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Abstract

Filled polymers represent an open wide field of research of great interest
in many industrial sectors and applications. In this thesis, filled polymers are
described as viscous fluids, whose viscosity depends, other than on the shear
rate, both on temperature and filler concentration. In order to describe “com-
pletely” viscosity of filled compounds as a function of temperature and filler
concentration, some traditional viscosity models have been corrected, employ-
ing suitable relative viscosity expressions taken from literature, together with
the temperature-dependence Arrhenius model. The implementation of several
viscosity models for filled polymers in the open source software OpenFOAM
(based on Finite Volume Method), is provided and employed in numerical sim-
ulations of simple experimental flows. Finally, a detailed comparison between
numerical results and experimental data is presented.

Sommario

I polimeri caricati rappresentano un vasto ambito di ricerca di grande interesse
per molti settori e applicazioni industriali. In questa tesi, i polimeri caricati
sono descritti come fluidi viscosi, la cui viscosità dipende, oltre che dallo shear
rate, sia dalla temperatura che dalla concentrazione del filler. Per descrivere
“completamente” la viscosità dei polimeri caricati in funzione della temper-
atura e della concentrazione di filler, alcuni modelli tradizionali di viscosità
sono stati corretti attraverso opportune espressioni di viscosità relativa, tratte
dalla letteratura, insieme con l’equazione di Arrhenius per la dipendenza dalla
temperatura. Si presenta l’implementazione di alcuni modelli di viscosità per
polimeri caricati nel software open source OpenFOAM (basato sul Metodo ai
Volumi Finiti), successivamente utilizzata nelle simulazioni numeriche di sem-
plici flussi sperimentali. Infine, viene presentato un confronto dettagliato tra
risultati numerici e dati sperimentali.
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Chapter 1

Introduction

In the last century the use of polymeric materials has gained a wider and wider
importance in many industrial applications. Frequently, various types of partic-
ulate materials (“fillers”) are dispersed in polymers with the aim of improving
some desirable physical properties, other than reducing production costs [1].
The term “filler” refers to those inert materials dispersed as solid discrete parti-
cles in polymer matrix without significantly affecting the molecular structure of
the polymer. Over the years many solid materials have been tested as fillers and
dispersed in polymeric compounds, such as carbonates, metal powders, silicates,
oxides and carbons [1]. As a matter of fact, the choice of a specific filler to be
added to a specific polymer does depend on the physical properties required
for the resulting compound: rigid fillers, such as glass fibers, are employed to
enhance stiffness of the resulting compound [3], carbon black is widely used in
tyre industry in order to increase durability and wear resistance [1], while metal
powders or carbons are dispersed in polymers in order to improve the elec-
tromagnetic or thermal properties such as thermal conductivity [2]. Moreover
many fillers may be employed as flame retardants and combustibility reducers
[4, 5]. Actually, fillers dispersion may enhance some desirable polymer prop-
erties and alter or spoil some others, that is why the coupling filler-polymer
should be deeply analyzed and tested in order to achieve a proper balance be-
tween the improvement of some properties and the deterioration of some others.
Rheological properties of polymers are likely to change as a consequence of filler
addition. In the present study, the influence of filler dispersion on viscosity is
analyzed and modelled through some suitable rheological models.

Chapter 2 faces the problem of modelling the viscosity of polymers where
solid particulates have been dispersed, with respect to the viscosity of the pure
polymer. Some canonical viscosity models are corrected and enabled to describe
the viscosity of the polymer-filler compound as a function of the filler loading.

Since polymers where fillers are dispersed are modelled as incompressible vis-
cous fluids, chapter 3 collects and explains the continuum mechanics equations
governing the flow of an incompressible viscous fluid.

Chapter 4 deals with rheometry, especially with experimental measurements
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of viscosity in shear conditions: the flow of an incompressible viscous fluid
through a capillary rheometer is presented and analyzed together with Mooney,
Rabinowitsch and Bagley corrections to be applied to experimental data.

Chapter 5 contains an introduction to finite volume method for the approxi-
mation of partial differential equations problems, with a focus on the solution of
the Navier-Stokes system coupled with energy balance equation (chapter 3).The
implementation, in the open source software OpenFOAM, of some suitable rhe-
ological models to describe polymers where fillers have been dispersed (chapter
2), is presented and described.

Chapter 6 collects the analysis of some polymer-filler compound experimen-
tal data, which have been employed to choose and characterise some suitable
viscosity models in order to describe the rheology of the polymer-filler com-
pound.

Finally, chapter 7 displays the results of numerical simulations run with
rheological models introduced in chapter 6, compared with the experimental
data.

12



Chapter 2

Filled Compounds

Polymers are high molecular weight substances resulting from the union (poly-
merization) of many similar molecules (monomers). Polymer molecules are
called macromolecules since they can be thought as flexible chains of monomers,
whose length is relatively very larger than the dimensions of the monomers that
compose them. As explained in [1], polymers may be classified on the basis
of the structure of their macromolecules (linear polymeric chain or branched
polymeric chain) rather than on the basis of their degree of crystallinity (the
ability of macromelecules to assume a space-ordered arrangement under some
suitable pressure-temperature conditions). The dispersion of solid particulates
into polymer matrices is widely diffused in industrial contexts in order to reduce
costs and to improve some desirable thermal, mechanical, electrical and mag-
netic properties [1]. The addition of solid material powder into polymeric matrix
usually implies a trade-off between the enhancement of some thermal and me-
chanical properties of the resulting compound (polymer-solid particulate) and
the changes in the rheology of the resulting compound (viscosity increase, ap-
pearance of yield stresses, different behaviour under shear or extensional flows
conditions, changes in storage and loss moduli etc.), the increased difficulty in
the melt process, the higher effort needed to eliminate inhomogeneities in solid
particulate concentration. The solid particulate dispersed in polymer matrix
will be hereby denoted as filler. The polymer without the addition of the filler
will be appointed as pure or unfilled polymer while the compound obtained by
the dispersion of the filler into the unfilled polymer will be denoted as filled com-
pound. Fillers may be classified by the shape of their particles: spherical fillers
are more likely to provide isotropic changes in properties of the filled compound
than ellipsoidal fillers or randomly shaped fillers [1]. Moreover the addition of
tridimensional particles (e.g. spherical or ellipsoidal fillers) may result in differ-
ent changes in filled compound properties than bidimensional particles (flakes,
platelets) or monodimensional particles (fibers, whiskers).

Also the size distribution of the filler particles plays an important role in
determining the properties of filled compounds [1]. As a matter of fact, the
addition of solid particles of the same size (monodispersed fillers) or the disper-
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sion of solid particles whose size has a wide range of varibility (polydispersed
fillers), have different effects on filled compound properties, for what concerns
particle-particle interaction, agglomeration, cluster formation and difficulties in
ensuring homogeneous mixing. The investigation of how the thermo-mechanical
properties of unfilled polymers are affected by the addition of solid filler particles
has gained importance in the last decades but still remains an open research
field, due to the large number of variables to take into consideration: the chem-
ical composition of polymer and its molecular structure, the filler particle shape
and size distribution and, obviously, the filler concentration. Hystorically, the
influence of filler concentration on rheology of filled compounds has been widely
investigated, rather than the effects of fillers shape and size distribution. Nu-
merous studies have been focused on the relation between the rheology of the
filled compound and the rheology of the unfilled compound with respect to
the concentration of the filler. The addition of filler solid particles in polymer
matrix leads to an increase in internal friction and energy dissipation during
motion, along with the increase in particle-particle interaction and agglomer-
ation of filler solid particles (mostly at high levels of concentration of filler).
Hereby, the main focus is to investigate and represent, through some suitable
mathematical models, the dependence of the viscosity of the filled compound
on the concentration of the filler.

2.1 Relative Viscosity

The addition of a solid compound in a polymeric matrix produces a solid-liquid
suspension with different rheological properties with respect to those of the
unfilled polymeric matrix, such as viscosity, first normal stress difference, elon-
gational behaviour, onset of yield stresses (viscoplasticity), storage and loss
moduli in oscillatory regimes. Hereby, filled and unfilled compounds will be
described as viscous fluids and the focus will be on the dependence of viscosity
on the filler concentration.

The constitutive relation commonly used to describe polymers as viscous
fluids is the generalized Newtonian fluid model:

T = −PI + 2η(γ̇, T )D, (2.1)

where T is the Cauchy stress tensor, T is temperature, P denotes pressure while
D is the symmetric component of velocity gradient:

D =
1

2
(∇~u+∇~uT ). (2.2)

Differently from Newtonian fluids, the viscosity η is assumed to be a function
of the shear rate γ̇ defined as

γ̇ =
√

2D : D =
√

2DijDij . (2.3)

In the following pages, it is assumed that both polymer matrices and filled
compounds can be described by equation (2.1) as generalized Newtonian flu-
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ids, with ηpure(γ̇, T ) and ηfilled(γ̇, T ) denoting respectively the viscosity of the
unfilled polymer matrix and the viscosity of the filled compound.

In past years many mathematical models have been proposed in order to
describe the relation between the viscosity of the filled compound (ηfilled(γ̇, T ))
and the viscosity of the unfilled polymer (ηpure(γ̇, T )) depending on the concen-
tration of the filler, in particular on its volume fraction.

Definition 2.1. (Filler Volume Fraction)
Let V be the volume of a pure polymer matrix. Let Vdispersed be the volume
of filler dispersed into polymeric matrix. The volume fraction φ of the filler is
defined as

φ =
Vdispersed

V + Vdispersed
. (2.4)

In order to relate the viscosity of the filled compound ηfilled to the viscosity
of the unfilled polymer ηpure, a definition of relative viscosity it’s needed:

ηr =
ηfilled(γ̇, T )

ηpure(γ̇, T )
. (2.5)

Equation (2.5) defines relative viscosity as the ratio between the viscosity of
the filled compound and the viscosity of the unfilled polymer, both evaluated
at the same shear rate and temperature.

Equation (2.5) turns out to be quite a naive and unfortunate definition of
relative viscosity since ratio (2.5) depends on the shear rate γ̇. For many filled
polymers, relative viscosity ηr, computed employing experimental data in (2.5),
decreases rapidly in the low shear rates region and mildly in the intermediate
shear rate region (for almost all filler volume fractions). In some cases, mostly
for low filled compounds, ratio (2.5) reaches an asymptotic value at high shear
rates.

In order to provide a definition of relative viscosity ηr which is independent
of the shear rate, in [6, 7] it is suggested to substitute equation (2.5) with

ηr = lim
γ̇→∞

ηfilled(γ̇, T )

ηpure(γ̇, T )
. (2.6)

Definition (2.6) of relative viscosity is quite difficult to use in practice since,
especially for highly viscous polymers, it may happen that the ratio

ηfilled(γ̇, T )

ηpure(γ̇, T )

does not achieve an asymptotic value for γ̇ →∞. Moreover, especially for highly
filled polymers, it is quite difficult to reach high shear rates regimes, since the
addition of filler solid particles increases internal friction.

In [8] Kataoka, Kitano et al. proposed a new definition of relative viscosity.
Instead of considering the limit of the ratio between the viscosity of filled and
unfilled polymer at the same shear rate (and temperature) as in equation (2.5),
it’s convenient to consider the ratio between the viscosity of filled and unfilled
polymer at the same shear stress τ = η(γ̇, T )γ̇ (and temperature):

15
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Definition 2.2. (Relative Viscosity)
The relative viscosity ηr of a filled compound is defined as the ratio between the
viscosity of the filled compound and the viscosity of the unfilled polymer matrix,
at the same shear stress and temperature.

ηr =
ηfilled(γ̇1, T )|ηfilled(γ̇1,T )γ̇1=τ

ηpure(γ̇2, T )|ηpure(γ̇2,T )γ̇2=τ
. (2.7)

The ratio (2.7) is independent of τ , at least for sufficiently large shear stresses
(i.e. τ >> τ∗).

During the last seventy years a considerable effort has been made in or-
der to model the dependence of relative viscosity on filler volume fraction and
several mathematical expressions have been proposed for ηr(φ). As a prelimi-
nary consideration, it may be expected that the viscosity of a filled compound
is higher than the viscosity of the pure polymer matrix, since the dispersion
of solid particulates increases internal friction and, consequently, energy dis-
sipation. Analogously, the higher is the filler volume fraction, the higher is
the concentration of the filler, the higher is the relative viscosity of the filler
compound. Due to this argument, it should be reasonably expected that

∂ηr(φ)

∂φ
≥ 0. (2.8)

On the other hand, the following condition has to be fulfilled:

ηr(0) = 1. (2.9)

since, if the filler volume fraction is null, the viscosity of the compound is the
viscosity of the pure polymer.

One of the first models designed to model the behaviour of the relative
viscosity of a filled compound with respect to the filler volume fraction was
proposed by Einstein [9]:

ηr(φ) = 1 +
5

2
φ. (2.10)

This relation holds for approximately spherical solid particles of the same
magnitude (monodispersed). Moreover equation (2.10) is only valid for low
levels of concentration of the filler (dilute solutions, φ ' 0). It’s worth to notice
that, the Einstein model predicts

∂ηr(φ)

∂φ
=

5

2
> 0, (2.11)

as expected in equation (2.8).
One possible strategy to construct a relative viscosity model is the “effective

medium” approach [10].
Assume that it is required to compute the relative viscosity of a filled com-

pound where filler has been dispersed with volume fraction φ. Imagine, applying
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the “effective medium” strategy, to add iteratively some small quantities of filler
into the pure polymeric matrix, up to filler volume fraction φ. At each iteration
some filler is added to a compound which is not pure anymore, but has already
a filler volume fraction. Assume that at some iteration the filled compound has
volume V and has a filler volume fraction φ1 ' φ, φ1 < φ. To reach filler volume
fraction φ the addition of a small volume of filler ∆Vd << V is needed. It holds
that

φ =
φ1V + ∆Vd
V + ∆Vd

=
φ1V

V + ∆Vd
+

∆Vd
V + ∆Vd

' φ1V

V
+

∆Vd
V + ∆Vd

. (2.12)

Defining

φ2 =
∆Vd

V + ∆Vd
<< 1.

it holds that
φ = φ1 + φ2. (2.13)

Considering the compound with filler volume fraction φ1 as a matrix where
filler with volume fraction φ2 has been dispersed, it is possible to state that

ηr(φ2) =
ηfilled(φ, γ̇0, T )|ηfilled(φ,γ̇0,T )γ̇0=τ

ηfilled(φ1, γ̇1, T )|ηfilled(φ1,γ̇1,T )γ̇1=τ
=

=
ηr(φ)ηpure(γ̇2, T )|ηpure(γ̇2,T )γ̇2=τ

ηr(φ1)ηpure(γ̇3, T )|ηpure(γ̇3,T )γ̇3=τ
. (2.14)

Since φ2 << 1, assuming φ ' φ1, then ηr(φ2) ' 1 and ηr(φ) ' ηr(φ1), then
equation (2.14) implies

ηpure(γ̇2, T )|ηpure(γ̇2,T )γ̇2=τ

ηpure(γ̇3, T )|ηpure(γ̇3,T )γ̇3=τ
' 1. (2.15)

Equation (2.14) may be simplified in

ηr(φ2) =
ηr(φ)

ηr(φ1)
. (2.16)

Rearranging equation (2.16), the following relation is obtained:

ηr(φ) = ηr(φ1 + φ2) = ηr(φ1)ηr(φ2). (2.17)

Solving the functional relation (2.17) leads to the following expression for
the relative viscosity:

ηr(φ) = eαφ.

In order to obtain ∂ηr(φ)
∂φ |φ=0 = 2.5 as predicted by Einstein (equation (2.10),

which holds for φ ' 0), it must be α = 2.5. The final relative viscosity model is

ηr(φ) = e2.5φ. (2.18)
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A more precise model may be obtained writing equation (2.12) in the fol-
lowing way

φ =
φ1V + ∆Vd
V + ∆Vd

=
φ1(V + ∆Vd)

V + ∆Vd
− φ1∆Vd
V + ∆Vd

+
∆Vd

V + ∆Vd
, (2.19)

which leads to
φ = φ1 + φ2 − φ1φ2. (2.20)

Assuming the compound with filler volume fraction φ1 as a matrix where a
filler volume fraction φ2 has been dispersed, then

ηr(φ2) =
ηfilled(φ, γ̇0, T )|ηfilled(φ,γ̇0,T )γ̇0=τ

ηfilled(φ1, γ̇1, T )|ηfilled(φ1,γ̇1,T )γ̇1=τ
' ηr(φ)

ηr(φ1)
, (2.21)

ηr(φ) = ηr(φ1 + φ2 − φ1φ2) = ηr(φ1)ηr(φ2). (2.22)

Defining f(1− φ) = ηr(φ), it holds that

f(1− φ1 − φ2 + φ1φ2) = f(1− φ1)f(1− φ2),

f((1− φ1)(1− φ2)) = f(1− φ1)f(1− φ2). (2.23)

Letting ξ = (1− φ), the previous equation becomes

f(ξ1ξ2) = f(ξ1)f(ξ2), (2.24)

whose solution is
f(ξ) = ξα.

Eventually, the solution of equation (2.22) is

ηr(φ) = (1− φ)α.

Once again, imposing that ∂ηr(φ)
∂φ |φ=0 = 2.5, the Roscoe-Brinkman relative

viscosity model [16, 17] is obtained:

ηr(φ) = (1− φ)−2.5. (2.25)

Remark 2.1. Mathematical equations for expression of relative viscosity pre-
sented so far (equations (2.10)(2.18)(2.25)) do not take into consideration the
maximum packing volume fraction φM .

Definition 2.3. The maximum packing filler volume fraction φM is defined as
the filler volume fraction corresponding to the maximum packing arrangement
of filler particles, while still retaining a continuous material.

The value of φM does depend on the filler particles shape and size distribu-
tion. For instance, for a narrow size distribution (not exactly monodispersed
but with a narrow range of variability in size) of glass spherical particles, φM
has been found to be 0.62 ([19]). The maximum packing volume fraction may be
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increased considering fillers with a wider range of variability in size distribution
(polydispersed bimodal or multimodal size distribution).

In [11] Krieger and Dougherty suggested the following functional relation:

ηr(φ1 + φ2) = ηr(φ1)ηr

( φ2

1− φ1

φM

)
. (2.26)

Equation (2.26) may be interpreted in the following way. Assume that some
small quantities ∆Vd of filler are iteratively added into a pure polymeric matrix.
At each iteration some filler is added into a compound that already contains
some filler. At the first iteration the increase in viscosity due to the addition of
∆Vd is assumed to be smaller than the increase in viscosity at last iterations due
to the addition of the same volume ∆Vd. This consideration may suggest that
the “effective medium” strategy should be corrected taking into consideration,
at each iteration, the “closeness” of the current filler volume fraction to φM .

Assume that, at some iteration, the filled compound has volume fraction
φ1 ' φ, φ1 < φ and that the addition of a small volume of filler ∆Vd is required
to reach volume fraction φ. In order to take into account the “closeness” of φ1

to the maximum packing volume fraction φM , equation (2.16) becomes

ηr

( φ2

1− φ1

φM

)
=

ηr(φ)

ηr(φ1)
,

then

ηr(φ) = ηr

( φ2

1− φ1

φM

)
ηr(φ1) (2.27)

where

φ2 =
∆Vd

V + ∆Vd
<< 1 and φ = φ1 + φ2. (2.28)

The solution of equation (2.26) is

ηr(φ) =
(

1− φ

φM

)α
.

Forcing ∂ηr(φ)
∂φ |φ=0 =2.5, coherently with Einstein equation, the Krieger-

Dougherty realtive viscosity model is obtained:

ηr =
(

1− φ

φM

)−2.5φM
. (2.29)

Instead of equation (2.26), in [12] Mooney suggested to correct equation
(2.17) in the following way:

ηr(φ) = ηr(φ1 + φ2) = ηr

( φ1

1− φ2

φM

)
ηr

( φ2

1− φ1

φM

)
. (2.30)
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The solution of the equation (2.30) is given by

ηr(φ) = exp
( αφ

1− φ
φM

)
.

In order to satisfy condition ∂ηr(φ)
∂φ |φ=0 = 2.5, α must be set equal to 2.5

and the previous equation becomes

ηr(φ) = exp
( 2.5φ

1− φ
φM

)
, (2.31)

which is the Mooney relative viscosity model.

Remark 2.2. Expanding equation (2.18) (2.25) (2.29)(2.31) in Taylor series
up to the first order, around φ = 0, it is possible to get Einstein expression
(2.10): for dilute filled compounds (i.e. φ ' 0) all the previous relative viscosity
expressions reduce to the Einstein model.

Several empirical or semi-empirical models have been proposed to describe
relative viscosity as a function of the filler volume fraction, in a wider range of
solid particles concentrations: some of them are listed below.

In [13] Eilers introduced the following expression for relative viscosity as
function of filler volume fraction:

ηr(φ) =
(

1 +
5
4φ

1− φ
φM

)2

. (2.32)

Remark 2.3. It is worth to notice that ∂ηr(φ)
∂φ |φ=0 = 2.5: for dilute suspensions

(i.e. for φ ' 0) the Eilers model reduces to the Einstein equation.

Maron and Pierce, in [14], designed the following expression to describe the
dependence of relative viscosity on concentration of dispersed solid particles:

ηr(φ) =
(

1− φ

φM

)−2

. (2.33)

Remark 2.4. The previous equation solves the Krieger and Dougherty equation
(2.26)

ηr(φ) = ηr(φ1 + φ2) = ηr(φ1)ηr

( φ2

1− φ1

φM

)
,

in such a way that ∂ηr(φ)
∂φ |φ=0 = 2

φM
.

An expression similar to equation (2.32) has been suggested by Chong et al.
in [15]:

ηr(φ) =
[
1 +

3

4

( φ
φM

1− φ
φM

)]2
. (2.34)
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In [10] Pal made an attempt to take into consideration interactions, collisions
and aggregation of suspended particles into the expression of relative viscosity.
In particular, Pal ([10]) considered the dispersion of solid spherical particles in
non Newtonian fluids. When a filled compound, obtained from the dispersion
of solid particulates into polymeric matrix, flows, clusters of solid particles are
continuously created and destroyed. The aggregation of solid particles affects
the viscosity of the filled compound (i.e. the “resistance” of the filled compound
to undergo high velocity gradients).

Consider the shear flow of a filled compound, containing spherical solid parti-
cles. When two particles are separated by a sufficiently large distance, they can
rotate and translate at different velocities, independently one from the other.
When the relative distance between two particles is small, they cannot rotate
independently and translate at different velocities anymore (hence a higher ”re-
sistance” to large velocity gradients is expected). Moreover, in [10] it is assumed
that, when particles aggregate, a portion of fluid polymer phase close to the
cluster is immobilized.

Moving from this consideration, the filler volume fraction φ is actually
smaller than the effective filler volume fraction φeff

φeff =
Vdispersed + Vimmobilized

(V − Vimmobilized) + Vdispersed + Vimmobilized
,

φeff =
Vdispersed + Vimmobilized

V + Vdispersed
, (2.35)

where V is the volume of polymeric matrix, Vdispersed is the volume of the
filler and Vimmobilized is the volume of polymeric matrix immobilized in the
neighbourhood of clusters of solid particles.

Pal expressed the effective filler volume fraction as

φeff = k(φ)φ, (2.36)

with k(φ) being and increasing function of φ, since it’s assumed that the vol-
ume of clusters increases with the concentration of the filler. Consequently,
the volume of immobilized fluid polymer phase frozen around particles clusters
increases with filler concentration.

The simplest expression for k(φ) is

k(φ) = a+ bφ. (2.37)

In order to determine constants a and b we consider the following conditions:{
k(0) = 1

φ = φM ⇒ φeff = k(φM )φM = 1.
(2.38)

Conditions expressed in (2.38) assume that for pure polymer φ = φeff ,
while for polymer filled up to the maximum packing volume fraction, the whole
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volume of fluid polymer phase is immobilized. Coefficients a and b turn out to
be equal to {

a = 1

b = 1−φM
φM 2 .

Finally the complete expression for φeff is

φeff =
[
1 +

(1− φM
φM

2

)
φ
]
φ. (2.39)

The “effective medium” strategy is now applied, considering, instead of filler
volume fraction, the effective filler volume fraction: equation (2.22) becomes

ηr(φeff ) = ηr(φeff,1 + φeff,2 − φeff,1φeff,2) = ηr(φeff,1)ηr(φeff,2). (2.40)

The solution of equation (2.40), imposing
∂ηr(φeff
∂φeff

|φeff=0 = 2.5, is

ηr(φeff ) = (1− φeff )−2.5. (2.41)

Combining equations (2.41) and (2.39), Pal relative viscosity model is ob-
tained:

ηr(φ) =
(

1−
(

1 +
(1− φM

φ2
M

)
φ
)
φ
)−2.5

. (2.42)

Through some straightforward calculations it can be proven that all equa-
tions (2.10)(2.18)(2.25)(2.29)(2.31-2.34)(2.42) satisfy conditions (2.8) and (2.9).
Moreover, all the models described by equations (2.29)(2.31-2.34)(2.42) verify
the following condition

lim
φ→φM

ηr(φ) =∞. (2.43)

If filler volume fraction φ reached the value φM , solid particles would be
“packed” preventing the filled compound from flowing and leading to an infinite
viscosity.

Figure (2.1) displays the values of relative viscosity ηr(φ) according to equa-
tions (2.33)(2.34)(2.31)(2.42)(2.10). The Maron-Pierce and Pal relative viscosi-
ties are almost superimposed. The Chong relative viscosity is quite close to the
Maron-Pierce and Pal expressions. The Mooney relative viscosity stays below
the Maron-Pierce, Chong and Pal models for low filler volume fraction values
and above the Maron-Pierce, Chong and Pal expressions for high values of filler
concentration. The Einstein relative viscosity stays below all the other models.
Finally, for φ → 0, all the relative viscosity expressions flatten on the Einstein
model.
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Figure 2.1: Relative Viscosity ηr(φ) for expressions (2.33)(2.34)(2.31)
(2.42)(2.10).

2.2 Rheology of Filled Compounds

In order to perform numerical simulations an analytical expression for the vis-
cosity of the filled compound ηfilled(γ̇, T ) is required. This can be done combin-
ing some expressions for the relative viscosity ηr(φ) with the equation for the
viscosity of the pure polymeric matrix ηpure(γ̇, T ).

One of the most popular models used to describe the viscosity of an in-
compressible non-Newtonian fluid (independently of temperature) is the Bird-
Carreau expression:

η(γ̇) = η0

[
1 +

(
λγ̇
)2](n−1)/2

, (2.44)

where γ̇ is the shear rate while η0 e λ represent, respectively, the zero shear-
rate viscosity and the relaxation time of the matrix polymer.

If λγ̇ << 1, then η ' η0: at low shear rates, Bird-Carreau fluids exhibit a
Newtonian behaviour.

On the contrary, if λγ̇ >> 1, the following holds

η ' η0

(
λγ̇
)(n−1)

. (2.45)

Equation (2.45) states that, in high shear rates regime, the viscosity of Bird-
Carreau fluids depends on the shear rate through a power law relation.

Assume that the viscosity of the matrix polymer is described by the Bird-
Carreau expression (2.44), corrected by a factor H(T ) in order to take into
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consideration the dependence of viscosity on temperature:

ηpure(γ̇, T ) = H(T )η0

[
1 +

(
λγ̇
)2](n−1)/2

. (2.46)

To model the viscosity of the filled polymer, where the concentration of the
suspended particulates is represented by the filler volume fraction φ, Poslinski
([19]) has modified Bird-Carreau equation (2.44) in the following way:

η(γ̇, φ) = η0f(φ)
[
1 +

(
f(φ)λγ̇

)2](n−1)/2

, (2.47)

with

f(φ) =
(

1− φ

φM

)−2

. (2.48)

Since this research is going to take into account the influence of temperature
on viscosity of the filled polymer, also equation (2.47) should be corrected as

ηfilled(γ̇, φ, T ) = H(T )η0f(φ)
[
1 +

(
f(φ)λγ̇

)2](n−1)/2

, (2.49)

Making use of equation (2.49), the relative viscosity of the filled compound
with filler volume fraction φ is

ηr(φ) = f(φ) =
(

1− φ

φM

)−2

. (2.50)

It is worth to notice that the expression of relative viscosity perfectly matches
Maron-Pierce equation (2.33).

Let φ1 ∈ [0, φM ) and let γ̇0, γ̇1 such that
τ0 = ηpure(γ̇0, T )γ̇0

τ1 = ηfilled(γ̇1, φ1, T )γ̇1

τ0 = τ1.

(2.51)

Then, according to definition (2.2), it holds that

ηr(φ1) =
ηfilled(γ̇1, φ1, T )

ηpure(γ̇0, T )
=
H(T )η0f(φ1)

[
1 +

(
f(φ1)λγ̇1

)2](n−1)/2

H(T )η0

[
1 +

(
λγ̇0

)2](n−1)/2
. (2.52)

Assuming that λγ̇0 << 1 and f(φ1)λγ̇1 << 1, it holds that

ηr(φ1) =
ηfilled(γ̇1, φ1, T )

ηpure(γ̇0, T )
' f(φ1). (2.53)

On the other hand, if λγ̇0 >> 1 and f(φ1)λγ̇1 >> 1, it holds that

ηr(φ1) '
f(φ1)

(
f(φ1)λγ̇1

)(n−1)

(
λγ̇0

)(n−1)
=

(f(φ1))n
(
γ̇1

)(n−1)

(
γ̇0

)(n−1)
. (2.54)
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Since τ0 = τ1, the following relation holds true

ηpure(γ̇0, T )γ̇0 = ηfilled(γ̇1, φ1, T )γ̇1 ⇒ ηr(φ1) =
ηfilled(γ̇1, φ1, T )

ηpure(γ̇0, T )
=
γ̇0

γ̇1
,

(2.55)
Combining equations (2.54) and (2.55), it holds that

ηr(φ1) =
(f(φ1))n

ηr(φ1)n−1
⇒ ηr(φ1) = f(φ1). (2.56)

Another popular expression to describe the viscosity of an incompressible
non-Newtonian fluid is the following:

η(γ̇) = η0

(
λγ̇
)(n−1)

, (2.57)

where γ̇ is the shear rate while η0 e λ represent, respectively, the zero shear rate
viscosity and the relaxation time of the fluid. As before, in order not to neglect
dependence of viscosity on temperature, equation (2.57) should be corrected as

η(γ̇, T ) = H(T )η0

(
λγ̇
)(n−1)

. (2.58)

This expression, called power law model, represents a simplification with
respect to the Bird-Carreau model, since at high shear rates the Bird-Carreau
equation (2.46) reduces to equation (2.58).

Assuming that the polymer matrix viscosity ηpure(γ̇, T ) has a power law
behaviour (2.58), drawing inspiration from [19], the viscosity of the filled com-
pound, as a function of the filler volume fraction φ, may be written in the
following way:

ηfilled(γ̇, φ, T ) = H(T )η0f(φ)
(
f(φ)γ̇λ

)n−1

, (2.59)

where f(φ) should be chosen as in [19]:

f(φ) =
(

1− φ

φM

)−2

. (2.60)

It can be proven that, assuming equation (2.59), the relative viscosity of the
filled compound matches Maron-Pierce expression (2.33):

ηr(φ) = f(φ) =
(

1− φ

φM

)−2

. (2.61)

Let φ1 ∈ [0, φM ) and let γ̇0, γ̇1 such that
τ0 = ηpure(γ̇0, T )γ̇0

τ1 = ηfilled(γ̇1, φ1, T )γ̇1

τ0 = τ1.

(2.62)
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The relative viscosity may be computed as

ηr(φ1) =
ηfilled(γ̇1, φ1, T )

ηpure(γ̇0, T )
=
H(T )η0f(φ1)

(
f(φ1)λγ̇1

)(n−1)

H(T )η0

(
λγ̇0

)(n−1)
, (2.63)

ηr(φ1) =
f(φ1)

(
f(φ1)λγ̇1

)(n−1)

(
λγ̇0

)(n−1)
=

(f(φ1))n
(
γ̇1

)(n−1)

(
γ̇0

)(n−1)
. (2.64)

Taking into account that τ0 = τ1, the following relation holds true:

ηpure(γ̇0, T )γ̇0 = ηfilled(γ̇1, φ1, T )γ̇1 ⇒ ηr(φ1) =
ηfilled(γ̇1, φ1, T )

ηpure(γ̇0, T )
=
γ̇0

γ̇1
.

(2.65)
The substitution of the previous equation into equation (2.64) leads to

ηr(φ1) =
(f(φ1))n

ηr(φ1)n−1
⇒ ηr(φ1) = f(φ1). (2.66)

The Cross model is also widely used to describe the viscosity of an incom-
pressible non Newtonian fluid:

η(γ̇) =
η0

1 + (λγ̇)m
. (2.67)

As for Bird Carreau model (2.44) it should be noticed that at low shear rates
(λγ̇ << 1), the behaviour of a Cross fluid is Newtonian, since equation (2.67)
reduces to

η(γ̇) ' η0. (2.68)

On the contrary, at high shear rates (λγ̇ >> 1) the Cross fluid exhibits a
power law behaviour:

η(γ̇) = η0(λγ̇)−m. (2.69)

Assuming that the viscosity of the polymer matrix exhibits a (temperature
dependent) Cross behaviour

η(γ̇, T ) = H(T )
η0

1 +
(
λγ̇
)m (2.70)

and taking inspiration from [19], the following model can be constructed:

ηfilled(γ̇, φ, T ) =
H(T )η0f(φ)

1 +
(
λf(φ)γ̇

)m , (2.71)

with

f(φ) =
(

1− φ

φM

)−2

. (2.72)
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As for equations (2.49) (2.59), the relative viscosity computed exploiting
equation (2.71) matches the Maron Pierce expression (2.33).

Let φ1 ∈ [0, φM ) and let γ̇0, γ̇1 such that
τ0 = ηpure(γ̇0, T )γ̇0

τ1 = ηfilled(γ̇1, φ1, T )γ̇1

τ0 = τ1.

(2.73)

The relative viscosity may be computed as

ηr(φ1) =
ηfilled(γ̇1, φ1, T )

ηpure(γ̇0, T )
=

H(T )η0f(φ1)

1 +
(
f(φ1)λγ̇1

)m 1 +
(
λγ̇0

)m
H(T )η0

, (2.74)

ηr(φ1) =
f(φ1)

(
1 +

(
λγ̇0

)m)
1 +

(
f(φ1)λγ̇1

)m , (2.75)

If it is assumed that λγ̇0 << 1 and f(φ1)λγ̇1 << 1, then equation (2.75)
reduces to

ηr(φ1) ' f(φ1). (2.76)

On the contrary, if λγ̇0 >> 1 and f(φ1)λγ̇ >> 1, then it holds

ηr(φ1) '
f(φ1)

(
λγ̇0

)m
(
f(φ1)λγ̇1

)m =

(
f(φ1)

)1−m
γ̇m0

γ̇m1
. (2.77)

Taking into account that τ0 = τ1, the following relation is obtained:

ηpure(γ̇0, T )γ̇0 = ηfilled(γ̇1, φ1, T )γ̇1 ⇒ ηr(φ1) =
ηfilled(γ̇1, φ1, T )

ηpure(γ̇0, T )
=
γ̇0

γ̇1
.

(2.78)

Substituting the previous equation into equation (2.77) allows to get

ηr(φ1) =
(
f(φ1)

)1−m(
ηr(φ1)

)m
⇒ ηr(φ1) = f(φ1) =

(
1− φ1

φM

)−2

. (2.79)

In general, it’s possible to construct a mathematical expression to describe
the viscosity of a filled compound, combining the expression of the viscosity
of the pure matrix polymer (Newtonian, Bird-Carreau, power law, Cross etc.)
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with a factor f(φ):

ηpure(γ̇, T ) = H(T )η0

[
1 +

(
λγ̇
)2](n−1)/2

⇒

⇒ ηfilled(γ̇, φ, T ) = H(T )η0f(φ)
[
1 +

(
f(φ)λγ̇

)2](n−1)/2

ηpure(γ̇, T ) = H(T )η0

(
λγ̇
)(n−1)

⇒ ηfilled(γ̇, φ, T ) = H(T )η0f(φ)
(
f(φ)γ̇λ

)n−1

ηpure(γ̇, T ) = H(T )
η0

1 +
(
λγ̇
)m ⇒ ηfilled(γ̇, φ, T ) = H(T )

η0f(φ)

1 +
(
λf(φ)γ̇

)m ,
(2.80)

choosing for f(φ) one of the filler volume fraction models among (2.10) (2.18)
(2.25) (2.29) (2.31 - 2.34) (2.42)

In this way, as showed above, it is obtained, coherently, that

ηr(φ) = f(φ).

Remark 2.5. All the viscosity models presented in (2.80) could be generally
written as

ηfilled(γ̇, φ, T ) = H(T )V (γ̇, φ) = H(T )V (γ̇, f(φ)). (2.81)
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Chapter 3

Governing Equations

This chapter presents an overview on the mathematical equations governing
the motion of an incompressible generalized Newtonian fluid, taken from con-
tinuum mechanics: the mass conservation principle, the conservation of linear
momentum equation, the incompressibility constraint and the energy balance
equation.

Let Ω0 be the reference configuration for a Cauchy continuum body and let
Ωt be its configuration at time t ∈ [0; +∞). Define the trajectory of the Cauchy
continuum body as

T = {(x, t) ∈ R3 × [0; +∞) : x ∈ Ωt} =
⋃

t∈[0;+∞)

(
Ωt × {t}

)
. (3.1)

The next fundamental theorem will be widely used to compute time deriva-
tives of integral quantities.

Theorem 3.1. Reynolds Transport Theorem (RTT)

Let φ be a sufficiently regular scalar field defined on T , let ~φ be a sufficiently
regular vectorial field defined on T , let Φ be a sufficiently regular tensorial field
defined on T .
Denoting with Pt ⊂ Ωt an arbitrary portion of the continuum body at time t and
letting ~u be the eulerian velocity field defined on T ,then

d

dt

∫
Pt
φdV =

∫
Pt

∂φ

∂t
dV +

∫
∂Pt

φ(~u · ~n)dS, (3.2)

d

dt

∫
Pt

~φdV =

∫
Pt

∂~φ

∂t
dV +

∫
∂Pt

~φ(~u · ~n)dS, (3.3)

d

dt

∫
Pt

ΦdV =

∫
Pt

∂Φ

∂t
dV +

∫
∂Pt

Φ(~u · ~n)dS. (3.4)

Proof. Let P0 be the portion of the continuum body in the reference configura-
tion Ω0 corresponding to Pt. The starting point is proving RTT for scalar fields.
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Performing a change of variables (Lt : Ω0 → Ωt), the first integral in equation
(3.2) may be transformed into an integral on the reference configuration:

d

dt

∫
Pt
φdV =

d

dt

∫
P0

φmJdVm, (3.5)

where φm is the field φ mapped back onto the reference configuration, while J
is the jacobian of the change of coordinates from P0 to Pt. Since the domain
of integration is no longer depending on t, under sufficient regularity conditions
(which are assumed to be satisfied), it is possible to exchange integral and
derivative:

d

dt

∫
P0

φmJdVm =

∫
P0

d

dt
(φmJ)dVm =

∫
P0

dφm
dt

JdVm +

∫
P0

φm
dJ

dt
dVm, (3.6)

Next, the following relation is taken into consideration without proving it:

dJ

dt
= J(div(~u))m. (3.7)

Substituting (3.7) into equation (3.5) and performing an inverse change of
variables (L−1

t : Ωt → Ω0), it holds that∫
P0

dφm
dt

JdVm +

∫
P0

φmJ(div(~u))mdVm =

∫
Pt

dφ

dt
dV +

∫
Pt
φdiv(~u)dV. (3.8)

Taking into account that

dφ

dt
=
∂φ

∂t
+ ~u · ∇φ, (3.9)

div(~uφ) = φdiv(~u) + ~u · ∇φ, (3.10)

the following equation is obtained:∫
Pt

dφ

dt
dV +

∫
Pt
φdiv(~u)dV =

∫
Pt

∂φ

∂t
dV +

∫
Pt
div(φ~u)dV. (3.11)

The application of the divergence theorem to the last integral in equation
(3.11) leads to

d

dt

∫
Pt
φdV =

∫
Pt

∂φ

∂t
dV +

∫
∂Pt

φ(~u · ~n)dS. (3.12)

The next step is proving RTT for vectorial fields (equation (3.3)). Let ~a be
an arbitrary fixed vector. Define

φ = ~a · ~φ. (3.13)

Since RTT for scalar fields has already been proven, it holds that

d

dt

∫
Pt
~a · ~φdV =

∫
Pt

∂(~a · ~φ)

∂t
dV +

∫
∂Pt

(~a · ~φ)(~u · ~n)dS. (3.14)
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Exploting the fact that ~a is constant, the previous equation reduces to

~a · d
dt

∫
Pt

~φdV = ~a ·
∫
Pt

∂~φ

∂t
dV + ~a ·

∫
∂Pt

~φ(~u · ~n)dS. (3.15)

Since ~a it’s arbitrary, it holds that

d

dt

∫
Pt

~φdV =

∫
Pt

∂~φ

∂t
dV +

∫
∂Pt

~φ(~u · ~n)dS. (3.16)

The proof of RTT for tensorial fields is quite similar. Let Φ be a tensorial
field and let ~w be an arbitrary constant vector and let ~φ be the following vector
field:

~φ = Φ~w. (3.17)

Taking advantage of RTT for vectorial fields, it is possible to state that

d

dt

∫
Pt

Φ~wdV =

∫
Pt

∂(Φ~w)

∂t
dV +

∫
∂Pt

(Φ~w)(~u · ~n)dS. (3.18)

Since vector ~w is constant, then( d
dt

∫
Pt

ΦdV
)
~w =

(∫
Pt

∂Φ

∂t
dV
)
~w +

(∫
∂Pt

Φ(~u · ~n)dS
)
~w. (3.19)

The fact that ~w it’s arbitrary ensures that

d

dt

∫
Pt

ΦdV =

∫
Pt

∂Φ

∂t
dV +

∫
∂Pt

Φ(~u · ~n)dS. (3.20)

In next paragraphs RTT will be massively used in order to deduce differ-
ential equations which govern the motion of a continuum body from a thermo-
mechanical prospective.

3.1 Mass Conservation

The mass conservation principle states that the mass of an arbitrary portion of
the continuum body does not change during its motion. Let Pt be an arbitrary
portion of the continuum body in its configuration Ωt. The mass conservation
principle states that

d

dt

∫
Pt
ρdV = 0, (3.21)

where ρ represents the density of the continuum body. Making use of RTT and
divergence theorem, it’s possible to rewrite equation (3.21) as∫

Pt

∂ρ

∂t
dV +

∫
∂Pt

ρ(~u · ~n)dS =

∫
Pt

∂ρ

∂t
dV +

∫
Pt
div(ρ~u)dV = 0. (3.22)
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Since equation (3.22) must be satisfied independently of Pt it must be

∂ρ

∂t
+ div(ρ~u) = 0. (3.23)

Taking into consideration that

dρ

dt
=
∂ρ

∂t
+ ~u · ∇ρ, (3.24)

equation (3.23) may be rewritten as

dρ

dt
+ ρdiv(~u) = 0. (3.25)

3.2 Linear Momentum Conservation

The linear momentum conservation equation corresponds to the second New-
ton’s Law. Let Pt be an arbitrary portion of the continuum body in its config-
uration Ωt. The time derivative of the linear momentum of Pt equals the sum
of surface forces and body forces applied to Pt:

d

dt

∫
Pt
ρ~udV =

∫
∂Pt

~sdS +

∫
Pt
ρ~fdV. (3.26)

The second integral in the right hand side of (3.26) corresponds to the resul-

tant of body forces (ρ~f is a force per unit volume distributed in Pt). The first
integral in the right hand side of (3.26) represents the contribution of surface
forces (~s is a force per unit surface distributed on the boundary of Pt).

Exploiting the Cauchy theorem, ~s may be written as ~s = T~n, where T is the
Cauchy stress tensor field and ~n the unit normal vector of Pt, pointing outward:

d

dt

∫
Pt
ρ~udV =

∫
∂Pt

T~ndS +

∫
Pt
ρ~fdV. (3.27)

Making use of RTT and divergence theorem, equation (3.27) may be rewrit-
ten as∫

Pt

∂(ρ~u)

∂t
dV +

∫
∂Pt

(ρ~u)(~u · ~n)dS =

∫
Pt
div(T )dV +

∫
Pt
ρ~fdV. (3.28)

Next, it should be noticed that

ρ~u(~u · ~n) = ρ(~u⊗ ~u)~n, (3.29)

with ~a⊗~b being the tensorial product of vectors ~a and ~b.
Equation (3.28) becomes∫
Pt

∂(ρ~u)

∂t
dV +

∫
∂Pt

ρ(~u⊗ ~u)~ndS =

∫
Pt
div(T )dV +

∫
Pt
ρ~fdV. (3.30)
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Making use of the divergence theorem, it’s possible to rewrite the previous
equation as∫

Pt

∂(ρ~u)

∂t
dV +

∫
Pt
div(ρ(~u⊗ ~u))dV =

∫
Pt
div(T )dV +

∫
Pt
ρ~fdV. (3.31)

Since the last equation must hold for each portion Pt of the continuum body,
it’s possible to state that

∂(ρ~u)

∂t
+ div(ρ(~u⊗ ~u)) = div(T ) + ρ~f. (3.32)

3.3 Incompressibility

The incompressibility constraint imposes that the volume of each portion of
the continuum body does not change during its motion. Letting Pt be an
arbitrary portion of the continuum body in its configuration at time t, the
incompressibility constraint may be compactly written as

d

dt

∫
Pt
dV = 0. (3.33)

In order to reduce (3.33) to its local form, RTT is needed:

d

dt

∫
Pt
dV =

∫
Pt

∂1

∂t
dV +

∫
∂Pt

1(~u · ~n)dS =

∫
Pt
div(~u)dV = 0. (3.34)

Since equation (3.34) must be true for each portion of the continuum body,
the incompressiblity constraint is satisfied if the following equation holds locally:

div(~u) = 0. (3.35)

Assuming incompressibility constraint for the continuum body, the local
conservation of mass equation (3.23) reduces to

∂ρ

∂t
+ div(ρ~u) =

∂ρ

∂t
+ div(~u)ρ+∇ρ · ~u =

∂ρ

∂t
+∇ρ · ~u =

dρ

dt
= 0. (3.36)

Equation (3.36) states that the density at each point of the continuum body
is constant in time. If the density of the continuum body in the reference
configuration Ω0 is uniform (i.e. if ρ ∈ R+), then at each time t, each point of
Ωt has density ρ ∈ R+.

Under the assumption of incompressibility, the equation for conservation of
linear momentum (3.37) may be further manipulated:

∂(ρ~u)

∂t
+ (~u · ∇)(ρ~u) + ρ~u div(~u) =

∂(ρ~u)

∂t
+ (~u · ∇)(ρ~u) = div(T ) + ρ~f. (3.37)

If ρ ∈ R+, then the previous equation reduces to

ρ
∂~u

∂t
+ ρ(~u · ∇)~u = div(T ) + ρ~f. (3.38)

33



A. Cortesi Mathematical Modelling of Rheology of Filled Compounds

3.4 Energy Balance Equation

The first law of thermodynamics states that the rate of change of energy of a
system equals the sum of incoming heat per unit time and rate of work done by
external forces on the system. More rigorously, the first law of thermodynamics
may be formulated in this way:

Πext +Q =
dU

dt
+
dK

dt
, (3.39)

where K and U are, respectively, the kinetic and internal energy of an arbitrary
portion of continuum body Pt, while Q and Πext are the incoming heat per unit
time in Pt and the power (rate of work) done by external forces on Pt. In order
to obtain the energy balance equation, definitions for K, Πext, U and Q are
needed.
The kinetic energy K of Pt is

K =
1

2

∫
Pt
ρ~u · ~udV. (3.40)

In order to manipulate equation (3.39) the following theorem will be used.

Theorem 3.2. (Kinetic Energy Theorem)
Let Pt be an arbitrary portion of a continuum body in its configuration Ωt at

time t. The rate of change of kinetic energy of Pt equals the sum of the power
of external forces Πext and the power of internal forces Πint.

dK

dt
= Πext + Πint, (3.41)

with

Πext =

∫
∂Pt

(T~n) · ~udS +

∫
Pt
~u · ρ~fdV,

Πint = −
∫
Pt

T : DdV.

Proof. Let P0 be the portion of continuum body, in the reference configuration
Ω0, corresponding to Pt. Let K be the kinetic energy of Pt. Performing a
change of coordinates (Lt : Ω0 → Ωt) , the left hand side of equation (3.41) may
be rewritten as an integral on the reference configuration:

dK

dt
=

d

dt

1

2

∫
Pt
ρ~u · ~u =

d

dt

1

2

∫
P0

ρm~um · ~umJdV, (3.42)

where ρm and ~um are, respectively, the density and velocity fields mapped back
onto P0 while J is the jacobian of the change of coordinates from P0 to Pt.
Since the integration domain does not depend on t anymore, it’s possible to
rewrite the previous equation as

dK

dt
=

1

2

∫
P0

d

dt

(
ρm~um · ~umJ

)
dV =
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=
1

2

∫
P0

dρm
dt

~um·~umJdV+

∫
P0

ρm~um·
d~um
dt

JdV+
1

2

∫
P0

ρm~um·~um
dJ

dt
dV. (3.43)

Taking advantage of equation (3.7), it follows that

dK

dt
=

1

2

∫
P0

dρm
dt

~um·~umJdV+

∫
P0

ρm~um·
d~um
dt

JdV+
1

2

∫
P0

ρm~um·~umJdiv(~u)mdV.

(3.44)
Performing an inverse change of variables from P0 to Pt (L−1

t : Ωt → Ω0) it
is possible to obtain

dK

dt
=

1

2

∫
Pt

dρ

dt
~u · ~udV +

∫
Pt
ρ~u · d~u

dt
dV +

1

2

∫
P0

ρ~u · ~u div(~u)dV. (3.45)

Exploiting the fact that

d~u

dt
=
∂~u

∂t
+ (∇~u)~u =

∂~u

∂t
+ (~u · ∇)~u, (3.46)

the time derivative of kinetic energy turns out to be

dK

dt
=

1

2

∫
Pt

(dρ
dt

+ ρdiv(~u)
)
(~u · ~u)dV +

∫
Pt
ρ~u ·

(∂~u
∂t

+ (~u · ∇)~u
)
dV. (3.47)

Taking into consideration the conservation of mass principle (3.25),the pre-
vious equation reduces to

dK

dt
=

∫
Pt
ρ~u ·

(∂~u
∂t

+ (~u · ∇)~u
)
dV. (3.48)

Substitution of the linear momentum equation (3.37) into (3.48) leads to

dK

dt
=

∫
Pt

(
div(T ) + ρ~f

)
· ~udV. (3.49)

After noticing that

div(T T~u) = div(T )~u+ T : ∇~u, (3.50)

the following equation is obtained:

dK

dt
=

∫
Pt
div(T T~u)dV +

∫
Pt
ρ~f · ~udV −

∫
Pt

T : ∇~udV. (3.51)

Applying, once again, the divergence theorem and taking into consideration
the symmetry of the Cauchy stress tensor, the proof is concluded:

dK

dt
=

∫
∂Pt

(T~n) · ~udS +

∫
Pt
~u · ρ~fdV −

∫
Pt

T : DdV. (3.52)
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Next, a definition of internal energy is required. The internal energy U of
an arbitrary portion Pt of the continuum body may be defined as

U =

∫
Pt
ρedV, (3.53)

where e represents the density of internal energy per unit mass.
The heat incoming into Pt per unit time can be expressed through the fol-

lowing equation

Q =

∫
Pt
ρrdV −

∫
∂Pt

hdS, (3.54)

where h stays for the outgoing heat per unit surface through the boundary of
Pt, per unit time. The first integral in equation (3.54) represents the incoming
heat due to eventual radiation experienced by Pt, being r a density of radiation
heat per unit mass, per unit time.

Taking advantage of the Cauchy theorem, h may be written as h = ~q ·~n and

Q =

∫
Pt
ρrdV −

∫
∂Pt

~q · ~ndS. (3.55)

Remark 3.1. The surface integral in equation (3.55) describes the heat incom-
ing through the boundary of Pt (with vector field ~q being the heat flux per unit
surface, per unit time).

Inserting definitions for K, Πext, U and Q into equation (3.39), it holds that∫
∂Pt

(T~n) · ~udS +

∫
Pt
~u · ρ~fdV +

∫
Pt
ρrdV −

∫
∂Pt

~q · ~ndS =

=
d

dt

∫
Pt
ρedV +

d

dt

1

2

∫
Pt
ρ~u · ~udV. (3.56)

Exploiting Kinetic Energy Theorem (3.2), the previous equation simplifies
in ∫

Pt
ρrdV −

∫
∂Pt

~q · ~ndS =
d

dt

∫
Pt
ρedV −

∫
Pt

T : DdV. (3.57)

Let P0 be the portion of continuum body in the reference configuration
corresponding to Pt. Performing a change of variables (Lt : Ω0 → Ωt), it holds
that

d

dt

∫
Pt
ρedV =

d

dt

∫
P0

ρmemJdVm =

=

∫
P0

dρm
dt

emJdVm +

∫
P0

ρm
dem
dt

JdVm +

∫
P0

ρmem
dJ

dt
dVm. (3.58)

Exploiting, once again, equation (3.7) then,

d

dt

∫
Pt
ρedVm =

∫
P0

dρm
dt

emJdVm+

∫
P0

ρm
dem
dt

JdVm+

∫
P0

ρmemJdiv(~u)mdVm.

(3.59)
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Performing an inverse change of variables (L−1
t : Ωt → Ωt), the following

equation is obtained:

d

dt

∫
Pt
ρedV =

∫
Pt

dρ

dt
edV +

∫
Pt
ρ
de

dt
dV +

∫
Pt
ρediv(~u)dV, (3.60)

d

dt

∫
Pt
ρedV =

∫
Pt

(dρ
dt

+ ρdiv(~u)
)
edV +

∫
Pt
ρ
de

dt
dV. (3.61)

Due to conservation of mass (3.25) the first integral on the right hand side
of the previous equation is null.

Substituting back equation (3.61) into (3.57), the next relation holds true:∫
Pt
ρrdV −

∫
∂Pt

~q · ~ndS =

∫
Pt
ρ
de

dt
dV −

∫
Pt

T : DdV. (3.62)

Taking into consideration that

de

dt
=
∂e

∂t
+ ~u · ∇e, (3.63)

it holds that∫
Pt
ρrdV −

∫
∂Pt

~q · ~ndS =

∫
Pt
ρ
∂e

∂t
+

∫
Pt
ρ~u · ∇edV −

∫
Pt

T : DdV. (3.64)

An expression for ~q and e needs to be specified:

~q = −k∇T, (3.65)

e = CpT, (3.66)

where T represents temperature, while k and Cp are respectively the heat con-
ductivity and the specific heat capacity of the continuum body.

Remark 3.2. Equation (3.65) is the Fourier Law which states that the heat
flux per unit surface, per unit time is proportional to the opposite of temperature
gradient.

The substitution of equations (3.65-3.66) into (3.64) leads to∫
Pt
ρ
∂(CpT )

∂t
dV+

∫
Pt
ρ~u·∇(CpT )dV =

∫
Pt
ρrdV+

∫
∂Pt

(k∇T )·~ndS+

∫
Pt

T : DdV,

(3.67)
which, applying divergence theorem, becomes∫
Pt
ρ
∂(CpT )

∂t
dV+

∫
Pt
ρ~u·∇(CpT )dV =

∫
Pt
ρrdV+

∫
Pt
div(k∇T )dV+

∫
Pt

T : DdV.

(3.68)
Since equation (3.68) must hold for each portion Pt of continuum body, it

must be

ρ
∂(CpT )

∂t
+ ρ~u · ∇(CpT ) = ρr + div(k∇T ) + T : D. (3.69)
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3.5 Governing Equations

Equation (3.69) together with (3.37) and (3.35) describe completely the motion
of an incompressible continuum body from a thermo-mechanical point of view:

∂(ρ~u)
∂t + (~u · ∇)(ρ~u) = div(T ) + ρ~f

div(~u) = 0

ρ
∂(CpT )
∂t + ρ~u · ∇(CpT ) = ρr + div(k∇T ) + T : D.

(3.70)

Under the hypothesis ρ ∈ R+, it holds that
ρ∂~u∂t + ρ(~u · ∇)~u = div(T ) + ρ~f

div(~u) = 0

ρ
∂(CpT )
∂t + ρ~u · ∇(CpT ) = ρr + div(k∇T ) + T : D.

(3.71)

The previous system of equations holds true for any incompressible con-
tinuum body. As specified in chapter 2, both polymer matrices and filled com-
pounds are going to be modelled as incompressbile generalized Newtonian fluids,
characterized by the constitutive relation

T = −PI + 2η(γ̇, T )D. (3.72)

System (3.71) may be further manipulated since

div(T ) = div(−PI) + div(2η(γ̇, T )D) = −∇P + div(η(γ̇, T )(∇~u+∇~uT )),
(3.73)

T : D = T : ∇~u = −PI : ∇~u+ 2η(γ̇, T )D : ∇~u =

= −Pdiv(~u) + 2η(γ̇, T )D : ∇~u. (3.74)

Due to incompressibility (div(~u) = 0), it holds that

T : D = 2η(γ̇, T )D : ∇~u = η(γ̇, T )(∇~u+∇~uT ) : ∇~u. (3.75)

System (3.71), specified for an incompressible generalized Newtonian fluid,
is 

ρ∂~u∂t + ρ(~u · ∇)~u = −∇P + div(η(γ̇, T )(∇~u+∇~uT )) + ρ~f

div(~u) = 0

ρ
∂(CpT )
∂t + ρ~u · ∇(CpT ) = ρr + div(k∇T ) + η(γ̇, T )(∇~u+∇~uT ) : ∇~u.

(3.76)

Remark 3.3. The last equation in system (4.1) equals the time derivative of
the internal energy to the sum of radiation heat (ρr), the incoming heat flux
(k∇T ) and the kinetic energy that goes dissipated into heat due to viscosity
(η(γ̇, T )(∇~u+∇~uT ) : ∇~u).
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Remark 3.4. In computational fluid dynamics, an eulerian approach is fre-
quently adopted: a fixed domain Ω is considered, filled by a fluid at each time
instant t ≥ 0:

Ω ⊂ Ωt ∀t ∈ [0,+∞). (3.77)

Since system (4.1) must hold for any x ∈ Ωt, for any t ∈ [0,+∞), it must be
satisfied for any (x, t) ∈ Ω× [0,+∞).
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Chapter 4

Rheometry

In order to analyze viscosity of a generalized Newtonian fluid, rheometers are
employed. A rheometer is an apparatus where a generalized Newtonian fluid
is poured and may undergo extensional flows (extensional rheometers) rather
than steady or oscillatory shear flows (shear rheometers). Couette rheometer,
plate-plate rheometer, cone-plate rheometer and capillary rheometer are some
examples of shear rheometers, frequently used to investigate viscosity of gen-
eralized Newtonian fluids over a wide range of shear rates. Shear rheometers
mostly work imposing a kinematic quantity (velocity, shear rate, displacement)
and measuring a dynamic quantity (pressure drop, shear stress, momentum).
Since the shear flow experienced by the fluid in the rheomether (or an approx-
imation of the flow) is known, combining the imposed kinematic quantity and
the measured dynamic quantity, it is possible to estimate the viscosity of the
generalized Newtonian fluid at a given shear rate. Temperature is usually set
in such a way that the flow of the generalized Newtonian fluid in the rheometer
can be approximated as isothermal. Hereafter, the capillary rheometer is going
to be investigated.

4.1 Capillary Rheometer

Capillary rheometers are widely employed in order to determine the viscos-
ity of generalized Newtonian fluids, especially highly viscous fluids, in a broad
range of shear rates. In a capillary rheometer the fluid is collected into a tank
or a reservoir, a piston pushes the fluid into a duct (the capillary) with cross
sectional area much smaller than the cross sectional area of the tank. The con-
stant velocity of the piston is imposed (kinematic quantity) while the pressure
drop between the reservoir and the outlet of the capillary (dynamic quantity)
is measured. The cross section of the capillary may be circular (capillary die)
or rectangular (slit die). The temperature of the piston is set equal to the tem-
perature of the fluid as well as the temperature of the walls of both the tank
and the capillary. Temperature experimental conditions are set in such a way
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that the flow experienced by the fluid is approximately isothermal; in practice,
especially for highly viscous fluid at high shear rates, energy dissipation due to
viscous forces leads to an increase in temperature along the capillary. At low
shear rates and sufficiently far from the inlet of the capillary, the fluid experi-
ences approximately an isothermal shear flow (Poiseuille flow). In the next two
subsections Poiseuille flows of a power law fluid in cylindrical duct (capillary
die) and rectangular duct (slit die) are analytically examined.

4.2 Isothermal Poiseuille Flow for Cylindrical
Duct

Consider an incompressible power law fluid flowing in a cylindrical duct of radius
R. The motion of an incompressible generalized Newtonian fluid is governed by
the following equations (chapter 3):

ρ∂~u∂t + ρ(~u · ∇)~u = −∇P + div(η(γ̇, T )(∇~u+∇~uT )) + ρ~f

div(~u) = 0

ρ
∂(CpT )
∂t + ρ~u · ∇(CpT ) = ρr + div(k∇T ) + η(γ̇, T )(∇~u+∇~uT ) : ∇~u.

(4.1)
In this section the energy equation in (4.1) is neglected since the focus is

on the isothermal Poiseuille flow. The conservation of momentum equation and
the incompressibility constraint impose that{

∂~u
∂t + (~u · ∇)~u = −∇p+ div(2ν(γ̇)D) + ~f

div(~u) = 0,
(4.2)

where p and ν(γ̇) denote pressure P and viscosity η(γ̇) divided by the fluid
density ρ. For a power law fluid it holds that

ν(γ̇) =
η0

ρ
(λγ̇)n−1 = ν0(γ̇)n−1. (4.3)

Let r, θ, z be cylindrical coordinates such that the z axis is aligned with the
axis of the duct. Assuming that the velocity field has the form ~u = uz(r)~ez
and neglecting body forces, system (4.2) (rewritten in cylindrical coordinates)
reduces to 

0 = −∂p∂r
0 = − 1

r
∂p
∂θ

0 = −∂p∂z +
[

1
r
∂
∂r (ν(γ̇)r ∂uz∂r )

]
.

(4.4)

from which is possible to deduce the following relations
p = p(z)
∂p
∂z =

[
1
r
∂
∂r (ν(γ̇)r ∂uz∂r )

]
ν(γ̇) = ν0(γ̇)n−1 = ν0

∣∣∣∂uz∂r ∣∣∣n−1

.

(4.5)
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The first equation in system (4.5) states that pressure is constant over cross
flow sections (i.e. ∂p

∂r = ∂p
∂θ ). Since the right hand side of the second equation

of system (4.5) depends only on r, while the left hand side depends only on
coordinate z, by dimensional considerations, it must hold that

∂p

∂z
=
[1

r

∂

∂r
(ν(γ̇)r

∂uz
∂r

)
]

= A. (4.6)

The previous equation implies thatp = Az +B

uz = −
(
|A|
2ν0

)1/n
n
n+1r

n+1
n + C.

(4.7)

Remark 4.1. Equation
[

1
r
∂
∂r (ν(γ̇)r ∂uz∂r )

]
= A has been integrated twice. The

first integration leads to

ν(γ̇)
∂uz
∂r

=
1

2
Ar +

B

r
. (4.8)

To enforce boundedness of the solution, B must be null. The previous equation
becomes

ν0

∣∣∣∂uz
∂r

∣∣∣n−1 ∂uz
∂r

=
1

2
Ar. (4.9)

Assuming that the velocity is maximum at the centre of the duct (r = 0) and is
minimum at the wall (r=R) (i.e. ∂uz

∂r < 0) and integrating, the second equation
in system (4.5) is obtained.

Since pressure is constant on cross flow sections, if P1 and P2 are two points
on the z axis, letting ∆p and L be, respectively, the pressure drop and the
distance in between them, it holds

A =
∆p

L
< 0. (4.10)

Substitution of the previous equality in equations (4.7) leads top = ∆p
L z +B

uz = −
(
|∆p|
2ν0L

)1/n
n
n+1r

n+1
n + C.

(4.11)

In order to determine the numerical value of constant C, a velocity boundary
condition on the walls of the cylindrical duct needs to be specified:

• no slip boundary condition : uz(R) = 0;

• slip boundary condition : uz(R) = f(~τt);
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where f is a function of the tangential component of the surface forces exerted
on the fluid at the walls of the cylindrical duct:

~τt = T~n− (T~n · ~n)~n. (4.12)

Imposing a non slip boundary condition uz(R) = 0, pressure and velocity
fields are described byp = ∆p

L z +B

uz =
(
|∆p|
2ν0L

)1/n
n
n+1 (R

n+1
n − r n+1

n ).
(4.13)

Remark 4.2. Define

Uavg =
1

πR2

∫ R

0

∫ 2π

0

uzrdθdr =
2

R2

∫ R

0

( |∆p|
2ν0L

)1/n n

n+ 1
(R

n+1
n − r

n+1
n )rdr,

(4.14)
then

Uavg =
2

R2

( |∆p|
2ν0L

)1/n n

n+ 1

∫ R

0

(R
n+1
n − r

n+1
n ) rdr, (4.15)

Uavg =
2

R2

( |∆p|
2ν0L

)1/n n

n+ 1

n+ 1

2(3n+ 1)
=
( |∆p|

2ν0L

)1/n n

3n+ 1
R
n+1
n (4.16)

and

uz = Uavg
3n+ 1

n+ 1

(
1−

( r
R

)n+1
n
)
. (4.17)

Remark 4.3. If the fluid is Newtonian (n=1), then the velocity field recovers
the well known parabolic expression:

uz = 2Uavg

(
1−

( r
R

)2)
.

Remark 4.4. If the fluid experiences sufficiently large shear rate in the cylin-
drical duct and its viscosity obeys a Bird Carreau model or a Cross model, the
velocity profile still is described by (4.17), since the Bird Carreau viscosity ex-
pression and Cross viscosity expression reduce to the power law expression for
high shear rates.

If slip boundary condition is imposed on the lateral surface of the cylindrical
duct, some more calculations are in order. Since on the walls of the duct

T = −PI +
(
η(γ̇)

∂uz
∂r

∣∣∣
R

)
(~er ⊗ ~ez + ~ez ⊗ ~er) and ~n = ~er, (4.18)

then

~τt = η(γ̇)
∂uz
∂r

∣∣∣
R
~ez. (4.19)
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Assuming uz(R) = f(~τt) = f(η(γ̇)∂uz∂r

∣∣∣
R
~ez), system (4.11) becomesp = ∆p

L z +B

uz =
(
|∆p|
2ν0L

)1/n
n
n+1 (R

n+1
n − r n+1

n ) + f(−η(γ̇)
(
|∆p|
2Lν0

)1/n

R1/n~ez).
(4.20)

The most frequently used slip boundary condition is the Navier slip condition
[23]:

f(~τt) = KL||~τt||. (4.21)

Sometimes boundary condition (4.21) is substituted with the non linear
Navier slip boundary condition [23]:

f(~τt) = KNL||~τt||m (4.22)

Some other popular slip boundary conditions [24] are the Hatzikiriakos
boundary condition (4.23.A) and the asymptotic boundary condition (4.23.B):

f(~τt) = KH1sinh(KH2||~τt||), f(~τt) = KA1log(1 +KA2||~τt||). (4.23)

In this research only the linear Navier slip boundary condition (4.21) is taken
into consideration. Substituting equations (4.21) and (4.19) into (4.20), pressure
and velocity fields are described byp = ∆p

L z +B

uz =
(
|∆p|
2ν0L

)1/n
n
n+1 (R

n+1
n − r n+1

n ) + KL|∆P |R
2L .

(4.24)

Remark 4.5. Defining the average velocity on a cross section of the cylindrical
duct as

Uavg =
2

R2

∫ R

0

uzrdr =
2

R2

∫ R

0

( |∆p|
2ν0L

)1/n n

n+ 1
(R

n+1
n −r

n+1
n )rdr+

1

2
KL
|∆P |R
L

,

(4.25)
it holds

Uavg =
2

R2

( |∆p|
2ν0L

)1/n n

n+ 1

∫ R

0

(R
n+1
n − r

n+1
n ) rdr +

1

2
KL
|∆P |R
L

, (4.26)

Uavg =
( |∆p|

2ν0L

)1/n n

3n+ 1
R
n+1
n +

1

2
KL
|∆P |R
L

. (4.27)

4.3 Isothermal Poiseuille Flow for Rectangular
Duct

Consider an incompressible power law fluid flowing through a rectangular duct.
If the width W of the duct is much larger than the height 2H of the duct (i.e.
W >> 2H), the flow is well approximated by the flow of an incompressible
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power law fluid between two parallel planes. Consider a system of cartesian
coordinates in R3. Let {O,~ex, ~ey, ~ez} be cartesian reference frame in R3 and let
π1 and π2 be two planes such that:

π1 = {(x, y, z) ∈ R3 : y = −H},

π2 = {(x, y, z) ∈ R3 : y = +H}. (4.28)

Assume that the flow is aligned with the x direction. The isothermal Poiseuille
flow through the rectangular duct (W >> 2H) is governed by the following sys-
tem of equations :{

∂~u
∂t + (~u · ∇)~u = −∇p+ div(2ν(γ̇)D) + ~f

div(~u) = 0,
(4.29)

where p = P/ρ and ν(γ̇) = η(γ̇)/ρ. In the next it is assumed that the viscosity
of the fluid has a power law behaviour with respect to the shear rate:

ν(γ̇) = ν0(γ̇)n−1. (4.30)

Assuming ~u = ux(y)~ex and neglecting body forces, the previous system of
equations becomes 

0 = − ∂p
∂x + ∂

∂y (ν ∂ux∂y )

0 = − ∂p∂y
0 = −∂p∂z ,

(4.31)

with

ν = ν(γ̇) = ν0

∣∣∣∂ux
∂y

∣∣∣n−1

. (4.32)

From equations (4.31) it is possible to statep = p(x)

∂p
∂x = ν0

∂
∂y (∂ux∂y

∣∣∣∂ux∂y ∣∣∣n−1

).
(4.33)

In order to proceed with the solution of system (4.33), some more assump-
tions on velocity profile are in order. As in the cylindrical case, velocity should
be maximum for y = 0 and should be minimum for y = ±H. Due to these
considerations, it’s reasonable to assume{

∂ux
∂y < 0 for 0 < y < H
∂ux
∂y > 0 for −H < y < 0.

(4.34)

Calculations are developed only for y > 0. System (4.33) reduces to{
p = p(x)
∂p
∂x = ν0(−1) ∂∂y

∣∣∣∂ux∂y ∣∣∣n y > 0.
(4.35)
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The first equation in system (4.35) states that pressure is constant over cross
flow sections (i.e. pressure does not depend on coordinates y and z). Since
the left hand side of the second equation in system (4.35) depends only on x
while the right hand side is a function of the only variable y, by dimensional
considerations, it must be

∂p

∂x
= ν0(−1)

∂

∂y

∣∣∣∂ux
∂y

∣∣∣n = A. (4.36)

The previous equation leads to{
p = Ax+B

(−1)ν0

∣∣∣∂ux∂y ∣∣∣n = Ay + C y > 0.
(4.37)

In equations (4.37) A represents the pressure drop per unit length. Let P1

and P2 be two points on the x axis and let L be the distance between them. If
the pressure drop between P2 and P1 is denoted by ∆p, then A turns out to be

A =
∆p

L
< 0. (4.38)

Since
(
∂ux
∂y

∣∣∣
y=0

)n
= 0, then C = 0 and

{
p = Ax+B∣∣∣∂ux∂y ∣∣∣n = |A|

ν0
y y > 0.

(4.39)

Solving the second equation in system (4.39), the following equations are
obtained: p = Ax+B

ux = −
(
|A|
ν0

)1/n
n
n+1y

n+1
n +D y > 0.

(4.40)

Imposing a no slip boundary condition on the walls of the rectangular duct
(i.e. u(H) = 0) and substituting A = ∆p

L , it holds thatp = ∆p
L x+B

ux =
(
|∆p|
Lν0

)1/n
n
n+1 (H

n+1
n − y n+1

n ) y > 0.
(4.41)

Analogous calculations show that, for y < 0,

ux =
( |∆p|
Lν0

)1/n n

n+ 1
(H

n+1
n − (−y)

n+1
n ). (4.42)

Finally, velocity and pressure fields can be described by the following equa-
tions: p = ∆p

L x+B

ux =
(
|∆p|
Lν0

)1/n
n
n+1 (H

n+1
n − |y|n+1

n ).
(4.43)
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Remark 4.6. Defining the average velocity on a cross section of the rectangular
duct as

Uavg =
1

2H

∫ H

−H
uxdy =

1

2H

∫ H

−H

( |∆p|
Lν0

)1/n n

n+ 1
(H

n+1
n − |y|

n+1
n )dy, (4.44)

it is possible to state that

Uavg =
1

2H

( |∆p|
Lν0

)1/n n

n+ 1
2

∫ H

0

(H
n+1
n − y

n+1
n )dy, (4.45)

Uavg =
1

H

( |∆p|
Lν0

)1/n n

n+ 1

n+ 1

2n+ 1
H

2n+1
n =

( |∆p|
Lν0

)1/n n

2n+ 1
H

n+1
n , (4.46)

and

ux = Uavg
2n+ 1

n+ 1

(
1−

∣∣∣ y
H

∣∣∣n+1
n
)
. (4.47)

Remark 4.7. If the fluid is Newtonian (n=1), then the velocity field recovers
the well known parabolic expression:

ux =
3

2
Uavg

(
1−

( y
H

)2)
.

Remark 4.8. If the viscosity of the fluid in the rectangular duct obeys a Bird-
Carreau or a Cross model, the velocity profile is still well described by equation
(4.17), provided that high shear rates are achieved: at high shear rates, both
the Bird-Carreau and Cross viscosity models reduce to the power law viscosity
model.

On the other hand, if a linear Navier slip boundary condition (4.21) is as-
sumed on the walls of the rectangular duct, pressure and velocity are described
by the following system of equationsp = ∆p

L x+B

ux =
(
|∆p|
Lν0

)1/n
n
n+1 (H

n+1
n − |y|n+1

n ) +KL
|∆P |
L H.

(4.48)

Remark 4.9. Computing the average velocity on a cross section of the rectan-
gular duct as

Uavg =
1

2H

∫ H

−H
uxdy =

1

2H

∫ H

−H

( |∆p|
Lν0

)1/n n

n+ 1
(H

n+1
n −|y|

n+1
n )dy+KL

|∆P |
L

H,

(4.49)
it is possible to state that

Uavg =
1

2H

( |∆p|
Lν0

)1/n n

n+ 1
2

∫ H

0

(H
n+1
n − y

n+1
n )dy +KL

|∆P |
L

H, (4.50)

Uavg =
( |∆p|
Lν0

)1/n n

2n+ 1
H

n+1
n +KL

|∆P |
L

H. (4.51)
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4.4 Rabinowitsch Analysis for Cylindrical Duct

A capillary rheometer with circular cross section capillary (capillary die) mea-
sures a pressure drop (dynamic quantity) corresponding to an imposed flowrate
(kinematic quantity). Rabinowitsch analysis allows to compute wall shear rates
corresponding to the imposed flowrates. In this paragraph Rabinowitsch anal-
ysis is going to be described for a capillary rheometer with capillary die length
L and circular capillary die cross section with radius R. Let (O,~er,~eθ,~ez) be a
cylindrical reference frame such that the z axis is aligned with the axis of the
capillary die.

Let CV be a cylindrical control volume inside the capillary die with radius
r < R and length L, with CS = ∂CV (figure (4.1)). The conservation of
momentum equation states that∫

CV

ρ~fdV +

∫
CV

div(T )dV =

∫
CV

ρ
∂~u

∂t
dV +

∫
CV

ρ(~u · ∇)~udV, (4.52)

∫
CV

ρ~fdV +

∫
CV

div(−PI + 2η(γ̇)D)dV =

∫
CV

ρ
∂~u

∂t
dV +

∫
CV

ρ(~u · ∇)~udV.

(4.53)
In the capillary die, the velocity field satisfies{

~u = uz(r)~ez
∂uz
∂r < 0.

(4.54)

As a straightforward consequence, the shear rate turns out to be

γ̇ =
∣∣∣∂uz
∂r

∣∣∣ = −∂uz
∂r

. (4.55)

Neglecting body forces, equation (4.53) becomes∫
CV

div(−PI)dV +

∫
CV

div(2η(γ̇)D)dV = 0, (4.56)

since the flow is stationary and (~u · ∇)~u = 0·
Considering that the velocity field has the form specified by equation (4.54),

it is possible to prove that

div(η(γ̇)(∇~u)T ) = 0. (4.57)

Finally, applying divergence theorem, the conservation of momentum equa-
tion reduces to ∫

CS

P~ndS =

∫
CS

η(γ̇)∇~u ~ndS. (4.58)

The projection of the previous equation along the z direction leads to∫
Sb1

PdS −
∫
Sb0

PdS =

∫
Slat

η(γ̇)
∂uz
∂r

dS, (4.59)
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z
Sb0 Sb1

Slat

Capillary die

~u = uz(r)~ez

Figure 4.1: Cylindrical control volume (grey) inside capillary die

where Sb0 and Sb1 are, respectively, the upstream and the downstream faces of
CV and Slat is the lateral face of CV (figure (4.1)).

It is worth to notice that ∂uz
∂r ,γ̇ and η(γ̇) are constant on Slat. Assuming

that P is constant on faces Sb0 and Sb1, equation (4.59) can be rewritten as

P1πr
2 − P0πr

2 = 2πrLτ, (4.60)

where τ is µ(γ̇)∂uz∂r evaluated on Slat, P1 and P0 are pressures on faces Sb1 and
Sb0, respectively.

The previous equation can be further manipulated, obtaining

τ =
P1 − P0

2L
r =

∆P

2L
r = −|∆P |

2L
r. (4.61)

Writing the previous equation for r = R, it is possible to compute the wall
shear stress τw = τ |r=R:

τw =
P1 − P0

2L
R =

∆P

2L
R. (4.62)

Let Q be the flux through the cross section of the capillary die:

Q =

∫ R

0

∫ 2π

0

uzrdθdr = 2π

∫ R

0

uzrdr. (4.63)

Integrating by parts and assuming uz(R) = 0, it holds that

Q = 2π
[1

2
r2uz

]R
0
− 2π

∫ R

0

1

2
r2 ∂uz

∂r
dr = −π

∫ R

0

r2 ∂uz
∂r

dr = π

∫ R

0

r2γ̇dr.

(4.64)
Equation (4.61) is exploited in order to perform the following change of

variables: 
r = −2 Lτ

|∆P |
dr = −2 L

|∆P |dτ

r = R⇔ τ = τw

r = 0⇔ τ = 0

(4.65)
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Equation (4.64) becomes

Q = π

∫ τw

0

(
−2

L

|∆P |

)3

τ2γ̇dτ. (4.66)

Substituting equation (4.62) into equation (4.66) the flowrate is

Q =
πR3

τ3
w

∫ τw

0

τ2γ̇dτ. (4.67)

Define the apparent shear rate as

γ̇app =
4Q

πR3
. (4.68)

Making use of equation (4.68), it is possible to state the following relation

γ̇app = 4
Q

πR3
= 4

1

τ3
w

∫ τw

0

τ2γ̇dτ. (4.69)

Rearranging the previous equation as

τ3
wγ̇app = 4

∫ τw

0

τ2γ̇dτ (4.70)

and performing partial derivative ∂
∂τw

, equation (4.71) is obtained:

∂γ̇app
∂τw

τ3
w + 3γ̇appτ

2
w = 4τ2

wγ̇w, (4.71)

where γ̇w is the shear rate at the wall.
After some calculations, the following relation is obtained:

1

4

∂γ̇app
∂τw

τw +
3

4
γ̇app = γ̇w. (4.72)

Since τw = ∂τw
∂log(τw) and γ̇app =

∂γ̇app
∂log(γ̇app) , the previous equation can be

rewritten in the form

1

4

∂log(γ̇app)

∂log(τw)
γ̇app +

3

4
γ̇app = γ̇w. (4.73)

Defining 1
n =

∂log(γ̇app)
∂log(τw) , then

1

4n
γ̇app +

3

4
γ̇app = γ̇w ⇒ ˙γw =

3n+ 1

4n
γ̇app. (4.74)

Remark 4.10. If the decimal logarithm is used in equation (4.73), still (4.74)
holds

1

4

∂Log(γ̇app)

∂Log(τw)
γ̇app +

3

4
γ̇app = γ̇w, (4.75)
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since τw = 1
log(10)

∂τw
∂Log(τw) and γ̇app = 1

log(10)
∂γ̇app

∂Log(γ̇app) .

Defining 1
n =

∂Log(γ̇app)
∂Log(τw) =

∂log(γ̇app)
∂log(τw) , it still holds that

˙γw =
3n+ 1

4n
γ̇app. (4.76)

Once computed γ̇w through equation (4.74), the viscosity of the generalized
Newtonian fluid under examination is estimated as

η ' τw
γ̇w
. (4.77)

4.5 Mooney Analysis for Cylindrical Duct

If the no slip boundary condition on the walls of the capillary die fails, it is not
possible to assume uz(R) = 0 when integrating by parts equation (4.63). In or-
der to perform Rabinowitsch analysis, the apparent shear rates γ̇app (kinematic
quantity imposed on the rheometer) must undergo Mooney correction procedure
(4.90).

Let uz(R) = vslip, due to the symmetry of the cylindrical domain vslip (which
is unknown) is assumed to be independent of θ and z (i.e. vslip ∈ R+).

Integration by parts of equation (4.63) leads to

Q = 2π
[1

2
r2uz

]R
0
− 2π

∫ R

0

1

2
r2 ∂uz

∂r
dr = πR2vslip + π

∫ R

0

r2γ̇dr. (4.78)

Next, equation (4.61) is exploited to perform the following change of vari-
ables: 

r = −2 Lτ
|∆P |

dr = −2 L
|∆P |dτ

r = R⇔ τ = τw

r = 0⇔ τ = 0.

(4.79)

Equation (4.78) becomes

Q = πR2vslip +
πR3

τ3
w

∫ τw

0

τ2γ̇dτ. (4.80)

Equation (4.80) may be rewritten in one of the following equivalent ways:

4Q

πR3
=

4vslip
R

+
4

τ3
w

∫ τw

0

τ2γ̇dτ, (4.81)

4Q

πD3
=
vslip
D

+
1

2τ3
w

∫ τw

0

τ2γ̇dτ. (4.82)
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Analogously equation (4.78) may be rewritten as

4Q

πR3
=

4vslip
R

+
4

R3

∫ R

0

r2γ̇dr, (4.83)

4Q

πD3
=
vslip
D

+
4

D3

∫ R

0

r2γ̇dr. (4.84)

In order to determine the value of vslip at least two rheometers with different
capillary die lengths L1, L2 and radii R1, R2 need to be employed.

Imagine to fix incoming flowrates Q1 and Q2 in such a way that

τw1 = τw2 ⇒
∆P1

2L1
R1 =

∆P2

2L2
R2 = τw. (4.85)

Then,exploiting equation (4.83), it is possible to state that

4Q1

πR3
1

=
4vslip
R1

+
4

R3
1

∫ R1

0

r2
1

∣∣∣∣∂uz1∂r1

∣∣∣∣ dr1, (4.86)

4Q2

πR3
2

=
4vslip
R2

+
4

R3
2

∫ R2

0

r2
2

∣∣∣∣∂uz2∂r2

∣∣∣∣ dr2, (4.87)

with the assumption that vslip depends only on τw = τw1 = τw2.
Since it holds that

∆P1

2L1
R1 =

∆P2

2L2
R2, (4.88)

it can be proven that

4

R3
1

∫ R1

0

r2
1

∣∣∣∣∂uz1∂r1

∣∣∣∣ dr1 =
4

R3
2

∫ R2

0

r2
2

∣∣∣∣∂uz2∂r2

∣∣∣∣ dr2. (4.89)

Taking into consideration equation (4.89), vslip turns out to be equal to the

slope of the straight line between points ( 4
R1
, 4Q1

πR3
1
) = ( 4

R1
, γ̇app1) and ( 4

R2
, 4Q2

πR3
2
) =

( 4
R2
, γ̇app2) in R2. Performing a linear regression between these two points it’s

possible to determine the slippage velocity vslip. Finally the correct apparent
shear rate may be computed as

γ̇app,corr =
4Qcorr
πR3

=
4(Q− πR2vslip)

πR3
. (4.90)

Remark 4.11. Supposing that the flow under examination is a power law fluid
it’s easy to prove equation (4.89):

4
R3

1

∫ R1

0
r2
1

∣∣∣∂uz1∂r1

∣∣∣ dr1

4
R3

2

∫ R2

0
r2
2

∣∣∣∂uz2∂r2

∣∣∣ dr2.
(4.91)

53



A. Cortesi Mathematical Modelling of Rheology of Filled Compounds

Performing the following change of variables{
r = r1

R1
= r2

R2

dr = dr1
R1

= dr2
R2
,

(4.92)

it holds that 
4
R3

1

∫ R1

0
r2
1

∣∣∣∂uz1∂r1

∣∣∣ dr1 = 4
∫ 1

0
r2
∣∣∣∂uz1∂r1

∣∣∣ dr
4
R3

2

∫ R2

0
r2
2

∣∣∣∂uz2∂r2

∣∣∣ dr2 = 4
∫ 1

0
r2
∣∣∣∂uz2∂r2

∣∣∣ dr. (4.93)

Taking into consideration that vslip depends only on τw = τw1 = τw2, for a
power law fluid (4.3), it holds thatuz1 =

(
|∆p1|
2ν0L1

)1/n
n
n+1 (R

n+1
n

1 − r
n+1
n

1 ) + vslip

uz2 =
(
|∆p2|
2ν0L2

)1/n
n
n+1 (R

n+1
n

2 − r
n+1
n

2 ) + vslip.
(4.94)

Then 
∂uz1
∂r1

= −
(
|∆p1|
2ν0L1

)1/n

r
1
n
1

∂uz2
∂r2

= −
(
|∆p2|
2ν0L2

)1/n

r
1
n
2

(4.95)

and, finally,
∂uz1
∂r1

= −
(

1
ν0

) 1
n
(
|∆p1|
2L1

R1

)1/n

r
1
n = −

(
1
ν0ρ

) 1
n

τ
1/n
w r

1
n

∂uz2
∂r2

= −
(

1
ν0

) 1
n
(
|∆p2|
2L2

R2

)1/n

r
1
n = −

(
1
ν0ρ

) 1
n

τ
1/n
w r

1
n .

(4.96)

Inserting equation (4.96) into equation (4.93), the result is obtained:

4

R3
1

∫ R1

0

r2
1

∣∣∣∣∂uz1∂r1

∣∣∣∣ dr1 =
4

R3
2

∫ R2

0

r2
2

∣∣∣∣∂uz2∂r2

∣∣∣∣ dr2. (4.97)

Remark 4.12. Condition (4.129) is quite difficult to impose. The usual practice
prescribes to employ at least three capillary rheometers with different radii (R1,
R2, R3) to measure pressure drops on a wide range of apparent shear rates. Once
fixed a value of τw, the apparent shear rates (γ̇app,1, γ̇app,2, γ̇app,3) corresponding
to τw can be computed through linear interpolation, for each capillary rheometer.
Performing a linear regression of γ̇app,1, γ̇app,2, γ̇app,3 against 4

R1
, 4
R2

, 4
R3

, the slip
velocity is computed as the slope of the regression line.

Remark 4.13. Once corrected the apparent shear rate (4.90), Rabinowitsch
analysis can be performed substituting γ̇app with γ̇app,corr in equation (4.71).

4.6 Rabinowitsch Analysis for Rectangular Duct

The goal of this paragraph is to present Rabinowitsch analysis for a rheometer
with rectangular capillary cross section (slit die), with length L, height 2H and
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width W (W >> 2H). Let (O,~ex, ~ey,~ez) be a cartesian reference frame such
that the x axis is aligned with the longitudinal axis of the slit die.

Letting CV be a rectangular control volume, inside the slit die, with height
2y (y < H) and width W , with CS = ∂CV . The momentum equation may be
written as∫

CV

ρ~fdV +

∫
CV

div(T )dV =

∫
CV

ρ
∂~u

∂t
dV +

∫
CV

ρ(~u · ∇)~udV, (4.98)∫
CV

ρ~fdV +

∫
CV

div(−PI + 2η(γ̇)D)dV =

∫
CV

ρ
∂~u

∂t
dV +

∫
CV

ρ(~u · ∇)~udV.

(4.99)
In the slit die, the velocity field ~u is assumed to satisfy the following conditions

~u = ux(y)~ex

γ̇ =
∣∣∣∂ux∂y ∣∣∣ =

{
−∂ux∂y if y > 0
∂ux
∂y if y < 0.

(4.100)

Neglecting boy forces, equation (4.99) becomes∫
CV

div(−PI)dV +

∫
CV

div(2η(γ̇)D)dV = 0, (4.101)

since the flow is stationary and (~u · ∇)~u = 0.
Exploiting the fact that the velocity field is in the form of equation (4.100),

it is possible to prove that

div(η(γ̇)(∇~u)T ) = 0. (4.102)

Finally, conservation of momentum equation reduces to∫
CS

P~ndS =

∫
CS

η(γ̇)∇~u ~ndS. (4.103)

Projecting the previous equation along the x direction, it holds∫
Sb1

PdS −
∫
Sb0

PdS =

∫
Sup

η(γ̇)
∂ux
∂y

dS −
∫
Sdown

η(γ̇)
∂ux
∂y

dS, (4.104)

where Sb0 and Sb1 are, respectively, the upstream and the downstream faces
of CV , Sup and Sdown are the two lateral faces of CV orthogonal to ~ey. The
contribution of surface forces on the lateral faces of CV orthogonal to ~ez (Sright
and Sleft) is neglected since W >> 2H ≥ 2y (figure (4.2)).

It might be noticed that ∂ux
∂y ,γ̇ and η(γ̇) are constant on Sup ∪ Sdown.

Assuming that P is constant on faces Sb0 and Sb1, equation (4.104) reduces to

P12yW − P02yW = 2WLτ (4.105)

where τ is
(
−η(γ̇)

∣∣∣∂uz∂r ∣∣∣) evaluated on Sup ∪ Sdown, P1 and P0 are pressures

on faces Sb1 and Sb0, respectively.
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y

z

x

Sb0 Sb1

Sright

Sleft

Sup

Sdown

Slit die

~u = ux(y)~ex

Figure 4.2: Rectangular control volume (grey) inside slit die

The previous equation may be arranged int the following form:

τ =
P1 − P0

L
y =

∆P

L
y = −|∆P |

L
y (4.106)

Writing the previous equation for y = H, it holds that

τw =
P1 − P0

L
H =

∆P

L
H, (4.107)

where τw = τ ||y|=H is the wall shear stress.
Denote as Q the flux through the cross section of the rectangular duct:

Q =

∫ H

−H

∫ W

0

uxdzdy = W

∫ H

−H
uxdy. (4.108)

After performing an integration by parts, assuming ux(±H) = 0, it holds
that

Q = W
[
yux

]H
−H
−W

∫ H

−H
y
∂ux
∂y

dy = −W
∫ H

−H
y
∂ux
∂y

dy, (4.109)

Q = W

∫ H

−H
|y|
∣∣∣∂ux
∂y

∣∣∣dy = W

∫ H

−H
|y|γ̇dy = 2W

∫ H

0

yγ̇dy. (4.110)

Exploiting equation (4.107), it is possible to perform the following change of
variables: 

y = − Lτ
|∆P |

dy = − L
|∆P |dτ

y = H ⇔ τ = τw

y = 0⇔ τ = 0.

(4.111)
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Equation (4.110) becomes

Q = 2W

∫ τw

0

(
− L

|∆P |

)2

τ γ̇dτ. (4.112)

Combination of equation (4.107) and equation (4.112) results in

Q =
2WH2

τ2
w

∫ τw

0

τ γ̇dτ. (4.113)

Define the apparent shear rate as

γ̇app =
3Q

2WH2
. (4.114)

Substituting equation (4.114) into equation (4.113), the following relation
holds:

γ̇app =
3Q

2WH2
= 3

1

τ2
w

∫ τw

0

τ γ̇dτ. (4.115)

The previous equation may be rewritten as

τ2
wγ̇app = 3

∫ τw

0

τ γ̇dτ (4.116)

and, performing partial derivative ∂
∂τw

,

∂γ̇app
∂τw

τ2
w + 2γ̇appτw = 3τwγ̇w, (4.117)

where γ̇w is the shear rate at the wall.
After some manipulations the following relation is obtained:

1

3

∂γ̇app
∂τw

τw +
2

3
γ̇app = γ̇w. (4.118)

Taking into account that τw = ∂τw
∂log(τw) and γ̇app =

∂γ̇app
∂log(γ̇app) , the previous

equation may be transformed as

1

3

∂log(γ̇app)

∂log(τw)
γ̇app +

2

3
γ̇app = γ̇w. (4.119)

Defining 1
n =

∂log(γ̇app)
∂log(τw) , then

1

3n
γ̇app +

2

3
γ̇app = γ̇w ⇒ ˙γw =

2n+ 1

3n
γ̇app. (4.120)

Remark 4.14. If the decimal logarithm is used in equation (4.119) still holds
that

1

3

∂Log(γ̇app)

∂Log(τw)
γ̇app +

2

3
γ̇app = γ̇w, (4.121)
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since τw = 1
log(10)

∂τw
∂Log(τw) and γ̇app = 1

log(10)
∂γ̇app

∂Log(γ̇app) .

Defining 1
n =

∂Log(γ̇app)
∂Log(τw) =

∂log(γ̇app)
∂log(τw) , it still holds that

˙γw =
2n+ 1

3n
γ̇app. (4.122)

After computing γ̇w as suggested by equation (4.120), it is possible to esti-
mate the viscosity of the generalized Newtonian fluid under examination as

η ' τw
γ̇w
. (4.123)

4.7 Mooney Analysis for Rectangular Duct

If it is not possible to assume ux(±H) = 0 when integrating by parts equation
(4.108), in order to perform Rabinowitsch analysis, the apparent shear rates
γ̇app (kinematic quantity imposed on the rheometer) must undergo Mooney
correction procedure (4.134).

Assume that ux(±H) = vslip. vslip (which is unknown) is assumed to be
independent of x and z (i.e. vslip ∈ R+).

Integration by parts of equation (4.108) leads to

Q = W
[
yux

]H
−H
−W

∫ H

−H
y
∂ux
∂y

dy = 2WHvslip + 2W

∫ H

0

yγ̇dy. (4.124)

Next, equation (4.61) is taken into consideration to perform the following
change of variables: 

y = − Lτ
|∆P |

dy = − L
|∆P |dτ

y = H ⇔ τ = τw

y = 0⇔ τ = 0.

(4.125)

Equation (4.124) becomes

Q = 2WHvslip +
2WH2

τ2
w

∫ τw

0

τ2γ̇dτ. (4.126)

Equation (4.126) may be rewritten as

3Q

2WH2
=

3vslip
H

+
3

τ2
w

∫ τw

0

τ γ̇dτ. (4.127)

Analogously equation (4.124) may be rewritten as

3Q

2WH2
=

3vslip
H

+
3

H2

∫ H

0

yγ̇dr. (4.128)
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In order to determine the value of vslip at least two rheometers with different
slit die lengths L1, L2, heights 2H1, 2H2 and widthsW1, W2 need to be employed
(W1 >> 2H1, W2 >> 2H2).

Imagine to fix incoming flowrates Q1 and Q2 in such a way that

τw1 = τw2 ⇒
∆P1

L1
H1 =

∆P2

L2
H2 = τw. (4.129)

Then, exploiting equation (4.128), it is possible to state that

3Q1

2W1H1
=

3vslip
H1

+
3

H2
1

∫ H1

0

y2
1

∣∣∣∣∂ux1

∂y1

∣∣∣∣ dy1, (4.130)

3Q2

2W2H2
=

3vslip
H2

+
3

H2
2

∫ H2

0

y2
2

∣∣∣∣∂ux2

∂y2

∣∣∣∣ dy2, (4.131)

with the assumption that vslip depends only on τw = τw1 = τw2.
Since it holds that

∆P1

L1
H1 =

∆P2

L2
H2, (4.132)

it can be proven that

3

H2
1

∫ H1

0

y2
1

∣∣∣∣∂ux1

∂y1

∣∣∣∣ dy1 =
3

H2
2

∫ H2

0

y2
2

∣∣∣∣∂ux2

∂y2

∣∣∣∣ dy2. (4.133)

Taking into consideration equation (4.133), vslip turns out to be equal to

the slope of the straight line between points ( 3
H1
, 3Q1

2W1H1
) = ( 3

H1
, γ̇app1) and

( 3
H2
, 3Q2

2W2H2
) = ( 3

H2
, γ̇app2) in R2. Performing a linear regression between these

two points, it is possible to determine the slippage velocity vslip. Finally the
correct apparent shear rate can be computed as

γ̇app,corr =
3Qcorr
2WH2

=
3(Q− 2WHvslip)

2WH2
. (4.134)

Remark 4.15. Supposing that the flow under examination is a power law fluid
(4.32), it is easy to prove equation (4.133).

3
H2

1

∫H1

0
y1

∣∣∣∂ux1∂y1

∣∣∣ dy1

3
H2

2

∫H2

0
y2

∣∣∣∂ux2∂y2

∣∣∣ dy2.
(4.135)

Performing the following change of variables{
y = y1

H1
= y2

H2

dy = dy1
H1

= dy2
H2
,

(4.136)

it holds that 
3
H2

1

∫H1

0
y1

∣∣∣∂ux1∂y1

∣∣∣ dy1 = 3
∫ 1

0
y
∣∣∣∂ux1∂y1

∣∣∣ dy
3
H2

2

∫H2

0
y2

∣∣∣∂ux2∂y2

∣∣∣ dy2 = 3
∫ 1

0
y
∣∣∣∂ux2∂y2

∣∣∣ dy (4.137)
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Since it has been assumed that vslip depends only on τw = τw1 = τw2, for a
power law fluid, it follows thatux1 =

(
|∆p1|
ν0L1

)1/n
n
n+1 (H

n+1
n

1 − |y1|
n+1
n ) + vslip

ux2 =
(
|∆p2|
ν0L2

)1/n
n
n+1 (H

n+1
n

2 − |y2|
n+1
n ) + vslip.

(4.138)

Then, 
∣∣∣∂ux1∂y1

∣∣∣ =
(
|∆p1|
ν0L1

)1/n

|y1|
1
n∣∣∣∂ux2∂y2

∣∣∣ =
(
|∆p2|
ν0L2

)1/n

|y2|
1
n

(4.139)

and, finally,
∣∣∣∂ux1∂y1

∣∣∣ =
(

1
ν0

) 1
n
(
|∆p1|
L1

H1

)1/n

|y| 1n =
(

1
ν0ρ

) 1
n

τ
1/n
w |y| 1n∣∣∣∂ux2∂y2

∣∣∣ =
(

1
ν0

) 1
n
(
|∆p2|
L2

H2

)1/n

|y| 1n =
(

1
ν0ρ

) 1
n

τ
1/n
w |y| 1n .

(4.140)

Inserting equation (4.140) into equation (4.137), the result is obtained:

3

H2
1

∫ H1

0

y2
1

∣∣∣∣∂ux1

∂y1

∣∣∣∣ dy1 =
3

H2
2

∫ H2

0

y2
2

∣∣∣∣∂ux2

∂y2

∣∣∣∣ dy2. (4.141)

Remark 4.16. In practice, condition (4.129) is quite difficult to impose. The
usual procedure to preform Mooney correction prescribes to employ at least three
capillary rheometers with different slit die heights (2H1, 2H2, 2H3) to measure
pressure drops on a wide range of apparent shear rates. Once fixed a value of
τw, the apparent shear rates (γ̇app,1, γ̇app,2, γ̇app,3) corresponding to τw can be
computed through linear interpolation, for each capillary rheometer. Performing
a linear regression of γ̇app,1, γ̇app,2, γ̇app,3 against 3

H1
, 3
H2

, 3
H3

, the slip velocity
is computed as the slope of the regression line.

Remark 4.17. Once corrected the apparent shear rate (4.134), Rabinowitsch
analysis can be performed substituting γ̇app with γ̇app,corr in equation (4.117).

4.8 Bagley Correction

Capillary rheometers impose the velocity of the piston which push the fluid into
the capillary and measure the difference of pressure (∆Ptot) between the tank
and the outlet of the capillary. The following expression for ∆Ptot is assumed :

∆Ptot = ∆Pc + ∆Pd, (4.142)

where ∆Pc is the pressure drop concentrated at the inlet of the capillary (in-
dependent of the length of the capillary), while ∆Pd represents the pressure
drop distributed along the capillary (directly proportional to the length of the
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capillary). In order to estimate correctly the wall shear stress through formulas
(4.62) and (4.107), the pressure drop distributed along the capillary must be
known (i.e. ∆P = ∆Pd). The Bagley correction prescribes to measure, at each
fixed piston velocity, the pressure loss Ptot with capillaries of different length.
Performing a linear regression of the measured pressure drops at fixed piston
velocity and different capillary lengths, it is possible to estimate the term ∆Pc
and, then, compute

∆P = ∆Pd = ∆Ptot −∆Pc. (4.143)

For what concerns rheometers with circular die cross section, if the ratio
between the length and the diameter of the die is such that

L

D
> 30, (4.144)

the Bagley correction may be not applied to experimental data, since concen-
trated pressure drop is negligible with respect to distributed pressure drop:

∆Ptot ' ∆Pd. (4.145)

On the other hand, if L/D < 30, then the concentrated pressure drop is not
negligible and Bagley correction becomes necessary.
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Chapter 5

Implementation of the
Viscosity Models

OpenFOAM (Open Field Operation And Manipulation) is a C++ implemented
open source software for the solution of fluid dynamics problems. OpenFOAM
includes a wide set of ready-to-use solvers, utilities, tools and applications suit-
able for the modelization and solution of a wide variety of CFD (Computa-
tional Fluid Dynamics) problems. Many of the OpenFOAM provided solvers
are equipped with appropriate tutorials in order to get the user familiar with
those applications. Moreover, OpenFOAM works also as a powerful objected
oriented framework where to build customized solvers, application and libraries
for user-specific CFD problems. The object-oriented C++ implementation of
OpenFOAM ensures extensive modularity and massive code re-use. Within this
research a custom library including rheological models described in chapter 2
has been employed.

5.1 Finite Volume Method

The Finite Volume Method (FVM) is a numerical method for the approxima-
tion of Partial Differential Equations (PDEs). Through FVM the continuous
differential problem is discretized into an algebraic system of equations. Once
constructed, the linear system of equations is solved through direct or, more
likely, iterative methods. As a first step in discretizing the differential problem,
the geometrical domain on which the continuous problem has been formulated,
is subdivided into a collection of non overlapping discrete polyhedral elements
(meshing). The mesh or computational grid consists of elements called cells or
finite volumes (hence Finite Volume Method).

As pointed out in chapter 3, the motion of an incompressible generalized
Newtonian fluid is described, from a thermo-mechanical point of view, by the
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following set of equations:

ρ∂~u∂t + ρ(~u · ∇)~u = −∇P + div(η(γ̇, T )(∇~u+∇~uT )) + ρ~f

div(~u) = 0

ρ
∂(CpT )
∂t + ρ~u · (Cp∇T ) = ρr + div(k∇T ) + η(γ̇, T )(∇~u+∇~uT ) : ∇~u

+ boundary conditions

+ initial conditions

(5.1)
or, equivalently,

ρ∂~u∂t + ρdiv(~u⊗ ~u) = −∇P + div(η(γ̇, T )(∇~u+∇~uT )) + ρ~f

div(~u) = 0

ρ
∂(CpT )
∂t + ρdiv(~uCpT ) = ρr + div(k∇T ) + η(γ̇, T )(∇~u+∇~uT ) : ∇~u

+ boundary conditions

+ initial conditions,

(5.2)
where η(γ̇, T ) is the viscosity of the generalized Newtonian fluid, ρ is its den-
sity (hereby assumed constant: ρ ∈ R+), while k and Cp are, respectively, the
thermal conductivity and the specific heat capacity of the fluid. Since only sta-
tionary flows will be numerically simulated, the focus should be on the following
system of equations:

ρdiv(~u⊗ ~u) = −∇P + div(η(γ̇, T )(∇~u+∇~uT )) + ρ~f

div(~u) = 0

ρdiv(~uCpT ) = ρr + div(k∇T ) + η(γ̇, T )(∇~u+∇~uT ) : ∇~u
+ boundary conditions.

(5.3)

Let C be a cell of the computational grid, the second step in discretizing
the original differential problem is integrating equations in (5.3) on the finite
volume C:



∫
C

ρdiv(~u⊗ ~u)dV = −
∫
C

∇PdV +

∫
C

div(η(γ̇, T )(∇~u+∇~uT ))dV +

∫
C

ρ~fdV∫
C

div(~u)dV = 0∫
C

ρdiv(~uCpT )dV =

∫
C

ρrdV +

∫
C

div(k∇T )dV+

+

∫
C

η(γ̇, T )(∇~u+∇~uT ) : ∇~udV.

(5.4)

Making use of the divergence theorem, the previous system of equations may
be rewritten as
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

∫
∂C

ρ(~u · ~n)~udS = −
∫
C

∇PdV +

∫
∂C

η(γ̇, T )(∇~u+∇~uT )~ndS +

∫
C

ρ~fdV∫
∂C

~u · ~ndS = 0∫
∂C

ρCpT (~u · ~n)dS =

∫
C

ρrdV +

∫
∂C

k(∇T ) · ~ndS+

+

∫
C

η(γ̇, T )(∇~u+∇~uT ) : ∇~udV,

(5.5)
where ~n is the outward pointing normal vector defined on ∂C.

Integrals over the boundary of C may be decomposed into the sum of the
integrals on the faces f that compose ∂C.



∑
f∈∂C

∫
f

ρ(~u · ~n)~udS = −
∫
C

∇PdV +
∑
f∈∂C

∫
f

η(γ̇, T )(∇~u+∇~uT )~ndS+

+

∫
C

ρ~fdV∑
f∈∂C

∫
f

~u · ~ndS = 0∑
f∈∂C

∫
f

ρCpT (~u · ~n)dS =

∫
C

ρrdV +
∑
f∈∂C

∫
f

k(∇T ) · ~ndS+

+

∫
C

η(γ̇, T )(∇~u+∇~uT ) : ∇~udV,

(5.6)
Adopting a one-point Gaussian quadrature formula both for volume and face

integrals, the previous system of equations may be transformed in



∑
f∈∂C

(ρ~u · ~n)f~uf |f | = −(∇P )C |C|+
∑
f∈∂C

(η(γ̇, T )(∇~u+∇~uT )~n)f |f |+

+(ρ~f)C |C|∑
f∈∂C

(~u · ~n)f |f | = 0∑
f∈∂C

(ρCpT~u · ~n)f |f | = (ρr)C |C|+
∑
f∈∂C

(k(∇T ) · ~n)f |f |+

+(η(γ̇, T )(∇~u+∇~uT ) : ∇~u)C |C|,
(5.7)

where ΨC and Ψf represent, respectively, the value of the field Ψ at the
element centroid and at face centroid, while |C| and |f | are, respectively, the
volume of the cell C and the area of the face f .

The first two equations in system (5.7) represent the semi-discretized form
of the Navier-Stokes system (linear momentum equation + incompressibility
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constraint), while the third equation in system (5.7) corresponds to the semi-
dicretized version of the energy balance equation.

The semi-discretized momentum equation contains both velocity and pres-
sure but also temperature, since the viscosity of the fluid η is assumed to depend
on T . Also the semi-discretized energy balance equation links temperature and
velocity, due to the presence of the viscous heating term

(η(γ̇, T )(∇~u+∇~uT ) : ∇~u)C |C|. (5.8)

In order to face the coupling between pressure-velocity (semi-discretized
Navier-Stokes system) and temperature (semi-discretized energy balance equa-
tion), equations in system (5.7) are handled in an iterative fashion: at each
iteration the Navier-Stokes system is solved for ~u and P , then the energy bal-
ance equation is solved for T .

The semi-discretized energy balance equation in system (5.7) could be ar-
ranged in the following way:∑

f∈∂C

Cp,f (ρ~u · ~n)fTf |f |+
∑
f∈∂C

kf ((∇T ) · ~n)f |f | =

= ρCrC |C|+ (η(γ̇, T )(∇~u+∇~uT ) : ∇~u)C |C|. (5.9)

Assuming that, at some iteration n, the velocity field ~u(n) is known (and
hence the shear rate γ̇(n)), the last term in equation (5.9) will be treated as a
source term: ∑

f∈∂C

Cp,f (ρ~u(n) · ~n)fTf |f |+
∑
f∈∂C

kf ((∇T ) · ~n)f |f | =

= ρCrC |C|+ (η(γ̇(n), T )(∇~u(n) + (∇~u(n))T ) : ∇~u(n))C |C|. (5.10)

In principle, both the specific heat capacity Cp and the thermal conductivity
k may depend on temperature, other than viscosity η which does depend on
temperature. The linearized temperature equation (5.11) reads∑

f∈∂C

C
(n−1)
p,f (ρ~u(n) · ~n)fTf |f |+

∑
f∈∂C

k
(n−1)
f ((∇T ) · ~n)f |f | =

= ρCrC |C|+ (η(γ̇(n), T (n−1))(∇~u(n) + (∇~u(n))T ) : ∇~u(n))C |C|, (5.11)

where T (n−1) denotes temperature at previous iteration, while C
(n−1)
p,f and k

(n−1)
f

denote the specific heat capacity and the thermal conductivity (at centroid of
face f) computed using T (n−1). Equation (5.11) should be further discretized
approximating both ((∇T ) · ~n)f and Tf employing the values of T at cells cen-
troids. With this procedure, (5.11) could be transformed into a linear equation
of the following form, being TC and TF the (unknown) values of temperature
at centroid of cell C and at the centroid of its neighbouring cells:

aTCTC +
∑

F∈NB(C)

aTFTF = bC , (5.12)
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where NB(C) denotes the set of elements sharing a face f with element C. Col-
lecting an equation of the form (5.12) for each element C of the computational
grid, the following linear system could be assembled:

[A][T ] = [b], (5.13)

where [T ] is the vector storing the (unknown) centroid values of temperature,
[b] is the vector containing the discretization of the source terms in energy bal-
ance equation over each element and [A] is a square matrix collecting diagonal
coefficient aTC and off-diagonal coefficients aTF for each cell of the computational
grid.

The solution of the semi-discretized Navier-Stokes system is a little more
involved:

∑
f∈∂C

(ρ~u · ~n)f~uf |f | = −(∇P )C |C|+
∑
f∈∂C

(η(γ̇, T )(∇~u+∇~uT )~n)f |f |+

+(ρ~f)C |C|∑
f∈∂C

(~u · ~n)f |f | = 0.

(5.14)
Let ~u(n−1) and T (n−1) be the velocity and temperature fields at the previous

iteration, then system (5.14) is transformed into

∑
f∈∂C

(ρ~u · ~n)f~uf |f | = −(∇P )C |C|+
∑
f∈∂C

(η(γ̇(n−1), T (n−1))(∇~u+∇~uT )~n)f |f |

+(ρ~f)C |C|∑
f∈∂C

(~u · ~n)f |f | = 0.

(5.15)
The non linearity of the advection term in the semi-discretized momentum

equation is canonically overcome by modifying system (5.15) in the following
way:

∑
f∈∂C

(ρ~u · ~n)f~uf |f | = −(∇P )C |C|+
∑
f∈∂C

(η(γ̇(n−1), T (n−1))(∇~u+∇~uT )~n)f |f |+

+(ρ~f)C |C|∑
f∈∂C

(~u · ~n)f |f | = 0,

(5.16)
with ~u being a vector field sufficiently “close” to the unknown velocity field ~u: if
an iterative procedure is employed for the solution of system (5.16), ~u could be
the velocity field at the previous iteration, which should be sufficiently “close”
to the velocity field to be computed at the current iteration.

Usually, the viscous stress term in the momentum equation is split into a
diffusion term (the one containing the velocity gradient) and an explicit term
(the one containing the transposed velocity gradient):
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

∑
f∈∂C

(ρ~u · ~n)f~uf |f | −
∑
f∈∂C

(η(γ̇(n−1), T (n−1))(∇~u)~n)f |f | = −(∇P )C |C|+

+
∑
f∈∂C

(η(γ̇(n−1), T (n−1))(∇(~u)T )~n)f |f |+ (ρ~f)C |C|∑
f∈∂C

(~u · ~n)f |f | = 0.

(5.17)
The main difficulty in solving system (5.17) is the presence of the term

(∇P )C |C| in the momentum equation and the absence of an equation to be
solved for pressure. This issue is overcome by combining equations of system
(5.15) in order to obtain a discrete equation to be solved for velocity and a
discrete equation to be solved for pressure. Finally the fully discretized velocity
equation and the fully discretized pressure equation are solved sequentially and
iteratively.

Remark 5.1. The first equation in system (5.17) is fully discretized (treating
the pressure gradient term as a source term) in a similar way to the energy
balance equation (5.9)-(5.12):

aC~uC +
∑

F∈NB(C)

aF~uF = −(∇P )C |C|+~bC , (5.18)

where NB(C) is the set of elements sharing a face with element C and~bC collects
all the source contributions in momentum equation (5.17), with the exception of
the pressure gradient term. Defining the following vector operator

HC(~u) = ~bC −
∑

F∈NB(C)

aF~uF , (5.19)

the previous equation can be transformed in

~uC = −(∇P )C
|C|
aC

+
1

aC
HC(~u). (5.20)

In order to get the values ~uf of velocity at the faces of the cell C, vectors

~uC = −(∇P )C
|C|
aC

+
1

aC
HC(~u) , ~uF = −(∇P )F

|F |
aF

+
1

aF
HF (~u) with F ∈ NB(C)

should be interpolated. The substitution of interpolated ~uf into the second equa-
tion of system (5.17) gives an equation for pressure.

Many algorithms have been designed ([20, 21]) in order to preform this task:
one of the most famous is the SIMPLE method (Semi Implicit Method for
Pressure Linked Equations) [25, 26, 27], which gave raise to a huge family of
algorithms [28] (SIMPLEC, SIMPLEM, SIMPLEST, SIMPLEX etc).

In conclusion, at each iteration n, the momentum and pressure discretized
equations are solved through an iterative algorithm, such as, for example, the
SIMPLE algorithm, then the discretized energy balance equation is solved for
temperature.
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5.2 Rheology of Filled Compounds in OpenFOAM

In OpenFOAM, in order to solve the Navier-Stokes system coupled with energy
balance equation, as explained in the previous section, a temperature and filler
volume fraction dependent viscosity model has to be introduced, together with
density, thermal conductivity and specific heat capacity expressions.

5.2.1 Thermal Properties

The specific heat capacity of a substance or compound represents the amount
of energy, per unit mass, required to increase its temperature by 1K. As a
first approximation the specific heat capacity could be thought as a constant,
assuming that the specific amount of energy requested to increase temperature
by 1K is the same whichever is the temperature of the compound. As a matter
of fact, the specific heat capacity is dependent on temperature implying that
the energy per unit mass needed to increase temperature by 1K does depend on
temperature. Let T0 be a reference temperature and let Cp(T ) be the specific
heat capacity of a compound. A simple model for Cp(T ) in the neighbourhood
of T0 is

Cp(T ) = Cp0 + Cp1(T − T0). (5.21)

If the slope Cp1 of expression (5.21) is positive, the higher is the temperature
of the compound the higher is the amount of energy, per unit mass, required to
increase the temperature of the compound by 1K. If, on the other hand, the
coefficient Cp1 is negative, the specific amount of energy requested to increase
temperature by 1K increases when temperature decreases. Experimental data
suggest that the specific heat capacity of a filled compound depends, other than
on the temperature of the compound, on the filler volume fraction φ (i.e. on
the concentration of the filler). In this research it is assumed that the specific
heat capacity depends on temperature and filler volume fraction through the
following relation:

Cp(T, φ) = Cp0 + Cp1(T − T0) + Cp2φ. (5.22)

The positiveness of coefficient Cp2 implies that the addition of filler increases
the specific amount of energy required to increase the temperature of the com-
pound by 1K. On the other hand, if Cp2 is negative the dispersion of filler
in the compound reduces the specific amount of energy needed to increase the
temperature of the compound by 1K.

The thermal conductivity k of a substance or compound corresponds to the
proportional coefficient between the instantaneous heat flux per unit surface
and the opposite of the temperature gradient. Let P1 ∈ Ωt and P2 ∈ Ωt be two
material points of a compound in the actual configuration Ωt at time t, close one
to the other. Let T1 and T2 be the temperatures of the two points. The higher
is the thermal conductivity of the compound, the higher is the instant heat flux
between P1 and P2 (flowing from the hotter point to the colder point). Thermal
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conductivity is always positive since heat flows from higher temperature points
to lower temperature points.

The thermal diffusivity δ of a substance or compound is defined as the ratio
between the thermal conductivity of the material and the product of its density
with its specific heat capacity:

δ =
k

ρCp
. (5.23)

Manipulating equation (5.23), thermal conductivity may be computed as

k = δρCp. (5.24)

Concerning filled compounds, thermal conductivity is assumed to be a func-
tion of temperature and filler volume fraction:

k(T, φ) = δ(T, φ)ρ(φ)Cp(T, φ). (5.25)

In equation (5.25), the density of the filled compound ρ is a function of the
filler volume fraction, indeed

ρ(φ) = (1− φ)ρunfilled + φρfiller, (5.26)

with ρunfilled being the density of the unfilled compound and ρfiller being the
density of the filler. As pointed out in equation (5.22), Cp is a function of both
temperature and filler volume fraction and, in principle, also thermal diffusivity
δ should be a function of temperature and filler concentration. In this research,
for semplicity, the dependence of thermal diffusivity on temperature is dropped,
leading to the following expression for thermal conductivity:

k(T, φ) = δ(φ)ρ(φ)Cp(T, φ). (5.27)

Assuming that the flow experienced by a generalized Newtonian fluid is
approximately isothermal, at a nominal temperature Tnominal, equation (5.27)
may be further simplified in

k(φ) = δ(φ)ρ(φ)Cp(Tnominal, φ). (5.28)
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5.2.2 Thermal Properties Implementation

In OpenFOAM, the information about density, thermal conductivity and spe-
cific heat capacity is stored in a class called thermalModel. Once that the
filler volume fraction has been fixed, both density and thermal conductivity
are constants, while specific heat capacity still depends on temperature. Since,
beside equation (5.22), other models can be chosen for specific heat capacity,
the class thermalModel has been made an abstract class: each specific heat
capacity expression will be modelled through a derived class of the abstract
class thermalModel. The next page presents a scheme of the implementation
of the thermalModel class. The focus should be on the protected data member
thermalProperties which stores the thermal properties supplied by the user.
Also a constant reference T to the temperature field is stored. Some pure vir-
tual functions are defined (thermalModel.rho(),thermalModel.k(),
thermalModel.Cp()): they should be in charge of returning the density scalar
field, the thermal conductivity scalar field and the specific heat capacity scalar
field. The pure virtual function thermalModel.correct(), in particular, should
compute the specific heat capacity on the computational domain, according to
temperature field.

71



thermalModel 
# dictionary thermalProperties_
# const volScalarField& T_
---------------------------------------
+ const dictionary& thermalProperties() const
+ virtual tmp<volScalarField> rho() const = 0
+ virtual tmp<volScalarField> k() const = 0
+ virtual tmp<volScalarField> Cp() const = 0
+ virtual void correct() = 0

polynomial_volFraction
- dictionary polynomial_volFractionCoeffs_
- scalar rho0_
- scalar k0_
- List<scalar> CpCoeffs_
- dimensionedScalar Cp0_
- dimensionedScalar Cp1_
- dimensionedScalar Cp2_
- dimensionedScalar phi_
- dimensionedScalar T0_
- volScalarField rho_
- volScalarField k_
- volScalarField Cp_
--------------------------------------
- void calcCp (volScalarField&)
+ virtual tmp<volScalarField> rho() const
+ virtual tmp<volScalarField> k() const
+ virtual tmp<volScalarField> Cp() const
+ virtual void correct()

A. Cortesi Mathematical Modelling of Rheology of Filled Compounds
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The class polynomial volFraction is a derived class of the abstract base
class thermalModel. The private data members of polynomial volFraction

class store :

• a dictionary polynomial volFractionCoeffs which stores coefficients
supplied by the user for the current thermal model;

• a scalar rho0 needed to initialise the (constant) density scalar field ρ;

• a scalar k0 required for the initialisation of the (constant) thermal con-
ductivity scalar field;

• a list of scalars storing the values of the coefficients of equation (5.22);

• scalars Cp0 ,Cp1 ,Cp2 representing the coefficients of equation (5.22);

• the filler volume fraction φ, named phi ;

• a scalar T0 corresponding to the reference temperature T0 in equation
(5.22);

• three scalar fields rho ,k ,Cp representing density, thermal conductivity
and specific heat capacity fields defined on the computational domain.

Overriding functions polynomial volFraction.rho(),
polynomial volFraction.k(), polynomial volFraction.Cp() return respec-
tively the density field ρ, the thermal conductivity field k and the specific heat
capacity field Cp. The polynomial volFraction.correct() public method is
in charge of computing the specific heat capacity according to the temperature
field, through the auxiliary member function
polynomial volFraction.calcCp(), which implements equation (5.22).

Fields rho and k will be constant during the lifetime of each variable of
class polynomial volFraction, since no class method changes them, while the
specific heat capacity field Cp will be corrected according to the temperature
field.

5.2.3 Viscosity Model Implementation

As pointed out in chapter 2, filled polymer compounds will be hereby described
by the generalized Newtonian fluid model: the kinematic viscosity of the filled
compound is then modelled as (see equations (2.80))

ν(γ̇, φ, T ) =
η(γ̇, φ, T )

ρ(φ)
= H(T )

V (γ̇, φ)

ρ(φ)
= H(T )

V (γ̇, f(φ))

ρ(φ)
, (5.29)

with f(φ) being the correction factor taking into consideration the concentration
of filler, chosen among a relative viscosity expression proposed in literature (see
chapter 2). The factor H(T ) represents the dependence of viscosity of the filled
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compound on temperature. For the temperature correction factor H(T ) an
Arrhenius expression has been chosen:

H(T ) = exp
(
α
( 1

T
− 1

Tα

))
, (5.30)

where α is a positive coefficient and Tα is a reference (absolute) temperature.
If the absolute temperature T equals the reference temperature Tα, the tem-
perature correction factor H(T ) is 1, which makes it irrelevant in expression
(5.29). If the absolute temperature T is higher than Tα, H(T ) is smaller than
unity. On the contrary, if the absolute temperature T is smaller than Tα the
temperature correction factor is bigger than unity: as should be expected, the
increase in temperature reduces viscosity.

In OpenFOAM the dependence of viscosity on temperature has been imple-
mented through the class nonIsothermalModel. Since, other than Arrhenius
model (5.30), many expressions can be chosen for H(T ), the class
nonIsothermalModel has been designed to be an abstract class.

The class nonIsothermalModel stores a dictionary named nonisoProperties ,
collecting the information provided by the user on the temperature correc-
tion factor H(T ), together with a constant reference to the temperature field
T . Pure virtual member functions nonIsothermalModel.nonIsoCorr() and
nonIsothermalModel.correct() are defined: the former should return the
temperature correction factor H(T ) as a scalar field defined on the compu-
tational domain while the latter should compute H(T ) according to the tem-
perature field.

The Arrhenius expression (5.30) for temperature correction factor is im-
plemented in class Arrhenius. The class Arrhenius inherits from the class
nonIsothermalModel and declares as private data members :

• a dictionary named ArrheniusCoeffs , collecting information about co-
efficients of the Arrhenius expression (5.30);

• a scalar alpha representing the coefficient α in equation (5.30);

• a scalar Talpha corresponding to the reference temperature Tα in equa-
tion (5.30);

• a scalar field A defined on the computational domain which represents
the temperature correction factor H(T ).

The member function Arrhenius.nonIsoCorr() overrides
nonIsothermalModel.nonIsoCorr(), returning the temperature correction fac-
tor field A . The overriding function Arrhenius.correct() computes the scalar
field A through the auxiliary private method Arrhenius.calcA(), which im-
plements formula (5.30).
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nonIsothermalModel
# dictionary nonisoProperties_
# const volScalarField& T_
-------------------------------------------
+ const dictionary& nonisoProperties() const
+ virtual tmp<volScalarField> nonIsoCorr() const = 0
+ virtual void correct() = 0

Arrhenius
- dictionary ArrheniusCoeffs_
- dimensionedScalar alpha_
- dimensionedScalar Talpha_
- volScalarField A_
------------------------------------------
- tmp<volScalarField> calcA() const
+ virtual tmp<volScalarField> nonIsoCorr() const
+ virtual void correct()

A. Cortesi Mathematical Modelling of Rheology of Filled Compounds
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The volume fraction correction factor f(φ) in equation (5.29) is implemented
through the abstract class volumeFractionModel. The implementation of this
class is quite similar to the implementation of the nonIsothermalModel class.

Among the protected data members stored in class volumeFractionModel

there is a constant reference to the temperature field T together with a dic-
tionary named volFractionProperties which contains all the information
supplied by the user about the volume fraction correction f(φ).

Pure virtual functions volumeFractionModel.correct() and
volumeFractionModel.volFractionCorr(), which should, respectively, com-
pute and return the filler volume fraction correction factor f(φ), make
volumeFractionModel an abstract class and must be overridden in any derived
class.

Class MaronPierce is an example of derived class from base class
volumeFractionModel. The class MaronPierce implements the Maron-Pierce
volume fraction correction factor:

f(φ) =
(

1− φ

φM

)−2

. (5.31)

The class MaronPierce stores a dictionary collecting the coefficients of the
Maron Pierce model, the scalar phi representing the filler volume fraction φ
and the scalar phiM corresponding to the maximum packing filler volume frac-
tion φM . The volume fraction correction field f(φ) is stored as a (constant)
scalar field defined on the computational domain and denoted as A . Pure
virtual function volumeFractionModel.volFractionCorr() is overridden by
MaronPierce.volFractionCorr(), which returns the volume fraction correc-
tion factor field A . Analogously, the member function MaronPierce.correct()

overrides the base class function volumeFractionModel.correct(), comput-
ing the filler volume fraction correction field A . Since, once fixed the filler
volume fraction, the correction factor f(φ) does not change, the class method
MaronPierce.correct(), actually, has an empty function body.
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volumeFractionModel
# dictionary volFractionProperties_
#const volScalarField& T_
------------------------------------------------
+ const dictionary& volFractionProperties() const 
+ virtual tmp<volScalarField>  volFractionCorr() const = 0
+ virtual void correct() = 0

MaronPierce
- dictionary MaronPierceCoeffs_
- dimensionedScalar phi_
- dimensionedScalar phiM_
- volScalarField A_
---------------------------------------------------------------
- tmp<volScalarField> calcA() const
+ MaronPierce (const word& name, const dictionary& volFractionProperties,
            const volScalarField& T)
+ virtual tmp<volScalarField> volFractionCorr() const
+ virtual void correct()

A. Cortesi Mathematical Modelling of Rheology of Filled Compounds
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The constructor of class MaronPierce (see listing 5.1), once invoked the
constructor of the base class volumeFractionModel, initialises the dictionary
MaronPierceCoeffs , stores the values of filler volume fraction and maximum
packing filler volume fraction in phi and phiM and initializes the filler volume
fraction correction field A with expression (5.31). Once initialised, the field A

will be constant during the lifetime of the any variable of class MaronPierce,
since no class method changes it.

1 Foam:: volumeFractionModels :: MaronPierce :: MaronPierce

2 (

3 const word& name ,

4 const dictionary& volFractionProperties ,

5 const volScalarField& T

6 )

7 :

8 volumeFractionModel(name , volFractionProperties , T),

9 MaronPierceCoeffs_(

10 volFractionProperties.optionalSubDict(typeName + "Coeffs")

11 ),

12 phi_("phi", dimless , MaronPierceCoeffs_),

13 phiM_("phiM", dimless , MaronPierceCoeffs_),

14 A_

15 (

16 IOobject

17 (

18 name ,

19 T_.time (). timeName(),

20 T_.db(),

21 IOobject ::NO_READ ,

22 IOobject :: NO_WRITE

23 ),

24 T_.mesh(),

25 Foam::pow((1-phi_/phiM_),-2)

26 )

27 {}

Listing 5.1: MaronPierce.C - Constructor

Beside the Maron-Pierce expression (5.31), some other models have been
implemented in OpenFOAM:

• Chong filler volume fraction model:

f(φ) =
[
1 +

3

4

( φ
φM

1− φ
φM

)]2
; (5.32)

• Mooney filler volume fraction model:

f(φ) = exp
( 2.5φ

1− φ
φM

)
; (5.33)
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• Pal filler volume fraction model:

f(φ) =
(

1−
(

1 +
(1− φM

φ2
M

)
φ
)
φ
)−2.5

; (5.34)

• Einstein filler volume fraction model:

f(φ) = 1 +
5

2
φ. (5.35)

Each of the aforementioned filler volume fraction models is implemented
as a derived class of the base class volumeFractionModel. All the previously
enumerated volume fraction models are implemented in the same way of the
Maron-Pierce expression (5.31), with the exception of the initialisation of the
scalar field A . The constructors of the classes corresponding to equations (6.35-
6.38) are reported below.

1 Foam:: volumeFractionModels ::Chong ::Chong

2 (

3 const word& name ,

4 const dictionary& volFractionProperties ,

5 const volScalarField& T

6 )

7 :

8 volumeFractionModel(name , volFractionProperties , T),

9 ChongCoeffs_(

10 volFractionProperties.optionalSubDict(typeName + "Coeffs")

11 ),

12 phi_("phi", dimless , ChongCoeffs_),

13 phiM_("phiM", dimless , ChongCoeffs_),

14 A_

15 (

16 IOobject

17 (

18 name ,

19 T_.time (). timeName(),

20 T_.db(),

21 IOobject ::NO_READ ,

22 IOobject :: NO_WRITE

23 ),

24 T_.mesh(),

25 Foam::pow (1+0.75*( phi_/phiM_ )/(1- phi_/phiM_ ),2)

26 )

27 {}

Listing 5.2: Chong.C - Constructor

1 Foam:: volumeFractionModels :: Mooney :: Mooney

2 (

3 const word& name ,

4 const dictionary& volFractionProperties ,
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5 const volScalarField& T

6 )

7 :

8 volumeFractionModel(name , volFractionProperties , T),

9 MooneyCoeffs_(

10 volFractionProperties.optionalSubDict(typeName + "Coeffs")

11 ),

12 phi_("phi", dimless , MooneyCoeffs_),

13 phiM_("phiM", dimless , MooneyCoeffs_),

14 A_

15 (

16 IOobject

17 (

18 name ,

19 T_.time (). timeName(),

20 T_.db(),

21 IOobject ::NO_READ ,

22 IOobject :: NO_WRITE

23 ),

24 T_.mesh(),

25 Foam::exp (2.5* phi_/(1-phi_/phiM_ ))

26 )

27 {}

Listing 5.3: Mooney.C - Constructor

1 Foam:: volumeFractionModels ::Pal::Pal

2 (

3 const word& name ,

4 const dictionary& volFractionProperties ,

5 const volScalarField& T

6 )

7 :

8 volumeFractionModel(name , volFractionProperties , T),

9 PalCoeffs_(

10 volFractionProperties.optionalSubDict(typeName + "Coeffs")

11 ),

12 phi_("phi", dimless , PalCoeffs_),

13 phiM_("phiM", dimless , PalCoeffs_),

14 A_

15 (

16 IOobject

17 (

18 name ,

19 T_.time (). timeName(),

20 T_.db(),

21 IOobject ::NO_READ ,

22 IOobject :: NO_WRITE

23 ),

24 T_.mesh(),
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25 Foam::pow(1-

26 (1+

27 ((1-phiM_ )/Foam::pow(phiM_ ,2))

28 *phi_)

29 *phi_ ,

30 -2.5)

31 )

32 {}

Listing 5.4: Pal.C - Constructor

1 Foam:: volumeFractionModels :: Einstein :: Einstein

2 (

3 const word& name ,

4 const dictionary& volFractionProperties ,

5 const volScalarField& T

6 )

7 :

8 volumeFractionModel(name , volFractionProperties , T),

9 EinsteinCoeffs_(

10 volFractionProperties.optionalSubDict(typeName + "Coeffs")

11 ),

12 phi_("phi", dimless , EinsteinCoeffs_),

13 A_

14 (

15 IOobject

16 (

17 name ,

18 T_.time (). timeName(),

19 T_.db(),

20 IOobject ::NO_READ ,

21 IOobject :: NO_WRITE

22 ),

23 T_.mesh(),

24 1+2.5* phi_

25 )

26 {}

Listing 5.5: Einstein.C - Constructor

Once chosen expressions for the temperature correction factor H(T ) and the
filler volume fraction correction factor f(φ), the complete viscosity model should
be implemented :

ν(γ̇, φ, T ) = H(T )
V (γ̇, f(φ))

ρ(φ)
. (5.36)

Complete viscosity models (taking into consideration both the temperature
and filler volume fraction correction factors) are implemented in OpenFOAM
through the abstract class nonIsothermalViscosityModel where two point-
ers are stored as protected members: a pointer to a nonIsothermalModel ob-
ject (nonIsothermalModelPtr ) which is in charge of including in the viscosity
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model the temperature correction factor H(T ) and a pointer to a
volumeFractionModel object (volumeFRactionModelPtr )which, on the other
hand, takes into account the filler volume fraction correction factor f(φ). More-
over, the class nonIsothermalViscosityModel stores a dictionary
(viscosityProperties ) collecting information about the viscosity model sup-
plied by the user, a constant reference to the velocity vector field U , a constant
reference to the velocity flux (Φ = ~u · ~n) scalar field phi , defined on the faces
of the elements of the computational domain, and a constant reference to the
temperature scalar field T . Pure virtual functions
nonIsothermalViscosityModel.nu(),
nonIsothermalViscosityModel.correctIso() and
nonIsothermalViscosityModel.correct() make the class
nonIsothermalViscosityModel an abstract class: classes inheriting from this
abstract base class must override these methods.

Among the public function members of class nonIsothermalViscosityModel,
the method nonIsothermalViscosityModel.strainRate() is in charge of com-
puting the strain rate scalar field γ̇, employing the formula

γ̇ =
√

2||D||2 =
√

2
√
D : D. (5.37)

An example of derived class of the abstract base class
nonIsothermalViscosityModel is the class BirdCarreau which implements the
Bird-Carreau viscosity model:

ν(γ̇, φ, T ) = H(T )
η0

ρ(φ)
f(φ)

[
1 +

(
f(φ)λγ̇

)2](n−1)/2

=

= H(T )ν0f(φ)
[
1 +

(
f(φ)λγ̇

)2](n−1)/2

, (5.38)

with n < 1, since filled polymer compounds are likely to show shear thinning
behaviour (i.e. viscosity decreases when the shear rate increases). Actually,
in order to ensure viscosity to be bounded from below and not to give rise to
instability issues in numerical simulations, the viscosity expression implemented
in class BirdCarreau is

ν(γ̇, φ, T ) = H(T )f(φ)
(
ν∞ + (ν0 − ν∞)

[
1 +

(
f(φ)λγ̇

)a](n−1)/a)
, (5.39)

with ν∞ > 0 and a > 0. In this way, it holds that

lim
γ̇→∞

ν(γ̇, φ, T ) = H(T )f(φ)ν∞ > 0. (5.40)
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NonIsothermalViscosityModel
# dictionary viscosityProperties_
# const volVectorField& U_
# const surfaceScalarField& phi_
# const volScalarField& T_
# autoPtr<nonIsothermalModel> nonIsothermalModelPtr_
# autoPtr<volumeFractionModel> volumeFractionModelPtr_
---------------------------------------------------
+ const dictionary& viscosityProperties() const
+ tmp<volScalarField> strainRate() const
+ virtual tmp<volScalarField> nu() const = 0
+ virtual void correctIso() = 0
+ virtual void correct() = 0

BirdCarreau
- dictionary BirdCarreauCoeffs_
- dimensionedScalar nu0_
- dimensionedScalar nuInf_
- dimensionedScalar k_
- dimensionedScalar n_
- dimensionedScalar a_
- volScalarField nu_
-----------------------------------
- tmp<volScalarField> calcNuIso() const
- tmp<volScalarField> calcNu() const
+ virtual tmp<volScalarField> nu() const
+ virtual void correctIso()
+ virtual void correct()

A. Cortesi Mathematical Modelling of Rheology of Filled Compounds
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User supplied information about the Bird-Carreau model is stored in the dic-
tionary BirdCarreauCoeffs . Moreover, the coefficients ν0, ν∞, λ, n and a of
expression (5.39) are stored, respectively, as nu0 , nuInf , k , n and a . Among
the private data member, the class BirdCarreau collects also the kinematic
viscosity scalar field nu , defined on the computational domain. The overrid-
ing method BirdCarreau.correct() updates the temperature correction fac-
tor field (through nonIsothermalModelPtr ->correct()) and the filler volume
fraction correction factor field (through volumeFractionModelPtr ->correct())
and computes the kinematic viscosity field according to equation (5.39) through
the auxiliary private method BirdCarreau.calcNu(). The overriding method
BirdCarreau.correctIso() updates the filler volume fraction correction factor
field (through volumeFractionModelPtr ->correct()) and computes, through
the auxiliary private method BirdCarreau.calcNuIso(), the kinematic viscos-
ity field, neglecting the temperature correction factor H(T ) in equation (5.39).
The overriding member function BirdCarreau.nu() returns the kinematic vis-
cosity scalar field.

The implementation of the auxiliary functions BirdCarreau.calcNu() and
BirdCarreau.calcNuIso() is displayed in the source file BirdCarreau.C (list-
ing 5.6).

1
2 Foam::tmp <Foam:: volScalarField >

3 Foam:: nonIsothermalViscosityModels :: BirdCarreau ::

4 calcNuIso () const

5 {

6 return

7 volumeFractionModelPtr_ ->volFractionCorr ()*

8 (nuInf_

9 + (nu0_ - nuInf_)

10 *pow(scalar (1) +

11 pow(k_* volumeFractionModelPtr_ ->volFractionCorr ()*

12 strainRate (), a_),

13 (n_ - 1.0)/a_));

14 }

15
16
17 Foam::tmp <Foam:: volScalarField >

18 Foam:: nonIsothermalViscosityModels :: BirdCarreau ::

19 calcNu () const

20 {

21 return

22 nonIsothermalModelPtr_ ->nonIsoCorr () *

23 volumeFractionModelPtr_ ->volFractionCorr ()*

24 (nuInf_

25 + (nu0_ - nuInf_)

26 *pow(scalar (1) +

27 pow(k_*volumeFractionModelPtr_ ->volFractionCorr ()*

28 strainRate (), a_),

29 (n_ - 1.0)/a_));
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30 }

Listing 5.6: BirdCarreau.C (partial)

The implementation of the power law viscosity model

ν(γ̇, φ, T ) = H(T )
η0

ρ(φ)
f(φ)

(
f(φ)γ̇λ

)n−1

= H(T )ν0f(φ)
(
f(φ)γ̇λ

)n−1

, (5.41)

with n < 1, is quite similar to the implementation of the BirdCarreau model
(5.38). Once again, in order to avoid unboundedness in viscosity and conse-
quent instabilities in the numerical simulations, the implemented expression for
viscosity is the following

ν(γ̇, φ, T ) = max
{
νmin,min

{
νmax, H(T )ν0f(φ)

(
max

{
ε, f(φ)γ̇λ

})n−1}}
,

(5.42)
with νmin and νmax being, respectively, the lower and the upper bound for
kinematic viscosity, while ε > 0 is a small quantity preventing the quantity raised
to the (n−1) to be infinitesimal. The power law viscosity model is implemented
in OpenFOAM through the class PowerLaw (derived from the abstract base class
nonIsothermalViscosityModel), whose main difference with respect to the
class BirdCarreau is in the private member functions PowerLaw.calcNu() and
PowerLaw.calcNuIso(). The implementation of both these memeber functions
is displayed in listing 5.7.

1 Foam::tmp <Foam:: volScalarField >

2 Foam:: nonIsothermalViscosityModels :: PowerLaw ::

3 calcNuIso () const

4 {

5 return max

6 (

7 nuMin_ ,

8 min

9 (

10 nuMax_ ,

11 volumeFractionModelPtr_ ->volFractionCorr ()*

12 K_ * pow

13 (

14 max

15 (

16 lambda_ *

17 volumeFractionModelPtr_ ->volFractionCorr ()*

18 strainRate (),

19 dimensionedScalar(dimless , small)

20 ),

21 n_.value () - scalar (1)

22 )

23 )

24 );

25 }
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26
27
28 Foam::tmp <Foam:: volScalarField >

29 Foam:: nonIsothermalViscosityModels :: PowerLaw :: calcNu () const

30 {

31 return max

32 (

33 nuMin_ ,

34 min

35 (

36 nuMax_ ,

37 nonIsothermalModelPtr_ ->nonIsoCorr () *

38 volumeFractionModelPtr_ ->volFractionCorr ()*

39 K_ * pow

40 (

41 max

42 (

43 lambda_ *

44 volumeFractionModelPtr_ ->volFractionCorr ()*

45 strainRate (),

46 dimensionedScalar(dimless , small)

47 ),

48 n_.value () - scalar (1)

49 )

50 )

51 );

52 }

Listing 5.7: PowerLaw.C (partial)

Analogously, the Cross viscosity model

ν(γ̇, φ, T ) =
η0

ρ(φ)

H(T )f(φ)

1 +
(
λf(φ)γ̇

)m = ν0
H(T )f(φ)

1 +
(
λf(φ)γ̇

)m , (5.43)

with m > 0, is implemented through the class Cross. Actually, in order to
ensure boundedness and guarantee numerical stability, the implemented expres-
sion for viscosity is

ν(γ̇, φ, T ) = H(T )f(φ)
(
ν∞ +

ν0 − ν∞
1 +

(
λf(φ)γ̇

)m), (5.44)

with ν∞ > 0.
Equation (5.44) is such that

lim
γ̇→∞

ν(γ̇, φ, T ) = H(T )f(φ)ν∞ > 0. (5.45)

The implementation of the member functions Cross.calcNu() and
Cross.calcNuIso() is reported in listing 5.8.
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1 Foam::tmp <Foam:: volScalarField >

2 Foam:: nonIsothermalViscosityModels ::Cross :: calcNuIso () const

3 {

4 return

5 volumeFractionModelPtr_ ->volFractionCorr ()*

6 (nuInf_

7 + (nu0_ - nuInf_)

8 /( scalar (1)+

9 pow(t_* volumeFractionModelPtr_ ->volFractionCorr ()*

10 strainRate (),m_)

11 ));

12 }

13
14
15 Foam::tmp <Foam:: volScalarField >

16 Foam:: nonIsothermalViscosityModels ::Cross :: calcNu () const

17 {

18 return

19 nonIsothermalModelPtr_ ->nonIsoCorr () *

20 volumeFractionModelPtr_ ->volFractionCorr ()*

21 (nuInf_

22 + (nu0_ - nuInf_)

23 / (scalar (1)+

24 pow(t_*volumeFractionModelPtr_ ->volFractionCorr ()*

25 strainRate (), m_)));

26 }

Listing 5.8: Cross.C (partial)

Finally, the class nonIsothermalSinglePhaseTransportModel has been de-
signed in order to group the information about viscosity of the filled compound
together with its thermal properties (density, thermal conductivity and specific
heat capacity).

The class nonIsothermalSinglePhaseTransportModel contains two point-
ers (nonIsothermalViscosityModelPtr , thermalModelPtr ): a pointer to a
nonIsothermalViscosityModel object (collecting information about viscosity
model together with temperature correction factor and filler volume fraction cor-
rection factor) and a pointer to a thermalModel object (gathering information
about density, thermal conductivity and specific heat capacity).

These pointers are exploited in the implementation of function members of
class nonIsothermalSinglePhaseTransportModel:

• the method nonIsothermalSinglePhaseTransportModel.nu() calls the
method nonIsothermalViscosityModel.nu() (returning the viscosity scalar
field) on the nonIsothermalViscosityModel object pointed by
nonIsothermalViscosityModelPtr ;

• the methods nonIsothermalSinglePhaseTransportModel.rho(),
nonIsothermalSinglePhaseTransportModel.k(),
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nonIsothermalSinglePhaseTransportModel.Cp() invoke the correspond-
ing functions of the thermalModel object pointed by thermalModelPtr ,
returning, respectively, the (constant) density scalar field, the (constant)
thermal conductivity scalar field and the specific heat capacity scalar field;

• the member function
nonIsothermalSinglePhaseTransportModel.correctIso() does noth-
ing more than calling the homonymous method on the
nonIsothermalViscosityModel object pointed by
nonIsothermalViscosityModelPtr ;

• the method nonIsothermalSinglePhaseTransportModel.correct() calls
the homonymous methods both on the object pointed by
nonIsothermalViscosityModelPtr and by thermalModelPtr .

To conclude, a call to the method
nonisothermalSinglePhaseTransportModel.correct() will

• compute/update the specific heat capacity through thermalModelPtr ->

correct();

• compute/update the temperature correction factorH(T ) through the method
nonIsothermalViscosityModelPtr -> nonIsothermalModelPtr ->

correct();

• compute/update the filler volume fraction correction factor through the
method nonIsothermalViscosityModelPtr ->

volumeFractionModelPtr -> correct().

Actually, the public method
nonisothermalSinglePhaseTransportModel.correct() updates also the kine-
matic viscosity scalar field through
nonIsothermalViscosityModelPtr -> correct(). On the other hand, calls
to methods
nonisothermalSinglePhaseTransportModel.rho(),
nonisothermalSinglePhaseTransportModel.k(),
nonisothermalSinglePhaseTransportModel.Cp() and
nonisothermalSinglePhaseTransportModel.nu() return, respectively the den-
sity scalar field, the thermal conductivity scalar field, the specific heat capacity
scalar field and the viscosity scalar field.

1 #include "nonIsothermalSinglePhaseTransportModel.H"

2 #include "nonIsothermalViscosityModel.H"

3 #include "thermalModel.H"

4
5
6 // * * * * * * * * * Member Functions * * * * * * * * * * //

7
8 Foam::tmp <Foam:: volScalarField >

9 Foam:: nonIsothermalSinglePhaseTransportModel ::nu() const
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10 {

11 return nonIsothermalViscosityModelPtr_ ->nu();

12 }

13
14
15 Foam::tmp <Foam:: volScalarField >

16 Foam:: nonIsothermalSinglePhaseTransportModel ::rho() const

17 {

18 return thermalModelPtr_ ->rho ();

19 }

20
21
22 Foam::tmp <Foam:: volScalarField >

23 Foam:: nonIsothermalSinglePhaseTransportModel ::k() const

24 {

25 return thermalModelPtr_ ->k();

26 }

27
28
29 Foam::tmp <Foam:: volScalarField >

30 Foam:: nonIsothermalSinglePhaseTransportModel ::Cp() const

31 {

32 return thermalModelPtr_ ->Cp();

33 }

34
35
36 void Foam:: nonIsothermalSinglePhaseTransportModel ::

37 correctIso ()

38 {

39 nonIsothermalViscosityModelPtr_ ->correctIso ();

40 }

41
42
43 void Foam:: nonIsothermalSinglePhaseTransportModel :: correct ()

44 {

45 nonIsothermalViscosityModelPtr_ ->correct ();

46 thermalModelPtr_ ->correct ();

47 }

48
49
50 // ******************************************************* //

Listing 5.9: nonIsothermalSinglePhaseTransportModel.C (partial)
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class nonIsothermalViscosityModel;
class thermalModel;

/*---------------------------------------------------------*\
  Class nonIsothermalSinglePhaseTransportModel Declaration
\*---------eTransportModel&) = delete;

NonIsothermalSinglePhaseTransportModel
- autoPtr<nonIsothermalViscosityModel> nonIsothermalViscosityModelPtr_
- autoPtr<thermalModel> thermalModelPtr_
--------------------------------------------------------------
+ virtual tmp<volScalarField> nu() const
+ virtual tmp<volScalarField> rho() const
+ virtual tmp<volScalarField> k() const
+ virtual tmp<volScalarField> Cp() const
+ virtual void correctIso()
+ virtual void correct()

A. Cortesi Mathematical Modelling of Rheology of Filled Compounds
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nonIsothermalSinglePhaseTransportModel
- nonIsothermalViscosityModelPtr_
- thermalModelPtr_
------------------------------------------------------------
+ nu()
+ rho()
+ k ()
+ Cp()
+ correct()
+correctIso()

nonIsothermalViscosityModel
# nonIsothermalModelPtr_
# volumeFractionModelPtr_
------------------------------------------
+ nu()
+ correct()
+correctIso()

ThermalModel
-------------------------------
+ rho()
+ k()
+Cp()
+ correct()

nonIsothermalModel
-----------------------------
+ correct()

volumeFractionModel
-------------------------------
+ correct()

A. Cortesi Mathematical Modelling of Rheology of Filled Compounds
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Chapter 6

Data Analysis

In order to test the OpenFOAM implementation of the rheological models for
filled compounds presented in the previous chapters, some experimental data
are needed. Pirelli Tyre S.p.A. supplied experimental data relative to a polymer
compound filled with silica (SiO2) at different levels of concentration. On one
hand, these data have been analyzed in order to estimate the numerical value
of the coefficients of some models chosen to describe the rheology of the filled
compound. On the other hand, they have been employed to check if numer-
ical simulations, involving the chosen rheological models, are able to predict
pressure drops along the capillary die of a rheometer (i.e. to check if the nu-
merically computed pressure drops match the experimental values). Because
of confidentiality reasons, graphs in this chapter and in the next chapter are
reported without numerical values on axes.

6.1 Viscosity Models

For what concerns the choice of a viscosity model and the estimation of its coef-
ficients, experimental data have been collected employing a capillary rheometer,
with a circular cross section capillary (capillary die) and a length over diameter
ratio equal to L/D = 30/2. During a rheometer experiment, as explained in
chapter 4, the filled compound, whose temperature is set equal to a fixed tem-
perature Tnominal, is collected in a reservoir and pushed by a piston through the
capillary die, whose walls are at temperature Tnominal. Also the temperature
of the piston and the temperature of the walls of the reservoir are set equal to
Tnominal.The experimental dataset collects measured pressure drops along the
capillary die at different values of apparent shear rate (i.e. at different piston
velocities vpiston):

γ̇app,min ≤ γ̇app =
4Q

πR3
=

4(vpistonπR
2
tank)

πR3
≤ γ̇app,max, (6.1)

where R is the radius of the capillary die and Rtank is the radius of the rheometer
reservoir.
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Figure 6.1: Experimental Viscosity Curves for φ0phr ≤ φ ≤ φ70phr.

Different levels of concentration of filler (SiO2) have been tested: from 0 phr
(neat of unfilled polymer) up to 70 phr (highly filled polymer).

Since experimental data have been collected employing only one capillary
rheometer neither the Mooney correction nor the Bagley correction have been
performed because they require capillary rheometers with different capillary die
lengths and radii.

The viscosity of the filled compound at a given apparent shear rate γ̇app is
estimated as

η =
τw
γ̇app

=
∆P

2L

R

γ̇app
(6.2)

and no Rabinowitsch correction has been employed, since the ratio between the
length and the diameter of the capillary die is L/D = 30/2 < 30 and (necessary)
Bagley correction has not been applied to experimental data.

Cross Maron-Pierce Viscosity Model

Figure (6.1) displays the experimental viscosity curves at silica concentration
ranging from 0 phr to 70 phr. It’s worth to notice that the filled compound, at
each level of filler concentration, exhibits a shear thinning behaviour, since the
value of viscosity decreases with the increase in apparent shear rates. More-
over for a fixed value of apparent shear rate, viscosity increases with the in-
crease in concentration of silica. At high levels of concentration in silica (i.e.
φ = φ50phr, φ60phr, φ70phr) the experimental viscosity curves look like straight
lines, denoting, in log-log scale, a power law behaviour. At low levels of filler
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concentration, the experimental viscosity exhibit a plateau for low apparent
shear rates: for φ = φ0phr, φ = φ10phr, φ = φ20phr, the filled compound shows
a zero shear rate viscosity:

lim
γ̇app→0

η < +∞. (6.3)

Because of this consideration a Cross viscosity model has been chosen:

η(γ̇, φ, T ) =
H(T )η0f(φ)

1 +
(
λf(φ)γ̇

)m , (6.4)

with an Arrhenius-like expression for H(T ):

H(T ) = exp
(
α
( 1

T
− 1

Tα

))
, (6.5)

where the absolute temperature Tα has been set equal to the temperature
Tnominal of the rheometer experiments. Moreover, for the filler volume frac-
tion correction factor f(φ), the Maron Pierce model has been selected:

f(φ) =
(

1− φ

φM

)−2

. (6.6)

The expression for viscosity (6.4) becomes

η(γ̇, φ, T ) = H(T )
η0(

1− φ
φM

)2

1

1 +
(

λ(
1− φ

φM

)2 γ̇
)m (6.7)

In order to estimate the numerical value of coefficients η0 and λ and φM ,
the temperature correction factor H(T ) has been neglected, since the flow ex-
perienced by the filled compound in the rheometer could be approximately con-
sidered isothermal and

T ' Tnominal = Tα ⇒ H(T ) ' 1. (6.8)

With the aim of estimating the values of η0, λ and φM , it is assumed that,
at each level of filler concentration, the viscosity of the filled compound has a
Cross expression whose coefficients depend on filler volume fraction φ:

η(γ̇, φ) =
N0(φ)

1 +
(

Λ(φ)γ̇
)m(φ)

. (6.9)

Values ofN0(φ), Λ(φ) andm(φ) are computed, for each filler volume fraction,
fitting the experimental viscosity curves through expression (6.9).

Since equation (6.7) does not allow exponent m to depend on φ, the value
of m has been computed as

m = m̄ =
1

8

φ70phr∑
φ=φ0phr

m(φ). (6.10)
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Comparing equations (6.7) and (6.9), it must be

N0(φ) = η0

(
1− φ

φM

)−2

, Λ(φ) = λ
(

1− φ

φM

)−2

. (6.11)

Remark 6.1. Since, as pointed out in chapter 2, f(0)=1, then parameters η0

and λ in equation (6.7) are estimated as

N0(0) = η0f(0) = η0, Λ(0) = λf(0) = λ. (6.12)

The last task to perform is the estimation of coefficient φM which represents
the maximum packing filler volume fraction. In order to estimate the value of
φM , the ratios N0(φ)/η0 are computed. Rearranging equation (6.11A), it holds
that

N0(φ)

η0
= f(φ) =

(
1− φ

φM

)−2

⇒ φ = φM

(
1−

(N0(φ)

η0

)− 1
2
)
. (6.13)

The maximum packing filler volume fraction is then estimated as the slope

of the regression line φ vs
(

1 −
(
N0(φ)
η0

)− 1
2
)

. Obviously, to ensure that the

estimation of the maximum packing filler volume fraction is consistent with the
viscosity model (6.7), it must hold φM > φ70phr.

Figure (6.2) reports the experimental viscosity curves compared with the-
oretical viscosity curves computed employing equation (6.7). For what con-
cerns the unfilled polymer, the experimental viscosity curve is well matched by
equation (6.7). At low levels of concentration of silica, the agreement between
experimental and theoretical values of viscosity is quite satisfactory, with the
exception of low shear rates range. At higher levels of concentration of filler, the
discrepancy between experimental and theoretical values of viscosity becomes
more evident both at low and high shear rates.

Power Law Maron-Pierce Viscosity Model

The second viscosity model taken into consideration is the power law model:

η(γ̇, φ, T ) = H(T )η0f(φ)
(
f(φ)γ̇λ

)n−1

, (6.14)

with

H(T ) = exp
(
α
( 1

T
− 1

Tα

))
, (6.15)

and

f(φ) =
(

1− φ

φM

)−2

. (6.16)

For the sake of simplicity and with no loss of generality, the coefficient λ has
been set equal to 1 and the expression for viscosity (6.14) becomes

η(γ̇, φ, T ) = H(T )
η0(

1− φ
φM

)2

( γ̇(
1− φ

φM

)2

)n−1

. (6.17)
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Figure 6.2: Experimental viscosity data (red) compared to theoretical values of
viscosity (blue) obtained through Cross + Maron-Pierce viscosity model (6.7).
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Since the reference temperature Tα in the Arrhenius expression for H(T )
has been chosen to be equal to Tnominal, H(T ) ' 1 is negligible in equation
(6.17), due to the fact that the flow undergone by the filled compound in the
rheometer is approximately isothermal:

η(γ̇, φ) =
η0(

1− φ
φM

)2

( γ̇(
1− φ

φM

)2

)n−1

. (6.18)

In order to estimate the values of coefficients η0 and φM , it is assumed that,
at each filler volume fraction, the viscosity of the filled compound has a power
law expression with coefficients depending on φ:

η(γ̇, φ) = N0(φ)
(
γ̇
)n(φ)−1

. (6.19)

For filler concentrations from 10 phr up to 70 phr, the values of N0(φ) and n(φ)
are estimated performing a linear regression Log(η) vs Log(γ̇).

Remark 6.2. Assuming equation (6.19),

η = η(γ̇, φ) = N0(φ)
(
γ̇
)n(φ)−1

⇒ Log(η) = Log(N0(φ)) + (n(φ)− 1)Log(γ̇).

N0(φ) and n(φ) may be estimated as, respectively, the quote of the regression
line Log(η) vs Log(γ̇) and the slope of the regression line Log(η) vs Log(γ̇),
incremented by one.

Remark 6.3. As displayed in figure (6.1), viscosity curves, at low filler concen-
tration levels (φ10phr,φ20phr,φ30phr), show a power law behaviour only for high
values of apparent shear rate. This is the reason why, for each filler volume
fraction φ10phr ≤ φ ≤ φ70phr, only values of viscosity corresponding to γ̇app
such that

γ̇app,min < γ̇∗app,1 ≤ γ̇app ≤ γ̇∗app,2 < γ̇app,max (6.20)

have been employed in performing linear regression.

Remark 6.4. The viscosity curve corresponding to 0 phr, clearly presents a
zero shear viscosity: only at high apparent shear rates the power law behaviour
is matched. The value of N0(0) has been computed as the quote of the regression
line Log(η) vs Log(γ̇), including values of viscosity corresponding to γ̇app such
that

γ̇app,min << γ̇app ' γ̇app,max. (6.21)

Since expression (6.18) does not consider a dependence of exponent n on
filler volume fraction φ, n is set equal to

n = n̄ =
1

7

φ70phr∑
φ=φ10phr

n(φ). (6.22)
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The viscosity of the filled compound is then assumed to be

η(γ̇, φ) = N0(φ)
(
γ̇
)n−1

(6.23)

For φ10phr ≤ φ ≤ φ70phr, assuming η = η(γ̇, φ) = N0(φ)
(
γ̇
)n−1

, N0 has

been computed as

Log(N0(φ)) = (Log(η)− (n− 1)Log(γ̇app)) =

=
1

Nγ̇app

Nγ̇app∑
i=1

(Log(ηi)− (n− 1)Log(γ̇app,i)),

N0(φ) = 10(Log(η)−(n−1)Log(γ̇app)), (6.24)

while for φ0phr = 0, N0(0) = N0(0).

Remark 6.5. Equation (6.24) represents the least squares estimate of N0.
Assume to fix φ, let ηi be the experimental values of viscosity and let η̂i =
N0(φ)(γ̇app,i)

n−1. Define

Err =

Nγ̇app∑
i=1

(
Log(ηi)− Log(η̂i)

)2

=

=

Nγ̇app∑
i=1

(
Log(ηi)− (n− 1)Log(γapp,i)− Log(N0(φ))

)2

. (6.25)

Then

∂Err

∂Log(N0(φ))
= −2

Nγ̇app∑
i=1

(
Log(ηi)− (n− 1)Log(γapp,i)

)
+ 2Nγ̇appLog(N0(φ)),

(6.26)
∂2Err

∂Log(N0(φ))2
= 2Nγ̇app > 0. (6.27)

Then, the quantity Err is minimised for

Log(N0(φ)) =
1

Nγ̇app

Nγ̇app∑
i=1

(Log(ηi)− (n− 1)Log(γ̇app,i)). (6.28)

Comparing equations (6.18), and (6.23) it must hold that

N0(φ) = η0

(
1− φ

φM

)−2n

. (6.29)

Remark 6.6. Since f(0) = 1, the coefficient η0 could be estimated as

N0(0) = η0(f(0))n = η0. (6.30)
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Finally, with the aim of estimating the value of the maximum packing filler
volume fraction φM , ratios N0(φ)/η0 are computed. Indeed equation (6.29)
leads to

N0(φ)

η0
= (f(φ))n =

(
1− φ

φM

)−2n

⇒ φ = φM

(
1−

(N0(φ)

η0

)− 1
2n
)
. (6.31)

The maximum packing filler volume fraction φM can be estimated as the

slope of the regression line φ vs
(

1−
(

N0(φ)
η0

)− 1
2n
)

. Unsurprisingly, the values

of maximum packing filler volume fraction estimated with equations (6.13) and
(6.31) are such that

φM,Cross ' φM,Power Law (6.32)

Figure (6.3) displays the experimental viscosity curves compared with the
theoretical values of viscosity computed through expression (6.17). At high lev-
els of filler concentration, equation (6.17) matches quite well with experimental
viscosity data, both at low and high shear rates. For low levels of concentration
of silica, the agreement between theoretical and experimental values of viscosity
is quite satisfactory at high shear rates, while at low shear rates experimental
viscosity exhibits a plateau, differently from what prescribed by equation (6.17).

In conclusion, in numerical simulations, the employed viscosity models are:

η(γ̇, φ, T ) = H(T )
η0(

1− φ
φM

)2

1

1 +
(

λ(
1− φ

φM

)2 γ̇
)m , (6.33)

η(γ̇, φ, T ) = H(T )
η0(

1− φ
φM

)2

( γ̇(
1− φ

φM

)2

)n−1

. (6.34)

Beside equation (6.6), once known the numerical value of φM , some other
filler volume fraction corrections factors f(φ) may be considered both in the
Cross model (6.4) and the power law model (6.14):

• Chong:

f(φ) =
[
1 +

3

4

( φ
φM

1− φ
φM

)]2
; (6.35)

• Mooney:

f(φ) = exp
( 2.5φ

1− φ
φM

)
; (6.36)

• Pal:

f(φ) =
(

1−
(

1 +
(1− φM

φ2
M

)
φ
)
φ
)−2.5

; (6.37)

• Einstein:

f(φ) = 1 +
5

2
φ. (6.38)
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Figure 6.3: Experimental viscosity data (red) compared to theoretical values of
viscosity (blue) obtained through Power Law + Maron-Pierce viscosity model
(6.17).
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6.2 Thermal Properties

For what concerns the modelling of thermal properties of the filled compound,
the supplied experimental dataset collects the DSC (Differential Scanning Calorime-
try) measures of specific heat capacity of the filled compound, at different filler
concentrations and temperatures Tmin ≤ T ≤ Tmax (with Tmin < Tnominal <
Tmax) . As pointed out in chapter 5, the specific heat capacity has been con-
sidered to be dependent both on temperature and filler volume fraction:

Cp(T, φ) = Cp0 + Cp1(T − T0) + Cp2φ. (6.39)

With no loss of generality the temperature T0 has been set equal to 0, then

Cp(T, φ) = Cp0 + Cp1T + Cp2φ. (6.40)

Figure 6.4: DSC experimental values of specific heat capacity.

Figure (6.4) displays the Differential Scanning Calorimetry (DSC) exper-
imental values of specific heat capacity: the specific heat capacity seems to
increase with increasing temperature, at each level of filler concentration, while
seems to decrease with the increase in filler volume fraction, at each temperature
Tmin ≤ T ≤ Tmax.

Coefficients in equation (6.40) have been estimated performing a multiple
linear regression. Coherently with the previous considerations, coefficient Cp1
turned out to be positive: the energy per unit mass required to increase the
temperature of the filled compound by 1K increases with temperature. On
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the contrary, coefficient Cp2 turned out to be negative implying that the spe-
cific energy needed to increase the temperature of the filled compound by 1K
decreases with the increase in filler concentration.

As pointed out in chapter 5, the density of the filled compound at different
levels of concentration of silica has been estimated through a convex combination
of the densities of the unfilled compound and the density of the filler:

ρ(φ) = (1− φ)ρunfilled + φρSiO2
. (6.41)

Finally, the thermal conductivity of the filled compound has been computed
through the following formula, presented in chapter 5,

k(φ) = δ(φ)ρ(φ)Cp(Tnominal, φ), (6.42)

where the thermal diffusivity values of δ(φ0phr) and δ(φ50phr) has been found
in literature and then linearly interpolated to compute δ(φ), for φ ranging from
φ0phr up to φ70phr.
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Chapter 7

Numerical Simulations

This chapter collects the results of numerical simulations run in OpenFOAM,
considering different rheological models. As discussed in the previous chapter,
several models have been designed in order to describe the rheology of the silica
filled compound to which the experimental data refer. Those rheological models
have been employed in numerical simulations which replicate the flow of the filled
compound through a capillary rheometer with a circular cross section capillary
(capillary die) and a length over diameter ratio equal to L/D = 30/2. The
numerically computed pressure drops along the capillary die are then compared
with the experimental pressure drops in order to verify the capability of the
proposed rheological models to reproduce the behaviour of the filled compound.

7.1 Poiseuille Flow

In the capillary die of a capillary rheometer, the flow experienced by the filled
compound is approximately a Poiseuille flow in a cylindrical duct. The first
computational domain considered is a cylinder with radius R = 1mm and
length L = 30mm. In order to reduce the computational cost of simulations,
instead of constructing a cylindrical computational grid, an axisymmetric grid,
corresponding to a wedge of the cylindrical duct with an angle θ = 2π

90 (figure
(7.1)), is considered.

Figure 7.1: Axisymmetric Computational Domain - Poiseuille Flow.
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Figure 7.2: Numerically computed pressure drops at different apparent shear
rates for different levels of concentration of silica (Cross + Maron-Pierce viscos-
ity model (7.3)).

For what concerns boundary conditions, temperature has been set equal to
Tnominal both at the inflow boundary and at the wall of the duct, while the
condition ∂T

∂~n = 0 has been imposed at the outflow boundary. Pressure has been

set null at the outlet and ∂P
∂~n = 0 has been prescribed at the inlet and at the

walls of the cylindrical duct. Regarding velocity, a no-slip boundary condition
has been assumed on the walls of the duct while an incoming mass flowrate has
been imposed at the inflow boundary:∫

ρ~u · ~n = Q, (7.1)

with

γ̇app,min < γ̇app =
4Q

πR3
< γ̇app,max. (7.2)

A null normal velocity derivative ( ∂~u∂~n = 0) has been imposed onto the outflow
boundary of the computational domain. Numerical pressure drops have been
computed by taking the difference between the mean pressure on the inflow
boundary and the mean pressure on the outflow boundary.

Figure (7.2) displays numerically computed pressure drops obtained with
the Cross + Maron-Pierce viscosity model:

µ(φ, T, γ̇) = H(T )
η0(

1− φ
φM

)2 1

1 +
(

t(
1− φ

φM

)2 γ̇)m , (7.3)
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with

H(T ) = exp
(
α
( 1

T
− 1

Tα

))
. (7.4)

For each level of filler concentration (ranging from 0phr to 70phr), pressure
drops increase with the increase in apparent shear rate: for high apparent shear
rates, the fluid is flowing faster into the capillary die, hence pressure has to
“push” higher at the inflow boundary. On the other side, at each apparent
shear rate, pressure drops increase with the increase in silica concentration:

∂η(γ̇, φ, T )

∂φ
=
{ H(T )η0(

1− φ
φM

)2

(
1− φ

φM

)2m−1
2
φM(

1− φ
φM

)2m

+ (tγ̇)m

}{ (1−m)(tγ̇)m +
(

1− φ
φM

)2m

(
1− φ

φM

)2m

+ (tγ̇)m

}
> 0.

(7.5)
Increasing the filler volume fraction φ, the viscosity η(γ̇, φ, T ) increases (7.5),
hence internal friction increases and a higher pressure is required in order to
push the fluid through the capillary die.

Figure (7.3) displays a comparison between experimentally measured pres-
sure drops and numerically computed pressure drops at different concentrations
of silica. For low levels of concentration of silica (φ = φ0phr, φ = φ10phr), the
numerically computed pressure drops and the experimental pressure drops are
quite close one to the other, especially at low apparent shear rates, while at high
apparent shear rates, numerical results and experimental data tend to diverge.
On the contrary, for higher levels of concentration of silica, the numerical pres-
sure drops are below the experimental measures, and the disagreement between
them increases with the increase in filler concentration. Beside the Cross +
Maron-Pierce viscosity model (7.3), many other viscosity expressions may be
constructed:

µ(φ, T, γ̇) = H(T )η0f(φ)
1

1 +
(
tf(φ)γ̇

)m , (7.6)

choosing for the volume fraction correction f(φ) one of the models described by
equations (6.35-6.38).

Figure (7.4) displays numerical pressure drops computed employing differ-
ent filler volume fraction corrections. For what concerns the unfilled polymer,
the numerically computed pressure drops are independent of the filler volume
fraction model, since for all filler volume fraction models f(φ0phr) = f(0) = 1.
At low levels of filler concentration, all the filler volume fraction models almost
coincide with the Einstein model, then the pressure drops computed employing
different volume fraction corrections almost coincide. At higher levels of con-
centration of filler, differences between numerically computed pressure drops
become more evident. Actually the pressure drops predicted by the Maron-
Pierce, Pal and Chong models are similar at all levels of filler concentration.
For φ30phr ≤ φ ≤ φ70phr, the pressure drops computed employing the Einstein
volume fraction model are clearly below the pressure drops obtained through
the other filler volume fraction models, since the Einstein filler volume fraction
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Figure 7.3: Experimental pressure drops compared with numerical pressure
drops for different levels of concentration of silica (Cross + Maron-Pierce vis-
cosity model (7.3)).
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correction, differently from the others, has been designed to describe the rheol-
ogy of dilute solutions (i.e.φ ' 0). For intermediate filler volume fraction values
(φ30phr ≤ φ ≤ φ50phr) ,the pressure drops predicted by the Mooney filler vol-
ume fraction model are below the pressure drops obtained with the other models
(with the only exception of the Einstein expression (6.38)). For φ = φ60phr the
pressure drops computed employing different volume fraction models almost co-
incide (with the exception of the Einstein model (6.38)). For φ = φ70phr the
Mooney expression for filler volume fraction correction f(φ) produces some un-
physical values for pressure, which are not reported in figure (7.4): at high values
of filler volume fraction the expression (6.36) diverges more rapidly with respect
to other filler volume fraction models, affecting heavily the quality of the nu-
merical results. Figure (7.4) displays also the experimental pressure drops. The
best filler volume fraction model in approximating the experimental pressure

drops seems to be the Maron-Pierce expression f(φ) =
(

1− φ
φM

)−2

.

Figure (7.5) displays pressure drops obtained from numerical simulations
involving the Power Law+ Maron-Pierce viscosity model:

µ(φ, T, γ̇) = H(T )
η0(

1− φ
φM

)2( γ̇(
1− φ

φM

)2)n−1

, (7.7)

with

H(T ) = exp
(
α
( 1

T
− 1

Tα

))
. (7.8)

As can be seen in figure (7.5), the pressure drop along the capillary die
increases with the increase in apparent shear rate (i.e. with the increase in
flowrate through the inflow boundary), at each level of concentration of silica.
Moreover, at each apparent shear rate the pressure drop increases with the
increase in filler concentration since the higher is the filler volume fraction φ,
the higher is the viscosity according to equation (7.7), since

∂η(γ̇, φ, T )

∂φ
=
H(T )η0γ̇

n−1(2n)(
1− φ

φM

)2n+1

( 1

φM

)
> 0. (7.9)

It’s worth to notice that the increase in pressure drop between 60 phr and
70 phr is larger than the increase in pressure drop between 50 phr and 60 phr.
Since viscosity increases more than linearly with respect to filler volume fraction

∂2µ

∂φ2
= H(T )η0γ̇

n−1 2n(2n+ 1)

φ2
M

1(
1− φ

φM

)2n+2 > 0, (7.10)

the increment in viscosity (hence in pressure drops) increases as the filler volume
fraction φ gets closer to φM .

Figure (7.6) performs a comparison between experimental pressure drops and
numerical pressure drops computed employing the Power Law + Maron-Pierce
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Figure 7.4: Experimental pressure drops compared with numerical pressure
drops for different levels of concentration of silica and different filler volume
fraction models.
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Figure 7.5: Numerically computed pressure drops at different apparent shear
rates for different levels of concentration of silica (Power Law + Maron-Pierce
viscosity model(7.7)).

viscosity model (7.7). The agreement between numerical and experimental val-
ues is good at all levels of concentration of silica with the exception of 0 phr. For
0 phr, the Power Law + Maron-Pierce viscosity curve differs significantly from
the experimental viscosity curve which, instead, presents a zero shear viscosity
(see figure (6.3)): it should be expected that the numerical pressure drops do
not match the experimental ones. Moreover, the Power Law + Maron-Pierce
viscosity model overestimates the value of the viscosity of unfilled compound
with respect to the experimental viscosity, as reported in figure (6.3), then the
numerical pressure drops are coherently higher than the experimental ones.

As for the Cross viscosity model, also the Power Law viscosity expression
may give raise to many different viscosity models :

µ(φ, T, γ̇) = H(T )η0f(φ)
(
f(φ)γ̇

)n−1
, (7.11)

choosing for f(φ), instead of the Maron Pierce model f(φ) =
(

1 − φ
φM

)−2

, one

of the expressions (6.35-6.38).
Figure (7.7) compares experimental pressure drops with numerical pressure

drops computed employing different filler volume fraction models (6.35-6.38) and

f(φ) =
(

1− φ
φM

)−2

. For what concerns the unfilled compound, the numerically

computed pressure drops are independent of the filler volume fraction correction,
since for all models f(φ0phr) = f(0) = 1. At low levels of filler concentration, the
pressure drops obtained through different filler volume fraction models are quite
similar, since all the volume fraction corrections almost coincide with the Ein-
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Figure 7.6: Experimental pressure drops compared with numerical pressure
drops for different levels of concentration of silica (Power Law + Maron-Pierce
viscosity model (7.7)).
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stein expression (6.38) for φ→ 0. At higher values of filler volume fraction the
numerically computed pressure drops differ on the basis of the volume fraction
model employed. The Maron-Pierce, Chong and Pal volume fraction corrections
predict similar pressure drops at all levels of filler concentration. The numerical
pressure drops obtained through the Einstein filler volume fraction model clearly
lay below the values obtained through other filler volume fraction corrections,
since the Einstein model, differently form the others, is suited for low filled
compounds. For what concerns the Mooney filler volume fraction correction,
the numerically computed pressure drops are below the pressure drops obtained
employing the Maron-Pierce, Chong and Pal volume fraction models for inter-
mediate levels of filler concentration (φ30phr ≤ φ ≤ φ50phr). At φ = φ60phr

the pressure drops predicted by the Mooney filler volume fraction model almost
coincide with the Maron-Pierce pressure drops. For high filler volume fraction
values (φ = φ70phr), the Mooney correction give raise to unphysical pressure
drops which are not reported in figure (7.7): the Mooney highly divergent ex-
pression for f(φ) (6.36) heavily influences the reliability of numerical results.
Figure (7.7), displays also the experimentally measured pressure drops. A com-
parison between the experimental pressure drops and the numerical pressure
drops obtained through the different volume fraction models, seems to suggest

the Maron-Pierce volume fraction model f(φ) =
(

1 − φ
φM

)−2

as the best filler

volume fraction correction in approximating the experimental data.
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Figure 7.7: Experimental pressure drops compared with numerical pressure
drops for different levels of concentration of silica and different filler volume
fraction models.
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7.2 Contraction Flow

A second slot of numerical simulations have been run on a wedge grid repre-
senting not only the capillary die but also the reservoir of the rheometer (figure
(7.8)).

Figure 7.8: Axisymmetric Computational Domain - Contraction Flow.

The capillary die has still dimensions R = 1mm, L = 30mm, while the
radius of the reservoir (a cylinder aligned with the capillary die) is Rtank =
15mm. Boundary conditions are the same as in the previous computational
domain (conditions on the walls of the capillary die have been extended to
the walls of the tank). Still the grid is an axisymmetric wedge grid with an
angle θ = 2π

90 . Pressure drops have been computed as the difference between
the average pressure at the entrance of the the capillary die (not the inflow
boundary) and the average pressure on the outflow boundary.

In figure (7.9) are plotted numerical pressure drops computed with the Cross
+ Maron-Pierce viscosity model (7.3) on the axisymmetric grid including the
reservoir of the rheometer, compared with the pressure drops obtained with
the grid representing only the capillary die of the rheometer. The difference
between the pressure drops obtained with these two grids is minimal: including
the reservoir in the computational domain is not really significant but requires
a higher computational effort.

Finally in figure (7.10) is shown the difference between numerical pressure
drops computed employing the Power Law + Maron-Pierce viscosity model (7.7)
on different computational grids: the grid reproducing only the capillary die
and the grid including the reservoir of the capillary rheometer. Once again,
the discrepancy between the two curves is negligible, with the only exception
of high filler volume fractions and high apparent shear rates, then it’s not very
relevant to include or not the reservoir in the computational domain.
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Figure 7.9: Numerically computed pressure drops with Cross + Maron-Pierce
viscosity model (7.3) with different computational grids.
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Figure 7.10: Numerically computed pressure drops with Power Law + Maron-
Pierce viscosity model (7.7) with different computational grids.
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Chapter 8

Conclusions

Numerical simulations have been undertaken for the flow of a filled polymer com-
pound through the die of capillary rheometer. The filled compound has been
modeled as an incompressible generalized Newtonian fluid, employing several
non isothermal and filler-concentration-dependent viscosity models, which have
been constructed combining some canonical viscosity models (together with the
well known Arrhenius expression, to include the dependence of viscosity on tem-
perature) with some relative viscosity expressions extracted from both recent
and traditional literature on filled compounds. This approach leads to high
modularity and flexibility in describing the rheology of a filled compound, as-
sembling a suitable “complete” viscosity model by gathering an expression for
viscosity and suitable models in order to represent the dependence of viscosity
on temperature and filler concentration (i.e filler volume fraction). In order to
approach the investigation of the flow of a filled compound through the die of a
capillary rheometer, Poiseuille flows of an incompressible generalized Newtonian
fluid in ducts with different cross sections have been analyzed, once governing
equations (i.e. the Navier-Stokes system coupled with the energy balance equa-
tion) have been introduced together with their theoretical continuum mechanics
background. Moreover, some corrections to be applied on rheometers experi-
mental data have been presented and discussed. The aforementioned viscosity
models have been implemented in OpenFOAM, an open source software for the
solution of continuous differential problems through the Finite Volume Method
(FVM). Finally, the supply of experimental rheometer data allowed to estimate
the numerical value of coefficients of many of the above mentioned viscosity
models, which have been lately employed in OpenFOAM to run numerical sim-
ulations.

If the unfilled polymer exhibits a Newtonian plateau at low shear rates, Cross
or Bird-Carreau viscosity expressions (corrected through some suitable models
to make viscosity temperature and filler-volume-fraction dependent) should be
preferred, at least at low filler concentration levels. On the other hand, if the
unfilled compound presents a power law viscosity behaviour, temperature and
filler volume fraction corrections should be combined with a power law viscosity
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model, in order to describe the rheology of the filled compound. Moreover, even
if the unfilled compound presents a Newtonian behaviour at low shear rates,
a temperature and filler volume-fraction-dependent power law model, may be
employed in order to describe the rheology of the filled compound on a wide
range of filler concentration levels : the addition of filler, especially at high
levels of concentration, usually erases the low shear rates Newtonian plateau.
Among expressions employed to make viscosity filler-concentration-dependent,
the one by Maron-Pierce, although quite traditional, is confirmed as a skillful
and manageable filler volume fraction model.

As pointed out in chapter 2, the dispersion of fillers into polymer matri-
ces is likely to alter several rheological properties, other than viscosity. In this
prospective, an investigation on yield stress appearance (viscoplasticity), shear
oscillatory and elongational behaviours, with respect to filler loading level, may
be useful to improve the actual knowledge and mathematical modelling tools
about filler compounds. Moreover, some more complex and accurate viscosity
models than those presented in this research (quite “handy” and intuitive) may
be corrected and enabled to describe the viscosity of filled compounds depending
on the filler concentration. Actually, also viscoplastic or viscoelastic rheological
models may be suited to describe the rheology of unfilled polymers and, conse-
quently, corrected and made suitable to catch the rheological behaviour of filled
compounds. As a matter of fact, also the effect of filler particles shape (aspect
ratio) and size distribution plays an important role in determining the rheology
of filled compounds and could be included in the mathematical description of
their rheology. Finally, viscosity models proposed in this research have been
employed in numerical simulations of simple experimental flows but could be
tested in CFD simulations of more complex flows which may occur in industrial
filled polymers processing.
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