 

(2.16) 

At the anode hydrogen splits into electrons and protons. Then electrons move from the 

terminal of the electrode to the outside, form electrical current and return to the fuel 

cell at the cathode. On the other hand, protons move from the anode to the cathode 

through the membrane where they meet, oxygen and the electrons that return to the 

system. These particles combine and produce water which is pulled out of the fuel cell. 

This chemical reaction is described in Fig. 2.6: 

 

 
Fig. 2.6: Operation principle of PEM fuel cell 
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An important characteristic of this these fuel cells is that they are compact due to the 

thinness of the membrane electrodes assembly. Similarly to electrolysers, there are 

also alkaline fuel cells, but PEM technology has gained popularity in recent years and 

is the preferred technology by most manufacturers and the research community. 

Differently to alkaline technology, PEM fuel cells do not have the limitation of low 

power and can operate in the full range [15]. 

 

Model description 

In this section the model for a PEM fuel cell taken from [16] is described. For a single 

cell, the equation of the voltage is: 

 

𝑉𝑐𝑒𝑙𝑙 = 𝐸𝑁𝑒𝑟𝑛𝑠𝑡 − 𝑉𝑎𝑐𝑡 − 𝑉𝑐𝑜𝑛 − 𝑉𝑜ℎ𝑚  

 

(2.17)  

 

where 𝐸𝑁𝑒𝑟𝑛𝑠𝑡 is the thermodynamical potential, 𝑉𝑎𝑐𝑡 represents activation overvoltage 

at the electrodes, 𝑉𝑐𝑜𝑛 is a loss related to mass transportation and 𝑉𝑜ℎ𝑚 is the ohmic 

overvoltage that represent losses for the proton conductivity of internal electric 

resistances. 

 

a) Nernst voltage 

The standard expression for this voltage can be written as: 

 

𝐸𝑁𝑒𝑟𝑛𝑠𝑡 = 1.229 − (8.5 ⋅ 10
−4)(𝑇 − 298.15) + (4.308 ⋅  10−5)𝑇(𝑙𝑛 𝑝𝐻2

+ 0.5 ⋅  𝑙𝑛 𝑝𝑂2)  

 

(2.18) 

 

where T is the cell temperature in Kelvin, 𝑝𝐻2and 𝑝𝑂2are the partial pressure of 𝐻2and 

𝑂2 respectively expressed in atm. 

  

b) Activation voltage 

There is a barrier energy that has to be overcome for the reactions at the electrodes to 

take place. The activation overvoltage can be expressed as: 

 

𝑉𝑎𝑐𝑡 = 𝜉1 + 𝜉2𝑇 + 𝜉3𝑇[𝑙𝑛 𝐶𝑂2] + 𝜉4[𝑙𝑛 𝐼]  

 

(2.19) 

 

where I is the current of the fuel cell,  𝜉 are empirical parameters, T is the temperature 
of the system in kelvin and 𝐶𝑂2 is the concentration of oxygen in 𝑚𝑜𝑙 𝑐𝑚3⁄  
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c) Concentration overvoltage 

This voltage drop is due to reduction of concentration of the gases. The following 

expression describes it: 

𝑉𝑎𝑐𝑡 = −𝐵 ⋅ 𝑙𝑛 (1 − 
𝐼

𝐼𝑚𝑎𝑥
)  

 

(2.20) 

 

where B is an empirical parameter 

 

d) Ohmic voltage 

This loss of voltage is due to the resistance of electrons to flow through the electrodes 

and protons to move through the electrolyte. It is noted by [17] that the resistance to 

ions movement is predominant. This loss can be expressed as: 

 

𝑉𝑜ℎ𝑚 = 𝐼 ⋅ (𝑅𝑚 + 𝑅𝑐)  

 

  

(2.21) 

 

where 𝑅𝑚 and 𝑅𝑐 represent the resistance to the flow of ions and electrons, 

respectively. 

 

The resistance 𝑅𝑚 is described by the following expression 

 

𝑅𝑚 =
𝑟𝑚 ⋅  𝑙𝑚𝑒𝑚

𝐴
  

 

 (2.22) 

where   𝑟𝑚 is the membrane resistivity, 𝑙𝑚𝑒𝑚is the membrane thickness and A is the cell 

area. 

 

𝑟𝑚 is related to the current density and temperature: 

 

𝑟𝑚 =

181.6 ⋅  [1 + 0.03 (
𝐼
𝐴) + 0.062 (

𝑇
303)

2

(
𝐼
𝐴)

2.5

]

[𝜆 − 0.6343 − 3 (
𝐼
𝐴)] 𝑒

[4.18((𝑇−303) 𝑇⁄ )]
  

 

 (2.23) 

where 𝜆 is an adjustable parameter which is related the membrane humidity and 

ranges from 0 to 23 and, its usually value in most applications is 14. 
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The consumption rate of hydrogen is obtained by Faraday’s law: 

 

𝑚̇𝐻2 =
𝑛𝑐𝐼

𝑧𝐹𝑥
 

 

 (2.24) 

where 𝑛𝑐  is the number of cells, z is the number of electrons of hydrogen, F is the 

constant of Faraday and x is the concentration percentage of hydrogen of the inlet flow. 

The consumption rate of hydrogen by this formula is expressed in mol/s.  

2.7.1.3 Hydrogen storage tank  

This device accumulates the hydrogen produced by the electrolyser and supplies it to 

the fuel cell. The previous equations given for the electrolyser and fuel cell express flow 

in 𝑚𝑜𝑙 𝑠⁄  but it is common practice to use volumetric flow rates in litres per minute. 

However, volume of gases depends on the ambient conditions. Hence, to compare flows 

of gases at different conditions, volumes are expressed at standard conditions, i.e. 1 

atm and 273 K. The equation of ideal gases is stated as: 

 

PV = 𝑅𝑇𝑛 

 

 (2.25) 

Considering standard conditions, for hydrogen this expression becomes: 

 

V = 22.4 ⋅ 𝑛 

 

 (2.26) 

From this equation it is clear to see that 1 mol of hydrogen at standard conditions is 

equivalent to 22.4 litres. Therefore the following expression can be used to convert 

from mol s⁄  to litres per minute: 

     

𝑚̇𝑠𝑙𝑝𝑚 = 𝑚̇𝑚𝑜𝑙 𝑠⁄ ⋅ 22,4 ⋅ 60 

 

 (2.27) 

where slpm in the previous equation stands for litres per minute at standard 

conditions 

 

The dynamics of the amount of hydrogen in the tank can be expressed as: 

 

𝑥(𝑘+1) = 𝑥(𝑘) +
100 ⋅ ∆𝑡 

𝑄𝑚𝑎𝑥
⋅ (𝑚̇𝑒𝑙𝑦 − 𝑚̇𝑓𝑐) 

 (2.28) 
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where 𝑚̇𝑒𝑙𝑦 represents the flow of hydrogen produced by the electrolyser, 𝑚̇𝑓𝑐is the 

flow of hydrogen consumed by the fuel cell, 𝑄𝑚𝑎𝑥 is the capacity of the tank expressed 
in litres at standard conditions, ∆t is the sampling time and 𝑥(𝑘)is the percentage of 

hydrogen in the tank with respect to the capacity of the tank where 0 and 100 represent 

empty and full tank respectively. 

2.7.2 Battery 

2.7.2.1 Main concepts 

Similarly to the previous storage system, batteries are also based on transformation of 

chemical energy into electrical energy. However, for batteries it is not needed to 

constantly provide external reactants such as water or oxygen to produce the chemical 

reactions. Instead, in this case the chemical reactions directly affect the electrodes. 

Batteries can provide energy when connected to an external circuit and absorb energy 

when the electrical current is inverted [18]. 

 

When discharging:   

An oxidation reaction (𝐴 →  𝐴+ + 𝑒− ) of the anode occurs and thus this electrode is 

considered the negative terminal. When the battery is connected to an external circuit, 

the electrons produced by oxidation travel through the external connection forming 

electrical current and return to the battery by the positive terminal. Then, the returning 

electrons allow a reduction reaction (𝐵+ + 𝑒− →  𝐵 ) of this terminal which in this case 

is the cathode. Fig. 2.7 taken from [19] depicts this process: 

 

Fig. 2.7: Scheme of principle when a discharging a battery  

 

When charging:  

In this case the redox reaction is non-spontaneous, so an external source of electrons 

is needed. The electrons supplied enter by the negative terminal and a reduction 

reaction (𝐵+ + 𝑒− →  𝐵 ) takes place. Differently from discharging, in this case the 
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negative terminal is the cathode. Then an oxidation reaction (𝐴 →  𝐴+ + 𝑒− ) of the 

anode takes place generating the electrons that leave the battery and return to the 

source. In this case the anode becomes the positive terminal. Fig. 2.8 taken from [19] 

depicts this process: 

 

Fig. 2.8: Scheme of principle when charging a battery  

 

Some of the technical specification of batteries is provided below [18] [20]: 

 

Discharge rate: It is the value of the current that will discharge the battery within a 

certain amount of time. It is typically expressed as hC where h is the number of hours 

to discharge the battery. For instance, 1C rate represent the discharge current needed 

to discharge the battery in 1 hour.  

 

Energy capacity: It is the amount of energy expressed in Wh available when the battery 

is discharged at a certain discharge rate. It is computed by multiplying the discharge 

rate by the time needed to discharge. The energy capacity decreases when the battery 

is subjected to high discharge rates due to higher losses.   

 

State of charge (SoC %):  It is a term that indicates the amount of energy available in a 

battery at a specific point in time. 

 

Depth of Charge (DoD %): It is a term opposite to SoC and represents the percentage 

of battery capacity that has been used. 

 

Lifetime: The number of cycles a battery can complete until its capacity its reduced to 

80% of its original value. This value is reduced when the battery is subjected to high 

discharge depths. 

 



 

Electrical microgrids 

30 
 

The types of batteries used nowadays differ in the materials used for the electrodes 

and electrolyte. In [21], two types of batteries commonly used are described: 

 

• Lithium-ion (Li-ion): They use lithium as material for the electrodes. These 

batteries have high energy density when compared to other batteries and are 

mainly used in domestic appliances but also in electric vehicles and aerospace 

applications due to their low weight. 

• Lead- acid: They use lead oxide (PbO2) and lead (Pb) for the electrodes, and 

sulfuric acid as electrolyte. This type of batteries is the oldest, but it is still used 

in many applications. These batteries have low energy density which means 

that to store certain amount of energy they are heavier and occupy more space 

than other batteries. However, their low price makes them an attractive 

solution. 

 

In the following table some characteristics of these types of batteries are presented 

[22] [23] [24] [25]: 

 

Type Energy 

efficiency 

Energy 

density 

(Wh/L) 

Cost  

($ per 

kWh) 

Life cycle (number of 

cycles at 50%DOD 

per cycle) 

Self-

discharge 

Lead acid ~ 60% ~ 40 - 100 ~150 – 

200 

~400 cycles ~20% per 

month 

Li-ion ~90% ~ 530 ~ 400 – 

700 

~5000 cycles ~10% per 

month 

Table 1: Comparison between battery technologies 

2.7.2.2 Model description 

In this section is presented a model to determine the evolution in time of the available 

energy in a battery. This model is based on [26] but this case considers distinct charge 

and discharge efficiencies. 

 

𝑆𝑂𝐶(𝑘+1) = 𝑆𝑂𝐶(𝑘) + 100 ⋅
∆𝑡

𝑄𝑛𝑜𝑚
(𝜂 ⋅ 𝑃𝑏𝑎𝑡𝑡(𝑘) − 𝑃𝑠𝑑)  

 (2.29) 

  

𝜂 = {
  𝜂𝑐               𝑖𝑓 𝑃𝑏𝑎𝑡𝑡(𝑘)  ≥ 0           (𝑐ℎ𝑎𝑟𝑔𝑒 𝑚𝑜𝑑𝑒) 

1
𝜂𝑑⁄            𝑖𝑓 𝑃𝑏𝑎𝑡𝑡(𝑘) < 0       (𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑚𝑜𝑑𝑒)

  
 (2.30) 
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𝑆𝑂𝐶(𝑘)is the percentage of energy available in the battery at certain time instant k 

where 100 represents the case when the battery is fully charged and 0 when it is fully 

discharged, 𝑄𝑛𝑜𝑚is the nominal capacity of a battery and it is expressed in kWh, ηc, η𝑑  

refer to the charging and discharging efficiencies respectively and range between 0 and 
1, 𝑃𝑏𝑎𝑡𝑡(𝑘) is the power exchanged with the battery and depending on its sign it can be 

absorbed or produced energy by the battery and it is expressed in kW; and 𝑃𝑠𝑑  is a 

constant term that represents the self-discharge effect on batteries, and it is expressed 

in kW. 
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Chapter 3 Numerical optimization 

1.1 Introduction 

In a general way, an optimization problem is formulated as follows: 

 

𝑚𝑖𝑛
𝑧
𝑓(𝑧)   (3.1) 

subject to:   

  

𝑧 ∈ 𝑆 ⊆ 𝑍 

 

 

The objective of the problem is to find the optimization variable z that minimizes the 

cost function f(z). The minimization is subjected to the constraint that z must belong 

to a set S which is known as feasible set and S in turn should be included in Z which is 

the domain of the decision variable. If the set S is empty the problem is called unfeasible 

while if S = Z the problem is said to be unconstrained. 

In the literature is common to use the word program to refer to an optimization 

problem. Optimization problems can be classified depending on the form of the cost 

function and the constraints. 

 

In this chapter the following will be discussed: 

 

• Fundamentals of a type of optimization problem called Mixed integer linear 

programming characterized by involving continuous and discrete variables.   

• Hints to model desired features as mixed integer linear programs 

• Description of the branch and bound algorithm which is the most used 

technique to solve mixed integer linear programs 

 



 

Numerical optimization 

33 
 

3.1 Mixed integer linear programming (MILP) 

It is an optimization problem where the cost function and the constraints are linear 

combinations of the optimization variables which can be continuous and discrete. The 

general form of this kind of optimization problem takes the following form: 

 

𝑚𝑖𝑛
𝑢,𝛿

𝑓𝑇 [
𝑢
𝛿
]  

 (3.2) 

subject to:   

𝐴 [
𝑢
𝛿
] = 𝑏 

 

𝐶 [
𝑢
𝛿
]  ≤ 𝑑  

 

 

where: 

 f ∈ ℝ1 × (𝑚+𝑛), u ∈ ℝ𝑚,  𝛿 ∈ ℕ𝑛, A ∈ ℝ𝑝 × (𝑚+𝑛), b ∈ ℝ𝑝, C ∈ ℝ𝑞 × (𝑚+𝑛), d ∈ ℝ𝑞 

and m is the number of continuous variables, n is the number of discrete variables, p is 

the number of equality constraints and q is the number of inequality constraints. 

3.2 Branch and bound algorithm 

This section explains in a simple way the branch and bound algorithm and the influence 

of the modelling of the problem in the performance. The information presented in this 

section was obtained from [27], so this work should be consulted for more details. An 

optimization problem with only continuous variables is known as linear program and 

has the advantage that the optimal solution has to occur at a vertex of the feasible 

region, i.e. the solution relies on points that cannot be written as linear combination of 

other points of the feasible region. The inclusion of discrete variables complicates the 

optimization problem because the solution does not have to occur in a vertex anymore, 

so the whole feasible region has to be examined. This makes the problem NP-hard 

which means that there is not any algorithm that can guarantee the solution of the 

problem in a time that is polynomial function of the size of the problem. At first glance, 

a straightforward way to solve this kind of problems may be to solve the LP-relaxation 

which consists in considering the integer variables as they were continuous, solve the 

problem as a linear program and then round the solution to the nearest integer. 

However, it is shown in [27] that this approach leads to suboptimal solutions. Another 

tempting approach is to solve the problem for each possible combination of the 

discrete variables and then find the optimal value among all these solutions; however, 

the number of combinations grows exponentially with the number of discrete 

variables. For instance, with this approach a problem with 20 binary variables implies 

to solve 220,equivalent to 1048576, linear programs. In this context, other approaches 

are needed and the most used technique to solve these problems is known as branch & 
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bound methods [28]. The main characteristic of this algorithm is that when a solution 

is found it can be guaranteed that it is globally optimal. However, due to NP-

completeness of mixed integer programs the time needed to find the solution is not 

bounded. 

The main idea of this algorithm is to divide the original problem into smaller 

subproblems and then solve them relaxing the integer conditions to find regions that 

do not contain the optimal solution and to find candidate solutions, then when the 

whole feasible region is examined the best solution is picked. The following steps 

describe this algorithm for a minimization problem: 

 

1. Initialization: 

1.1. Solve the LP-relaxation of the original MILP problem: 

• If the relaxed problem is unfeasible, stop the algorithm because the MILP is 

also unfeasible 

• If the relaxed variables have an integer solution, then stop because the solution 

of the MILP is found 

• Otherwise, the solution of the LP-relaxation is the best solution so far and is 

also the lower bound of the optimal solution of the MILP. Then, add the original 

MILP problem to the list of candidate problems to be divided 

2. Branching: 

• Select a candidate subproblem to divide 

• Divide the subproblem by branching on an integer variable that does not have 

an integer value in the LP-relaxation solution, and add the divided 

subproblems to the list of candidates 

3. Bounding: 

3.1. Solve the LP-relaxation for each of the divided problems 

3.2. For each subproblem: 

• If the subproblem is not feasible then it does not contain the optimal solution 

of the original MILP and is not further divided. 

• If the solution of a divided subproblem is greater than the best solution 

obtained so far, then this node is not required to be further divided because 

the solutions of further divisions will not be better. 

• If the solution presents integer solutions, then further branching is not needed. 

If the best solution obtained so far is greater than the solution, then it is 

updated. It also becomes the upper bound of the optimal solution of the MILP 
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• If the previous conditions are not satisfied, then add this subproblem to the list 

of candidates to be further divided. The solution of this subproblem becomes 

the lower bound of the optimal solution 

4. Optimality test: If there are not more candidate problems to be divided then the 

best solution obtained so far is the optimal solution of the original MILP problem. 

If there are still more problems to divide, then go to step 2 

 

The branch & bound methods differ between them in the way how they decide which 

subproblem should be further divided, and once a problem is chosen, the way how to 

decide which integer variable use to branch. There are several methods to perform 

these decisions but there is not any that works better for all cases, so it needs to be 

determined empirically. The main factor that affects the computational efficiency is 

how close the solutions of the LP-relaxations are to integer values, if the solution is not 

integer but very close, the solution can be accepted as integer. Additionally, the 

convergence towards an optimal solution also depends on the number of discrete 

variables because it influences in the number of possible branches. In this sense, it is 

generally preferable to reduce the number of discrete variables although it may not 

always be truth because the speed depends more on the closeness of the LP-relaxations 

to integer solutions.  

3.3 MILP modelling 

The inclusion of discrete variables allows to model logical conditions or discontinuities 

that otherwise could not be included directly in an optimization problem. In the 

following sections, modelling techniques are introduced.  

3.3.1 Continuous variable taking discontinuous values 

If in a certain optimization problem, a continuous variable presents discontinuity, as in 

the following expression: 

 

𝑢 = 0 𝑜𝑟 𝐿 ≤  𝑢 ≤ 𝑈  

 

 (3.3) 

Then binary auxiliary variables can be used to model this situation as indicated in [29]. 

Consider the binary variable δ defined as: 

 𝛿 =  {
 0         𝑓𝑜𝑟 𝑢 = 0          
 1         𝑓𝑜𝑟 𝐿 ≤  𝑢 ≤ 𝑈

 

 

 (3.4) 
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Then the following inequality model the discontinuity: 

 

𝐿𝛿 ≤  𝑢 ≤ 𝑈𝛿  

 

 (3.5) 

From equation (3.5), it can be seen that if δ=0 then x=0 and if δ=1 then L ≤  u ≤ U 

3.3.2 Modelling of piecewise affine (PWA) function 

This part follows the approach detailed in [30]. Consider the following piecewise affine 

function: 

 

 𝑦 =  {
 𝑎𝑥         𝑓𝑜𝑟 𝑥 ≥ 0          
 𝑏𝑥         𝑓𝑜𝑟 𝑥 < 0          

 

 

 (3.6) 

If an auxiliary variable 𝛿 is introduced such that: 

 

𝑥 ≥ 0 ⟺  𝛿 = 1   (3.7) 

 

Then the piecewise affine function can be written as: 

 

𝑦 =   𝑏𝑥 + 𝛿𝑥(𝑎 − 𝑏)   (3.8) 

 

These expressions cannot be included in that form in a linear optimization problem 

since the definition of 𝛿 implies a logical statement and the expression (3.8) depends 

on the product of a continuous and binary variable. However, these expressions are 

equivalent to linear inequalities. 

 

In particular, the conditional statement below: 

 

𝑥 ≥ 0 ⟺  𝛿 = 1  (3.9) 

 

is equivalent to the following linear inequalities: 

 

−𝑚𝛿 ≤  𝑥 − 𝐿  (3.10) 

−(𝑈 + 𝜀)𝛿 ≤  −𝑥 − 𝜀   (3.11)  
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where: 

𝑈 =  𝑚𝑎𝑥(𝑥)   (3.12) 

𝐿 =   𝑚𝑖𝑛(𝑥)    

Regarding the product of variables, consider the following  

 

𝑔 =  𝑥1𝛿1  (3.13) 

 

where  𝑥1is continuous and 𝛿1 is binary. Then, the equivalent linear inequalities are: 

 

𝑔 ≤  𝑀𝛿1   

𝑔 ≥  𝑚𝛿1  (3.14) 

𝑔 ≤  𝑥1 −𝑚(1 − 𝛿1) 
 

𝑔 ≥  𝑥1 −𝑀(1 − 𝛿1) 
 

where: 

𝑀𝑔 =  𝑚𝑎𝑥(𝑥1)   (3.15) 

𝑚𝑔 =  𝑚𝑖𝑛(𝑥1)    

 

Then using these inequalities in expression (3.8), the following is obtained: 

 

𝑦 ≤  𝑀𝛿 + 𝑎𝑥  

−𝑦 ≥  𝑚𝛿 − 𝑏𝑥  (3.16) 

𝑦 ≤  𝑎𝑥 − 𝑚(1 − 𝛿)  

−𝑦 ≥ −𝑏𝑥 +𝑀(1 − 𝛿)  

 

where: 

𝑀 =  𝑚𝑎𝑥(𝑎, 𝑏) ⋅ 𝑈   (3.17) 

𝑚 =  𝑚𝑎𝑥(𝑎, 𝑏) ⋅ 𝐿  

 

The inequalities corresponding to the conditional statement and the product of 

variables can be written in the following compact form: 
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[
 
 
 
 
 

−𝐿
−(𝑈 + 𝜀)
−𝑀
𝑚
−𝑚
𝑀 ]

 
 
 
 
 

⏟      
𝐸2

𝛿 +

[
 
 
 
 
 
0
0
1
−1
1
−1]
 
 
 
 
 

⏟
𝐸3

𝑦 ≤  

[
 
 
 
 
 
1
−1
𝑏
−𝑏
𝑎
−𝑎]
 
 
 
 
 

⏟
𝐸1

𝑥 + 

[
 
 
 
 
 
−𝐿
−𝜀
0
0
−𝑚
𝑀 ]
 
 
 
 
 

⏟  
𝐸5

 

 (3.18) 

 

Note that if a and b change over time then these inequalities are time variant 

3.3.3 Piecewise affine linearization 

There are times where a nonlinear term appears in the optimization problem either in 

the cost function or in the constraints, but it can be approximated by a piecewise affine 

linear function. This approximation of a nonlinear function allows to solve the problem 

as a linear program.  

Consider a general nonlinear function f(x) where x is within [𝑎0, 𝑎𝑚] and 𝑎𝑘 (k=0 … m) 

are the breakpoints of f(x) as it is shown in the Fig. 3.1 taken from [31]: 

 

 
Fig. 3.1: piecewise linearization of non-linear function 

 

In Fig. 3.1. f(x) is approximated with L(f(x)) which is a combination of m linear 

functions. There are several methods to perform this approximation, two of them will 

be discussed in this section. The first one uses log2𝑚 binary variables to perform the 

approximation and is indicated in [31] whereas the second method presented in [32] 

does not use binary variables but the function needs to be fully convex or concave  
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a) Method 1:  

To describe this method, it is needed to introduce some notation first 

 

Consider P={0, 1, 2, … ,𝑚} and p ∈ P, where m is the number of breakpoints. Then a 

function B is defined as: 

 

B(p) = (𝑢1, 𝑢2, … , 𝑢log2𝑚)  ∀𝑢𝑘  ∈  {0, 1}, k = 1, 2, …, log2𝑚 

 

Also by definition:  

B(p) and B(p+1) differ in at most one component ∀𝑝 ∈  {1, 2, … ,𝑚}  

and B(0) = B(1) 

 

Also consider the following sets: 

𝑆+(𝑘) =  {𝑝 | ∀𝐵(𝑝) ⋀ 𝐵(𝑝 + 1)  𝑢𝑘 = 1, 𝑝 = (1, 2, … ,𝑚 − 1)  } ⋃ {𝑝 | ∀𝐵(𝑝) 𝑢𝑘 = 1, 𝑝

= (0,𝑚) } 

𝑆−(𝑘) =  {𝑝 | ∀𝐵(𝑝) ⋀ 𝐵(𝑝 + 1)  𝑢𝑘 = 0, 𝑝 = (1, 2, … ,𝑚 − 1)  } ⋃ {𝑝 | ∀𝐵(𝑝) 𝑢𝑘 = 0, 𝑝

= (0,𝑚) } 

 

Then, the approximation can be expressed mathematically as: 

 

𝐿(𝑓(𝑥)) =  ∑𝑓(𝑎𝑝)𝑡𝑝

𝑚

𝑝=1

                        
 

𝑥 =   ∑𝑎𝑝𝑡𝑝

𝑚

𝑝=1

                   
 

∑𝑡𝑝

𝑚

𝑝=0

= 1     
(3.19) 

∑ 𝑡𝑝
𝑝 ∈ 𝑆+(𝑘)

≤  𝑢𝑘  
 

       ∑ 𝑡𝑝
𝑝 ∈ 𝑆−(𝑘)

≤   1 − 𝑢𝑘  
 

 

where 𝑡p ∈ ℝ+   
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The previous equations can be described as: 

• tp can be seen as weights 

• the sum of all weights is 1 

• the linear combination of the weights and the breakpoints gives x 

• the approximation of f(x) is the linear combination of the weights and f(a𝑝) 

which are known 

• log2𝑚 binary variables are needed while in the previous method m binary 

variables were needed.  

• 3+2 ∗ log2𝑚 constraints are needed in this case while in the previous case 

m+5 constraints were needed.  

 

b) Method 2: No use of binary variables 

The previous method made use of binary variables to approximate the nonlinear 

function. However, with this method it will be shown that binary variables are not 

needed if the nonlinear function is either fully convex or concave. 

 

Considering a convex nonlinear function C(x) as shown in Fig. 3.2 obtained from [32]: 

 

 
Fig. 3.2: Non-linear convex function 

 

Then this function can be approximated without binary variables 
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Fig. 3.3: Piecewise linear approximation of convex non-linear function 

 

From Fig. 3.3 is clear to see that: 

 

𝐶(𝑥) = 𝑚𝑎𝑥{𝐶1(𝑥), 𝐶2(𝑥), 𝐶3(𝑥), 𝐶4(𝑥)}  

 

where 𝐶1(𝑥), 𝐶2(𝑥), 𝐶3(𝑥), 𝐶4(𝑥) are linear functions of x 

 (3.20) 

Considering a general nonlinear function that is fully convex and considering m 

breakpoints, equation(3.20) can be expressed as a linear program: 

 

𝑚𝑖𝑛(𝑠)    

subject to:  (3.21) 

                                          𝐶𝑘(𝑥) ≤  𝑠        ∀ 𝑘 = 1, 2, … ,𝑚   

 

For the concave case, the approach is similar; however, in this case the minimum is 

used instead of the maximum: 

 

𝐶(𝑥) = 𝑚𝑖𝑛{𝐶1(𝑥), 𝐶2(𝑥), 𝐶3(𝑥), 𝐶4(𝑥)}  
 (3.22) 

 

Also, considering a general nonlinear function that is fully concave with m breakpoints, 

equation (3.22) can be expressed as a linear program: 

 

𝑚𝑖𝑛(−𝑠)    

subject to: (3.23)  

                                          𝐶𝑘(𝑥) ≥  𝑠        ∀ 𝑘 = 1, 2, … ,𝑚  
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Chapter 4 Model predictive control (MPC) 

 Model predictive control (MPC) [33] refers to a control technique that uses the 

mathematical model of a system to predict its future evolution and produces the 

control signal that generates a desired behaviour by solving an optimization problem 

at each time instant. Nowadays, it is a very popular technique due to the following 

reasons: 

 

• It can manage multiple inputs and multiple outputs  

• The produced control law is optimal with respect to a certain optimization 

objective  

• Performance features can be included easily since they are expressed as 

numerical constraints in an optimization problem 

• It can manage not only linear time-invariant systems but also those that are 

nonlinear and time-variant. 

• It compensates unpredictable disturbances naturally 

 

Although, it also has some drawbacks: 

 

• It is not suitable for processes with fast dynamics since an optimization problem 

must be solved at each time instant, which is time consuming 

• The performance of this algorithm is related with the accuracy of the model. 

 

4.1 MPC formulation 

 

At each time instant an optimization problem is formulated where the cost function 

penalizes undesired conditions. This cost function depends on the future evolution of 

the system which is predicted using the model of the system and the current known 

conditions. In the optimization problem equality and inequality constraints can be 

included accounting for performance features. The most used constraints are bounds 
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on the inputs, states, and outputs of the system. Then, after solving the optimization 

problem a sequence of control inputs is generated. However, models are not perfect 

and there are always unknown disturbances in the process therefore predictions will 

not match the real evolution of the system. For this reason, the receding horizon 

principle is used according to which only the first value of the control sequence is 

applied to the system and in the next time instant the evolution of the system is 

measured or estimated and then the optimization problem is run again. This 

methodology repeats at each instant. This is an open technique in the sense that the 

cost function and the constraints can be freely chosen in the design. The type of systems 

that can be controlled is also not restricted, so MPC can manage linear, nonlinear, 

continuous-time, discrete-time models. However, discrete-time models are mostly 

used because most of the times the controller consists of a digital computer that 

acquires and send signals at discrete time instants. 

 

Considering the general discrete-time dynamics of a system: 

 

𝑥(𝑘+1) = 𝑓(𝑥(𝑘),𝑢(𝑘))  

 

 (4.1) 

where 𝑥(𝑘)∈ ℝ
𝑛represents the n states of the system and 𝑢(𝑘)∈ ℝ

𝑚 represents the m 

inputs of the system  

 

Then at each time instant k, the mathematical formulation of MPC is: 

 

𝑚𝑖𝑛
{𝑢(𝑘/𝑘),𝑢(𝑘+1/𝑘),… 𝑢(𝑘+𝑁−1/𝑘)}

∑𝑙( 𝑥(𝑘+𝑖/𝑘), 𝑢(𝑘+𝑖/𝑘))

𝑁−1

𝑖=0

+ 𝑙𝑁( 𝑥(𝑘+𝑁/𝑘))  

 (4.2) 

subject to:   

        𝑥(𝑘+𝑖+1/𝑘) = 𝑓(𝑥(𝑘+𝑖/𝑘),𝑢(𝑘+𝑖/𝑘))               𝑖 = 0,… , 𝑁 − 1  (4.3) 

        𝑥(𝑘/𝑘) = 𝑥(𝑘)                                            (4.4) 

𝑢(𝑘+𝑖/𝑘)   ∈  𝑆𝑢                            𝑖 = 0,… , 𝑁 − 1  (4.5) 

𝑥(𝑘+𝑖/𝑘)   ∈  𝑆𝑥                            𝑖 = 1,… , 𝑁         (4.6) 

 

where  x(k+i/k) and 𝑢(k+i/k)  represent the states at a future time k+i predicted at time 

k and u(k+i/k)is the control input at future time k+i predicted at time k 

  

As it can be seen, equation v  allows to predict the future by starting from an initial 

condition expressed by equation (4.4). This initial state can be obtained by 
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measurements or estimated by an external algorithm if the state is unmeasurable. 

Inequalities (4.5) and (4.6) can be included in the optimization problem to model  

operational restrictions. It is important to mention that equation (4.3) is not explicitly 

included as constraint in the optimization problem, instead it is implicitly embedded 

in the cost function and the constraints. The minimization problem is represented by 

equation (4.2) where a sequence of inputs is generated. Note that in the cost function 
the term lN( 𝑥(k+N/k)) is included to penalize a function depending on the final state. 

This is usually used to assure stability by penalizing divergence of the final state. 

Finally, only the first input of the sequence is applied to the system as shown in the 

following equation: 

        𝑥(𝑘+1) = 𝑓(𝑥(0),𝑢(𝑘/𝑘))                                            
 (4.7) 

 

The dynamics of the system, the cost function and the constraints presented before have 

a general structure therefore a nonlinear optimization technique should be used to solve 

the optimization problem which may take long computation times. However, these times 

can be improved if the type of problem is restricted. In this thesis the problem is 

restricted to linear systems, linear cost function, linear constraints, and continuous and 

discrete decision variables. 

4.2 MPC of linear systems 

Consider the following linear time-invariant system 

 

𝑥(𝑘+1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)  (4.8) 

 

where x ∈ ℝ𝑛, u ∈ ℝ𝑚 

 

And the following cost function: 

 

𝐽(𝑥0,𝑘) = ∑‖𝑄𝑥(𝑘+𝑖/𝑘)‖∞

𝑁−1

𝑖=1

+∑‖𝑅𝑢(𝑘+𝑖/𝑘)‖∞

𝑁−1

𝑖=0

+ ‖𝑃𝑥(𝑘+𝑁/𝑘)‖∞
 

 (4.9) 

  

where the cost function is defined for a certain time instant k, and the weighting  

matrices Q, R and P can have arbitrary number of rows, so Q ∈ ℝ𝑎 𝑥 𝑛, R ∈ ℝ𝑏 𝑥 𝑚, P 

∈ℝ𝑐 𝑥 𝑛 
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The cost function J(x0,𝑘)can be expressed linearly by using auxiliary variables as 

follows: 

 

𝐽(𝑥0,𝑘) = ∑ 𝜀(𝑖)
𝑥

𝑁−1

𝑖=1

+∑ 𝜀(𝑖)
𝑢

𝑁−1

𝑖=0

+ 𝜀(𝑁)
𝑥  

 (4.10) 

where: 

[−1…− 1]⏟      
𝑎

𝑇
𝜀(𝑖)
𝑥  ≤ 𝑄𝑥(𝑘+𝑖/𝑘) ≤ [1…1]⏟    

𝑎

𝑇
𝜀(𝑖)
𝑥         𝑖 = 1, 2, … , 𝑁 − 1 (4.11)  

[−1…− 1]⏟      
b

T
ε(i)
u  ≤ R𝑢(k+i/k) ≤ [1…1]⏟    

b

T
ε(i)
u          𝑖 = 0, 1, … ,𝑁 − 1  (4.12) 

[−1…− 1]⏟      
𝑐

𝑇
𝜀(𝑁)
x ≤ 𝑃x(𝑘+N/k) ≤ [1…1]⏟    

𝑏

𝑇
𝜀(𝑁)
x                                        (4.13) 

 

So the optimal control problem with infinity norm at each time instant k is: 

 

 𝑚𝑖𝑛
𝑈,𝜀𝑥,𝜀𝑢

𝐽(𝑥0,𝑘,𝑈) = 𝑚𝑖𝑛𝑈,𝜀 
(∑ 𝜀(𝑖)

𝑥

𝑁−1

𝑖=1

+∑ 𝜀(𝑖)
𝑢

𝑁−1

𝑖=0

+ 𝜀(𝑁)
𝑥 ) 

 (4.14) 

subject to: 

x(k+i+1/k) = Ax(k+i/k) + Bu(k+i/k)  

 

x(k/k) = x(0)   

 

      [−1…− 1]⏟      
𝑎

𝜀(𝑖)
𝑥  ≤ 𝑄𝑥(𝑘+𝑖/𝑘) ≤ [1…1]⏟    

𝑎

𝜀(𝑖)
𝑥          𝑖 = 1, 2, … ,𝑁 − 1         

  

[−1…− 1]⏟      
b

ε(i)
u  ≤ R𝑢(k+i/k) ≤ [1…1]⏟    

b

ε(i)
u         i = 0,1, … , N − 1  

 

            [−1…− 1]⏟      
c

ε(N)
x  ≤ Px(k+N/k) ≤ [1…1]⏟    

c

ε(N)
x                                       

 

 

where U = [𝑢(𝑘/𝑘), 𝑢(𝑘+1/𝑘), … 𝑢(𝑘+𝑁−1/𝑘)] 

and 𝜀x = [𝜀(1)
𝑥 , 𝜀(2)

𝑥 , … , 𝜀(N)
𝑥 ], 𝜀u = [𝜀(0)

𝑢 , 𝜀(1)
𝑢 , 𝜀(2)

𝑢 , … , 𝜀(N−1)
𝑢 ] 
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In the case of a cost defined as shown below: 

𝐽(𝑥0,𝑘,𝑈) = ∑‖𝑄𝑥(𝑘+𝑖/𝑘)‖1

𝑁−1

𝑖=1

+∑‖𝑅𝑢(𝑘+𝑖/𝑘)‖1

𝑁−1

𝑖=0

+ ‖𝑃𝑥(𝑘+𝑁/𝑘)‖1
 

 (4.15) 

 

The cost function J(x0,k,𝑈)can be expressed linearly by using auxiliary variables: 

 

𝐽(𝑥0,𝑘,𝑈) = ∑∑𝜀(𝑖)
𝑥,𝑗

𝑎

𝑗=1

𝑁−1

𝑖=1

+∑∑𝜀(𝑖)
𝑢,𝑗

𝑏

𝑗=1

𝑁−1

𝑖=0

+∑𝜀(𝑁)
𝑥,𝑗

𝑐

𝑗=1

 

 (4.16) 

 

where: 

−𝜀(𝑖)
𝑥,𝑗
≤ 𝑄𝑗𝑥(𝑖)  ≤  𝜀(𝑖)

𝑥,𝑗
 
         𝑖 = 1,2, … ,𝑁 − 1

𝑗 = 1, 2, … , 𝑎
  

(4.17)  

  

−ε(i)
u,𝑖 ≤ 𝑅𝑗u(𝑖)  ≤  ε(i)

u,𝑗
     
        𝑖 = 0,1, … ,𝑁 − 1

𝑗 = 1, 2, … , 𝑏
  

 (4.18) 

  

  −𝜀(𝑁)
𝑥 ≤ P𝑗𝑥(k)  ≤  𝜀(𝑁)

𝑥                           

 

(4.19) 

where the suffix j represents the j-th row of a matrix 

 

So the optimal control problem with 1-norm at each time instant k is: 

 

𝑚𝑖𝑛
𝑈,𝜀𝑥,𝜀𝑢

𝐽(𝑥0,𝑘,𝑈) = ∑∑𝜀(𝑖)
𝑥,𝑗

𝑎

𝑗=1

𝑁−1

𝑖=1

+∑∑𝜀(𝑖)
𝑢,𝑗

𝑏

𝑗=1

𝑁−1

𝑖=0

+∑𝜀(𝑁)
𝑥,𝑗

𝑐

𝑗=1

 

 (4.20) 

subject to: 

x(k+i+1/k) = Ax(k+i/k) + Bu(k+i/k) 

x(k/k) = x(0) 

 

−𝜀(𝑖)
𝑥,𝑗
≤ 𝑄𝑗𝑥(𝑘+𝑖/𝑘)  ≤  𝜀(𝑘)

𝑥,𝑗
 
         𝑖 = 1,2, … , 𝑁 − 1

𝑗 = 1, 2, … , 𝑎
  

 

  

−𝜀(𝑖)
𝑢,𝑗
≤ 𝑅𝑗𝑢(𝑘+𝑖/𝑘)  ≤  𝜀(𝑘)

𝑥,𝑗
     
        𝑖 = 0,1, … ,𝑁 − 1

𝑗 = 1, 2, … , 𝑏
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−𝜀(𝑁)
𝑥,𝑗
≤ 𝑃𝑗𝑥(𝑘+𝑁/𝑘)  ≤  𝜀(𝑁)

𝑥,𝑗
            𝑗 = 1,2, … , 𝑐            

 

where U = [𝑢(𝑘/𝑘), 𝑢(𝑘+1/𝑘), … 𝑢(𝑘+𝑁−1/𝑘)] 

 

𝜀x = [𝜀(1)
𝑥,1, 𝜀(1)

𝑥,2, … , 𝜀(1)
𝑥,𝑎, 𝜀(2)

𝑥,1, 𝜀(2)
𝑥,2, … , 𝜀(2)

𝑥,𝑎, … , 𝜀(N−1)
𝑥,1 , 𝜀(N−1)

𝑥,2 , … , 𝜀(N−1)
𝑥,𝑎 , 𝜀(N)

𝑥,1 , 𝜀(N)
𝑥,2 , … , 𝜀(N)

𝑥,𝑐 ],  

 

and 𝜀u = [𝜀(0)
𝑢,1, 𝜀(0)

𝑢,2, … , 𝜀(0)
𝑢,𝑏 , 𝜀(1)

𝑢,1, 𝜀(1)
𝑢,2, … , 𝜀(1)

𝑢,𝑏 , … , 𝜀(N−1)
𝑢,1 , 𝜀(N−1)

𝑢,2 , … , 𝜀(N−1)
𝑢,𝑏 ] 

 

The first cost function may be seen as a function with 1-norm over time and ∞-norm 

over space whereas the second case represents a function with 1-norm over time and 

space. Any other combination of 1-norm and ∞-norm can be represented as a linear 

program following the procedures presented.  

 

The previous approaches allow to include the cost function in a LP program, however, 
note that in both cases the optimal control problem is restricted to x(k+i+1/k) =

Ax(k+i/k) + Bu(k+i/k) . The following procedure allows to embed this restriction into a 

linear program 

 

Consider the initial linear time-invariant system 

 

𝑥(𝑘+1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)  (4.21) 

where x ∈ ℝ𝑛, u ∈ ℝ𝑚 

 

From the previous equation, the state at time i can be determined as: 

 

𝑥(𝑘+𝑖/𝑘) = 𝐴
𝑖𝑥(𝑘) +∑𝐴𝑖−𝑗−1

𝑖−1

𝑗=0

𝐵𝑢(𝑘+𝑗/𝑘)         ∀𝑖 = 1,2, … ,𝑁  

 (4.22) 

 

where N is the prediction horizon 
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In a compact form the previous equation can be expressed as: 

 

[
 
 
 
 
x(k+1/k)
x(k+2/k)
…

x(k+N−1/k)
x(k+N/k) ]

 
 
 
 

⏟        
X(k)

=

[
 
 
 
 
A1

A2

…
AN−1

AN ]
 
 
 
 

⏟  
Ax

𝑥(𝑘/𝑘) +

[
 
 
 
 
B
AB
…

AN−2𝐵
AN−1𝐵

   

0
B
…

AN−3𝐵
AN−1𝐵

   

0
0
…

AN−4𝐵
AN−1𝐵

…

0
0
…
𝐴𝐵
AN−1𝐵

  

0
0
…

AN−2𝐵
AN−1𝐵]

 
 
 
 

⏟                          
Bx

[
 
 
 
 
u(k/k)
u(k+1/k)
…

u(k+N−2/k)
u(k+N−1/k)]

 
 
 
 

⏟        
𝑈(𝑘)

 

 (4.23) 

 

Using this expression, the optimal control problem for both costs at each time instant 

k, is: 

 

𝑚𝑖𝑛
𝑈,𝜀𝑥,𝜀𝑢 

𝐽(𝑥0,𝑘,𝑈) = [1, 1, … , 1]⏟      
𝑛𝜀𝑥+𝑛𝜀𝑢

[
𝜀𝑥
𝜀𝑢
] 

 (4.24) 

subject to: 

x(k/k) = x(0) 

 

− 𝜀𝑥 ≤ [
𝑄
𝑃
]𝑋(𝑘)  ≤   𝜀𝑥 

 

 

− 𝜀u ≤ 𝑅𝑈(𝑘)      ≤   𝜀u 

 

 

where n𝜀x and n𝜀uare the lengths of the vector that contain the auxiliary variables 
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Contribution 

Chapter 5 System description and control 

strategy 

In this thesis an MPC strategy is used to manage a microgrid by controlling its storage 

system and its interaction with the utility grid. The management of the microgrid aims 

to achieve different objectives. On the one hand, it is desired to minimize the energy 

exchange with the microgrid and thus reduce the stress in the utility grid. This 

objective can be considered as a technical benefit because energy losses are reduced 

due to fewer power flows in the distribution grid. On the other hand, it is also desired 

to obtain economic benefits with the operation of the microgrid. This objective is 

desired by the owner of the microgrid. Both objectives cannot be achieved at the same 

time because the first one minimizes the acquisition of energy from the grid and the 

sale of energy to the grid; whereas to obtain economic benefits the import of energy is 

minimized but the export of energy is encouraged. Additionally, photovoltaic 

generation and electrical demand are largely variable which has negative impact in the 

grid, so their variability can be absorbed by the storage system and thus the interaction 

with the grid is less variable. This objective can be achieved together with other goals 

previously described. This thesis is based on simulations and two different microgrids 

are studied where the main difference relies on the storage system used. The first case 

considers a regenerative hydrogen fuel cell as storage whereas the second case uses a 

battery and both systems have equivalent storage capacity. In this chapter the 

microgrids components and the management strategy are described.  

5.1 Systems description 

The main difference in both microgrids considered in this thesis is the type of storage. 

Apart from that, both systems consider non-controllable loads and photovoltaic 

generation which is also non-controllable. So, the balance of energy is achieved by 

controlling the storage and deciding the amount of energy exchanged with the grid. 
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5.1.1 Microgrid with regenerative hydrogen fuel cell 

 

Fig.5.1 depicts the microgrid that uses hydrogen to store energy. 

 

 
Fig. 5.1: Scheme of microgrid with RHFC considered in the simulations 

 

The electrolyser produces 𝐻2 at 12 barg which is then delivered to the tank without 

further compression. The tank can store 10 N𝑚3 of hydrogen (equivalent to 0.9 kg). 

Since the pressure of the tank depends on the amount of hydrogen inside, a pressure 

regulator valve at the output supplies hydrogen at constant pressure to the fuel cell. 

The PV panels, the electrolyser and fuel cell work with DC power so AC-DC converters 

are used to connect them to the microgrid bus.  There is a circuit breaker that connects 

the microgrid with the utility grid to buy or sell energy. The power balance is achieved 

by controlling the electrolyser and the fuel cell since the PV panels and the electrical 

demand are uncontrollable. The control system should assure that the electrolyser and 

fuel cell do not operate simultaneously since it would imply losses of energy.  
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5.1.2 Microgrid with battery 

The microgrid with a battery as storage system is illustrated in Fig. 5.2: 

 

Fig. 5.2: Scheme of microgrid with battery considered in the simulations 

 

As mentioned before, this microgrid is similar to the one previous presented, however, 

in this case a battery is considered. To compare the performance of both systems the 

capacity of the storage systems is chosen to be similar, in fact 10 N𝑚3 is approximately 

equivalent to 35.50 kWh considering the HHV of hydrogen [34].  

5.2 Control architecture 

The control system proposed in this work consists in a prior planification and a MPC 

controller to schedule the operation of the microgrid. Due to the computational load of 

MPC this control system does not act directly on the components of the microgrid but 

give power references to the local controllers which are simpler and operate in a faster 

timeframe. The following graph illustrates this structure: 

 

 
Fig. 5.3: General control architecture  
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The prior planification consists of an open loop optimization problem and uses 

forecasts of photovoltaic generation and demand to estimate the optimal values of 

exchanged power with the grid and profile of energy in the storage for the next day. 

The main objective of this optimization routine is to obtain a profile of the energy level 

in the storage and a profile of power exchanged with the grid. The first output should 

consider similar levels of energy at the beginning and at the end of the day. Whereas 

the second output is used to emulate what occurs in a conventional grid where power 

exchanged with the grid is declared priorly to the grid operator. These signals are sent 

as references to be followed by the MPC controller. Since forecasts and the model of 

the system for the optimization are never perfect the MPC controller compensate these 

errors by receiving feedback at each time instant. The open loop prior scheduling and 

the optimization problems of MPC consist of mixed integer linear programs. For the 

simulations in this thesis, the models used in the optimization problems and the 

models that represent the real equipment are slightly different because the models are 

simplified when they are used in optimization. This consideration is reasonable 

because mathematical models never match exactly reality so in this way this mismatch 

is simulated. Furthermore, is better for optimization to use simplified models to cope 

with high computational loads.   

5.2.1 Hydrogen based microgrid 

The control architecture for the microgrid based on hydrogen is displayed in Fig. 5.4: 

 

Fig. 5.4: Control architecture for system with storage based on hydrogen  

 

The optimal control inputs produced by MPC are the power references to the fuel cell, 

electrolyser and power exchanged with the grid whereas the feedback signal is the 

amount of hydrogen in the tank. 

For the electrolyser, the dynamics of the model is given by the variations of 

temperature, so the model used in optimization assumes constant temperature 
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whereas the real device is represented by the complete model which considers 

variations of temperature. For the fuel cell, the complete model is non-linear and static, 

so the model used in the optimization is a linearization of the complete model. 

5.2.2 Battery based microgrid 

The control architecture for the microgrid based on hydrogen is displayed in Fig. 5.5: 

  
Fig. 5.5: Control architecture for system with storage based on batteries 

 

The optimal control inputs produced by MPC are the power reference to the battery 

and the power exchanged with the grid, whereas the feedback signal is the SOC of the 

battery. The power exchanged with the battery can take positive values when charging 

and negative values when discharging differently from the case of storage with 

hydrogen where the references towards the electrolyser and fuel can only take positive 

values. Regarding the mismatch between models, in this case it is given by slightly 

different charge and discharge efficiencies. 

5.3 System modelling for RHFC 

5.3.1 Alkaline electrolyser 

According to equation (2.8) presented in chapter 2, a voltage should be applied to let 

electrolysis happen. Also, the production of  𝐻2 is directly proportional to the current 

fed to the electrolyser. These equations show that voltage changes depending on the 

current therefore the power demand also depends on the current. Since the 

electrolyser operates DC electricity an AC-DC converter is usually used as interface 

between the electrolyser and the bus. Note that production of hydrogen, voltage and 
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power depend on the current, so a local controller should be able to control the 

converter to obtain a desired current at the input of electrolyser. In the system 

considered in this thesis, the MPC controller sends power setpoints to the electrolyser 

system, so this local controller should receive these setpoints and control the converter 

as it is shown in Fig. 5.6: 

 

 
Fig. 5.6: Scheme of local operation of an electrolyser 

 

The equations presented in chapter 2 allow to develop a model as shown in Fig. 5.7: 

 

 

Fig. 5.7: Scheme of inputs and output of the electrolyser model  

 

The electrolyser analysed in [11] and the empirical parameters presented there, will 

be used for the simulations in this thesis. Table 2 contains the technical specifications 

of this electrolyser: 
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Characteristic Value Unit 

Rated power 30 kW 

Voltage operation range 240 - 420 V 

Current operation range 25 – 71 A 

Operation range 20 - 100 % 

Rated pressure 12 Barg 

Rated operation temperature 80 °C 

Rated production of 

hydrogen (at 80°C) 

5.33 𝑁𝑚3 ℎ⁄  

88.83 slpm 

Number of cells 180 - 

Active cell area 0.06 𝑚2 

Table 2: Technical specification of the alkaline electrolyser 

 

And the empirical parameters are the following: 

 

Parameter Value 

𝑟0 0.004747 𝑉𝐴−1𝑚−2   

𝑟1 −1.367 ⋅  10−5 𝑉𝐴−1°𝐶−1𝑚−2 

s 0.35 V 

𝑡0 49.31 𝐴−1𝑚−2 

𝑡1 −0.3065 𝐴−1°𝐶−1𝑚−2 

𝑡2 0.0004782 𝐴−1°𝐶−2𝑚−2 

𝑓1 20000 𝐴2𝑚−4 

𝑓2 0.93 

𝐶𝑇 1.6824 ⋅  105 𝐽𝐾−1 

𝑅𝑇 0.4441 W𝐾−1 

ℎ𝑛 6 W𝐾−1 

ℎ𝑐  30 W𝐾−1 

Table 3: Empirical parameters considered in the electrolyser model 

 

It is assumed that the converter provides the current requested by the controller. Since 

the local controller transforms the power setpoints into current references the 

relationship between power and current is analysed. For this purpose, the following 
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graphs are obtained considering the operation of the electrolyser at rated temperature, 

i.e. 80°C 

 

Fig. 5.8: Simulation of the fuel cell model 

 

According to the specifications, the electrolyser should operate with power higher than 

20% of the nominal power, i.e. 6kW. It can be seen that above this value the relationship 

between power and current it is almost linear. The following graphs show this 

relationship at different temperatures. 

 

 

Fig. 5.9: Variations of power due to changes of temperature - electrolyser 
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Since power is affected by both current and temperature, for simplicity in this work the 

local controller consists of a lookup table with power reference and temperature as 

inputs and current as output. This current is then applied to the model of the 

electrolyser. The table below describes the values of the lookup table: 

 

 T=75°C T=75°C  T=75°C  

Power =0 kW 0 A 0 A  0 A 

Power =10 kW 26.9870 A 26.9069 A  26.9069 A 

Power =15 kW 36.3994 A 39.5596 A  39.7998 A  

Power =20 kW 51.5716 A 52.1321 A  52.7728 A  

Power =25 kW 63.5035 A 64.6246 A  65.9059 A  

Power =30 kW 75.4354 A 77.1972 A  79.2793 A  

Table 4: Lookup table to transform power references into current for the electrolyser 

 

The complete model that represent the real electrolyser is shown in the following 

scheme: 

  

Fig. 5.10: Scheme of the complete model for the electrolyser 

 

However, for the model user by the optimization routines further simplifications can 

be made. In fact, it is show in equation (2.10) ( 𝑚̇𝐻2 = 𝜂𝑓
𝑛𝑐𝐼

𝑧𝐹
 ) that the production of 

𝐻2 is dependent on current, but also on the Faraday efficiency 𝜂𝑓 . The following graph 

depicts the influence of current on this efficiency at 80°C: 
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Fig. 5.11: Relationship between Faraday efficiency and current for the electrolyser 

 

It can be seen that with values of current higher than the minimum limit the efficiency does not 

change too much. Hence the main variable that influences on the production of 𝐻2 is the current. 

As previously seen, the relation between current and power is almost linear, therefore the 

relationship between power and production of 𝐻2 presents a similar behaviour: 

 

 

Fig. 5.12: Linear relationship between power setpoints and production of hydrogen  

 

The approximation is not good at low values of power due to the efficiency term but at 

high values the approximation is better. Since the electrolyser should operate above 
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6kW the relation between power and production of hydrogen can be approximated 

linearly. The model of the electrolyser system used for the optimization problems is: 

 

𝑚̇𝑒𝑙𝑦 (𝑘) = 𝑃𝑒𝑙𝑦 (𝑘) ∗ 2.95  (5.1) 

5.3.2 PEM fuel cell 

The following diagram depicts the functioning of a PEM fuel cell: 

 

 

Fig. 5.13: Scheme of local operation of a PEM fuel cell 

 

There is an inlet flow of 𝐻2 that produces a voltage at the terminals of the fuel cell and 

when a load is connected to the terminals then current flows through the fuel cell. Due 

to Faraday’s law, the consumption of 𝐻2 depends on the flow of current, so the 

consumption of hydrogen depends on the power consumed by the load. Note that the 

consumption of hydrogen is independent of the inlet flow, so what usually happens is 

that not all hydrogen fed is used and there is an outlet flow of unutilized hydrogen. It 

is common practice to reuse the unutilized hydrogen by making it recirculate and to 

avoid large amount of unutilized hydrogen, the inlet flow is usually regulated 

depending on the current. For simplicity, in thesis is assumed that the utilization rate 

is constant. On the other hand, the power output of the fuel cell is DC, so a DC-AC 

converter is used to connect the fuel cell to the AC bus of the microgrid. As mentioned 

above, the power output of the fuel cell depends on the load connected to it, so to 

regulate the power of the fuel cell the current that passes through the converter is 

controlled. Therefore, the local controller should output a current reference to control 

the power of the fuel cell and an inlet flow reference to maintain constant the utilization 

percentage.  
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The model presented in chapter 2 allow to compute voltage, power and consumed flow 

of hydrogen given the current the circulates through the fuel cell as represented by the 

diagram below: 

 

Fig. 5.14: Input and outputs of the PEM fuel cell model 

 

This model is validated using experimental data provided by a third party which 

performed an experiment in a laboratory [35]. The validation consists of using the 

same current used in the experiment and compare the outputs of the model against the 

measurements of the experiment. The PEM fuel cell used in the experiments has the 

following specifications: 

 

Characteristic Value Unit 

Power 12.5 kW 

Nominal voltage 83.7 V 

Nominal current 150 A 

Maximum current 170 A 

Number of cells 110 - 

Table 5: Technical specification of PEM fuel cell 

 

The experiment was carried out under the follow conditions: 

 

Characteristic Value Unit 

Pressure of H2 0.2 Bar 

Pressure of O2 1 Bar 

Concentration of H2 59 % 

Concentration of O2 40 % 

Temperature of experiment 60 °C 

Utilization rate 95 % 

Table 6: Conditions of the experiment for validation of the PEM fuel cell model 
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The empirical parameters used in the model where found in the literature [36], and are 

presented in the table below: 

 

Parameter Value 

ξ1 -0.948 

ξ3 7.22 ⋅  10−5 

ξ4 −1.0615 ⋅  10−4 

λ 14 

B 0.016 

𝑅𝑐 0.0003 

Table 7: Empirical parameters considered in the PEM fuel cell model 

 

For the experiment, the current shown in Fig. 5.15 was used: 

 

  

Fig. 5.15: Current input for PEM fuel cell model validation 
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And the results are the following: 

 

 

Fig. 5.16: Result of PEM fuel cell model validation  

 

As it can be seen, the outputs of the model match the data obtained from experiments. 

At the beginning of the experiment there is a mismatch between the flow of the 

experiment and the model. This difference is because there is a flow of hydrogen, but 

the load was not consuming energy so there was an outlet flow of hydrogen not used.  

Note that the experiment was carried out at certain conditions of pressure and 

concentration of the gases. However, these conditions change during the operation of 

the fuel cell as part of the storage system. In fact, in this case hydrogen is obtained from 

the tank which is considered pure as it is produced by the electrolyser whereas in the 

experiment the concentration of hydrogen was of 59%. Henceforth, the same 

conditions of the experiment will be considered except by the fact that the fuel cell uses 

pure hydrogen, i.e. concentration of hydrogen is 100%. 
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The following graph illustrates the dependence of power as function of current: 

 

Fig. 5.17: relation between power and current - PEM fuel cell model 

 

It can be seen that an increase of the current corresponds to a continuous increase of 

power until around 164 A where there is an abrupt decrease of power. This represents 

the maximum power that can be delivered by the fuel cell. In this thesis power values 

above 11kW are avoided to exploit the linear behaviour. The change of power near the 

limit is because the current gets closer to its maximum admissible value what causes 

an abrupt change of concentration voltage which in turn reduces the total voltage of 

the cell. Fig 5.18 shows the change of concentration voltage when the current 

approaches to its limit: 

 

 

Fig. 5.18: Relation between concentration cell voltage and current - PEM fuel cell model 
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The local controller is needed to transform the power setpoints into current signals. To 

perform this transformation a lookup table is used. Fig. 5.19 shows the curve current 

vs power obtained from the model, the breakpoints that conform the lookup table and 

the linear approximation with the table: 

 

 

Fig. 5.19: Linearity of current as function of power - PEM fuel cell model 

 

Therefore the controller consists of a lookup table that transforms the power 

references into current references. The tablet below shows the breakpoints of the 

lookup table:  

 

Power (kW) 𝑪𝒖𝒓𝒓𝒆𝒏𝒕 (A) 

0 0.0 

2 24.2 

8 110.8 

10 146.7 

10.6 164.0 

Table 8: Lookup table to transform power references into current for the fuel cell 
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Then the fuel cell system it is shown in Fig. 5.20: 

   

Fig. 5.20: Scheme of the complete model for the PEM fuel cell  

 

As mentioned before, the MPC uses a simplified model where the electrolyser is seen 

as an actuator which receives power setpoints and consumes hydrogen. Hence, the 

function that makes this transformation is obtained from the model and is represented 

in Fig 5.21. 

 

   

Fig. 5.21: Relationship between production of hydrogen and power - PEM fuel cell model 

 

It can be seen that the whole fuel cell system can be approximated by a piecewise linear 

function. The function of the fuel cell is expressed as: 

 

𝑚̇𝑓𝑐 (𝑘) = 𝑓( 𝑃𝑓𝑐 (𝑘) ) 
 (5.2) 

  

where f( 𝑥 ) is a piecewise linear function with the breakpoints shown in Table 9 
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Power(kW) 𝑯𝟐 consumption(slpm) 

0 0 

2 17.56 

8 80.53 

10 106.82 

10.6 119.36 

Table 9: Breakpoints for the piecewise linearization of fuel cell function 

 

Note that the original function is fully convex since the entire function is always lower 

than a line between two points, so according to the technique for linearization 

explained in chapter 3, the approximation can be made without binary variables, so: 

 

𝑓(  𝑃𝑓𝑐 (𝑘)) = 𝑚𝑎𝑥(𝐴𝑖 ⋅  𝑃𝑓𝑐 (𝑘) + 𝑏𝑖)             𝑖 = 1,2,3,4  (5.3) 

where each pair Ai and bi represent the polynomial coefficients of each line and since 

there are 5 breakpoints there are 4 lines. These coefficients are: 

 

i Ai bi 

1 8.78 0 

2 10.4950 -3.43 

3 13.1450 -24.63 

4 20.5574 -98.7540 

Table 10: Polynomial coefficients for the piecewise linearization of fuel cell function 

 

The previous equation can be written in a compact form as:  

 

𝑓(  𝑃𝑓𝑐 (𝑘)) = ‖𝐴 ⋅ 𝑃𝑓𝑐 (𝑘) + 𝑏‖∞  
 (5.4) 

 

where                              A=[

8.78
10.4950
13.1450
20.5574

] and b=[

0
−3.43
−24.63
−98.7540

] 
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The equation (5.4) can be expressed in linear form as follows: 

 

𝑚̇𝑓𝑐(𝑘) = 𝑓(  𝑃𝑓𝑐 (𝑘)) = 𝜀(𝑘)
𝑃𝑊𝐴   (5.5) 

 

where 𝜀(𝑘)
𝑃𝑊𝐴 is the minimum value that satisfies the following inequality: 

 

𝜀(𝑘)
𝑃𝑊𝐴 ≥  𝐴 ⋅ 𝑃𝑓𝑐(𝑘) + 𝑏  

 

 (5.6) 

Although the previous expression is enough to represent the infinity norm, it has been 
seen in practice that adding the following constraint allows to compute 𝜀(𝑘)

𝑃𝑊𝐴 faster 

when 𝜀(𝑘)
𝑃𝑊𝐴 is part of a bigger optimization problem: 

 

𝜀(𝑘)
𝑃𝑊𝐴 ≤ 𝑆 ⋅ 𝑃𝑓𝑐(𝑘)   

 

 (5.7) 

where S is the slope of a line which is always greater than the nonlinear function. In 

this case, using the points from table 9, a line that joins the extreme points of the 

nonlinear function, i.e. (0,0) and (10.6,119.36) has a slope S of 11.26. 

5.3.3 System equation 

The storage dynamics is given by equation (2.28) which was presented in chapter 2 

and it is shown below: 

 

𝑥(𝑘+1) = 𝑥(𝑘) +
 100 ⋅ ∆𝑡

𝑄𝑚𝑎𝑥
⋅ (𝑚̇𝑒𝑙𝑦 − 𝑚̇𝑓𝑐) 

 (5.8) 

 

From the equations (5.1), (5.5), (5.6) and (5.7), both 𝑚̇𝑒𝑙𝑦 and 𝑚̇𝑒𝑙𝑦 can be expressed 

as functions of power. Also, since the sampling time is one minute the previous 

equation becomes: 

 

𝑥(𝑘+1) = 𝑥(𝑘) +
100

𝑄𝑚𝑎𝑥
⋅ (2.95 ⋅ 𝑃𝑒𝑙𝑦(𝑘) − ‖𝐴 ⋅ 𝑃𝑓𝑐 (𝑘) + 𝑏‖∞ )  

  

 (5.9) 
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The max term due to the piecewise linearization can be replaced by an auxiliary 

variable 𝜀𝑃𝑊𝐴. Then the previous equation becomes: 

 

𝑥(𝑘+1) = 𝑥(𝑘) +
100

𝑄𝑚𝑎𝑥
⋅ 2.95 ⋅ 𝑃𝑒𝑙𝑦(𝑘) − 

100

𝑄𝑚𝑎𝑥
𝜀(𝑘)
𝑃𝑊𝐴  

  

 (5.10) 

subjected to: 

𝜀(𝑘)
𝑃𝑊𝐴 ≥  𝐴 ⋅ 𝑃𝑓𝑐(𝑘) + 𝑏  

  

 

𝜀(𝑘)
𝑃𝑊𝐴 ≤  𝑆 ⋅ 𝑃𝑓𝑐(𝑘)   

  

 

Hereafter the following will be considered for compactness: 

 

b1 =
100

Qmax
⋅ 2.95 

 

b2 =
100

Qmax
⋅ −1 

 

Note that the previous equations do not restrict simultaneous operation of the fuel cell 

and electrolyser which should not occur. The following procedure will assure that only 

one of them runs at a time. 

 

Consider two binary variables δ(𝑘)
1 , δ(𝑘)

2  defined as follows: 

 

δ(𝑘)
1 =  {

0              𝑓𝑜𝑟 𝑃𝑒𝑙𝑦(𝑘) = 0                               

1              𝑓𝑜𝑟  𝑃𝑚𝑖𝑛
𝑒𝑙𝑦
 ≤  𝑃𝑒𝑙𝑦(𝑘)  ≤  𝑃𝑚𝑎𝑥

𝑒𝑙𝑦
     

 
 (5.11) 

 

δ(𝑘)
2 =  {

0              𝑓𝑜𝑟 𝑃𝑓𝑐(𝑘) = 0                               

1              𝑓𝑜𝑟  𝑃𝑚𝑖𝑛
𝑓𝑐
 ≤  𝑃𝑓𝑐(𝑘)  ≤  𝑃𝑚𝑎𝑥

𝑒𝑙𝑦
     

 

     

 (5.12) 

𝛿(𝑘)
1 + 𝛿(𝑘)

2 ≤ 1       (5.13) 

 

The introduction of these auxiliary variables and the inequalities now restrict the 
simultaneous activation of the electrolyser and fuel cell. These variables 𝛿(𝑘)

1 and 𝛿(𝑘)
2  
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serve as enablers for the electrolyser and fuel cell respectively and inequality (5.13) 

only allows one device enabled at the same time. Note that the definition of the binary 

variables also imposes the range of operation of the fuel cell and the electrolyser. 

Although the simultaneous operation is now restricted, the expressions (5.11) and 

(5.12) represent logical conditions which cannot be written directly in linear form. 

However, according to the techniques described in chapter 3, these expressions are 

equivalent to linear inequalities: 

 

𝑃𝑒𝑙𝑦−𝑚𝑖𝑛𝛿(𝑘)
1 ≤ 𝑃𝑒𝑙𝑦(𝑘)  ≤ 𝑃𝑒𝑙𝑦−𝑚𝑎𝑥𝛿(𝑘)

1   

  

 (5.14) 

𝑃𝑓𝑐−𝑚𝑖𝑛𝛿(𝑘)
2 ≤ 𝑃𝑓𝑐(𝑘)  ≤ 𝑃𝑓𝑐−𝑚𝑎𝑥𝛿(𝑘)

2   

  

  

Recapitulating, the dynamical equation of the storage system is: 

 

𝑥(𝑘+1) = 𝑥(𝑘) + 𝑏1𝑃𝑒𝑙𝑦(𝑘) + 𝑏2𝜀(𝑘)
𝑃𝑊𝐴  

  

 (5.15) 

subjected to: 

𝜀(𝑘)
𝑃𝑊𝐴 ≥  𝐴 ⋅ 𝑃𝑓𝑐(𝑘) + 𝑏   

𝜀(𝑘)
𝑃𝑊𝐴 ≤  𝑆 ⋅ 𝑃𝑓𝑐(𝑘)   

 

𝑃𝑒𝑙𝑦−𝑚𝑖𝑛𝛿(𝑘)
1 ≤ 𝑃𝑒𝑙𝑦(𝑘)  ≤ 𝑃𝑒𝑙𝑦−𝑚𝑎𝑥𝛿(𝑘)

1   
 (5.16) 

 

𝑃𝑓𝑐−𝑚𝑖𝑛𝛿(𝑘)
2 ≤ 𝑃𝑓𝑐(𝑘)  ≤ 𝑃𝑓𝑐−𝑚𝑎𝑥𝛿(𝑘)

2    

𝛿(𝑘)
1 + 𝛿(𝑘)

2 ≤ 1       

 

Equation (5.15) represents the model of the storage considered for MPC and hereafter, 

inequalities (5.16)will be referred as hydrogen model inequalities  

5.4 System modelling for battery 

5.4.1 System equation 

The equations (2.29)– (2.30) presented in chapter 2 represent the dynamical model 

for the battery: 

 

𝑆𝑂𝐶(𝑘+1) = 𝑆𝑂𝐶(𝑘) + 100 ⋅
∆𝑡

𝑄𝑛𝑜𝑚
(𝜂 ⋅ 𝑃𝑏𝑎𝑡𝑡(𝑘) − 𝑃𝑠𝑑)    

 (2.25) 
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and  

𝜂 = {
  𝜂𝑐               𝑖𝑓 𝑃𝑏𝑎𝑡𝑡(𝑘)  ≥ 0           (𝑐ℎ𝑎𝑟𝑔𝑒 𝑚𝑜𝑑𝑒) 

1
𝜂𝑑⁄            𝑖𝑓 𝑃𝑏𝑎𝑡𝑡(𝑘) < 0       (𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑚𝑜𝑑𝑒)

  
(2.26) 

 

 

To express this equations in a single expression, consider the following auxiliary 

variables:  𝑃(𝑘)
𝑐ℎ𝑎𝑟 and 𝑃(𝑘)

𝑑𝑖𝑠 which are continuous and 𝛿(𝑘)
𝑏1  and 𝛿(𝑘)

𝑏2which are binary 

 

δ(𝑘)
b1 =  {

0              𝑓𝑜𝑟 𝑃(𝑘)
𝑐ℎ𝑎𝑟 = 0                                 

1              𝑓𝑜𝑟  𝑃𝑚𝑖𝑛
𝑐ℎ𝑎𝑟  ≤  𝑃(𝑘)

𝑐ℎ𝑎𝑟  ≤  𝑃𝑚𝑎𝑥
𝑐ℎ𝑎𝑟   

 
 (5.17) 

 

δ(𝑘)
𝑏2 =  {

0              𝑓𝑜𝑟 𝑃(𝑘)
𝑑𝑖𝑠 = 0                                  

1              𝑓𝑜𝑟  𝑃𝑚𝑖𝑛
𝑑𝑖𝑠  ≤  𝑃(𝑘)

𝑑𝑖𝑠  ≤  𝑃𝑚𝑎𝑥
𝑑𝑖𝑠      

 

     

 (5.18) 

𝛿(𝑘)
𝑏1 + 𝛿(𝑘)

𝑏2 ≤ 1       (5.19) 

 

𝑃𝑏𝑎𝑡𝑡(𝑘) = 𝑃(𝑘)
𝑐ℎ𝑎𝑟 − 𝑃(𝑘)

𝑑𝑖𝑠        (5.20) 

 

Then considering a sample time of one minute and that the capacity of batteries is 

expressed in kWh, the equation of the battery becomes: 

 

𝑆𝑂𝐶(𝑘+1) = 𝑆𝑂𝐶(𝑘) +
100

𝑄𝑛𝑜𝑚 ⋅ 60
⋅ (𝜂𝑐𝑃(𝑘)

𝑐ℎ𝑎𝑟 −
1

𝜂𝑑
𝑃(𝑘)
𝑑𝑖𝑠 − 𝑃𝑠𝑑)   

 (5.21) 

 

It can be seen that inequalities (5.17) and (5.18) depend on the maximum and 

minimum values that P(𝑘)
char and P(𝑘)

dis can assume, so implicitly these inequalities also 

define the limits of operation of these variables. The expressions (5.17) and (5.18)  

represent logical conditions which cannot be included directly in a linear optimization 

problem. However, according to the techniques described in chapter 3, these 

expressions are equivalent to linear inequalities: 

 

𝑃𝑚𝑖𝑛
𝑐ℎ𝑎𝑟𝛿(𝑘)

1 ≤ 𝑃(𝑘)
𝑐ℎ𝑎𝑟  ≤ 𝑃𝑚𝑎𝑥

𝑐ℎ𝑎𝑟𝛿(𝑘)
𝑏1   

  

 (5.22) 

𝑃𝑚𝑖𝑛
𝑑𝑖𝑠 𝛿(𝑘)

𝑏2 ≤ 𝑃(𝑘)
𝑑𝑖𝑠  ≤ 𝑃𝑚𝑎𝑥

𝑑𝑖𝑠 𝛿(𝑘)
𝑏2   

  

 (5.23) 
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The following is defined for compactness: 

 

b1 =
100

𝑄𝑛𝑜𝑚 ⋅ 60
⋅ 𝜂𝑐 

 

b2 =
100

𝑄𝑛𝑜𝑚 ⋅ 60
⋅
−1

𝜂𝑑
 

 

b3 =
100

𝑄𝑛𝑜𝑚 ⋅ 60
⋅ −𝑃𝑠𝑑  

 

The equation of the system is: 

 

𝑆𝑂𝐶(𝑘+1) = 𝑆𝑂𝐶(𝑘) + 𝑏1𝑧(𝑘)
𝑏 + 𝑏2𝑃𝑏𝑎𝑡𝑡(𝑘) + 𝑏3𝑃𝑠𝑑    

 (5.24) 

subject to: 

𝑃𝑚𝑖𝑛
𝑐ℎ𝑎𝑟𝛿(𝑘)

1 ≤ 𝑃(𝑘)
𝑐ℎ𝑎𝑟  ≤ 𝑃𝑚𝑎𝑥

𝑐ℎ𝑎𝑟𝛿(𝑘)
𝑏1   

  

  

𝑃𝑚𝑖𝑛
𝑑𝑖𝑠 𝛿(𝑘)

𝑏2 ≤ 𝑃(𝑘)
𝑑𝑖𝑠  ≤ 𝑃𝑚𝑎𝑥

𝑑𝑖𝑠 𝛿(𝑘)
𝑏2    (5.25) 

 

𝛿(𝑘)
𝑏1 + 𝛿(𝑘)

𝑏2 ≤ 1       

 

Equation (5.24) represents the dynamical equation of the storage system based on 

battery and hereafter, inequalities (5.25) will be referred as battery model inequalities  

 

Note that expression (5.20) is not included in the previous expressions. This is because 

𝑃𝑏𝑎𝑡𝑡(𝑘) is a linear combination of  𝑃(𝑘)
𝑐ℎ𝑎𝑟and 𝑃(𝑘)

𝑑𝑖𝑠, so it is not necessary to include it in 

the optimization problems. 

5.5 Energy exchange with the grid 

5.5.1 Balance of energy 

The balance of energy should be achieved at every time instant.  
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For the system with storage based on hydrogen:  

 

𝑃𝑒𝑙𝑦(𝑘) − 𝑃𝑓𝑐(𝑘) − 𝑃𝑔𝑟𝑖𝑑(𝑘) − 𝑃𝑃𝑉(𝑘) + 𝐷(𝑘) = 0     
 (5.26) 

 

For the system with battery: 

 

𝑃(𝑘)
𝑐ℎ𝑎𝑟 − 𝑃(𝑘)

𝑑𝑖𝑠 − 𝑃𝑔𝑟𝑖𝑑(𝑘) − 𝑃𝑃𝑉(𝑘) + 𝐷(𝑘) = 0     
 (5.27) 

 

𝑃𝑔𝑟𝑖𝑑(𝑘)is the power exchange with the grid and it is considered positive if energy enters 

the microgrid and negative if the microgrid delivers energy to the main grid 

𝑃𝑃𝑉(𝑘)  and 𝐷(k)are the photovoltaic power and electrical demand respectively and are 

uncontrollable 

Inequalities (5.26) and (5.27) will be referred as balance of energy constraints 

5.5.2 Purchase and sale of energy  

When the microgrid is connected to the utility grid, it can sell or purchase energy. The 

price of energy can be represented as: 

 

𝐶(𝑘)
𝑔
= 

{
 
 

 
 𝑐(𝑘)

𝑝  𝑃𝑔𝑟𝑖𝑑(𝑘)
60

             𝑓𝑜𝑟 𝑃𝑔𝑟𝑖𝑑(𝑘)  ≥ 0                               

𝑐(𝑘)
𝑠 𝑃𝑔𝑟𝑖𝑑(𝑘)
60

              𝑓𝑜𝑟 𝑃𝑔𝑟𝑖𝑑(𝑘)  < 0                               

 

     

 (5.28) 

where 𝑐(𝑘)
𝑝  and 𝑐(𝑘)

𝑠 are the purchasing and selling energy prices respectively and are 

expressed in €/𝑘𝑊ℎ.  

 

This expression assumes that the given prices 𝑐(𝑘)
𝑝 and 𝑐(𝑘)

𝑠  are positive. However, note 

that if the values of  𝑐(𝑘)
𝑝 and 𝑐(𝑘)

𝑠  are 60 and -60 respectively then 𝐶(𝑘)
𝑔

 represents the 

absolute value of 𝑃𝑔𝑟𝑖𝑑(𝑘)which can be used to minimize the energy exchange with the 

utility grid. To include expression (5.28) in a linear program, a binary variable 𝛿(𝑘)
g

 is 

introduced such that: 

 

𝛿(𝑘)
𝑔
= 1 ⟺ 𝑃𝑔𝑟𝑖𝑑(𝑘) ≥ 0  (5.29) 
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Then the previous expression is equivalent to: 

 

𝐶(𝑘)
𝑔
= 𝑐(𝑘)

𝑝  𝑃𝑔𝑟𝑖𝑑(𝑘)𝛿(𝑘)
𝑔
+ 𝑐(𝑘)

𝑠  𝑃𝑔𝑟𝑖𝑑(𝑘)(1 − 𝛿(𝑘)
𝑔
)    (5.30) 

 

The logical condition (5.29) and equation (5.30) cannot be expressed linearly in a 

direct way because they represent a logical condition and product of variables. 

However, according to the procedure presented chapter 3, these expressions are 

equivalent to the following linear inequalities 

 

𝐸2
𝑔
𝛿(𝑘)
𝑔
+ 𝐸3

𝑔
𝐶(𝑘)
𝑔
≤ 𝐸1

𝑔
𝑃𝑔𝑟𝑖𝑑(𝑘) + 𝐸5

𝑔  (5.31) 

where: 

E2(𝑘)
g

=

[
 
 
 
 
 
 
 −𝑃𝑚𝑖𝑛

𝑔𝑟𝑖𝑑

−(𝑃𝑚𝑎𝑥
𝑔𝑟𝑖𝑑

+ 𝜀)
−𝑀𝑔(𝑘)
𝑚𝑔(𝑘)
−𝑚𝑔(𝑘)
𝑀𝑔(𝑘) ]

 
 
 
 
 
 
 

, E3(𝑘)
g

=

[
 
 
 
 
 
0
0
1
−1
1
−1]
 
 
 
 
 

, E1(𝑘)
g

=

[
 
 
 
 
 
 
1
−1
𝑐(𝑘)
𝑠

−𝑐(𝑘)
𝑠

𝑐(𝑘)
𝑝

−𝑐(𝑘)
𝑝
]
 
 
 
 
 
 

, E5(𝑘)
g

=

[
 
 
 
 
 
 −𝑃𝑚𝑖𝑛

𝑔𝑟𝑖𝑑

−𝜀
0
0

−𝑚𝑔(𝑘)
𝑀𝑔(𝑘) ]

 
 
 
 
 
 

 

𝑀𝑔(𝑘) = max ((𝑐(𝑘)
𝑝 − 𝑐(𝑘)

𝑠 ) ⋅ 𝑃𝑚𝑎𝑥
𝑔𝑟𝑖𝑑

, (𝑐(𝑘)
𝑝 − 𝑐(𝑘)

𝑠 ) ⋅ 𝑃𝑚𝑖𝑛
𝑔𝑟𝑖𝑑

) 

𝑚𝑔(𝑘) = min ((𝑐(𝑘)
𝑝
− 𝑐(𝑘)

𝑠 ) ⋅ 𝑃𝑚𝑎𝑥
𝑔𝑟𝑖𝑑

, (𝑐(𝑘)
𝑝
− 𝑐(𝑘)

𝑠 ) ⋅ 𝑃𝑚𝑖𝑛
𝑔𝑟𝑖𝑑

) 

 

Note that these inequalities depend on the selling and purchasing prices of energy 

which are time variant, so these inequalities also change over time. These matrices also 

depend on the maximum and minimum power exchanged with the grid, so this variable 

is implicitly bounded. The inequalities (5.31) will be referred from now on as purchase 

and sale of energy inequalities. 

5.5.3 Prices of energy  

The prices considered for the simulations in this thesis were obtained from [37] for a 

certain day and are shown in Fig. 5.22: 
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Fig. 5.22: Energy prices over 24 hours 

5.6 Constraints 

5.6.1 Storage bounds 

For both types of storage systems the capacity of storage is defined in terms of 

percentage and ranges from 0% to 100%. The following constraints represent the 

physical bounds of the storage.  

 

Hydrogen system: 

For the tank, the amount of hydrogen must be between 𝑥𝑚𝑖𝑛 = 10% and 𝑥𝑚𝑎𝑥 = 90% 

A security band is left to prevent the tank from complete emptying or filling. 

 

𝑥𝑚𝑖𝑛 ≤ 𝑥(𝑘)  ≤ 𝑥𝑚𝑎𝑥                       𝑘 = 1, 2, … , 𝑁 − 1    (5.32) 

 

Battery system: 

In the case of batteries, their lifetime is inversely proportional to the depth of 

discharge, so smaller discharge cycles are preferred to avoid shortening their lifetime. 

The bounds chosen for this case are 𝑆𝑂𝐶𝑚𝑖𝑛 = 30% and 𝑆𝑂𝐶𝑚𝑎𝑥 = 90% 

 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑘)  ≤ 𝑆𝑂𝐶𝑚𝑎𝑥              𝑘 = 1, 2, … , 𝑁 − 1     (5.33) 

 

In the case of the planification one-day ahead a terminal condition is added: 

  

𝑥0 − 5 ≤ 𝑥(𝑁)  ≤ 𝑥0 + 5               (5.34) 

𝑆𝑂𝐶0 − 5 ≤ 𝑆𝑂𝐶(𝑘)  ≤ 𝑆𝑂𝐶0 + 5                 (5.35) 
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Whereas in the case of MPC, the terminal value needs to be within a band around the 

reference: 

𝑥(𝑁)
𝑟𝑒𝑓

− 1 ≤ 𝑥(𝑁)  ≤ 𝑥(𝑁)
𝑟𝑒𝑓

+ 1       (5.36) 

𝑆𝑂𝐶(𝑁)
𝑟𝑒𝑓

− 1 ≤ 𝑆𝑂𝐶(𝑁)  ≤ 𝑆𝑂𝐶(𝑁)
𝑟𝑒𝑓

+ 1        (5.37) 

5.6.2 Ramp rate 

 The alkaline electrolyser due to its nature cannot change its power absorption by more 

than 20% of its rated power per minute [11]. The nominal power of the electrolyser is 

30kW, so its power variation limit is set to 6kW. The fuel cell is PEM, so in a minute it 

can change its power in the full range, so the limit is only imposed to the electrolyser.  

 

−∆𝑃𝑒𝑙𝑦
𝑚𝑎𝑥 ≤ 𝑃𝑒𝑙𝑦(𝑘) − 𝑃𝑒𝑙𝑦(𝑘−1)  ≤ ∆𝑃𝑒𝑙𝑦

𝑚𝑎𝑥                      𝑘 = 1, 2, … , 𝑁  (5.38) 

  

Similarly, batteries can also stand variations of power in the full range, so this 

constraint is not applied in this case 

5.6.3 Interaction with the grid logical constraints 

A situation that should be avoided is discharging the storage to sell energy or buying 

energy to charge the storage. The following inequalities will restrict these situations: 

 

Hydrogen system: 

𝛿(𝑘)
𝑔
+ 𝛿(𝑘)

1 ≤ 1                      𝑘 = 1, 2, … , 𝑁  (5.39) 

−𝛿(𝑘)
𝑔
+ 𝛿(𝑘)

2 ≤ 0                      𝑘 = 1, 2, … , 𝑁   (5.40) 

Battery system: 

𝛿(𝑘)
𝑔
+ 𝛿(𝑘)

𝑏1 ≤ 1                      𝑘 = 1, 2, … , 𝑁  (5.41) 

−𝛿(𝑘)
𝑔
+ 𝛿(𝑘)

𝑏2 ≤ 0                   𝑘 = 1, 2, … , 𝑁    (5.42) 

 

Since the models considered by MPC do not match exactly the real equipment, the 

energy level in the storage may diverge from the reference; hence it may be needed to 

buy energy to charge the storage or sell energy to discharge the battery to satisfy the 

terminal constraint regarding the energy level in the storage. So to guarantee feasibility 

and stability, these constraints are not considered by the optimization problems of 

MPC. 
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5.6.4 Start up and shutdown 

 

Hydrogen system: 

A problem with alkaline electrolysers is that they need long times to start. Hence, to 

avoid frequent activation and deactivation the term |𝛿(𝑘)
1 − 𝛿(𝑘−1)

1 | should be penalized 

in the cost function. Although, PEM fuel cells do not have this problem, frequent 

switching is also penalized but more importance is given to the electrolyser in the 

optimization problem. To this end, the weight of the fuel cell is lower than the weight 

of the electrolyser. The following inequalities allow to represent the absolute value in 

the cost function   

 

−𝑆𝑈(𝑘)
𝑒𝑙𝑦
 ≤  𝑐𝑒𝑙𝑦

𝑆𝑈 (𝛿(𝑘)
1 − 𝛿(𝑘−1)

1 ) ≤ 𝑆𝑈(𝑘)
𝑒𝑙𝑦
                      𝑘 = 1, 2, … , 𝑁  (5.43) 

−𝑆𝑈(𝑘)
𝑓𝑐
≤ 𝑐𝑓𝑐

𝑆𝑈(𝛿(𝑘)
2 − 𝛿(𝑘−1)

2 ) ≤ 𝑆𝑈(𝑘)
𝑓𝑐
                        𝑘 = 1, 2, … , 𝑁  (5.44) 

                                 𝑆𝑈(𝑘)
𝑒𝑙𝑦
 ≥  0                                         𝑘 = 1, 2, … , 𝑁  (5.45) 

                                  𝑆𝑈(𝑘)
𝑓𝑐
 ≥  0                                         𝑘 = 1, 2, … , 𝑁  (5.46) 

 

Battery system: 

The lifetime of batteries is limited by the number of discharge and charge cycles. 

Therefore, the switching from charging to discharging and vice versa is restricted to 

not reduce the lifetime of the battery.  

 

−𝑆𝑈(𝑘)
𝑐ℎ𝑎𝑟 ≤ 𝑐𝑐ℎ𝑎𝑟

𝑆𝑈 (𝛿(𝑘)
𝑏1 − 𝛿(𝑘−1)

𝑏1 ) ≤ 𝑆𝑈(𝑘)
𝑐ℎ𝑎𝑟                      𝑘 = 1, 2, … , 𝑁  (5.47) 

−𝑆𝑈(𝑘)
𝑑𝑖𝑠 ≤ 𝑐𝑑𝑖𝑠

𝑆𝐷(𝛿(𝑘)
𝑏2 − 𝛿(𝑘−1)

𝑏1 ) ≤ 𝑆𝑈(𝑘)
𝑑𝑖𝑠                          𝑘 = 1, 2, … , 𝑁  (5.48) 

                                     𝑆𝑈(𝑘)
𝑐ℎ𝑎𝑟  ≥  0                                     𝑘 = 1, 2, … , 𝑁  (5.49) 

                                           𝑆𝑈(𝑘)
𝑑𝑖𝑠  ≥  0                                 𝑘 = 1, 2, … , 𝑁  (5.50) 

 

The auxiliary variables should be minimized in the cost function to reduce the 

frequency of switching. 

5.6.5 Variation of power exchanged with the grid 

A desirable feature is to minimize the variability of the power exchanged with the grid. 

This feature can be considered in the  optimization by including the term  

∑ |𝑃𝑔𝑟𝑖𝑑(𝑘) − 𝑃𝑔𝑟𝑖𝑑(𝑘−1)|
𝑁−1
𝑖=1  in the cost function.  To include this expression in a linear 

program the following inequality can be used: 
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−𝜀(𝑘)
∆𝑔𝑟𝑖𝑑

 ≤ 𝑃𝑔𝑟𝑖𝑑(𝑘) − 𝑃𝑔𝑟𝑖𝑑(𝑘+1)  ≤ 𝜀(𝑘)
∆𝑔𝑟𝑖𝑑

                     𝑘 = 1, 2, … , 𝑁   (5.51) 

 

where 𝜀(𝑘)
∆𝑔𝑟𝑖𝑑

 is an auxiliary variable that should be included in the cost function. In this 

way, the optimization problem would minimize 𝜀(𝑘)
∆𝑔𝑟𝑖𝑑

 and therefore the variation of 

power is also minimized. 

5.6.6 Tracking the reference of energy level in the storage 

As described before, the MPC controller should regulate the energy level in the storage 

to follow the reference given by the planification one-day ahead. This feature can be 

considered in the  optimization problem by including the term  ∑ |𝑥(𝑘+𝑖) − 𝑥(𝑘+𝑖)
𝑟𝑒𝑓

|𝑁−1
𝑖=0  in 

the cost function, in this way the error is penalized. To include this expression in a 

linear program the following inequality can be used 

 

For the storage system based on hydrogen: 

 

−𝜀𝑙𝑒𝑣𝑒𝑙(𝑘)
𝑡𝑟𝑎𝑐𝑘     ≤   𝑥(𝑘) − 𝑥(𝑘)

𝑟𝑒𝑓
      ≤ 𝜀𝑙𝑒𝑣𝑒𝑙(𝑘)

𝑡𝑟𝑎𝑐𝑘                      𝑘 = 1, 2, … , 𝑁   (5.52) 

 

For the storage system based on batteries: 

 

−εlevel(k)
track  ≤ SOC(k) − 𝑆𝑂𝐶(k)

ref  ≤ εlevel(k)
track                          k = 1, 2, … , N      

 

 (5.53) 

where 𝜀𝑙𝑒𝑣𝑒𝑙(𝑘)
𝑡𝑟𝑎𝑐𝑘  is an auxiliary variable that should be included in the cost function. In 

this way, the optimization problem would minimize 𝜀𝑙𝑒𝑣𝑒𝑙(𝑘)
𝑡𝑟𝑎𝑐𝑘  and therefore the level 

would follow the reference. 

 

Additionally, to improve the tracking the auxiliary variables are also restricted such 

that the difference between the energy level in the storage in its reference is limited: 

 

 

0   ≤   𝜀𝑙𝑒𝑣𝑒𝑙(𝑘)
𝑡𝑟𝑎𝑐𝑘       ≤ 10                     𝑘 = 1, 2, … , 𝑁   (5.54) 
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5.6.7 Tracking the reference of power exchanged with the grid 

Similarly to the previous case, the power exchanged with the grid obtained by the MPC 

controller should be similar to what was indicated by the prior scheduling. This is 

achieved by including the term  ∑ |𝑃𝑔𝑟𝑖𝑑(𝑘) − 𝑃𝑔𝑟𝑖𝑑(𝑘)
𝑟𝑒𝑓

|𝑁−1
𝑖=1  in the cost function.  To include 

this expression in a linear program the following inequality can be used 

 

−𝜀𝑔𝑟𝑖𝑑
𝑡𝑟𝑎𝑐𝑘  ≤ 𝑃𝑔𝑟𝑖𝑑(𝑘) − 𝑃𝑔𝑟𝑖𝑑(𝑘)

𝑟𝑒𝑓
 ≤ 𝜀𝑔𝑟𝑖𝑑

𝑡𝑟𝑎𝑐𝑘                      𝑘 = 1, 2, … , 𝑁  (5.55) 

 

where 𝜀𝑔𝑟𝑖𝑑
𝑡𝑟𝑎𝑐𝑘 is an auxiliary variable that should be included in the cost function. In this 

way, the optimization problem would minimize 𝜀𝑔𝑟𝑖𝑑
𝑡𝑟𝑎𝑐𝑘 and therefore 𝑃𝑔𝑟𝑖𝑑(𝑘)would 

follow its reference. 

Differently from the previous case, in this case the auxiliary variable is not restricted 

because is desired to minimize the error, but this variable should be able to take very 

different variables if needed.  

5.7 One day-ahead scheduling 

A prior scheduling is performed for the following reasons: 

 

• It is advantageous to obtain similar levels of energy in the storage system at the 

beginning and at end of the day. Thus, if during the night there is a blackout 

there is energy left in the storage to satisfy essential needs. 

•  In the main grid, generators indicate anticipately the amount of energy they will 

produce to the grid coordinator. To emulate this behaviour a prior planification 

is needed to obtain an expected profile of exchanged power with the grid. This 

profile is obtained by solving an optimization problem which considers 1-day 

forecasts of photovoltaic generation and demand to produce the power 

references that would satisfy the energy balance. Since these forecasts are not 

perfectly met, the MPC controller produces power references different to what 

was given by the prior optimization. To fulfil what was declared to the grid 

coordinator the MPC controller should try to produce an output similar to the 

reference. 

 

The optimization problem evaluates the whole day considering a resolution of one 

minute and it produces power references of energy exchange with the grid and with 

the storage system. Then, it is possible to use the model of the storage and the solution 

produced by the optimization problem to obtain a storage level profile. The reference 
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of power exchange with the grid and level profile are sent to the MPC which should 

follow these references. 

In a general way, for both types of storage systems the one-day ahead scheduling 

consists of solving the following mixed-integer linear program: 

 

𝑚𝑖𝑛
𝑈
𝐽(𝑈,𝑥0) 

subject to: 

model constraints 

storage limits constraints 

ramp rate constraints 

price of energy constraints 

start up and shutdown constraints 

interaction with the grid logical constraints 

variation of energy exchange with the grid constraints 

balance of energy constraints 

 (5.56) 

 

where U is the vector of decision variables, x0 is the initial energy level in the storage 
and 𝐽(𝑈,𝑥0) is the cost function of the optimization problem. 

  

The cost function used for both types of storage systems are similar but present slight 

differences because they use different decision variables. In the next sections, the cost 

functions are described by making use of the variables already presented until now. 

However, the following notation is introduced first since it will be used for both 

systems. 

 

The symbol (⋅)∗ in a vector refers to:  𝑎∗ = [𝑎(0), 𝑎(1), … , 𝑎(𝑁−1)]⏟            
𝑁

 

5.7.1 Cost function for system based on hydrogen 

The following vector of decision variables is considered: 

 

UH2 = [𝑃𝑒𝑙𝑦
∗  , 𝑃𝑓𝑐

∗  , 𝛿 
1∗ , 𝛿 

2∗, 𝜀 
𝑃𝑊𝐴∗, 𝑃𝑔𝑟𝑖𝑑

∗  , 𝛿 
𝑔∗, 𝐶 

𝑔∗, 𝑆𝑈 
𝑒𝑙𝑦∗, 𝑆𝑈 

𝑓𝑐∗, 𝜀 
∆𝑔𝑟𝑖𝑑∗ ]

𝑇
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Then the proposed cost function is the following: 

 

𝐽(𝑈𝐻2) = ∑ 𝑤1𝐶(𝑘)
𝑔
+ 𝑤2|𝛿(𝑘)

1 − 𝛿(𝑘−1)
1 | + 𝑤3|𝛿(𝑘)

2 − 𝛿(𝑘−1)
2 |

1439

𝑘=0

+ 𝑤4𝜀(𝑘)
𝑃𝑊𝐴

+ 𝑤5 |𝑃𝑔𝑟𝑖𝑑(𝑘) − 𝑃𝑔𝑟𝑖𝑑(𝑘−1)| 

 (5.57) 

 

The first term corresponds to the energy exchange with the grid and there are two 
cases. On the one hand, for minimization of energy exchange, the terms  𝑐(𝑘)

𝑝 and 𝑐(𝑘)
𝑠  

should be 60 and -60 respectively, in this way 𝐶(𝑘)
𝑔

represents the absolute value of the 

energy exchange so both import and export of energy are penalized. On the other hand, 
to obtain economic benefits the terms 𝑐(𝑘)

𝑝 and 𝑐(𝑘)
𝑠  should take the values of the 

purchasing and selling prices, thus when importing energy the term 𝐶(𝑘)
𝑔

 is positive so 

it is penalized, whereas when selling energy the term 𝐶(𝑘)
𝑔

 is negative so exporting 

energy is encouraged. The second and third terms penalize the on/off switching of the 
electrolyser and fuel cell, respectively. The term 𝜀(𝑘)

𝑃𝑊𝐴 corresponds to the piecewise 

approximation of the fuel cell function. Finally, the last term penalizes the variability of 

energy exchange with grid. The summatory of terms with absolute value can be 

replaced by auxiliary variables and linear inequalities as shown below: 

 

𝐽𝐻2(𝑈) = ∑ 𝑤1𝐶(𝑘)
𝑔

1439

𝑘=0

+ 𝑆𝑈(𝑘)
𝑒𝑙𝑦
+ 𝑆𝑈(𝑘)

𝑓𝑐
+ 𝑤4𝜀(𝑘)

𝑃𝑊𝐴 + 𝑤5𝜀(𝑘)
∆𝑔𝑟𝑖𝑑 

 (5.58) 

 

where the auxiliary variables 𝑆𝑈(𝑘)
𝑒𝑙𝑦

, 𝑆𝑈(𝑘)
𝑓𝑐

, 𝜀(𝑘)
∆𝑔𝑟𝑖𝑑

 were introduced in the constraints 

section. 

5.7.2 Cost function for system based on battery 

The following vector of decision variables is considered: 

 

U𝑏𝑎𝑡𝑡

= [𝑃 
𝑐ℎ𝑎𝑟∗ , 𝑃 

𝑑𝑖𝑠∗ , 𝛿 
𝑏1∗ , 𝛿 

b2∗, 𝑃𝑔𝑟𝑖𝑑
∗  , 𝛿 

𝑔∗, 𝐶 
𝑔∗, 𝑆𝑈 

𝑐ℎ𝑎𝑟∗,   𝑆𝑈 
𝑑𝑖𝑠∗, 𝜀 

∆𝑔𝑟𝑖𝑑∗, 𝜀𝑙𝑒𝑣𝑒𝑙
𝑡𝑟𝑎𝑐𝑘∗, 𝜀𝑔𝑟𝑖𝑑

𝑡𝑟𝑎𝑐𝑘∗]
𝑇
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Then the proposed cost function is the following: 

 

𝐽(𝑘) = ∑ 𝐶(𝑘)
𝑔

1439

𝑘=0

+ 𝑤2|𝛿(𝑘)
𝑏1 − 𝛿(𝑘−1)

𝑏1 | + 𝑤3|𝛿(𝑘)
𝑏2 − 𝛿(𝑘−1)

𝑏2 |

+  𝑤4 |𝑃𝑔𝑟𝑖𝑑(𝑘) − 𝑃𝑔𝑟𝑖𝑑(𝑘−1)| 

 (5.59) 

 

Similarly to the previous case, 𝑐(𝑘)
𝑝 and 𝑐(𝑘)

𝑠  should take suitable values to achieve 

minimization of energy exchange or to obtain economic benefits. The second and third 

terms penalize constant switching between charging and discharging. The last term 

penalizes variations of power exchanged to the grid. As explained in the previous case, 

the absolute value can be replaced by auxiliary variables and linear inequalities 

presented in the constraints section: 

 

𝐽𝑏𝑎𝑡𝑡(𝑈) = ∑ 𝑤1𝐶(𝑘)
𝑔

1439

𝑘=0

+ 𝑆𝑈(𝑘)
𝑐ℎ𝑎𝑟 + 𝑆𝐷(𝑘)

𝑐ℎ𝑎𝑟 + 𝑆𝑈(𝑘)
𝑑𝑖𝑠 + 𝑆𝐷(𝑘)

𝑑𝑖𝑠 + 𝑤4𝜀(𝑘)
∆𝑔𝑟𝑖𝑑 

 (5.60) 

5.8 MPC control problem 

In this section the MPC optimization problem is formulated. This problem attempts to 

find an optimal sequence of inputs that produce a desired behaviour of the system in a 

future horizon. At each time instant, only the first input of the sequence is applied and 

in the next time instant a new optimization problem is stated using new measured 

information. In this way, it compensates for inaccuracies of the model and possible 

disturbances.  

In a general way, for both systems the MPC algorithm consists of the following steps at 

each time instant: 

 

1. The actual energy level in the storage is measured and a forecast of the following 

N values of generation and consumption is performed. The foreseen data allows 

to state the balance of energy constraints which will be used in the following 

step.  
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2. Solve the following optimization problem 

 

𝑚𝑖𝑛
𝑈(𝑘)

𝐽(𝑘,𝑥0,𝑈(𝑘)) 

subject to: 

model constraints 

storage limits constraints 

ramp rates constraints 

price of energy constraints 

start up and shutdown constraints 

variation of energy exchange with the grid constraints 

balance of energy constraints 

tracking energy level reference constraints 

tracking grid reference constraints 

(5.61) 

 

where U is the vector of decision variables, x0 is the initial energy level in the 
storage, k is the time instant and 𝐽(𝑘,𝑈,𝑥0) is the cost function of the optimization 

problem. 

 

3. After solving the problem is produced a sequence of N values for each decision 

variable. From this sequence only the first values are applied to the real system 

represented in this thesis by the complete models. In the case of the storage 
based on hydrogen, 𝑃𝑒𝑙𝑦(0), 𝑃𝑓𝑐(0) and 𝑃𝑔𝑟𝑖𝑑(0)are applied whereas in the case of 

the battery-based system, 𝑃𝑒𝑙𝑦(0), 𝑃𝑓𝑐(0) and 𝑃𝑔𝑟𝑖𝑑(0) .Furthermore, it is 

considered that forecast of the next N values of generation and consumption is 
perfect thus 𝑃𝑒𝑙𝑦(0), 𝑃𝑓𝑐(0) and 𝑃𝑔𝑟𝑖𝑑(0)  perfectly satisfy the energy balance. 

 

In this case the cost function depends on the index k which means that there is a 

different cost function at each time instant k whereas in the scheduling one-day ahead 

there was only a single cost function for the whole simulation. The cost function used 

in MPC is similar to the cost function in the scheduling one-day ahead although in this 

case two additional terms are added.  These terms allow the system to follow the 

references given by the prior scheduling.  

The MPC formulation is presented in the following sections for both types of storage 

systems. 
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5.8.1 Cost function for system based on hydrogen 

 

Consider the following vector of decision variables: 

 

UH2(𝑘)

= [𝑃𝑒𝑙𝑦
∗  , 𝑃𝑓𝑐

∗  , 𝛿 
1∗ , 𝛿 

2∗, 𝜀 
𝑃𝑊𝐴∗, 𝑃𝑔𝑟𝑖𝑑

∗  , 𝛿 
𝑔∗, 𝐶 

𝑔∗, 𝑆𝑈 
𝑒𝑙𝑦∗,   𝑆𝑈 

𝑓𝑐∗, 𝜀 
∆𝑔𝑟𝑖𝑑∗ , 𝜀𝑙𝑒𝑣𝑒𝑙

𝑡𝑟𝑎𝑐𝑘∗, 𝜀𝑔𝑟𝑖𝑑
𝑡𝑟𝑎𝑐𝑘∗]

𝑇
 

 

The cost function considered is the following: 

 

𝐽𝐻2(𝑘,𝑥0,𝑈𝐻2(𝑘))
= ∑𝑤1𝐶(𝑘+𝑖)

𝑔
+

𝑁−1

𝑖=0

𝑤2‖𝛿(𝑘+𝑖)
1 − 𝛿(𝑘+𝑖−1)

1 ‖
1

+ 𝑤3‖𝛿(𝑘+𝑖)
2 − 𝛿(𝑘+𝑖−1)

2 ‖
1
+ 𝑤4𝜀(𝑘+𝑖)

𝑃𝑊𝐴

+ 𝑤5 ‖𝑃𝑔𝑟𝑖𝑑(𝑘+𝑖) − 𝑃𝑔𝑟𝑖𝑑(𝑘+𝑖−1)‖1
+ 𝑤6 ‖𝑥(𝑘+𝑖) − 𝑥(𝑘+𝑖)

𝑟𝑒𝑓
‖
1

+ 𝑤7 ‖𝑃𝑔𝑟𝑖𝑑(𝑘+𝑖) − 𝑃𝑔𝑟𝑖𝑑(𝑘+𝑖)
𝑟𝑒𝑓

‖
1
  

 (5.62) 

Similarly to the prior scheduling case, this cost function can be included in a linear 

program by using the auxiliary variables introduced in the constraints section, then: 

 

𝐽𝐻2(𝑘,𝑥0,𝑈𝐻2(𝑘))
= ∑𝑤1𝐶(𝑘+𝑖)

𝑔
+ 𝑆𝑈(𝑘)

𝑐ℎ𝑎𝑟 + 𝑆𝑈(𝑘)
𝑑𝑖𝑠

𝑁−1

𝑖=0

+ 𝜀(𝑘+𝑖)
𝑃𝑊𝐴 + 𝑤4𝜀(𝑘+𝑖)

∆𝑔𝑟𝑖𝑑

+ 𝑤5𝜀𝑙𝑒𝑣𝑒𝑙(𝑘+𝑖)
𝑡𝑟𝑎𝑐𝑘 + 𝑤6𝜀𝑔𝑟𝑖𝑑(𝑘+𝑖)

𝑡𝑟𝑎𝑐𝑘   

 (5.63) 

5.8.2 Cost function for system based on battery 

Consider the following vector of decision variables: 

 

U𝑏𝑎𝑡𝑡 = [𝑃 
𝑐ℎ𝑎𝑟∗ , 𝑃 

𝑑𝑖𝑠∗ , 𝛿 
𝑏1∗ , 𝛿 

b2∗, 𝑃𝑔𝑟𝑖𝑑
∗  , 𝛿 

𝑔∗, 𝐶 
𝑔∗, 𝑆𝑈 

𝑐ℎ𝑎𝑟∗, 𝑆𝐷 
𝑐ℎ𝑎𝑟∗,

𝑆𝑈 
𝑑𝑖𝑠∗, 𝑆𝐷 

𝑑𝑖𝑠∗ , 𝜀 
∆𝑔𝑟𝑖𝑑∗, 𝜀𝑙𝑒𝑣𝑒𝑙

𝑡𝑟𝑎𝑐𝑘∗, 𝜀𝑔𝑟𝑖𝑑
𝑡𝑟𝑎𝑐𝑘∗]

𝑇
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The cost function considered is the following: 

𝐽𝐻2(𝑘,𝑥0,𝑈𝐻2(𝑘))
= ∑𝑤1𝐶(𝑘+𝑖)

𝑔
+

𝑁−1

𝑖=0

𝑤2‖𝛿(𝑘+𝑖)
𝑏1 − 𝛿(𝑘+𝑖−1)

𝑏1 ‖
1

+ 𝑤3‖𝛿(𝑘+𝑖)
𝑏2 − 𝛿(𝑘+𝑖−1)

𝑏2 ‖
1
+ 𝑤4𝜀(𝑘+𝑖)

𝑃𝑊𝐴

+ 𝑤5 ‖𝑃𝑔𝑟𝑖𝑑(𝑘+𝑖) − 𝑃𝑔𝑟𝑖𝑑(𝑘+𝑖−1)‖1
+ 𝑤6 ‖𝑥(𝑘+𝑖) − 𝑥(𝑘+𝑖)

𝑟𝑒𝑓
‖
1

+ 𝑤7 ‖𝑃𝑔𝑟𝑖𝑑(𝑘+𝑖) − 𝑃𝑔𝑟𝑖𝑑(𝑘+𝑖)
𝑟𝑒𝑓

‖
1
  

 (5.64) 

Similarly to the prior scheduling case, this cost function can be included in a linear 

program by using the auxiliary variables introduced in the constraints section, then: 

 

𝐽𝐻2(𝑘,𝑥0,𝑈𝐻2(𝑘))
= ∑𝑤1𝐶(𝑘+𝑖)

𝑔
+ 𝑆𝑈(𝑘)

𝑐ℎ𝑎𝑟 + 𝑆𝑈(𝑘)
𝑑𝑖𝑠

𝑁−1

𝑖=0

+ 𝜀(𝑘+𝑖)
𝑃𝑊𝐴 + 𝑤4𝜀(𝑘+𝑖)

∆𝑔𝑟𝑖𝑑

+ 𝑤5𝜀𝑙𝑒𝑣𝑒𝑙(𝑘+𝑖)
𝑡𝑟𝑎𝑐𝑘 + 𝑤6𝜀𝑔𝑟𝑖𝑑(𝑘+𝑖)

𝑡𝑟𝑎𝑐𝑘   

 (5.65) 

 

5.9 Generation of photovoltaic generation data 

As seen in chapter 2, the power generation by photovoltaic panels depends on solar 

irradiance. So for the simulations of this thesis solar irradiance data is obtained from a 

model called “Bright Solar Model” [38] [39] [40] [41] [42] which generates stochastic 

data of irradiance with resolution of one minute. The information it needs to produce 

the data is: start and final dates, geographical coordinates, height above sea level, 

pressure of the location, wind speed of the place and orientation of the panels. The 

selected location for the simulations is Milan and the geographical coordinates and 

height above sea level were obtained from [43] while the pressure and speed of wind 

were obtained from [44].  In [45] is considered that for places located in the Northern 

Hemisphere the panels should face due south, so the azimuth angle is 0 according to 

the user instructions of the model. Regarding the pitch angle, in [46] is mentioned that 

the optimal value for Italy is 30 degrees. The parameters shown in table 11 were used 

to generate the data: 
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Parameter Value 

Latitude 45.4642 

Longitude 9.1825 

Height above sea level 127 

Tilt angle  30 

Azimuth angle 0 

Table 11: Parameters used in the BRIGHT model to produce irradiance data 

 

Then the obtained irradiance data is used in the equations (2.1), (2.2) and (2.3) 

presented in chapter 2 to compute power: 

 

𝑇𝐶 = 𝑇𝑎 + 
𝑁𝑂𝐶𝑇

800
⋅ 𝐺 

 (2.1) 

𝜂𝑡ℎ = 1 − 𝛼𝑡ℎ ⋅ (𝑇𝑐 − 25) 
 (2.2) 

𝑃𝐴𝐶
𝑃𝑛𝑜𝑚

= 𝜂𝐷𝐶−𝐴𝐶 ⋅  
𝐺

1000
⋅ 𝜂𝑡ℎ 

 (2.3) 

 

The nominal power Pnom is 50kW and the parameters take the following values as 

reported in [8]: 

 

Parameter Description Value 

NOCT Nominal operating cell temperature  45.0°C 

αth Loss coefficient due to temperature 0.45% 

ηDC−AC Efficiency due to cables, connections, and inverter 0.828 

Table 12: Parameters to transform irradiance into power 

 

Note that to calculate power the temperature of the air is also required, which was 

retrieved from [44]. Fig. 5.23 shows the obtained power profiles: 
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Fig. 5.23: Photovoltaic generation data produced by the BRIGHT model 

 

Note that the maximum power achieved is less than 50 kW because of the losses. There 

were obtained 9 different realizations, one of them is used for MPC and the heuristic 

algorithm. The other 8 realization are averaged and then used by the planification one-

day ahead. 

5.10 Generation of electrical demand data 

The electrical demand data considered in this thesis is obtained by using a stochastic 

generator of electrical demand called CREST Demand Model [47]. This model is open 

in the sense that modifications can be made freely. It produces one-minute resolution 

data of photovoltaic generation, electrical and thermal domestic demand for a group of 

dwellings, although only the electrical demand is used in this thesis. Fig. 5.24 depicts 

the architecture of the electrical demand model [47]: 
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Fig. 5.24: Architecture considered by the CREST model to generate electrical demand data  

 

This model considers the electrical consumption of lighting, domestic appliances, and 

thermal equipment to compute the total electrical demand. It uses weather and 

occupancy data to determine the necessity of lighting.  The climate data is generated 

from historical monthly temperatures and geographical coordinates for a predefined 

location. Also, activity profiles and occupancy data determine the appliance demand. 

The activity profile refers to the probability of residents performing certain activities 

throughout the day and the occupancy consists of stochastic data that determines if a 

resident is at home and if is active or asleep. The occupancy and activity information 

are based on historical data for the UK. Additionally, since thermal equipment also 

consume electrical energy the necessity of heat is computed and depends on climate 

data. Regarding this data, the original model only had location and weather 

information from UK and Indian cities; so this information corresponding to Milan was 

also included, which was retrieved from [44]. This model is based on Excel VBA and its 

user interface is the following:  

 

 
Fig. 5.25: Main interface of CREST demand model 
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From this model one-minute resolution data was obtained for 20 dwellings. There 

were obtained 9 different realizations, one of them is used for MPC and the heuristic 

algorithm. The other 8 realization are averaged and then used by the planification one-

day ahead. The electrical demand profiles obtained are the following: 

 

 

Fig. 5.26: Electrical demand data produced by the CREST demand model 

 

5.11 Alternative management algorithm 

An alternative control algorithm is proposed to compare the results obtained with the 

MPC strategy. The algorithm consists of fixed logical rules to determine the amount of 

energy to exchange with the grid and the storage system. To make the comparison 

between control strategies, this algorithm also receives the references from the 

planification one-day ahead to assure that energy level in the storage at the beginning 

and at the end of the day are similar.  

This algorithm consists of tracking the energy level profile using a hysteresis band to 

avoid continuous switching. 

  



 

System description and control strategy 

89 
 

For the case of the system based on batteries, Fig. 5.27 contains the flowchart 

represents this algorithm. 

 

 
Fig. 5.27: Flow chart of the heuristic algorithm for the storage system based on battery 
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For the case of the system based on hydrogen, the following chart flow represents this 

algorithm. 

 

 
Fig. 5.28: Flow chart of the heuristic algorithm for the storage system based on hydrogen 

 

This chart flow is similar to the one considered for the system with batteries but in this 

case, it is also considered the ramp rate limitation of the alkaline electrolyser  
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Chapter 6 Simulations and results  

In this section, the results of the simulations are presented. As explained before, the 

control system attempts to achieve two mutually exclusive objectives: minimization of 

energy exchange with the grid and reduction of energy costs. Hence, the results of these 

problems are presented for the two types of microgrids presented before. Also, the 

performance of the proposed control system is compared with the performance of the 

heuristic algorithm that consists of conditional rules which was presented in the 

previous chapter. It is important to mention that the one-day ahead planification gives 

signal references not only to the MPC algorithm but also to the heuristic algorithm. 

Otherwise the algorithms could not be compared proper\ly because it may occur that 

the heuristics achieve better performance but at the expense of obtaining an empty 

storage at the end of the day. Regarding the types of storage of the microgrids, it is 

important to mention that the capacity for both storages are 10 N𝑚3 of hydrogen and 

35.49 kWh for the batteries. These quantities are equivalent since 11.1 N𝑚3 of 

hydrogen is equivalent to 39.4 kWh when the HHV of hydrogen is used [34].  

The simulations were carried out in Matlab, and the solver IBM® ILOG® CPLEX® was 

used for the optimization tasks. 

6.1 Comparison criteria 

In this section evaluation criteria are stablished to compare the performance of the 

control strategies. It can be noted that the criteria presented below are similar to those 

presented in the cost function considered for MPC 

6.1.1 Energy exchange with the grid 

In this case is considered the total energy exchanged with the grid through 24 hours. 

This can be expressed mathematically as: 

 

𝐽ex =
∑ |𝑃𝑔𝑟𝑖𝑑(𝑘)|
1439
𝑘=1

60
 

 (6.1) 
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where 𝐽ex is expressed in kWh 

6.1.2 Energy costs 

In this case is considered the cost of energy that the user must pay. This criterion can 

be expressed as: 

𝐽𝑏𝑖𝑙𝑙 = ∑ 𝑃𝑔𝑟𝑖𝑑(𝑘) ⋅ 𝐶𝑜𝑠𝑡(𝑘)
𝑔

1439

𝑘=1

 

 (6.2) 

 

𝐶𝑜𝑠𝑡(𝑘)
𝑔
= 

{
 
 

 
 𝑐(𝑘)

𝑝  

60
             𝑓𝑜𝑟 𝑃𝑔𝑟𝑖𝑑(𝑘)  ≥ 0             

𝑐(𝑘)
𝑠

60
              𝑓𝑜𝑟 𝑃𝑔𝑟𝑖𝑑(𝑘)  < 0             

 

 

 

Where 𝑐(𝑘)
𝑝  and 𝑐(𝑘)

𝑠 are the purchasing and selling prices expressed in kWh 

 

6.1.3 Grid power variation 

In this case is considered the variations of the energy exchanged with the grid. This 

criterion can be expressed as: 

𝐽𝑔𝑟𝑖𝑑−𝑣𝑎𝑟 = ∑ |𝑃𝑔𝑟𝑖𝑑(𝑘) − 𝑃𝑔𝑟𝑖𝑑(𝑘−1)|

1439

𝑘=2

 

 (6.3) 

 

6.2 Minimization of energy exchange with the grid 

 

Both control strategies, MPC and heuristic algorithm, are applied to both types of 

microgrid (storage based on hydrogen and storage consisting of batteries). In this 

section, the graphs of the simulations are presented and then the results are compared. 
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6.2.1 Microgrid with storage based on hydrogen 

6.2.1.1 Planification one-day ahead 

Fig. 6.1 shows the evolution in time of the amount of hydrogen in the tank produced by 

the prior scheduling: 

 

Fig. 6.1: Percentage of hydrogen in the tank according to planification one-day ahead for minimization of energy 

exchange with the grid 

 

It can be seen that the one-day ahead planification produces a profile that is within 

10% and 90%. This profile is later used as reference for both control strategies 

 

 

Fig. 6.2: Profile of power exchanged with the grid produced by prior planification for minimization of energy exchange 

with the grid  
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It can be seen from Fig. 6.2 that to minimize the energy exchange with the grid, the 

prior scheduling discharges the storage when there is excess of energy and charges the 

storage when there is surplus of energy.  

6.2.1.2 MPC 

The outputs produced by the optimization of the MPC are sent to the complete models 

which are different from the simplified model used by the MPC. Then, Fig.6.3 shows the 

results produced: 

 

Fig. 6.3: Evolution of the amount of hydrogen in the tank when using the MPC on the microgrid for minimization of 

energy exchange with the grid  

 

It can be seen that the MPC controller follows properly its reference. Since the prior 

scheduling already produces a profile where the level of hydrogen at the end of the day 

is in a range of +/- 5% of the initial state, the MPC controller is set to follow its 

reference with a range of +/- 1%  

The power exchanged with the grid also follows its corresponding reference although 

as it was showed in the cost function section, in this case the deviation from the 

reference is penalized but is not constrained, so it may occur that it takes very different 

values with respect to the reference 
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Fig. 6.4 Power exchanged with the grid when using the MPC for minimization of exchange with the grid 

 

Looking at Fig. 6.5, it is clear that the MPC controller is reducing the energy exchange 

with the grid when comparing this result to the curve produced if the control system 

were not used. In fact at 12:00, part of the surplus of energy is used to charge the 

battery. 

 

Fig. 6.5: Comparison between power exchanged with the grid when using MPC for minimization of energy exchange and 

not using any storage 

 

Finally, in Fig. 6.6 it is shown the exchanged power with the storage system. It is 

important to note that the power consumed by the electrolyser respects the restriction 

of the minimum power which is characteristic of alkaline electrolysers. 
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Fig. 6.6: Power references for the electrolyser and fuel cell produced when using MPC for minimization of energy 

exchange with the grid 

6.2.1.3 Heuristic algorithm  

As explained in the previous chapter, the heuristic algorithm consists of follow the 

energy level reference and respecting the restrictions of the electrolyser of maximum 

ramp rate and minimum power. In Fig. 6.7 is shown the evolution of the levels of 

hydrogen in the storage when the heuristic algorithm is used. 

 

Fig. 6.7 Evolution of the amount of hydrogen in the tank when using the heuristic algorithm for minimization of energy 

exchange 

 

It can be noted from Fig. 6.7 the continuous switching due to hysteresis.  

In Fig. 6.8 is shown the exchanged power with the storage system.  



 

Simulations and results 

97 
 

 

Fig. 6.8: Power references for the electrolyser and fuel cell when using the heuristic algorithm for minimization of energy 

exchange with the grid 

 

It can be seen that also in this case the minimum power of the electrolyser is respected. 

However, the switching behaviour of hysteresis also introduces a switching pattern in 

the power exchanged with the grid as shown in Fig. 6.9: 

 

Fig. 6.9: Power exchanged with the grid when using the heuristic algorithm for storage based on hydrogen for 

minimization of energy exchange 
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6.2.2 Microgrid with storage based on batteries 

6.2.2.1 Planification one-day ahead 

The profile of energy level in the battery is obtained: 

 

Fig. 6.10: SOC evolution produced by one-day ahead planification for minimization of energy exchange 

 

It can be seen that the maximum and minimum bounds of energy stored in the battery 

are respected. Differently from the case of the system based on hydrogen, in this case 

the lower bound is 30% and not 10%. This is because deep discharge cycles seriously 

affect their lifetime. In Fig. 6.11 the energy exchange produced by the prior 

planification is shown. It is also shown what would be the profile if no storage and 

control system were used.  

 

Fig. 6.11: Power exchanged with the grid profile produced by one-day ahead planification for minimization of energy 

exchange 
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6.2.2.1.1 MPC 

The outputs produced by the optimization of MPC are sent to the complete models 

which are different from the simplified model that use MPC. Then the following graphs 

are produced: 

  

Fig. 6.12: SOC evolution when using the MPC for minimization of energy exchange 

 

In Fig. 6.12, it can be seen that the state of charge of the battery follow its reference 

properly. Similarly, in Fig. 6.13 is shown that the power exchange also follows its 

reference properly 

 

Fig. 6.13: Power exchanged with grid when using MPC for minimization of energy exchange 
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In Fig. 6.14, it can be seen that the use of MPC helps to reduce the variability of power 

exchanged with the grid. Moreover, when this figure is compared to Fig. 6.5 that 

corresponds to the microgrid based on hydrogen, it can be seen that in the case of 

microgrid with batteries, the storage absorbs less energy due to the reduced range of 

operation 

 

Fig. 6.14: Comparison between power exchanged with the grid when using MPC for minimization of energy exchange 

and not using any storage 

 

It is important to note in Fig. 6.15 that there are few transitions between charging and 

discharging states, thus the lifetime of the batteries is not affected. 

 

Fig. 6.15: Power reference for the battery when using MPC for minimization of energy exchange 
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6.2.2.2 Heuristic algorithm 

Similarly to the case based on hydrogen, the SOC reference is followed with a 

hysteresis. 

 

Fig. 6.16: Evolution of the SOC of the battery when using the heuristic algorithm for minimization of energy exchange 

 

However, the switching of hysteresis also causes switching values in the power 

exchanged with the grid.  

 

Fig. 6.17: Power exchanged with the grid when using the heuristic algorithm for battery for minimization of energy 

exchange 
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Additionally, due to the simplicity of this algorithm, the nominal power is used to 

regulate the charge of the battery. This causes intermittent peaks in the power 

exchanged with the grid. 

 

Fig. 6.18: Power references for the battery when using the heuristic algorithm for minimization of energy exchange 

6.2.3 Comparison 

The criteria presented in equations 6.1 and 6.3 are used to compare the performance 

of the different control strategies applied to both types of microgrids. Additionally, 

these criteria are also used to compare the performance of the control strategies with 

the case of no using any storage in the microgrid. The results are presented in table 13: 

 

 Battery storage Hydrogen storage No 

control 

system 
MPC Heuristic MPC Heuristic 

Energy 

exchange 

(kWh) 

298.99 300.30 273.57 278.03 337.30 

Grid 

variation 

(kW) 

2888.84 4530.24 3289.12 4634.08 4923.90 

Table 13: Quantitative comparison for the case of energy exchange minimization 
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From these results the following can be stated: 

 

• In all the cases it is always better to use a storage system 

• MPC has better performance than the heuristic algorithm. For both types of 

storage, MPC achieves lower exchanged energy with the grid and less 

variability. 

• Regarding the type of storage, it can be seen that the storage based on hydrogen 

is better to minimize the energy exchange with the grid although the energy 

exchanged by the system with batteries is less variable. The main reason is that 

the system with batteries has less range of operation, from 30-90% when this 

range is 10-100% for batteries, so it absorbs less power when there is surplus 

of energy 

 

6.3 Reduction of energy costs 

6.3.1 Microgrid with storage based on hydrogen 

6.3.1.1 Planification one-day ahead 

When using the planification one-day ahead to obtain economic benefits, the result of 

optimization is to not use the storage system. 

 

Fig. 6.19: Energy level of the tank when using the prior planification for reduction of energy costs 
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6.3.1.2 MPC 

When the MPC is used to follow this reference, the energy stored is slightly reduced.  

 

Fig. 6.20: Energy level in the tank when using the MPC for reduction of energy costs 

 

The little reduction near the end of the day is because in this way it can absorb a little 

amount of power and also the energy level at the end of the day is close to the initial 

value. 

6.3.1.3 Heuristic algorithm  

When the heuristic algorithm receives the reference it does not use the storage at all 

because the little variation of the reference is less than the minimum change defined in 

the hysteresis for an activation to happen 

 

Fig. 6.21: Energy level in the tank when using the heuristic algorithm for reduction of energy costs 
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6.3.2 Microgrid with storage based on batteries 

6.3.2.1 Planification one-day ahead 

Differently from the previous case, there is usage of the storage when it is desired to 

obtain economic benefits as shown in Fig 6.22: 

 

Fig. 6.22: SOC evolution when using the planification one-day ahead for reduction of energy costs 

 

Note that the use of the storage helps to attenuate the variations of the power 

exchanged with the grid 

  

  

Fig. 6.23: Energy exchanged with grid profile produced by the planification one-day ahead for reduction of energy costs 
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6.3.2.2 MPC 

Similarly to previous cases, the energy level in the battery and the power exchange 

with the grid follow their references  

 

 

Fig. 6.24: Energy level in the battery when using MPC for reduction of energy costs 

 

 

Fig. 6.25: Power exchanged with grid when using MPC for reduction of energy costs  
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Fig. 6.26: Comparison between the energy exchanged with grid when using MPC for reduction of energy costs and not 

using any storage 

 

 

In Fig. 6.27 is shown the power exchanged with the battery used to produce the 

previous profile of energy level 

 

Fig. 6.27: Power references for the battery when using MPC for reduction of energy costs 
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6.3.2.3 Heuristic algorithm 

Fig 6.28 shows the tracking of the reference using hysteresis 

 

Fig. 6.28: Evolution of SOC when using the heuristic algorithm for reduction of energy costs 

 

Similarly to the case of minimization of energy exchange, peaks of power are also 

produced 

 

Fig. 6.29: Energy exchanged with the grid when using the heuristic algorithm reduction of energy costs in a microgrid 

with storage based on battery 
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Fig. 6.30: Comparison between the power exchanged with the grid produced by the heuristic algorithm in a microgrid 

with battery for reduction of energy costs and not using any storage 

 

 

Fig. 6.31: Power references for the battery when using the heuristic algorithm for reduction of energy costs 

6.3.3 Comparison 

The criteria presented in equations 6.2 and 6.3 are used to compare the performance 

of the different control strategies applied to both types of microgrids. Additionally, 

these criteria are also used to compare the performance of the control strategies with 

the case of no using any storage in the microgrid. The results are presented in table 14: 
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 Battery storage Hydrogen storage No control 

system MPC Heuristic MPC Heuristic 

Energy bill 

(€) 

1464.11 1478.56 1511.84 1543.63 1543.63 

Grid 

variation 

(kW) 

2701.72 4805.43 4875.19 4923.90 4923.90 

Table 14: Quantitative comparison for the case of reduction of energy costs 

 

From these results the following can be stated: 

 

• The use of hydrogen as a storage system does not give significant benefits. The 

main reason is that the round-trip efficiency of a storage based on hydrogen is 

too low when compared with a system with batteries. 

• So, considering only the system based with batteries, MPC has better 

performance than the heuristic algorithm. It achieves not only lower energy 

costs but also lower variation of exchanged energy with the grid. 
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Chapter 7 Conclusions and future works 

In this thesis, a control system structure is proposed to manage the operation of the 

storage system of a microgrid. It has been shown that this control structure can achieve 

different objectives subjected to operational constraints. The control system has a two-

layer structure: a one-day ahead scheduling and a MPC controller. The prior 

planification uses forecasts of photovoltaic generation and demand for the next 24 

hours and consists of an open-loop optimization problem to obtain similar levels of 

stored energy at the beginning and at the end of the day. The profiles of energy levels 

and power exchanged with the grid obtained by this optimization problem are sent as 

references to the MPC controller. At each time instant the MPC controller uses a 

forecast of generation and demand for the following 30 minutes, the references of the 

prior planification, the current energy level in the storage and the model of the system 

to state an optimization problem to find the optimal sequence of inputs to achieve a 

desired objective. From these inputs only the first input is applied to the real system 

and at the next time instant the energy level is measured. Then, new forecasts are 

generated again for the following 30 minutes and the optimization problem is stated 

again considering the new measured value of the storage. This strategy allows to 

compensate model and forecast errors.  

For this study, two objectives were considered: minimization of energy exchange with 

the grid and reduction of energy cost and for each objective two types of storage 

systems of equivalent capacity for a microgrid were considered. The first type of 

storage is based on regeneration of hydrogen and the second is based on batteries. 

Results show that the storage based on hydrogen is better for minimization of energy 

exchange with the grid because its range of operation is greater than that of batteries. 

For the case of reduction of energy costs, the results show that it is better not to use of 

the storage based on hydrogen because of its low round-trip efficiency. Except for this 

case, it is also shown that the use of the storage system is better than not using it for 

both objectives. When compared to a simpler control strategy it was seen that the MPC 

control always performs better. It is important to mention that stability is achieved by 

imposing the constraint that during tracking the value of energy level in the storage 

must differ at most +/- 1% with respect to its reference. Additionally, the bounds of 

the exchanged power with the grid had high values, so to practical effects this variable 

is unbounded. This degree of freedom guarantees that there is always a feasible 

solution to the optimization problem.  
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The main objective of this thesis was to present a control strategy for a microgrid and 

evaluate its performance. However, the sizing of the components of the microgrids 

used for simulations was not optimally chosen. So, a future study should consider the 

following: 

 

• Evaluate if it is convenient to relax the operation range of the batteries at the 

expense of reducing their lifetime. 

• If the range of operation is not relaxed, it should be evaluated if it is convenient 

to increase the capacity of batteries considering the increase of space 

occupation and investments costs. It should also be considered that a similar 

increment of capacity for a storage based on hydrogen implies a lower 

increment of space occupation due to the high energy density of hydrogen. 

• If a hydrogen system is used, then it should be considered to use a PEM 

electrolyser instead of an alkaline one because the PEM electrolyser does not 

have the restriction of minimum power and does not have inconvenient with 

frequent activation and deactivation. 

• Determine the optimal value of the capacity of the storage that should be used 

for a determined photovoltaic generation and load. 

 

Regarding the control system, future works should consider the following: 

 

• Relaxation of the assumption that forecasts used by MPC are perfect and 

consider a more realistic case were at each time instant a prediction of the 

future generation and demand considering current values. 

• In this thesis it was considered that the prices through the day are repeated 

every day. A future work should make predictions at each time instant of the 

energy prices based on the current conditions of the electrical. 

• Include uncertainty in the models of the system 

• Perform a formal analysis of feasibility and stability of the controller system 
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