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Abstract

The design of an autonomous inspection mission performed by a deputy around a target
object is motivated by the necessity to earn some advantages, making easy and feasible
the motion of satellites, removing any human control from ground, both for LEO and
for deep space operations. In this thesis, two different mission scenarios are covered: the
first is characterized by an unperturbed environment, with the absence of any perturba-
tion, while in the second the gravitational perturbation (J2) is included. These different
environments are simulated by the Nonlinear Equations of Relative Motion, working on
a LVLH reference frame, while the Hill-Clohessy-Wiltshire equations are adopted by the
on-board computer of the deputy. Adopting the natural dynamics for the inspection, fuel
costs are minimized and it still presents excellent opportunities to inspect and acquire
images of the surface of the target object. The navigation is modeled by using a camera,
that provides measurements to the Unscented Kalman Filter (UKF), fundamental tool
that offers an estimation of the actual position of the deputy with a certain precision.
The merging of these aspects generates a preliminary definition of ConOps, baseline mis-
sion concept that is shown in different variants through the gradual development of the
algorithm. This updating allows to improve the general results, according to the im-
posed score. In addition, a further improvement has been obtained trying to make a step
forward, with a preliminary overview on the inclined relative orbits. Finally, the time
performances of the algorithm are tested on a Raspberry Pi 4 platform to demonstrate
the actual functioning on a real satellite.



Sommario

Il design di una missione di ispezione di un satellite inseguitore attorno ad un satellite
bersaglio è motivato dalla necessità di guadagnare alcuni vantaggi, rendendo più semplice
e possibile il moto dei satelliti, rimuovendo qualsiasi controllo umano da terra, sia per le
operazioni in orbita terrestre bassa, sia per quelle nello spazio profondo. In questa tesi
vengono mostrati due scenari di missione: il primo caratterizzato da un ambiente non
perturbato, mentre nel secondo è inclusa la perturbazione gravitazionale (J2). Questi
diversi ambienti sono simulati tramite le equazioni non lineari del moto relativo, usando
il sistema di riferimento LVLH, mentre le equazioni di Hill-Clohessy-Wiltshire vengono
adottate per il computer a bordo del satellite inseguitore. Adottando dinamiche naturali
per l’ispezione, i costi di propellente sono minimizzati e sono ancora presenti opportu-
nità per ispezionare e acquisire immagini della superficie dell’oggetto bersaglio in modo
eccellente. La navigazione è modellata utilizzando una camera, che fornisce misurazioni
al filtro (UKF), strumento fondamentale che offre una stima della posizione attuale del
satellite inseguitore con una certa precisione. L’unione di questi aspetti genera una defini-
zione preliminare di ConOps, pianificazione delle operazioni della missione che è mostrata
in differenti varianti attraverso il graduale sviluppo dell’algoritmo. Questo aggiornamen-
to permette di migliorare i risultati generali, in base ai parametri d’analisi imposti. In
aggiunta, un ulteriore miglioramento è stato ottenuto cercando di compiere un passo in
avanti, con l’introduzione generale alle orbite relative inclinate. Infine, i tempi computa-
zionali dell’algoritmo sono stati testati su una piattaforma Raspberry Pi 4 per dimostrare
il funzionamento su un satellite reale.
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Nomenclature

αh Orbital acceleration of target satel-
lite

αr Steering acceleration of target satel-
lite

X̂ First axis of ECI reference frame

x̂ First axis of LVLH reference frame

Ŷ Second axis of ECI reference frame

ŷ Second axis of LVLH reference frame

Ẑ Third axis of ECI reference frame

ẑ Third axis of LVLH reference frame

ρd target-Deputy distance vector

ht target angular momentum vector

rt target position vector

vt target velocity vector

Γ Rotation matrix

µ Earth’s gravitational constant

ωj Angular velocity related to one axis

ρENVi marker measurement in target body
reference frame

θ True anomaly

ECI Earth Centered Inertial

GNC Guidance, Navigation and Control

GUT General Unscented Transform

ht target angular momentum magni-
tude

HCW Hill Clohessy Wiltshire

i Inclination

J2 second zonal harmonic coefficient of
the Earth

kJ2 Constant term related to J2 pertur-
bation

LEO Low Earth Orbit

LV LH Local Vertical Local Horizon

MRP Modified Rodrigues Parameters

NERM Nonlinear Eqs. Relative Motion

NP Unperturbed case

OOS On-Orbit Servicing

P Perturbed case

Re Earth’s equatorial radius

rt target position magnitude

RSO Resident Space Object

SBC Single Board Computer

ToF Time of Flight

ToFM Time of Flight of manoeuvre

UKF Unscented Kalman Filter

UT Unscented Transformation

vt target velocity magnitude

zi marker measurement in LVLH refer-
ence frame

I
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Chapter 1

Introduction

The concept of inspection missions immediately captured the interest of scientists starting
from the launch of the Sputnik in the 1950s. Nearly 60 years after, there are still a clear
scenario of increasing demand of inspections satellites for different reasons, from military,
to commercial and to governmental projects. Furthermore, in the last few years, satellite
inspection missions have become more and more important for a safe space environment
due to the huge amount of launched space objects. The space around the Earth has
gradually become overpopulated by Resident Space Objects (RSO): there are approxi-
mately 23000 pieces of debris larger than a softball orbiting the Earth which travel at
speeds up to 28000 km/h, fast enough for a relatively small piece of orbital debris to
damage a satellite or even the ISS. Moreover, there are half a million pieces of debris the
size of a marble or larger, approximately 100 million pieces of debris about 10 cm (or
1 mm) or larger and even more smaller micrometer-sized debris, which can cause seri-
ous damages to small satellites or CubeSats. The threat of space debris can no longer
be neglected: the huge amount of collisions occurring every year is increasing more and
more the number of debris and the probability of future collisions increases consequently1.

To study these debris and other space objects, which includes both cooperative and unco-
operative satellites, inspection missions are essential. In particular, for this specific kind
of mission, standard operating methods, which involves humans, are not convenient any-
more. Usually, the data transmitted from the space segment are elaborated on ground,
and relevant commands are transmitted back on orbit to be executed. The problem with
this kind of approach lies in the fact that relative orbits for inspection missions have to be
continuously modified based on whether they are still effective or not. In fact, the deputy
spacecraft, along its orbit, will be able to observe only certain regions of the target, there-
fore it will be required to change its relative motion in order to reach the full coverage
and gain more data about the RSO. It is clear how this increases a lot the effort of the
mission analysts and, therefore, how it constitutes a major limit for the state-of-the-art
in inspection missions design. Moreover, the presence of humans in the loop may lead to
the selection of suboptimal orbits and it is prone to possible errors. A possible solution
comes from the opportunity to introduce a certain degree of autonomy [22] shifting to-
wards autonomous approaches to reduce operational costs, human errors, communication
delays or lack of coverage.

1https://www.nasa.gov/mission_pages/station/news/orbital_debris.html
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1.1 Historical overview

The first experiments for autonomous mission started in 1997 with NASDA’s ETS-VII
mission2, an unmanned satellite able to perform independently docking manoeuvres. The
overall objective was to acquire/retrieve materials to/from a satellite in orbit. In partic-
ular, three experiments were carried out:

1. demonstration of rendezvous-docking equipment in orbit;

2. evaluation of both automatic and remotely piloted rendezvous-docking in orbit;

3. demonstration of simultaneous operation of two spacecraft.

Through these experiments, the autonomous rendezvous docking technologies from the
relative approach to the docking (from 10 km to docking) were verified on orbit.

Then, the Air Force Research Laboratory developed some small satellites (i.e. XSS-10,
XSS-11 3) which demonstrated the possibility to perform autonomous proximity opera-
tions and inspection of a satellite. The specific mission was to demonstrate ”the proximity
operations with a resident space object (RSO), employing a semi-autonomous, maneu-
verable space vehicle communicating with command and control sites via a space/ground
link”.
Later, in 2010, the Swedish Space Corporation’s mission PRISMA4 tried to perform ap-
proach, rendezvous and formation flight with a known object (Tango), using autonomous
GNC algorithms. The main goals of PRISMA are to perform GNC demonstrations and
sensor technology experiments for a family of future missions where rendezvous and for-
mation flying are a necessary prerequisite. In particular, the GNC demonstrations are:

1. autonomous formation flying;

2. homing and rendezvous;

3. proximity operations or rendezvous tests, including final approach and recede oper-
ations.

More recently, in September 2019, NASA’s Seeker-1 CubeSat performed a single spacecraft
remote inspection of the Cygnus spacecraft5, demonstrating ultra-low cost in-space inspec-
tion capability. The navigation architecture consists of three parts: the IMU Preprocessor
(IMUPre), the fast propagator (FASTNAV), and the Kalman Filter (NAV). Moreover, the
guidance algorithm is integrated with the control algorithm to achieve waypoint seeking,
position and attitude holds, target tracking, and to limit relative kinetic energy. Since
Seeker will operate in close proximity (approximately 30 m from Cygnus), relative orbital
dynamics are assumed to be negligible, which simplified the guidance algorithm.

2https://www.eoportal.org/satellite-missions/ets-vii
3https://www.eoportal.org/satellite-missions/xss
4https://www.eoportal.org/satellite-missions/prisma-prototype
5https://www.eoportal.org/other-space-activities/cygnus-ng-11
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1.2 Thesis outline and contributions

In this thesis, a similar inspection mission to Seeker-1 described before, will be developed
starting from that baseline.
The navigation system will be still composed of a processor, a propagator and a Kalman
filter. In particular, the algorithm will be tested on a Raspberry Pi 4 to guarantee the
feasibility of its usage also on a small microprocessor which can be mounted on satellite
of different dimension, from CubeSats to big satellite, leading to a robust and versatile
GNC system. On the other hand, the guidance algorithm will be reduced to the solu-
tion of a simple minimization problem with suitable imposed constraints in which only
the relative dynamics between target and deputy will be taken into account. This will
lead to a lighter algorithm in terms of computational cost. All these choices comes from
the need to simplify the algorithm as much as possible, in order to keep a low-cost mission.

Moreover, the key point of the proposed GNC system is the relation between the naviga-
tion and guidance systems. In fact, the guidance system will receive data concerning the
state of the satellite directly from the navigation system, which will introduce some errors
with respect to the real state due to the fact that the predictor model adopts a linear
dynamics. This will lead to a completely autonomous satellite, able to take decision on
how and where to go, without any remote control from ground.

Finally, another difference with respect from the Seeker’s mission will be the choice of the
target: in particular, Envisat has been chosen, as a known target but non-cooperative, in
order to foreseen a possible application of this algorithm for inspection of known debris.
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Chapter 2

Guidance

This first chapter will present the guidance system, which has the aim to offer the best
trajectory for the satellite, according to the initial and imposed conditions. One of the
main goals of this thesis is to optimize the inspection of the target and this will require the
knowledge of various parameters coming from the choice of the rotational and translational
dynamics. In particular, in the next paragraph, an excursus on the planning of the
manoeuvres will be presented and then, the adopted dynamics will be shown, highlighting
their uses and their differences.

2.1 Literature Review

The development of an optimized algorithm for the guidance system has already debated
starting from the first missions of proximity operations around a RSO. The variety of
these methodologies is due to the different objectives and opportunities. Shortly, some of
the used techniques are:

• Glideslope Guidance [18],[14], that represents the baseline of guidance algorithms,
adopted in the past also for rendezvous and proximity operations of the space shuttle
with other vehicles with the help of astronauts. The sequence of manoeuvres and
its cost depend on the mission phase. Using a proportional law is common in this
methodology;

• Artificial Potential Functions [25], where the trajectory is generated by application
of a gradient of potential functions, divided into attractive potentials, used for goal
regions, and repulsive potentials, used for obstacle region. A gradient ascent/descent
routine is often called to trace a feasible path from any initial state;

• Motion Planning Algorithm, that has the aim to create decision sequences to achieve
goals mission, building the optimal solution step by step. Many variants exist, as
Fast Marching Tree [17], Rapidly-exploring Random Tree [6], Sampling-Based Model
Predictive Optimization [10],[7];

• Model Predictive Control [20], that, starting from initial state, predict future states
continuing to solve an Optimal Control Problem, that minimize a cost function.
After the computation of the first control segment, the cycle continues until conver-
gence to the goal;

• Artificial Neural Networks & Artificial Intelligence [5], that is the key of the future,
where the machine learns abilities and adapts itself to different scenarios in an
autonomous way;

The application of such methodologies for inspection missions is grown up to the point
that the satellite itself can control autonomously, removing the dependency from ground
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controls and opening the possibility to operate missions also at long distances, not easily
accessible for ground controls.
To use such methods, dynamics and reference systems must be chosen, according also
to the objective and the accuracy of the mission. In fact, the dynamical models can be
categorized into 2 main groups, based on the kind of representation [16]:

• using an Orbital Element State, considering the set of orbital elements of target and
deputy, respectively. An example is the Relative Orbital Elements (ROE);

• using a Translational State, adopting an auxiliary Cartesian Reference Frame fixed
in the target center of gravity;

All of them can be represented in linear terms or not, according to the selection of eventual
dissipative phenomena, like perturbations [12],[2].
In this treatment, the focus is on a LEO mission, starting from an unperturbed case where
the dynamics is free from perturbations and going towards a more complicated and ”real”
model, where the gravitational field will be considered.

2.2 Dynamical Models

The formulation of the kinematics and the dynamics of the two satellites (target and
deputy) is the first knot to untie. This enables to visualize the simulation environment,
where it will be possible to highlight similarities and differences between the real motion,
from which the measurements are taken, and the on-board dynamics of the deputy. In fact,
the last one will be represented by a linearized dynamics, built by a set of equations called
Hill-Clohessy-Wiltshire (HCW), while the real simulation will be performed by another
dynamics, the so called Nonlinear Equations of Relative Motion (NERM). Moreover,
natural perturbations present in the space region around the Earth will be considered
to get a more accurate simulator environment. In particular, Low Earth Orbits are
characterized by two kind of perturbations: atmospheric drag (that is the most relevant
term when the body is under 600 km of altitude) and oblateness of the Earth. If the first
one could be neglected due to the given altitude of our desired orbit, the last one should
be considered in the simulation environment, also to understand how the pertubation
can change the motion of the deputy in terms of relative position, velocity and cost of
manoeuvre.

2.2.1 Simulation Environment

Considering a simple system composed by two satellites, each of them on a LEO, the
easiest way to study them is to express the motion of one relative to the other. This
approach has two advantages:

• in an inspection mission, the parameters are expressed explicitly, as the distance
between the two satellites;

• this approach is more intuitive with respect to the respectively motions around the
Earth.

To proceed in this direction it is necessary to introduce a first reference frame centered
in the Earth (ECI), spanned by the unit vectors (X̂,Ŷ ,Ẑ), and then convert into the new
reference frame (LVLH or Hill rotating frame), spanned by its unit vectors (ôr,ôθ,ôh).
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(a) Orbital model (b) X-Y plane of Orbital Model

Figure 2.1: Comparison of the reference frames

Orbital Motion

The first motion is described by the standard Keplerian Two Body Problem:

r̈ = − µ
r3
r + ap (2.1)

where µ is the gravitational parameter of the Earth, r the spacecraft’s position vector
in ECI frame, r the norm of the orbital radius of the spacecraft, ap the term due to
perturbations and r̈ the spacecraft acceleration vector in ECI frame.
From this assumption and neglecting the perturbation term [13], the first set of equations
of motion for the target (2.2) and the deputy (2.3) are obtained

r̈t = − µ
r3t
rt (2.2)

r̈d = − µ
r3d
rd (2.3)

Coming back to Eqs. (2.2) and (2.3), in order to derive the relative equations of motion
using the Cartesian coordinates in LVLH frame, the deputy position vector can be written
as the sum of the target position vector and the distance between target and deputy in
the rotating Hill frame:

rd = rt + ρ

= (rt + x)ôr + yôθ + zôh
(2.4)

Substituting Eq. (2.4) in Eq. (2.3), it can be obtained a new relation, based on the LVLH
coordinates (where O is the LVLH symbol):

r̈d = − µ
r3d

rt + x
y
z


O

(2.5)

where
rd =

√
(rt + x)2 + y2 + z2 (2.6)
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and the angular velocity vector of the rotating Hill frame with respect to the inertial
frame [N] is:

ωO/N = ḟ ôh (2.7)

where the vector triad, necessary to describe the Hill frame attached to the deputy, is
defined as:

ôr =
rt
rt

ôθ = ôh × ôr ôh =
ht
ht

(2.8)

ht = rt × ṙt ht = |ht| (2.9)

where ôr is the axis in the direction of the orbit radius, ôh the axis normal to the orbit
radius, ôθ the third axis that completes the right-hand coordinates system, ht the angular
momentum vector and ht its magnitude. Taking the derivative with respect to the inertial
frame twice, the deputy satellite acceleration vector is given by:

r̈d = (r̈t+ẍ−2ẏḟ− f̈y−ḟ 2(rt+x))ôr+(ÿ+2ḟ(ṙt+ẋ)+f̈(ṙt+ẋ)−ḟ 2y)ôθ+z̈ôh (2.10)

Considering that the position of the deputy is rd = rdôr, the second time derivative will
be equal to:

r̈t = (r̈t − rtḟ 2)ôr (2.11)

Comparing Eq. (2.11) with Eq. (2.2), the deputy’s orbit radius acceleration is expressed
by:

r̈t = rtḟ
2 − µ

r2t
(2.12)

From here, the new version of Eq. (2.10) can be retrieved, considering Eq. (2.12):

r̈d =

(
ẍ− 2ḟ ẏ + yf̈ − ḟ 2x− µ

r2t

)
ôr +

(
ÿ + 2ḟ ẋ− xf̈ − ḟ 2y

)
ôθ + z̈ôh (2.13)

Comparing Eqs. (2.5) and (2.13), the exact nonlinear relative equations of motion are
given by: 

ẍ− 2ḟ ẏ + f̈y − ḟ 2x− µ
r2t

= − µ
r3d

(rt + x)

ÿ + 2ḟ ẋ− f̈x− ḟ 2y = − µ
r3d
y

z̈ = − µ
r3d
z

(2.14)

Introducing Eq. (2.6) and defining the true latitude as θ = f+ω, where ω is the argument
of perigee of the target’s orbit, the general relative equations of motion are rewritten in
the common form: 

ẍ = 2θ̇ẏ − θ̈y + θ̇2x− µ(rt+x)

[(rt+x)2+y2+z2]
3
2

+ µ
r2t

ÿ = −2θ̇ẋ+ θ̈x+ θ̇2y − µy

[(rt+x)2+y2+z2]
3
2

z̈ = − µz

[(rt+x)2+y2+z2]
3
2

(2.15)

To simplify the orbital model, some considerations have been made:

• The target moves around the Earth on a circular orbit (e = 0), so the distance from
the latter remains constant (p = rc);
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• The velocity of the target along the path, remains constant, and it can be considered
as the mean motion of the orbit.

r̈t = 0

ṙt = 0 −→ θ̈ = 0

θ̇ = n =
√

µ
r3t

(2.16)

Using these assumptions, the general relative equations of motion become:
ẍ = 2nẏ + n2x− µ(rt+x)

[(rt+x)2+y2+z2]
3
2

+ µ
r2t

ÿ = −2nẋ+ n2y − µy

[(rt+x)2+y2+z2]
3
2

z̈ = − µz

[(rt+x)2+y2+z2]
3
2

(2.17)

On the other hand, coming back to the Eq. (2.1) and considering the perturbation
term, the corresponding form of the NERM can be retrieve in another way [9], using the
Lagrangian Formulation:

d

dt

(
∂Ld
∂q̇d

)
− ∂Ld
∂qd

= 0 (2.18)

where qd = [x y z] are the configurations of the deputy in the LVLH coordinates and Ld
is its Lagragian, that can be described as:

Ld(qt, q̇t, qd, q̇d) = Kd(qt, q̇t, qd, q̇d)− Ud(qt, q̇t) (2.19)

where qt is the configuration vector of the target in the ECI frame, Kd the kinetic energy
of the deputy and Ud the potential energy of the deputy. Substituting Eq. (2.19) into Eq.
(2.18) yields to:

d

dt

(
∂Kd

∂q̇d

)
− ∂Kd

∂qd
+
∂Ud
∂qd

= 0 (2.20)

Now, computing Kd and Ud, the exact nonlinear J2 relative dynamics can be obtained.
Starting from Eq. (2.4) and its first time derivative, that can be computed considering a
new form of identity in Eq. (2.7), expressed as:

ωO/N = ωrôr + ωhôh (2.21)

whose component around the θ axis is zero [19], that is, ωθ = 0, and ωr can be referred
as steering rate of the orbital plane, while ωh as the orbital rate, and they are computed
by considering also Keplerian Elements (where i is the target’s orbit inclination, θ = f):

ωr = −kJ2sin(2i)sin(θ)/hr3 (2.22)

ωh = h/r2t (2.23)

From these considerations, the velocities of the unit vectors of the LVLH frame are ex-
pressed as:

˙̂or = ωO/N × ôr = ωhôr ˙̂oθ = ωO/N × ôθ = ωrôh−ωhôr ˙̂oh = ωO/N × ôh = ωrôθ
(2.24)
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Now, considering these identities, the kinetic energy per unit mass of the deputy can be
written as:

Kd =
1

2
ṙd · ṙd =

1

2
(ẋ+ vt,r − yωh)2+

+
1

2
(ẏ + (rt + x)ωh − zωr)2 +

1

2
(ż + yωr)

2
(2.25)

where vt,r is the radial component of the target velocity in LVLH frame. Meanwhile,
the potential energy of the deputy is due to J2 perturbation and it can be expressed
considering Eq. (2.6) as:

Ud = − µ
rd
− kJ2

r3d

(
1

3
− sin2(φ)

)
(2.26)

where φ is the geocentric latitude of the deputy, while

kJ2 =
3J2µR

2
e

2
(2.27)

is a constant, composed by J2, which is the second zonal harmonic coefficient of the Earth
(J2 = 1.0826 · 10−3), and Re, the Earth’s equatorial radius. In particular, φ can be
computed through the following identity:

sin(φ) =
rd,z
rd

= sin(θ)sin(i) (2.28)

where rd,z is the projection of rd on the Ẑ axis of the ECI frame

rd,z = rd × Ẑ =

= (rt + x)sin(i)sin(θ) + ysin(i)cos(θ) + zcos(i)
(2.29)

Substituting Eq. (2.29) into Eq. (2.26) yields to:

Ud = − µ
rd
− kJ2

3r3d
+
kJ2r

2
d,z

r5d
(2.30)

Substituting Eqs. (2.25) and (2.30) into Eq. (2.20), the nonlinear dynamic equations of
satellite relative motion can be derived:

ẍd = 2ẏdωh − xd(η2d − ω2
z) + ydαh − zdωrωh − (ζd − ζ)sin(i)sin(θ)− rt(η2d − η2)

ÿd = −2ẋdωh + 2żdωr − xdαh − yd(η2d − ω2
h − ω2

r) + zdαr − (ζd − ζ)sin(i)cos(θ)

z̈d = −2ẏdωr − xdωrωh − ydαr − zd(η2d − ω2
r)− (ζd − ζ)cos(i)

(2.31)
while the target’s motion around the Earth has been described by followings Eqs:

ṙt = vt,x

v̇t,x = −mu
r2t

+ h2

r3t
− kJ2 1−3sin

2(i)sin2(θ)

r4t

ḣ = −kJ2 sin
2(i)sin(2θ)

r3t

θ̇ = h
r2t

+ 2kJ2
cos2(i)sin2(θ)

hr3t

i̇ = −kJ2 sin(2i)sin(2θ)2hr3t

(2.32)
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where ζ and ζd represent, respectively, the accelerations of the target and the deputy.{
ζ = 2kJ2sin(i)sin(θ)

r4

ζd =
2kJ2rd,z

r5d

(2.33)

the angular velocities η and ηd can be obtained from{
η2 = µ

r3
+ kJ2

r5
− 5kJ2sin

2(i)sin2(θ)
r5

η2d = µ
r3d

+ kJ2

r5d
− 5kJ2r

2
jZ

r7d

(2.34)

and, finally, the steering acceleration αr and the orbital acceleration αh are computed by{
αr = ω̇r = −kJ2sin(2i)cos(θ)

r5t
+ 3vt,xkJ2sin(2i)sin(θ)

r4t h
− 8k2J2sin

3(i)cos(i)sin2(θ)cos(θ)

r6t h
2

αh = ω̇h = −2hvt,x
r3t
− kJ2sin

2(i)sin(2θ)

r5t

(2.35)

2.2.2 On-board Dynamics

Contrarily to the simulation dynamics, which is affected by nonlinear terms both in the
perturbed and in the unperturbed case, the deputy works adopting an easier dynamical
model, characterized by linearized equations of relative motion. To obtain these equa-
tions, the following assumption shall be made: the distance between the target and the
Earth is much greater than that between the target and the deputy. In this way, when
[(x, y, z) <<< rt], the orbit radius of the deputy rd can be approximated as:

rd = rt

√
1 + 2

x

rt
+
x2 + y2 + z2

r2t
≈ rt

√
1 + 2

x

rt
(2.36)

and this will affect the right-hand term of the Eq. (2.13), which is approximated to:

µ

r3d
≈ µ

r3t

(
1− 3

x

rt

)
(2.37)

So, considering Eqs. (2.17) and neglecting higher order terms, the following approxima-
tions can be performed:

µ(rt + x)

[(rt + x)2 + y2 + z2]
3
2

≈ µ(rt + x)

r3t

(
1− 3

x

rt

)
≈ µ

r2t
− 4n2x (2.38)

µy

[(rt + x)2 + y2 + z2]
3
2

≈ µy

r3t

(
1− 3

x

rt

)
≈ n2y (2.39)

µz

[(rt + x)2 + y2 + z2]
3
2

≈ µz

r3t

(
1− 3

x

rt

)
≈ n2z (2.40)

Merging together Eqs. (2.38)-(2.40) into Eq. (2.17), the Hill-Clohessy-Wiltshire equations
[4] can be found: 

ẍ = 2nẏ + 3n2x

ÿ = −2nẋ

z̈ = −n2z

(2.41)
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In state-space form, Eq. (2.41) can be written as

ẋ =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0

x = Ax (2.42)

where x = [x, y, z] is the state vector and A collects the constant term of set of differential
equations. Moreover, being Eq. (2.41) ordinary differential equations, the closed solution
can be found:

x(t) = (4− 3cos(nt))x0 + sin(nt)
n

ẋ0 + 2
n
(1− cos(nt))ẏ0

y(t) = 6(sin(nt)− nt)x0 + y0 − 2
n
(1− cos(nt))ẋ0 + 4sin(nt)−3nt

n
ẏ0

z(t) = z0cos(nt) + ż0
n
sin(nt)

(2.43)

where [x0, y0, z0, ẋ0, ẏ0, ż0] are the initial conditions on the position and the velocity vector
of the deputy in the LVLH frame.

2.3 Football orbit and Stationary condition

2.3.1 Planar Football orbit

The relative motion orbit should be chosen according to the parameters of target, deputy
and the aims of the mission. In order to inspect the desired target, to optimize the
performances on the trajectory control and to make easier the problem, a football orbit
has been selected to perform the inspection mission. This kind of motion is one of the
choices adopted for the Close Proximity Operations, and it relies on the natural orbital
motion to maintain a desired relative location. In other words: the satellite performs
a station keeping, requiring minimal fuel consumption. Typically, the relative football
orbit assumes a shape of an elliptical orbit, that is employed to keep the deputy in a
holding pattern downrange from the target for station keeping, but it is also used to
have the deputy circumnavigate or orbit about the target for inspections. Theoretically,
the relative orbit shall remain the same along the mission, with the same shape and
dimensions, and without any perturbations. So it is necessary for the relative motion to
be bounded: after a certain time (it usually fixed as orbital period to orbit around Earth),
as it can be seen in Eq. (2.43), the out-of-plane component z(t) and the radial component
x(t) already satisfy this requirement for any initial condition. The same is not valid for
the along-track component y(t), which includes a secular term:

ysec = −3tẏ0 − 6ntx0 (2.44)

which will grow indefinitely as time passes. To have a bounded relative motion and a
repeating relative orbit, the condition shall be imposed as:

ysec = 0 (2.45)

To do it, a constraint shall be defined as:

ẏ0 = −2x0n (2.46)
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allowing also the y coordinate to be bounded.
A relevant detail is the relation between the energy and orbit dimension: fixing the
position vector, a simple ∆V variation in any directions becomes a variation of orbit shape,
moving the apogee or perigee position based on the velocity magnitude and direction,
changing so the eccentricity of the orbit. In fact, going back to ECI frame, the semi-
major axis defines the energy of the orbit:

ε = − µ

2a
=
v2

2
− µ

r
(2.47)

If target and deputy have the same orbital energy, they are in a periodic relative motion
around each other. Then, vis-viva equation can be derived from Eq. (2.47):

v2 = µ

(
2

r
− 1

a

)
(2.48)

This equation describes the ideal motion performed along the elliptical orbit, where the
relative effect is to have the deputy arch upward and then slowly drift back: when the
deputy reaches apogee and begins to head towards perigee, its radial distance decreases
and its velocity increases. In fact, as it approaches perigee, its radial distance is less
then the target, causing it to move at a faster speed underneath the target. Practically,
assuming that at the initial time the deputy stays at y0 with respect to the target and
that no ∆V component is provided in the off-track direction (z0 = 0) (it is also found that
z(t) = 0 for any time, which means that the relative orbit belongs to the same plane of the
spacecrafts orbits), means that the other initial relative component is x0 = 0. These initial
conditions describe a in-plane formation and the development of its trajectory follows the
next equations, that derived from the merging of Eqs. (2.43) and (2.46) and fixing initial
conditions: {

x(t) = sin(nt)
n

ẋ0

y(t) = y0 + 2
n
(cos(nt)− 1)ẋ0

(2.49)

which is, as expected, the sum of a cyclic motion in the radial direction and an oscillatory
motion along the tangential direction with an offset equal to the initial condition y0. It
can be demonstrated that the major and minor axis of the relative orbit ellipse are directly
related to the magnitude of the velocity change and they are always one twice the other.

2.3.2 Inclined Football orbit

In addition to the football orbit, there are other types of repeating orbits, as oscillating
orbits (oscillatory trajectory of the deputy along the direction perpendicular to the orbital
plane of the target, that is off-track direction z), V-bar Stationary, V-bar Approach, R-bar
Station Keeping, as presented also in [8],[3],[27],[26]. The combination of two or more of
them creates further relative motions. Among them, considering the football orbit and
the oscillating orbit, the inclined football orbit is present. In this case, starting from initial
conditions y0 and z0 and imposing an impulsive manoeuvre with ∆V components both in
the radial and off-track direction (ẋ0 and ż0) in addition to the component in along-track
direction to remove secular term Eq. (2.46), the following set of equations can be derived:

x(t) = sin(nt)
n

ẋ0

y(t) = y0 + 2
n
(cos(nt)− 1)ẋ0

z(t) = ż0
n
sin(nt)

(2.50)

12



which, as it can be seen, exhibits an oscillatory motion in the z direction too. Unfortu-
nately, the motion just described is constrained to have the same projection on xy-plane
along the entire time of simulation. For small inclination of the relative orbit along the
z-axis, this formula could be also considered for environment where it try to maintain the
same size of orbit. As soon as the inclination increases, another model shall be assumed.
For previous reasons, this thesis proposes an introduction of a new model concept, where
the motion can be modelled by 3 coordinates, expressed as:

• ρ, that represents the radius amplitude of relative orbit.

• α, (or azimuth) that represents the inclination of the relative orbit along the z-axis
respect to the xy-plane

• β, (or reduced latitude or eccentric anomaly) that is defined by the radius drawn
from the centre of the ellipse to a certain point on the surrounding sphere (that
shares with ellipse the same major radius) which is the projection parallel to the
major axis of a single point on the ellipse at a defined latitude. In practice, β allows
to reduce the size of the orbit, avoiding to change the shape of the orbit and the
proportion between major and minor radius.

The following graph shows an application of β. As it can be seen, Fig. 2.2a proves that,
at switching of the value of β and fixing one of α and one of ρ, the highest points of these
orbits (indicated by the colored points in the plot) maintain the same distance. Moreover,
as Fig 2.2b presents, the z-axis component remains the same.

(a) xy-plane

(b) yz-plane

Figure 2.2: Meaning of β, fixing α = 35 [deg] and ρ = 65 [m]

A relevant advantage of the formalization of these angles is the fact that a desired orbit,
characterized by a specific shape and size, can be translated and rotated adopting these
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angles, improving the classical model proposed by literature. So, using this approach
and considering an ellipsoid model and Eq. (2.46), a general initial state vector can be
expressed as:

xhcw =


ρcosαcosβ
ρsinβcosα
ρsinα

(nρ/2)sinβcosα
−2nρcosαcosβ

0

 = ρ


0 0 1 1 1
0 1 1 0 1
1 0 0 0 1
0 1 1 0 n/2
0 0 1 1 −2n
0 0 0 0 0




sinα
sinβ
cosα
cosβ

1

 (2.51)

2.3.3 Application of Stationary Conditions

In order to obtain numerical results and preliminary simulations, 3 configurations, de-
scribed by initial conditions, can be tested and compared in Fig. 2.3:

1. Stationary orbit, given by Eq. (2.46) and definition of the constant ρ
x0 = ρ ẋ0 = 0

y0 = 0 ẏ0 = −2nρ

z0 = 0 ż0 = 0

(2.52)

This set of conditions comes from [3]: four conditions are given by imposing zero
along-track drift and offset, providing one of the easiest configuration of football
orbit. In particular, as it can be seen in Eq. (2.53), the cross-track oscillation can
have the same phase, while the amplitude is function of radial direction oscillation
and a constant k, that determine the inclination with respect to z-axis in LVLH
frame. {

y0 = 2nẋ0

ẏ0 = −2nx0

{
z0 = ±kx0
ż0 = ±kẋ0

(2.53)

Some possible solutions of k are 2 and
√

3, which identify a relative inclined orbit,
respectively, of 26.56° or 30° with respect to the cross-track direction.

2. Unstationary orbit (y-axis propagating orbit)
x0 = ρ

2
ẋ0 = 0

y0 = 0 ẏ0 = −34
29
nρ

z0 = ρ
2

ż0 = −13
33
nρ

(2.54)

If the identity Eq. (2.46) has not been applied, the set of conditions, described in
Eq. (2.54), shows a typical example of no stationary orbit, where the motion cannot
be seen as repeating relative orbit.

3. Stationary orbit, given by Eq. (2.51) and definition of the constant ρ
Fixing α = 30 and β = 60, the initial conditions are the following:

x0 =
√

3ρ/4 ẋ0 = 3nρ/8

y0 = 3ρ/4 ẏ0 = −n
√

3ρ/2

z0 = ρ/2 ż0 = 0

(2.55)
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As Fig. 2.3 shows, the application of the new model allows to remain within the
same orbit independently from the rotation considered.

Figure 2.3: Comparison between initial conditions

2.4 Manoeuvre

In this section, the focus is oriented to the correction of the real trajectory in according to
the reference trajectory. So, based on the error given by the comparison of these data, the
deputy can choose autonomously to perform a correction manoeuvre. In the preliminary
analysis, an assigned Time of Flight (called also ToF ) shall be chosen to understand
how much ∆V is necessary, meanwhile the degree of autonomy will increase during the
development of the treatment. To do that, two important elements shall be mentioned:
the state transition matrix and the minimization problem.

2.4.1 State Transition Matrix

Starting from the first kind of strategies, when the ToF is assigned, the State Transition
Matrix (or STM ) has been considered. It consists into converting the closed form of Eq.
(2.43) into matrix notation.

~x(t) = ~Φ(t)(~x0 + [~03x1; ~∆V ]T ) (2.56)

with the STM expressed as:

~Φ(t) =



4− 3cos(nt) 0 0 1
n
sin(nt) 2

n
(1− cos(nt)) 0

6(sin(nt)− nt) 1 0 − 2
n
(1− cos(nt) 4sin(nt)−3nt

n
0

0 0 cos(nt) 0 0 sin(nt)
n

3nsin(nt) 0 0 cos(nt) 2nsin(nt) 0
−6n(1− cos(nt)) 0 0 −2sin(nt) 4cos(nt)− 3 0

0 0 −nsin(nt) 0 0 cos(nt)


(2.57)
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In practice, the advantage of using the STM is based on the recovering of the relative
position at each time, avoiding the propagation from t0 to the desired time. Passing
from a set of ordinary differential equations to a set of algebraic equations, the algorithm
reduces the computational cost of the entire mission.
From that, the 2nd element can be introduced.

2.4.2 Minimization problem and conditions

To develop a guidance algorithm, this thesis proposes to build a two points boundary value
problem. In fact, the first goal of that part of the algorithm will be to minimize the fuel
consumption in order to return onto the nominal orbit and perform the inspection phase.
This will be done passing through two steps:

1. Fixing the time duration of the manoeuvre;

2. Selecting a time interval from which an adequate ToF can be obtained.

In the first case, the problem has been defined in the following way:

• Considering an initial conditions, as state vector x;

• Assuming an initial guess;

• Fixing the constraints.

If the 2nd point is characterized by choosing of velocity vector guess and ToF guess, the 3rd

can be represented in the objective function of the minimization problem. In that case,
fixing a ToF, the nominal orbit will be propagated starting from initial time until final
time manoeuvre and it will be necessary to recover the state vector in the last instant,
which shall match the final point of manoeuvre arc.

min
~x1

∆v s.t.


r1 = ri(t1)
r(ToF ) = rf (t2)
ti ≤ t1 ≤ tf
t2 = t1 + ToF

(2.58)

where ∆v = ∆v1 + ∆v2, ∆v1 = v1 − vE(t1), ∆v2 = v(t2)− vM(t2). x1 = (r1,v1)
>, and

(r(t),v(t))> = ~Φ(x1, t1; t2). Defining lower and upper bounds, the problem stated in Eq.
(2.58) will be ready to compute solution.
Instead, in the second case, it will not be necessary to give an exact time value, but just
selecting a desired time interval, where the algorithm can perform and choose the best
value in terms of time to reduce the ∆v. Apart from this time constrain, in general, this
kind of problem can be characterized by 2 classes of constraints:

• Equality, where the value, generated by initial guess, shall be equal to boundary
constraint value;

• Inequality, where the value shall be necessarily lower or higher than boundary con-
straint value.
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If the time constraints enter in the 2nd category, other constraints (related to ∆v, for
example) could stay in the 1st.

min
~x1,T oF

∆v s.t.



r1 = ri(t1)
r(ToF ) = rf (t2)
ti ≤ t1 ≤ tf
ToFL ≤ ToF ≤ ToFU
t2 = t1 + ToF
dv1,j ≤ vu,j
dv2,j ≤ vu,j

(2.59)

where ∆v = ∆v1 + ∆v2, ∆v1 = v1 − vE(t1), ∆v2 = v(t2)− vM(t2). x1 = (r1,v1)
>, and

(r(t),v(t))> = ~Φ(x1, t1; t2).. Also here, defining lower and upper bounds, the problem
stated in Eq. (2.59) can be formalized.

2.5 Validation of sets of equations

In order to use the sets of equations already exposed, a validation shall be done. To
understand the reliability of these, Two-Body Problem (2BP ) (with or without J2 per-
turbation term) has been implemented, defining the state of target and deputy, as [12]
shows. Define the inertial equations of motion for both satellites.

r̈t = − µ
r3t
rt + FJ2,t (2.60)

r̈d = − µ
r3d
rd + FJ2,d (2.61)

where, in the perturbed case

FJ2,t = −3µJ2R
2
e

r4t

 1
2
− 3sin2(it)sin2(θt)

2

sin2(it)sin(θt)cos(θt)
sin(it)cos(it)sin(θt)

 ; FJ2,d = −3µJ2R
2
e

r4d

 1
2
− 3sin2(id)sin

2(θd)
2

sin2(id)sin(θd)cos(θd)
sin(id)cos(id)sin(θd)


(2.62)

The inertial relative position and velocity are defined as the position and velocity of the
deputy relative to the target.

[ρ]N = rd − rt (2.63)

[ρ̇]N = ṙd − ṙt (2.64)

(2.65)

The relative position in the LVLH is calculated using the rotation matrix [CO/N ] as

[ρ]O = [CO/N ][ρ]N (2.66)

[CO/N ] =
[
ôr ôθ ôh

]
(2.67)

The terms of [CO/N ] are summarized in Eq. (2.8) while the relative velocity in the LVLH
frame is defined using the transport theorem as

[ρ̇]O = [ρ̇]N − ωO/N × [ρ]O (2.68)
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where ωO/N is the rotation rate of the LVLH frame, and is defined as

ωO/N =
rt × ρ̇t
r2t

(2.69)

Then, Eqs. (2.66) and (2.68) are compared, respectively, to sets of Eqs. (2.17) and (2.31).
As Fig. 2.4 shows, the nonlinear dynamical models respect faithfully the behaviour of
Two Body Problem, with an error lower than the order of millimeters.

(a) Unperturbed case (b) Perturbed case

Figure 2.4: Comparison between 2BP - NERM

After these comparisons, Eqs. (2.17) and (2.31) will be compared to Eq. (2.41).
As expected, the adding of the perturbation term contributes to increase the error between
linear and nonlinear dynamical models. As it can be noticed in Fig. 2.5, the y-component
turns out to be the most affected term.

(a) Unperturbed case (b) Perturbed case

Figure 2.5: Comparison between HCW - NERM

Finally, Fig. 2.6 shows the behaviour of the relative orbits propagated with the different
dynamical models. While the Fig. 2.6a proves a similarity between dynamical models also
after a certain simulation time (in this case, 10 orbital periods), the Fig. 2.6b shows that
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the z-component of the NERM diverges significantly with respect to the HCW, distorting
the nature of the original orbit.

(a) Unperturbed case (b) Perturbed case

Figure 2.6: Comparison between HCW - NERM orbits, propagated for 10 orbital periods
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Chapter 3

Navigation

This second part will be focused on the navigation system. First of all, the choice of
the filter used will be discussed along with the theory behind it. Then, the attitude of
the chosen target will be studied and finally, the measurement model adopted will be
presented.

3.1 Introduction

In general, the estimation of the relative position of the deputy and the prediction of the
target’s attitude require complex computations, but on-board, space processors have only
a limited computational power. So, the main goal is to implement efficient algorithms
with limited computational cost, guaranteeing a sufficient accuracy and the necessary
performance.
Nowadays, the Extended Kalman Filter is the preferred filter for estimation algorithms.
It uses the first-order Taylor expansion to linearize the equations of motion and the mea-
surements equation, leading to inaccuracy in case of complex dynamics or poor number of
available measurements. Therefore, the Unscented Kalman Filter is preferred, to account
for non linearities. It is based on the Unscented Transform which directly propagates
sample points through the nonlinear system. Removing the linearization process, the
UKF gives better performance with respect to the EKF in highly nonlinear cases.

3.2 Unscented Kalman Filter

The core of every Kalman Filter is based on two steps:

• prediction, during which the mean and the covariance of the next time step are
propagated using the equations of motion;

• update, during which the residual between the predicted and the real measurements
is used to correct the predicted state.

Due to the complex dynamics of external dynamics given by the NERM, a nonlinear
Kalman Filter has been implemented, in particular, the Unscented Kalman Filter. In this
kind of filter, the prediction step is based on the Unscented Transform.

3.2.1 Unscented Transform

This transformation is based on the concept that ”it is easier to approximate a Gaussian
(probability) distribution than to approximate an arbitrary non linear function or trans-
formation” [23]. In other words, this transformation finds a parameterization which can
accurately describes the mean and the covariance of the initial variable and which can be
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used to directly propagate the information through the nonlinear equations.

The procedure of the UT is the following. First of all, the mean m and the covari-
ance P of the m-dimensional state vector x are approximated using a set of carefully
chosen 2m+ 1 sigma points, which are collected in a structure χ:

χ[1] = m (3.1)

χ[i] =

{
m+ (

√
(m+ λ)P )i−1, i = 2, ...,m+ 1

m− (
√

(m+ λ)P )i−m−1, i = m+ 2, ..., 2m+ 1
(3.2)

whereas (
√

(m+ λ)P )i is the ith row or column of the matrix square root of (m + λ)P
and λ is a scaling parameter defined as:

λ = α2(m+ k)−m (3.3)

where k ≥ 0 and α ∈ (0, 1] define how far from the mean the sigma points are located,
and β = 2 (optimal choice for Gaussian distributions).
Then, two weights are associated to each of the sigma points, defined as:

wm,1 =
λ

m+ λ
(3.4)

wP,1 = wm,1 + (1− α2 + β) (3.5)

wm,i = wP,i =
1

2(m+ λ)
, i = 2, ..., 2m+ 1 (3.6)

where wm,i is the weight associated to sigma points correlated to the mean, while wP,i is
the weight associated to sigma points correlated to the covariance. The selection of the
sigma points must be such that the following equations are respected:

2m+1∑
i=1

wm,i = 1 (3.7)

m =
2m+1∑
i=1

wm,iχ
[i] (3.8)

P =
2m+1∑
i=1

wP,i[χ
[i] −m][χ[i] −m]T (3.9)

Prediction step

The prediction step consists in a set of sigma points around the initial conditions along
with their relative weights. Then, the set is propagated through the process model, in
this case the closed solution of the HCW:

χ[i]
k+1 = Φ(tk+1;χ

[i]
k , tk) (3.10)
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where Φ indicates the HCW.
Finally, the mean and the covariance are evaluated by weighting each propagated sigma
point:

m−k+1 =
2m+1∑
i=1

wm,iχ
[i]
k+1 (3.11)

P−k+1 =
2m+1∑
i=1

wP,i[χ
[i]
k+1 −m

−
k+1][χ

[i]
k+1 −m

−
k+1]

T (3.12)

The same approach is repeated for the measurement vector, for which each sigma point
is propagated through the observation model, in this case using the NERM:

Z
[i]
k+1 = h(χ

[i]
k+1, tk) (3.13)

where h indicates the NERM.
Then, the predicted measurements are computed:

n−k+1 =
2m+1∑
i=1

wm,iZ
[i]
k+1 (3.14)

Considering an independent and additive observation noise, the covariance matrix for the
measurement and the cross-covariance matrix for the state are computed as:

P zz
k+1 =

2m+1∑
i=1

wP,i[Z
[i]
k+1 − n

−
k+1][Z

[i]
k+1 − n

−
k+1]

T +Rk+1 (3.15)

P xz
k+1 =

2m+1∑
i=1

wP,i[χ
[i]
k+1 −m

−
k+1][Z

[i]
k+1 − n

−
k+1]

T (3.16)

where R is the measurement noise matrix.
Now, the prediction step is completed and the filtering can continue with the update step.

Update step

The update step consists in the correction of the predicted mean and covariance using the
acquired and predicted measurement. The Kalman gain matrix is computed as:

Kk+1 = P xz
k+1(P

zz
k+1)

−1 (3.17)

and the mean and covariance are:

m+
k+1 = m−k+1 +Kk+1(zk+1 − n−k+1) (3.18)

P+
k+1 = P−k+1 −Kk+1P

zz
k+1K

T
k+1 (3.19)

In this case, the measurements are simulated by the NERM propagation. In fact, the
NERM are propagated in the simulator environment and then the position of the markers
is computed. Finally, noises are added and the measurement is passed to the filter.
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3.3 Target’s attitude

In this thesis, two cases will be considered:

• fixed target: the target will be considered fixed in space and the principal axes of
it will be rotated of some random angle with respect to the LVLH reference frame,
leading to a constant rotation matrix;

• tumbling target: the target will be tumbling with a fixed angular velocity and the
rotation matrix will be obtained by the MRP.

In the second case, the target’s attitude is built using the Modified Rodrigues Parameters.
First of all, the initial condition for the Euler Angles is transformed using the conversion
to quaternions, described in [15]:

q =


cos(ψ/2)

0
0

sin(ψ/2)



cos(θ/2)

0
sin(θ/2)

0



cos(φ/2)
sin(φ/2)

0
0

 (3.20)

=


cos(φ/2)cos(θ/2)cos(ψ/2) + sin(φ/2)sin(θ/2)sin(ψ/2)
sin(φ/2)cos(θ/2)cos(ψ/2)− cos(φ/2)sin(θ/2)sin(ψ/2)
cos(φ/2)sin(θ/2)cos(ψ/2) + sin(φ/2)cos(θ/2)sin(ψ/2)
cos(φ/2)cos(θ/2)sin(ψ/2)− sin(φ/2)sin(θ/2)cos(ψ/2)

 (3.21)

where ψ, θ and φ are the rotation angles.
Then, the quaternions are converted in the MRP, described in [24]:

ζ =
q̃

1 + q0
(3.22)

where the q̃ is the vector part of the quaternion and q0 is the scalar part. Now, the
rotation matrix can be computed as:

Γ(ζ) = I3 − αA1 [ζ×] + αA2 [ζ×]2 (3.23){
αA1 = 4 1−ζT ζ

(1+ζT ζ)2

αA2 = 8 1
(1+ζT ζ)2

(3.24)

where I3 is the identity matrix and [ζ×] is the skew symmetric matrix for the MRP,
computed as:

[ζ×] =

 0 −ζ(3) ζ(2)
ζ(3) 0 −ζ(1)
−ζ(2) ζ(1) 0

 (3.25)

where ζ(1), ζ(2) and ζ(3) are the three components of the vector ζ.
The time evolution of the MRP is governed by Eq. (3.26)

ζ̇ =
1

4
Σ(ζ)ωr (3.26)

Σ(ζ) = (1− ζT ζ)I3 + 2ζζT + 2[ζ×] (3.27)

To find the MRP, Eq. (3.26) is integrated at each time step.
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3.4 Measurement model

Assuming to have a known target, information about Envisat’s mass, dimensions, center
of mass location, moments of inertia, geometrical center and volume will be available.
These information are enough to reconstruct the spacecraft position and attitude using
some target points, called markers. Therefore, the measurement model is developed con-
sidering the marker positions.

Envisat can be modeled as a slender body, a parallelepiped with six surfaces and eight
corners of dimensions 10.02 m x 2.75 m x 3.2 m (without solar arrays) [1]. The center of
mass tends to shift on one side due to the geometry of the satellite when the solar arrays
are opened. The markers are assumed to be positioned on the corners, highlighted in red
in Fig. 3.1, for a total of 8 markers, listed in Tab. 3.1.

Figure 3.1: Envisat’s model.

Marker ρENVi [m]

A +8.9150 -1.3840 -1.5970
B +8.9150 +1.3840 -1.6030
C +8.9150 -1.3660 -1.6030
D +8.9150 -1.3660 +1.5970
E -1.1050 +1.3840 +1.5970
F -1.1050 +1.3840 -1.6030
G -1.1050 -1.3660 -1.6030
H -1.1050 -1.3660 +1.5970

Table 3.1: Assumed Envisat markers position vectors with respect to its center of mass
[23]

The faces are enumerated from 1 to 6 and associated with the normal unit vectors and
the 4 visible markers:
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Face η̂i Markers seen

1

+1
0
0

 A,B,C,D

2

 0
+1
0

 A,B,E,F

3

 0
0

+1

 A,D,E,H

4

−1
0
0

 E,F,G,H

5

 0
−1
0

 C,D,G,H

6

 0
0
−1

 B,C,F,G

Table 3.2: Envisat main body faces and visible markers relations

Due to the fact that the deputy is turning around the target, not all its faces are visible
at the same time, but in the best case a maximum of three faces are visible. Instead, in
the worst case, i.e. the camera is normal to the face, only one face is visible. To define
which faces are visible, a unit vector defining the face is associated to it and the scalar
product between it (in the LVLH frame) and the distance deputy-target is computed. If
the following condition is satisfied, the face is visible:

ρd · ΓT η̂i < 0 (3.28)

If the face is visible, the camera is pointed towards it and the associated markers can be
exploited.

For the number of visible faces, there are 3 possibilities:

• only one visible face;

• 2 visible faces;

• 3 visible faces.

In the first case, Tab. 3.3 shows the markers associated to the face that will be used as
measurements. The number of markers considered is only three because it is the minimum
number of points needed to define a plane.
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Face Markers configuration

1 ABC
2 ABE
3 ADE
4 EFH
5 CDG
6 BCF

Table 3.3: 1 face configurations

In the second case, Tab. 3.3 lists all the possible combination of faces and the associated
markers. In particular, again a total of three markers is chosen, two from one face and one
from the other. In this way, the three markers identify the imaginary plane that passes
through the center of mass of the target.

Faces Markers configuration Faces Markers configuration

1-2 ACE 4-5 EDG
1-3 ACE 4-6 HCF
1-5 BDG 2-3 BDE
1-6 BDF 2-6 ACF
4-2 AGE 3-5 EDG
4-3 AGE 5-6 HCF

Table 3.4: 2 faces configurations

Finally, in the last case, the choice of the markers follows the indication given in [23],
selecting the three markers creating the triangle with the largest area on the plane of
sight, defined by the relative position deputy-target vector and passing through the target
center of mass. To find this triangle, the following procedure has been implemented:

1. each marker is projected on the plane of sight:

bi =
ρd
ρd
· ΓTρENVi (3.29)

ρ̃ENVi = ΓTρENVi − bi
ρd
ρd

(3.30)

where ρ̃ENVi is the vector projection of the marker i on the plane of sight, and bi
is the scalar projection of the marker vector ˜ρENVi on the direction ρd/ρd. Each
projection represents the vertex of a number of triangles depending on the number
of visible markers;

2. Envisat is modeled as a slender parallelepiped with one predominant principal inertia
axis v̂ which divides the markers into two groups: the master group, more visible
referred to the main face, and the slave group. Then, the inertia axis is projected
on the plane of sight too:

ṽ = v̂ −
(
ρd
ρd
· v̂
)
ρd
ρd

(3.31)

(3.32)
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3. Defining a line l through the versor ṽ, the triangle with the largest area can be
directly found by selecting the two furthest marker projections from the line in
the master group and the nearest marker projection in the slave group, where the
distance is computed as:

di = ||ρ̃i × ṽ|| (3.33)

(3.34)

Finally, the measurements are computed separately for each single marker as:

zi = ΓTρENVi + ρd where i = A,...,H (3.35)

where zi is the position of the marker i with respect to the deputy center of mass and ΓT

the rotation matrix coming from the MRP, described in Eq. (3.23).

3.5 GUT

One of the main purpose of this thesis is to link together the navigation and the guidance
systems. In order to do that, during the manoeuvre and the inspection phases, the deputy
will estimate its position only through the Unscented Transform. This will result in an
estimated state with a larger associated covariance, due to the higher uncertainty.
Moreover, some errors on the covariance are introduced, to reflect reality as much as
possible during the manoeuvring of the deputy.

3.5.1 Manoeuvre execution errors

In order to be closer as possible to reality, manoeuvre execution errors must be taken into
account during the burning. A simplified way of accounting for them is given by the Gates
model [11], which consists of changing the covariance matrix by adding magnitude and
pointing error terms. If we denote with tm the instant of time at which the manoeuvre is
executed, as [7] shows, the P matrix is corrected as follows:

P (t+m) = P (t−m) +

[
03x3 03x3

03x3 σ2
m∆v∆vT + σ2

p[∆v×][∆v×]T

]
(3.36)

where σm is a constant depending on ∆v, σp is a constant parameter and [∆v×] is the
skew symmetric matrix for the ∆v, computed as:

[∆v×] =

 0 −∆v(3) ∆v(2)
∆v(3) 0 −∆v(1)
−∆v(2) ∆v(1) 0

 (3.37)

where ∆v(1), ∆v(2) and ∆v(3) are the three components of the vector ∆v.
The P matrix is corrected considering both the 1st and the 2nd burn of the manoeuvre.
The first one is needed to move the satellite on the transfer orbit and the second one is
needed to return on the nominal orbit.
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Chapter 4

ConOps

4.1 Introduction

The previous theoretical digression about the guidance and navigation, respectively, is
based on studies which focuses on each of them separately. Therefore, the increase in the
degree of autonomy of a satellite is related to the link between the two disciplines, and
this can be represented through an appropriate ”Concept of Operations” (ConOps).
The objective of the ConOps is to capture the results of the conceptual analysis process,
during which, the characteristics of the proposed system (from the user’s perspective)
and the operational environment in which it needs to work are identified. Both of these
aspects, the system’s functionality and its operational environment, are equally important.
The proposed mission is an inspection mission around a known target, Envisat, located
on a circular polar low Earth orbit and, first of all, considered as a no tumbling object,
while in a second analysis a fixed angular velocity will be assumed. The main goal of this
mission is to maximize the inspection time, during which acquisition of images and other
operations take place. The mission is composed by three main phases:

• filter phase, during which the satellite will acquire measurements about its position
with respect to the target and process the information filtering with UKF, described
in Sect. 3.2, to recover the exact state position;

• manoeuvre phase, during which the on-board computer will compute the optimal
trajectory, described in Sect. 2.4.2, to re-position the satellite on the nominal orbit,
after its drifting due to nonlinear effects and/or perturbations;

• inspection phase, during which the satellite acquires images of target and does other
scientific tasks.

Figure 4.1: ConOps
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Therefore, the time of the mission will be divided correspondingly as follow:

• ∆tfil: time dedicated to the estimation of the satellite state position with respect
to the target;

• ∆tman: time dedicated to perform the optimal manoeuvre computed by the on-board
processor;

• ∆tinsp: time dedicated to the acquisition of images and other operations.

During the manoeuvre and the inspection, the acquisition of measurements is not possible
and the estimation of the real state of the deputy is given simply using the GUT, described
in Sect. 3.5, assuming that this is the only information about its position with respect
to the target. In this way, the satellite is completely autonomous from the point of view
of the knowledge of its state, leading to an algorithm which is completely free from the
communications with ground. The total time of the mission has been fixed to one day
(just over 14 orbits) of mission around the target, easy to compare with other missions
also in terms of fuel consumption and inspection quality. In fact, from the measurements
given by one day of simulation, estimated values related to longer time simulation, as
weeks, months or years, may be proposed. Since the main goal of this treatment is to
maximize the inspection phase, different strategy have been analyzed, also to guarantee
a good quality of inspection, with a favourable position to acquire images.

Strategy A

First of all, the simplest case (A1), in which all the three phases are fixed, is shown. The
time for each of the phases has been chosen arbitrarily, dividing the period of two orbits
in three parts: one orbit for the filter, half orbit for the manoeuvre and half orbit for the
inspection. This strategy will be used as a baseline for the next considerations. Then, the
filter phase is analyzed, in order to reduce its time, optimizing the conditions for which it
is sufficient to retrieve the real state of the satellite. This will lead to the definition of the
minimum time for the UKF to converge to the acquired measurements for the first cycle,
and this value has been adopted to update the initial strategy (A2).

Strategy B

Some further conditions will be imposed to reduce the successive filter phases, in order to
reduce the fixed time found, and leading to the second strategy, in which the filter phase
will have a variable time (B1), accordingly to the imposed conditions. Now, the time for
the filtering will be minimum and the analysis can go on with the manoeuvre phase. In
particular, starting from the dynamical models validation, an investigation of the best
ToFM has been performed, and then this results has been inserted into the algorithm,
generating a further strategy (B2).

Strategy C

In this third strategy (C1), the introduction of a new minimization problem will lead to
the optimization of both the cost of the manoeuvre and the ToFM needed (introduced
also in the Sect. 2.4.2), guaranteeing, once again, the reduction of the manoeuvring time.

29



Strategy D

Now, the inspection phase is analyzed. New conditions will be introduced to increase or
reduce the time for the inspection based on the position of the satellite along the orbit
and with respect to the target. This will lead to a completely autonomous algorithm (D1)
that will vary the time of the phases according to the position of the deputy with respect
to the target.

Strategy E

In conclusion, in this final strategy, the constraint due to an unique nominal orbit is
removed, and the treatment will go towards a new inspection strategy concept, aimed
at linking the algorithm with the quality and the improvement of the inspection phase
assuming a set of inclined football orbits, which will be the ”instrument” adopted to
optimize this aspect and try to assure that all the faces of the target will be seen by the
camera of the deputy for the necessary time.

4.2 Score

The chosen development of the thesis lead to the need of the description of the main
purposes: if in the guidance part the goal is to minimize the fuel consumption and the
ToFM , on the other hand, in the navigation part, the goal is to correctly estimate the
position of the deputy with respect to the target, as close as possible to the real trajectory.
According to this differentiation, various aspects of the mission will be analyzed, in order
to defined the best strategy in terms of a trade off of them.
The parameters taken into account are listed below.

• Inspection time: both the absolute and relative time in terms of percentage with
respect to the total simulation time, that has been assumed as one day (about 14
orbits) will be considered. From these values, the aim is to understand how impor-
tant is the inspection phase during the mission and how varies with the different
strategies.

• Manoeuvre cost : it is represented by two terms. The first one is given by the total
∆v used for each strategy and, along the improvements of the strategies themselves,
this parameter should be decreased. The second is due to the satisfaction of the
boundary constraints related to each component of each manoeuvre burn of each
strategy. In other words, the analysis is focused on the value of the ∆v compo-
nent, comparing between them and, in addition, the limits of actual technology on
propulsion systems suitable for Cubesats and small satellites must be taken into
account;

• Inspection quality : it is supplied by the visibility time for each faces of the target
during the inspection phase. A relevant detail concerns the choice of the sensor
adopted, because each device is affected by different parameters and each of them
can be suitable for different mission cases. For this mission case, a camera has
been selected and it is characterized by a certain Field of View (FoV), necessary to
guarantee the acquisition of high resolution images in a determined time interval.
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Figure 4.2: Score methodology

4.3 Initial conditions

4.3.1 Target’s orbit parameters

As it has already been said, Envisat has been chosen as the target of this inspection
mission analysis. Its mission, starting in 2002, ended in 2012, after the unexpected loss
of contact with the satellite. It means that, knowing its position and its structure (so,
it can be defined as known object), it is no longer controllable and every mission around
this satellite shall be performed considering it as uncooperative object. Moreover, there is
no information about its attitude. Following this contextualization, this thesis provides
a set of initial conditions, both for fixed attitude (no angular velocity acts on the body)
and for tumbling case.
Envisat is in a LEO, so from 1, its initial position can be defined adopting a set of Keplerian
Elements, that are listed in Tab. 4.1:

Parameter Value

a [km] 7142
e [-] 0.001272
i [deg] 98.2009
Ω [deg] 278.7771
ω [deg] 89.4215

Table 4.1: Target’s orbital elements

The eccentricity of the orbit will be neglected due to the fact that the dynamical models
are more suitable for a circular orbit (e = 0). From these, some parameters can be
computed, as:

T =

√
µ

r3c
= 6006 [s] n =

2π

T
= 0.001

[
1

s

]
(4.1)

where T is the period of the orbit and n is the mean motion.
Moreover, the initial conditions of the relative states for the fixed and tumbling configu-
rations are reported, respectively, in Tabs. 4.2 and 4.3.

1https://www.n2yo.com/satellite/?s=27386
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Rotational Dynamics

φ (rad) 0.26
θ (rad) 0.37
ψ (rad) 0.58
ωr,x (rad/s) 0
ωr,y (rad/s) 0
ωr,z (rad/s) 0

Table 4.2: Target’s initial dynamics in fixed configuration

In the tumbling case, the attitude is initialized randomly, whereas the angular velocity is
selected in order to have an absolute value of about 2.5 deg/s, as in [23].

Rotational Dynamics

φ (rad) 1.66
θ (rad) 2.27
ψ (rad) -0.38
ωr,x (rad/s) 0.02
ωr,y (rad/s) 0.02
ωr,z (rad/s) 0.04

Table 4.3: Target’s initial dynamics in tumbling configuration

4.3.2 Deputy’s orbit parameters

The initial state has been chosen in according to the size and shape of Envisat. In fact, in
order to avoid to collide with the target, the deputy shall stay at a certain distance. Fixing
a Keep Out Zone (KOZ) of radius equal to 30 m, the relative orbit has been selected in
such a way to have at least a minimum distance from target’s center of gravity equal to
the double of the KOZ radius itself.

Translational Dynamics

x (m) 65
y (m) 0
z (m) 0
ẋ (m/s) 0
ẏ (m/s) -0.13
ż (m/s) 0

Table 4.4: Deputy’s initial state on the relative orbit

4.3.3 Deputy’s satellite parameters

Unlike before, the attitude of the deputy and its control is not the main topic in this
treatment and it has been neglected, focusing more on the guidance and navigation part.
For this reason, the description of the entire satellite structure is not relevant, skipping
directly on the propulsion system, that gives the information about the range of thrust,
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so how much ∆v the propulsion system can offer. Due to the choice of adopting impulsive
manoeuvres, a limiting maximum value have been assumed, listed in Tab. 4.5:

Parameter Value

∆vmax 100 mm/s

Table 4.5: Values of deputy’s properties applied in the simulation

4.3.4 Filter initialization

The initial parameters for the UKF are selected as follows:

P0 =

[
10−3 · I3 03x3

03x3 10−6 · I3

]
(4.2)

R =
[
10−3 · I6

]
(4.3)

where P0 is the initial covariance matrix for the state, R is the measurements noise matrix
and Q is the process noise matrix, which will be neglected in this treatment.
As the measurements are taken from the simulator environment, some noises are added,
to simulate the sensibility of the camera, which is characterized by a field of view.

Error Noises & FOV

σfpos (m) 10−1 σfvel (m/s) 10−3 FOV (deg) 15

Table 4.6: Error noises and FOV of the camera

4.4 Dynamical models validation

Starting from Sect. 2.5, the models validation is needed to know how they vary in time,
in order to ease the transition to a more autonomous configuration. This idea allows also
to understand the behaviour of the different dynamical models in such a way to identify
the best operative time frame and avoid reaching some critical conditions. The following
analysis has been anticipated in the previous paragraph, where filter conditions have been
set to optimize the closed loop algorithm, and it will be relevant to other parts that will
be exposed in the next chapters. Excluding the 2BP model due to its inactivity in these
thesis sections, the comparison will show the differences between linear and nonlinear
relative dynamics, highlighting in particular the behaviours among:

• HCW - NERM

• HCW - perturbed NERM

Let’s assume the initial conditions of Tab. 4.4 and introduce two covariance matrices to
vary the initial conditions. In fact, unlike the Sect. 2.5, this analysis has been focused
on the behaviour of these dynamical models outside the stationary conditions, to emulate
situations verifiable also in the simulations.

P0 =

[
10−3 · I3 03x3

03x3 10−6 · I3

]
(4.4)
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Pdirty =

[
10−5 · I3 03x3

03x3 10−7 · I3

]
(4.5)

The first one is the initial covariance matrix fixed also in all the strategies, meanwhile
Pdirty has the purpose of varying the P0, that will vary the initial state vector. This idea
has been developed in such a way to obtain 50 different initial states, associated with 50
different initial covariance matrices, obtaining 2500 different combinations of mean, that
will be used in the following step. In fact, considering each combination, the aim is always
the same: to understand how much the error between the dynamical models diverges. In
order to perform that, a value has been assumed as limit error to analyze how much time
is necessary to reach it. In this case, the threshold is equal to 5 m. So, the following
results show the time spent to achieve this limit value for each combination, characterized
by its mean and covariance.
For the unperturbed case, shown in Fig. 4.3, the average value is 985 s and only 944 over
2500 values exceed it (about 37.76 % of the total data), meanwhile the minimum value
computed is equal to 380 s and the maximum is 10626 s. In addition to the data previous
written, Fig. 4.3 shows how the results of each combination assume a determined trend
remaining in a low time range in the most of the cases, except for some outliers.

Figure 4.3: NP - time needed to arrive at the desired error for each sample

34



For the perturbed case, the average value is 785 s and only 1021 over 2500 values exceed
it (about 40.84 % of total data), meanwhile the minimum value computed is equal to 338
s and the maximum is 2697 s. Unlike Fig. 4.3, the results seem more homogeneous than
the previous case, laying always in the low time range. Some high peaks are present but,
obviously, they are not comparable to the value produced in the previous analysis.

Figure 4.4: P - time needed to arrive at the desired error for each sample
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Chapter 5

Results

5.1 Unperturbed case

In this chapter, the results of the simulation with the external dynamics represented by the
unperturbed NERM and the on-board dynamics represented by the HCW are exposed.

5.1.1 Strategy A1

This first strategy considers all the phases with a fixed time. In particular, the filter phase
has been fixed to one orbit period time in order to wait for the convergence of the UKF.
Then, the manoeuvre and the inspection phases have been fixed to half orbit period time,
arbitrarily. This strategy will be used as a baseline for every next strategy. Moreover,
this will help to simplify the algorithm and to understand better the behaviour of the
covariance and the error during the mission.
The specific time for each phases are listed in Tab. 5.1.

Parameter Value

∆tfil (s) 6007
∆tman (s) 3003
∆tinsp (s) 3003

Table 5.1: NP - Strategy A1: values of time intervals

The behaviour of the covariance is shown in Figs. 5.1 and 5.2. The color of the region
indicates the different phases: blue for the filter phase, red for the manoeuvre phase and
green for the inspection phase.
As it can be noticed, in the first cycle, the covariance tends to grow more than in the
others cycles. This is due to the corrective term exposed in Sect. 3.5.1: in fact, the more
expensive the manoeuvre is, the more important this addictive term is. In this case, the
first impulse is too high, leading to an extremely high increase of the covariance during
the manoeuvre. This will result in a further growing of the covariance in the inspection
phase, which is given by the second impulse of the manoeuvre.
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Figure 5.1: NP - Strategy A1: behaviour of the covariance

Figure 5.2: NP - Strategy A1: behaviour of the covariance (zoom)

Moreover, the behaviour of the error is shown in Fig. 5.3. Specifically, the error is
defined as the difference between the ”real” state given by the NERM propagation and
the ”estimated” state, given by the UKF in the filter phase and the GUT in the manoeuvre
and the inspection phases. In the filter phase, the error correctly remains in the limits for
most of the cases, except for the fifth cycle. This divergence can be due to the fact that
the initial covariance, coming from the GUT of the previous inspection phase, is already
not mapping correctly the state. In fact, as it can be seen, the error along the y-axis is
already out of the covariance limits starting from the manoeuvre.

Figure 5.3: NP - Strategy A1: behaviour of the error (zoom)

The cost for each of the manoeuvre is reported in Tab. 5.2, considering the sum of the
two impulses. Again, the first manoeuvre is clearly too high, in the order of m/s, while
the other ones are in the order of cm/s or mm/s.
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Manoeuvre ∆vx ∆vy ∆vz |∆v|
(#) (cm/s) (cm/s) (cm/s) (cm/s)

1 5.3 · 10−2 1 · 10−2 1.2 · 102 1.2 · 102

2 9.6 · 10−1 5.3 · 10−2 8.1 · 10−2 9.7 · 10−1

3 1 · 100 5.2 · 10−2 3.1 · 10−2 1 · 100

4 1.2 · 10−1 1.4 · 10−2 2.2 · 10−2 1.3 · 10−1

5 7 · 10−1 3 · 10−2 1.5 · 10−2 7 · 10−1

6 1 · 100 5.4 · 10−2 1.3 · 10−2 1 · 100

7 1.2 · 100 6.5 · 10−2 1.9 · 10−2 1.2 · 100

Table 5.2: NP - Strategy A1: ∆v values

Figure 5.4: NP - Strategy A1: behaviour of ∆v

Finally, the percentage of time spent for each of the phases for a mission of exactly one
day has been computed. For this strategy, as shown in Fig. 5.5, the percentage of the
inspection will be 24%, as expected from the fixed time imposed.

Figure 5.5: NP - Strategy A1: percentage of phases

5.1.2 Filter analysis 1/2

In order to optimize the phase time of the filter, a first analysis has been carried out. In
fact, as it can be noticed, the UKF reaches the convergence long before one period orbit,
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so the time of this phase can be reduced. First of all, the conditions for the convergence
must be defined in according to the final values computed at the end of one period orbit.
Then, a Monte Carlo analysis has been performed on 1000 random samples lying inside
the initial covariance and the resulting delay times is shown in Fig. 5.6. In the graph, it
can be noticed that:

• the error between the position state vector of the NERM and the one coming from
the UKF tends to stabilize before one orbit (6007 s). Since the error behaviour is
not smooth, the final value of it has been used as mean to build a convergence band
(green region);

• the size of the covariance matrix coming from the UKF decreases during the time,
reaching an area where the trend starts to stabilize;

Vertical red lines indicate the time delay for each samples, in this case always the same,
for different size of the covariance. As it can be seen, to reach a size of 3 m of covariance,
3970 s are needed, and the corresponding error stays in the convergence band. This value
is the minimum time for which the error in contained in the band, and, since the aim
of this analysis is to reduce the filter time to the minimum, this will be selected. Other
values have been excluded either for the dissatisfaction of the error condition (out of the
band) either for the value of time which is higher than the minimum considered and closer
to the one fixed before.

Figure 5.6: NP - Delay time for each sample

The value of time selected has been set for the filter phase in the strategy A2, in such a
way to reduce the overall filter time, earning about 33% of time.

5.1.3 Strategy A2

In this strategy, the time of the phases used are reported in Tab. 5.3:
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Parameter Value

∆tfil (s) 3970
∆tman (s) 3003
∆tinsp (s) 3003

Table 5.3: NP - Strategy A2: values of time intervals

The behaviour of the covariance is shown in Fig. 5.7. Also in this case, the covariance
reaches a size which is too high, leading to an higher uncertainties of the state of the
satellite. Moreover, the high increase of the covariance in the first cycle is still there,
confirming the previous statement for which that increasing is due to the high manoeuvre.

Figure 5.7: NP - Strategy A2: behaviour of the covariance

On the other hand, the behaviour of the error is shown in Fig. 5.8. Now, all the compo-
nents of the error between the ”real” state and the ”estimated” one remains in the limits.
Also, the filter always converges, demonstrating the previous analysis.

Figure 5.8: NP - Strategy A2: behaviour of the error (zoom)

The cost in terms of ∆v for each of the manoeuvre is listed in Tab. 5.4. Again, the first
manoeuvre is too expensive even if the order of magnitude is one lower with respect to
the previous one, as Tab. 5.2 shows. In addition, also the second manoeuvre is too high
and this will lead to a greater covariance.
Observing the values of the single components, another detail to highlight is the fact that
the order of magnitude of the norm of the ∆v is affected mostly by the contribution of the
z-axis component. This can be explained considering that the nominal orbit is constrained
to lay on xy-plane and then, the z-component of the position state must be null: any noise
or disturbance due to the filter or measurements leads a displacement from the xy-plane,
causing an inevitably high impulse on the z-axis.
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Manoeuvre ∆vx ∆vy ∆vz |∆v|
(#) (cm/s) (cm/s) (cm/s) (cm/s)

1 3.6 · 10−2 1.4 · 10−2 4.2 · 101 4.2 · 101

2 1.1 · 100 5.8 · 10−2 2.4 · 101 2.4 · 101

3 1.1 · 100 5.7 · 10−2 5.7 · 100 5.8 · 100

4 9.9 · 10−1 5.5 · 10−2 2.6 · 100 2.8 · 100

5 7.7 · 10−1 4.4 · 10−2 4.4 · 100 4.5 · 100

6 5.5 · 10−1 3.2 · 10−2 8.5 · 100 8.5 · 100

7 5.4 · 10−1 3 · 10−2 6.3 · 10−1 8.3 · 10−1

8 8.2 · 10−1 4.4 · 10−2 6.7 · 100 6.7 · 100

9 1.8 · 100 9.8 · 10−2 5.8 · 100 6.1 · 100

Table 5.4: NP - Strategy A2: ∆v values

Figure 5.9: NP - Strategy A2: behaviour of ∆v

The percentage of inspection is increased to 28%, due to the reduction of the filter phase.

Figure 5.10: NP - Strategy A2: percentage of the phases

5.1.4 Filter analysis 2/2

Assuming that the filter needs some time to set only in the first cycle, so at the beginning
of the mission, the filter phase time can be further reduced. In particular, the fixed time
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found in the previous analysis will be maintained for the first cycle and for the next cycles,
some other conditions are introduced, in order to make more flexible the filter phase, such
that the time spent will be the minimum time needed to estimate the state position vector
of the deputy:

• minimum phase time: for the first cycle, the minimum value of time for the conver-
gence of the filter found in the previous analysis has been kept;

• error between UKF and nominal orbit : when the deputy’s estimated state from the
UKF is way too far from the nominal trajectory given by the HCW, the filter phase
will be stopped and a station keeping manoeuvre will be performed to re-position
the deputy on the nominal orbit. In this case, an error of 5 m has been chosen to
keep the cost of the manoeuvre under the limits of a real propulsion system and as
a consequence of the validation of the models, described in Sect. 4.4;

• maximum size of the covariance: the covariance size has been limited to 3 m, which
is the condition for the convergence of the filter considered in the previous filter
analysis, in Sect. 5.1.2;

• divergence control : the mean coming from the UKF must be contained inside the
associated covariance. In this way, any diverging behaviour of the filter can be
suppressed.

5.1.5 Strategy B1

This new strategy will use a variable filter, which will stop according to the conditions
imposed in Sect. 5.1.4, while the manoeuvre and inspection phase time will remain fixed,
as listed in Tab. 5.5:

Parameter Value

∆tfil,1 (s) 3970
∆tfil (s) variable
∆tman (s) 3003
∆tinsp (s) 3003

Table 5.5: NP - Strategy B1: values of time intervals

The behaviour of the covariance is shown in Fig. 5.11. Also in this case, the covariance
increases too much in all the cases, due to the manoeuvre phase, suggesting that an
analysis on it is necessary.

Figure 5.11: NP - Strategy B1: behaviour of the covariance
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The behaviour of the error is shown in Fig. 5.12. As it can be seen, the error is always
included in the limits, and the filter always correctly converges.

Figure 5.12: NP - Strategy B1: behaviour of the error (zoom)

The filter phase time is now variable, but the values changes only by few seconds, as
shows Tab. 5.6.

Cycle 1 2 3 4 5 6 7 8 9

∆tfil (s) 3970 3600 3330 3483 3370 3266 3284 3194 1879

Table 5.6: NP - Strategy B1: filter phase times

As it can be seen from Fig. 5.13, a little improvement on the inspection time has been
obtained overall with a 31% against the 28% of before.

Figure 5.13: NP - Strategy B1: percentage of the phases

The values of the ∆v for the manoeuvre are listed in Tab. 5.7. Again, the z-component
influences the most the total impulse. In fact, all the manoeuvres exceed the value of 10
cm/s, which is too high, and will cause a great increase in the covariance’s sizes, leading
to a further increase during the inspection phase.
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Manoeuvre ∆vx ∆vy ∆vz |∆v|
(#) (cm/s) (cm/s) (cm/s) (cm/s)

1 3.6 · 10−2 1.4 · 10−2 4.2 · 101 4.2 · 101

2 1 · 100 5.2 · 10−2 2.8 · 101 2.8 · 101

3 1.7 · 100 8.7 · 10−2 7.3 · 101 7.3 · 101

4 2.1 · 100 1.1 · 10−1 4.3 · 101 4.3 · 101

5 2 · 100 1 · 10−1 3.4 · 101 3.4 · 101

6 2 · 100 1 · 10−1 3.8 · 101 3.8 · 101

7 2.5 · 100 1.3 · 10−1 3.2 · 101 3.2 · 101

8 2.5 · 100 1.2 · 10−1 2.4 · 101 2.4 · 101

9 2.4 · 100 1.2 · 10−1 2.7 · 101 2.7 · 101

Table 5.7: NP - Strategy B1: ∆v values

Figure 5.14: NP - Strategy B1: behaviour of ∆v

5.1.6 ∆V analysis

Starting from the results of Sect. 4.4, another analysis has been performed. In this case,
the aim is to find a suitable manoeuvring time that allows to have:

• good behavior of the covariance;

• low ∆v cost.

These parameters should give the opportunity of reducing the fuel consumption, and
through the reduction of the manoeuvring time, maximizing the inspection time holding
in consideration the same simulation time of one day mission.

To do it, an initial approach consists in collecting the data of Sect. 4.4 and compute
the density of each time sample in terms of percentage. The choice of considering this
data set for the manoeuvre path is supported by the difference in the propagation itself,
between the HCW and the NERM in time. In fact, the dynamical models and their
comparison affect also the manoeuvre: usually the ”real” initial point of the manoeuvre
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(given by the NERM) usually does not correspond to the stationary conditions, and un-
fortunately the ”real” final point (again given by the NERM) proves that the deputy does
not reach the exact point computed by the on-board software. The error between the
dynamics models is a function of:

1. Time of Flight of the manoeuvre;

2. Initial error;

3. Conditions of the final reference orbit, as relative orbit size and shape.

Due to the fact that the second parameter is fixed by the filter condition and the third
one is equal to the initial nominal orbit, the only parameter to work with is related to
the ToFM . For these reasons, the previous data set of Fig. 4.3, where the error has been
set to 5 m, are still valid.

Moreover, to have a better insight of the density of the data in Fig. 5.15, an inter-
polating function (20th order) has been extrapolated from them. Then, the median has
been evaluated and this value is considered to be the center value of the interval that will
be analyzed afterwards. In particular, the size of the interval is chosen in such a way to
include the 99% of the data closed to the median. This allows to eliminate some outliers,
which are very rare, since the distribution is not uniform, but present a peak around 1000
s. In addition, the interval has been also enlarged to the 99.9%, but as it can be seen from
Fig. 5.15, the interval comprehends ToFM till 6086 s, which is higher than the previous
time of half orbit period. To be consistent with the previous fixed time of flight, which
was 3003 s, the interval of 99% has been chosen, in order to not go beyond the former
one, considering the fact that one of the purpose of this analysis is to reduce the ToFM .

Figure 5.15: NP - Density probability of ToFM extracted from Sect. 4.4

Consequently, for the case of 99%, the median is 883 s and the lower and upper boundary
values are 381 s and 2597 s, respectively. This will reduce the initial interval of time of a
nearly 75%.
Now, this interval has been divided into 10 values of ToFM (boundary values included) and
these are used in the simulation algorithm. Using the different times, the corresponding
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total ∆v of the mission (over one day) obtained is shown in Fig. 5.16. Each of the cases
has been analyzed to guarantee the satisfaction of the maximum ∆vtot and the maximum
∆v for every single manoeuvre. As the graph shows, the trend tends to stabilize going
towards increasing ToFM . Starting from this consideration, some upper limits have been
imposed. The red region indicates the values of ∆vtot which are too high compared with
the others (> 35 cm/s, where also the behaviour of covariance is not good), while the
green region indicates a second interval that will be further analyzed.

Figure 5.16: NP - ∆vtot for the 10 values of ToFM studied

In particular, the interval from 1350 s to 2600 s has been again divided into 20 values
to insert in the simulation and the total cost is shown is Fig. 5.17. Once again, the
upper values has been excluded to highlight the minimum values. In the next paragraph,
two simulations will be presented among the values of the green region, the one with the
minimum ∆vtot (1941 s) and the one with the best covariance’s behaviour (1744 s).

Figure 5.17: NP - ∆vtot for the 20 values of ToFM studied

Figure 5.18: NP - ∆v analysis approach
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5.1.7 Strategy B2

Minimum ∆vtot

Next, the strategy with the minimum ∆vtot is presented, and the phase time are listed in
Tab. 5.8:

Parameter Value

∆tfil,1 (s) 3970
∆tfil (s) variable
∆tman (s) 1941
∆tinsp (s) 3003

Table 5.8: NP - Strategy B2: values of time intervals

The behaviour of the covariance is shown in Fig. 5.19. The limit of the size of the
covariance remains under 20 m, which is quite a good result if compared with the size
of the nominal orbit. In this way, the satellite’s estimated position will never reach the
target, avoiding a possible collision.

Figure 5.19: NP - Strategy B2: behaviour of the covariance (zoom)

On the other hand, the behaviour of the error is shown in Fig. 5.20, and it can be noticed
that all the components of the error are included in the covariance limits, except for the
last one, where the y-component is out of the limits. This can be explained considering
that the inspection phase time is still fixed to a random value, which is not the best for
the mission.

Figure 5.20: NP - Strategy B2: behaviour of the error (zoom)

The ∆v values for each of the manoeuvre are listed in Tab. 5.9. All the values are of the
order of magnitude of cm/s, as expected from the previous analysis.
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Manoeuvre ∆vx ∆vy ∆vz |∆v|
(#) (cm/s) (cm/s) (cm/s) (cm/s)

1 5.5 · 10−2 3.4 · 10−2 7.3 · 10−2 9.7 · 10−2

2 1.2 · 100 3.2 · 10−1 1.1 · 10−2 1.2 · 100

3 1.1 · 100 3.3 · 10−1 1.9 · 10−2 1.2 · 100

4 2.8 · 10−1 7.5 · 10−2 2 · 10−2 2.9 · 10−1

5 3.8 · 10−1 1.2 · 10−1 1 · 10−2 4 · 10−1

6 3 · 10−1 9.2 · 10−2 7.3 · 10−3 3.1 · 10−1

7 1.7 · 10−1 4.8 · 10−2 8.5 · 10−3 1.8 · 10−1

8 2.7 · 10−1 7.4 · 10−2 1.8 · 10−3 2.8 · 10−1

9 5 · 10−1 1.4 · 10−1 2.7 · 10−3 5.2 · 10−1

10 9.9 · 10−1 2.9 · 10−1 7.3 · 10−3 1 · 100

11 1.1 · 10−2 1 · 10−2 1.5 · 10−2 2.2 · 10−2

12 4.3 · 10−1 1.3 · 10−1 7.2 · 10−3 4.5 · 10−1

13 9.8 · 10−2 3.1 · 10−2 6.6 · 10−3 1 · 10−1

14 3.7 · 10−2 9.8 · 10−3 1.7 · 10−3 3.9 · 10−2

15 1.2 · 10−1 3 · 10−2 2.2 · 10−3 1.3 · 10−1

16 3.6 · 10−1 8.8 · 10−2 2.6 · 10−3 3.7 · 10−1

Table 5.9: NP - Strategy B2: ∆v values

Figure 5.21: NP - Strategy B2: behaviour of ∆v

The percentage of the inspection phase time is increased to 52%, as shows Fig. 5.22,
thanks to the reduction of the filter phase. The filter phase time values for each cycle
are reported in Tab. 5.10. There is a noticeable reduction of time, one order of magni-
tude lower except for the first fixed cycle. This confirms the advantage of imposing the
conditions for the variable filter, described in Sect. 5.1.4
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Figure 5.22: NP - Strategy B2: percentage of the phases

Cycle 1 2 3 4 5 6 7 8

∆tfil (s) 3970 390 569 659 447 414 395 350

Cycle 9 10 11 12 13 14 15 16

∆tfil (s) 350 429 575 386 412 347 281 260

Table 5.10: NP - Strategy B2: filter phase times

Best covariance’s behaviour

Now, the strategy with the best behaviour of the covariance is presented, and the phase
time are listed in Tab. 5.11:

Parameter Value

∆tfil,1 (s) 3970
∆tfil (s) variable
∆tman (s) 1744
∆tinsp (s) 3003

Table 5.11: NP - Strategy B2: values of time intervals

The behaviour of the covariance is shown in Fig. 5.23. The limits remain under the value
of 20 m, which is good as the previous strategy.

Figure 5.23: NP - Strategy B2: behaviour of the covariance (zoom)
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In this case, the error has a better behaviour, leading to a better behaviour also in the
inspection phase. In fact, the y-component of the error comes out of the limits only in
the inspection phase, while the manoeuvre phase is quite good, as Fig. 5.24 shows.

Figure 5.24: NP - Strategy B2: behaviour of the error (zoom)

The values of the ∆v values for each of the manoeuvre are reported in Tab. 5.12. Again,
all the values stays under the order of magnitude of cm/s, confirming the previous ∆v
analysis.

Manoeuvre ∆vx ∆vy ∆vz |∆v|
(#) (cm/s) (cm/s) (cm/s) (cm/s)

1 5.8 · 10−2 3.9 · 10−2 7.4 · 10−2 1 · 10−1

2 1.2 · 100 4.1 · 10−1 1.1 · 10−2 1.3 · 100

3 2 · 10−1 8.3 · 10−2 2.1 · 10−2 2.2 · 10−1

4 6.8 · 10−1 2.7 · 10−1 6.7 · 10−3 7.3 · 10−1

5 5.3 · 10−1 2.1 · 10−1 1 · 10−2 5.7 · 10−1

6 2.9 · 10−1 1.1 · 10−1 9.9 · 10−3 3.1 · 10−1

7 3.1 · 10−1 1.1 · 10−1 8.4 · 10−3 3.2 · 10−1

8 4 · 10−1 1.4 · 10−1 8.1 · 10−3 4.3 · 10−1

9 7.6 · 10−1 2.8 · 10−1 5.8 · 10−3 8.1 · 10−1

10 1 · 100 3.8 · 10−1 9.8 · 10−3 1.1 · 100

11 8.3 · 10−2 3.9 · 10−2 1.4 · 10−2 9.3 · 10−2

12 6.1 · 10−1 2.2 · 10−1 8.3 · 10−3 6.5 · 10−1

13 4.2 · 10−1 1.5 · 10−1 9.9 · 10−3 4.5 · 10−1

14 3.6 · 10−1 1.3 · 10−1 7.5 · 10−3 3.8 · 10−1

15 3.5 · 10−1 1.3 · 10−1 6.2 · 10−3 3.7 · 10−1

16 4.5 · 10−1 1.6 · 10−1 7.8 · 10−3 4.8 · 10−1

Table 5.12: NP - Strategy B2: ∆v values
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Figure 5.25: NP - Strategy B2: behaviour of ∆v

As the time of the manoeuvre is lower, the total time spent for it is lower, leading to
an increase of the time for the inspection. The filter phase time, reported in Tab. 5.13,
remains quite similar as before, always one order of magnitude lower than the strategy A.

Figure 5.26: NP - Strategy B2: percentage of the phases

Cycle 1 2 3 4 5 6 7 8

∆tfil (s) 3971 383 603 419 484 472 409 384

Cycle 9 10 11 12 13 14 15 16

∆tfil (s) 402 514 612 383 476 447 412 396

Table 5.13: NP - Strategy B2: filter phase times

5.1.8 Manoeuvre analysis

After the strategy B2, the improvements obtained on the manoeuvre phase lead to a
new awareness of that phase, arising the curiosity to deepen that aspect. As Sect. 2.4.2
has shown, the updating of the minimization problem could affect the behaviour of the
covariance and, at the same time, increase the degree of autonomy of the entire on-board
system. To do that, the set of the new minimization problem is based on the addition of
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new constraints, according to the deputy’s parameters and the previous time analysis.
Starting from Sect. 5.1.6, the values underlines that some time intervals are better than
others for two reasons: the behaviour of the covariance and the fuel consumption. From
these, some regions (green ones) have been identified, providing ”optimal time of flight” to
perform the manoeuvre. Unlike previous strategies, where only one ToFM can be chosen,
it is possible to consider all this time interval and its upper and lower limits will be
considered as boundary conditions in the new minimization problem, meanwhile the best
ToFM (minimum ∆v), computed in the previous section, will be inserted as initial ToFM
guess of the problem. Regarding the ∆v guess, an adequate value has been inserted. The
next table summarizes the used values:

Parameter Value

ToFmin (s) 1650
ToFmax (s) 2050
∆vi,j (cm/s) 10
∆vf,j (cm/s) 10
ToFguess (s) 1941
∆vi,j,guess (cm/s) 10−2

Table 5.14: NP - Boundary constrains of the minimization problem

where the apex j points each component of the vector considered, meanwhile i and f
mean, respectively, initial time and final time.

5.1.9 Strategy C1

This strategy will implement the new minimization problem to compute the best trajec-
tory in the manoeuvre phase and the Tab. 5.15 resumes the values for the various phases
used:

Parameter Value

∆tfil,1 (s) 3970
∆tfil (s) variable
∆tman (s) variable
∆tinsp (s) 3003

Table 5.15: NP - Strategy C1: values of time intervals

The behaviour of the covariance is shown in Fig. 5.27. As it can be seen, the covariance
tends to assume an homogeneous behaviour, except for a few peaks that do not represent
a huge defect, since they remains under the 40 m. These can be due to the values of the
impulse of the manoeuvre, as it will be evident in the Fig. 5.29 and Tab. 5.16.
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Figure 5.27: NP - Strategy C1: behaviour of the covariance (zoom)

The error is shown in Fig. 5.28 and it has a quite good behaviour, because it stays in the
limits, except for the y-component in the first inspection phase of the first cycle. This
suggests a further analysis on the inspection phase.

Figure 5.28: NP - Strategy C1: behaviour of the error (zoom)

All the ∆v values stays in the order of magnitude of cm/s, as Tab. 5.16 reports.

Manoeuvre ∆vx ∆vy ∆vz |∆v|
(#) (cm/s) (cm/s) (cm/s) (cm/s)

1 4.8 · 10−2 1.2 · 10−1 4.9 · 10−2 1.4 · 10−1

2 3.1 · 100 9.1 · 10−1 2 · 10−1 3.2 · 100

3 5.9 · 10−1 2.6 · 10−1 8.5 · 10−2 6.5 · 10−1

4 2.2 · 10−1 6.6 · 10−2 2.2 · 10−2 2.3 · 10−1

5 7.2 · 10−1 3.1 · 10−1 4.4 · 10−2 7.9 · 10−1

6 8.9 · 10−1 4.1 · 10−1 7.7 · 10−2 9.9 · 10−1

7 8.9 · 10−2 4.1 · 10−1 7.7 · 10−2 9.8 · 10−1

8 7.8 · 10−1 3.2 · 10−1 2 · 10−2 8.4 · 10−1

9 4.6 · 10−1 2.2 · 10−1 3 · 10−2 5.1 · 10−1

10 2.8 · 10−1 1.2 · 10−1 2.6 · 10−2 3 · 10−1

11 2.3 · 10−1 1.8 · 10−1 1.9 · 10−2 2.9 · 10−1

12 1.5 · 100 6.2 · 10−1 5 · 10−2 1.6 · 100

13 2.9 · 10−2 1.4 · 10−1 1.7 · 10−2 1.5 · 10−1

14 1.9 · 10−0 8.5 · 10−1 4.5 · 10−2 2.1 · 100

15 8.3 · 10−1 4.3 · 10−1 1.2 · 10−1 9.5 · 10−1

16 6.4 · 10−1 3.5 · 10−1 6.1 · 10−2 7.3 · 10−1

Table 5.16: NP - Strategy C1: ∆v values

As it has already been mentioned, some manoeuvres spend more ∆v than others, and this
reflects on the behaviour of the covariance. Figure 5.29 proves the idea just expressed.
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Figure 5.29: NP - Strategy C1: behaviour of ∆v

The percentage of the inspection is 52%, which is quite a good value, similar to the
previous strategy in Sect. 5.1.7, reported in Fig. 5.30. The time of the phases for each
cycle are reported in Tab. 5.17. The overall time dedicated to inspection reaches 12.5 h.

Figure 5.30: NP - Strategy C1: percentage of the phases

Cycle 1 2 3 4 5 6 7 8

∆tfil (s) 3970 387 902 551 437 562 615 587

∆tman (s) 1870 1983 1966 1850 1851 1851 1851 1851

Cycle 9 10 11 12 13 14 15 16

∆tfil (s) 565 490 425 375 705 415 812 618

∆tman (s) 1851 1850 1850 1851 1940 1851 1851 1850

Table 5.17: NP - Strategy C1: phases times

5.1.10 Inspection phase analysis

As it can be noticed from the previous results, sometimes the covariance of the inspec-
tion phase grows too much, exceeding the 20-30 m, making the measurement obtained
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through the filter less precise and increasing the risk to collide with the target. This can
be a problem as the initial nominal orbit has been fixed to a determinate distance from
the target. In fact, if the radial component of the covariance, in the LVLH frame, is higher
than the distance between the target and the deputy, the latter can lie in the KOZ, or
worse, a collision may occur. For this reason, a limit on the maximum dimension size
for the covariance’s growth has been imposed and must be valid at each time instant,
independently from the fact that the major contribution of the covariance is given by the
radial component. In fact, if from one side the covariance control results relevant to the
identification of a probable ”zone” (or, in other words, a probable ellipsoid) where the
deputy stays, on the other hand the error trend between the values given by the NERM
and by the GUT and its control must be taken into account.

To manage the latter detail, again the Sect. 2.5 has been considered. As the graphs
of the cited section and Fig. 5.31b show, the behaviour of the error between the linear
and nonlinear dynamical models is developed through high peaks and low depression dur-
ing the time. From this consideration, the first constraint fixed is related to the zone
where the inspection phase could stop, to make easy and less expensive the manoeuvre
of the next cycle. To do that, the research is started trying to have the possibility to
perform the correcting manoeuvre in the area where the error between the NERM and
the HCW decreases, so necessarily the inspection phase should be stopped some hundreds
of seconds before also to give time for the filter to work well. The area dedicated for the
final part of the inspection are, respectively, at 1/3 (about 2000 s) and at 5/6 (about 5000
s) of the nominal orbit, as shown in Fig. 5.31a. Obviously, if one of other constraints is
satisfied before this latter, the algorithm will start with a new cycle.

(a) Nominal orbit (b) HCW-NERM comparison

Figure 5.31: NP - Stopping zones for the inspection phase

The other constraints focus directly on the control of the size of the covariance as function
of the determined threshold:

1. the error components between the GUT estimated state and the nominal orbit
(propagated by the HCW) shall be necessarily less than the size of the covariance
at each time. This process has been chosen to simulate a comparison between
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the NERM and the HCW models. In absence of the ”real” trajectory, the GUT
estimation substitute them. Moreover, due to the different nature of the NERM
and the GUT, the size of the covariance is multiplied by a correcting term that is
equal to 0.8, to try to guarantee a certain reliability;

2. the size of the covariance shall be necessarily higher than the estimated position
state given by the GUT at each time. In particular, the distance between the
target and the deputy is computed by the GUT and this means that the values
could not correspond with the ”real” data, as it has already been mentioned in
the previous point. In this case, as the introduction of this section underlines, the
relative orbit allows to change this threshold based on the position along the path.
In particular, to obtain the limit value for the size of the covariance, the distance
between the target and the deputy at each time step is divided by 3, in order to have
a proportional limit. In this way, the covariance size limit will be always 1/3 of the
distance from the target at each time step. This means that, due to the fact that
the orbit is elliptical, in the nearest point, the covariance will assume the minimum
dimension, while in the farthest point, it will assume the maximum dimension.

5.1.11 Strategy D1

This strategy will be considered as ”autonomous” because all the phases will stop under
the imposed conditions, no time has been fixed, and the algorithm is working alone to
compute the trajectory, to estimate the deputy’s position and to stop the inspection phase
when necessary.

Parameter Value

∆tfil,1 (s) 3970
∆tfil (s) variable
∆tman (s) variable
∆tinsp (s) variable

Table 5.18: NP - Strategy D1: values of time intervals

The behaviour of the covariance is shown in Fig. 5.32. In the first half of the simulation
time, the trend does not result homogeneous due to the fixed constraints. After the long
inspection phase of the first cycle, the algorithm tries to stabilize the time phases and
their respective covariance, satisfying the conditions imposed. For the other half of the
simulation, the behaviour returns to be similar to the previous strategy, maintaining an
overall cycle time around 6000 s (that corresponds to the period of the nominal orbit).

Figure 5.32: NP - Strategy D1: behaviour of the covariance (zoom)
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The error is shown in Fig. 5.33. As in the previous strategy, due to selection of time
interval where the manoeuvre shall be performed, the error trend is not a reason for
problems.

Figure 5.33: NP - Strategy D1: behaviour of the error (zoom)

The cost for the manoeuvres is listed in Tab. 5.19. The values respect the constraints of
∆v and, as the Fig. 5.34 shows better the trend of ∆v, which tends to decrease during the
time, and at the beginning, when the algorithm tries to reach the stability, the manoeuvres
have higher cost than the lasts.

Manoeuvre ∆vx ∆vy ∆vz |∆v|
(#) (cm/s) (cm/s) (cm/s) (cm/s)

1 4.8 · 10−2 1.2 · 10−1 4.9 · 10−2 1.4 · 10−1

2 5.6 · 100 2 · 100 1 · 10−1 6 · 100

3 1.8 · 100 1.2 · 10−1 1.3 · 10−1 1.8 · 100

4 6.7 · 100 2.5 · 100 1.9 · 10−1 7.2 · 100

5 2.2 · 100 5.7 · 10−1 5.7 · 10−2 2.2 · 100

6 1 · 100 5.2 · 10−1 1.2 · 10−1 1.2 · 100

7 1.1 · 100 4.6 · 10−1 2.4 · 10−2 1.2 · 100

8 3.1 · 10−1 1.5 · 10−1 4.9 · 10−2 3.5 · 10−1

9 8.4 · 10−1 9.8 · 10−2 1.1 · 10−2 8.4 · 10−1

10 5.4 · 10−1 2.4 · 10−1 2.2 · 10−2 6 · 10−1

11 1.4 · 10−2 5.7 · 10−2 4.1 · 10−2 7.2 · 10−2

12 4.3 · 10−1 1.5 · 10−1 1 · 10−2 4.6 · 10−1

13 2.8 · 10−1 1.1 · 10−1 4.5 · 10−2 3 · 10−1

Table 5.19: NP - Strategy D1: ∆v values
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Figure 5.34: NP - Strategy D1: behaviour of ∆v

The percentage of the inspection in still good, at a value of 53%, around 11.9 h, while the
filter phase lasts 3.86 h and the manoeuvre phase 6.57 h.

Figure 5.35: NP - Strategy D1: percentage of the phases

Table 5.20 presents the time duration of each phase. Unlike the previous strategy in Sect.
5.1.9, the ∆tinsp varies and, in the most of the cases, it is longer than the value of 3003 s,
imposed at the beginning of the analysis.

Cycle 1 2 3 4 5 6 7 8

∆tfil (s) 3971 405 2258 549 2643 654 657 635

∆tman (s) 1870 1855 2299 1856 2037 1851 1906 1850

∆tinsp (s) 8174 1090 4107 921 4008 3502 3444 3522

Cycle 9 10 11 12 13

∆tfil (s) 449 551 479 353 301

∆tman (s) 2452 1974 1851 1850

∆tinsp (s) 3106 3482 3677 3804

Table 5.20: NP - Strategy D1: phase times

58



5.1.12 Strategy D2

Let’s take a step back. Considering the strategy B2, there is a clear increment of the
inspection phase due to the reduction of the manoeuvring time, so an obvious question
arises: how about vary the inspection phase to see what happen?
This new strategy borns from this idea and both the strategy B2 will be analyzed, varying
the inspection phase imposing the conditions explained in Sect. 5.1.10 in order to see if
a further increase in the total inspection time can be achieved.

Minimum ∆vtot

The phase time use are listed in Tab. 5.21.

Parameter Value

∆tfil,1 (s) 3970
∆tfil (s) variable
∆tman (s) 1941
∆tinsp (s) variable

Table 5.21: NP - Strategy D2: values of time intervals

The behaviour of the covariance is shown in Fig. 5.36. As it can be noticed, the behaviour
is similar to the strategy D1, where on the second half of the simulation, there is a kind
of pattern that stabilize the cycle to last one orbit period.

Figure 5.36: NP - Strategy D2: behaviour of the covariance (zoom)

The error is shown in Fig. 5.37. In the second cycle the y-component of the error goes out
of the limits, which cause an inaccuracy in the estimation of the position of the deputy.

Figure 5.37: NP - Strategy D2: behaviour of the error (zoom)

The cost for the manoeuvres is listed in Tab. 5.22. As expected, the higher values are
the first ones, then, the values set to lower magnitude.
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Manoeuvre ∆vx ∆vy ∆vz |∆v|
(#) (cm/s) (cm/s) (cm/s) (cm/s)

1 5.5 · 10−2 3.4 · 10−2 7.3 · 10−2 9.7 · 10−2

2 1.9 · 100 5.4 · 10−1 1.5 · 10−2 2 · 100

3 4.5 · 100 1.3 · 100 2 · 10−2 4.7 · 100

4 2.9 · 100 9 · 10−1 2.9 · 10−2 3.1 · 100

5 3.3 · 10−2 4.7 · 10−3 1.4 · 10−2 3.6 · 10−2

6 2.7 · 10−1 9.4 · 10−2 3.4 · 10−2 2.9 · 10−1

7 4.2 · 10−2 1.4 · 10−2 9.8 · 10−3 4.5 · 10−2

8 3.2 · 10−2 9.1 · 10−3 3.2 · 10−3 3.3 · 10−2

9 7.1 · 10−2 2 · 10−2 2.1 · 10−3 7.4 · 10−2

10 8.7 · 10−2 2.5 · 10−2 1.2 · 10−3 9.1 · 10−2

11 1.1 · 10−1 3.1 · 10−2 1.2 · 10−3 1.1 · 10−1

12 1.1 · 10−1 3.2 · 10−2 1.2 · 10−3 1.1 · 10−1

13 6.1 · 10−2 1.9 · 10−2 1.3 · 10−3 6.4 · 10−2

14 1.9 · 10−2 5.6 · 10−3 9.8 · 10−4 2 · 10−2

Table 5.22: NP - Strategy D2: ∆v values

Figure 5.38: NP - Strategy D2: behaviour of ∆v

The percentage of the inspection is increased from 52% to 57%, as expected before.

Figure 5.39: NP - Strategy D2: percentage of the phases
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Cycle 1 2 3 4 5 6 7 8

∆tfil (s) 3971 405 633 2112 1535 509 356 319

∆tinsp (s) 8103 3661 1080 2011 4827 3557 3710 3747

Cycle 9 10 11 12 13 14

∆tfil (s) 258 223 214 224 233 225

∆tinsp (s) 3808 3843 3852 3842 3833

Table 5.23: NP - Strategy D2: phase times

Best covariance’s behaviour

The phase time used are listed in Tab. 5.24.

Parameter Value

∆tfil,1 (s) 3970
∆tfil (s) variable
∆tman (s) 1744
∆tinsp (s) variable

Table 5.24: NP - Strategy D2: values of time intervals

The behaviour of the covariance is shown in Fig. 5.40. Again, there is a kind of sta-
bilization towards a pattern that lead to set the time of the cycle equal to one orbit
period.

Figure 5.40: NP - Strategy D2: behaviour of the covariance (zoom)

The error is shown in Fig. 5.41. Also in this case, in the second cycle, the y-component
goes out the limits and this is due to the long inspection time in the first cycle, which
cause a successive higher manoeuvre.
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Figure 5.41: NP - Strategy D2: behaviour of the error (zoom)

The cost for the manoeuvre is listed in Tab. 5.25. The higher values are the first ones,
as expected from the behaviour of the covariance.

Manoeuvre ∆vx ∆vy ∆vz |∆v|
(#) (cm/s) (cm/s) (cm/s) (cm/s)

1 5.8 · 10−2 4 · 10−2 7.4 · 10−2 1 · 10−1

2 2.2 · 100 7.7 · 10−1 1.3 · 10−2 2.3 · 100

3 4.9 · 100 1.8 · 100 1.8 · 10−2 5.3 · 100

4 2.9 · 100 1.1 · 100 4.4 · 10−2 3.1 · 100

5 1 · 10−1 4.5 · 10−2 1.3 · 10−2 1.2 · 10−1

6 4 · 10−1 1.7 · 10−1 3.1 · 10−2 4.4 · 10−1

7 6.4 · 10−2 2.1 · 10−2 8.5 · 10−3 6.8 · 10−2

8 9.2 · 10−2 3.4 · 10−2 1.3 · 10−3 9.8 · 10−2

9 7.5 · 10−2 2.8 · 10−2 1.1 · 10−3 8 · 10−2

10 6.9 · 10−2 2.5 · 10−2 1.8 · 10−3 7.3 · 10−2

11 5.7 · 10−2 2.1 · 10−2 1.2 · 10−3 6.1 · 10−2

12 5.4 · 10−2 2 · 10−2 1.5 · 10−3 5.8 · 10−2

13 3.5 · 10−2 1.4 · 10−2 1.8 · 10−3 3.8 · 10−2

14 4.4 · 10−3 2.6 · 10−3 4.8 · 10−3 7 · 10−3

Table 5.25: NP - Strategy D2: ∆v values

Figure 5.42: NP - Strategy D2: behaviour of ∆v

The percentage of the inspection is increased from 54% to 59%. Again, there is an
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increment in the total inspection time, as expected, leading to the higher value obtained
so far.

Figure 5.43: NP - Strategy D2: percentage of the phases

Cycle 1 2 3 4 5 6 7 8

∆tfilt (s) 3971 405 632 2200 1479 499 407 344

∆tinsp (s) 8300 3858 1183 2218 5077 3764 3856 3919

Cycle 9 10 11 12 13 14

∆tfilt (s) 282 246 223 207 194 181

∆tinsp (s) 3981 4017 4040 4056 4069

Table 5.26: NP - Strategy D2: phase times

5.1.13 Resume

In conclusion, a comparison between the total inspection time and the total cost in terms
of ∆v has been made for each of the strategy. Fig. 5.44 shows the results. The total
region has been divided into 4 quadrants:

1. top left : high cost and low inspection time (red region);

2. bottom left : low cost but low inspection time (yellow region);

3. top right : high inspection time but high cost (yellow region);

4. bottom right : low cost and high inspection time (green region).

In order to maximize the inspection time and reduce the cost of the mission to the
minimum, the green region is the one with the better strategies. In addition, the color
of the marker indicates the quality of the algorithm, in terms of the behaviour of the
covariance and the associated error:

• red: the covariance’s dimensions increase too much, with a risk of collision with the
target;
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• blue: the error goes out of the covariance limits, leading to an incorrect estimation
of the position of the satellite;

• green: good behaviour of the covariance and the error.

Considering the strategies in the green region, shown in Fig. 5.45, the blue ones, D2dv
and D2cov, are the best in terms of inspection time, but the behaviour of the error leads
to discard these two strategies. Then, among the green ones, B2dv, B2cov, C1 and D1,
shown in Fig. 5.45, the first three have a similar inspection time and cost, while the D1
has a little lower inspection time and a little higher cost. Another aspect to consider is
also the degree of autonomy: in fact, the strategy D1 can be considered fully autonomous
and, since the cost and the inspection time are similar to the ones with lower degree of
autonomy, this can be considered the best strategy.

Figure 5.44: NP - Comparison of the different strategies

Figure 5.45: NP - Comparison of the different strategies (zoom)
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5.1.14 Visibility analysis

In the following paragraph, the green strategies in the green region marked in Fig. 5.45
are analyzed. In particular, a further step to simulate a real scenario is made: since
Envisat is a tumbling spacecraft, the measurement model has been updated following the
steps shown in Sect. 3.3, to have a tumbling target. Then, the visibility, in the sense
of what face is seen and for how many seconds, has been analyzed. The results for each
strategy are shown below, while the initial conditions are reported in Tab. 4.3.

Strategy B2 - Minimum ∆vtot

Fig. 5.46 reports for how much time in seconds each face is seen by the deputy, assuming
that the camera is always pointed towards the center of mass of the target. As it can be
seen, there is an increase in the faces 1, 3, 6 and a decrease in the faces 2, 4, 5, passing
from a fixed target configuration to a tumbling target configuration. This suggests that
in the fixed target case, the inspection phase has a sort of repetitiveness. In particular,
the inspection can occur almost always on the part of the nominal orbit from which the
faces 2, 4, 5 are visible. Also, in the case of tumbling target, the distribution of the visible
faces is more sparse than in the case of fixed target, as shown in Fig. 5.47. In particular,
there is a higher visibility during each inspection phase, while for the case of fixed target,
there is the possibility that one or more of the faces are not visible during some phases.

(a) Fixed target (b) Tumbling target

Figure 5.46: NP - Strategy B2: visibility time for each of the face

(a) Fixed target

(b) Tumbling target

Figure 5.47: NP - Strategy B2: visibility in time for each of the face
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Strategy B2 - Best covariance’s behaviour

Also for this strategy, the results are similar. There is an increase of visibility of faces 1, 3,
6, in the case of tumbling target. This can be due to the fact that the strategy is similar,
the only thing that changes is the time of flight spent for the manoeuvre. Again, the
distribution of the visibility of the faces is more sparse in the tumbling case, guaranteeing
that every faces is acquired by the camera at every inspection phase.

(a) Fixed target (b) Tumbling target

Figure 5.48: NP - Strategy B2: visibility time for each of the face

(a) Fixed target

(b) Tumbling target

Figure 5.49: NP - Strategy B2: visibility in time for each of the face

Strategy C1

This strategy presents the variation of the filter and the manoeuvre phases. This means
that the inspection will be performed in different parts of the nominal orbit, leading
to a more sparse distribution of the visibility time. As it can be seen in Fig. 5.50,
unfortunately, the distribution is not as sparse as expected, maybe because the strategy
assumes a kind of pattern, in which the phases last a similar time, leading again to a
repetition of inspection phase along the same part of the orbit. Again, the tumbling case
guarantees a better visibility time for each inspection phase.
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(a) Fixed target (b) Tumbling target

Figure 5.50: NP - Strategy C1: visibility time for each of the face

(a) Fixed target

(b) Tumbling target

Figure 5.51: NP - Strategy C1: visibility in time for each of the face

Strategy D1

The autonomous strategy presents a very low visibility for the faces 3, compared to the
other ones, one order of magnitude lower in the fixed target configuration. Since the
nominal orbit is planar, this suggests that the face 3 is in an unfavourable position, given
by the initial conditions. In Fig. 5.52, the visibility time is reported and it can be noticed
that the absolute value for some faces is higher in the fixed target configuration, but
the tumbling target configuration offers a better distribution of the face visibility at each
inspection phase, as Fig. 5.53 shows.

(a) Fixed target (b) Tumbling target

Figure 5.52: NP - Strategy D1: visibility time for each of the face
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(a) Fixed target

(b) Tumbling target

Figure 5.53: NP - Strategy D1: visibility in time for each of the face

A final analysis has been carried out: for all the strategies presented before, with the fixed
and tumbling target configurations, the visibility time of each of the faces with respect to
the inspection time, in this case 12 hours of inspection, has been reported in Fig. 5.54. As
it can be seen, for all the tumbling target cases, there is a more homogeneous increment
for each of the faces, while in the fixed target case, the increment is more irregular,
leading to a more sparse visibility time of the faces after 12 hours of inspection. Among
the strategies with a tumbling target configurations, all of them reaches a maximum of 5
hours of visibility for at least one face, after 12 hours of inspection, in a one day mission
and a minimum of at least 3 hours for every face, except for the strategy D1.

Figure 5.54: NP - Visibility time vs inspection time for each of the strategy
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5.2 Perturbed case

In this chapter, the results of the simulation with the external dynamics represented by
the perturbed NERM and the on-board dynamics represented by the HCW are exposed.

5.2.1 Strategy A1

Following the steps of Sect. 5.1.1, this first strategy considers all the phases with a fixed
time, adding the perturbation term due to J2. The specific time for each phases are listed
in Tab. 5.27.

Parameter Value

∆tfil 6007 s
∆tman 3003 s
∆tinsp 3003 s

Table 5.27: P - Strategy A1: values of time intervals

Taking into account Fig. 5.55, it can be noticed that the trend of the covariance computed
is quite good: except for the inspection phase of the first cycle, the graph develops in a
regular way, and it does not suggest the presence of expensive manoeuvres.

Figure 5.55: P - Strategy A1: behaviour of the covariance (zoom)

On the other hand, the behaviour of the error components in Fig. 5.56 is not the best
among those exposed previously. Specifically, the y-component error is the most relevant
term, due to the ”shifting effect” given by nonlinear and, mostly, perturbation terms.
This effect grows along the simulation time, together with the other error components.

Figure 5.56: P - Strategy A1: behaviour of the error (zoom)

Regarding the fuel consumption, the cost of each manoeuvre, shown in Tab. 5.28, could
be considered higher than the unperturbed strategies but, unlike those, the ∆v limits
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related to each burn (that will be imposed also in the perturbed case) would be already
satisfied.

Manoeuvre ∆vx ∆vy ∆vz |∆v|
(#) (cm/s) (cm/s) (cm/s) (cm/s)

1 6.8 · 10−1 2 · 10−1 2.4 · 100 2.5 · 100

2 1.4 · 100 7 · 10−2 9.7 · 10−1 1.7 · 100

3 5 · 10−1 8.7 · 10−2 1 · 100 1.2 · 100

4 7.5 · 10−2 1.9 · 10−1 8 · 10−1 8.1 · 10−1

5 1 · 100 1.6 · 10−1 4.1 · 10−1 1.1 · 100

6 3.4 · 10−1 1.3 · 10−1 1.1 · 10−1 3.8 · 10−1

7 7.6 · 10−1 1.3 · 10−1 7 · 10−2 7.8 · 10−1

Table 5.28: P - Strategy A1: ∆v values

This phenomenon could be associated to the periodic pattern of the cycle: performing
the manoeuvre in the same point along the relative orbit and adopting specific dynamical
models, the deputy will be distant enough to perform a similar burn every cycle, as Fig.
5.57 shows.

Figure 5.57: P - Strategy A1: behaviour of ∆v

Finally, the Fig. 5.58 confirm the time partition imposed at the beginning of the strategy.

Figure 5.58: P - Strategy A1: percentage of the phases
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5.2.2 Filter Analysis 1/2

The same analysis presented in Sect. 5.1.2 has been performed using the perturbed
model and the results are shown in Fig. 5.59. In this case, after one orbit, the covariance
reaches a value slightly higher than in the unperturbed case, due to the different nature
of the external dynamics. In addition, the error needs more time to stabilize and reach
an asymptote. Again, the value of time delay is the same for each of the sample. The
last value of time delay selected for which the error is contained in the band is 3967 s,
three second lower than the unperturbed case, which corresponds to a dimension of the
covariance of 3 m, the same value found in the unperturbed case. This time has been set
for the filter phase in the next strategy.

Figure 5.59: P - Delay time for each sample

5.2.3 Strategy A2

For this strategy, the time of the phases used are reported in Tab. 5.29:

Parameter Value

∆tfil 3967 s
∆tman 3003 s
∆tinsp 3003 s

Table 5.29: P - Strategy A2: values of time intervals

Starting from the covariance discussion, as it can be seen in Fig. 5.60, it has a worse
development, reaching higher peaks with respect to the previous strategy. This can be
a sign that, despite a decrease in the filter time, the concept of the strategy does not
contribute in an efficient way to the improvement of the algorithm.
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Figure 5.60: P - Strategy A2: behaviour of the covariance

Regarding the error, the y-component grows until it exits the covariance, while x and
z-components remains in the limits imposed, as shown in Fig. 5.61

Figure 5.61: P - Strategy A2: behaviour of the error (zoom)

Instead, the cost of the burns starts to be interesting. As it can be seen in Tab. 5.30, both
the x and z-components provide high contributions in terms of ∆v. This can be explained
through the changing of the dynamical model for the external simulation environment.
In fact, as Figs. 2.5 and 2.6b show, after one orbital period, while the y-component error
tends to decrease, the others increase. This is why the main ∆v contributions are given
by x and z coordinates.

Manoeuvre ∆vx ∆vy ∆vz |∆v|
(#) (cm/s) (cm/s) (cm/s) (cm/s)

1 6.3 · 10−1 1.1 · 10−1 1.3 · 100 1.4 · 100

2 1.2 · 100 5.3 · 10−2 1.1 · 100 1.7 · 100

3 2.1 · 100 3.6 · 10−3 8.6 · 10−1 2.3 · 100

4 1.2 · 100 7.9 · 10−2 1.3 · 101 1.3 · 101

5 3 · 100 1.8 · 10−1 4.1 · 100 5.1 · 100

6 1.3 · 100 1.7 · 10−1 4.6 · 10−1 1.4 · 100

7 1.6 · 100 1 · 10−1 7.2 · 100 7.3 · 100

8 5.8 · 10−1 2.7 · 10−2 3.7 · 10−1 6.9 · 10−1

9 5 · 10−1 7.4 · 10−2 6.4 · 10−1 8.1 · 10−1

Table 5.30: P - Strategy A2: ∆v values

The Fig. 5.62 underlines the importance of the z-component of the ∆v in this new
simulation environment.
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Figure 5.62: P - Strategy A2: behaviour of the ∆v

As expected, the inspection phase time increases by inserting the new filter time, that is
lower than the previous one.

Figure 5.63: P - Strategy A2: percentage of the phases

5.2.4 Filter Analysis 2/2

Now, the conditions presented in Sect. 5.1.4 will introduce, as reported below:

• minimum phase time: for the first cycle, the minimum value of time for the conver-
gence of the filter is 3967 s, found in Sect. 5.2.2;

• error between UKF and nominal orbit : when the deputy’s estimated state from the
UKF is way too far from the nominal trajectory given by the HCW, the filter phase
will be stopped and a station keeping manoeuvre will be performed to re-position
the deputy on the nominal orbit. Also in this case, an error of 5 m has been chosen;

• maximum size of the covariance: the covariance size has been limited to 3 m, which
is the condition for the convergence of the filter considered in the previous filter
analysis of the Sect. 5.2.2;

• divergence control : the mean coming from the UKF must be contained inside the
associated covariance. In this way, any diverging behaviour of the filter can be
suppressed.
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5.2.5 Strategy B1

This strategy will use a variable filter, which will stop according to the conditions imposed
in Sect. 5.2.4, while the manoeuvre and the inspection phase times will remain fixed, as
listed in Tab. 5.31:

Parameter Value

∆tfil,1 (s) 3967
∆tfil (s) variable
∆tman (s) 3003
∆tinsp (s) 3003

Table 5.31: P - Strategy B1: values of time intervals

The trend in Fig. 5.64 assumes high peaks, that lead to obtain a bad behaviour of
covariance.

Figure 5.64: P - Strategy B1: behaviour of the covariance

In Fig. 5.65, the errors do not improve, and in the inspection phases the y-component
sometimes exits from the covariance limit profile.

Figure 5.65: P - Strategy B1: behaviour of the error (zoom)

The behaviour of the covariance is affected by the cost of the manoeuvres, where, in this
case, they request more ∆v than in other strategies, exceeding the upper limit, as Tab.
5.32 and Fig. 5.66 underline. Except for the 6th manoeuvre, the trend of ∆v of each burn
results linear and regular.
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Manoeuvre ∆vx ∆vy ∆vz |∆v|
(#) (cm/s) (cm/s) (cm/s) (cm/s)

1 1.1 · 100 9.2 · 10−2 4.3 · 100 4.4 · 100

2 3.2 · 10−1 1.2 · 10−1 9.9 · 10−1 1.1 · 100

3 1.3 · 10−1 6.6 · 10−2 1.5 · 100 1.5 · 100

4 6.8 · 10−1 1 · 10−1 9.8 · 10−1 1.2 · 100

5 8.2 · 10−1 9.8 · 10−2 4.5 · 100 4.6 · 100

6 7.9 · 10−2 3 · 10−2 2.6 · 101 2.6 · 101

7 4.5 · 10−1 1 · 10−1 5.8 · 100 5.8 · 100

8 1 · 100 9.9 · 10−2 5.3 · 100 5.4 · 100

9 6.1 · 10−1 8.7 · 10−2 9.8 · 10−1 1.2 · 100

10 1.9 · 100 2.1 · 10−1 9.6 · 10−1 2.2 · 100

11 3.1 · 100 1.9 · 10−1 1.1 · 10−1 3.1 · 100

12 5.6 · 10−2 1.2 · 10−1 3.4 · 10−1 3.7 · 10−1

Table 5.32: P - Strategy B1: ∆v values

Figure 5.66: P - Strategy B1: behaviour of the ∆v

Regarding the total phase time, the inspection earns a lot of time, passing from 28% to
37%, shown in Fig. 5.67. The filter phase time varies a lot during the simulation, as
reported in Tab. 5.33.

Figure 5.67: P - Strategy B1: percentage of the phases
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Cycle 1 2 3 4 5 6 7 8

∆tfil (s) 3968 1881 664 670 654 1809 3236 1912

Cycle 9 10 11 12

∆tfil (s) 1818 633 767 1194

Table 5.33: P - Strategy B1: filter phase times

5.2.6 ∆V Analysis

As it can been seen also in the unperturbed case described in Sect. 5.1.6, starting from
the results of Fig. 4.4, the ∆v analysis has been performed.
To understand better the density of the data in the Sect. 4.4, also here an interpolating
function (20th order) has been extrapolated. Then, the median has been evaluated and
this value has been considered to be the center value of the interval that will be analyzed
afterwards. First of all, the size of the interval is chosen in such a way to include the 99%
of the data closed to the median. From here, through observation of the distribution of
data, as soon as the time range is widened to the 99.9%, as it can be seen from Fig. 5.68,
the interval comprehends ToFM till 2145 s, which is lower than the previous time of half
orbit period. Unlike the Fig. 5.15, the interval of 99.9% can be chosen, due to the fact
that this one satisfies the request to reduce the ToFM .

Figure 5.68: P - Density probability of ToFM extracted from Sect. 4.4

So, lower and upper boundary are, respectively, 339 s and 2145 s, avoiding about 20% of
the time considered at the beginning of the analysis, with a median of 734 s. Now, this
interval has been divided into 10 values of ToFM (boundary values included) and these
are used in the simulation algorithm. Using the different times, the corresponding total
∆v of the mission (over one day) obtained is shown in Fig. 5.69. Each of the cases has
been analyzed to guarantee the satisfaction of the maximum ∆vtot and the maximum ∆v
for every single manoeuvre. As the graph shows, the trend tends to stabilize towards
increasing ToFM . Starting from this consideration, also in the perturbed case, the results
have been customized imposing some upper limits. The red region indicates the values of
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∆vtot which are too high compared with the others (> 80 cm/s, where the behaviour of
the covariance is also not good), while the green regions indicate the interval that will be
further analyzed. Unlike the Fig. 5.16, another zone has been identified and colored in
yellow, and it is characterized by the dissatisfaction of the threshold imposed on each ∆v
component. This area can be considered less severe than the red region, because the ∆vtot
is comparable with the green region, but in some manoeuvre the components overlap the
fixed upper limit.

Figure 5.69: P - ∆vtot for the 10 values of ToFM studied

The graphs has 2 green regions, so, they will be analyzed one at a time. The first one has
a time interval, that starts from 820 s and reach 1050 s. Divided again into 5 values, the
upper values has been excluded to highlight the minimum values. Also here, the yellow
regions are present due to high ∆v for some manoeuvres.

Figure 5.70: P - ∆vtot for the 5 values of the first interval studied

Instead, in the second green region, a higher ToFM interval is highlighted, and the trend
of ∆vtot decreases at increasing of ToFM . Starting from 1390 s to 2150 s, the area has
been divided again into 15 values and, once again, only minimum values that satisfy the
conditions have been considered.
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Figure 5.71: P - ∆vtot for the 15 values of the second interval studied

From Fig. 5.70 and Fig. 5.71, two ToFM values have been selected for the next simula-
tions: the one with the minimum ∆vtot in the second interval (2145 s) and the one with
the minimum ∆vtot in the first interval and the best covariance behaviour (938 s) among
the values of the green regions.

Figure 5.72: P - ∆v analysis approach

5.2.7 Strategy B2

Minimum ∆v - first interval

The time used in the simulation are listed in Tab. 5.34:

Parameter Value

∆tfil,1 (s) 3967
∆tfil (s) variable
∆tman (s) 938
∆tinsp (s) 3003

Table 5.34: P - Strategy B2: values of time intervals

In this case, the trend of the covariance is better with respect to the previous one, re-
maining most of the time in a good range, not exceeding 60 m.
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Figure 5.73: P - Strategy B2: behaviour of the covariance

Except for some peaks (due to y-component), the error behaviour in Fig. 5.74 is quite
good and some improvements are obtained.

Figure 5.74: P - Strategy B2: behaviour of the error (zoom)

As expected, the cost of the manoeuvres in this strategy remains contained by the choice
of ToFM , under 10 cm/s.

Manoeuvre ∆vx ∆vy ∆vz |∆v|
(#) (cm/s) (cm/s) (cm/s) (cm/s)

1 2.7 · 100 2.7 · 100 8.1 · 10−2 3.8 · 100

2 3.4 · 10−1 2.7 · 10−1 1.5 · 10−2 4.3 · 10−1

3 7.6 · 10−1 6.8 · 10−1 2.2 · 10−2 1 · 100

4 4.2 · 100 4.1 · 100 4.1 · 10−2 5.9 · 100

5 6 · 100 5.6 · 100 5.1 · 10−2 8.2 · 100

6 2.8 · 100 2.7 · 100 8.8 · 10−2 3.9 · 100

7 2.5 · 100 2.4 · 100 1.3 · 10−2 3.5 · 100

8 4.9 · 100 4.8 · 100 1.2 · 10−2 6.9 · 100

9 2.2 · 100 2.1 · 100 5.8 · 10−2 3 · 100

10 1.7 · 100 1.5 · 100 1.3 · 10−2 2.3 · 100

11 8.7 · 10−1 7.3 · 10−1 1.2 · 10−2 1.1 · 100

12 5.5 · 100 5.3 · 100 1.8 · 10−2 7.6 · 100

13 2.9 · 100 2.7 · 100 8 · 10−2 4 · 100

14 3.2 · 100 3.1 · 100 1.5 · 10−2 4.5 · 100

15 5 · 10−1 3.5 · 10−1 1.7 · 10−2 6.1 · 10−1

16 5.2 · 100 5 · 100 3.6 · 10−2 7.2 · 100

Table 5.35: P - Strategy B2: ∆v values

Each ∆v component satisfies the limit condition of 10 cm/s, and the z-component returned
to have the smallest contribution of them.
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Figure 5.75: P - Strategy B2: behaviour of ∆v

From Fig. 5.10, the inspection time makes a big leap forward, achieving 55% of the entire
simulation, as Fig. 5.76 shows. The choice to select a small ToFM had a big contribution
to the maximization of the inspection time. Also, the variable filter stays under the first
fixed time, reducing the total time, as shown in Tab. 5.36.

Figure 5.76: P - Strategy B2: percentage of the phases

Cycle 1 2 3 4 5 6 7 8

∆tfil (s) 3968 1329 464 640 1575 1785 1365 1328

Cycle 9 10 11 12 13 14 15 16

∆tfil (s) 1695 1211 1008 699 1729 1408 1452 1096

Table 5.36: P - Strategy B2: filter phase times

Minimum ∆v - second interval

On the other hand, selecting the second time of flight from the analysis, as reported in
Tab. 5.37, the results are the following.
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Parameter Value

∆tfil,1 (s) 3967
∆tfil (s) variable
∆tman (s) 938
∆tinsp (s) 3003

Table 5.37: P - Strategy B2: values of time intervals

The covariance assumes values even smaller, staying under 30 m, half the value of the
previous case.

Figure 5.77: P - Strategy B2: behaviour of the covariance

In Fig. 5.78, the error exiting from the limits is still too evident.

Figure 5.78: P - Strategy B2: behaviour of the error (zoom)

In according to the new ToFM , the ∆v decreases, making this strategy one of the less
expensive, as Tab. 5.38 and Fig. 5.79 report.
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Manoeuvre ∆vx ∆vy ∆vz |∆v|
(#) (cm/s) (cm/s) (cm/s) (cm/s)

1 1.6 · 100 4.8 · 10−1 6.9 · 10−2 1.7 · 100

2 4.9 · 10−1 1.4 · 10−1 2.1 · 10−2 5.2 · 10−1

3 2.3 · 10−1 6 · 10−2 1.4 · 10−2 2.4 · 10−1

4 2 · 10−1 5 · 10−2 1.3 · 10−2 2.1 · 10−1

5 4.1 · 10−1 9 · 10−2 1.6 · 10−2 4.2 · 10−1

6 1.7 · 100 3.8 · 10−1 1.3 · 10−2 1.7 · 100

7 2.5 · 100 5.7 · 10−1 9.6 · 10−3 2.6 · 100

8 3.8 · 10−2 7.5 · 10−2 1 · 10−2 8.5 · 10−2

9 9.8 · 10−1 2.9 · 10−1 5.8 · 10−3 1 · 100

10 7.2 · 10−1 2.2 · 10−1 2.1 · 10−2 7.5 · 10−1

11 1 · 100 2.9 · 10−1 1.4 · 10−2 1.1 · 100

12 3.1 · 10−1 1.3 · 10−1 1.7 · 10−2 3.3 · 10−1

13 4.3 · 10−1 1.2 · 10−1 1 · 10−2 4.4 · 10−1

14 3.2 · 10−1 4.4 · 10−2 6.3 · 10−3 3.2 · 10−1

15 5.8 · 10−1 2 · 10−1 6.4 · 10−3 6.2 · 10−1

Table 5.38: P - Strategy B2: ∆v values

Figure 5.79: P - Strategy B2: behaviour of the ∆v

Overall the strategy gains inspection time, but not as much as the previous strategy, due
to the bigger ToFM .

Cycle 1 2 3 4 5 6 7 8

∆tfil (s) 3967 762 489 393 382 456 747 904

Cycle 9 10 11 12 13 14 15

∆tfil (s) 423 583 552 605 472 443 443

Table 5.39: P - Strategy B2: filter phase times
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Figure 5.80: P - Strategy B2: percentage of the phases

5.2.8 Manoeuvre Analysis

Again, following the same steps of the Sect. 5.1.8, the new minimization problem is
introduced, selecting the boundary from the previous ∆v analysis, as reported in Tab.
5.40. The interval has been chosen including the yellow region to include both the green
interval and the guess for the TOFM has been selected from the first green interval because
it is the lowest value.

Parameter Value

ToFmin (s) 820
ToFmax (s) 2150
∆vi,j (cm/s) 10
∆vf,j (cm/s) 10
ToFguess (s) 983
∆vi,j,guess (cm/s) 10−2

Table 5.40: P - Boundary constrains of the minimization problem

where the apex j points each component of the vector considered, meanwhile i and f
mean, respectively, initial and final time.

5.2.9 Strategy C1

This strategy will implement the new minimization problem, in order to vary the ma-
noeuvre time.

Parameter Value

∆tfil,1 (s) 3967
∆tfil (s) variable
∆tman (s) variable
∆tinsp (s) 3003

Table 5.41: P - Strategy C1: values of time intervals
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Similar to the previous strategy, the trend of the covariance shown in Fig. 5.81 seems
good, despite some high values that remains under 50 m.

Figure 5.81: P - Strategy C1: behaviour of the covariance

The error is affected by the usual effect on y-component, leading to the behaviour shown
in Fig. 5.82.

Figure 5.82: P - Strategy C1: behaviour of the error

From the behaviour of the covariance, the manoeuvres does not seem too much expensive,
and this is proven by Tab. 5.42. All the values remain in the upper limit of 10 cm/s.

Manoeuvre ∆vx ∆vy ∆vz |∆v|
(#) (cm/s) (cm/s) (cm/s) (cm/s)

1 1.3 · 100 5.6 · 10−1 7.5 · 10−2 1.4 · 100

2 2.8 · 100 1.4 · 100 1.9 · 10−2 3.1 · 100

3 4.9 · 100 2.5 · 100 2.3 · 10−2 5.5 · 100

4 1.1 · 100 4.2 · 10−1 9.3 · 10−2 1.2 · 100

5 1.1 · 100 2.7 · 10−1 9.1 · 10−3 1.2 · 100

6 3.7 · 100 1.9 · 100 6.2 · 10−2 4.1 · 100

7 4.1 · 100 1.5 · 100 1.2 · 10−1 4.4 · 100

8 1.7 · 100 8.4 · 10−1 6.5 · 10−2 1.9 · 100

9 8.1 · 10−1 2.2 · 10−1 1.5 · 10−1 8.5 · 10−1

10 1.2 · 100 3.1 · 10−1 8.7 · 10−2 1.2 · 100

11 1 · 100 4.7 · 10−1 2.8 · 10−2 1.1 · 100

12 3.4 · 100 2.1 · 100 4.6 · 10−2 4 · 100

13 1.2 · 100 4.8 · 10−1 3.6 · 10−2 1.3 · 100

14 3 · 10−1 9.7 · 10−2 6.1 · 10−2 3.2 · 10−1

15 3.8 · 10−1 2.4 · 10−1 1.4 · 10−2 4.5 · 10−1

Table 5.42: P - Strategy C1: ∆v values
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Figure 5.83: P - Strategy C1: behaviour of ∆v

Unfortunately, the inspection time did not gain further advantages with respect to the
previous strategy. This similar result is obtained also in the unperturbed case, where,
also there, the strategies B seem better than the autonomous one.

Figure 5.84: P - Strategy C1: percentage of the phases

Finally, as soon as the behaviour of the covariance tends to be smaller and stable, the
filter phase time decreases, while for the manoeuvres it can be seen a constant trend in
Tab. 5.43.

Cycle 1 2 3 4 5 6 7 8

∆tfil (s) 3968 683 1031 1712 779 649 1288 1581

∆tman (s) 1826 1494 1490 1826 2272 1500 1847 1613

Cycle 9 10 11 12 13 14 15

∆tfil (s) 975 652 614 730 1344 791 601

∆tman (s) 2210 1928 1482 1378 2051 1825 1482

Table 5.43: P - Strategy C1: phase times
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5.2.10 Inspection phase analysis

For what concern the inspection phase, the same conditions of Sect. 5.1.10 has been
introduced to vary the inspection phase. In fact, from the validation of the models in
Sect. 2.5, the same bands of the unperturbed case has been kept, as shown in Fig.
5.85. The bands indicates the stopping zones of the inspection phase, in order to make
a favourable manoeuvre when the error is lower. In particular, the bands are positioned
before a depression of the x-component error, while the y-component is more difficult to
control. Again, the area dedicated for the final part of the inspection are, respectively, at
1/3 (about 2000 s) and at 5/6 (about 5000 s) of the nominal orbit.

Figure 5.85: P - HCW-NERMJ2 comparison

5.2.11 Strategy D1

In this strategy, that is defined as ”autonomous” due to the addition of the condition
imposed in Sect. 5.2.10, the values of time used are shown in Tab. 5.44.

Parameter Value

∆tfil,1 (s) 3967
∆tfil (s) variable
∆tman (s) variable
∆tinsp (s) variable

Table 5.44: P - Strategy D1: values of time intervals

It can be seen that the behaviour of the covariance is quite good. At the beginning of
Fig. 5.86, the algorithm tries to find a stability, that is obtained only in the second half
of the simulation.
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Figure 5.86: P - Strategy D1: behaviour of the covariance

Unfortunately, Fig. 5.87 shows that y-component does not reenter in the covariance
limit, but this strategy can be defined as the best one in terms of the covariance and error
behaviours.

Figure 5.87: P - Strategy D1: behaviour of the error

The absence of peaks in Fig. 5.86 means that every manoeuvres satisfies the ∆v bound-
aries imposed as proved by Tab. 5.45 and Fig. 5.88. Also, the higher values are in the
first half of the simulation as expected.

Manoeuvre ∆vx ∆vy ∆vz |∆v|
(#) (cm/s) (cm/s) (cm/s) (cm/s)

1 1.6 · 100 9.4 · 10−1 7.6 · 10−2 1.8 · 100

2 2.9 · 100 1.4 · 100 2.4 · 10−2 3.3 · 100

3 4.2 · 100 1.9 · 100 1.7 · 10−2 4.6 · 100

4 3.4 · 100 1.6 · 100 3.5 · 10−2 3.7 · 100

5 4.5 · 100 2.2 · 100 3.7 · 10−2 5 · 100

6 4.7 · 100 1.9 · 100 1.4 · 10−1 5.1 · 100

7 1.5 · 100 5.7 · 10−1 7.3 · 10−2 1.6 · 100

8 8.3 · 10−2 5.3 · 10−2 9.9 · 10−2 1.4 · 10−1

9 2 · 100 1 · 100 3.7 · 10−2 2.3 · 100

10 1.8 · 100 6.4 · 10−1 4.1 · 10−2 1.9 · 100

11 1.2 · 100 6.1 · 10−1 7.2 · 10−2 1.3 · 100

12 5.5 · 10−1 1.6 · 10−1 2.6 · 10−2 5.7 · 10−1

13 7.9 · 10−1 3.8 · 10−1 8.3 · 10−3 8.8 · 10−1

14 4.7 · 10−1 1.8 · 10−1 5.6 · 10−2 5.1 · 10−1

15 3.5 · 10−1 2.6 · 10−1 1.1 · 10−1 4.5 · 10−1

Table 5.45: P - Strategy D1: ∆v values
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Figure 5.88: P - Strategy D1: behaviour of ∆v

Unlike the unperturbed case, Fig. 5.89 shows that the inspection phase time cannot
compete against the strategy B2, which remains at 46% of the total simulation time.

Figure 5.89: P - Strategy D1: percentage of the phases

As it happens in other strategies, the second half of simulation time tends to follow a cycle
with duration equal to one orbit time. For this reasons, the time of the phases result little
variable, as Tab. 5.46 shows.

Cycle 1 2 3 4 5 6 7 8

∆tfil (s) 3968 1001 2141 2234 1752 1943 1873 1001

∆tman (s) 1485 1568 1558 1552 1510 1572 1706 1481

∆tinsp (s) 2555 1436 1759 2319 2346 2330 3440 3525

Cycle 9 10 11 12 13 14 15

∆tfil (s) 997 1003 1005 999 1004 996 1005

∆tman (s) 1484 1693 1482 1826 1482 1826 1515

∆tinsp (s) 3522 3313 3524 3180 3524 3180

Table 5.46: P - Strategy D1: phase times
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5.2.12 Strategy D2

Let’s take a step back again. As in Sect. 5.1.12, the strategy B2 is modified introducing
the conditions explained in Sect. 5.2.10 to make variable the inspection phase time. Both
of the values of ToFM used in the strategy B2 will be analyzed to understand if this choice
can give advantages with respect to the autonomous case.

Minimum ∆vtot - first interval

Selecting the ToFM of Sect. 5.2.7, as reported in Tab. 5.47, the results are the following.

Parameter Value

∆tfil,1 (s) 3967
∆tfil (s) variable
∆tman (s) 938
∆tinsp (s) variable

Table 5.47: P - Strategy D2: values of time intervals

In Fig. 5.90, it can be noticed that this strategy mission cannot be chosen and performed.
At the beginning, the algorithm offers some inspection phases, but during the simulation
this phase is deleted. This phenomenon is due mainly to the expensive manoeuvres, that
lead to remove any inspection phases from the 6th cycle, where ∆tinsp does not exist,
because the stopping conditions result already satisfied from the first time instant of the
phase.

Figure 5.90: P - Strategy D2: behaviour of the covariance

Briefly, Fig. 5.91 reports also that the trend of ∆v grows to reach unfeasible values,
passing from the order of cm/s to thousands of km/s.
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Figure 5.91: P - Strategy D2: behaviour of the ∆v

Accordingly, this strategy must be discard and will not be exposed in the strategy com-
parison in Sect. 5.2.13.

Minimum ∆vtot - second interval

Unfortunately, changing the ToFM as in Sect. 5.2.7, reported in Tab. 5.48, the behaviour
of the covariance in Fig. 5.92 does not provide good results, similar to the previous case.
In fact, also here, the reasons of this ”explosion” is due to the cost of manoeuvres, that
tends to increase during the simulation time.

Parameter Value

∆tfil,1 (s) 3967
∆tfil (s) variable
∆tman (s) 2145
∆tinsp (s) variable

Table 5.48: P - Strategy D2: values of time intervals

Figure 5.92: P - Strategy D2: behaviour of the covariance

Again, in Fig. 5.93, the behaviour of the ∆v is characterized by good values (as it can
be seen also in the above plot) at the beginning until the 5th cycle, where the algorithm
does not offer more feasible manoeuvres, reaching orders of tens of m/s.
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Figure 5.93: P - Strategy D2: behaviour of the ∆v

In conclusion, also this strategy is discarded and will not be considered in the final results
section.

5.2.13 Resume

At the end of the presentation of the perturbed strategies, a comparison between the total
inspection time and the total cost in terms of ∆v has been made for each of them. Figure
5.94 shows the result. The total region has been divided into 4 quadrants, as in Sect.
5.1.13, and the color of the marker indicates the quality of the algorithm, in terms of the
behaviour of the covariance and the associated error.
Considering the right side of the graph, the blue one laying in the upper area, B21st is the
best in terms of inspection time, but the behaviour of the error and the high total cost
lead to discard it. Then, in the green region, B22nd and C1 are better than D1, because
they spend ∆vtot with a similar inspection time, but they have the same problem of B21st.
So, D1 could be defined as the unique strategy that satisfies all parameters defined in Sect.
4.2. Another aspect to consider is also the degree of autonomy: in fact, the strategy D1
can be considered fully autonomous and, since the cost and the inspection time are similar
to the ones with lower degree of autonomy, this can be considered the best strategy.

Figure 5.94: P - Comparison of the different strategies
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5.2.14 Visibility analysis

Following the idea of Sect. 5.1.14, the green strategies in the green region marked before
should be analyzed, but, due to the problem about the error between GUT estimation
and the NERM state, not all of them will be taken into account. Specifically, the strategy
C1 has been discarded. Now, Envisat will be considered as a tumbling object, so the
measurement model has been updated following the steps shown in Sect. 3.3. Then, the
visibility, in the sense of what face is seen and for how many seconds, has been analyzed.
The results for both strategies are shown below, while the initial conditions are reported
in Sect. 4.3.

Strategy B2 - Minimum ∆vtot - second interval

Figure 5.95 reports for how much time in seconds each face is seen by the deputy, assuming
that the camera is always pointed towards the center of mass of the target. With respect
to Fig. 5.95a, the Fig. 5.95b shows an increasing in the faces 2 and 3, and a decreasing in
the other faces. In particular, the inspection of the fixed target may occur almost always
on the part of the nominal orbit from which the faces 1, 4, 5 are visible. Also, in the case
of tumbling target, the distribution of the visible faces is more sparse than in the case of
fixed target. Specifically, there is an higher visibility during each inspection phase, while
for the case of fixed target, there is the possibility that one or more of the faces are not
visible during some phases.

(a) Fixed target (b) Tumbling target

Figure 5.95: P - Strategy B2: visibility time for each of the face

(a) Fixed target

(b) Tumbling target

Figure 5.96: P - Strategy B2: visibility in time for each of the face
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Strategy D1

Instead, for this strategy, the distribution of the visible faces results irregular as Fig.
5.97a shows, where faces 2, 3, 4 are characterized by a poor visibility, while faces 1, 5
and 6 obtain good results. Passing from a fixed target configuration to a tumbling target
configuration, the trend changes, improving the situation of the overall visibility, but
maintaining the irregular behaviour.
As shown in Fig. 5.98, in the fixed case, only some faces have the possibility to be
inspected with some regularity, while for the case of tumbling target, Fig. 5.98b shows a
sort of continuity until almost the end of the simulation.

(a) Fixed target (b) Tumbling target

Figure 5.97: P - Strategy D1: visibility time for each of the face

(a) Fixed target

(b) Tumbling target

Figure 5.98: P - Strategy D1: visibility in time for each of the face

In conclusion, as presented in Sect. 5.1.14, a final analysis on the visibility time of
each faces during the 10.5 hours of inspection has been carried out. As it can be seen,
in the strategy B2, there is an improvement on the overall visibility in the tumbling
configuration, reaching a minimum of 2.4 hours for each of the faces, instead of 1.8 hours
for the fixed configuration. On the contrary, for the strategy D1, there is not a big
difference and some faces cannot be inspected for too long (almost an hour) in a one day
mission.
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Figure 5.99: P - Visibility time vs inspection time for each of the strategy
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Chapter 6

Inclined Football Orbit Mission

6.1 Strategy E

In this chapter, following the analysis about the planning of the inspection mission on
a single nominal orbit, the focus moves on an alternative idea. Taking into account the
theory of inclined football orbit, described in Sect. 2.3.2, the aim is to generate a strategy
changing the nominal orbit in such a way to increase the quality of the inspection mission,
avoiding to increase the ∆vtot and the size of the initial nominal orbit (adopting in the
other strategies) as much as possible. In respect of the previous chapter, the adoption of
this kind of relative orbit should bring benefits, for the possibility to move more also along
the 3rd axis ĥ, rarely considered until now. Specifically, this coordinate is managed by
α, while β indicates the highest and lowest of the orbit. Varying this parameter around
ĥ, the distance between the target and the two points remains constant. This aspect
cohabits with its disadvantage: the reduction of the size of the orbit.

6.1.1 Size of the relative orbit

As it has already mentioned, if one of the goals is to maintain or try to stay near the
reference orbit, a method to exploit these angles shall be found. To do that, the 3rd

coordinate of this kinematic model, ρ, can be used to understand the behaviour of the
combination between the angles.
For this treatment and the objective of the inspection mission, considering also the simu-
lation environment described before, an analysis can be applied to search the best inclined
orbits. To do that, define a range of ρ, α and β, as follow:

• ρ = 65 ↔ 95 m

• α = -90° ↔ 90°

• β = 0° ↔ 180°

A constraint is selected: the inclined orbits shall not enter in a sphere (of radius 50 m)
with the target in the center. This need is dictated by the size of the covariance and its
growth during the simulation time, and no orbit should be so close to the KOZ.
Figure 6.1 shows all the feasible and unfeasible combinations of α and β with a defined ρ.
As expected, some combinations of inclined orbits cannot be applied, because they do not
satisfy the constraint. Especially, for ρ equal to 65 m (initial parameter assumed also in
the previous strategies) not so many combinations can be adopted. Also for this reason,
the choice to consider others ρ is relevant. In fact, when the latter coordinate increases,
the number of combination improves, extending both ranges of α and β. Anyway, for the
upper limit assumed for ρ, the central region of all graphs remains unfeasible, and the
only way to fill it (so, to make valid also those combinations) is to get a ρ larger than
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200 m. This is connected to the effect of the β: since this value will be equal to 90°, the
relative orbit will be characterized by a major and minor axis that are the half of their
respective in the case of β = 0.

Figure 6.1: Orbit size analysis

From these results, the last detail to define before running the simulation is related to the
choice of the orbit in the simulation itself.

6.1.2 Selection of the inclined orbit

Due to the fact that this strategy focuses on the inspection phase, this thesis proposes
to change the three coordinates of the new kinematic model based on the quality of the
inspection, specially related to the partition of the visibility on each target’s face. Two
parameters have been identified for this scope:

• Percentage of inspection time spent to inspect only a face during the phase (also
called f%,1);

• Percentage’s ratio between the most visible face and the least corresponding one
(also called fratio);
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The first parameter could be affected by the distance. Due to the absence of the knowledge
of the target’s attitude, only ρ has been considered to correct this issue, and based on the
amplitude of the percentage, ρ can be varied also for some meters, in order to improve
the FoV of the camera and allow the visibility of the target.
The second parameter is connected more to the angles. Always based on the level of the
percentage, a combination of α and β can be applied to try remedy some shortcomings
given by the last inspection phases. In this thesis, if the selection of possible variations
of α and β for each cycle has been defined arbitrary and some values have been assumed,
on the other hand these assumed values must be compared to the boundary constraints
due to the necessity of the inclined orbit to stay at a certain distance from the KOZ. So,
from Sect. 6.1.1, upper and lower bounds have been selected for each ρ layer. Briefly, the
Fig. 6.2 resumes the methodology chosen and implemented in the algorithm. Starting
from fratio, 2 proposals of values of α and β are generated. These are only additive terms,
that will be added to the α0 and β0 already existing, generating αf and βf , respectively.
Then, following the choice of ρ by the fratio (and the resulting selection of limits of αc
and βc), the αf and βf shall satisfy the constraint. If not, the sign of the additive terms
shall be switched.

Figure 6.2: Algorithm scheme

After the selection of these parameters, the manoeuvre can be performed as described in
Sect. 5.1.8, but instead of reaching the initial nominal orbit again, a change of this will
be done. Following this explanation, some arbitrary values and limits have been assumed,
in according to the experience and the previous analysis in Sect. 6.1.1, and listed in Tab.
6.1.
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f%,1 boundaries
f%,1 ρ [m]

> 45 + 5
25 - 45 + 3
15 - 25 + 0
< 15 ρ - 3

(a) Percentage limits of f%,1
condition

f%,1 boundaries
ρ [m] α [deg] β [deg]

< 70 27 30
70 - 75 33 35
75 - 80 39 42
80 - 85 43 48
85 - 90 50 55
90 - 95 55 60

(b) α & β limits as function of
ρ

fratio boundaries [%]
fratio α [deg] β [deg]

< 10 ∓ 13 ± 9
10 - 30 ∓ 8 ± 7
30 - 60 ∓ 6 ± 4
> 60 ∓ 0 ± 2

(c) Percentage limits of fratio
condition

Table 6.1: Conditions of selection of inclined football orbit

In general, there are other two conditions to highlight:

• after a manoeuvre where α and β change, the deputy shall stay on the new inclined
orbit at least for two cycle. It means that the next burn has the purpose to bring
again the satellite in the same nominal orbit;

• after three manoeuvres where the magnitude of α and β increase, a change of sign
is imposed for the next three manoeuvres. This is useful to avoid exceeding the
boundary constraints of angles and to reduce ρ;

Obviously, the increasing or decreasing of ρ leads to increasing or decreasing of ∆v,
respectively.
Following, this part will be inserted into the autonomous algorithm to be tested in an
unperturbed environment. Unlike the Sect. 5.1.11, the part related to the stopping
zones, described in Sect. 5.31, has been neglected, maintaining the other conditions for
the inspection phase.

6.1.3 Results

Fixed configuration

The algorithm has been tested only in unperturbed case. First of all, considering Tabs.
4.4 and 4.2, the results are defined for target’s fixed configuration. Now follow a possible
solution of this new update of algorithm.
The behaviour of the covariance is affected by the inspection phase conditions imposed in
Sect. 5.1.10 and, as expected, it has a good trend. As it can be noticed just seeing, the
green zones incremented their length. The same can be said for the error, that respect the
covariance boundaries in the most of the simulation time. In the Fig. 6.3, the comparison
between the real trajectory and the path seen by the deputy is present, providing that,
from the initial relative orbit, the satellite achieves points outside the classical nominal
orbit, adopting inclined orbit generated by the combination of f%,1 and fratio.
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Figure 6.3: NP - Strategy E1: behaviour of the covariance and orbit representation

The ∆v for each manoeuvre remains in the limits imposed, despite the changes of plane.
This can be motivated by the choice to adopt relative orbits not too much distant between
them. In respect of the single orbit, z-component increases its importance, due to the
variation of α.

Figure 6.4: NP - Strategy E1: behaviour of the ∆v

As expected, the inspection phase obtains more importance than the single orbit cases,
gaining 11% from good covariance strategies at least and some percentage from Sect.
5.1.12.
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Figure 6.5: NP - Strategy E1: percentage of the phases

Instead, the result of the quality of inspection, in Figs. 6.6 and 6.7 is less expected,
and from a certain point of view, the values can improve adjusting the values assumed
in Tabs. 6.1. In particular, some of the visibility of the faces is affected by the initial
condition of the fixed target imposed. This can be seen from the very different values of
visibility time for the faces 3 and 6 with respect to the others. Concerning the previous
strategies, the improvement is not quite evident, as also them are affected by how the
target is positioned, leading to the increment of the visibility time for some specific faces.

Figure 6.6: NP - Strategy E1: visibility of each of the faces

Figure 6.7: NP - Strategy E1: visibility in time of each of the faces
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Tumbling configuration

In this study case, the algorithm has been tested adopting also the tumbling conditions,
contained in Tabs. 4.4 and 4.3. One of the solution will be shown below.
The trend of behaviour is quite similar to the previous strategy in the Fig. 6.3, and the
error satisfies their constraints. Moreover, in this strategy, the inclination of the relative
orbit do not increase too much, due to the target’s attitude that allows to see all the faces
independently from the point of the orbit. So, for this reason, the inspection coefficients
described before give values that do not force the satellite to increase inclination.

Figure 6.8: NP - Strategy E2: behaviour of the covariance and orbit representation

Also the Fig. 6.9 shows that the magnitude of the burns is good and satisfies the boundary
constraints. Unlike Fig. 6.4, ∆v is smaller, due to the fact that this strategy does not
need to increase too much the inclination.

Figure 6.9: NP - Strategy E2: behaviour of the ∆v

The inspection time, as shown in the Fig. 6.10, increase, obtaining more 10% of time
with respect to the Fig. 6.5 and more 20% to the others strategies.
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Figure 6.10: NP - Strategy E2: percentage of the phases

The Figs. 6.11 and 6.12 shows the inspection performances in the entire simulation time.
At increasing of inspection time corresponds a major number of visibility for each faces,
but on the other hand, the proportion between the most face seen and the least one
changes based on the algorithm solution. In this case, the results are aligned with the
previous strategies described in Sect. 5.1.14. Maybe, as already mentioned, the choice of
Tabs. 6.1 is fundamental and deserve a further analysis.

Figure 6.11: NP - Strategy E2: visibility of each of the faces

Figure 6.12: NP - Strategy E2: visibility in time of each of the faces
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Chapter 7

Validation on Raspberry Pi

This chapter is dedicated to the analysis of the capabilities and limitations of the appli-
cation of the algorithm in a real world scenarios. Especially, this part has the aim to
describe the behaviour of the algorithm with a processor in the loop analysis, that pro-
vides an estimation of the expected computational time per filter iteration obtained with
a limited resources system such as a Raspberry Pi 4 Single Board Computer (SBC). The
analysis can be considered equal for both the unperturbed and perturbed case because
the on-board dynamics does not change and the external dynamical model propagation
does not entry in this analysis, due to the fact that its unique purpose is to simulate the
real environment.

7.1 Computational cost for each phase

The filter, the manoeuvre and the inspection phases are executed five times on a Raspberry
Pi 4 platform, equipped with 4GB of RAM, 64GB MicroSD acting both as storage and OS
drive. This SBC runs on a quad-core ARM Cortex-A72 processor at up to 1.5GHz. This
latter feature, enables the optimization of the compilation of the entire algorithm code for
faster execution, allowing a significant code speedup. The use of this SBC also allowed to
perform a sensitivity analysis to observe the degradation of performance for lower clock
speeds. In particular, it was possible to directly analyze the range of frequencies of 600 -
1500 MHz. It is important to mention that, as expected, the computational time of each
mission iteration, composed of filter, manoeuvre and inspection, was mostly occupied by
the filter, which accounts for more than 99% of the computational time. The results of
this analysis are reported in the Figs. 7.1 and 7.2. Specifically, the manoeuvre phase has
been divided in two parts: the first one (top right of Fig. 7.1) shows the time behaviour
of the algorithm part where the manoeuvre is computed and it occupies the smallest
amount of time during the mission simulation, while the second one (bottom left) points
the computational time of the GUT during the manoeuvre phase (bottom right). This
latter plot has the same order of the GUT computed during the inspection phase. Finally,
the graphs about UKF (top left) and total time in Fig. 7.2 are quite similar, due to the
amount of time spent by the filter, as already mentioned.
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Figure 7.1: Computational time for each of the phases

Figure 7.2: Total computational time

7.2 Computational cost for the UKF

For the filter phase, a further analysis has been done, and in particular considers the
update and prediction steps. The data are split into percentiles of time spent on the 3970
iterations, that corresponds to the time assumed for the first cycle of the mission.
As the graph in Fig. 7.3 shows, the trend of the percentiles is not linear and there are
some peaks at certain clock frequencies affected by a huge distribution of the data points.
In fact, in these cases, the gaps between the percentiles tends to increase, while in the
lower ones they maintain the same distances. Moreover, in the best case scenario of a
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1.5 GHz clock speed, a measurement frequency of 857.63 Hz (that corresponds to take a
measurement every 0.0012 seconds) would be enough to guarantee convergence of 90% of
the iterations. On the other hand, if it is necessary to guarantee convergence in 100% of
the iterations, this sampling frequency needs to be lowered to 551.57 Hz (a measurement
every 0.0018 seconds). By adding the computational time for other on board applications,
it is reasonable to assume a maximum measurement frequency of 0.0013 Hz (average value
of overall available data set), that is 772 measurement every 1 seconds.

Figure 7.3: Computational time of the filter on 3970 iterations
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Chapter 8

Conclusions

This treatment proposes different applications of a guidance and navigation systems al-
gorithm to guarantee an efficient inspection mission. After the analysis of the proposed
strategies, concerning both unperturbed and perturbed environments, but also both fixed
and tumbling configurations, the results show the growth of the algorithm and how it
reacts to external (simulation environment) and internal (both on-board computer and
imposed conditions) solicitations. Summing up, the algorithm achieves a complete robust-
ness and stability in the unperturbed case, and it can be expanded with further analyses
to future works. On the contrary, in the perturbed case, the obtained results are not as
robust. Specifically, in the most the strategies, the estimated states given by GUT do
not follow the real trajectory, causing a divergence of the error, exceeding the limit of
the covariance, which should contained it. Also, as it can be seen from strategy D2 in
Sect. 5.2.12, the algorithm cannot perform as in the previous studied cases, leading to
a complete lack of functionality. Instead, the proposal of adopting of inclined football
orbit turned out to be an alternative solution to increment the quality of the inspection
performances, although this approach is only an overview that could be deepened.

Nevertheless, this can be defined as a baseline of successive researches.
Surely, more improvements can be earned, considering the limitations of this thesis. First
of all, together with the guidance and the navigation systems, the control systems of the
deputy satellite can be implemented to enrich the ConOps. In fact, the previous strategies
neglects the necessary time for the attitude control expected right before the manoeuvre
phase, to direction the thrusters, and before the inspection phase, to align the camera
towards the target.

Regarding the camera, a further modeling of the sensors can be developed, adding also
other parameters as the resolution, also taking into account the existing technology. More-
over, considerations about the illumination conditions of the target and the background
which affect the sensors should be examined to augment the reality of the simulation.

Looking to the future, which is going towards the miniaturization of the systems and
the structure of the overall satellites, introducing CubeSats and Nanosatellites to perform
the proximity operations, the propulsion system will become easier and less complex and
will lose the capability to conduct impulsive burns, so it is relevant to study the behaviour
of the continuous manoeuvres, as [21] presents.

According to the actual debris situation around the Earth, described also in the Sect.
1, this kind of mission performed in the LEO region may be applied also to an unknown
and uncooperative RSO, introducing an other measurement model, which is able to re-
construct the shape of the target autonomously.
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Another aspect to consider, in order to increase the degree of autonomy of the satellite,
consists into connecting the inspection performances with the planning of the ConOps,
acting on the manoeuvre and filter phases. This detail has been introduced in the chap-
ter 6, trying to merge together the kinematic model and a few inspection parameters.
Moreover, taking a cue from trajectory planning models as the model predictive control,
another interesting prospective about the prediction of the future states of the deputy
can be adopted.

Finally, as it can be noticed, the different behaviour of the unperturbed and perturbed
models is represented by the HCW difficulty to emulate the perturbed NERM version.
As countless graphs and the Sect. 2.5 show, another dynamical model can be used on the
on-board computer, like the one presented in [2].
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