
A Geometric Study on
Policy Space Compression

Master’s Thesis in
Telecommunication Engineering

Author: Majid Molaei Dehsorkhi

Student ID: 897472
Advisor: Prof. Marcello Restelli
Co-advisors: Mirco Mutti, Albero Maria Metelli
Academic Year: 2023-24

i

Acknowledgements

Dear Marcello Restelli, Alberto Maria Metelli and, in particular and most notably, Mirco
Mutti, I would like to express my sincere gratitude to all of you for your invaluable
guidance and support throughout my Master’s thesis. Your insights and suggestions
significantly improved the quality of my research and made it a more comprehensive and
well-rounded work.

Although due to some personal problems I was obliged to do my thesis remotely from my
country. I appreciate your availability and willingness to meet with me online regularly
to discuss my progress and address my concerns.

Your guidance has not only helped me complete my thesis but has also enriched my
understanding of doing an appropriately constructed scientific research.

I look forward to the possibility of continuing our academic journey together and collab-
orating on future research projects.

Once again, I am truly grateful for the opportunity to have had you as my supervisors.

Sincerely.

iii

Abstract

In the last decades, reinforcement learning emerged as a powerful tool to address sequential
decision making under uncertainty, counting a number of success stories ranging from
game solving, to robotic manipulation, and text generation. However, to achieve those
impressive breakthroughs, the reinforcement learning algorithms require to be trained on a
massive number of samples collected from the environment, which limits the applicability
of these techniques to a broader set of real-world problems. A significant source of this
samples inefficiency is due to the size of the so-called policy space, i.e., the set of decision
strategies from which to learn the one to be deployed. Critically, the more choices of
decision strategies we have, the more we can expect to achieve a desirable performance,
but the less efficient will the learning process be.

A recent work by Mutti et al. [12] addresses the endemic sample inefficiency of reinforce-
ment learning trying to compress the set of decision strategies as a pre-processing. The
goal of this process, which is called policy space compression, is to reduce the size of
the policy space by retaining most of its expressive power, so that a small dip in the
performance reinforcement learning can achieve is compensated by improved efficiency.
Practically, policy space compression tries to find a (small) set of K representative policies
that covers the set of state-action distributions induced by all the policies in the original
policy space, where the covering is approximated with a covering threshold σ. While an
algorithm for policy space compression is also presented in [12], the original paper leaves
some important questions open.

In this thesis, we provide a geometric study of the policy space compression problem to
provide answers to two pressing questions: How to properly set the covering threshold σ

and the number of covering policies K.

First, we provide a study on the value of σ, showing that setting σ to be equal to the
number of state-action pairs, the default choice in the previous work, can admit a trivial
solution that defeats the purpose of the compression under certain conditions. Then, we
provide a more meaningful range of σ that is better aligned with the ultimate goal of
policy space compression. Finally, we present computationally tractable algorithms to

iv | Abstract

check whether a tentative compression satisfies the desired covering threshold or not.

In a second part of the dissertation, we instead provide lower and upper bounds on the
number of representative policies K that are needed to solve the policy space compression.
The derived bounds have a direct dependence with the covering threshold σ as well as all
the main parameters of the problem.

To conclude, we hope that this thesis will provide a critical advancement in the under-
standing of the policy space compression problem, fostering its applicability to a wide set
of real-world applications.

Keywords: Reinforcement Learning, Policy Space Compression

v

Abstract in lingua italiana

Negli ultimi anni le tecniche di apprendimento per rinforzo sono emerse come importante
strumento per risolvere problemi di decisione sequenziali nell’ambito dell’intelligenza ar-
tificiale. In particolare, l’apprendimento per rinforzo ha portato una serie di successi in
giochi strategici, robotica e generazione di testo. Tuttavia, per raggiungere questi suc-
cessi, gli algoritmi di apprendimento per rinforzo richiedono di essere addestrati su una
gigantesca mole di dati, limitandone l’applicazione ad una più ampia classe di problemi.
Una delle principali sorgenti di questa inefficienza nell’utilizzo dei dati è da imputare alla
dimensione dello spazio delle politiche, ovvero dell’insieme di strategie di decisione da
cui estrarre la strategia migliore. Chiaramente, più grande è lo spazio delle politiche,
maggiore è la performance che possiamo aspettarci dalla strategia ottima, ma trovare
quest’ultima strategia risulterà più inefficiente.

Un articolo recente di Mutti et al. [12] ha proposto di attaccare il problema di inefficienza
dell’apprendimento del rinforzo cercando di comprimere lo spazio delle politiche come
pre-processing. L’obiettivo di questo pre-processing. che viene chiamato compressione
dello spazio delle politiche, è quello di ridurre la dimensione dello spazio delle politiche
mantenendo la maggior aprte del suo potere espressivo, così che un fisiologico calo nella
performance raggiunta dall’apprendimento per rinforzo è compensata da una migliore
efficienza. In pratica, la comrpessione dello spazio delle politiche cerca di identificare
un (possibilmente piccolo) insieme di K politiche rappresentative che copre tutte le dis-
tribuzioni su stati-azioni indotte dalle politiche dello spazio originale, dove la copertura è
approssimata con una soglia di copertura σ. L’articolo originale propone un algoritmo per
la compressione dello spazio delle politiche, ma lascia aperte alcune imporanti domande.

Questa tesi fornisce uno studio geometrico del problema di compressione dello spazio delle
politiche per rispondere a due importanti domande: come scegliere la soglia di copertura
σ e il numero di politiche rappresentative K.

Innanzitutto, la tesi studia il valore di σ, mostrando che scegleire un valore uguale al
numero delle coppie stato-azione, scelta standard del lavoro precedente, potrebbe am-
mettere una soluzione banale che mina l’utilità della compressione dello spazio delle

politiche. Quindi proponiamo un più significativo range di valori σ che meglio si allinea
con l’obiettivo della compressione. Infine, presentiamo un insieme di algoritmi trattabili
per verificare se un tentativo di compressione soddisfa la soglia σ desiderata oppure no.

In una seconda parte del contributo, la tesi fornisce estermi inferiori e superiori sul numero
di politiche K che è necessario per risolvere il problema di compressione. Le relazioni in
questione hanno una dipendenza diretta con la soglia σ e le quantità più rilevanti del
problema.

In conclusione, speriamo che questa tesi possa fornire un avanzamento cruciale nella com-
presione del problema di compressione dello spazio delle politiche, così da permetterne la
sua applicazione ad una vasta classe di problemi.

Parole chiave: Apprendimento per Rinforzo, Compressione dello Spazio delle Politiche

vii

Contents

Acknowledgements i

Abstract iii

Abstract in lingua italiana v

Contents vii

1 Introduction 1
1.1 Contributions . 2
1.2 Thesis Structure . 3

2 Background 5
2.1 Fundamentals of Reinforcement Learning 5

2.1.1 The Multi-Armed Bandit Problem 6
2.1.2 Markov Decision Processes . 9
2.1.3 Dynamic Programming . 15

2.2 Sample-Based Methods for RL . 18
2.2.1 Monte Carlo Methods . 18
2.2.2 Temporal Difference Learning . 19
2.2.3 Temporal Difference Learning for Control 20
2.2.4 Off-Policy Learning and Importance Sampling 23

2.3 Function Approximation for RL . 24
2.3.1 Prediction with Function Approximation 25
2.3.2 Control with Function Approximation 29
2.3.3 Policy Gradient . 31

3 Policy Space Compression 35
3.1 Problem Formulation . 35
3.2 Game-Theoretic Perspective . 36

3.2.1 Differential Stackelberg Equilibrium 37
3.2.2 Challenges . 38

3.3 The PSCA Algorithm . 38
3.3.1 Leader’s Update . 39
3.3.2 Follower’s Update . 39
3.3.3 Algorithmic Steps . 39

4 On the Covering Threshold 41
4.1 Geometry of the Problem . 41
4.2 How to Set the Covering Threshold . 41

4.2.1 A Sensible Range of σ . 42
4.3 How to Check the Covering Requirement 43

4.3.1 Unconstrained Polytopal Space . 44
4.3.2 Constrained Polytopal Space . 54

5 On the Number of Covering Policies 63
5.1 Warm-Up: A Two-Dimensional Polytope 63
5.2 Fundamentals . 67

5.2.1 The Volume of A Polytope . 67
5.2.2 Volume of a Tetrahedral Subpolytope 68
5.2.3 Looking at the Polytope from One Face 68

5.3 The Lower Bound . 70
5.4 The Upper Bound . 75

6 Conclusions 81

Bibliography 83

A Numerical Examples 85
A.1 Checking the Covering Requirement . 85
A.2 Number of Covering Policies . 90

1

1| Introduction

Reinforcement Learning (RL) [19] is a powerful tool to address sequential decision making
problems from interactions. In RL, a learning agent (the decision maker) interacts with
an unknown environment to learn a policy, i.e., a decision strategy, to maximize some
notion of long-term goal, usually expressed in terms of the cumulative reward collected
during the interactions. The policy space refers to the set of all possible policies that the
agent can choose from. This recipe lead to several breakthroughs, such as in strategic
games [1, 11, 18], robotic control [7, 17], and text generation [13].

However, RL problems can become challenging when dealing with a large and potentially
infinite policy space. This is particularly true when the policies are parameterized in
complex ways, such as deep neural networks. In such cases, searching for an optimal policy
or finding a good strategy for interacting with the environment becomes computationally
expensive and sample-inefficient.

The policy space compression problem [12] aims to address this challenge by identifying a
smaller subset of the policy space that retains most of the expressive power of the original
space. In other words, it seeks to reduce the size of the policy space while ensuring that
the selected subset can still achieve similar state-action distributions as the original space.

The key idea is to find a compressed representation of policies, denoted as Θ′, such that
for any policy θ in the original policy space Θ, there exists a policy θ′ in Θ′ such that
the difference between their induced state-action distributions is bounded by a positive
constant σ. This means that Θ′ contains a representative set of policies that can achieve
similar outcomes as the original policy space, when employed for RL.

Technically, the problem can be framed as a (soft) version of the set cover problem, where
the goal is to find a minimal set of state-action distributions that cover the set of all
possible state-action distributions within a certain divergence threshold σ. Unfortunately,
set cover problems are known to be NP-hard [3], which means finding an optimal solution
can be computationally infeasible. Researchers are actively exploring various approaches
to tackle this problem, including approximations and heuristics, to make it more tractable
and efficient.

2 1| Introduction

In this context, the problem has being reformulated [12] as a game between two players:
A leader and a follower. The leader’s role is to distribute a set of policies (represented by
θ1, θ2, θ3, . . . , θK) with the goal of covering the state-distribution induced by the follower’s
policy. Conversely, the follower’s role is to find a policy (represented by µ) that is not
well-covered by the leader’s policies. This means the follower aims to find a strategy that
maximizes the difference between its state-action distribution and the one represented by
the closest leader’s policy.

The objective function of the latter game-theoretic reformulation is neither convex nor
concave in the leader’s and follower’s parameters. Thus, Mutti et al. [12] developed an
iterative first-order method that is guaranteed to converge to a differential Stackelberg
equilibrium [5] with a gradient descent-ascent procedure. However, the latter effort leaves
open two important questions:

• How can we set the covering threshold σ in a meaningful way, and how can we check
whether our locally optimal solution satisfies the threshold?

• How can we choose the number of representative policy K to be optimized in order
to solve the policy space compeession problem for a given threshold σ?

Answering those questions is the main focus of the presented thesis.

1.1. Contributions

In this thesis, we contribute to the advancement of the policy space compression problem
in two critical directions, thanks to a novel geometric perspective over the problem.

First, we provide a study on the value of the covering threshold σ. We show that the
standard threshold considered in previous works, i.e., σ equal to the number of state-
action pairs, can admit a trivial solution and thus is not sensible for the goal of the policy
space compression. Next, we study a more reasonable range of σ values, and we provide
tractable algorithms to check whether a given set of representative policies meets the
covering requirement globally.

Then, we tackle the problem of identifying the number K of covering policies that are
needed to solve the policy space compression problem. Especially, we provide lower and
upper bounds to the value of K, which directly depends on the σ threshold and all the
other relevant quantities of the problem. Those bounds on the number of covering policies
can be used to speed up the iterative compression procedure starting from reasonable
values of K.

1| Introduction 3

1.2. Thesis Structure

The presented thesis is structured as follows.

In Chapter 2, we revise the background useful to understand the remainder of the thesis.
We start introducing the fundamentals of RL (Section 2.1) including the multi-armed ban-
dit problem, Markov decision processes, and dynamic programming. Then, we recap the
traditional sample-based algorithms for RL (Section 2.2) and their extensions to function
approximation (Section 2.3).

In Chapter 3, we present the state of the art of the policy space compression problem, as
presented by the seminal paper [12]. We first provide a general formulation of the prob-
lem (Section 3.1), followed by its game-theoretic version (Section 3.2), and a principled
iterative first-order method to address the problem (Section 3.3).

In Chapter 4, we study the role of the covering threshold in the policy space compression
problem. First, we revise the geometry of the problem in Section 4.1. Next, we discuss
how to set a covering threshold properly in Section 4.2. Finally, we provide optimization
and algorithmic solutions to check the covering requirement given a covering threshold
(Section 4.3).

In Chapter 5, we study the number of covering policies that are necessary to solve the
policy space compression problem with a given covering threshold. First, we provide an
illustrative example in a simplified polytopal space (Section 5.1). Next, we provide a few
fundamental (Section 5.2) that we exploit to derive a lower and an upper bound to the
number of covering policies, reported in Section 5.3 and Section 5.4 respectively.

In Chapter 6, we wrap-up the thesis content to conclude the dissertation.

5

2| Background

In this chapter, we will cover the necessary background to understand this thesis. First,
Section 2.1 introduces the fundamentals of reinforcement learning and Markov decision
processes. Then, Section 2.2 dives into the traditional learning methods for reinforcement
learning. Finally, Section 2.3 provides a brief introduction to function approximation and
policy gradient methods.

2.1. Fundamentals of Reinforcement Learning

Reinforcement Learning (RL) [19] is a subfield of machine learning that focuses on how
agents can learn to make sequences of decisions in order to maximize a cumulative reward
signal. It is inspired by behavioral psychology, where learning is driven by trial and error
interactions with an environment. RL has found applications in a wide range of fields,
including robotics, game playing, autonomous systems, recommendation systems, and
more.

To understand the fundamentals of reinforcement learning, let us consider the main actors
involved in the process. The agent, or decision-maker, is the learner that interacts with the
environment, which represents the system external to the agent. The environment can be
a real-world system, like a physical space where a robot is navigating, or a simulator, like
a computer game. Interacting with the environment, the agent can take actions within a
discrete, or continuous, pre-defined set of options. The agent takes actions based on its
current knowledge and the current state of the environment. The state contains all the
relevant information to make decisions, and it comes from a discrete or continuous set of
states, depending on the problem. Finally, the policy is the, deterministic or stochastic,
mapping from states to actions that the agent follows.

A reward is a numerical signal that the environment provides to the agent after each
action. It quantifies how good or bad the action was in that particular state. The agent’s
goal is to maximize the cumulative reward over time.

A trajectory (sometimes called an episode) is a sequence of states, actions, and rewards

6 2| Background

that an agent experiences interacting with the environment over a certain number of time
steps. The value function estimates the expected cumulative reward an agent can collect
starting from a given state and following a specific policy. It helps the agent evaluate the
desirability of different states.

In the following sections, we provide mathematical formulations of the described inter-
action process. First, we warm up the reader presenting the multi-armed bandit model,
which formalize a simplified, stateless, version of the interaction process. Then, we de-
scribe a generalization of the latter setting that is called Markov decision process, which
will be a crucial model in the remainder of this thesis.

2.1.1. The Multi-Armed Bandit Problem

The Multi-Armed Bandit (MAB) [10] is a classical problem of sequential decision-making
under uncertainty. In this problem, the agent is faced with a row of k actions, called arms,
from which rewards are collected according to an unknown distribution that is specific
to each arm. The agent’s goal is to maximize the total reward over time while dealing
with the uncertainty about which arm is the most rewarding. The model is named after
a typical casino situation, in which each arm represents a slot machine (or bandit), and
the decision-maker wants to maximize the payoffs collected from the slot machines. The
problem can be formulated through these components:

• Time Steps:

– The problem unfolds over a series of time steps, denoted as t = 1, 2, 3,

• Arms:

– There are k arms, denoted as A1, A2, . . . , Ak;

– The agent can choose one arm to pull at each time step;

• Rewards:

– Each arm is associated with an unknown probability distribution over rewards.

– The expected (mean) reward for pulling arm i is denoted as Q∗(Ai), where i

varies from 1 to k.

– The actual reward received when pulling arm i at time step t is denoted as
Rt(Ai).

2| Background 7

The goal is to maximize the expected cumulative reward over a finite time horizon T :

T∑
t=1

Rt(Ait),

where it is the arm chosen at time t. The agent’s estimate of the expected reward for arm
i at time t is denoted as Qt(Ai).

Action Values in the k-Armed Bandit Problem

The action value Q∗(Ai) represents the expected reward you would obtain on average by
selecting arm Ai from the set of arms A1, A2, . . . , Ak. It is defined as:

Q∗(Ai) = E[Rt(Ai)],

where Rt(Ai) is the actual reward obtained by pulling arm Ai at time step t, and E[·]
denotes the expected value.

We can compute the estimate of the mean reward incrementally as

Q(At)← Q(At) +
1

N(At)
(Rt(At)−Q(At))

where Q(At) is the updated action value for arm At, N(At) is the number of times arm
At has been chosen up to time t, Rt(At) is the reward obtained when arm At was chosen
at time t. The latter incremental form allows for updating action values estimates as new
rewards are observed. This method is memory-efficient and computationally efficient.

With the previous definitions, we can rewrite the learning objective as:

max
Ai1,...,AiT

T∑
t=1

E[Rt(Ait)],

where T is the number of time steps, Rt(Ait) is the actual reward obtained by pulling
arm Ait at time step t, Ait represents the arm chosen at time step t.

In summary, the action value represents the expected reward for selecting a specific arm,
and the goal is to select arms over time in a way that maximizes the total expected
cumulative reward. This involves making a trade-off between exploring different arms to
gather information about their rewards and exploiting arms that are currently estimated
to have high rewards. The challenge lies in finding a balance between exploration and
exploitation strategies to achieve the highest possible cumulative reward over the long

8 2| Background

term.

Exploration-Exploitation Trade-off

The central challenge in MAB problems is to balance exploration (trying different arms
to learn about their mean rewards) and exploitation (choosing the arm that appears to
be the best based on the current information). A strategy (policy) is needed to decide
which arm to pull at each time step.

In the context of a k-armed bandit problem there exists several strategies to balance the
exploration-exploitation trade-off:

Epsilon-Greedy Strategy The epsilon-greedy strategy balances exploration and ex-
ploitation by randomly selecting arms to explore with probability ϵ, and selecting the
greedy arm, i.e., the one associated with the highest estimated mean reward with proba-
bility 1− ϵ. The action selection process is given by:

At =

random arm with probability ϵ

argmaxi(Qt(Ai)) with probability 1− ϵ

Recall that Qt(Ai) is the estimated action value for arm Ai at time t.

Upper Confidence Bound Strategy The Upper Confidence Bound (UCB) [9] strat-
egy encourages exploration by considering both the estimated action value and the un-
certainty in that estimate. It selects the arm that maximizes the estimated reward plus
an uncertainty-based exploration bonus. The action selection process is:

At = argmaxi

(
Qt(Ai) + c

√
ln(t)

Nt(Ai)

)

where c is a parameter controlling the level of exploration, t is the current time step, and
Nt(Ai) is the number of times arm Ai has been chosen up to time t.

Thompson Sampling Strategy Thompson Sampling (TS) [21] is a Bayesian approach
to address the exploration-exploitation dilemma in the k-armed bandit problem. It com-
bines probability theory with decision-making to make informed choices.

The core idea behind TS is to maintain a probability distribution over the true action
values of each arm. At each time step, the arm to be pulled is chosen according to their
probability of being the best arm.

2| Background 9

The action selection process involves sampling from the posterior distribution over the
action values and choosing the arm with the highest sampled value:

At = argmaxi Sample(Posteriori)

Here, Posteriori represents the posterior distribution over the true action value of arm Ai,
and Sample(Posteriori) denotes a sample drawn from that distribution.

At each step, the posterior distribution associated to the selected arm is updated according
to the collected payoff.

TS leverages the principles of Bayesian inference to make decisions that are both ex-
ploratory and exploitative. It’s a powerful strategy that adapts naturally to uncertainty
and provides a principled way to address the exploration-exploitation trade-off.

2.1.2. Markov Decision Processes

Having introduced the MAB setting in the previous section, we now present a more
general formulation, which also admits different states in the environment. The latter
is the Markov Decision Process (MDP) [16], a mathematical framework used to model
decision-making problems with stateful environments. The main components of the model
are:

• States:

A finite set S of all the possible configurations in the environment where the agent
can find itself.

• Actions:

A finite set A of all the possible decisions that the agent can make at each state.

• Transition Model:

A function p : S × A → ∆(S) that describes the probability of transitioning from
one state to another given a specific action. It is often represented as P (s′|s, a),
indicating the probability of moving to state s′ when taking action a in state s.

• Rewards:

A function R : S×A → R that associates each state-action pair with a real number,
representing the immediate reward the agent receives when taking action a in state
s. This is typically represented as R(s, a).

10 2| Background

• Horizon:

A constant T ∈ N denoting the length of a single interaction episode.

Every interaction episode between the agent and the environment in an MDP unfolds as
follows. The agent starts in an initial state s0.1 At each time step t, the agent takes an
action at based on the current state st. The environment responds by transitioning the
agent to a new state st+1 with probability P at

stst+1
and provides a reward Rat

st . This process
is repeated upon to the episode termination, which is handled differently in episodic or
continuing tasks.

Episodic Tasks In this setting the horizon is finite T <∞. Thus, for every time step
t, we can define the return as the reward collected from step t to the end of the episode

Gt = Rt+1 +Rt+2 + . . .+RT .

Similarly, the expected return is defines as

v(s) = E[Gt|St = s, episode ends at T].

Continuing Tasks In this setting, the episode does not have a predefined terminal
step, but the reward are weighted by an exponential discount factor γ ∈ [0, 1], so that the
reward collected in the time step t is weighted more than the rewards collected in future
steps. Specifically, the discounted return from step t onward is computed as

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞∑
k=0

γkRt+k+1.

Similarly, the expected discounted return is given by

v(s) = E

[
∞∑
k=0

γkRt+k+1

∣∣∣St = s

]
.

In an MDP, the primary goal of the agent is to make a sequence of decisions to maximize
the expected cumulative reward over time. This objective is achieved by selecting actions
that lead to higher rewards. The component that controls the action selection strategy of
the agent is called a policy, which is formalized below.

1Here we consider a single initial state as a simplifying assumption. Note that this is without loss of
generality w.r.t. considering an initial state distribution.

2| Background 11

Policies

A policy in an MDP is a strategy that guides the agent’s decision-making by specifying
which action to take in each state. It is defined through a mapping π : S → ∆(A)
from states to actions and it is a fundamental concept for achieving the agent’s goal
of maximizing the expected return (in episodic or continuing tasks). In particular, we
differentiate between two classes of policies:

• Deterministic Policies that assign a single action to each state, meaning that for
a given state s, the policy specifies exactly one action a, i.e.,

π(s) = a.

• Stochastic Policies that assign a probability distribution over actions for each
state. This means that for a given state s, the policy specifies the probability of
taking each possible action a, i.e.,

π(a|s) = P(At = a|St = s).

Value Functions

The value function is the mathematical object that represent the long-term value of being
in a particular state of the environment while following a policy π. Technically, the so
called state-value function vπ : S → R represents the expected cumulative reward that an
agent can obtain from a specific state s while following a given policy π, i.e.,

vπ(s) = E

[
∞∑
k=0

γkRt+k+1

∣∣∣St = s, π

]

where Rt+k+1 is the reward at time step t+ k+1, γ is the discount factor, and the expec-
tation is taken over all the possible sources of randomness, which include the transition
model, reward function, and policy.

Similarly, the action-value function qπ : S × A → R represents the expected cumulative
reward that an agent can obtain from taking action a in state s and then following policy
π thereafter. Thus, it quantifies the value of taking a specific action in a specific state
under a given policy. Technically, it is given by

qπ(s, a) = E

[
∞∑
k=0

γkRt+k+1

∣∣∣St = s, At = a, π

]

12 2| Background

where Rt+k+1 is the reward at time step t + k + 1, γ is the discount factor, and the
expectation is taken over all the possible sources of randomness.

As we shall see later, both value functions are critical in Markov decision processes and
reinforcement learning, as they help the agent make decisions by providing estimates of
the expected cumulative rewards associated with different states and actions.

An important property of the value functions is that they admit alternative recursive
definitions by means of the so-called Bellman equations.

State-Value Bellman Equation The Bellman equation for the state-value function
expresses the value of a state s in terms of the immediate reward Rt+1 obtained from
transitioning to the next state s′, the discount factor γ, and the expected value of the
next state vπ(s

′) as

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)]

where a represents an action, s′ is the next state, r is the reward, π(a|s) is the probability of
taking action a in state s under policy π, and p(s′, r|s, a) is the probability of transitioning
to state s′ and receiving reward r when taking action a in state s.

Action-Value Bellman Equation The Bellman equation for the action-value function
expresses the value of a state-action pair (s, a) in terms of the immediate reward Rt+1

obtained from transitioning to the next state s′, the discount factor γ, and the expected
value of the next state-action pair qπ(s

′, a′) as

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)

[
r + γ

∑
a′

π(a′|s′)qπ(s′, a′)

]

where a′ represents another possible action in the next state s′, and all other symbols
have the same meanings as in the state-value Bellman equation.

The Bellman equations are crucial recursive relationships in reinforcement learning. They
provide a way to express the value of a state (or state-action pair) in terms of the rewards
obtained from the current transition and the expected value of future states (or state-
action pairs) under the given policy.

Solving the Bellman equations iteratively is a fundamental approach to finding optimal
value functions, which in turn guide the agent’s decision-making process to maximize the
expected return.

2| Background 13

Optimality

An optimal policy in an MDP is an action-selection strategy that maximizes the agent’s
expected cumulative reward over time. It guides the agent to make decisions that result
in the highest possible long-term expected return.

For a given MDP, the optimal policy π∗ is defined as

π∗(s) = argmax
π

vπ(s)

where vπ(s) is the state-value function corresponding to policy π, and argmaxπ represents
the policy that maximizes the state-value function for each state s. The optimal policy for
an MDP is not necessarily unique, which means that more than one policy can be optimal.
An important result in MDPs [16] establishes that there always exists an optimal policy
that is deterministic.

The optimal state-value function represents the maximum expected cumulative reward an
agent can obtain from a specific state s under the optimal policy π∗, i.e.,

v∗(s) = max
π

vπ(s)

where v∗(s) is the optimal value function for state s, and maxπ represents the maximum
value over all possible policies π. Intuitively, the optimal value function v∗(s) quantifies
the highest achievable value from being in state s under the optimal policy.

Similarly, one can define the optimal action-value function as

q∗(s, a) = max
π

qπ(s, a).

Notably, the optimal state-value function and action-value function admit a specific re-
cursive relationship that is called the Bellman optimality equation.

The Bellman optimality equation for the state-value function is given by:

v∗(s) = max
a

∑
s′,r

p(s′, r | s, a) [r + γv∗(s
′)]

where a represents an action, s′ is the next state, r is the reward, γ is the discount factor,
and p(s′, r | s, a) is the transition probability.

This equation captures the idea that the optimal value of a state s is the maximum
expected return achievable by selecting the best action a and then following the optimal

14 2| Background

policy from the next state s′. It forms the foundation for computing the optimal value
function for each state.

Analogously, the Bellman optimality equation for the action-value function is given by:

q∗(s, a) =
∑
s′,r

p(s′, r | s, a)
[
r + γmax

a′
q∗(s

′, a′)
]

where s′ is the next state, r is the reward, γ is the discount factor, maxa′ represents the
maximum value over all possible actions in the next state s′, and all other symbols have
the same meanings as in the state-value Bellman equation.

This equation establishes a connection between the optimal value of a state-action pair
and the maximum expected return achievable by taking action a and then following the
optimal policy. It allows for the computation of optimal action values that guide the
agent’s decision-making.

The Bellman optimality equations provide a fundamental framework for finding optimal
value functions for a given MDP. These equations enable agents to determine the best ac-
tions and policies to maximize expected cumulative rewards, forming the basis for various
reinforcement learning algorithms, as we shall see in following sections.

The optimal state-value function v∗(s) and the optimal policy π∗(s) are closely related.
The optimal policy is determined based on the optimal state-value function, and it pro-
vides the best action to take in each state to maximize the expected cumulative reward.

The optimal policy π∗(s) is derived from the optimal state-value function v∗(s) by selecting
the action that maximizes the expression inside the Bellman equation:

π∗(s) = argmax
a

∑
s′,r

p(s′, r|s, a) [r + γv∗(s
′)]

where a represents an action, s′ is the next state, r is the reward, γ is the discount factor,
and p(s′, r|s, a) is the probability of transitioning to state s′ and receiving reward r when
taking action a in state s.

The optimal action-value function q∗(s, a) and the optimal policy π∗(s) are also deeply
connected. The optimal policy is guided by the optimal action-value function, as it
suggests the best action to take in each state to maximize the expected cumulative reward.

The optimal policy π∗(s) can be derived from the optimal action-value function q∗(s, a)

as follows:
π∗(s) = argmax

a
q∗(s, a)

2| Background 15

where a represents an action, and argmaxa selects the action that maximizes the optimal
action-value function for the given state s.

The relationships between the optimal state-value function, optimal action-value function,
and the optimal policy are fundamental in reinforcement learning. The optimal policy is
driven by these value functions, which capture the agent’s long-term goals and guide its
actions toward maximizing expected cumulative rewards. These connections are especially
exploited in the desing of some popular algorithms for solving MDPs (i.e., computing an
optimal policy) that we are going to present in the next section.

2.1.3. Dynamic Programming

In this section, we present a standard technique to solve an MDP, i.e., finding an optimal
policy through computation, which goes under the name of dynamic programming [2]. To
warm up the reader, we first present an algorithm to compute the value of a given (possibly
sub-optimal) policy, which is called the policy evaluation problem. We then present two
algorithms to compute an optimal policy: Policy Iteration and Value Iteration.

Iterative Policy Evaluation

Iterative Policy Evaluation is an algorithm used in reinforcement learning to estimate
the state-value function (vπ(s)) for a given policy π. The goal is to find the expected
cumulative reward starting from each state s and following policy π.

The iterative policy evaluation algorithm involves repeatedly updating the value of each
state until it converges to the true state-value function vπ(s). The update equation for
each state s, which is inspired by the Bellman equation, is given by

vk+1(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvk(s
′)]

where

• vk+1(s) is the updated estimate of the state value for state s at iteration k + 1;

• vk(s) is the current estimate of the state value for state s at iteration k;

• π(a|s) is the probability of taking action a in state s under policy π;

• p(s′, r|s, a) is the probability of transitioning to state s′ and receiving reward r when
taking action a in state s;

• γ is the discount factor.

16 2| Background

The algorithm starts with an initial estimate of the state values (v0(s)) and iteratively
updates these estimates using the above equation until the values converge, which typically
means they stop changing significantly between iterations. In short, the algorithm follows
the three steps below:

1. Initialize v0(s) arbitrarily for all states s.

2. For each state s, update vk+1(s) using the update equation mentioned above.

3. Repeat until convergence (i.e., until vk(s) no longer changes significantly for all
states s).

When the third step is completed, the algorithm outputs vk(s) of the last iteration.

Policy Iteration

Policy Iteration [2, 19] is an iterative algorithm to find the optimal policy for a given
MDP. It alternates between two main steps, policy evaluation and policy improvement,
until it converges to the optimal policy. Below, we describe Policy Iteration along with
its mathematical expressions and formulations.

• Policy Evaluation

In this step, the algorithm evaluates the current policy by iteratively estimating the
state-value function (vπ) for that policy. The state-value function is calculated with
the update rule

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)]

where a represents an action, s′ is the next state, r is the reward, γ is the discount
factor, π(a|s) is the probability of taking action a in state s under the current policy,
and p(s′, r|s, a) is the probability of transitioning to state s′ and receiving reward
r when taking action a in state s. Policy Evaluation continues until the change in
the estimated state values is smaller than a predefined threshold.

• Policy Improvement

Once the policy has been evaluated, the algorithm improves the policy by selecting
actions that maximize the expected value of the state-action pairs, often called the
greedy action. The new policy π′ is defined as:

π′(s) = argmax
a

∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)]

2| Background 17

where argmaxa selects the action that maximizes the expression inside the brackets.

Policy Iteration iterates between these two steps until the policy no longer changes, which
indicates that the optimal policy has been found. The algorithm guarantees convergence
to the optimal policy thanks to the Policy Improvement Theorem (see [19]).

Value Iteration

Value Iteration is an iterative algorithm used to find the optimal value function of an MDP,
from which the optimal policy can be recovered. It is a specific instance of Generalized
Policy Iteration that focuses on updating the value function iteratively. Below a detailed
explanation, including mathematical expressions and formulations:

1. Initialization

Start with an initial value function V0(s), often initialized to zeros or any other
arbitrary values.

2. Loop

Update the value function Vk(s) for each state s applying the Bellman optimality
equation:

Vk+1(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γVk(s
′)].

Repeat until the change in Vk across all states is smaller than a predefined threshold
or for a fixed number of iterations.

3. Termination

Once the value function V has converged, derive the optimal policy π∗(s) by selecting
actions that maximize the equation inside the Bellman optimality equation:

π∗(s) = argmax
a

∑
s′,r

p(s′, r|s, a)[r + γV ∗(s′)].

Value Iteration guarantees convergence to the optimal value function and policy in a finite
number of iterations. The core idea is to iteratively improve the estimate of the optimal
value function by applying the Bellman optimality equation. Once the value function has
converged, the optimal policy can be easily extracted.

This algorithm is particularly useful when you are primarily interested in finding the
optimal policy, as it does not require explicit representations of the intermediate policies
and only focuses on the value function.

18 2| Background

2.2. Sample-Based Methods for RL

In the previous sections, we considered algorithms that require full knowledge of the MDP
in order to compute the optimal policy. In this section, we instead present algorithms
that compute approximately optimal policies only relying on samples coming from the
true MDP, which is unknown throughout the process. This is called the RL problem,
for which we provide some traditional algorithms. Especially, we present two different
approaches for sample-based policy evaluation: Monte Carlo methods (Section 2.2.1) and
temporal difference learning (Section 2.2.2). Then, we provide control algorithms based
on temporal difference in Section 2.2.3.

Sample-based learning methods can be further categorized as on-policy or off-policy. On-
policy methods update the policy being used for collecting the samples, while off-policy
methods update a different policy based on the observed data. We will provide instances
of both classes below, and more details in Section 2.2.4.

Finally, sample-based learning methods are versatile and applicable to a wide range of
RL problems. They are particularly useful when dealing with complex environments
where modeling the dynamics is challenging or when the state and action spaces are high-
dimensional. By collecting and learning from samples, these methods enable agents to
improve their decision-making over time through interaction with the environment.

2.2.1. Monte Carlo Methods

Monte Carlo methods are sample-based techniques to estimate value functions by simu-
lating episodes of interactions with the environment and taking sample averages of the
collected rewards.

Monte Carlo Action-Value Estimation

The objective is to estimate the action-value function qπ for a given policy π. The process
follows the steps below.

1. Episode Generation

Generate one or more episodes by following the policy π from the initial state s0

until a terminal state is reached. An episode is represented as:

(s0, a0, r1, s1, a1, r2, . . . , sT−1, aT−1, rT).

2| Background 19

2. Estimating Returns for State-Action Pairs

For each state-action pair (st, at), estimate the return Gt as the cumulative dis-
counted reward from time step t until the end of the episode:

Gt = rt+1 + γrt+2 + . . .+ γT−t−1rT .

3. Update Action-Value Estimates

Use the returns Gt to update the estimate of the action-value function qπ(st, at) for
each state-action pair (st, at) encountered in the episode. This can be done using
the sample average:

qπ(st, at)←
1

N(st, at)

N(st,at)∑
i=1

G
(i)
t

where N(st, at) is the number of times the state-action pair (st, at) has been visited
in the episode, and G

(i)
t is the i-th return observed for the pair (st, at) in different

episodes.

4. Repeat Steps 1-4

Repeat the process by generating more episodes and refining the estimates of qπ

until convergence.

Monte Carlo methods for action-value functions estimate the expected cumulative rewards
of taking specific actions in specific states under a given policy by sampling episodes and
averaging the returns. These methods are suitable for situations where the dynamics of
the environment are unknown or when dealing with large state and action spaces. Like
state-value estimation, Monte Carlo methods for action-value functions require a sufficient
number of samples to converge to accurate estimates.

2.2.2. Temporal Difference Learning

Temporal Difference (TD) learning is a reinforcement learning technique used to esti-
mate value functions and compute approximately optimal policies in MDPs. It combines
elements of dynamic programming with sample-based methods.

Temporal Difference Learning State-Value Estimation

Let us focus on TD(0) for state-value estimation, which is a specific variant of TD learning
(see [19] for a comprehensive survey). In TD(0), the estimate for each state is updated

20 2| Background

based on the current estimate and a single-step transition. The update equation for TD(0)
is as follows:

V (st)← V (st) + α (rt+1 + γV (st+1)− V (st))

where

• V (st) is the estimated value of state st;

• α is the learning rate, controlling the size of the update;

• rt+1 is the reward received after taking action at in state st and transitioning to
state st+1;

• γ is the discount factor;

• V (st+1) is the estimated value of the next state st+1.

Specifically, the algorithm follows the subsequent steps.

1. Initialize the value function V (s) for all states.

2. For each episode:

(a) Initialize the starting state st.

(b) Repeat until the episode terminates:

i. Take an action at following the policy π.

ii. Observe the reward rt+1 and the next state st+1.

iii. Update the value estimate for state st using the TD(0) update rule.

iv. Set st to st+1.

3. Repeat the above process for multiple episodes or until convergence.

In summary, TD learning is a reinforcement learning technique used to estimate value
functions by iteratively updating value estimates based on observed transitions and re-
wards. TD(0) and Q-learning are common variants of TD learning used for state-value
and action-value estimation, respectively. These methods are model-free and suitable for
scenarios where learning occurs through interaction with the environment.

2.2.3. Temporal Difference Learning for Control

Temporal difference can be also used for control tasks, i.e., for computing an approxi-
mately optimal policy. TD methods combine elements of both model-free and model-

2| Background 21

based approaches by updating value estimates based on the difference between the current
estimated value and the estimated value of the next state.

SARSA

SARSA (State-Action-Reward-State-Action) [19] is an on-policy reinforcement learning
algorithm based on TD learning. The SARSA update rule is used to estimate action
values (qπ) for a given policy π, similarly as in the previous section:

Q(st, at)← Q(st, at) + α (rt+1 + γQ(st+1, at+1)−Q(st, at))

where

• Q(st, at) is the estimated action-value for taking action at in state st;

• α is the learning rate, controlling the size of the update;

• rt+1 is the reward received after taking action at in state st and transitioning to
state st+1;

• γ is the discount factor;

• Q(st+1, at+1) is the estimated action-value for the next action at+1 in the next state
st+1 following the current policy π.

Specifically, SARSA follows the algorithmic steps below

1. Initialize the action-value function Q(s, a) arbitrarily for all state-action pairs.

2. Choose an initial state s0 and an initial action a0 based on the current policy π.

3. Repeat until termination:

(a) Take action at in state st based on the current policy π.

(b) Observe the reward rt+1 and the next state st+1.

(c) Choose the next action at+1 based on the current policy π.

(d) Update the action-value estimate for the current state-action pair (st, at) using
the SARSA update equation.

(e) Set st to st+1 and at to at+1.

4. Repeat the above process for multiple episodes or until convergence.

22 2| Background

Expected SARSA Expected SARSA slightly modifies the algorithm above by consid-
ering an update rule as

Q(st, at)← Q(st, at) + α

(
rt+1 + γ

∑
a

π(a|st+1)Q(st+1, a)−Q(st, at)

)

where the action at the next step is on average over the policy rather than a single
realization from the policy.

Policy Improvement in SARSA SARSA typically uses an ϵ-greedy policy to handle
the exploration-exploitation trade-off. After each episode or a certain number of time
steps, the policy π is updated to be ϵ-greedy with respect to the current action-value
estimates Q(s, a).

In summary, SARSA is an on-policy reinforcement learning algorithm used to estimate
action values (qπ) and find an optimal policy in MDPs. It updates action-value estimates
based on observed transitions and rewards while following the current policy π. The policy
is often improved by making it ϵ-greedy. SARSA is particularly suitable for scenarios
where learning occurs through interactions with the environment.

Q-Learning

Q-Learning [22] is an off-policy reinforcement learning algorithm based on TD value es-
timates. The update rule for Q-Learning is used to estimate action values (qπ) for an
optimal policy directly, taking inspiration from value iteration and the Bellman optimal-
ity equation. The update rule is:

Q(st, at)← Q(st, at) + α
(
rt+1 + γmax

a′
Q(st+1, a

′)−Q(st, at)
)

where

• Q(st, at) is the estimated action-value for taking action at in state st;

• α is the learning rate, controlling the size of the update;

• rt+1 is the reward received after taking action at in state st and transitioning to
state st+1;

• γ is the discount factor;

• maxa′ Q(st+1, a
′) is the maximum estimated action-value for the next state st+1 over

all possible actions a′.

2| Background 23

The Q-Learning algorithm follows the algorithmic steps below.

1. Initialize the action-value function Q(s, a) arbitrarily for all state-action pairs.

2. Choose an initial state s0.

3. Repeat until termination:

(a) Select an action at for the current state st based on the current policy (often
ϵ-greedy with respect to Q(st, a)).

(b) Execute action at in state st.

(c) Observe the reward rt+1 and the next state st+1.

(d) Update the action-value estimate for the current state-action pair (st, at) using
the Q-Learning update equation.

(e) Set st to st+1.

Policy Improvement in Q-Learning Similarly as SARSA, Q-Learning can be used
with an ϵ-greedy to handle exploration and exploitation. However, being Q-Learning an
off-policy algorithm, the policy to be deployed to collect samples does not have to be the
current greedy policy, but any policy of choice.

In summary, Q-Learning is an off-policy reinforcement learning algorithm used to estimate
action values (qπ) and find an optimal policy in MDPs. It updates action-value estimates
based on observed transitions and rewards while using an ϵ-greedy policy for exploration
and exploitation. Q-Learning is particularly suitable for scenarios where learning occurs
through interaction with the environment, and exploration is crucial for discovering the
optimal policy.

2.2.4. Off-Policy Learning and Importance Sampling

Off-policy learning is a reinforcement learning paradigm where an agent learns and eval-
uates a target policy (π) based on data collected from a different behavior policy (µ). It’s
especially valuable when you want to evaluate or improve a policy using historical data
that was generated by another policy.

A classical approach to off-policy learning is importance sampling. Importance sam-
pling [14] can be used in off-policy reinforcement learning to account for the mismatch
between the target policy and the one collecting the data. This is done through a re-
weighting with the importance sampling ratio (ρ). For a sequence of actions a1, a2, . . . , an,

24 2| Background

ρ is given by:

ρ =
P (sampled actions under target policy)

P (sampled actions under behavior policy)
=

π(a1|s1) · π(a2|s2) · . . . · π(an|sn)
µ(a1|s1) · µ(a2|s2) · . . . · µ(an|sn)

where

• π(a|s) is the probability of taking action a in state s under the target policy;

• µ(a|s) is the probability of taking action a in state s under the behavior policy.

In summary, importance sampling is a crucial technique in off-policy reinforcement learn-
ing. It allows agents to estimate expected values and evaluate or improve policies under a
target policy using data collected from a behavior policy. This technique is widely used in
various reinforcement learning algorithms to handle situations where policies differ during
learning and execution.

2.3. Function Approximation for RL

The methods we have presented so far rely on a crucial assumption: That the number
of states and actions is finite, and possibly small, such that policies and value functions
can all be represented through tables (and thus they are called tabular methods). When
dealing with large or continuous state spaces and/or action spaces, it is often impractical
to maintain a tabular representation of the value function and the policy. Instead, function
approximation techniques [19] are used to approximate the value function.

One possibility is to use simple linear models trained through linear regression, in which
a set of features (state or state-action features) is used instead of the state (action) index,
and linear combinations of these features are learned to approximate the values. However,
in many real-world scenarios, value functions are highly non-linear. Non-linear function
approximation methods, such as artificial neural networks, can be used to approximate the
value function more accurately. Deep learning techniques, including deep neural networks,
are particularly powerful for capturing complex relationships.

Once we have a good approximator for the value function, one can use it to perform
both policy evaluation and control tasks, which involve finding an optimal policy that
maximizes the expected cumulative rewards. Actually, the control task often includes
policy evaluation as an inner step.

Using function approximation in reinforcement learning comes with several challenges like
controlling approximation errors, stability, as well as the common exploration-exploitation

2| Background 25

trade-off. To address these challenges, various reinforcement learning algorithms have
been developed. We will present a few of them in the next sections. First, we will cover
policy evaluation (a.k.a. prediction problem) in Section 2.3.1. Then, we will cover control
tasks in Section 2.3.2.

2.3.1. Prediction with Function Approximation

Prediction with function approximation in reinforcement learning involves estimating the
value functions using parameterized models.

Parameterizing Value Functions

Parameterizing value functions involves using function approximation techniques to rep-
resent these functions. This means replacing the explicit storage of values for each state or
state-action pair with a parameterized mathematical function or model. These functions
can be linear, non-linear (e.g., neural networks), or other forms that efficiently estimate
values.

• State-Value Function Parameterization

For state-value functions vπ(s), parameterization means using a function V (s; θv)

with parameters θv to estimate the value of each state s. This parameterized function
takes the state s as input and provides an estimate of vπ(s).

• Action-Value Function Parameterization:

For action-value functions qπ(s, a), parameterization involves using a function Q(s, a; θq)

with parameters θq to estimate the value of taking action a in state s. This parame-
terized function takes both the state s and action a as inputs and estimates qπ(s, a).

Using those parameterized models counts several benefits, which are listed below.

• Generalization

Parameterized value functions have the ability to generalize across similar states
or state-action pairs. This means that if the agent learns the value of one state
or action, it can apply this knowledge to other similar states or actions. This is
particularly valuable in high-dimensional or continuous state spaces.

• Compact Representation

Instead of explicitly storing values for every state or state-action pair, parameterized
value functions provide a compact representation. This makes it feasible to work

26 2| Background

with large state spaces where storing values explicitly would be impractical.

• Learning from Data

Parameters θ in parameterized functions are learned from interactions with the
environment. This adaptability allows the agent to learn and improve its value
estimates as it interacts with different tasks and environments. It is then a data-
driven approach.

• Transferability

Knowledge gained from learning in one environment can be transferred to related
environments. If the agent learns the value of certain states or actions in one context,
it can apply this knowledge effectively in similar contexts, speeding up learning.

• Scalability

Parameterization is scalable to complex problems with large state spaces. It enables
reinforcement learning algorithms to handle situations where the number of states
is huge, which would be infeasible with traditional tabular methods.

• Flexibility in Function Approximation

Parameterization allows flexibility in choosing function approximation techniques.
You can use linear models, nonlinear models like neural networks, or other methods
depending on the problem’s characteristics.

Having selected the model parameterization, the problem is then to define how to learn
the parameters from data. As we shall see, the data distribution µ plays a crucial role on
the quality of the estimation we can expect. In the following, we present value function
estimation through supervised learning, gradient Monte Carlo methods, and semi-gradient
temporal difference.

Supervised Learning

The problem of learning the parameters θ can be cast as a traditional supervised learning
problem. In this setting, we have a parameterized function v(s; θ) and a dataset of state-
value pairs (s1, vπ(s1)), (s2, vπ(s2)), . . . , (sn, vπ(sn)). Then, we can use the Mean Squared
Error (MSE) as the loss function of a corresponding regression problem, but now we
incorporate the data distribution µ(s) into the loss:

MSE(θ) =
1

n

n∑
i=1

µ(si) · (v(si; θ)− vπ(si))
2.

2| Background 27

Basically, we adjust the model parameters (θ) to fit the data considering the weighted con-
tribution of each state based on µ(si). This simple procedures presents some challenges,
listed below.

• Lack of Exploration

Supervised learning relies on a fixed dataset, which may not cover the full range
of state-action pairs encountered during actual policy execution. This can lead to
biased estimates and an inability to generalize well to unvisited states.

• Non-Stationarity

In reinforcement learning, the environment may change over time. Supervised learn-
ing assumes a fixed dataset, making it challenging to adapt to changes in the policy
or environment.

• Sample Efficiency

Supervised learning often requires a large amount of data to generalize effectively,
which can be impractical in some real-world applications.

• Distribution Mismatch

If the state visitation distribution (µ) used during training does not match the
distribution under the policy being learned, the learned value function may not be
accurate.

Despite these challenges, supervised learning for value function estimation, when applied
carefully and with consideration of state visitation, can be a valuable tool in reinforcement
learning.

Gradient Monte Carlo

An alternative to traditional supervised learning are instead Gradient Monte Carlo (GMC)
methods [19]. The objective of GMC is to estimate the gradient of the mean squared value
error w.r.t. θ. Specifically, the objective is:

J(θ) =
1

2

T∑
t=0

µ(st)
(
Gt − V̂ (st; θ)

)2
where

• J(θ) is the mean squared value error objective;

• θ represents the value function parameters to be learned;

28 2| Background

• Gt is the estimated return (sum of rewards) for trajectory t;

• V̂ (st; θ) is the estimated value of state st using the current parameterization θ;

• µ(st) is the fraction of time spent in state st following the policy.

The GMC algorithm involves the following steps:

1. Sample Trajectories

Generate multiple trajectories by following the current policy. Each trajectory con-
sists of states, actions, and rewards. These trajectories are used to estimate returns
Gt and state visitation probabilities µ(st).

2. Compute Returns

For each time step t in the trajectories, compute the return Gt, which is the sum of
rewards from time t onward:

Gt =
T∑

k=t

Rk

where Rk is the reward at time step k in the trajectory.

3. Compute State Visitation Frequencies

Calculate the state visitation frequencies µ(st) based on the sampled trajectories.
These frequencies represent the fraction of time spent in each state st following the
policy.

4. Gradient Estimation

Compute the gradient of the mean squared value error objective with respect to the
value function parameters θ. The gradient is estimated using the returns Gt, the
estimated values V̂ (st; θ), and the state visitation frequencies µ(st):

∇θJ(θ) = −
T∑
t=0

µ(st)
(
Gt − V̂ (st; θ)

)
∇θV̂ (st; θ)

5. Gradient Update

Update the value function parameters θ using gradient descent or a related opti-
mization method to minimize the mean squared value error objective

θ ← θ + α∇θJ(θ)

2| Background 29

where α is the learning rate.

6. Repeat

Repeat the above steps for multiple iterations to iteratively improve the value func-
tion parameterization.

GMC combines Monte Carlo sampling, state visitation probability estimation, and gra-
dient descent to update the value function parameters. It allows the agent to learn an
accurate value function to improve policy optimization in reinforcement learning tasks,
even when the true value function is unknown.

Semi-Gradient Temporal Difference

Semi-Gradient TD [19] is a method used to estimate the value function in reinforcement
learning. It combines elements of TD learning with gradient methods for policy evaluation.

At each time step t, you calculate the TD error (δt), which represents the difference
between the estimated value of the current state (V (st)) and the estimated value of the
next state (V (st+1)) plus the immediate reward (Rt+1):

δt = Rt+1 + γV (st+1)− V (st)

The policy parameters (θ) are updated using a semi-gradient method:

θ ← θ + α∇θV (st)δt

where α is the learning rate, ∇θV (st) is the gradient of the value function with respect
to the policy parameters, and δt is the TD error at time t.

Semi-Gradient TD is used to estimate the value function and it is typical in value-based
reinforcement learning. It provides a way to update policy parameters in a way that
improves the policy performance.

2.3.2. Control with Function Approximation

Control with function approximation in reinforcement learning is the process of finding
an optimal policy relying on a class of parameterized models (for the value function or
the policy itself).

30 2| Background

SARSA with Function Approximation

The SARSA algorithm that we presented in the previous section can be easily extend to
function approximation. Instead of explicitly storing values for each state-action pair, we
use a parameterized function Q(s, a; θ) to estimate qπ(s, a), such that

qπ(s, a) ≈ Q(s, a; θ).

The update rules becomes
θ ← θ + α · δ · ∇Q(s, a; θ)

where α is the learning rate, δ is the temporal difference error. The latter is defined as

δ = r + γQ(s′, a′; θ)−Q(s, a; θ).

The policy π can be updated by computing the policy improvement step just like in
standard SARSA, such as taking the ϵ-greedy policy based on the estimated action-values
from Q(s, a; θ).

The algorithm follows the algorithmic steps below.

1. Initialize the parameterized action-value function Q(s, a; θ) with random or prede-
fined values.

2. Repeat episodes:

(a) Initialize the starting state s.

(b) Choose an action a using the policy π derived from Q(s, a; θ).

(c) Repeat until the episode terminates:

i. Take action a.

ii. Observe the reward r and the next state s′.

iii. Choose the next action a′ using the policy π derived from Q(s′, a′; θ).

iv. Calculate the temporal difference error δ and update θ using the update
rule.

v. Set s to s′ and a to a′.

(d) If the episode terminates, update the policy π based on the updated Q(s, a; θ)

using an exploration strategy.

2| Background 31

3. Repeat until Q(s, a; θ) converges or for a predefined number of episodes.

Just like standard SARSA, this version working with function approximation can be
modified with the expected SARSA update rule.

2.3.3. Policy Gradient

Policy Gradient (PG) [15] is a reinforcement learning technique that focuses on directly
learning the policy function to optimize the agent behavior. It aims to find the policy
parameters that maximize expected cumulative rewards by computing and then following
the gradient of the expected return with respect to the policy parameters.

In PG methods, the objective is to maximize the expected return J(θ) over all possible
trajectories:

J(θ) = E[
∞∑
t=0

γtRt]

where

• J(θ) is the expected return.

• γ is the discount factor.

• Rt is the reward at time step t.

The policy is parameterized as π(a|s; θ), where θ represents the policy parameters.

The Policy Gradient Theorem [20] provides the gradient of the expected return with
respect to the policy parameters:

∇J(θ) ∝ E

[
∞∑
t=0

∇ log π(at|st; θ) ·Qπ(st, at)

]

where

• ∇J(θ) is the gradient of the expected return.

• ∇ log π(at|st; θ) is the gradient of the log-probability of taking action at in state st

with respect to θ.

• Qπ(st, at) is the action-value function representing the expected return starting from
state st, taking action at, and following the policy π.

32 2| Background

To derive the policy gradient, we start with the expression for the expected return:

J(θ) = E[
∞∑
t=0

γtRt]

To make gradient calculations tractable, we introduce a state distribution dπ(s) that
represents the probability of being in state s under the policy π. Now, we can express the
expected return as:

J(θ) =
∑
s

dπ(s)
∑
a

π(a|s; θ)
∞∑
t=0

γtRt

Next, we take the gradient with respect to θ:

∇J(θ) =
∑
s

dπ(s)
∑
a

∇π(a|s; θ)
∞∑
t=0

γtRt

Using the property that the gradient and summation can be exchanged, we have:

∇J(θ) =
∑
s

dπ(s)
∑
a

∇π(a|s; θ)Qπ(s, a)

This is the policy gradient expression, and it tells us how to update the policy parameters
to maximize the expected return.

Then, being α a learning rate, the policy parameters θ are updated in the direction of the
policy gradient to maximize the expected return:

θ ← θ + α∇J(θ).

This process iteratively refines the policy to find the optimal policy that maximizes ex-
pected returns.

In summary, PG methods optimize policies directly by adjusting their parameters to max-
imize expected returns. The Policy Gradient Theorem provides a fundamental equation
for computing policy gradients, and this gradient is used to update the policy in the
direction of higher expected returns.

Actor-Critic Algorithm

The Actor-Critic (AC) algorithms [8] combine policy learning (the actor) and value func-
tion learning (the critic) to solve the control task. A typical AC algorithm follows the
steps below.

2| Background 33

1. Initialize policy parameters θactor and value function parameters θcritic.

2. Repeat for each episode:

(a) Initialize the environment and state s0.

(b) Repeat for each time step:

i. Actor (Policy Network):

• Sample an action at from the policy π(at|st; θactor).

• Observe the reward rt and the next state st+1.

ii. Critic (Value Network):

• Calculate the TD error:

δt = rt + γQπ(st+1, at+1)−Qπ(st, at)

• Update the value function using the TD error:

θcritic ← θcritic + βδt∇Qπ(st, at; θcritic)

iii. Actor (Policy Network): Update the policy using the policy gradient:

θactor ← θactor + α∇ log π(at|st; θactor) ·Qπ(st, at)

3. Repeat until convergence.

The Actor (Policy Network) updates the policy parameters θactor using the Policy Gradient
Theorem. It adjusts the policy in the direction that increases the expected return, guided
by the action-value function Qπ(st, at). The Critic (Value Network) updates the value
function parameters θcritic using the TD error. It learns to estimate the action-value
function Qπ(st, at; θcritic) by minimizing the TD error. α and β are learning rates for the
actor and critic updates, respectively.

The latter AC algorithm iteratively improves both the policy and the value function,
enabling more effective reinforcement learning in complex environments.

35

3| Policy Space Compression

In this chapter, we introduce the fundamental problem we will focus on this thesis, which
is the policy space compression, introduced in [12]. In this problem, given an MDP and
an (infinite) parametric policy space, we aim to identify a compact subset of the latter
space that retains most of its expressive power in terms of addressing RL problems in the
given MDP. As we shall see, solving the policy space compression problem have impor-
tant implications for improving the efficiency of RL, but it brings arduous computational
challenges, for which research is still underway. Before addressing those challenges from
a novel geometric perspective on the problem, we provide the basics of policy space com-
pression as studied in [12]. In Section 3.1, we give the formal definition of the problem
and its main components. Then, we provide a game-theoretic formulation in Section 3.2,
which comes as inspiration for the first policy space compression algorithm (Section 3.3).

3.1. Problem Formulation

In the policy space compression problem, we are given an MDP and a parametric policy
space Θ. The latter represents the space of all the possible policies that an agent can
choose from. Each policy θ in this space defines a strategy that dictates the agent’s
actions based on its observations from the environment. The policy space can be infinite,
encompassing a wide range of possible strategies. For instance, policies can be represented
by parameters in a combination of linear functions or the weights of a deep neural network.

In policy space compression, the primary goal is to find a smaller subset of policies,
denoted as Θσ and called σ-compression, within the infinite space Θ. This subset Θσ

should have the following properties:

• It should retain most of the expressive power of the original policy space Θ, in terms
of the state-action distributions the agent can induce over the given MDP;

• It should be sufficiently small to improve the efficiency of reinforcement learning
with the reduced policy space.

The latter two desiderata can be incorporated into a single optimization problem in which

36 3| Policy Space Compression

the objective function asks to minimize the number of policies in Θσ, but under a coverage
constraint that guarantees coverage of all the state dsitributions induced by the policies
in the original policy space Θ. Formally, the optimization problem is:

Minimize:
∑
ω∈ΩΘ

xω

Subject to:
∑

ω:D2(v∥ω)≤σ

xω ≥ 1, ∀v ∈ ΩΘ

where ΩΘ represents the set of all state-action distributions that can be induced by poli-
cies in Θ, xω is a binary variable denoting whether a policy inducing the state-action
distribution ω is in Θσ or not, and D2(v∥ω) denotes the Rènyi divergence between the
state-action distributions v and ω.

Complexity Unfortunately, previous works have shown that solving the problem above
is NP-hard [12]. This implies that finding an exact optimal solution efficiently is com-
putationally challenging, especially as the size and complexity of the policy space grow.
Indeed, it is well-known that NP-hard problems do not admit polynomial time algorithms.

Instead of attempting to solve the NP-hard problem directly, researchers are exploring al-
ternative approaches to make it computationally tractable. These approaches may involve
approximations, heuristics, or insights from related areas to find a feasible solution that
balances the trade-off between policy space size and coverage of state-action distributions.

3.2. Game-Theoretic Perspective

In this Section, we present a more handy formulation of the policy space compression
problem, by adopting a game-theoretic approach. Thus, we introduce a two-player game
where:

• Player 1 (referred to as the leader) selects a set of K policies denoted as θ1, . . . ,θK .
The goal of the leader is to cover a set of state-action distributions denoted as ΩΘ;

• Player 2 (referred to as the follower) tries to find a policy µ that is not adequately
covered by the policies chosen by the leader.

As in the previous Section, the coverage is formulated in terms of the Rènyi divergence
between distributions induced by the leader’s policies and the follower’s policy.

3| Policy Space Compression 37

Formally, the game can be written as

min
θ∈ΘK

max
µ∈Θ

f(θ,µ)

such that f(θ,µ) = min
k∈[K]

D2(d
sa
µ ||dsaθk)

where θ = (θ1, . . . ,θK) is the set of leader’s policies, µ is the follower’s policy, and dsaµ ,
dsaθk denote their corresponding state-action distribution, while [K] stands for the set of
integers {1, . . . , K}.

The objective function f(θ,µ) is designed to capture the essence of the game. It represents
the minimal Rènyi divergence between the state-action distribution of the follower’s policy
µ and that of the leader’s policies θ1, . . . ,θK .

The intuitive goal of this game formulation is to iteratively find the follower’s policy µ

that is the hardest for the leader to cover effectively, and then to adjust the leader’s policy
to cover the latter.

Complexity Unfortunately, also the optimization problem resulting from the game-
theoretic perspective is computationally hard (see [12]), as it is neither convex nor concave.

Given the computational complexity of finding a global optimum, the focus shifts to
finding a locally optimal solution. Specifically, the aim is to find a solution for which the
function f does not change in any direction for the leader’s strategies (local maximum)
and does not change in any direction for the follower’s strategies (local minimum).

3.2.1. Differential Stackelberg Equilibrium

The proposed solution concept is called the Differential Stackelberg Equilibrium (DSE) [5].
A DSE is a point in the objective function where both players have settled on strategies
that are locally optimal in the sense that they meet conditions below:

• The leader’s strategy should not change when considering slight variations in the
follower’s strategy;

• Similarly, the follower’s strategy should be at a minimum and remain stable when
the leader’s strategy varies slightly;

• The determinant of the Hessian matrix (a matrix of second-order derivatives) should
be positive for the leader’s strategy, indicating that it is a local maximum;

• The determinant of the Hessian matrix should be negative (but close to zero) for

38 3| Policy Space Compression

the follower’s strategy, indicating that it is a local minimum.

In essence, a DSE represents a strategic balance between the leader and the follower,
where neither can unilaterally improve their position. Recent research [4–6] has shown
that a specific optimization technique called Gradient Descent Ascent (GDA) can be
employed to find a DSE of a given game efficiently. GDA is an iterative method where
the leader and the follower adjust their strategies following their respective gradients of
the objective function. The crucial insight here is that, under certain conditions on the
timescale separation, i.e., on the learning rate of the gradients’ update of the leader and
the follower, GDA is guaranteed to converge to a DSE [4].

3.2.2. Challenges

Unfortunately, there are still a few standing challenges to apply GDA to solve the policy
space compression problem. Specifically,

• Ensuring that the value f(θ∗,µ∗) obtained from a DSE guarantees that the set
of policies θ selected by the leader represents a valid σ-compression of the policy
space Θ. This means that the leader’s strategies effectively cover the state-action
distribution space as required for a compression.

• Determining an appropriate value for the parameter K, which represents the number
of policies chosen by the leader. The appropriate value of K is not obvious before-
hand, and finding a balance between computational complexity and compression
quality is a challenge.

To (partially) address those challenges, an algorithm have been proposed by [12], which
we present in the next section. Those challenges will also be the focus of the thesis, for
which we provide novel results coming from the geometric study on the problem in the
remaining chapters.

3.3. The PSCA Algorithm

To address the challenges mentioned above, Mutti et al. [12] suggest an iterative first-order
method. This method iteratively finds DSEs for larger instances of the game, referred to
as the cover game. The goal is to continue this process until a conservative approximation
of the desired global condition, i.e., maxµ∈Θ f(θ∗,µ) ≤ σ, is met.

The algorithm starts with a smaller K and iteratively increases it until the game outputs
a satisfactory solution. In this way, it does not require a predefined fixed value for K, and

3| Policy Space Compression 39

it ensures that the policies selected by the leader effectively compress the policy space to
meet the σ-compression requirement.

The GDA procedure is at the core of the optimization process. It involves updating both
the leader’s and follower’s parameters in the direction of their respective gradient. The
updates are detailed below.

3.3.1. Leader’s Update

The leader’s parameters θ are updated in the opposite direction of the gradient of the
joint objective function f(θ,µ), i.e.,

θ ← θ − α∇θf(θ,µ)

where α denotes the learning rate, and the gradient is given by

∇θkf(θ,µ) = − E
(s,a)∼dsaθk

(dsaµ (s, a)

dsaθk(s, a)

)2

∇θk log d
sa
θk
(s, a)

 .

3.3.2. Follower’s Update

The follower’s parameters µ are updated in the direction of the gradient of the joint
objective function f(θ,µ), i.e.,

µ← µ+ β∇µf(θ,µ)

where β denotes the learning rate, and the gradient is given by

∇µf(θ,µ) = 2 E
(s,a)∼dsaθk

(dsaµ (s, a)

dsaθk(s, a)

)2

∇µ log d
sa
µ (s, a)

 .

Here, ∇θf(θ,µ) and ∇µf(θ,µ) represent the gradients of the joint objective function
with respect to the leader’s and follower’s parameters, respectively.

3.3.3. Algorithmic Steps

Having introduced the leadear’s and follower’s updates, we can now present the main
algorithmic steps below.

40 3| Policy Space Compression

1. Initial Policy Space: Start with a small number of policies, e.g., K = 1.

2. Find a Differential Stackelberg Equilibrium (DSE): Compute a DSE for the given
number of policies.

3. Check Global Requirement: Verify if the leader’s strategy satisfies the global re-
quirement, which is defined as:

max
µ∈Θ

f (θ∗,µ) ≤ σ

Here, σ is a predefined threshold.

4. Compression Outcome: If the global requirement is met, it means the policy space
compression problem is successfully solved, and θ∗ represents a σ-compression of Θ.

5. Increment Policies: If the global requirement is not met, increment the number of
policies K and repeat the process. This iterative approach ensures that a valid σ

compression will eventually be found.

A crucial aspect of the algorithm is to ensure a large timescale separation, denoted as τ :=

β/α. This separation guarantees convergence to a Differential Stackelberg Equilibrium
(DSE), as studied in [4].

In summary, the PSCA algorithm combines gradient-based optimization techniques with
specific strategies for handling non-differentiable objective functions to systematically
achieve policy space compression while satisfying global requirements in the context of a
cover game. However, it is not immediate how the global requirement can be checked in
step 3 of the algorithm, or the number of policies K that are required to find a valid σ-
compression. The next chapters will dive into this questions, for which the corresponding
answers constitutes the central contribution of this thesis.

41

4| On the Covering Threshold

In this chapter, we study the role of the covering threshold σ in the policy space com-
pression problem, and how to check the corresponding requirement. First, we revise the
geometry of the problem in Section 4.1. Then, in Section 4.2, we discuss how to set a cov-
ering threshold properly. Finally, we provide solutions to check whether the requirement
implied by a covering threshold is satisfied (Section 4.3), both in unconstrained polytopal
space (Section 4.3.1) and constrained polytopal space (Section 4.3.2).

4.1. Geometry of the Problem

The policy space is a bounded convex polytope which has |SA| zero-dimensional vertices,(|SA|
2

)
one-dimensional edges,

(|SA|
3

)
two-dimensional faces, and so on up to our original

polytope, which is basically one |SA|-dimensional shape exactly similar to the convex hull
of all the vertices.

The space of all the state distributions is an |S|-dimensional polytope, whose vertices
denote the situation in which a single state is visited with probability one. The space of
all the state-action distributions is an |SA|-dimensional polytope, whose vertices denote
the situation in which a single state is visited with probability one, and a single action is
taken in that state with probability one.

Having established the basic geometry, it is worth taking a look at the values of the pa-
rameter σ, i.e., the coverage threshold, which are meaningful from a geometric standpoint.

4.2. How to Set the Covering Threshold

It is easy to see that σ ≥ |SA| is not meaningful, as it admits a trivial solution to the
policy space compression problem.1 Indeed, this threshold allows to cover the whole
original policy space with just one representative policy, which is the one inducing a
uniform distribution over all the state-action pairs.

1Note that this analysis does not consider MDP constraints yet.

42 4| On the Covering Threshold

We can easily prove the latter by contradiction. Let us assume

d2µ(s, a)1
1

|SA|
+ · · ·+

d2µ(s, a)|SA|
1

|SA|
> |SA|.

Then, we have ∫
d2µ(s, a)

1
|SA|

ds da > |SA| ⇒
∫

d2µ(s, a) ds da > 1,

which always holds true if one of the two conditions below hold true:

• ∃(s, a) ∈ SA such that dµ(s, a) > 1

•
∫
dµ(s, a) ds da > 1

Since none of the latter respect our assumption on dµ being a distribution, we can conclude
that

d2µ(s, a)1
1

|SA|
+ · · ·+

d2µ(s, a)|SA|
1

|SA|
≤ |SA|,

which reveals that σ = |SA| is not a challenging covering threshold.

4.2.1. A Sensible Range of σ

In a polytope of |SA| dimensions the range of σ values from |SA|/2 to |SA| has a very
peculiar property: We can show that the number of covering policies needed to solve the
policy space compression is at most |SA|+ 1 when σ is selected this range.

Intuitively, if we choose one of our covering policies such that its state-action distribution
is at the center of the state-action distribution polytope (i.e., the one corresponding with
uniformly distributed state-action probabilities), then, by computing the Rènyi divergence
between this policy and the policies with state-action distributions falling on the middle
of the edges of the polytope, we reach the value of |SA|/2 for σ.

Indeed, we can easily compute the Rènyi divergence between the latter policies as follows:

∫
d2µ(s, a)

dθ(s, a)
ds da =

(
1
2

)2
1

|SA|
+

(
1
2

)2
1

|SA|
+

(0)2

1
|SA|

+ · · ·+ (0)2

1
|SA|

=
|SA|
2

∫
d2µ(s, a)

dθ(s, a)
ds da =

(
1
2

)2
1

|SA|
+

(0)2

1
|SA|

+

(
1
2

)2
1

|SA|
+

(0)2

1
|SA|

+ · · ·+ (0)2

1
|SA|

=
|SA|
2

.

4| On the Covering Threshold 43

.

.∫
d2µ(s, a)

dθ(s, a)
ds da =

(
1
2

)2
1

|SA|
+

(0)2

1
|SA|

+ · · ·+ (0)2

1
|SA|

+

(
1
2

)2
1

|SA|
=
|SA|
2

Then, we choose our other |SA| representative policies such that their state-action dis-
tribution fall between the representative policy at the center and |SA| vertices of our
polytope. It can be shown that each one of the aforementioned representative policies
cover all the remaining policies left uncovered by the representative policy at the center.

We can show the latter as∫
d2µ(s, a)

dθ(s, a)
ds da =

(1)2

dθ(s, a)1
+

(0)2

dθ(s, a)2
+ · · ·+ (0)2

dθ(s, a)|SA|
= σ

∫
d2µ(s, a)

dθ(s, a)
ds da =

(
1
2

)2
dθ(s, a)1

+

(
1
2

)2
dθ(s, a)2

+
(0)2

dθ(s, a)3
+ · · ·+ (0)2

dθ(s, a)|SA|
= σ∫

d2µ(s, a)

dθ(s, a)
ds da =

(
1
2

)2
dθ(s, a)1

+

(
1
2

)2
dθ(s, a)3

+
(0)2

dθ(s, a)4
+ · · ·+ (0)2

dθ(s, a)|SA|
= σ

.

.

.∫
d2µ(s, a)

dθ(s, a)
ds da =

(
1
2

)2
dθ(s, a)1

+
(0)2

dθ(s, a)2
+ · · ·+ (0)2

dθ(s, a)|SA|−1

+

(
1
2

)2
dθ(s, a)|SA|

= σ

∫
dθ(s, a) ds da = 1

Solving the latter system of equations we have |SA|+2
3

for our unknown σ, which is less
than |SA|

2
for |SA| greater than 4, proving our claim.

4.3. How to Check the Covering Requirement

Having discussed about how to set the covering threshold σ, we now study how can
we check whether a tentative compression, i.e., a set of leader’s parameters θ1, . . . , θK ,
satisfies the σ threshold globally. Formally, we want to check if it holds

max
µ∈Θ

min
k∈[K]

∫
d2µ(s, a)

dθk(s, a)
d(s, a) ≤ σ.

44 4| On the Covering Threshold

First, we study the setting in which the covering problem is defined on a polytopal space
without additional constraints (Section 4.3.1), providing approximate solution from both
an optimization and an algorithmic perspective. Then, in Section 4.3.2, we replicate
similar reasoning for a covering problem defined on a polytopal space with additional
constraints, such as those given by the MDP model, in which the stochastic vectors dµ

and dθk , ∀k ∈ [K], has to be state-action distributions induced by a policy in the MDP.

4.3.1. Unconstrained Polytopal Space

For checking the covering requirement over unconstrained polytopal spaces, we provide a
family of solutions coming from optimization and algorithmic perspectives.

Two Types of Problem Reformulations to Check the Covering

Requirement Approximately

Here we try to overcome the hardness of checking the covering guarantees from an opti-
mization perspective, i.e., considering tractable approximate reformulations of the original
problem.

Reformulation of the 1st Type Here we consider the follower’s parameters µ as
decision variables, to answer the question: Is there any remaining policy not covered by
representative ones? Specifically, we consider the following program for some j ∈ [K].

max

∫
d2µ(s, a)

dθj(s, a)
ds da

s.t. ∫
dµ(s, a) ds da = 1∫
d2µ(s, a)

dθk(s, a)
ds da > σ ∀k ∈ K | {k = 1}

dµ(s, a) ≥ 0 ∀(s, a) ∈ SA

dµ(s, a) ≤ 1 ∀(s, a) ∈ SA

The intuition is the following: If there are remaining policies outside the σ distance of(
|K| − 1

)
representative policies, then among them which one will be maximally far from

the remaining representative policies and how much will be this maximum distance? If

4| On the Covering Threshold 45

this distance is greater than σ, then it means our representative policies are not enough
to cover the polytope.

By randomly choosing one of K representative policies to be used in the objective function
and using the remaining

(
K − 1

)
ones in our constraints we reach our goal. Then, we

just have to solve this optimization problem K times for all the different j ∈ [K]. The
minimum value of the K values attained by the programs is the exact value of our original
maximin formulation. Unfortunately, this reformulation is a QCQP that is NP-hard in
general. However, there exists relaxations like semidefinite programming (SDP), whcih
can be used to approximate the value of the program.

Reformulation of the 2nd Type Another way to reformulate our problem is through
the following program, in which we have just substituted our objective function with our
linear constraint and vice versa.

min

∫
dµ(s, a) ds da

s.t. ∫
d2µ(s, a)

dθk(s, a)
ds da > σ ∀k ∈ K

dµ(s, a) ≥ 0 ∀(s, a) ∈ SA

dµ(s, a) ≤ 1 ∀(s, a) ∈ SA

In this new reformulation, if the min value of our objective function is less than 1, it
means there is at least one remaining policy left uncovered by the representative policies.
At the same time, by knowing the values of our dµ(s, a) variables that gave the minimum
value in the objective, we obtain a policy left uncovered.

Nonetheless, the latter program is a Quadratic Constraint Linear Program, which is NP-
hard in general. Similarly as before, we can employ SDP to have an approximate solution.

Two Types of Algorithms to Check the Covering Requirement

Exactly

To try to find an exact approach to check the covering requirement, we follow an algorith-
mic route instead of the optimization view described in the previous section. Especially,
we present two types of algorithms that iteratively solve local problems to assess the

46 4| On the Covering Threshold

requirement globally.

Algorithm of the 1st Type

The main idea of this algorithmic solution is to first find the representative policies (and
polytope boundaries) in the neighborhood of the different representative policies, then
solving some system of equations to assess local covering requirements around the repre-
sentative policies one by one.

As we shall see, all the optimization problems involved in this algorithm are Linear Pro-
grams (LPs), the number of their decision variables and their constraints are finite and
the whole algorithm components can be executed in polynomial time.

Finding the Neighbors of One Representative Policy Without loosing generality,
we consider one representative policy j ∈ [K]. Then, we consider different selections of
|SA| members from the remaining K − 1 representative policies and polytope sides set
SA. For each of these selections, we have to solve different systems of linear equations.
The number of systems is equal to

(
K−1+|SA|

|SA|

)
. We differentiate between systems of Type

A and Systems of Type B.

• System of Type A

Let us define the set X of systems such that, for each element x ∈ X, we define the
set

K ′ = {|SA| members k′’s from
(
K − 1

)
representative policies}.

We can say the number |X| of systems to be solved is equal to
(
K−1
|SA|

)
.

Now, for every x ∈ X and corresponding K ′, we can define a system of |SA|
quadratic equations and |SA| unknowns as follows∫

d2µx
(s, a)

dθk′ (s, a)
ds da = σ ∀k′ ∈ K ′.

For each of the systems above, we check whether the policy found by that system
µ⋆
x is beyond a σ distance from all the other representative policies and within a σ

distance from the representative policy j. In other words, we check whether the two
conditions below hold true:

1 ·
∫

d2µ⋆
x
(s, a)

dθk(s, a)
ds da > σ ∀k ∈ K | {k = j, k ∈ K ′}

4| On the Covering Threshold 47

2 ·
∫

d2µ⋆
x
(s, a)

dθj(s, a)
ds da ≤ σ

If the answer is positive, then all the related |SA| representative policies are in the
neighborhood of the representative policy j.

• System of Type B

Here we define e new type of system in which both representative policies and
polytope sides are involved. Let us define the set of systems Y and its members y

as

y = {|SA| members from
(
|K| − 1

)
representative policies and polytope sides on

condition of at least one and at most
(
|SA| − 1

)
polytope sides}.

We can say the number |Y | of systems to be solved is equal to
(|K|−1+|SA|

|SA|

)
−
(|K|−1

|SA|

)
.

Then, defining two sets K ′ and S ′A′ as

K ′ = {|K ′| members k′’s from
(
|K| − 1

)
representative policies}

S ′A′ = {|S ′A′| members (s′, a′)’s from polytope sides set SA}

where |k′|+ |S ′A′| = |SA| and 0 < |S ′A′| <
(
|SA| − 1

)
.

Now, for each y ∈ Y and corresponding K ′ and S ′A′, we can define a system with
|SA| quadratic equations and |SA| unknowns as follows∫

d2µy
(s, a)

dθk′ (s, a)
ds da = σ ∀k′ ∈ K ′

dµx(s
′, a′) = 0 ∀(s′, a′) ∈ S ′A′

Then, for each of the systems above we check whether the policy found by that
system µ⋆

y is beyond a σ distance from all the other representative policies and
within a σ distance from the representative policy j. In other words, we check
whether both of the two conditions below hold true:

1 ·
∫ d2µ⋆

y
(s, a)

dθk(s, a)
ds da > σ ∀k ∈ K | {k = j, k ∈ K ′}

2 ·
∫ d2µ⋆

y
(s, a)

dθj(s, a)
ds da ≤ σ

If the answer is positive, then all the related |SA| representative policies and poly-

48 4| On the Covering Threshold

tope sides are in the neighborhood of the representative policy j.

Checking the Covering Requirement Locally As in the paragraph above, we con-
sider the representative policy j ∈ [K] without loosing generality. We aim to check the
covering requirement on this representative policy locally. In other words, we try to an-
swer the following question: Is there any remaining policy among our representative policy
j and its neighbor representative policies and polytope sides that is not covered?

To answer the question, we consider different selections of
(
|SA| − 1

)
members from

our representative policies set K ′ and polytope sides set S ′A′. Now, for these different
selections we have to solve different systems of equations. The number of systems is equal
to
(|K′|+|S′A′|

|SA|−1

)
, and the systems can be of the types A or B.

• System of Type A

For each system in X such that only representative policies are involved, we define
a set K ′′ as

K ′′ = {
(
|SA| − 1

)
members k′′’s from representative policies set K ′}.

We can say the number |Y | of systems to be solved is equal to
(|K′|
|SA|−1

)
.

Then, we introduce another unknown denoted as σj
x. Now, for each x ∈ X and

its corresponding set K ′′, we have to solve a system with
(
|SA| + 1

)
linear and

quadratic equations and
(
|SA|+ 1

)
unknowns defined as

∫ d2
µj
x
(s, a)

dθj(s, a)
ds da = σj

x

∫ d2
µj
x
(s, a)

dθk′′ (s, a)
ds da = σj

x ∀k′′ ∈ K ′′

∫
dµj

x
(s, a) ds da = 1

Among the systems above, if there is at least one system for which we get a value
greater than σ for our unknown σj

x, it means there is at least a remaining policy
left uncovered. Instead, no system with unknown σj

x greater than σ means that no
remaining policy is left uncovered and we can stop there.

In the former case, in order to find the exact value of our original maximin problem,
we see for which system we reached the maximum value for our unknown σj

x and

4| On the Covering Threshold 49

we save it2

σj
x⋆ = max

x
σj

x

and we also save the remaining policy found by that related system in d
µ
j
x⋆
(s, a).

• System of Type B

For each system in X such that only representative policies and polytope sides are
involved, we define a set Y having memebers

y = {
(
|SA| − 1

)
members from representative policies set K ′ and polytope sides set

S ′A′ on condition of at least one member selected from polytope sides}.

We can say the number |Y | of systems to be solved is equal to
(|K′|+|S′A′|

|SA|−1

)
−
(|K′|
|SA|−1

)
.

We further define two sets K ′′ and S ′′A′′ as

K ′′ = {|K ′′ members k′′’s from representative policies set K ′}

S ′′A′′ = {|S ′′A′′| members (s′′, a′′)’s from polytope sides set S ′A′}

where |k′′|+ |S ′′A′′| = |SA| − 1 and |S ′′A′′| is at least equal to 1.

Then, we introduce another unknown denoted as σj
y instead of the value of σ. Now,

for each y ∈ Y and corresponding sets K ′′ and S ′′A′′, we have to solve a system
with

(
|SA|+1

)
linear and quadratic equations and

(
|SA|+1

)
unknowns as follows

∫ d2
µj
y
(s, a)

dθj(s, a)
ds da = σj

y

∫ d2
µj
y
(s, a)

dθk′′ (s, a)
ds da = σj

y ∀k′′ ∈ K ′′

∫
dµj

y
(s, a) ds da = 1

dµj
y
(s′′, a′′) = 0 ∀(s′′, a′′) ∈ S ′′A′′

If among the systems above there is at least one system that gives a value greater
than σ for our unknown σj

y, it means there is at least one remaining policy left
uncovered. Instead, no system with unknown σj

y greater than σ means no remaining
policy is left uncovered and we can stop there.

2let us consider σj
x as the values of unknowns σj

x’s and dµj
x
’s as the values of state action pairs

distributions of different remaining policies dµj
x

found by different systems.

50 4| On the Covering Threshold

In the former case, in order to find the exact value of our original maximin problem,
we see for which one of those systems we have reached the maximum value for our
unknown σj

y and we save it3

σj
y⋆ = max

y
σj

y

and we also save the remaining policy found by that related system d
µ
j
y⋆
(s, a).

Checking the Covering Requirement Globally Since we have K different repre-
sentative policies, the total number of the systems we have to solve is K

(|K′|+|S′A′|
|SA|−1

)
, in

which |K|
(|K′|
|SA|−1

)
systems are of type A and |K|

(|K′|+|S′A′|
|SA|−1

)
− |K|

(|K′|
|SA|−1

)
systems are of

type B. Now, we have to find
σj⋆

x⋆ = max
j

max
x

σj
x

for which we save the values of their unknowns d
µ
j⋆

x⋆
(s, a), and

σj⋆

y⋆ = max
j

max
y

σj
y

and again we save the values of d
µ
j⋆

y⋆
(s, a).

Then, we compare the values of unknowns σj⋆

x⋆ and σj⋆

y⋆ . Each of them that is greater
than one another is the exact value of our original maximin problem and the values of
other unknowns of the relevant system is the state-action distribution of the policy left
uncovered at the longest distance from our representative policies. Hence, we have

max
µ

min
k

∫
d2µ(s, a)

dθk(s, a)
ds da = max {σj⋆

x⋆ ,σ
j⋆

y⋆}.

An Alternative Algorithm to Find the Neighbors of One Representative Policy
We presented before an algorithm to find the neighbors of one representative policy. Here
we present an alternative algorithm that is more convenient when the neighbors of the
representative policy are symmetrically distributed. We say that a set of representative
policies are symmetrically distributed if there is an intersection point in the polytope
space at a particular distance (measured in terms of Rènyi divergence) from all of them.

By eliminating linear constraints from our optimization problem and substituting our
3Let us consider σj

y’s as the values of unknowns σj
y’s and dµj

y
’s as the values of state action pairs

distributions of different remaining policies dµj
y

found by different systems

4| On the Covering Threshold 51

decision variables from dµ(s, a) to dM(s, a), we obtain the following program

min

∫
d2M(s, a)

dθ1(s, a)
ds da

s.t. ∫
d2M(s, a)

dθk(s, a)
ds da ≥ σ ∀k ∈ K | {k = 1}

dM(s, a) ≥ 0 ∀(s, a) ∈ SA

dM(s, a) ≤ 1 ∀(s, a) ∈ SA

Then, we convert this problem into an LP problem by introducing the variables DM(s, a),
which stands for the squared variable dM(s, a) for different |SA| state action pairs. We
obtain

min

∫
DM(s, a)

dθ1(s, a)
ds da

s.t. ∫
DM(s, a)

dθk(s, a)
ds da ≥ σ ∀k ∈ K | {k = 1}

DM(s, a) ≥ 0 ∀(s, a) ∈ SA

DM(s, a) ≤ 1 ∀(s, a) ∈ SA

which can be solved in polynomial time.

We have to solve the problem K times for the K different representative policies, changing
the objective function and remaining constraints accordingly:

min

∫
DM(s, a)

dθj(s, a)
ds da

s.t. ∫
DM(s, a)

dθk(s, a)
ds da ≥ σ ∀k ∈ K | {k = j}

DM(s, a) ≥ 0 ∀(s, a) ∈ SA

52 4| On the Covering Threshold

DM(s, a) ≤ 1 ∀(s, a) ∈ SA

Then, for each one of the K optimization problems we save the values of our |SA| variables
DM(s, a) that attain the minimum of the objective functions:

M⋆
θj
= argmin

M

∫
DM(s, a)

dθj(s, a)
ds da ∀j ∈ K

Based on our polytope characteristics 4.1, each one of |SA| values of DM⋆
θj
(s, a) that is

equal to zero refers to one side of our polytope in the neighbourhood of the representative
policy j.

On the other hand, each one of the K constraints of our optimization problem that are
active refer to one representative policy in the neighbourhood of representative policy j.

We report below the pseudocode of the alternative algorithm.

Algorithm 4.1 The Alternative Algorithm
1: BEGIN
2: |K ′| := 0;
3: |S ′A′| := 0;
4: K ′ := {j};
5: S ′A′ := ∅;
6: for k ∈ K | {k = j} do

7: if
∫ DM⋆

θj
(s, a)

dθk(s, a)
ds da = σ then

8: |K ′| := |K ′|+ 1;
9: K ′ := K ′ ∪ {k};

10: end if
11: end for
12: for (s, a) ∈ SA do
13: if DM⋆

θj
(s, a) = 0 then

14: |S ′A′| := |S ′A′|+ 1;
15: S ′A′ := S ′A′ ∪ {(s, a)};
16: end if
17: end for
18: END

Algorithm of the 2nd Type

In an |SA|-dimensional polytope, we consider different selections of |SA| members from
our representative policies set K and polytope sides set SA. Then, for these different
selections we have to solve different systems of equations. The number of systems are

4| On the Covering Threshold 53

equal to
(|K|+|SA|

|SA|

)
. As usual, we differentiate between systems of type A or type B.

• System of Type A

In the selections in which just representative policies are involved, we say the system
is of type A, and we define the set of systems X and its members x ∈ X in a way
that each one of them indicates to a set K ′ defined as

K ′ = {|SA| members k′’s from representative policies set K}

We can say that the number |X| of systems to be solved is equal to
(

K
|SA|

)
.

We introduce another unknown denoted as σx instead of the value of σ. Then, for
every x ∈ X and corresponding set K ′, we have to solve a system with

(
|SA| + 1

)
linear and quadratic equations and with

(
|SA|+ 1

)
unknowns:

∫
d2µx

(s, a)

dθk′ (s, a)
ds da = σx ∀k′ ∈ K ′

∫
dµx(s, a) ds da = 1

For each of the systems above where the value of variable σx is greater than σ.
Then, for each of the systems above where the value of variable σx is greater than
σ, we must see if there is any other representative policy in set K that the policy
found by the related system µ⋆

x that is within the σ distance from it or not:∫
d2µ⋆

x
(s, a)

dθk(s, a)
ds da ≤ σ ∀k ∈ K | {k ∈ K ′}

• System of Type B

In the selections that both representative policies and polytope sides are involved,
we say the system is of type B. We define this set of systems as Y and its members
y as

y = {|SA| members from representative policies set K and polytope sides set SA
on condition of at least one and at most

(
|SA| − 1

)
members selected from polytope

sides}

We can say that the number of systems |Y | to be solved is equal to
(|K|+|SA|

|SA|

)
−
(|K|
|SA|

)
.

We further define two sets K ′ and S ′A′ as

K ′ = {|K ′| members k′’s from representative policies set K}

54 4| On the Covering Threshold

S ′A′ = {|S ′A′| members (s′, a′)’s from polytope sides set SA}

where |k′| + |S ′A′| = |SA| and |S ′A′| is at least equal to 1 and at most equal to(
|SA| − 1

)
.

The we introduce antoher unknown denoted by σy instead of the value of σ. Then,
for each y ∈ Y and corresponding K ′ and S ′A′, we have to solve a system with(
|SA|+1

)
linear and quadratic equations and with

(
|SA|+1

)
unknowns as follows

∫
d2µy

(s, a)

dθk′ (s, a)
ds da = σy ∀k′ ∈ K ′

∫
dµy(s, a) ds da = 1

dµx(s
′, a′) = 0 ∀(s′, a′) ∈ S ′A′

Then, for each of the systems above where the value of variable σy is greater than
σ, we must see if there is any other representative policy in set K that the policy
found by the related system µ⋆

y that is within the σ distance from it or not:

∫ d2µ⋆
y
(s, a)

dθk(s, a)
ds da ≤ σ ∀k ∈ K | {k ∈ K ′}

Finally, in Appendix A, we provide a numerical example of the machinery pf the presented
algorithms.

4.3.2. Constrained Polytopal Space

Let us now consider of subpolytope of the original |SA|-dimensional polytope induced by
addittional constraints. We assume to know the vertices V of the subpolytope, we have
to find the subpolytope sides.

An Algorithm to Find Subpolytope Sides

We start defining the set v′:

v′ = {
(
|SA| − 1

)
members from vertices set V }

Then, we find hyperplane equations passing through all the
(
|SA| − 1

)
members of the

sets v′ and the central point, which is a zero vector with the length of |SA|. By calling
the set of sets v′ as V ′, the number of sets |V ′| is

(|V |
|SA|−1

)
. Thus, we can have at most |V ′|

4| On the Covering Threshold 55

unique hyperplane equations as follows:∫
av′(s, a) · dµ(s, a) ds da = bv′ ∀v′ ∈ V ′

For the hyperplane equations found above, by eliminating the hyperplane equations who
have satisfied none of the conditions below:

1 ·
∫

av′(s, a) · dv(s, a) ds da ≥ bv′ ∀v ∈ V

2 ·
∫

av′(s, a) · dv(s, a) ds da ≤ bv′ ∀v ∈ V

and by eliminating the remaining repeated hyperplane equations, we reach the polytope
sides h. From now on, let us denote ah(s, a) and bh(s, a) instead of av′(s, a) and bv′(s, a)

in the related hyperplane equations respectively. Thus, our polytope sides are as follows:∫
ah(s, a) · dµ(s, a) ds da = bh ∀h ∈ H

Some of the subpolytope sides can coincide with our original polytope sides. For them,
we have the hyperplane equations with ah(s, a) equal to one for a particular state action
pair and equal to zero for all the other ah(s, a) and bh(s, a).

Let us also denote as h(1) and h(2) for the hyperplanes who satisfied the first and second
condition respectively. We have

1 ·
∫

ah(1)(s, a) · dv(s, a) ds da ≥ bh(1) ∀v ∈ V, ∀h(1) ∈ H(1)

2 ·
∫

ah(2)(s, a) · dv(s, a) ds da ≤ bh(2) ∀v ∈ V, ∀h(2) ∈ H(2)

and also H = H(1) ∪H(2) and |H| = |H(1)|+ |H(2)|.

Two Types of Reformulations to Check the Covering Require-

ment Approximately

Here we replicate the reformulations provided in the previous section with slight variations
to adapt them to the subpolytope setting. Most of the comments provided in Section 4.3.1
applies verbatim.

• Reformulation of the 1st Type

56 4| On the Covering Threshold

max

∫
d2µ(s, a)

dθj(s, a)
ds da

s.t. ∫
dµ(s, a) ds da = 1

∫
d2µ(s, a)

dθk(s, a)
ds da > σ ∀k ∈ K | {k = j}

∫
ah(1)(s, a) · dµ(s, a) ds da ≥ bh(1) ∀h(1) ∈ H(1)

∫
ah(2)(s, a) · dµ(s, a) ds da ≤ bh(2) ∀h(2) ∈ H(2)

dµ(s, a) ≥ 0 ∀(s, a) ∈ SA

dµ(s, a) ≤ 1 ∀(s, a) ∈ SA

• Reformulation of the 2nd Type

min

∫
dµ(s, a) ds da

s.t. ∫
d2µ(s, a)

dθk(s, a)
ds da > σ ∀k ∈ K

∫
ah(1)(s, a) · dµ(s, a) ds da ≥ bh(1) ∀h(1) ∈ H(1)

∫
ah(2)(s, a) · dµ(s, a) ds da ≤ bh(2) ∀h(2) ∈ H(2)

dµ(s, a) ≥ 0 ∀(s, a) ∈ SA

dµ(s, a) ≤ 1 ∀(s, a) ∈ SA

4| On the Covering Threshold 57

Two Types of Algorithms to Check the Covering Requirement

Exactly

Here we replicate the same steps of the previous section to derive two types of algorith-
mic solutions to the problem of checking the covering requirement exactly. Most of the
comments provided in Section 4.3.1 apply verbatim.

Algorithm of the 1st Type

We present similar algorithmic components as before.

Finding the Neighbors of One Representative Policy In an |SA|-dimensional
polytope, we consider different selections of |SA| members from our

(
|K| − 1

)
represen-

tative policies and subpolytope sides set H. Now, for these different selections we have
to solve different systems of equations. The number of systems is equal to

(|K|−1+|H|
|SA|

)
. As

usual, we differentiate between systems of type A and B.

• System of Type A

All of the arguments made in Section 4.3.1 can be replicated here.

• System of Type B

In the selections in which both representative policies and subpolytope sides are
involved, we say the system is of type B. By defining the set of systems Y and its
members y by

y = {|SA| members from
(
|K| − 1

)
representative policies and subpolytope sides set

H on condition of at least one and at most
(
|SA| − 1

)
members selected from

subpolytope sides}

We can say the number |Y | of systems to be solved is at most
(|K|−1+|H|

|SA|

)
−
(|K|−1

|SA|

)
.

For each y, we further define the sets K ′ and H ′ as:

K ′ = {|K ′| members k′’s from
(
|K| − 1

)
representative policies}

H ′ = {|H ′| members h′’s from subpolytope sides set H}

where |k′|+|H ′| = |SA| and |H ′| is at least equal to 1 and at most equal to
(
|SA|−1

)
.

For each y and its corresponding sets K ′ and H ′ we have to solve a system with
|SA| quadratic equations and |SA| unknowns as follows∫

d2µy
(s, a)

dθk′ (s, a)
ds da = σ ∀k′ ∈ K ′

58 4| On the Covering Threshold

∫
ah′(s, a) · dµy(s, a) ds da = bh′ ∀h′ ∈ H ′

Then, for each one of the systems above we see whether the policy found by that
system, i.e., µ⋆

y, is within the subpolytope and whether it is beyond a σ distance
from all of the other representative policies and within a σ distance from the rep-
resentative policy j. In other words, we check whether all of four conditions below
hold true:

1 ·
∫

ah(1)(s, a) · dµ⋆
y
(s, a) ds da ≥ bh(1) ∀h(1) ∈ H(1)

2 ·
∫

ah(2)(s, a) · dµ⋆
y
(s, a) ds da ≤ bh(2) ∀h(2) ∈ H(2)

3 ·
∫ d2µ⋆

y
(s, a)

dθk(s, a)
ds da > σ ∀k ∈ K | {k = j, k ∈ K ′}

4 ·
∫ d2µ⋆

y
(s, a)

dθj(s, a)
ds da ≤ σ

If the answer is positive, then all the related |SA| representative policies and sub-
polytope sides are in the neighborhood of our representative policy j.

Checking the Covering Requirement Locally As in the previous section, we have
to answer the following question: Is there any remaining policy among our representative
policy j and its neighboring representative policies and subpolytope sides that is farther
from a σ distance from them?

To answer this question we consider different selections of |SA| members from our repre-
sentative policies set K ′ and subpolytope sides set H ′. For these different selections, we
have to solve different systems of equations. The number of systems is equal to

(|K′|+|H′|
|SA|−1

)
,

which we differentiate between systems of type A and B.

• System of Type A

All of the arguments made in Section 4.3.1 can be replicated here.

• A System of Type B

In the selections in which both representative policies and subpolytope sides are
involved, we say the system is of type B. We define the set of such systems as Y

and its members y as:

y = {(|SA| − 1) members from representative policies set K ′ and subpolytope sides

4| On the Covering Threshold 59

set H ′ on condition of at least one member selected from subpolytope sides}

We can say the number of systems |Y | to be solved is equal to
(|K′|+|H′|

|SA|−1

)
−
(|K′|
|SA|−1

)
.

For each y ∈ Y , we further define the sets K ′′ and H ′′ as

K ′′ = {|K ′′| members k′′’s from representative policies set K ′}

H ′′ = {|H ′′| members h′′’s from subpolytope sides set H ′}

where |k′′|+ |H ′′| = |SA| − 1 and |H ′′| is at least equal to 1.

We introduce another unknown denoted as σy instead of the value of σ. For each
y ∈ Y and its corresponding sets K ′′ and H ′′, we have to solve a system with(
|SA|+ 1

)
linear and quadratic equations and

(
|SA|+ 1

)
unknowns:

∫ d2
µj
y
(s, a)

dθj(s, a)
ds da = σj

y

∫ d2
µj
y
(s, a)

dθk′′ (s, a)
ds da = σj

y ∀k′′ ∈ K ′′

∫
ah′′(s, a) · dµj

y
(s, a) ds da = bh′′ ∀h′′ ∈ H ′′

∫
dµj

y
(s, a) ds da = 1

If there is at least one system among the systems above for which we get a policy
within our subpolytope space and a value greater than σ for our unknown σj

y or, in
other words, if all of three conditions below hold true4

1 ·
∫

ah(1)(s, a) · dµj
y
(s, a) ds da ≥ bh(1) ∀h(1) ∈ H(1)

2 ·
∫

ah(2)(s, a) · dµj
y
(s, a) ds da ≤ bh(2) ∀h(2) ∈ H(2)

3 · σj
y > σ

it means there is at least one remaining policy left uncovered. If no system satisfies
the conditions above, it means there is no remaining policy left uncovered and we
can stop.

4let’s consider σj
y’s as the values of unknowns σj

y’s and dµj
y
’s as the values of state action pairs

distributions of different remaining policies dµj
y

found by different systems.

60 4| On the Covering Threshold

In the former case, in order to find the exact value of our original maximin problem,
we see for which one of those systems we have reached the maximum value for our
unknown σj

x and we save it as

σj
y⋆ = max

y
σj

y

and we also save the remaining policy found by that related system d
µ
j
y⋆
(s, a).

Checking the Covering Requirement Globally Then, checking the covering re-
quirement globally can be done exactly as in Section 4.3.1.

An Alternative Algorithm to Find the Neighbors of One Representative Policy
Similarly, we can extend the arguments in Section 4.3.1 to derive the alternative algorithm
below.

Algorithm 4.2 The Alternative Algorithm
1: BEGIN
2: |K ′| := 0;
3: |H ′| := 0;
4: K ′ := {j};
5: H ′ := ∅;
6: for k ∈ K | {k = j} do

7: if
∫ DM⋆

θj
(s, a)

dθk(s, a)
ds da = σ then

8: |K ′| := |K ′|+ 1;
9: K ′ := K ′ ∪ {k};

10: end if
11: end for
12: for h ∈ H do
13: if

∫
ah(s, a) ·

√
DM⋆

θj
(s, a) ds da = bh then

14: |H ′| := |H ′|+ 1;
15: H ′ := H ′ ∪ {h};
16: end if
17: end for
18: END

Algorithm of the 2nd Type

Finally, we extend the “algorithm of the 2nd type” to the subpolytope setting. We con-
sider different selections of |SA| members from our

(
|K| − 1

)
representative policies and

subpolytope sides set H. For these different selections we have to solve different systems of

4| On the Covering Threshold 61

equations. The number of systems is at most
(|K|+|H|

|SA|

)
, which we differentiate as systems

of type A and type B.

• System of Type A

The same as in Section 4.3.1.

• System of Type B

In the selections in which both representative policies and subpolytope sides are
involved, we say the system is of type B. By defining the systems set Y and its
members y as:

y = {|SA| members from |K| representative policies and subpolytope sides set H
on condition of at least one and at most

(
|SA| − 1

)
members selected from

subpolytope sides}

We can say the number of systems |Y | to be solved is equal to
(|K|+|H|

|SA|

)
−
(|K|
|SA|

)
.

We further define the sets K ′ and H ′ as

K ′ = {|K ′| members k′’s from representative policies set K}

H ′ = {|H ′| members h′’s from subpolytope sides set H}

where |k′|+|H ′| = |SA| and |H ′| is at least equal to 1 and at most equal to
(
|SA|−1

)
.

We introduce another unknown denoted as σy instead of the value of σ. For every
y ∈ Y and corresponding sets K ′ and H ′, we have to solve a system with

(
|SA|+1

)
quadratic equations and

(
|SA|+ 1

)
unknowns as follows:

∫
d2µy

(s, a)

dθk′ (s, a)
ds da = σy ∀k′ ∈ K ′

∫
ah′(s, a) · dµy(s, a) ds da = bh′ ∀h′ ∈ H ′

∫
dµy(s, a) ds da = 1

Finally, for each of the systems above where the value of variable σy is greater than
σ, we must see if there is any other representative policy in set K that the policy
found by the related system µ⋆

y that is within the σ distance from it or not:

1 ·
∫

ah(1)(s, a) · dµ⋆
y
(s, a) ds da ≥ bh(1) ∀h(1) ∈ H(1)

62 4| On the Covering Threshold

2 ·
∫

ah(2)(s, a) · dµ⋆
y
(s, a) ds da ≤ bh(2) ∀h(2) ∈ H(2)

3 ·
∫ d2µ⋆

y
(s, a)

dθk(s, a)
ds da ≤ σ ∀k ∈ K | {k ∈ K ′}

63

5| On the Number of Covering

Policies

In this chapter, we derive lower and upper bounds on the number of covering policies
needed to solve the policy space compression problem for a given σ.

The main idea is to find out how much space of the polytope is covered by one represen-
tative policy, from which we can directly compute the number of covering policies that
are needed. We will show that the largest space will be covered by representative policies
close to the center of the polytope (i.e., inducing state-action distributions close to uni-
form) and the smallest spaces will be covered by representative policies close to the edges
of the polytope (i.e., inducing nearly deterministic state-action distribution).

First, in Section 5.1, we warm-up the reader on a simple yet illustrative example of covering
in a two-dimensional polytope. Next, in Section 5.2, we revise a few fundamentals to derive
our lower and upper bounds, which are discussed in Section 5.3 and 5.4 respectively.

5.1. Warm-Up: A Two-Dimensional Polytope

As a warm-up to derive more general bounds, here we provide a study of the illustrative
setting in which the polytope is two-dimensional.

The main idea is to find the proportion of the space covered by adjacent representative
policies, and then to compute the number of adjacent representative policies that can
cover all of the space of the polytope. We say that representative policies are adjacent if
there can be found a common policy at a σ distance from all of them.

Let us consider a representative policy with uniform state-action distribution and let us
see what happens if we move away from this policy by a σ distance. We have:

∫
d2µ(s, a)

dθ(s, a)
ds da =

d2µ(s, a)1
1
2

+

(
1− dµ(s, a)1

)2
1
2

= σ

64 5| On the Number of Covering Policies

⇒ d2µ(s, a)1 − dµ(s, a)1 −
σ

4
+

1

2
= 0

⇒ dµ(s, a)1 =
1±

√
1− 4

(
− σ

4
+ 1

2

)
2

⇒ dµ(s, a)1 =
1±
√
σ − 1

2

and thus the policies are: (
1 +
√
σ − 1

2
,
1−
√
σ − 1

2

)
(
1−
√
σ − 1

2
,
1 +
√
σ − 1

2

)
Now, by computing the Euclidean distance between these two points we can measure the
space covered by our representative policy:√√√√(1 +

√
σ − 1

2
− 1−

√
σ − 1

2

)2

+

(
1 +
√
σ − 1

2
− 1−

√
σ − 1

2

)2

=
√

2
(
σ − 1

)
Let us consider one of the previous policies. Based on the definition of adjacent represen-
tative policies, let us try to find the other representative policies which are at a σ distance
from this policy:

∫
d2µ(s, a)

dθ(s, a)
ds da =

(
1+

√
σ−1
2

)2
dθ(s, a)1

+

(
1−

√
σ−1
2

)2
1− dθ(s, a)1

= σ

⇒ σd2θ(s, a)1 −
(
σ +
√
σ − 1

)
dθ(s, a)1 +

(
1 +
√
σ − 1

2

)2

= 0

⇒ dθ(s, a)1 =
σ +
√
σ − 1±

√(
σ +
√
σ − 1

)2 − 4σ
(

1+
√
σ−1
2

)2
2σ

⇒ dθ(s, a)1 =
1

2
±
√
σ − 1

σ

Let us repeat the steps above again to see what happens if we move away from this policy

5| On the Number of Covering Policies 65

by a σ distance. We have:

∫
d2µ(s, a)

dθ(s, a)
ds da =

d2µ(s, a)1
1
2
+

√
σ−1
σ

+

(
1− dµ(s, a)1

)2
1
2
−

√
σ−1
σ

= σ

⇒ d2µ(s, a)1 −
(
1 +

2
√
σ − 1

σ

)
dµ(s, a)1

+

(
1

2
+

√
σ − 1

σ

)(
1− σ

(
1

2
−
√
σ − 1

σ

))
= 0

⇒ dµ(s, a)1 =
1 + 2

√
σ−1
σ

2

±

√(
1 + 2

√
σ−1
σ

)2
− 4
(
1
2
+

√
σ−1
σ

)(
1− σ

(
1
2
−

√
σ−1
σ

))
2

⇒ dµ(s, a)1 =
1

2
+

√
σ − 1

σ
± 1

2

√
−4
(
σ − 1

)2
σ2

+ σ − 1

and the resulting policies are:

(
1

2
+

√
σ − 1

σ
+

1

2

√
−4
(
σ − 1

)2
σ2

+ σ − 1,
1

2
−
√
σ − 1

σ
− 1

2

√
−4
(
σ − 1

)2
σ2

+ σ − 1

)
(
1

2
+

√
σ − 1

σ
− 1

2

√
−4
(
σ − 1

)2
σ2

+ σ − 1,
1

2
−
√
σ − 1

σ
+

1

2

√
−4
(
σ − 1

)2
σ2

+ σ − 1

)

After simplification, one of these points is exactly the same point we have already consid-
ered. Thus, there is a common point at the σ distance away from our so far two adjacent
representative policies:

(
1

2
+

√
σ − 1

σ
+

1

2

√
−4
(
σ − 1

)2
σ2

+ σ − 1,
1

2
−
√
σ − 1

σ
− 1

2

√
−4
(
σ − 1

)2
σ2

+ σ − 1

)

=

(
1 +
√
σ − 1

2
,
1−
√
σ − 1

2

)
Then, by computing the Euclidean distance between these two points we can measure the

66 5| On the Number of Covering Policies

space covered by the latter representative policy:√√√√√
((

1

2
+

√
σ − 1

σ
+

1

2

√
−4
(
σ − 1

)2
σ2

+ σ − 1

)

−

(
1

2
+

√
σ − 1

σ
− 1

2

√
−4
(
σ − 1

)2
σ2

+ σ − 1

))2

+

((
1

2
−
√
σ − 1

σ
− 1

2

√
−4
(
σ − 1

)2
σ2

+ σ − 1

)

−

(
1

2
−
√
σ − 1

σ
+

1

2

√
−4
(
σ − 1

)2
σ2

+ σ − 1

))2

=
2 − σ

σ

√
2
(
σ − 1

)
Hence, the proportion of the polytope covered by two adjacent representative policies is
as follows:

2−σ
σ

√
2(σ − 1)√

2(σ − 1)
=

2 − σ

σ

In order to determine how many representative policies we need to cover our original
polytope, which here is a line of length

√
2, we have to solve the following equation:

√
2
(
σ − 1

)
+

n∑
i=1

2

(
2− σ

σ

)i√
2
(
σ − 1

)
=
√
2

Since in a two-dimensional polytope the σ value is less or equal to 2, 2−σ
σ

is less than 1.
We have:

√
σ − 1 + 2

√
σ − 1

(
2−σ
σ
−
(

2−σ
σ

)n+1

1− 2−σ
σ

)
= 1

⇒

(
2− σ

σ

)n+1

=
1−
√
σ − 1

σ

⇒ n =

(
log(2−σ

σ

)(1−
√
σ − 1

σ

))
− 1

5| On the Number of Covering Policies 67

and we can say:
N = 2⌈n⌉+ 1

where N is an estimation for the needed number of representative policy up to an error
of 1. Finally, we have:

N = 2

⌈
log(2−σ

σ

)(1−
√
σ − 1

σ

)⌉
− 1

5.2. Fundamentals

Here we provide a few fundamentals that will be useful in the following derivations.

5.2.1. The Volume of A Polytope

We can find the volume of an |SA|-dimensional polytope using the formula below:

V|SA| =

(
1

|SA| − 1

(
1

|SA| − 2
· · ·
(
1

3

(1
2

(
a
)
h3

)
h4

)
· · · h|SA|−1

)
h|SA|

)
where

a =

√(
1− 0

)2
+
(
0− 1

)2
+
(
0− 0

)2
=
√
2

and

h3 =

√(
1− 0

)2
+

(
0− 1

2

)2

+

(
0− 1

2

)2

=

√
3

2

h4 =

√(
1− 0

)2
+

(
0− 1

3

)2

+

(
0− 1

3

)2

+

(
0− 1

3

)2

=

√
4

3

. . .

h|SA| =

√(
1− 0

)2
+

(
0− 1

|SA| − 1

)2

+ · · ·+
(
0− 1

|SA| − 1

)2

=

√
|SA|
|SA| − 1

Thus, the volume of the polytope is

V|SA| =
1

(|SA| − 1)!
·
√
2 ·
√

3

2
·
√

4

3
· · ·

√
|SA|
|SA| − 1

=

√
|SA|

(|SA| − 1)!

68 5| On the Number of Covering Policies

5.2.2. Volume of a Tetrahedral Subpolytope

The volume of a tetrahedral subpolytope of the original |SA|-dimensional polytope can
be computed as follows:

V ′
|SA| =

1

(|SA| − 1)!
·
(
γ ·
√
2
)
·
(
γ ·
√

3

2

)
·
(
γ ·
√

4

3

)
· · ·
(
γ ·

√
|SA|
|SA| − 1

)

=

√
|SA|

(|SA| − 1)!
· γ|SA|−1

where γ is the proportion of subpolytope edges to our original polytope edges, which gives

V ′
|SA|

V|SA|
= γ|SA|−1

5.2.3. Looking at the Polytope from One Face

Let us consider the range of σ greater or equal to |SA|
|SA|−1

. Let assume the polytope has
been covered with a sufficient number of representative policies and we are looking at
the polytope from one of its faces of |SA| − 1 dimensions. If the number of observed
representative policies are equal to n, then it can be shown that the needed number of
representative policies will be (

1 +

(
1

2

)|SA|−1
)
n.

This comes directly from the fact that, by looking at the polytope of |SA| dimensions from
one of its faces of |SA|− 1 dimensions, a tetrahedral subpolytope of the original polytope
is unobservable. Consequently, we must add the number of representative policies cover-
ing that specific space to the number of observed representative policies. Based on the
formulation derived in previous section 5.2.2, the number of unobservable representative
policies is equal to (

1

2

)|SA|−1

n.

By generalizing the concept above, if we look at the polytope from one of its faces of λ
dimensions, and the number of observed representative policies are equal to n, then it can

5| On the Number of Covering Policies 69

be shown that the needed number of representative policies will be(
1 +

(
1

2

)λ−1

+

(
1

2

)λ
(
1 +

(
1

2

)λ−1
)

+

(
1

2

)λ+1

(
1 +

(
1

2

)λ−1

+

(
1

2

)λ
(
1 +

(
1

2

)λ−1
))

+ ...

)
n

where it goes on until the exponent of base 1
2

increase from λ− 1 to |SA| − 1.

The coefficient above can be computed running the following algorithm.

Algorithm 5.1
1: BEGIN

2: i := λ− 1;

3: F (λ) := 1 +
(
1
2

)λ−1
;

4: while i < |SA| − 1 do

5: i := i+ 1;

6: F (λ) := F (λ) +
(
1
2

)i
F (λ);

7: end while

8: PRINT F (λ);

9: END

We can give some instances of the coefficients. If |SA| − λ = 1, then F (λ) will be:

F (λ) = 1+ 2

(
1

2

)λ

If |SA| − λ = 2, then F (λ) will be:

F (λ) = 1+ 2

(
1

2

)2λ

+ 3

(
1

2

)λ

If |SA| − λ = 3, then F (λ) will be:

F (λ) = 1+

(
1

2

)3λ

+
7

2

(
1

2

)2λ

+
7

2

(
1

2

)λ

70 5| On the Number of Covering Policies

If |SA| − λ = 4, then F (λ) will be:

F (λ) = 1+
1

4

(
1

2

)4λ

+
15

8

(
1

2

)3λ

+
35

8

(
1

2

)2λ

+
15

4

(
1

2

)λ

With some approximation, it can be shown that if |SA| − λ ≥ 5, then F (λ) will be:

F (λ) = 1+
1

32

(
1

2

)5λ

+
31

64

(
1

2

)4λ

+
155

64

(
1

2

)3λ

+
155

32

(
1

2

)2λ

+
31

8

(
1

2

)λ

5.3. The Lower Bound

In order to estimate the lower bound for the needed number of representative policies,
we first determine the portion of the polytope covered by a representative policy θ1 with
uniform state-action distribution.

First, we derive its radius, finding one of the policies at the σ distance from our repre-
sentative policy θ1. We can move away from representative policy θ1 in the direction of a
specific vertex, for instance (s, a)1, by considering

dµ(s, a)2 = dµ(s, a)3 = · · · = dµ(s, a)|SA| =
1− dµ(s, a)1
|SA| − 1

which results in

∫
d2µ(s, a)

dθ1(s, a)
ds da =

d2µ(s, a)1
1

|SA|
+

(
1−dµ(s,a)1
|SA|−1

)2
1

|SA|
+ · · ·+

(
1−dµ(s,a)1
|SA|−1

)2
1

|SA|
= σ

⇒
d2µ(s, a)

1
|SA|

+ (|SA| − 1)

(
1−dµ(s,a)1
|SA|−1

)2
1

|SA|
= σ

⇒ |SA|d2µ(s, a)1 − 2dµ(s, a)1 −
σ(|SA| − 1)

|SA|
+ 1 = 0

⇒ dµ(s, a)1 =
1±

√(
|SA| − 1

)
(σ − 1)

|SA|

⇒ dµ(s, a)2 = dµ(s, a)3 = · · · = dµ(s, a)|SA| =

1−

(
1±

√(
|SA|−1

)
(σ−1)

|SA|

)
|SA| − 1

5| On the Number of Covering Policies 71

Now, we compute the Euclidean distance between our representative policy θ1 and the
previously found policy dµ(s, a). We have√√√√√(1 +

√(
|SA| − 1

)
(σ − 1)

|SA|
−

1−
√(
|SA| − 1

)
(σ − 1)

|SA|

)2

+(|SA| − 1)

(1−

(
1+

√(
|SA|−1

)
(σ−1)

|SA|

)
|SA| − 1

−
1−

(
1−

√(
|SA|−1

)
(σ−1)

|SA|

)
|SA| − 1

)2

= 2

√
σ − 1

|SA|

which means the radius R of the spherical space covered by our representative policy θ1

will be

R =

√
σ − 1

|SA|

Then, the volume of the space covered by our representative policy θ1 can be computed
as

V θ1
|SA| =

π
|SA|−1

2

Γ
(
1 + |SA|−1

2

)R|SA|−1

where Γ is the Gamma function.

Hence, the lower bound for the needed number of representative policies is

N >
V|SA|

V θ1
|SA|

If |SA| is even we have:

N >

(√
|SA|(

π
) |SA|−1

2

)((
|SA|−1

2

)
!

(|SA| − 1)!

)(
|SA|
σ − 1

) |SA|−1
2

If |SA| is odd we have:

N >

(√
|SA|

π

⌊
|SA|−1

2

⌋
2

⌈
|SA|−1

2

⌉
)(

(|SA| − 1)!!

(|SA| − 1)!

)(
|SA|
σ − 1

) |SA|−1
2

where !! is the double factorial. Using the Stirling’s approximation we derive

√
2πn

(
n

e

)n

e
1

12n+1 < n! <
√
2πn

(
n

e

)n

e
1

12n

72 5| On the Number of Covering Policies

N >

√
|SA|
2

(
e|SA|

2π(σ − 1)(|SA| − 1)

) |SA|−1
2

√
|SA|
2

(
e|SA|

2π(σ − 1)(|SA| − 1)

) |SA|−1
2

>

√
|SA|
2

(
e

2π(σ − 1)

) |SA|−1
2

which results in

N >

√
|SA|
2

(
e

2π(σ − 1)

) |SA|−1
2

The latter results works for a special range of σ values. The latter range is given by

∫
d2µ(s, a)

dθ1(s, a)
ds da =

(0)2

1
|SA|

+

(
1

|SA|−1

)2
1

|SA|
+ · · ·+

(
1

|SA|−1

)2
1

|SA|

⇒
d2µ(s, a)

dθ1(s, a)
ds da =

(
|SA| − 1

)(1
α

)2
1

|SA|

⇒
d2µ(s, a)

dθ1(s, a)
ds da =

|SA|
|SA| − 1

so for the σ values that lie within the interval(
1,

|SA|
|SA| − 1

]
.

To generalize the bound above we can follow an alternative route. We have

∫
d2µ(s, a)

dθ1(s, a)
ds da =

(0)2

1
|SA|

+ · · ·+ (0)2

1
|SA|

+

(
1
λ

)2
1

|SA|
+ · · ·+

(
1
λ

)2
1

|SA|

⇒
d2µ(s, a)

dθ1(s, a)
ds da = λ

(
1
λ

)2
1

|SA|

⇒
d2µ(s, a)

dθ1(s, a)
ds da =

|SA|
λ

which means that, in order to determine the needed number of representative policies,
first we determine for which value of λ the given σ will lie within the interval of:(|SA|

λ
,
|SA|
λ − 1

]

5| On the Number of Covering Policies 73

where λ can take values from 2 to |SA| and clearly with λ equal to |SA| we obtain the
previous interval. The λ value can be computed as follows:

λ =

⌊ |SA|
σ

⌋
+ 1

Intuitively, when σ lies within the interval above means that the spherical space of λ

dimensions formed at the intersection of spherical space of |SA| dimensions covered by the
representative policy θ1 and a particular polytope face of λ dimensions can be thoroughly
accommodated within this particular polytope face.

In order to estimate the lower bound for the needed number of representative policies first
we have to determine the portion of the spherical space of λ dimensions covered by the
representative policy θ1. To find the radius, we find one of the policies at the σ distance
from our representative policy θ1 and simultaneously on that particular polytope face.
We compute

dµ(s, a)2 = dµ(s, a)3 = · · · = dµ(s, a)λ =
1− dµ(s, a)1

λ− 1

from which we have:

∫
d2µ(s, a)

dθ1(s, a)
ds da =

d2µ(s, a)1
1

|SA|
+

(
1−dµ(s,a)1

λ−1

)2
1

|SA|
+ · · ·+

(
1−dµ(s,a)1

λ−1

)2
1

|SA|
= σ

⇒
d2µ(s, a)

1
|SA|

+ (λ− 1)

(
1−dµ(s,a)1

λ−1

)2
1

|SA|
= σ

⇒ |SA|d2µ(s, a)1 − 2dµ(s, a)1 −
σ(λ− 1)

|SA|
+ 1 = 0

⇒ dµ(s, a)1 =
1±

√(
λ− 1

)
(σ − 1)

|SA|

⇒ dµ(s, a)2 = dµ(s, a)3 = · · · = dµ(s, a)|SA| =

1−

(
1±

√(
λ−1
)
(σ−1)

|SA|

)
λ− 1

Then, computing the Euclidean distance between these two policies dµ(s, a) we found, we

74 5| On the Number of Covering Policies

obtain√√√√√(1 +
√(

λ− 1
)
(σ − 1)

|SA|
−

1−
√(

λ− 1
)
(σ − 1)

|SA|

)2

+(|SA| − 1)

(1−

(
1+

√(
λ−1
)
(σ−1)

|SA|

)
λ− 1

−
1−

(
1−

√(
λ−1
)
(σ−1)

|SA|

)
λ− 1

)2

=
2
√

λ(σ − 1)

|SA|

Hence, the radius R of the spherical space of λ dimensions served by the representative
policy θ1 will be:

R =

√
λ(σ − 1)

|SA|
and the volume of this spherical space can be computed as follows:

V θ1
λ =

π
λ−1
2

Γ
(
1 + λ−1

2

)Rλ−1

where Γ is the gamma function.

Since the volume of the particular polytope face of λ dimensions can be computed as
follows:

Vλ =

√
λ

(λ− 1)!

so the lower bound for the needed number of representative policies will be:

N > F (λ)
Vλ

V θ1
λ

where F (λ) comes from the reasoning in section 5.2.3.

If λ is even we have:

N > F (λ)

(√
λ(

π
)λ−1

2

)((
λ−1
2

)
!

(λ− 1)!

)(
|SA|2

(σ − 1)λ

)λ−1
2

If λ is odd we have:

N > F (λ)

(√
λ

π

⌊
λ−1
2

⌋
2

⌈
λ−1
2

⌉
)(

(λ− 1)!!

(λ− 1)!

)(
|SA|2

(σ − 1)λ

)λ−1
2

5| On the Number of Covering Policies 75

where !! is the double factorial. Using the Stirling’s approximation, we can show:

N > F (λ)

√
λ

2

(
e|SA|2

2π(σ − 1)λ(λ − 1)

)λ−1
2

and with λ equal to |SA| the two lower bounds are the same.

By substituting λ value we can also express our lower bound in this form:

N > F

(⌊
|SA|
σ

⌋
+ 1

)√⌊ |SA|
σ

⌋
+ 1

2

(
e|SA|2

2π(σ − 1)
⌊ |SA|

σ

⌋(⌊ |SA|
σ

⌋
+ 1
)
)⌊ |SA|

σ

⌋
2

5.4. The Upper Bound

In order to estimate the upper bound for the needed number of representative policies,
we first determine the volume of the space covered by a representative policy θ2 with
state action pairs distribution at the same distance from all polytope vertices except one
of them, which is a specific vertex (for instance (s, a)1) that our representative policy θ2

covers at the σ distance.

We aim to compute the radius of the covered space by finding one of the policies at the σ

distance from our representative policy θ2. First, we compute the state-action distribution
of our representative policy θ2. Since∫

d2µ(s, a)

dθ2(s, a)
ds da =

(1)2

dθ2(s, a)1
+

(0)2

dθ2(s, a)2
+ · · ·+ (0)2

dθ2(s, a)|SA|
= σ

so dθ2(s, a)1 will be equal to 1
σ
. For the other state action pairs, we have

dθ2(s, a)2 = dθ2(s, a)3 = · · · = dθ2(s, a)|SA|

and ∫
dθ2(s, a) ds da = 1

which give

1

σ
+
(
|SA| − 1

)
dθ2(s, a)2 = 1⇒ dθ2(s, a)2 = dθ2(s, a)3 = · · · = dθ2(s, a)|SA| =

σ − 1

σ(|SA| − 1)

Similarly as in previous sections, we move away from representative policy θ2 in the

76 5| On the Number of Covering Policies

direction of the specific vertex (s, a)1, by considering:

dµ(s, a)2 = dµ(s, a)3 = · · · = dµ(s, a)|SA| =
1− dµ(s, a)1
|SA| − 1

We have

∫
d2µ(s, a)

dθ2(s, a)
ds da =

d2µ(s, a)1
1
σ

+

(
1−dµ(s,a)1
|SA|−1

)2
σ−1

σ(|SA|−1)

+ · · ·+

(
1−dµ(s,a)1
|SA|−1

)2
σ−1

σ(|SA|−1)

= σ

⇒
d2µ(s, a)

1
σ

+
(
|SA| − 1

)(1−dµ(s,a)1
|SA|−1

)2
σ−1

σ(|SA|−1)

= σ

⇒ σd2µ(s, a)1 − 2dµ(s, a)1 + 2− σ = 0

⇒ dµ(s, a)1 =
2±

√
4− 4σ(2− σ)

2σ

⇒ dµ(s, a)1 = 1 OR dµ(s, a)1 =
2− σ

σ

⇒ dµ(s, a)2 = dµ(s, a)3 = · · · = dµ(s, a)|SA| = 0 OR

dµ(s, a)2 = dµ(s, a)3 = · · · = dµ(s, a)|SA| =
2(σ − 1)

σ(|SA| − 1)

Computing the Euclidean distance between our representative policy θ2 and the found
policy dµ(s, a) we have√√√√(2− σ

σ
− 1

)2

+
(
|SA| − 1

)(2(σ − 1)

σ(|SA| − 1)
− 0

)2

=
2(σ − 1)

σ

√
|SA|
|SA| − 1

Thus, the longest Euclidean distance R covered by our representative policy θ2 will be:

R =
(σ − 1)

σ

√
|SA|

|SA| − 1

We can also find the policy at the σ distance and simultaneously at the shortest Euclidean
distance from our representative policy θ2. In order to find such policy, we move away

5| On the Number of Covering Policies 77

from representative policy θ2 with fixed d(s, a)1 equal to 1
σ

and in the direction of a specific
vertex (for instance (s, a)2), by considering

dµ(s, a)1 =
1

σ

and

dµ(s, a)3 = dµ(s, a)4 = · · · = dµ(s, a)|SA| =
1− 1

σ
− dµ(s, a)2

|SA| − 2

We have

∫
d2µ(s, a)

dθ2(s, a)
ds da =

(
1
σ

)2
1
σ

+
d2µ(s, a)2

σ−1
σ(|SA|−1)

+

(
1− 1

σ
−dµ(s,a)2
|SA|−2

)2
σ−1

σ(|SA|−1)

+ · · ·

+

(
1− 1

σ
−dµ(s,a)2
|SA|−2

)2
σ−1

σ(|SA|−1)

= σ

⇒ 1

σ
+

d2µ(s, a)2
σ−1

σ(|SA|−1)

+
(
|SA| − 2

)(1− 1
σ
−dµ(s,a)2
|SA|−2

)2
σ−1

σ(|SA|−1)

= σ

⇒
σ
(
|SA| − 1

)2
(σ − 1)(|SA| − 2)

d2µ(s, a)2 − 2

(
|SA| − 1

|SA| − 2

)
dµ(s, a)2 +

1

σ

+
(σ − 1)(|SA| − 1)

σ(|SA| − 2)
− σ = 0

⇒ dµ(s, a)2 =
2
(|SA|−1
|SA|−2

)
2

σ
(
|SA|−1

)2
(σ−1)(|SA|−2)

±

√(
2
(

|SA|−1
|SA|−2

))2

− 4
(

σ(|SA|−1)2

(σ−1)(|SA|−2)

)(
1
σ
+ (σ−1)(|SA|−1)

σ(|SA|−2)
− σ

)
2

σ
(
|SA|−1

)2
(σ−1)(|SA|−2)

⇒ dµ(s, a)2 =

1
|SA|−2

±
√

σ
|SA|−2

σ(|SA|−1)
(σ−1)(|SA|−2)

⇒ dµ(s, a)3 = dµ(s, a)4 = · · · = dµ(s, a)|SA| =

1− 1
σ
−
(

1
|SA|−2

±
√

σ
|SA|−2

σ(|SA|−1)
(σ−1)(|SA|−2)

)
|SA| − 2

Computing the Euclidean distance between our representative policy θ2 and the found

78 5| On the Number of Covering Policies

policy dµ(s, a), we have√√√√√(1

σ
− 1

σ

)2

+

(1
|SA|−2

+
√

σ
|SA|−2

σ(|SA|−1)
(σ−1)(|SA|−2)

−
1

|SA|−2
−
√

σ
|SA|−2

σ(|SA|−1)
(σ−1)(|SA|−2)

)2

+
(
|SA| − 2

)(1− 1
σ
−
(

1
|SA|−2

+
√

σ
|SA|−2

σ(|SA|−1)
(σ−1)(|SA|−2)

)
|SA| − 2

−
1− 1

σ
−
(

1
|SA|−2

−
√

σ
|SA|−2

σ(|SA|−1)
(σ−1)(|SA|−2)

)
|SA| − 2

)2

=
2(σ − 1)√
σ(|SA| − 1)

so the shortest Euclidean distance r covered by our representative policy θ2 will be

r =
σ − 1√

σ(|SA| − 1)

Since we are looking for an upper bound, we can just take the shortest Euclidean distance
r into consideration in order to find the space covered by the representative policy θ2.
With this assumption, the volume of the space covered by our representative policy θ2

can be computed as follows:

V θ2
|SA| =

π
|SA|−1

2

Γ
(
1 + |SA|−1

2

)r|SA|−1

where Γ is the Gamma function.

Since it holds

V θ1
|SA|

V θ2
|SA|

=

π
|SA|−1

2

Γ
(
1+

|SA|−1
2

)(√ σ−1
|SA|

)|SA|−1

π
|SA|−1

2

Γ
(
1+

|SA|−1
2

)(σ−1√
σ(|SA|−1)

)|SA|−1
=

(
σ(|SA| − 1)

(σ − 1)|SA|

) |SA|−1
2

the upper bound of the needed number of representative policies for σ values that lie
within the interval of

(
1, |SA|

|SA|−1

]
will be:

N < 2

√
|SA|
2

(
eσ(|SA| − 1)

2π
(
σ − 1

)2|SA|

) |SA|−1
2

In general the upper bound of the needed number of representative policies for σ values

5| On the Number of Covering Policies 79

that lie within the interval of
(

|SA|
λ

, |SA|
λ−1

]
will be:

N < 2F (λ)

√
λ

2

(
eσ|SA|(|SA| − 1)

2π
(
σ − 1

)2
λ(λ − 1)

)λ−1
2

where coefficient 2 above directly comes from the fact that while we are in search of the
upper bound we must also take the overlapped spaces between adjacent representative
policies into account. With λ equal to |SA| the two upper bounds are the same.

Finally, by substituting the value of λ, we can also express our upper bound in this form:

N < 2F

(⌊
|SA|
σ

⌋
+ 1

)√⌊ |SA|
σ

⌋
+ 1

2

(
eσ|SA|(|SA| − 1)

2π
(
σ − 1

)2⌊ |SA|
σ

⌋(⌊ |SA|
σ

⌋
+ 1
)
)⌊ |SA|

σ

⌋
2

81

6| Conclusions

In the upcoming chapter, we provide a concise recap of the primary findings presented in
this document and we introduce compelling avenues for future research.

Recap In RL, agents learn policies to maximize rewards. When dealing with large policy
spaces, finding optimal policies becomes expensive in terms of required interactions to be
taken from the environment. The policy space compression problem [12] aims to identify
a smaller subset of policies that retain the same effectiveness as the full set, which involves
finding a compressed policy space while ensuring that the most significant state-action
distributions can still be induced by the policies in the reduced set. Unfortunately, solving
policy space compression is computationally challenging.

In [12], the problem is framed as a game between a leader and a follower. The leader’s
goal is to cover state-action distributions while the follower aims to find a policy that is
not well-covered. The optimization problem involved in this game is also computationally
challenging. To solve it, a first-order approximate algorithm operates iteratively, gradually
increasing the number of leader-controlled policies to meet a global covering requirement.

In this thesis, we addressed some of the standing issues in the algorithmic procedure
presented in [12]. Specifically, we have studied the role of the covering threshold in the
policy space compression problem, and how to set it to avoid trivial solutions. Then,
we have provided important findings on the number of covering policies needed to solve
the policy space compression problem with a certain threshold. Especially, we provided
a family of lower and upper bounds on the latter number, which can be used to feed a
proper input to the first-order procedure of Mutti et al. [12].

Future Directions Our work is based on the assumption of knowing everything of
the MDP, which makes the prblem a computational challenge where no estimation is
involved. A future direction may target the corresponding learning problem, in which we
can only draw samples from an unknown MDP, and we try to obtain an approximate policy
space compression through estimated quantities. Finally, our work is restricted to tabular

82 6| Conclusions

MDPs. Future works may target a generalization of the problem and corresponding
solutions to a function approximation setting.

83

Bibliography

[1] A. Bakhtin, D. J. Wu, A. Lerer, J. Gray, A. P. Jacob, G. Farina, A. H. Miller,
and N. Brown. Mastering the game of no-press diplomacy via human-regularized
reinforcement learning and planning. arXiv preprint arXiv:2210.05492, 2022.

[2] R. Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[3] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM
(JACM), 45(4):634–652, 1998.

[4] T. Fiez and L. J. Ratliff. Local convergence analysis of gradient descent ascent
with finite timescale separation. In Proceedings of the International Conference on
Learning Representation, 2021.

[5] T. Fiez, B. Chasnov, and L. Ratliff. Implicit learning dynamics in stackelberg games:
Equilibria characterization, convergence analysis, and empirical study. In Interna-
tional Conference on Machine Learning, pages 3133–3144. PMLR, 2020.

[6] C. Jin, P. Netrapalli, and M. Jordan. What is local optimality in nonconvex-
nonconcave minimax optimization? In International conference on machine learning,
pages 4880–4889. PMLR, 2020.

[7] E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, and D. Scaramuzza.
Champion-level drone racing using deep reinforcement learning. Nature, 620(7976):
982–987, 2023.

[8] V. Konda and J. Tsitsiklis. Actor-critic algorithms. Advances in neural information
processing systems, 12, 1999.

[9] T. L. Lai, H. Robbins, et al. Asymptotically efficient adaptive allocation rules.
Advances in applied mathematics, 6(1):4–22, 1985.

[10] T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press,
2020.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

84 6| BIBLIOGRAPHY

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[12] M. Mutti, S. Del Col, and M. Restelli. Reward-free policy space compression for
reinforcement learning. In International Conference on Artificial Intelligence and
Statistics, pages 3187–3203, 2022.

[13] OpenAI. Chatgpt, 2023. URL https://chat.openai.com.

[14] A. B. Owen. Monte carlo theory, methods and examples, 2013.

[15] J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients.
Neural networks, 21(4):682–697, 2008.

[16] M. L. Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014.

[17] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and
S. Levine. Learning complex dexterous manipulation with deep reinforcement learn-
ing and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

[18] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the
game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[19] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
2018.

[20] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

[21] W. R. Thompson. On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

[22] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8:279–292, 1992.

https://chat.openai.com

85

A| Numerical Examples

A.1. Checking the Covering Requirement

Here we provide a numerical example on the algorithms to check the covering requirement
exactly presented in Section 4.3.1. Especially, we presented two types of algorithms.

As previously discussed, booth algorithms run in polynomial time and they allow assess
the global guarantee of our representative policies set K but also the exact value of our
original maximin problem.

Although unrealistic, for the purpose of this example, |SA| is set equal to 2.

Let us consider our representative policies are as follows:

{
(0.39, 0.61), (0.94, 0.06), (0.06, 0.94), (0.76, 0.24)

}
and let us consider our σ value equal to 1.1

Now, let us solve the problem using the first algorithm. First, we have to find other
representative policies and polytope sides in the neighborhood of different representative
policies. We consider the representative policy (0.39, 0.61) in order to find the neighbors
of this representative policy. Since the representative policies in a polytope with |SA|
equal to 2 are symmetrically distributed in essence, we can use the alternative algorithm
we presented. We have to solve the following optimization problem:

min 2.57DM(s, a)1 + 1.63DM(s, a)2

s.t.

1.05 DM(s, a)1 + 18 DM(s, a)2 ≥ 1.1

18 DM(s, a)1 + 1.05 DM(s, a)2 ≥ 1.1

1.32 DM(s, a)1 + 4.09 DM(s, a)2 ≥ 1.1

86 A| Numerical Examples

0 ≤ DM(s, a)1 ≤ 1

0 ≤ DM(s, a)2 ≤ 1

The answer to the problem is 0.53 for DM(s, a)1 and DM(s, a)2 respectively equal to 0.04
and 0.25.

Since the active constraints are

18 DM(s, a)1 + 1.05 DM(s, a)2 ≥ 1.1

1.32 DM(s, a)1 + 4.09 DM(s, a)2 ≥ 1.1

the other representative policies in the neighborhood of our representative policy (0.39,
0.61) are (0.06, 0.94) and (0.76, 0.24) Since there is no state-action distribution entry hav-
ing value equal to zero, there is no polytope side in the neighborhood of our representative
policy (0.39, 0.61).

Then, we assess local covering guarantee of our representative policy (0.39, 0.61), for
which we have to solve two systems of type A as follows:

2.57 d2µ1
1
(s, a)1 + 1.63 d2µ1

1
(s, a)2 = σ1

1

18 d2µ1
1
(s, a)1 + 1.05 d2µ1

1
(s, a)2 = σ1

1

dµ1
1
(s, a)1 + dµ1

1
(s, a)2 = 1

⇒ σ1
1 = 1.21, dµ1

1
(s, a)1 = 0.16, dµ1

1
(s, a)2 = 0.84

and:

2.57 d2µ1
2
(s, a)1 + 1.63 d2µ1

2
(s, a)2 = σ1

2

1.32 d2µ1
2
(s, a)1 + 4.09 d2µ1

2
(s, a)2 = σ1

2

dµ1
2
(s, a)1 + dµ1

2
(s, a)2 = 1

⇒ σ1
2 = 1.16, dµ1

2
(s, a)1 = 0.58, dµ1

2
(s, a)2 = 0.42

A| Numerical Examples 87

Now, we have to do the same for other representative policies.

In order to find the neighbors of the representative policy (0.94, 0.06) we have to solve
the following optimization problem:

min 1.05 DM(s, a)1 + 18 DM(s, a)2

s.t.

2.57 DM(s, a)1 + 1.63 DM(s, a)2 ≥ 1.1

18 DM(s, a)1 + 1.05 DM(s, a)2 ≥ 1.1

1.32 DM(s, a)1 + 4.09 DM(s, a)2 ≥ 1.1

0 ≤ DM(s, a)1 ≤ 1

0 ≤ DM(s, a)2 ≤ 1

The answer to the problem is 0.88 for DM(s, a)1 and DM(s, a)2 respectively equal to 0.83
and 0. Since the active constraint is:

1.32 DM(s, a)1 + 4.09 DM(s, a)2 ≥ 1.1

the other representative policies in the neighborhood of our representative policy (0.94,
0.06) is (0.76, 0.24). Since the value of the state-action distribution DM(s, a)2 is equal
to zero, there is one polytope side in the neighborhood of our representative policy (0.94,
0.06). In order to assess local covering guarantee of our representative policy (0.94, 0.06)

we have to solve the following

1.05 d2µ2
1
(s, a)1 + 18 d2µ2

1
(s, a)2 = σ2

1

1.32 d2µ2
1
(s, a)1 + 4.09 d2µ2

1
(s, a)2 = σ2

1

dµ2
1
(s, a)1 + dµ2

1
(s, a)2 = 1

⇒ σ2
1 = 1.08, dµ2

1
(s, a)1 = 0.88, dµ2

1
(s, a)2 = 0.12

and based on the Section 4.3.1 one system of type B as follows:

1.05 d2µ2
2
(s, a)1 + 18 d2µ2

2
(s, a)2 = σ2

2

88 A| Numerical Examples

dµ2
2
(s, a)2 = 0

dµ2
2
(s, a)1 + dµ2

2
(s, a)2 = 1

⇒ σ2
2 = 1.05, dµ2

2
(s, a)1 = 1, dµ2

2
(s, a)2 = 0

In order to find the neighbors of the representative policy (0.06, 0.94) we have to solve
the following optimization problem:

min 18 DM(s, a)1 + 1.05 DM(s, a)2

s.t.

2.57 DM(s, a)1 + 1.63 DM(s, a)2 ≥ 1.1

1.05 DM(s, a)1 + 18 DM(s, a)2 ≥ 1.1

1.32 DM(s, a)1 + 4.09 DM(s, a)2 ≥ 1.1

0 ≤ DM(s, a)1 ≤ 1

0 ≤ DM(s, a)2 ≤ 1

The answer to the problem is 0.71 for DM(s, a)1 and DM(s, a)2 respectively equal to 0
and 0.67. Since the active constraint is:

2.57 DM(s, a)1 + 1.63 DM(s, a)2 ≥ 1.1

so the other representative policies in the neighborhood of our representative policy (0.06,
0.94) is (0.39, 0.61). Since the value of the state-action distribution DM(s, a)1 is equal to
zero so there is one polytope side in the neighborhood of our representative policy (0.06,
0.94). In order to assess local covering guarantee of our representative policy (0.06, 0.94)
we have to solve one system of type A as follows:

18 d2µ3
1
(s, a)1 + 1.05 d2µ3

1
(s, a)2 = σ3

1

2.57 d2µ3
1
(s, a)1 + 1.63 d2µ3

1
(s, a)2 = σ3

1

dµ3
1
(s, a)1 + dµ3

1
(s, a)2 = 1

A| Numerical Examples 89

⇒ σ3
1 = 1.21, dµ3

1
(s, a)1 = 0.16, dµ3

1
(s, a)2 = 0.84

and one system of type B as follows:

18 d2µ3
2
(s, a)1 + 1.05 d2µ3

2
(s, a)2 = σ3

2

dµ3
2
(s, a)1 = 0

dµ3
2
(s, a)1 + dµ3

2
(s, a)2 = 1

⇒ σ3
2 = 1.05, dµ3

2
(s, a)1 = 1, dµ3

2
(s, a)2 = 0

In order to find the neighbors of the representative policy (0.76, 0.24) we have to solve
the following optimization problem:

min 1.32 DM(s, a)1 + 4.09 DM(s, a)2

s.t.

2.57 DM(s, a)1 + 1.63 DM(s, a)2 ≥ 1.1

1.05 DM(s, a)1 + 18 DM(s, a)2 ≥ 1.1

18 DM(s, a)1 + 1.05 DM(s, a)2 ≥ 1.1

0 ≤ DM(s, a)1 ≤ 1

0 ≤ DM(s, a)2 ≤ 1

The answer to the problem is 0.68 for DM(s, a)1 and DM(s, a)2 respectively equal to 0.4
and 0.03 Since the active constraints are:

2.57 DM(s, a)1 + 1.63 DM(s, a)2 ≥ 1.1

1.05 DM(s, a)1 + 18 DM(s, a)2 ≥ 1.1

the other representative policies in the neighborhood of our representative policy (0.76,
0.24) are (0.39, 0.61) and (0.94, 0.06). Since there is no state-action distribution equal to
zero, so there is no polytope side in the neighborhood of our representative policy (0.76,
0.24). In order to assess local covering guarantee of our representative policy (0.76, 0.24)

90 A| Numerical Examples

we have to solve two systems of type A as follows:

1.32 d2µ4
1
(s, a)1 + 4.09 d2µ4

1
(s, a)2 = σ4

1

2.57 d2µ4
1
(s, a)1 + 1.63 d2µ4

1
(s, a)2 = σ4

1

dµ4
1
(s, a)1 + dµ4

1
(s, a)2 = 1

⇒ σ4
1 = 1.16, dµ4

1
(s, a)1 = 0.58, dµ4

1
(s, a)2 = 0.42

and:

1.32 d2µ4
2
(s, a)1 + 4.09 d2µ4

2
(s, a)2 = σ4

2

1.05 d2µ4
2
(s, a)1 + 18 d2µ4

2
(s, a)2 = σ4

2

dµ4
2
(s, a)1 + dµ4

2
(s, a)2 = 1

⇒ σ4
2 = 1.08, dµ4

2
(s, a)1 = 0.88, dµ4

2
(s, a)2 = 0.12

obviously the maximum value of σ’s is 1.21 for the policy (0.16, 0.84) so:

max
µ

min
k

∫
d2µ(s, a)

dθk(s, a)
ds da = 1.21

and the remaining policy left uncovered and at the farthest distance from all the repre-
sentative policies is: (0.16, 0.84)

A.2. Number of Covering Policies

Here we provide some numerical examples on the lower and upper bounds on the number
of covering policies.

• |SA| = 100, σ = 30

To compute the lower bound of the needed number of representative policies, first we have
to find λ value in a way that σ lies within the interval of:(

|SA|
λ

,
|SA|
λ− 1

]

A| Numerical Examples 91

As we discussed earlier λ can take values from 2 to |SA|.

Clearly, with λ = 4, σ lies within the interval
(
100
4
, 100

3

]
. Since |SA| − λ ≥ 5:

F (λ) = 1 +
1

32

(
1

2

)5λ

+
31

64

(
1

2

)4λ

+
155

64

(
1

2

)3λ

+
155

32

(
1

2

)2λ

+
31

8

(
1

2

)λ

so with λ = 4, F (λ) will be equal to 1.26.

Based on the found λ and F (λ) values and the formulation derived in previous sections,
the lower bound and the upper bound for the needed number of representative policies
will be as follows:

N > F (λ)

√
λ

2

(
e|SA|2

2π(σ − 1)λ(λ− 1)

)λ−1
2

= 79

N < 2F (λ)

√
λ

2

(
eσ|SA|(|SA| − 1)

2π
(
σ − 1

)2
λ(λ− 1)

)λ−1
2

= 162

By Increasing σ, the Needed Number Will Decrease

• |SA| = 100, σ = 40

Then our λ value will be equal to 3, as with this value our σ lies within the interval(
100
3
, 100

2

]
. Since |SA| − λ ≥ 5 so F (λ) = 1.56, and we have

N > F (λ)

√
λ

2

(
e|SA|2

2π(σ − 1)λ(λ− 1)

)λ−1
2

= 36

N < 2F (λ)

√
λ

2

(
eσ|SA|(|SA| − 1)

2π
(
σ − 1

)2
λ(λ− 1)

)λ−1
2

= 72

By Decreasing σ, the Needed Number Will Increase:

• |SA| = 100, σ = 20

Then our λ value will be equal to 6, as with this value our σ lies within the interval(
100
6
, 100

5

]
. Since |SA| − λ ≥ 5 so F (λ) = 1.06 and we have:

N > F (λ)

√
λ

2

(
e|SA|2

2π(σ − 1)λ(λ− 1)

)λ−1
2

= 292

92 A| Numerical Examples

N < 2F (λ)

√
λ

2

(
eσ|SA|(|SA| − 1)

2π
(
σ − 1

)2
λ(λ− 1)

)λ−1
2

= 647

Based on the Property 4.2.1 in a Polytope of |SA| Dimensions Where |SA|
Is Greater Than or Equal to 4, Then for σ Values Greater Than or Equal to
|SA|
2

, the Maximum Needed Number of Representative Policies Will Be Equal
to |SA| + 1:

• if |SA| = 6 and σ = 4 then our λ value will be equal to 2 because with this value our
σ lies within the interval

(
6
2
, 6
1

]
and since |SA| − λ = 4 so F (λ) = 2.24 and we have:

N > F (λ)

√
λ

2

(
e|SA|2

2π(σ − 1)λ(λ− 1)

)λ−1
2

= 4

N < 2F (λ)

√
λ

2

(
eσ|SA|(|SA| − 1)

2π
(
σ − 1

)2
λ(λ− 1)

)λ−1
2

= 8

• if |SA| = 80 and σ = 45 then our λ value will be equal to 2 because with this value
our σ lies within the interval

(
80
2
, 80

1

]
and since |SA| − λ ≥ 5 so F (λ) = 2.3 and we have:

N > F (λ)

√
λ

2

(
e|SA|2

2π(σ − 1)λ(λ− 1)

)λ−1
2

= 13

N < 2F (λ)

√
λ

2

(
eσ|SA|(|SA| − 1)

2π
(
σ − 1

)2
λ(λ− 1)

)λ−1
2

= 26

• if |SA| = 1000 and σ = 505 then our λ value will be equal to 2 because with this
value our σ lies within the interval

(
1000
2
, 1000

1

]
and since |SA| − λ ≥ 5 so F (λ) = 2.3 and

we have:

N > F (λ)

√
λ

2

(
e|SA|2

2π(σ − 1)λ(λ− 1)

)λ−1
2

= 48

N < 2F (λ)

√
λ

2

(
eσ|SA|(|SA| − 1)

2π
(
σ − 1

)2
λ(λ− 1)

)λ−1
2

= 96

For a Polytope of Two Dimensions, Since in Spite of Having the Lower and
the Upper Bound Formulations, We Also Have the Formulation for the Exact

A| Numerical Examples 93

Number of the Needed Representative Policies, So We Can See the Results
in Practice with Some Numerical Example:

• if |SA| = 2 and σ = 1.3 then since σ lies within the interval of
(
1, |SA|

|SA|−1

]
so without

calculating λ value we can apply the first formulations to determine the lower and upper
bounds (although if we compute λ it will be equal to |SA| and consequently both the
intervals and formulations are the same):

N >

√
|SA|
2

(
e

2π(σ − 1)

) |SA|−1
2

= 2

N < 2

√
|SA|
2

(
eσ(|SA| − 1)

2π
(
σ − 1

)2|SA|
) |SA|−1

2

= 4

and on the other hand the exact number of the needed representative policies can be
computed as follows:

N = 2

⌈
log(2−σ

σ

)(1−
√
σ − 1

σ

)⌉
− 1 = 3

as it was expected the exact number lies within the interval of our estimated lower and
upper bound.

• if |SA| = 2 and σ = 1.1 then σ lies within the interval of
(
1, |SA|

|SA|−1

]
and we have:

N >

√
|SA|
2

(
e

2π(σ − 1)

) |SA|−1
2

= 3

N < 2

√
|SA|
2

(
eσ(|SA| − 1)

2π
(
σ − 1

)2|SA|
) |SA|−1

2

= 10

and on the other hand the exact number of the needed representative policies can be
computed as follows:

N = 2

⌈
log(2−σ

σ

)(1−
√
σ − 1

σ

)⌉
− 1 = 5

as it was expected the exact number lies within the interval of our estimated lower and
upper bound.

94 A| Numerical Examples

• if |SA| = 2 and σ = 1.05 then σ lies within the interval of
(
1, |SA|

|SA|−1

]
and we have:

N >

√
|SA|
2

(
e

2π(σ − 1)

) |SA|−1
2

= 3

N < 2

√
|SA|
2

(
eσ(|SA| − 1)

2π
(
σ − 1

)2|SA|
) |SA|−1

2

= 20

and on the other hand the exact number of the needed representative policies can be
computed as follows:

N = 2

⌈
log(2−σ

σ

)(1−
√
σ − 1

σ

)⌉
− 1 = 7

as it was expected the exact number lies within the interval of our estimated lower and
upper bound.

	Acknowledgements
	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Contributions
	Thesis Structure

	Background
	Fundamentals of Reinforcement Learning
	The Multi-Armed Bandit Problem
	Markov Decision Processes
	Dynamic Programming

	Sample-Based Methods for RL
	Monte Carlo Methods
	Temporal Difference Learning
	Temporal Difference Learning for Control
	Off-Policy Learning and Importance Sampling

	Function Approximation for RL
	Prediction with Function Approximation
	Control with Function Approximation
	Policy Gradient

	Policy Space Compression
	Problem Formulation
	Game-Theoretic Perspective
	Differential Stackelberg Equilibrium
	Challenges

	The PSCA Algorithm
	Leader's Update
	Follower's Update
	Algorithmic Steps

	On the Covering Threshold
	Geometry of the Problem
	How to Set the Covering Threshold
	.

	How to Check the Covering Requirement
	Unconstrained Polytopal Space
	Constrained Polytopal Space

	On the Number of Covering Policies
	Warm-Up: A Two-Dimensional Polytope
	Fundamentals
	The Volume of A Polytope
	Volume of a Tetrahedral Subpolytope
	Looking at the Polytope from One Face

	The Lower Bound
	The Upper Bound

	Conclusions
	Bibliography
	Numerical Examples
	Checking the Covering Requirement
	Number of Covering Policies

