
50 % 50 %

70 % 30 %

70 % 30 %

POPULATIONS
OF 
GRAPHS

: STATISTICAL ANALYSIS 
IN THE GRAPH SPACE 
WITH APPLICATIONS 

TO URBAN MOVEMENTS

Doctoral Dissertation of:
Anna Calissano

Politecnico di Milano

Supervisor:
 Prof. Simone Vantini

Co-Supervisor:
 Prof. Valeria Fedeli



POLITECNICO DI MILANO
DEPARTMENT OF MATHEMATICS

DOCTORAL PROGRAM IN
MATHEMATICAL MODELS AND METHODS IN ENGINEERING

POPULATIONS OF GRAPHS:
STATISTICAL ANALYSIS IN THE GRAPH SPACE

WITH APPLICATIONS TO URBAN MOVEMENTS.

Doctoral Dissertation of:
Anna Calissano

Supervisor:
Prof. Simone Vantini

Co-Supervisor:
Prof. Valeria Fedeli

The Chair of the Doctoral Program and Tutor:
Prof. Irene Maria Sabadini

2020 – XXXIII Cycle



Abstract

Populations of graphs are a complex and strongly non-Euclidean data type describing dif-
ferent relational phenomena in different fields. The aim of this PhD thesis is to develop
statistical tools for the analysis of populations of unlabelled graphs, embedding them in
the Graph Space, a quotient space of permuted adjacency matrices. We perform cluster
analysis, we define Geodesic Principal Components, and Graph-valued regression model.
We introduce an algorithm, namely Align All and Compute, to estimate the defined in-
trinsic statistic in the Graph Space. These original statistical tools are applied to quantify
and analyse urban movements, in order to understand how people move within a square,
a city, a region. We discuss if the description of a spatial occurrence in an abstract space
can reveal interesting perspectives about the analysis of reality.
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Sommario

Molti fenomeni appartenenti alle discipline più disparate possono essere quantificati grazie
all’utilizzo dei grafi, ed in particolare all’uso di popolazioni di grafi. L’obiettivo di questa
tesi è quello di sviluppare metodologie statistiche per l’analisi di popolazioni di grafi. In
particolare, la tesi si focalizza su popolazioni di grafi senza corrispondenze di nodi tra
un grafo e l’altro. Queste osservazioni sono rappresentate come classi di equivalenza di
grafi con nodi permutati in uno spazio quoziente denominato Graph Space. All’interno
di questo contesto geometrico, la tesi sviluppa metodologie statistiche quali le Compo-
nenti Principali, e la regressione per prevedere una popolazione di reti. Dal punto di
vista applicativo, la tesi si concentra sull’utilizzo delle tecniche statistiche sviluppate allo
studio della mobilità urbana su diverse scale: locale (piazza, parco), urbana (città, area
metropolitana), e territoriale. L’applicazione pone quesiti interessanti relativi all’utilizzo
di uno spazio geometrico astratto, quale il Graph Space per la descrizione di un fenomeno
spaziale.
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This PhD thesis is the output of a joint scholarship between the Department of Urban
Studies and the Department of Mathematics of Politecnico di Milano. To help the reader
navigates the thesis, we display at the beginning of each section a bar, summarizing the
percentage of Urban Studies and the percentage of Statistical Modelling discussed in
the Section. Reader interested in one or the other subject can focus only on the related
sections.

At the beginning of each section, this bar is reported with the corresponding percentages describing
the content of the section.
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CHAPTER1
General Introduction

How can we compare two graphs with different numbers of nodes? How can we describe
the variability of a set of graphs? Is this variability defined in terms of topology, nodes,
edges, or attributes? How can we predict a set of graphs from a set of regressors? All these
questions can be framed within the analysis of populations of graphs. The aim of this PhD
thesis is to answer some of these questions by developing statistical tools for the analysis
of populations of graphs. Populations of graphs appear to be a powerful representation of
reality in very different fields. We applied the developed statistical tools for the analysis
of urban movements represented as a set of graphs. This Introduction 1 is divided in three
main sections. In Section 1.1, we introduce the mathematical background of the analysis
of population of graphs. In Section 1.2, we introduce the concept of urban movement and
we discuss about the analysis of a spatial phenomena and the choice of a suitable geomet-
rical embedding. The last Section 1.3 describes how a population of graphs can describe a
urban movement phenomenon. The rest of the thesis is organized as follow:

Chapter 2 describes the chosen embedding space for the analysis of population of
graphs, namely Graph Space. We detailed the geometrical properties of the space such
as the metric, the geodesics, and the curvature required to define intrinsic statistical tools
(Section 2.2).
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Chapter 1. General Introduction

Chapter 3 focuses on the definition of new statistical models to explore population
of graphs in the Graph Space. We start with a case study about cluster analysis of urban
movements (Section 3.1), we discuss the analysis of the properties of the Fréchet Mean
(Section 3.2), and we define the concept of Geodesic Principal Components (Section 3.3).

Chapter 4 is about prediction methods. In Section 4.1, we define a graph-valued
regression model. In the last Section 4.2, we introduce a conformal prediction interval for
graphs, applicable to different prediction models.

1.1 Populations of Graphs

A graph (or a network) is a mathematical structure used to study relational phenomena in
different fields. A graph is characterized by a set of nodes (actors, vertices) and a set of
relations (links, edges) between them. From a methodological perspective, the analysis
of networks roots back in centuries and it has been challenging mathematicians due to its
intrinsic complexity. The scientific literature has so far primarily focused on analysing
graphs in a first generation setting (Wang and Marron, 2007): the analysis and modelling
of a single network datum with a set of nodes and a set of edges. The second generation
approach involves the analysis of a population of network-valued data: the analysis of not
one but a set of networks. Network-valued data are an example of complex data and the
statistical analysis of such data is generally referred to as Object-Oriented Data Analysis
Wang and Marron (2007). Note that we will use the term graph and the term network
interchangeably throughout the thesis.

The scientific literature regarding the first generation approach to networks is rich and
lays at the intersection of different disciplines such as physics and applied science, e.g.
(Barabási, 2016); sociology, e.g. (Wasserman and Faust, 1994); statistics, e.g. (Gold-
enberg et al., 2010; Kolaczyk and Csárdi, 2014); mathematics, e.g. (Chartrand, 1977);
biology and medicine e.g. (Forster et al., 2020). Network Analysis studies the complexity
of a network object and defines all sort of methods to find hubs and dependencies between
nodes, to cluster and to classify nodes, to compute shortest paths, to predict edges, to com-
pute graph density, etc. The second generation approach poses very different questions,
aiming at defining statistical methods for the analysis of populations of network-valued
data. A population of network-valued data is a sample of networks describing a phe-
nomenon: a set of brain connectivity networks in different patients (Durante et al., 2017);
a time series of mobility origin-destination matrices (Calissano et al., 2020b); students’
social interactions at different grades at school, a social media network of different plat-
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1.1. Populations of Graphs

form users etc. These populations of complex data require statistical analysis and pose
interesting research questions.

In the analysis of complex data like networks, the starting research question concerns
the embedding space: the definition of a space where every complex datum is a point.
If all the networks in the sample share the same nodes, the problem could be re-framed
as an analysis of a set of matrices (i.e. adjacency matrices). This data type are called
labelled networks (Jain and Obermayer, 2009). If the networks describe the same class
of phenomena, but they have varying numbers of nodes or inconsistent node labelling,
the mathematical challenges involved in the analysis become numerous. These data are
called unlabelled networks and they are going to be the object of analysis in the current
work. In Figure 1.1, two simple weighted undirected graphs are compared in a labelled or
unlabelled setting, leading to very different results. Note that there are an infinite possible
intermediaries between the fully unlabelled and the fully labeled networks. In Chapter 2, a
detailed review of different embedding strategies for populations of unlabelled networks is
offered, together with the description of the chosen embedding space of the current work:
Graph Space. Graph Space is a quotient space obtained by applying node permutation to
the space of adjacency matrices.

n0 n1

n2

300

121

n3

n0 n1

n2

300

121

n3 2727

Figure 1.1: Two weighted undirected networks. They are different in a labelled node setting and
the same in an unlabelled node setting if n0 Ñ n1, n2 Ñ n3 are matched.

Graph Space is an example of natural embedding space (Marron and Alonso, 2014),
which is a space where each point is a potential meaningful network - in other words the
embedding is bijective. It is not always necessary to study networks (or complex object in
general) in a natural space. In fact, there is no requirement of interpolation between the
data points for some statistical methods, such as the classification of population of net-
works, the clustering, and the regression of a scalar from a population of networks. Meth-
ods such as graph kernels (Shervashidze et al., 2011; Vishwanathan et al., 2010) or graph
neural networks (Xu et al., 2018; Zhang et al., 2018) reduce each network to fixed-size
feature vector and study the feature vectors in an Euclidean setting, recycling well-known
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Chapter 1. General Introduction

multivariate statistical tools. When the aim of the analysis is to interpolate between net-
works (computing principal components to project the data on, estimating a regression
line of networks), a natural embedding such as Graph Space is required (see Figure 1.2 for
a conceptual representation). For different complex data rather then networks, building
statistical models in a natural embedding space has been explored. Examples are stud-
ies in Functional Data Analysis (Ramsay and Silverman, 2007), Shape Analysis (Kendall,
1984), Population of Trees (Billera et al., 2001; Wang and Marron, 2007) - see Marron
and Alonso (2014) for a review of different data type and methods. Networks are an ex-
ample of strongly non-Euclidean data type. Developing statistical tools for the analysis of
strongly non-Euclidean data is an essential research question, stimulating interdisciplinary
research, breaking boundaries between statistics, geometry, and computer science.

ClassificationRaw input Regression

?

Interpolation

Figure 1.2: Predicting classes or real-valued regression outputs from graphs is "easy" – these
problems can be handled by embedding network data into Euclidean feature space while only
maintaining the structure of the output variable. Network-valued interpolation are far more
challenging, as they require being able to interpolate between networks. Used by permission of
A. Feragen

To the best of our knowledge, very few researches have been conducted in the direction
of building intrinsic methods for the analysis of population of unlabelled networks. This
PhD thesis has the aim to start from the basis, describing a natural embedding for networks
and building gradually statistical tools for the exploration and the prediction of networks
within this embedding, proposing some solutions and stimulating new research questions
related to this extremely complex and interesting topic.

1.2 Urban Movement

Human Individual Movement is defined as "how individual humans move within a network
or a system" (Keyfitz, 1973). When the system or the network is a urban environment, we
talk about urban individual movement. Understanding how individuals move in a specific
environment is an intrinsically valuable research question, potentially revealing key infor-
mation for planners, policy makers, landscape architects, urban designers, sociologists etc.

4



1.2. Urban Movement

(Gonzalez et al., 2008; Toole et al., 2012; Wang et al., 2012). The interest is not only in
urban studies, but also in other disciplines such as disease spread (Colizza et al., 2007), or
socio-economic development (Pappalardo et al., 2015). Human individual movement can
be studied at a different scale in space, according to the selected scale of the system. In
the following, we focus on three possible level of analysis: micro-scale (or human scale),
meso-scale (or urban scale), and macro-scale (or territorial scale). Scale is a continuous
parameter, this interval separation is subjective and changes from case to case.

Focusing on the micro-scale (i.e. human-scale Giampieri et al. (2017)), urban move-
ment can be framed in the concept of "Public Life", referring to citizens’ "daily interactions
with others within the built environment" (Gehl, 2011). Focusing on the urban movement
in a square, a park, or a pedestrian cross, scholars can understand the quality of building
environment, providing planners and policy makers an interesting insight on the effective
usage of the public space (Gehl and Svarre, 2013; Giampieri et al., 2017; Riva et al., 2019;
Whyte et al., 1980).

Figure 1.3: A crossroad showing pedestrian interacting with the building environment and infras-
tructure (Gehl, 2011).

Focusing on the meso-scale (i.e. a infra-urban area mobility), human movement can re-
veal mobility motifs and patterns, useful to transport modelling, sustainable urban studies,
policy making (Lord et al., 2011; Ratti et al., 2006). The scale could even be a macro-
scale (Brenner, 2000, 2014; Brunet, 1989). In the macro-scale system, individual mobil-
ity could reveal cosmopolitan and globalization behaviours (Beck, 2017), as well as new
inter-regional patterns (Jensen and Richardson, 2004). Within this framework, studying
movement on a different scale can help planners to interpret different characteristics of the
urban environment, as for example the relationship between its layout and its usage, or

5



Chapter 1. General Introduction

the design features that influence human perception and decision making in such a realm.
Note that, individual movement does not have to be limited to the analysis of the spatial
movement of humans: it can refer to the whole related feature of these movement as well
as its consequences. For example, one can be interested in the analysis of geo-localized
opinions expressed by users on social media (Riva et al., 2019).

The analysis of the urban movement in the urban space can be conduced in a differ-
ent methodological way. The problem can be tackle using a qualitative (e.g. Lord et al.
(2011)), a quantitative (e.g. Gonzalez et al. (2008)), or mixed approach (e.g. Goetz et al.
(2009)). It is not the aim of this section to open a discussion about whether it is better to
use one approach or the other (we suggest Goetz et al. (2009); Røe (2000) for a discus-
sions about this topic). In the past, many different quantitative tools have been developed
to study urban movement - among all, we focus on statistics for two main reasons. The
first one is the increasing interest in data analysis due to the augmented data gathering and
storage. The second reason is related with the traditional role of statistics, as a mathemat-
ical field designed to study complex phenomena, not easily described by physics. Urban
movement in fact is linked to the cognitive perception of space and the psychology of
human beings, making this problem far from being a pure physical phenomenon.

Statistical Analysis of Urban Movement

In this section, we focus the statistical analysis of urban movement. A first part is dedicated
to describe the increasing attention to data analysis and the increasing faith in the informa-
tion carried by data. Then, we introduce the concept of "complex systems" and the related
concept of "reductionism". Urban movement is an example of a complex phenomenon
which can be analysed using data. To avoid reductionism in this analysis, we discuss the
choice of geometry when we analyse a spatial problem. Arguing that the spatial analysis -
such as the analysis of the movement - has mostly been conducted in the Euclidean setting,
we discuss the reductionism of this choice. To introduce the reader to the choice of the ge-
ometrical framework, we briefly introduce Euclidean and non-Euclidean geometry and we
summarize Nagel’s discussion about geometry beyond classical space measurement tools.
Even if apparently uncorrelated, the choice of a proper geometry is a first step to avoid the
reductionism in measuring and analysing a complex phenomenon as urban movement.

Digital Positivism

Following the Google mantra "nobody is as smart as everybody" (Wyly, 2014), the last
decade has been characterized by an increasing amount of stored data about many dif-
ferent aspects of life, including of course urban movement. Google is only one of the
thousand of companies collecting everyday data. As stated by Wyly (2014), this data flow
gives rise to a new era of positivism, also called digital positivism (Fuchs, 2017; Fuchs
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1.2. Urban Movement

and Mosco, 2015; Mosco, 2017). This era causes the growing of an unconditional faith
in knowledge retrieval through data, with extremist statement as the one published on
Wired by Chris Andersen: "Forget taxonomy, ontology, and psychology. Who knows why
people do what they do? The point is they do it, and we can track and measure it with
unprecedented fidelity. With enough data, the numbers speak for themselves." (Anderson,
2008). A part from Anderson’s extreme perspective on the topic, the usage of data has
been becoming a paradigm in many different fields, including urban studies. These disci-
plines have been strongly influenced and reshaped by the digital positivism flow (Graham
and Shelton, 2013). In particular, the analysis of urban movement has been studied un-
der a data-driven perspective by enthusiastic scholars (e.g. Pucci et al. (2015); Ratti et al.
(2006); Reades et al. (2007)), showing the power of data usage in the sector.

By contrast, a new form of post-positivism has been growing as a side-effects of the
digital positivism (Goetz et al., 2009; Graham and Shelton, 2013; Wyly, 2014). For exam-
ple, Graham and Shelton (2013) argue that "an increasing reliance on data in the political
process opens up worries of ceding politics itself to data, tools, and machines. Allowing
data and algorithms alone to determine policy can never be a value-neutral or depoliticized
process...". The worrisome concerning political institutions and data driven policies is also
expressed in Wyly (2014), under the criticism of the Positivist City Hall. Other critiques
are related to the auto-referential loop and bias increase in the collection of data shadow
(i.e. the data traces we unconsciously leave while doing our daily activities). "Not only
there are always highly uneven data shadows, and not only do those data shadows have
effects in the world, but the powerful links between the big data practices and the big data
meme itself will only reinforce those very issues. Material and digital ghettoization and
Balkanization are produced in a recursive relationship. Such out comes are only amplified
by the popularity of the big data meme among technologists, journalists, and venture cap-
italists. As the data shadows of some people, places, and processes become increasingly
dense and well defined, the utility of those data increases, reinforcing the alternatively
virtuous or vicious cycles of data production, consumption, and usage." (Graham, 2014;
Graham and Shelton, 2013). This last criticism is related to a more general political and
philosophical critique to the positivism research paradigm, as a status-quo preserving ap-
proach to reality (Fuchs, 2017; Fuchs and Mosco, 2015). Note that the discussion about
digital positivism expands far behind the academic circle, see for example O’neil (2016)
and the 2020 documentary "The Social Dilemma" on Netflix.

Digital positivism in the urban context is related to smart city (Ratti et al., 2006). Smart
city is a broad concept, focusing on many different aspect of the urban environment, such
as data driven planning, transport optimization, and social welfare analysis. As to the
analysis of urban movement and perception, the usage of digital traces has been boosted
in the last decades. Digital traces offer a unique source of data to track perception and
movement. However, digital positivism in the big data era has been strongly criticised.
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Chapter 1. General Introduction

The critiques are both ontological and technical. Among the ontological critiques, digi-
tal positivism is related for example to a new form of "surveillance capitalism" (Zuboff,
2015). The technical critiques regard the effective quality of the data collected as well as
the effective true knowledge gained from the analysis of this amount of data. Apart from
all the possible critiques, it is a fact that these data are a unique occasion to understand
urban movement. Urban movement is a perfect example of a problem hard to analyse with
official and static data. However, to have all the information is only the first step of the
analysis - and surely not the hardest. Complex phenomena generate complex data and
require complex methodology.

Complexity and Reductionism in Statistics

As explained in Manson and O’Sullivan (2006), complexity theory can play an important
role in "space-and-place-based studies". Complexity theory is a "complex" field, embrac-
ing different disciplines, different definitions, and different solutions. Defining complexity
is not an easy task (see for an overview on the subject Richardson et al. (2001)). Here we
refer to three type of complexity as described in Manson and O’Sullivan (2006):

- aggregate complexity, which is the study of how individual elements working in con-
cert create complex systems which have internal structure relative to a surrounding
environment.

- algorithmic complexity, from mathematical complexity theory and information the-
ory, which contends that the complexity of a system resides in the difficulty of de-
scribing system characteristics.

- deterministic complexity attempts to simplify some classes of dynamic systems with
the aid of chaos theory and, to a lesser extent, catastrophe theory.

Different complexity types affect the study of urban movement within space. In par-
ticular, scholars attempt to study the aggregation of individuals in urban landscape (ag-
gregate complexity) by using mathematical models (algorithmic complexity). The quan-
titative description of this complex system can be conduced using different mathematical
tools. Possible mathematical frameworks are partial differential equation (e.g. Colombo
(2002)), stochastic equations (e.g. Boel and Mihaylova (2006)), and statistics (e.g. Secchi
et al. (2015)). As stated in the previous paragraph, a mass of complex data concerning
many different phenomena is sampled every second. Researchers on how to analyse in
a meaningful way this source of data are required in every field. Among all the mathe-
matical techniques, we are going to focus on the statistical approach to complex systems,
where phenomena are studied via analysis of data collected from the system. The algorith-
mic complexity is declined in the statistical modelling of a complex system. In complex
system analysis, a straightforward "sin" can be reductionism (Manson and O’Sullivan,
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1.2. Urban Movement

2006). There is a thin line between the holistic attempt to describe a complex system, the
emergence phenomenon, and the reductionism of the analysis conduced. As well as com-
plexity, reductionism is another complicated philosophical concept. Here we are referring
to Honderich (2005) for a definition:

- Ontological reductionism: a belief that the whole of reality consists of a minimal
number of parts.

- Methodological reductionism: the scientific attempt to provide explanation in terms
of ever smaller entities.

- Theory reductionism: the suggestion that a newer theory does not replace or absorb
an older one, but reduces it to more basic terms.

In this discussion, we are focusing on Methodological reductionism. Methodological re-
ductionism has a deep root in the statistical field and it is strongly related with the concept
of sufficiency. In the following, we decline both complexity and reductionism in the statis-
tics.

Complexity theory has a long-time relationship with mathematics. One of the most
important players of this discussion is the so-called "Chaos and Complexity theory" (see
for example Cambel (1993)). We are interested in interpreting the complexity concept
within the statistical framework. The statistical approach is dealing with phenomena that
can not be physically described due to their intrinsic complexity. We report here a simple
but enlightening example: "Probability [and Statistics] deals with the study and mathe-
matical formalization of "random" phenomena, i.e. phenomena we cannot a priori predict
the outcome of. The reasons why it is not possible to give a deterministic description of
certain phenomenon are multiple. We could have incomplete information regarding the
phenomenon, or there might be no theory to draw consequences, or the theory exists but it
is difficult to apply, or it can simply happen that the phenomenon is really "random". Let’s
think about throwing a coin. The motion of a rigid body in space (e.g. the coin) is well
described by the equations of Newtonian mechanics. Thus, we could theoretically calcu-
late if the coin will fall with upper face as heads or tails, if we are able to take into account
the initial speed, the air friction, and the inelastic collisions that the coin undergoes when
it falls back to the ground. However, a real computation of these elements is impossible,
both because it is not possible to experimentally measure the physical quantities involved,
and because the system exhibits a sensitive dependence on the initial conditions. One
small variation of the initial conditions (e.g. the force applied in the throwing or position
from which it is thrown) leads to a remarkable macroscopic effect (e.g. the output head
rather than cross). It is clear that if the currency is sufficiently symmetric we expect that
the "possibility" of head is the same as cross. Hence the need to model this phenomenon
through a theory different from Newtonian mechanics." (Epifani et al., 2005)
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Chapter 1. General Introduction

A statistical model! In this very simple example, we can see how probability and
statistics are the tools to describe complexity. When dealing with a complex system, the
first basic question a statistician ask her/him self is: "What is a meaningful statistical unit
to describe this complex system?". Historically, the statistical unit is a number (e.g. the
height, the length, the weight). A set of indexes are built to describe the complex system
and the effort is made in building a sufficiently complex statistical model, to describe
complex research questions rising from a complex system. As already discussed, many
scholars have started talking about complex data (Marron and Alonso, 2014; Secchi et al.,
2015), trying to focus more on a complex representation of the system than on an hyper
complicated modelling of "simple" data.

From 2011, when the word big data introduced by the McKinsey Global Institute has
started spreading in both industry and research environment, some scholars start interpret-
ing this stream of data not only in terms of velocity, variety, and volume, but also in terms
of complexity (Marron and Alonso, 2014). Along with networks, complex data are for
example texts, images, functions, videos. They are collected in different context, such
as bio statistics (e.g. brain scan MRI (Wang et al., 2010)), social media analysis (e.g.
images posted (Hu et al., 2014)), transportation (e.g. functional mobility data (Vantini
et al., 2012)). The analysis of complex data poses serious methodological challenges. The
complexity resides not only in the intrinsic nature of the data but also in methodological
complexity required to analyse those data.

As previously said, methodological reductionism has a deep root in the statistical field
and it is strongly related with the concept of sufficiency. Given a statistical model and its
unknown parameter, a statistic is sufficient if "no other statistic that can be calculated from
the same sample provides any additional information as to the value of the parameter"
(Fisher, 1922). In other terms, if we are interested in describing a specific phenomenon
with certain summarising statistics, the estimation of these statistics is going to be ex-
haustive, if we represent the phenomenon with a sufficient amount of information. For
example, if we are interested in how people moves around a square, sampling one position
for each individual every day is probably an under-representation of the phenomenon, and
measuring the microsecond movements with sensors on the legs of each individuals is an
over-representation of the phenomenon. The representation choice of a problem is a key
and a first step in a quantitative analysis, because it frames the problem and the analysis in
the "space".

Both complexity and reductionism in statistics are related with geometry. Which is the
correct geometry to use when studying a complex phenomenon? Which is the complex
datum that represents a sufficient representation for the complexity of the phenomenon?
Which is the geometry to study the complex data collected?
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1.2. Urban Movement

Figure 1.4: Ernest Nagel

Geometry, Complex Data, and Sufficient Representation

We are now going to introduce the concept of geometry, its history and its latest develop-
ment mainly following Ernest Nagel perspective on the topic. Ernest Nagel (Nove Mesto,
1901 - New York, 1985) was a Bohemian philosopher. His work concerned the philoso-
phy of mathematical fields such as geometry and probability, quantum mechanics, and the
status of reductive and inductive theories of science. For an interesting overview and bi-
ography see Suppes (1994). In particular, Nagel’s milestone book The structure of science
(Nagel, 1961) offers an interesting argument about the usage of geometry in measuring
space.

The history of measuring the space

The notion of how to measure space is thousands of years old. The first rudimentary ideas
about the measurement of space dates back in Egypt, where ancient Egyptian built up a
first geometrical framework to measure the dimension, the length, the area, the shape of
a field. However, the theoretical development of this geometric theory as a set of axioms
and theorems was formalized by Euclid in the IV century B.C.. The Euclidean geometry
is based on a set of axioms:

(I) To draw a straight line from any point to any point.

(II) To produce (extend) a finite straight line continuously in a straight line.

(III) To describe a circle with any centre and distance (radius).

(IV) That all right angles are equal to one another.
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Chapter 1. General Introduction

(V) That, if a straight line falling on two straight lines make the interior angles on the
same side less than two right angles, the two straight lines, if produced indefinitely,
meet on that side on which the angles are less than two right angles.

Moving from these five axioms, the whole so called Euclidean geometry was built, studied
by scholars, taught at school from first to last grade. In thousands of years, scholars used
the Euclidean geometry as a "comfortable" mathematical framework to measure space
and shape. Nagel started its discussion about geometry, reminding us that geometry was
broadly applied as a base system, not only in the agro-measurement but also in astron-
omy, architecture, crafting, engineering, and fine arts. Within this context, scientist as
Newton considered geometry as an applied sub-field of physics. Euclidean geometry was
interpreted as an a priori system for measuring reality. Nagel defined two different geom-
etry: pure geometry and applied geometry. Pure geometry studies the deductive results
obtained by the axioms, while applied geometry tries to find a factual truth within the ax-
ioms and theorems. Focusing on applied geometry, there are two approaches: (1) objects
such as surface, point, shapes are identified in reality and then prove that these configura-
tion satisfied the Euclid’s axioms within a certain measurement error bound; (2) Euclidean
definitions and axioms are stated a priori and the real representation of the definition are
searched in reality. Within the first approach, for a certain number of reality configuration,
Euclidean geometry is very useful! In the second setting instead, it is highly probable that
the observed figures are not so easily embedded within the Euclidean framework. This dis-
cussion is not proving the invalidity of the Euclidean geometry, but it shows the potential
drawbacks in using the Euclidean framework.

Both the previous argument and the uncountable trials of proving the (V) axiom from
the others were some of the reasons of the development of new form of geometry, often
called non-Euclidean geometries. Here below, a short list and description of some of the
most well known non-Euclidean geometries. For a detailed and technical introduction to
non-Euclidean geometry we suggest: Coxeter (1998); Krause (1986); Lee (2013).

Figure 1.5: Lobachevsky, Bolyai, and Riemann

During the 19th century, two mathematicians, Lobac̆evskij (Novgorod, 1792 – Kazan’,
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1.2. Urban Movement

1856) and Bolyai (Kolozsvár, 1802 – Târgu Mures, , 1860), propose a new geometry assert-
ing the negation of the (V) Euclide’s axiom (in other words, they state that giving one line
and one point, there is at least one line crossing the point and parallel to the line). From the
negation of the axiom, a new geometry usually called hyperbolic geometry has been de-
veloped. In Figure 1.6, you can see parallel lines to a given line, where the space in exams

Figure 1.6: Hyperbolic geometry. An example of parallel "lines" to a given point and a give "line".

are all the inner point of a circle. Another geometry was introduced by the German mathe-
matician Georg Riemann (Breselenz, 1826 – Selasca, 1866). Riemann substituted the (V)
axiom with the following: "for a given point out of a given line, there is no parallel line
crossing that point". This geometry called "riemannian" or elliptic geometry was devel-
oped after the curvature of the space concept. A last but not least non-Euclidean geometry
we would like to introduce is the projective geometry (Casse and Casse Jr., 2006). This
geometry does not focus on the concept of congruence, but on the concept of projection,
defining invariant properties with respect to projection.

Which geometry when?

After this brief (and partial) discussion about new forms of geometry, Newton’s (and many
colleagues) approach to geometry as a practical tool to measure reality can not be taken for
granted. Nagel noticed that the required geometry is a consequence of the rules adopted
to measure space. This is clear for example in the way Riemann introduced his geomet-
rical framework. In the nineteenth century, scholars started using the novel geometrical
framework introduced to describe certain type of phenomena. A well known example is
the relativity theory by Einstein. All his theory is based on the assumption that the space
is an hyperbolic space, and all the computations are performed according to this assump-
tion. As shown by this ”succesful" example, all the geometries can be adopted to measure
space and phenomena with space dependency. The question is: given a problem and a set
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Chapter 1. General Introduction

of properties and relations we want to analyse, which system is more convenient? In the
analysis of urban movement, is the Euclidean setting always a good choice?

As described in Section 1.2, contemporary complex data have characteristics that are
not always easily described with a simple Euclidean setting. For example, consider the
subway system. The subway system can be described as the location of the stations. Anal-
ysis of the location of the station can be easily conduced by using Euclidean setting (i.e.
the real space distance and operations). However, in the analysis of a subway system,
someone could be interested in analysing also the topology of the network, the daily flow
of passengers from one station to another, the prices of the tickets for each path on the
network etc.. In this case, how can we mathematically describe all the information? The
most common approaches summarize all the complexity with a list of numbers, trying to
reduce the problem to the Euclidean setting. The following question arises: is it a suf-
ficient representation? Is a vector of indexes enough to describe the topology and the
dynamic of the subway? It depends of course on the research question. Shrinking such
a complex system in an Euclidean setting is maybe useful, but sometimes unnatural and
reductive. As already discussed in the Introduction to Population of Networks, OODA and
statistical analysis of complex data in a natural embedding aim to describe the complexity,
overcoming the reductionism, and searching for a meaningful sufficient representations of
reality.

1.3 Populations of Graphs and Urban Movement

Urban movement has been successfully modelled within the framework of networks (or
graphs). This because it is "characterized by a sequence of visited locations and the trips
between them" Schneider et al. (2013), showing an intrinsic relational nature, which can
be easily quantified using a network at every scale of the analysis. The same relational
structure can be found in the public transport system, or in road infrastructure. Due to the
appropriateness of this representation, the application of network analysis in transportation
modelling has also been showing recent feasibility. Some examples of this are the analysis
of public transport networks (von Ferber et al., 2009), urban structures (Zhong et al., 2014),
and daily urban mobility motifs (Schneider et al., 2013). As in many other field, the
application of the network analysis to urban movement has only followed a first generation
approach. The second generation approach has been largely unexplored due to the lack of
a robust methodological framework.

To describe the potential application of the second generation approach, consider the
following example. Among the possible urban movement data type, we focus on mobil-
ity motif, which is the analysis of a single person mobility for a sampled day (Schneider
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1.3. Populations of Graphs and Urban Movement

Figure 1.7: Two schemes of two inhabitants’ mobility motifs in Maputo, Mozambique. The two
maps show the positions of the houses while the two graphs show the mobility motifs of all the
barrios the inhabitants travel to in a certain day. The data are the two graphs.

et al., 2013), moving between different places (office, shopping area, pub, cinema, ect.).
The analysis of mobility motifs is complicated, because every inhabitant lives and works in
different areas, and she/he crosses different neighbourhoods every day. However, a group
of citizens could have a very similar mobility motif. Supposing we can study mobility mo-
tifs via GPS traces, we represent them as graphs, where the nodes are the places where the
inhabitant is stopping for at least a certain amount of time and edges are the paths between
them. How can you compare two mobility motifs that have different stopping locations
(nodes)? How can we understand which mobility motifs are similar? To make these com-
parisons, we should be able to change from the geographical and physical embedding to a
mathematical and relational embedding. We should change the geometry! This mathemat-
ical embedding should take into account the shape of the mobility motif and the attributes
of the observation such as the speed, or the mobility mode used, while ignoring the actual
geographical position of the nodes. With an object oriented data analysis embedding in
a non Euclidean space, we are able to compare in a complete and meaningful way the
mobility motifs. An example is the non Euclidean space to describe graphs that we are
studying in this thesis. As shown in Figure 1.7, if we had maintained the geographical de-
pendence of the mobility motif, we would have not been able to compare the two mobility
motifs. Note that there are other mathematical representations of the mobility motifs, such
as the trajectories representations. This simple example poses the basis (and hopefully
stimulates the readers’ interest) about which is the natural geometry to describe a spatial
phenomenon. Following some of the concept introduced in this Section, we will show a
possible path towards an original analysis of the urban movements.
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CHAPTER2
Embedding in the Graph Space

The aim of this chapter is to introduce a geometrical embedding for population of graphs,
namely Graph Space, on top of which we are going to develop different statistical meth-
ods. Graph Space was firstly introduced in Jain and Obermayer (2009) in a more general
framework. In this chapter, it is declined in the context of network analysis and studied in
its geometrical properties.

As already discussed in Section 1.1, if the objective is a "simple" tasks such as the
prediction of a class labels or a scalar values, or the cluster memberships, Euclidean graph
embedding is often a scalable and powerful choice. See for example kernel methods (Sher-
vashidze et al., 2011), convolutional neural networks (Duvenaud et al., 2015), or feature
selection algorithms (Bunke and Riesen, 2011). However, the Euclidean graph embedding
methods do not ensure that every point in the embedding space is actually a network, and
the probabilistic models therefore typically assign nonzero probability to points that do
not represent networks, causing problems in extending statistical tools to these embedding
spaces. As a response to these limitations, the natural embedding aims to model "objects"
as residing in a space of precisely such objects - ensuring that every point in the embedding
space is a meaningful object. However, most existing works in this category have so far
focused on tree-valued data rather than graphs in general. Nonlinear data spaces such as
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Chapter 2. Embedding in the Graph Space

the Billera-Holmes-Vogtmann space of leaf-labeled trees (Billera et al., 2001), or spaces
of unlabeled trees (Feragen et al., 2010, 2013) are examples of non-Euclidean spaces in
which tree-data can be analysed with geometric tools. The literature precisely concern-
ing the natural embedding of networks is still very new and varied. For example, net-
works’ Laplacian matrices are smoothly injected into a sub-manifold of a Euclidean space
in Ginestet et al. (2017); a Bayesian a generative model is defined for a set of network-
valued data represented as adjacency matrices in Durante et al. (2017); or each network
is represented as a metric space in Chowdhury and Mémoli (2018) and Lee et al. (2017).
In the latter embedding context, unlabelled networks are also analysed, defining matching
strategies as the one proposed in Chowdhury and Mémoli (2017). Even if the metric space
representation is a very promising and flexible choice, there is still very little statistical
tools developed for spaces of metric spaces (see Sturm (2003) for an introduction).

Introduced as a general space of "Structures" by Jain and Obermayer (2009), Graph
Space is a quotient space of the Euclidean Space, obtained by applying permutation action
to adjacency matrices. Graph Space is a natural space for graphs with different or equal
number of nodes, and with labelled or unlabelled nodes, able to describe weighted or un-
weighted, uni- and multi-layer, directed and undirected networks. The same Graph Space
appears in Kolaczyk et al. (2020), which studies the behavior of Fréchet mean, as well
as in Guo et al. (2019), which proposes an extrinsic algorithm for principal components.
The choice of focusing on Graph Space rather then other embedding strategies is guided
by two main reasons. First, its relation with Euclidean space as total space makes Graph
Space as an interesting starting point to extend the well known statistical tools available in
the Euclidean setting. Second, its flexibility allows for description of different networks,
covering many different application problem including the statistical analysis of human
movement.

This chapter is organized as follows: After a general introduction to Graph Space
and its notation, the nonlinear nature of the geometry of the space is studied, showing that
it is a geodesic space, but not a manifold ( Section 2.1). In Section 2.2, we prove that
its curvature is unbounded from above, which renders standard approaches to nonlinear
statistics unpractical, at least in terms of proving their convergence.

This chapter contains the contents developed in Calissano et al. (2020a)
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2.1. The Graph Space

2.1 The Graph Space

We consider graphs as triples G “ pV,E, aq where the node set V has at most n elements,
and the edge set E Ă V 2 has maximal size n2. The nodes and edges are attributed with
elements of an attribute space A, which in this thesis is assumed to be Euclidean, via an
attribute map a : E Ñ A. Here, the map a allows us to describe attributes on both edges
and nodes, as we use self loop edges (diagonal elements) to assign attributes to nodes.
From here on, we represent networks mathematically as graphs, and consider these terms
equivalent. In our modelling, we shall represent graphs with fewer nodes than n as having
n ´ |V | additional null nodes, allowing graphs to be represented via fixed-size adjacency
matrices. More precisely, a graph with scalar attributes is completely specified by the ad-
jacency matrix of dimension n ˆ n, residing in a space X “ Rn2 of flattened adjacency
matrices. If the attributes are vectors of dimension d, the graph is represented by a tensor
of dimension nˆ nˆ d, residing in a space X “ Rnˆnˆd.

In many real world applications, populations of graphs describe the same type of rela-
tional phenomena in different contexts (e.g. routes of different airline companies, or brain
connectivity networks of different patients). Differences in the labels or order of nodes
make it challenging to investigate similarities between the topology and attributes of dif-
ferent graphs, and this is often alleviated by explicit or implicit matching of graph nodes.
When the graphs are represented as nˆn adjacency matrices, matching two graphs corre-
sponds to finding optimal permutations of their nodes. The group T of node permutations
can be represented via permutation matrices, acting on X through matrix multiplication.
The binary operation:

¨ : T ˆX Ñ X, pT, xq ÞÑ Tx

thus defines an action of the group T on X . We call the obtained quotient space XT “

X{T Graph Space, and each element of X{T is a graph G, represented as an equiva-
lence class rxs “ Tx which contains all the flattened adjacency matrices in X which can
be obtained from x by permuting nodes. Note that this Graph Space is a special case of
the A-attributed r-structures introduced by Jain and Obermayer (2009), which includes
hyper-graphs and more general attribute types. The graphs considered in this thesis can be
considered A-attributed 2-structures with A a Euclidean space. We illustrate the construc-
tion of Graph Space with a simple example:

Example. Consider the two weighted networks shown in Figure 2.1. To represent these as
points in Graph Space: Add a fictional null node to the first graph; randomly enumerate
the nodes; represent them in two weighted, symmetric adjacency matrices as shown in
Figure 2.1. The adjacency matrices can be vectorized as a vector of dimension nine (e.g the
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Chapter 2. Embedding in the Graph Space

Figure 2.1: An example of two simple weighted undirected networks x1 and x2 and their matrix
representations.

first network becomes r0, 4, 0, 4, 0, 0, 0, 0, 0s). The space of flattened adjacency matrices
X is thus R9, and the two networks are represented by two points in R9. The permutation
action can be represented as a binary 9ˆ9 matrix: The permutation reorders the nodes and
consequently the edges of the network by permuting the rows and columns of its adjacency
matrix, and hence also the positions of the elements in the flattened matrix representation
xi. For example, if the nodes 2 and 3 are permuted in the first network, we obtain the
new permuted vector r0, 0, 4, 0, 0, 0, 4, 0, 0s. Each point rxis in the quotient space X{T
consists of all possible permuted versions of xi (i.e. permuting the rows and columns of
the associated adjacency matrix). Now, the equivalence classes rx1s and rx2s are points in
X{T , and the maximal size of an equivalence class in X{T is 3!.

Remark. In practice, the maximum number of nodes n can limit the possible node match-
ings, and hence also the geometric relationship, between two graphs. To make sure no
such limitations are present, set n “ 2 maxp|ni|q.

For symmetric adjacency matrices it would suffice to represent them with the upper
triangular part. For the sake of generalization we keep the more complete representation.

2.2 Geometrical Characterization of the Graph Space

The aim of this section is to explore the geometrical properties of the Graph Space to
understand how statistical estimators can be computed in Graph Space.

Graph Space is not a manifold

As Graph Space X{T is the quotient of the total space X of flattened adjacency matrices
with respect to the node permutation group T , any metric dX on X defines a quotient
pseudo-metric

dX{T prx1s, rx2sq “ min
tPT

dXptx1, x2q
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2.2. Geometrical Characterization of the Graph Space

on X{T which, since the permutation group T is finite, is indeed a metric. Examples of
commonly used metrics on X include the lp metrics for p P p0,8s, where p “ 2 gives the
Euclidean distance used in this thesis, and p “ 1 gives the Manhattan distance.

While Graph Space X{T is a metric space, it is not a manifold, even with the Eu-
clidean distance on X . This follows from the fact that the structure of the isotropy sub-
group Tx “ tt P T |tx “ xu varies for different points x P X (Bredon, 1972). One
reason why this happens is that, as explained in the previous section, forcing the networks
to all have the same number of nodes generates networks with a subset of null nodes. As
a permutation t P T which acts only on the null nodes of a flattened adjacency matrix
x P X does not have any effect on the adjacency matrix, such x will have a larger isotropy
subgroup than generic points in X . As a consequence, many well-known tools from mani-
fold statistics (Fletcher, 2013; Fletcher and Joshi, 2004; Huckemann et al., 2010; Kendall,
1984; Mallasto and Feragen, 2018; Pennec et al., 2006; Srivastava et al., 2005; Zhang and
Fletcher, 2013) are unfortunately not directly applicable to Graph Space. However, as is
commonly done in both general nonlinear statistics (Bačák, 2014; Duncan et al., 2018;
Feragen and Nye, 2020; Feragen et al., 2011, 2013; Miller et al., 2015; Nye, 2011, 2014;
Nye et al., 2017; Sturm, 2003; Turner et al., 2014) and in manifold statistics, we will utilize
geodesics, or shortest paths, to define and compute statistical properties in Graph Space.
In the absence of a manifold structure, we will define and understand geodesics, statisti-
cal properties built on geodesics, and their properties, by utilizing geometric constructions
from metric geometry (Bridson and Haefliger, 1999). To that end, we dedicate this sec-
tion to surveying necessary concepts from metric geometry and applying them to uncover
geometric properties of Graph Space.

Graph Space is a geodesic space

Given a general metric space pX, dXq, the length of a path γ : r0, 1s Ñ X is given by

lpγq “ sup

#

m
ÿ

i“1

dXpxi´1, xiq

ˇ

ˇ

ˇ

ˇ

ˇ

x0 “ γp0q, x1, . . . , xm “ γp1q for some m P N

+

(2.1)

where the supremum is taken over all approximations x0 “ γp0q, x1 “ γpt1q, . . . , xm´1 “

γptm´1q, xm “ γp1q of γ of arbitrary finite length m, where 0 ă t1 ă . . . ă tm´1 ă 1.
Thus, the length of a path can be thought of as the supremum over lengths of all finite
approximations of the path.

Given two points a, b P X, a geodesic from a to b is a path γ : r0, 1s Ñ X such that
γp0q “ a, γp1q “ b and lpγq “ dXpa, bq. The metric space pX, dXq is said to be a length
space if, for every two points a, b P X, we have

dXpa, bq “ inftlpγq | γ : r0, 1s Ñ X s.t. γp0q “ a, γp1q “ bu.
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Chapter 2. Embedding in the Graph Space

Figure 2.2: Depending on their node alignment, the two graphs yε and zε differ either in node
attributes or in edge attributes, and there exist two different geodesics γn and γe connecting the
two graphs: One which interpolates node attributes and one which interpolates edge attributes,
respectively. These two geodesics are illustrated via their midpoints γnmid and γemid.

That is, the distance between any two points a, b is the infimum over lengths of paths con-
necting them. Moreover, X is a geodesic space if every two points a, b P X are connected
by a geodesic γ from a to b – that is, there actually exists a path attaining the infimum
length.

Lemma 2.2.1. Graph Space is a geodesic space.

Proof. This result follows from standard properties of metric spaces. As our total space X
is Euclidean, it is in particular a length space. Since Graph Space X{T is a metric space,
X{T is a length space by (Bridson and Haefliger, 1999, Lemma I.5.20). Moreover, asX{T
is the quotient with respect to a finite group, and X is locally compact, the quotient X{T
is also locally compact (Bredon, 1972, Theorem I.3.1). Note that any Cauchy sequence
prxisqiPN in X{T is the image under π of a Cauchy sequence ptixiqiPN in X such that for
some M P N, and for i, j ě M , we have dXptixi, tjxjq “ dX{T prxis, rxjs. Since X is
complete, the sequence ptixiqiPN converges to some point x P X , and hence the sequence
prxisqiPN converges to rxs P X{T . In other words, X{T is complete. Thus, X{T is a
geodesic space by the Hopf-Rinow theorem (Bridson and Haefliger, 1999, Proposition
I.3.7).

Lemma 2.2.2. There exist points yε, zε P X{T which are connected by more than one
geodesic.

Proof. We give an example in the case where node- and edge attributes are scalar. Note
that the same example can be adapted to vector valued node- or edge attributes by append-
ing this scalar value with zeros. Let ε ą 0, and consider the two graphs yε and zε shown in
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2.2. Geometrical Characterization of the Graph Space

the top row on the left hand side of Figure 2.2. There are two geodesic paths between these
two graphs. The first consists of interpolating the node attributes with the node matching
indicated by the planar embedding of the nodes. The midpoint of this geodesic is the graph
γnmid shown on the left hand side of the bottom row. The second geodesic between yε and
zε consists of interpolating the edge attributes with the node matching indicated by the
coloring of the nodes. The midpoint of this geodesic is the graph γemid shown on the right
hand side of the bottom row. The two points connected by two geodesics are illustrated
schematically on the right hand side.

Corollary 2.2.3. Geodesics connecting pairs of points are not generally unique in X{T .

Graph Space curvature

Curvature affects properties which are important for defining and computing statistical
quantities. In particular, the convergence proofs for common statistical estimation algo-
rithms (Chakraborty and Vemuri, 2015; Miller et al., 2015; Sturm, 2003) often rely on
assumptions of bounded curvature. Below, we show that the curvature of Graph Space is
unbounded from above, according to generalized concepts of curvature from metric ge-
ometry (Bridson and Haefliger, 1999). This will motivate our choice of statistics in the
following section.

First consider the Graph Space where edges and nodes have real attributes a : E Ñ R.
We will show that the curvature of this Graph Space is not bounded from above. In metric
geometry, curvature is approached through comparison with model spacesMκ of curvature
κ. Different model spaces are used for negative, zero and positive κ. When κ ă 0, the
model space is the hyperbolic space of negative curvature κ, namelyMκ “ Hκ. For κ “ 0,
the model space is M0 “ R2, namely the Euclidean plane. Finally, for κ ą 0, the model
space is the sphere of curvature κ, namely Mκ “ S2

κ. An important property of the model
spaces of curvature κ is that they are each accompanied by an diameter Dκ, such that any
two points a, b P Bpx,Dκq for any x PMκ can be joined by a unique geodesic.

We can compare any given geodesic space pX, dXq to any one of the model spaces
using comparison triangles, as follows: A geodesic triangle abc in X consists of vertices
a, b, c P X joined by geodesic edges γab, γbc and γac. We assume that a, b and c are all
contained in a ball of perimeter ă 2Dκ. We can then construct a comparison triangle
āb̄c̄ in the model space Mκ with vertices ā, b̄ and c̄ joined by geodesic edges γ̄āb̄, γ̄b̄c̄ and
γ̄āc̄, whose lengths are the same as the lengths of the edges γab, γbc and γac in abc. See
Figure 2.3 for an illustration.

Definition 2.2.4 ( CAT pκq space, curvature in the sense of Alexandrov). Let pX, dXq be a
geodesic metric space, and let abc be a geodesic triangle in X as described above. Note
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Figure 2.3: Left: A geodesic triangle in X. Right: the corresponding comparison triangles in
hyperbolic space H2, the plane R2 and the sphere S2, respectively.

that any point x from the segment γbc has a corresponding point x̄ on the segment γ̄b̄c̄ in
the comparison triangle, such that dMκpx̄, b̄q “ dXpx, bq. If

dXpx, aq ď dMκpx̄, āq (2.2)

for every such x, and similarly for any x on γab or γac, then the geodesic triangle abc
satisfies the CAT pκq condition. The metric space X is a CAT pκq space if any geodesic
triangle abc in X of perimeter ă 2Dκ satisfies the CAT pκq condition given in eq. 2.2.
Geometrically, this means that triangles in X are thinner than triangles in Mκ. The metric
space X has curvature ď κ in the sense of Alexandrov if it is locally CAT pκq.

Note that the properties of the model space in relation to its diameter Dκ also transfer
to geodesic spaces X which areCAT pκq (Bridson and Haefliger, 1999, Proposition II.1.4):
Given any x P X, any two points a, b P Bpx,Dκq Ă X can be joined by a unique geodesic.
In particular, Dκ “ 8 for κ ď 0, meaning that in non-positively curved spaces, any
two points can be joined by a unique geodesic, regardless of their distance. Moreover,
Dκ ě

π?
κ

for κ ą 0, meaning that the lower the bound on the (positive) curvature, the
larger the radius within which all pairs of points have unique connecting geodesics.

Figure 2.4: Consider the graph rxs P X{T shown on the left. A ball about rxs of any radius
Rκ ą 0 will always contain two graphs ryεs and rzεs, as shown second and third. As we saw in
Figure 2.2, these two points are connected by two different geodesics.
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Figure 2.5: For any graph rxs, we can find two graphs ryεs and rzεs arbitrarily close to it, which
are connected by more than one geodesic.

Theorem 2.2.5 (The curvature of Graph Space is unbounded from above). Graph space
does not have curvature ď κ in the sense of Alexandrov for any κ P R. In particular, for
any graph rxs P X{T and any Rκ ą 0, we can – by assuming a sufficiently high maximal
number of nodes n – find two graphs ryεs, rzεs P Bprxs, Rκq Ă X{T which are connected
by two geodesics.

Proof. Let rxs, ryεs and rzεs be as in Figure 2.4. Note that for any radius Rκ ą 0, there
will exist an ε ą 0 such that ryεs, rzεs P Bprxs, Rκq. Moreover, as argued in Lemma 2.2.3,
there will always be two equally long shortest paths connecting ryεs and rzεs. Thus, by
Bridson and Haefliger (1999) in Proposition II.1.4, Graph Space is not locally CAT pκq at
rxs for any κ, and thus cannot have curvature ď κ in the sense of Alexandrov for any κ.
To prove the final statement, consider any graph rxs and assume that the maximal number
n of nodes considered in a graph is sufficiently high to construct the graphs ryεs and rzεs
shown in Figure 2.5, which can be constructed to both be arbitrarily close to rxs. Now,
again, there exist two geodesics connecting ryεs and rzεs.

Remark. Note that while all of the results and examples above considered the case where
node and edge attributes were real valued (A “ R), the proofs hold equally well for vector
valued node and edge attributes (A “ Rp).

2.3 Discussion

The strong geometrical connotation of this chapter is required to pose the bases for the
next chapters, and to acquire knowledge about which techniques are available or not in
this context. Even if it is not a manifold and the geodesics are not unique, it is still a very
convenient choice in terms of developing statistical methodology, because it is a quotient
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space of an Euclidean space. If a methodology to overcome the curvature issue is devel-
oped, statistical analysis can be conduced on the total space, inheriting all the well known
statistical tools for multivariate statistics (for example Principal Components - see Section
3.3 in Chapter 3, and Regression - see Section 4.1 in Chapter 4).

A limitation of Graph Space embedding resides in the zero-adding values. In fact, to be
able to analyse networks in a space of fixed dimension, all the graphs are grows to have the
same number of nodes. This choice is causing several geometrical and applied problems.
Adding zero rows and columns to the adjacency matrices is creating equivalence classes
of different dimensions (if two null nodes are permuted the network and its representation
remains unchanged). This is the main reason for the Graph Space to not be a manifold.
Adding zero nodes is also misleading in terms of interpretation. In fact, a non existing
node or edge and a node or edge with a zero attribute are considered equivalent in this
framework. This choice does not represent a problem in a context of weighted networks,
where the attributes describe the intensity of a link (e.g. a molecular bind, a flux, the in-
tensity of a social interaction). However, it could cause problems in other settings, where
the difference between an edge with a zero attribute and the absence of the edge itself is
fundamental (e.g. the presence of a road on top of which the flux is null rather then the
absence of the road itself). There are several approaches to solve this limitation. One is
related to the concept of stratified spaces (Feragen et al., 2014). Instead of adding zeros
and using Euclidean distance in the biggest space, a different distance can be used between
graphs with different dimensions, imaging smaller graphs living in sub-spaces, stratified
one into the other.

A interesting further development of Graph Space is related to the exploration of dif-
ferent matching strategies. In this work, the T action is the permutation of all the nodes
|T | “ n!. Different constrains to the permutation action can be required. An example is a
permutation of a subsets of nodes (i.e. nodes are divided in different groups among which
the permutation is allowed), or a non-bijective permutation action (i.e. a node in a graph
can be matched with a set of nodes in the other graph). These different permutation actions
can also simplify the computational complexity of the problem, exploring only subsets of
T .
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CHAPTER3
Exploration in the Graph Space

In this chapter, we introduce exploratory techniques such as Cluster Analysis, Fréchet
Mean, and Geodesic Principal Components for the analysis of a population of graphs in
the Graph Space.

Even if the Graph Space X{T is not a manifold and its curvature is unbounded from
above, we can take advantages of its relation to the Euclidean total space X to define and
compute intrinsic Graph Space statistics. Given the fact that Graph Space is a metric space,
we start this chapter with a case study about clustering. Given the fact that Graph Space is
a geodesic space, we study the properties of the Fréchet Mean and we extend tools such as
Principal Components. However, we proved in the previous chapter that the geodesics in
the Graph Space are non unique everywhere, causing problems in the computation of such
statistics. These geometrical characteristics of the space make unavailable the usage of the
so called extrinsic methods in this context (see Bhattacharya and Patrangenaru (2003) for
more details about extrinsic methods, and Patrangenaru and Ellingson (2015) for a gen-
eral overview). Extrinsic methods - as tangent space statistics (Fletcher and Joshi, 2004)
- have been broadly used as a solution for the definition and the computation of statistics
in a non-Euclidean settings. Intrinsic methods instead define the statistics on the space
itself, regardless of a more easy-to-use tangent space (see Marron and Alonso (2014) for
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an overview of intrinsic methods). In this chapter, we show that intrinsic Graph Space
statistics can be computed iteratively via a combination of choosing optimal graph repre-
sentatives in X{T , and computing Euclidean statistics in X . We call this iterative strategy
Align All and Compute and we will decline this general strategy to the Fréchet Mean, the
Geodesic Principal Components, and the Regression in the next chapter.

The chapter is organized as follow. In Section 3.1, we describe a urban planning case
study: how the clustering of a population of simple graph can have an impact in the analy-
sis of human movement in a square. A step further is done in Section 3.2 and Section 3.3,
where we discuss the property of the Fréchet Mean in Graph Space and we theoretically
define an intrinsic concept of Geodesic Principal Component Analysis. We propose the
general Align All and Compute (AAC) strategy for computing the above mentioned Graph
Space statistics, proving both its convergence to the local minima and its convergence in
finite time (Section 3.3).
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3.1. Clustering in the Graph Space

3.1 Clustering in the Graph Space

The aim of this section is not the exploration of different clustering techniques, but the
application of a well known clustering strategy, namely Hierarchical Clustering (see for
example Chapter 14 pp. 520 ´ 528 Hastie et al. (2009)) to a population of unlabelled
graphs embedded in Graph Space, using the distance defined in Section 2.1. The sci-
entific relevance of this work resides in its interdisciplinary application and in the intent
of describing a spacial phenomenon with a non physical space, such as Graph Space.
The relational representation mathematically described by a graph structure is common
in landscape analysis. Within the design disciplines, such kind of representation is called
diagrammatic, and has been widely applied both in architecture, landscape architecture,
and urban planning over the past 50 years (e. g. Batty (2004)). One example of such
diagrammatic representation is the one obtained through the Space Syntax method (e. g.
Hillier et al. (1987)). However, the relational representation of urban movement is still
unexplored. In the following, we show the cluster analysis of a set of graphs describing
the urban movements in Piazza Leonardo da Vinci (Milan), to find similar usages of the
square.

The content of this section is published in Calissano et al. (2020e).

Case Study: Piazza Leonardo da Vinci

Leonardo da Vinci Square is a relevant testing ground for the scope of this research. The
square, adjacent to the main entrance of Politecnico di Milano (PoliMi) was redesigned in
2018 to foster pedestrian circulation by eliminating parking lots and vehicular paths. The
resulting public realm supports spontaneous gatherings, and pedestrian and bicycle cross-
ings. Because of its geometry, it allows for installing fixed and temporary features like
benches, kiosks, pavilions, and stages to support cultural events. The existing grasslands
have been extended and reshaped to fit the spontaneous pedestrian desire lines defined by
the students crossing them. Finally, the new lighting design expands the usability of the
plaza by enabling evening activities and safety.

One year after completion, the new layout has shifted the practices of use of the plaza.
The use of space varies throughout the day. In the early morning, students, professors and
scholars from the two universities located in the area (Politecnico and Università Statale)
cross the space from the bike-sharing stalls and public transportation stops (subway, tram-
ways, and buses) to the universities main gates. At the same time, the users of the two
primary public services on site, the BESTA neurology hospital and the Italian National
Institute for Cancer hospital, cross the space in the same directions. Around 11 AM,
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(a) 2011 Pre Renovation (b) 2020 Post Renovation

Figure 3.1: Piazza Leonardo da Vinci, Milan, Italy. Note the pedestrian desire lines in the grass-
lands before the renovation. Image: Google Earth Pro

residents walk around for leisure. During the lunch break, people buy street food at the
numerous kiosks on site and eat seating on the benches or the grass. In the evening, space
is quieter but still used because of a theater and the library of the PoliMi School of Ar-
chitecture, which is open until midnight. Figure 3.1 show the view of the square before
and after the redesign. The pedestrian-bikes shared surface, together with the lack of
hard paths built in the grasslands, makes Leonardo da Vince Square a porous and flexible
space, allowing for spontaneous use of the space, avoiding impositions by design. That
is the reason why the case is relevant to this research. Following the square description
usage previously described, three different types of square usage are simulated: (1) simple
square crossing represented as a graph with two nodes (the entry point and the exit point of
the square) and one link representing the trajectory; (2) seating in the square, represented
as a graph with three nodes (the entry point, the seat, and the exit point) linked with three
trajectories; (3) Kiosk, represented as a graph with four nodes (the entry point, the seat,
the Kiosk, and the exit point) linked with four trajectories.

In Figure 3.2, we show the entrances and the kiosk. All the seats are parametrized
according to both the real branches designed in the square and the steps in front of the uni-
versity, where students use to sit. In Figure 3.2, all the generated trajectories are also shown
on the map. To analyse them, we need to extrapolate the geo-referred data and embed them
in Graph Space, where we compute the distance between graphs.Figure 3.3 shows three
graphs dis-anchored from the geographical space. In real dataset, geo-localised data are
sampled. There are several strategy to build graphs from trajectories. Here we interpret:
(1) as graph nodes both the first and last measurement of every trajectory (i. e. the enter
and the exit points) and all the points where the users stop for more than a certain time; (2)
as graph edges the presence or absence of the trajectory between nodes. Different encod-
ing are possible, as well as different attributes choice (e. g. the velocity of the trajectory,
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Figure 3.2: The simulated trajectories in Piazza Leonardo da Vinci. Each trajectory is simulated
as a graph with an entry and an exit point, and eventually a seating point and a break at the
Kiosk. Entry points, exit points, and kiosks are also shown. Image: OpenStreetMap

the stop-ping time). As shown in Figure 3.4, trajectories are correctly clustered using

Figure 3.3: Three graphs dis-anchored from the geographical space.

Hierarchical Clustering methodology (ward linkage). The Cluster 1 of single square cross,
the Cluster 2 of people sitting in the square, and the Cluster 3 of people enjoying a break at
the kiosk. The results show how the methodology can cluster the simulated data, thereby
demonstrating the potential of the Graph Space approach. Also, the methodology can deal
with unconventional paths. For example, in the Cluster 1 in Figure 3.4, we can see two
paths that degenerate to a single point, where the pedestrian enters and exits the square at
the same point without even crossing it.
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Figure 3.4: All the square graph trajectories are shown, divided in clusters. Cluster 1 - top: tra-
jectories of simple square cross Cluster 2 - middle: trajectories of people crossing and seating
in the square. Cluster 3 -low: more complex trajectories of people seating in the square and
going to the kiosk.
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Case Study Discussion

This section aims to discuss if the measurement of the urban landscape and the urban
movement should always be performed using a Euclidean setting or more complex em-
bedding such as Graph Space. We focused on the graph representation of trajectories
describing human movement in a square in Milan: Piazza Leonardo da Vinci. To show the
potential of this framework, we simulated some simple trajectories of pedestrian crossing
the square, seating in the square, and having a break at the kiosk in the square. Each tra-
jectory is then mathematically represented as a graph and embedded into the Graph Space,
to allow a relational more than a physical representation. Cluster analysis is performed,
showing how this framework is able to cluster the simulated data, recognizing the three dif-
ferent types of usage. The simulation serves as a simple example of how the not Euclidean
setting can show exciting results about a geographical dataset. From the point of view of
the designer, the non-Euclidean graph could suggest unexpected, emergent uses of space,
which can inform design in terms of paths, pedestrian shared surfaces and urban furniture
location. The multidimensional nature of the Graph, not literally linked to a Euclidean
2D geometry, provides the designer with insights without forcing a layout, enabling inter-
pretation and critical thinking in the workflow. The analysis in a more complex geometry
produces a sort of diagram of the space, stressing on the relational aspects of the plaza
inhabitation. The presented framework could be easily extended to other type of data gen-
erated by users interacting with the landscape (e.g. pictures, social media posts), creating
original diagram about the space perception. It could be also easily enriched considering
other variables such as the time evolution of the square usage.
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3.2 The Fréchet Mean

The content of this section is part of the work Calissano et al. (2020a).

After discussing the usage of Graph Space distance to perform cluster analysis in a
specific case study, we move back to the theoretical description of statistics on Graph
Space. In this section we are going to discuss the property of the Fréchet Mean in Graph
Space.

Consider the total space X , the Graph Space X{T obtained by quotienting out the
action of the permutation group T onX , and a set of observations trx1s, . . . , rxksu P X{T .
A basic quantity in nonlinear statistics is the Fréchet mean:

Definition 3.2.1. The Fréchet mean of a sample trx1s, . . . , rxksu P X{T is given

rx̄s “ arg min
rxsPX{T

k
ÿ

i“1

dX{T prxs, rxisq
2. (3.1)

We note that for any geodesic space, the mean of two points is characterized as the
midpoint of any geodesic connecting the two points. Thus, as illustrated in Figure 3.5, we
obtain as a direct consequence of Corollary 2.2.3 and Theorem 2.2.5:

Corollary 3.2.2. Fréchet means are not generally unique in Graph Space X{T . In fact,
as shown by Figure 2.5, for any graph rxs P X{T and any radius ε ą 0, there will be sets
of points in Bprxs, εq (e.g. tryεs, rzεsu) whose Fréchet mean is not unique.

Although Fréchet means in Graph Space are not necessarily unique, they are still ex-
planatory and useful – just like on manifolds of positive curvature, where they are also not

Figure 3.5: Since geodesics are not necessarily unique in Graph Space X{T , Fréchet means are
not necessarily unique either.
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unique. Examples of Fréchet Mean for real and simulated data are discussed in Section
3.3 together with Geodesic Principal Components.

3.3 Geodesic Principal Component Analysis

The content of this section is taken from Calissano et al. (2020a).
After the description of the properties of the Fréchet Mean in Graph Space, an explo-

ration tool for the analysis of variance of a dataset is the Principal Component Analysis.
One of the strategy in the literature to compute the principal components is to choose a
node permutations that align each network to a fixed representative of a fixed network,
such as the Fréchet mean µ, and performing principal components analysis in X (Guo
et al., 2019)- this approach is analogous to tangent space methods from manifold statis-
tics (Fletcher and Joshi, 2004). However, just like in manifold statistics, the projection
to X based on optimal representatives xi of individual graphs rxis with respect to a single
graph representative µ P X , leads to distortion of pairwise distances between observations
dX{T prxis, rxjsq, which are not guaranteed to coincide with their distance dXpxi, xjq in the
total space X . Noted this and considering the Graph Space environment properties, we
introduce an intrinsic notion of generalized geodesic principal components (GGPCs), fol-
lowing Huckemann et al. (2010). To compute the GPCs we define an algorithm, namely
Align All and Compute Algorithm, aimed at iteratively aligning the points to a new opti-
mal estimation of the principal components. The algorithm is related to the Generalized
Procruster Algorithm for shapes (Gower, 1975)).

Consider the canonical projection to the Graph Space X{T :

π : X Ñ X{T :“ trps : p P Xu

Definition 3.3.1. Denote by ΓpXq the set of all straight lines (geodesics) in X . Follow-
ing Huckemann et al. (2010), a curve δ is a generalized geodesic on the Graph Space
X{T , if it is a projection of a straight line on X:

ΓpX{T q “ tδ “ π ˝ γ : γ P ΓpXqu. (3.2)

Since Graph Space is not an inner product space, we define orthogonality as:

Definition 3.3.2. Two generalized geodesics δ1, δ2 P ΓpX{T q are orthogonal if they
have representatives in δ1 “ π ˝ γ1, δ2 “ π ˝ γ2, γ1, γ2 P ΓpXq which are orthogonal
ă γ1, γ2 ąX“ 0.
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In order to bridge computations in Graph Space X{T with computations in the total
space X , we introduce a concept of alignment in X . We remind the reader that the metric
on Graph Space is given by

dX{T prx1s, rx2sq “ min
tPT

dXptx1, x2q,

which naturally leads to the concept of optimal position (Huckemann et al., 2010).

Definition 3.3.3 (Optimal position). Given x̃ P X and t P T , the point tx̃ is in optimal
position with respect to x P X if

dXptx̃, xq “ min
t1PT

dXpt
1tx̃, xq “ dX{T prx̃s, rxsq.

That is, the equivalence class rx̃s P X{T contains (at least) one point tx̃ P rx̃s which has
minimal distance to x, and this point is in optimal position with respect to x. Next, consider
rxs P X{T , t P T and δ a generalized geodesic in X{T with representative γ P ΓpXq.
The graph representative tx P X is in optimal position with respect to γ P ΓpXq if

dXptx, γq “ dX{T prxs, δq.

The optimal position with respect to a generalized geodesic and its computation is
detailed in the Algorithm 2. Having concepts of generalized geodesic, optimal position
and orthogonality, we now define a set of geodesic principal components:

Definition 3.3.4. Consider the canonical projection of the Graph Space π : X Ñ X{T of
X and consider a set trx1s, . . . , rxksu Ă X{T of graphs, rxs P X{T , and δ P ΓpX{T q.
The Generalized Geodesic Principal Components (GGPCs) for the set trx1s, . . . , rxksu are
defined as:

• The first generalized geodesic principal component δ1 P ΓpX{T q is the generalized
geodesic minimizing the sum of squared residuals:

δ1 “ arg min
δPΓpX{T q

k
ÿ

i“1

pd2
X{T prxis, δqq (3.3)

• The second generalized geodesic principal component δ2 P ΓpX{T q minimizes (3.3)
over all δ P ΓpX{T q, having at least one point in common with δ1 and being orthog-
onal to δ1 at all points in common with δ1.

• The point µ P X{T is called Principal Component Mean if it minimizes

k
ÿ

i“1

pd2
X{T prxis, rµsq

2
q (3.4)

where rµs only runs over points x̃ in common with δ1 and δ2.
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• The jth generalized geodesic principal component is a δj P ΓpX{T q if it minimizes
(3.3) over all generalized geodesics that meet orthogonally δ1, . . . , δj´1 and cross µ.

AAC: An algorithm to estimate statistics on the Graph Space

In this section, we show that intrinsic Graph Space statistics can be computed iteratively
via a combination of choosing optimal graph representatives in X , not with respect to a
single graph but with respect to the wanted statistic, and computing Euclidean statistics in
X . Based on this derivation, we propose a general Align All and Compute (AAC) strategy
for computing Graph Space statistics, which we use to compute both Fréchet means and,
in particular, Generalized Geodesic Principal Components.

AAC for Fréchet Mean

The distance dX{T between two points in the Graph Space X{T corresponds exactly to the
distance in X after posing one point in optimal position with the other. We now define the
AAC algorithm, which is based on iteratively first posing observations in optimal position
with respect to the current mean estimate, then re-estimating the mean based on the aligned
observations, and repeating until convergence. In the case of computing Fréchet means of
shapes, the AAC algorithm coincides with generalized Procrustes analysis (Gower, 1975).

Algorithm 1 AAC for the Fréchet Mean
Data: trx1s, . . . , rxksu Ă X{T observations in X; a threshold ε ą 0
Result: An estimate of the Fréchet Mean of trx1s, . . . , rxksu.
Initialization: Select randomly an observed graph and randomly a representative: x̃ “ x̃i P rxis P
trx1s, . . . , rxksu;
while s ą ε do

Put every observation in optimal position with the representative x̃, obtaining an aligned set of
representatives tx̃1, x̃2, . . . , x̃ku Ă X;
Compute the Fréchet Mean x̄ in X of tx̃1, x̃2, . . . , x̃ku;
Compute s “ dXpx̃, x̄q;
Set x̃ “ x̄

end
Return rx̄s

This algorithm provides an estimate of a Fréchet Mean which is independent of the
order of the data, and with improved convergence properties:
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Theorem 3.3.5. AAC for Fréchet Mean (Algorithm 1) converges in finite time. More-
over, assume that Graph Space X{T is endowed with a probability measure η which is
absolutely continuous with respect to the push-forward of the Lebesgue measure m on
X . In particular, for A Ă X{T , we have ηpAq “ 0 if mpπ´1pAqq “ 0. Let the dataset
rx1s, . . . , rxks is sampled from η; now with probability 1, the estimator found by Algo-
rithm 1 is a local minimum of the Fréchet function

k
ÿ

i“1

d2
X{T prxs, rxisq. (3.5)

Proof. See Appendix.

While we show that it theoretically converges in finite time, this might still be a long
time, and we thus also add a convergence threshold ε in Algorithm 1.

Note also that our algorithm in practice relies on inexact graph matching, as graph
matching is generally NP complete. We thus cannot be sure that our computed means
were, in fact, based on completely correct graph matching. However, alternative mean
algorithms also rely on graph matching, and are therefore similarly affected.

AAC for GGPCA

The AAC strategy, due to its iterative alignment with the chosen predictor, helps overcome
the non-uniqueness of geodesics. It can readily be extended to other estimators that rely
on geodesics such as Generalized Geodesic Principal Components. The alignment with
a generalized geodesic, defined in Definition 3.3.3 is performed in a two step alignment
procedure:

Algorithm 2 Algorithm for Optimal Position with respect to a generalized geodesic
Data: A point x P rxs, a straight line γ P ΓpXq, the domain rsmin, smaxs
Result: t˚ P T such that t˚x is in optimal position wrt γ.
for sÐ smin to smax do

Find tpsq :“ arg mintPT dXptx, γpsqq
end
Find s˚ “ arg minsPrsmin,smaxs dXptpsqx, γpsqq;

Return t˚ “ tps˚q

The obtained t˚ P T is the permutation such that the point t˚x P rxs is the closest
representative of rxs to the geodesic γ in the interval selected.

Note that, due to the curvature of the space discussed in Section 2.2, the Fréchet mean
is not ensured to be the same as the Principal Component Mean. A possible choice for
the step distance function f is the proportion of variance explained by the first generalized
geodesic principal component at the current and the previous step.
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Algorithm 3 AAC to compute the generalized geodesic principal components
Data: trx1s, . . . , rxksu P X{T observations in X
Result: Geodesic principal components δ1, . . . , δk P ΓpX{T q
Initialize:
Select randomly x̃i P rxis trx1s, . . . , rxksu;
Align all the observations to the representative x̃i, obtaining a set of points tx̃1, x̃2, . . . , x̃ku P X
in optimal position with respect to x̃i;
Perform PCA on tx̃1, x̃2, . . . , x̃ku in X obtaining γ1, . . . , γk P ΓpXq;
Project onto ΓpX{T q as δi “ π ˝ γi;
Set δ̃1 “ δ1, . . . , δ̃k “ δk

while s ą ε do
Align all the points trx1s, rx2s, . . . , rxksu with respect to the generalized geodesic δ̃, ob-
taining a new set of aligned points x̃1, x̃2, . . . , x̃k P X using Algorithm 2;
Perform PCA on tx̃1, x̃2, . . . , x̃ku in X obtaining γ1, . . . , γk P ΓpXq;
Project onto ΓpX{T q as δi “ π ˝ γi;
Compute a step distance function s “ fpδ̃i, δiq;
Set δ̃1 “ δ1, . . . , δ̃k “ δk.

end
Return δ1, . . . , δk P ΓpX{T q

Again, the AAC algorithm converges in finite time, and in the case of the first GGPC we
can show that it converges to a local minimizer of the sum of squared residuals function:

Theorem 3.3.6. AAC for GGPCA (Algorithm 3) converges in finite time. Assume that
Graph SpaceX{T is endowed with a probability measure η which is absolutely continuous
with respect to the push-forward of the Lebesgue measure m on X , and let the dataset
rx1s, . . . , rxks be sampled from η. Now with probability 1, the estimator of the first GGPC
found by Algorithm 1 is a local minimum of the sum of squared residuals function

k
ÿ

i“1

d2
X{T pδ, rxisq. (3.6)

where δ P ΓpX{T q.

Proof. See Appendix.

For the case of the higher GGPCs, we do not have a proof of local minimization of (3.3)
and Algorithm 3 should be considered a heuristic.
Remark. In the case of Fréchet means of shapes, the AAC coincides with Generalized
Procrustes Analysis (Gower, 1975). In the statistical literature, a number of algorithms
exist to compute means either approximately (Afsari et al., 2013; Arnaudon and Miclo,
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2014; Arnaudon et al., 2013; Bačák, 2014; Bonnabel, 2013; Hauberg et al., 2015; Miller
et al., 2015; Sturm, 2003; Turner et al., 2014), or via heuristics (Billera et al., 2001; Fera-
gen et al., 2011; Jain and Obermayer, 2008), whose applicability and efficiency vary with
the complexity of the underlying nonlinear data space. A particularly popular strategy for
computing Fréchet means in geodesic spaces is the iterative "midpoint" algorithm which
obtains an updated mean estimate by stepping 1{k along the geodesic from a current mean
estimate to a kth random sample from the dataset. In Euclidean space, this computes the
mean in finite time when samples are made without replacement. The same ”without re-
placement" strategy is applied for trees in Feragen et al. (2011) and for graphs in Jain
and Obermayer (2008), but these finite time algorithms do not generally return the mean
in tree- or Graph Space, and should be considered heuristics. When running the algo-
rithm with replacement, there are a number of scenarios in which it is known to converge
towards the Fréchet mean, including non-positively curved spaces (Bačák, 2014; Miller
et al., 2015; Sturm, 2003) and certain Riemannian manifolds of bounded curvature (Ar-
naudon and Miclo, 2014; Arnaudon et al., 2013; Chakraborty and Vemuri, 2015). Note,
in particular, that for Riemannian manifolds, this algorithm is a special case of stochastic
gradient descent (Bonnabel, 2013). While this algorithm is easy to generalize to Graph
Space, its convergence proofs usually require bounded curvature to have some level of
uniqueness for geodesics. Moreover, it does not come with an accompanying algorithmic
strategy for computing more general statistics such as principal components. This moti-
vates our choice to propose the AAC strategy. Other strategies have been proposed in the
literature to compute geodesic principal components in nonlinear data space. For exam-
ple Huckemann et al. (2010) proposes a general strategy with application to the Kendall
Shape Spaces, and (Guo et al., 2019) proposes a simpler algorithm for principal compo-
nents, analogous to the tangent space approaches known from manifold statistics.

Experiments on real and simulated data

In this section, we illustrate the introduced Graph Space statistics via three case studies em-
phasizing the framework’s flexibility to model different graph features such as directed and
undirected edges, or scalar and vector attributes, on both nodes and edges. Each computa-
tion of distances and geodesics require graph matching, which is an NP-complete problem
with many existing heuristics for inexact matching (Conte et al., 2004; Emmert-Streib
et al., 2016). In the simulations we use the graduate assignment algorithm (Gold and Ran-
garajan, 1996) for inexact matching. All experiments are conduced using our GraphSpace
python package, which is available on github (Calissano et al., 2020c). Implementation
details are listed in the package description. The convergence threshold ε used in the AAC
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algorithms is set to ε “ 0.001 in Algorithm 1 and ε “ 0.01 in Algorithm 3.

Figure 3.6: The five networks used to simulate the dataset in Case study 1.

Case study 1: Undirected Networks with Scalar Edge Attributes

We simulate networks with real-valued node- and edge attributes as follows. Figure 3.6
shows five networks with edge attributes t100, 80, 60, 40, 20u as shown by the darkness
of the color, whose equivalence classes in X{T we term trx1s, rx2s, rx3s, rx4s, rx5su. We
generate a synthetic dataset consisting of 50 observations randomly sampled in a stratified
fashion by randomly picking one of the five equivalence classes rxis, i “ 1, 2, 3, 4, 5, and
then we randomly pick an element from this equivalence class by randomly permuting the
network’s nodes. The Fréchet mean and the GGPCs are computed using our AAC algo-
rithm, which works on the quotient space X{T . These results are compared to Fréchet
means and principal components computed on X , using the initial graph representations,
as well as theoretically correct results which can be computed as for this particular syn-
thetic dataset, the alignment can be made by hand. Figure 3.7 shows the three computed
Fréchet means. The mean computed with the AAC algorithm is a good estimate of the the-
oretical one, both in terms of topological structure and edge weights. The mean obtained
in the X space is a complete weighted network shown in Figure 3.7, capturing neither the
topology nor the weights.

For GGPCA, Figure 3.8(a) shows the cumulative proportion of variance explained as a
function of number of GGPCs, and Figure 3.8(b) visualizes the graph variation along the

Mean Without Alignment

Figure 3.7: Theoretical Fréchet mean; Fréchet mean in X; Fréchet Mean computed via AAC. The
scale is the same as in Figure 3.6.

41



Chapter 3. Exploration in the Graph Space

first two principal components. Note that the Graph Space GGPCs obtained using AAC
capture the same quantitative and visual level of variance as the theoretical GPCs, while
this does not hold for the Euclidean version. In particular, the two GGPCs explain more
then 90% of the original data variance, and the visualization of the 1st principal compo-
nent shows how it runs from a single edge to the full structure. Note that the Geodesic
Principal Components do not cross the Fréchet Mean, for the same reason this happens in
Huckemann et al. (2010).

Case study 2: Undirected Networks with Vector Attributes

As an intuitive visual example with real data with vectors attributes, we sub-sample 20
cases of the letter "A" from the well known hand written letters dataset (Kersting et al.,
2016; Riesen and Bunke, 2008). As shown in Figure 3.9(a), every network has node at-
tributes consisting of the node’s x- and y-coordinates, and binary p0{1) edge attributes
indicating whether nodes are connected by lines. In Figure 3.9(a), the Fréchet Mean is
shown, underling how the framework is capturing both the topology and the node coor-
dinates. Figure 3.9(b) plots network variation along the three GGPCs. Note in particular
how the principal components are capturing the variability in the way the letter A could
be written: the variability of the length and the inclination of the horizontal bar, the angle
between the vertical bars, and the reciprocal positions of the bars.

Case study 3: Directed Networks with Vector Attributes

Our final example uses a mobility dataset from Open Data Regione Lombardia (Regione
Lombardia, 2019). The dataset consists of origin-destination matrices of the commuting
flux of people between the 11 provinces of the Lombardia Region in northern Italy. For
every hour of a representative day in 2014, the fluxes were collected counting the number
of people travelling by private mobility mode (car), railway system (train or metro), bus
public transport system, or bike. This results in a set of 24 multi-layer networks, repre-
sented as graphs whose edge attributes are vectors in R4. Each coordinate represents the
flux associated to one of the mobility modes.

Figure 3.10, top, shows the multi-level networks associated with four different hours
(left), as well as the Fréchet Mean on Graph spaceX{T computed with the AAC algorithm
(right). Note that the density of the layers are well represented by the mean. By looking at
the permutation of network nodes used to compute the mean and the generalized geodesics,
we see that most of the time no permutation is performed (i.e. the node corresponding to
a specific province at one hour is matched to the node representing the same province at
another hour). This means that even if the province information is not stored in the graph,
they are distinguished by their mobility properties. The only permutation happens at 5
p.m., when the town of Brescia is permuted with the town of Bergamo. These two towns
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(a) Proportion of variance explained is shown by varying the number of the GGPCs. The proportion of
variance explained correspond to the proportion of variance explained on the total space at the last step
of the AAC.

0 120-120

(b) The first two Generalized Geodesic Principal Components are shown by plotting the original data pro-
jected along the corresponding generalized geodesic (only the q “ 0.1, 0.25, 0.5, 0.75, 0.9 quantiles are
shown).

Figure 3.8: GGPCA analysis for Case study 1.
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A Datum Fréchet Mean

(a) Left: A datum extracted from the A dataset. Every unlabelled node has a bi-dimensional real valued
attribute, while every edge has a 0, 1 attribute. Right: The Fréchet mean.
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Dataset Projected along the Eigen vector2 Dataset Projected along the Eigen vector2 Dataset Projected along the Eigen vector2 Dataset Projected along the Eigen vector2 Dataset Projected along the Eigen vector2

2nd GGPC p18.3%q
Dataset Projected along the Eigen vector3 Dataset Projected along the Eigen vector3 Dataset Projected along the Eigen vector3 Dataset Projected along the Eigen vector3 Dataset Projected along the Eigen vector3
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(b) Visualization of the GGPCs. 0.1, 0.25, 0.5, 0.75, 0.9 quantile of the projected scores are shown for the
first three GGPCs.

Figure 3.9: GGPCA analysis for Case study 2.
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3.3. Geodesic Principal Component Analysis

Figure 3.10: Top left: Network of the fluxes between the Lombardia Region provinces at 2 a.m.,
8 a.m., 5 p.m. and 10 p.m.. Top right: Fréchet Mean in Graph Space X{T for the mobility
modes bike, bus, rail and private. Bottom: GGPCA performed on scaled data. The first GGPC
is shown, by plotting the quantiles of the original data projected along the corresponding gen-
eralized geodesic for each one of the levels (q “ 0.1, 0.25, 0.5, 0.75, 0.9). The GGPC captures
the density change along the day for all the transportation modes except from Private car mode.
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are both important commuting satellites of Milan, so their role is interchangeable with
respect to the commuting flux in the afternoon. This application shows how this framework
does not suffer the possible risk of “over-matching” also in case where the cardinality of
the permutation group is pretty high (i.e., even though about 40 million possible node
permutations are available, no artificial permutations are introduced by the algorithm). In
Figure 3.10, bottom, we show that the majority of the variability is explained by the first
GGPC. The first principal component captures 81% of the total variance, and we see that
by moving along this component, the density of the layers changes, except from the private
mode, which is a complete graph at at every hour of the day. As expected, the first GGPC
captures the main variability of the dataset, which resides in the difference in number of
travels along the day, from early-morning and late afternoon peaks to minima at night.

3.4 Discussion

In this chapter, we extended tools for intrinsic exploratory statistics to Graph Space. In
terms of cluster analysis, we presented a case study about Piazza Leonardo da Vinci, Mi-
lan. The case study used the distance defined in Graph Space and the classical concept of
Hierarchical Clustering to cluster citizens’ usage of a renewed square. This work offers
potential extensions in terms of clustering techniques and applications. Cluster analysis
of population of networks has been little explored in this thesis, and it is a broad research
topic. In terms of application, the analysis of human movement as population of graphs
provides interesting interdisciplinary results. The geometrical embedding of the human
movement in an abstract space allows for location comparison (i.e. the alignment of net-
works -paths- and the matching of nodes -locations), which can reveal interesting insights
about the space usage and the perception of the landscape. In the rest of the chapter, we
discussed how to define intrinsic statistics. We described the properties of the Fréchet
Mean and we defined an original concept of Generalized Geodesic Principal Components.
Computing statistics on Graph Space is not straightforward in practice, due to the ge-
ometrical properties of Graph Space introduced in Chapter 2, especially because of the
problems induced by its unbounded curvature. We proposed a general algorithm (Align
All and Compute Algorithm - AAC), useful to compute intrinsic statistics on the Graph
Space. First, we applied the AAC to estimate the the Fréchet mean, showing the conver-
gence to a local minimum in finite time. Second, we applied the AAC to estimate the
GGPCs. We demonstrated the practical utility of the introduced framework on three case
studies: A simulated study, showing how AAC for Fréchet Mean and GGPCs estimates
the expected theoretical results, and two real world examples including both directed and
undirected networks, as well as both scalar and vector attributes. The examples emphasize
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that GGPCA is an efficient tool to visualize the variability in a population of networks.
As a further development, we would do a more detailed exploration of GPCA as a dimen-
sional reduction tool for networks, understanding how nodes and edges can be described
in a smaller subspace described by the geodesic principal components.

Note that Graph Space is analogous to the classical shape analysis (Dryden and Mar-
dia, 1998; Kendall, 1984), with graph nodes analogous to landmarks. In this sense, Graph
Space might also be a potential alternative to shape analysis when the indexing of land-
marks is unknown or the number of landmarks varies. On a related note, as our compu-
tation of means and principal components is essentially a generalization of generalized
Procrustes analysis, our estimators may suffer from similar biases as those shown to exist
for shapes (Miolane et al., 2017); this would be an interesting problem for future research.
As a further development, the analysis of networks with non-Euclidean attributes is a first
interesting extension of the current framework. Moreover, the AAC algorithm is a general
strategy to compute statistics on the Graph Space, which can naturally be extended to other
statistical tools, such as regression and classification.
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Appendix

Appendix A: Proof of the Theorem - AAC for Fréchet Mean (Algorithm 1)

Proof of Theorem 3.3.5 . First, we prove convergence in finite time. Algorithm 1 consists
of two steps repeated iteratively. Consider the function

k
ÿ

i“1

d2
Xpµ

cur, xcuri q, (3.7)

where, at any point in time, µcur is the current representative in X of the current estimate
of the Fréchet mean, and xcuri is the current representative (with current optimal node
alignment to µcur) in X of the sample point rxis. Note that the first step, aligning data
points to the current representative of the current mean estimate, cannot increase the value
of (3.7) as an improved alignment would indeed lower the value of (3.7). Similarly, the
second step, which is the re-estimation of the Fréchet mean given the new alignments,
also cannot increase the value of (3.7) as, again, an improved estimate would lower its
value. Moreover, if the value of (3.7) stays fixed two iterations in a row, the algorithm
will terminate. Thus, the iterative algorithm will never see the same set of sample-wise
alignments twice. As there are only finitely many such sets, the algorithm is forced to
terminate in finite time.

Next, we move to convergence to a local minimum. Let rµs P X{T be the estimated
mean, let µ P X be a representative of it, and let x1, . . . , xk P X be optimally aligned
representatives of the sampled graphs (as in the final step of the AAC algorithm). We
will show below that with probability 1, there exists some ε ą 0 such that for any µ1 P
BXpµ, εq, the representatives x1, . . . , xk are also optimally aligned with µ1. In this case,
since µ is a local minimizer of (3.7) within Bpµ, εq, and dX{T prµ1s, rxisq “ dXpµ

1, xiq for
all µ1 P BXpµ, εq, the estimated mean graph rµs is a local minimizer of (3.5).

In order to prove the existence of such an ε ą 0, we rely on the following lemma:

Lemma 3.4.1. Given representatives x1, . . . , xk of rx1s, . . . , rxks with mean µ in X , the
following holds with probability 1:

For all i “ 1, . . . , k and for all t P T zTxi ,

dpµ, xiq ‰ dpµ, txiq,

where Txi is the stabilizer Txi “ tt P T |txi “ xiu.

If the lemma holds, then we may define

δ “ mintdpµ, txiq ´ dpµ, xiq | i “ 1, . . . , k, t P T zTxiu ą 0.
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We now set ε “ δ
2

and consider µ1 P BXpµ, εq. We wish to show that for all i “ 1, . . . , k
and all t P T zTxi , we have dpµ1, xiq ă dpµ1, txiq, namely that the optimal representative
of rxis is left unchanged for all i.

Note that by the definition of δ, we have

dpµ, xiq ď dpµ, txiq ´ δ,

and by the triangle inequality, we have

dpµ1, xiq ď dpµ1, µq
loomoon

ăε“ δ
2

`dpµ, xiq

and
dpµ, txiq ď dpµ, µ1q

loomoon

ăε“ δ
2

`dpµ1, txiq.

We compute
dpµ1, xiq ď dpµ1, µq

loomoon

ă δ
2

`dpµ, xiq

ă
δ

2
` dpµ, xiq ď

δ

2
` dpµ, txiq ´ δ

ă ´
δ

2
`
δ

2
` dpµ1, txiq “ dpµ1, txiq,

which completes the proof of Theorem 3.3.5 under the assumption that Lemma 4.3.1 holds.

Proof of Lemma 4.3.1. In order to prove the lemma, we will show that the set

XT “

$

’

’

’

&

’

’

’

%

prx1s, . . . , rxksq P pX{T q
k

ˇ

ˇ

ˇ

ˇ

ˇ

dpµ, xiq “ dpµ, txiq

for some representatives
x1, . . . , xk,

i “ 1, . . . , k and t P T zTxi

,

/

/

/

.

/

/

/

-

has measure ηkpXT q “ 0, where ηk is the product measure induced by η onX{T ˆ . . .ˆX{T
loooooooooomoooooooooon

k

.

For each element t P T , denote by X t “ tx P X|tx “ xu the fixed point set of t. Note
that ηkpXT q “ mkpπ

´1pXT qq, and that

π´1
pXT q “

k
ď

i“1

ď

tPT

Xi,t,
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where

Xi,t “ tpx1, . . . , xkq P X ˆ . . .ˆ XzX t
loomoon

ith

ˆ . . .ˆX|dXpµ, xiq “ dXµ, txiqu

Ă X ˆ ¨ ¨ ¨ ˆX
loooooomoooooon

k

.

The preimage f´1p0q of the function

f : X ˆ ¨ ¨ ¨ ˆX
loooooomoooooon

k

Ñ R, px1, . . . , xkq ÞÑ d2
Xpµ, xiq ´ d

2
Xpµ, txiq

satisfies
f´1

p0q XX ˆ . . .ˆ XzX t
loomoon

ith

ˆ . . .ˆX “ Xi,t.

We show that f is a submersion on X ˆ . . . ˆ XzX t
loomoon

ith

ˆ . . . ˆ X by showing that it has

nonzero gradient. We can rewrite

fpx1, . . . , xkq “

“ p
1

k

k
ÿ

j“1

xj ´ xiq
T
p
1

k

k
ÿ

j“1

xj ´ xiq ´ p
1

k

k
ÿ

j“1

xj ´ txiq
T
p
1

k

k
ÿ

j“1

xj ´ txiq “

“
2

k

k
ÿ

j“1

`

xTj txi ´ x
T
j xi

˘

.

For j ‰ i we obtain

∇xjfpx1, . . . xkq “
2

k
ptxi ´ xiq

which is nonzero for px1, . . . , xkq P X ˆ . . . ˆ XzX t
loomoon

ith

ˆ . . . ˆ X . It follows that f is a

submersion on X ˆ . . .ˆ XzX t
loomoon

ith

ˆ . . .ˆX . As a result, the set

f´1
p0q XX ˆ . . .ˆ XzX t

loomoon

ith

ˆ . . .ˆX “ Xi,t
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has codimension 1 and, in particular,

mkpXi,tq “ mkpf
´1
p0q XX ˆ . . .ˆ XzX t

loomoon

ith

ˆ . . .ˆXq “ 0.

But then,

ηkpXkq “ mkpπ
´1
pXT qq “ mk

˜

k
ď

i“1

ď

tPT

Xi,t

¸

ď

k
ÿ

i“1

ÿ

tPT

mkpXi,tq “ 0,

which proves the lemma.
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Appendix B : Proof of the Theorem - AAC for GPCA (Algorithm 3)

Proof of Theorem 3.3.6 . The proof of convergence of AAC for GGPCA follows the exact
same strategy as for the Fréchet mean in Theorem 3.3.5, noting:

• The algorithm converges in finite time because every step either decreases or leaves
unchanged the value of the sum of squared residuals for representatives in X:

k
ÿ

i“1

d2
pxi, γq

with respect to the first GGPC δ P ΓpX{T q and its representative γ P ΓpXq.

• For the first GGPC, the algorithm converges to a local minimum of (3.3) following
the same argument as above. Here, the ε-neighborhood of the obtained estimate δ
has to be considered on the Grassmannian manifold of 1-dimensional sub-spaces of
X .
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CHAPTER4
Prediction in the Graph Space

Prediction is the last main topic of this PhD thesis. We develop a regression model to
predict a set of graphs as a function of a set of vectors and a prediction interval for a graph
prediction. Defining a graph-valued regression model means to build a regression between
a set of of real values (i.e. regressors) and a set of graphs (i.e. responses). This regression
model is the first step to design a regression, an interpolation between graph points within
the Graph Space.

Within the first generation approach to graphs, prediction embodies a well known sci-
entific problem: the prediction of edges and nodes in a given graph. Statisticians and
sociologists have been focusing on the analysis of random graphs since the 50s, start-
ing from the seminal work by Erdős and Rényi (1960). From the Erdős-Rényi model,
many different others have been proposed to describe the theoretical distribution behind
the network datum and its variability. Exponential Random Graph Models (Lusher et al.,
2013; Robins et al., 2007) and Stochastic Actor Oriented Models (Snijders, 2011, 2017)
are some examples. Dynamic Network Analysis (DNA) is another stream of literature
aiming to model the temporal evolution of a network (see Carley (2003) for an overview).
Aside from the exploration of the generative models behind graphs, the effect of covariates
should be taken into account in graph-on-variable regression model. Some examples are:
a discrete partition of the space of the covariates to predict labelled networks (Liu et al.,
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2010); the definition of a regression model with continuous covariates (Ni et al., 2019);
a regression model for graphs represented as Laplacian matrices (Severn et al., 2020); a
Bayesian approach to the regression process of binary networks (Durante and Dunson,
2014); a multi-linear regression for a set of tensor data (Hoff, 2015). In machine learning,
a frequently studied problem is the prediction of nodes and edges from scalars or vectors
with Graph Neural Networks (Scarselli et al., 2008; Xu et al., 2018; Zhang et al., 2018) or
Variational Autoencoder for Graphs (Kipf and Welling, 2016; Schlichtkrull et al., 2018).
Within the second generation approach, a considerable amount of works considers popu-
lation of graphs, where the graph plays the role of the independent, or input, variable. This
includes problems such as graph classification, or regressing real-valued properties from
graph-valued input. Such problems are often tackled by embedding the graphs, explicitly
or implicitly, in a Euclidean feature- or embedding space (Kashima et al., 2003; Maron
et al., 2018; Saigo et al., 2009; Vishwanathan et al., 2010; Xu et al., 2018), where much
of the relational information is lost. This approach is fine when the information needed
to make the prediction can be encoded in a Euclidean feature space. A more challenging
problem is when the predicted dependent variable is a graph. Predicting an unlabelled net-
work from a set of variables requires the definition of an interpolating regression function
between graphs. We tackle this using interpolation in Graph Space. For other types of
nonlinear data, such problems are frequently handled using tangent space methods, where
the regression models are estimated in the Euclidean tangent space (Fletcher, 2013; Hin-
kle et al., 2014) of the embedding space (in our case Graph Space). However, these suffer
from distorted residuals (Mallasto and Feragen, 2018), giving challenging conditions for
model fitting. Another easily applicable approach is given by the non-parametric kernel
smoothing approaches or theK-nearest neighbor regressions, which have appeared both in
manifold statistics (Davis et al., 2010) and in the more general, stratified, tree-spaces (Skw-
erer, 2014). In the context of high dimensional data such as networks, these methods suffer
from the curse of dimensionality, which could make them poorly performing in practice.
Additionally, as these methods require computing local means or neighborhoods for ev-
ery test point, they can also have significant computational cost. In terms of parametric
models, linear regression models have been generalized to geodesic (Fletcher, 2013; Hong
et al., 2014), polynomial (Hinkle et al., 2014) and more general parametric (Hong et al.,
2016) regression models, defined exclusively on manifolds. Staying within the manifold-
valued regression regime, more recent works also include manifold-valued models with
uncertainty quantification (Hong et al., 2017; Mallasto and Feragen, 2018). However, as
proven in Calissano et al. (2020a), Graph Space is not a manifold, so we cannot apply
manifold methods directly.

In Section 4.1, we address this problem by designing an intrinsic, generalized lin-
ear regression model taking values in Graph Space. The resulting parametrized regression
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models can be given a high level of flexibility via nonlinear basis functions supplied by the
user. We provide an efficient estimate via a version of the AAC for regression, which com-
bines statistical precision by using intrinsic, non-distorted residuals, with computational
benefits as estimation is effectively made in a Euclidean "tangent space". We introduce
an intrinsic generalized geodesic regression for a graph-on-vector regression problem. In-
spired by the results obtained for Geodesic Principal Components in the previous chapter,
the estimation of this regression function is done via Align All and Compute, which is
declined hereby to minimize the prediction error.

Along with the prediction model, a technique to estimate the uncertainty of the pre-
dicted value is required. The strongly non-Euclidean nature of these data type and the
difficulties of inferring a distribution of a population of networks (especially unlabelled)
creates the requirement of the definition of a non-parametric strategy. The last Section 4.2
of this thesis focuses on the development of a conformal prediction interval (Vovk et al.,
2005; Zeni et al., 2020) for every prediction model for a population of graphs. To the best
of our knowledge, uncertainty quantification has been relatively overlooked in the context
of strongly non-Euclidean data, despite its importance in the application tasks. While some
attempts have been proposed in a functional data analysis setting (Antoniadis et al., 2016;
Degras, 2011) and for the analysis of phylogenetic trees (Willis, 2019)), no uncertainty
quantification techniques has been proposed for more general network data. Population of
networks are very complex in terms of distribution. They show complex covariance struc-
ture due to their relational nature, and they can describe different phenomena on edges and
nodes, making parametric inference hard to apply. These are the main reasons why we opt
for a non parametric conformal prediction strategy.

In addition, this chapter contains two case studies about the effect of 2020 Covid-19
pandemic outbreak on the urban and the territorial mobility. In Section 4.1, the prediction
of the public transport network usage in Copenhagen during Covid-19 is studied, analysing
with an anova model the effect of the lockdown on the networks dynamics. In Section 4.2,
we analyse the Origin Destination Matrices of Lombardy region before, during, and af-
ter the total lockdown, understanding the distribution of the fluxes between the different
provinces.

This chapter is organized as follow. In Section 4.1, we introduce the Graph-Valued
regression model, we propose a version of the Align All and Compute Algorithm to esti-
mate the regression and we discuss the model with two case studies. In Section 4.2, we
introduce the conformal prediction framework for labelled and unlabelled graphs. The
conformal prediction strategy is applied to two simulated example and one case study.
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4.1 Graph-Valued Regression

The content of this section is extracted from the work Calissano et al. (2020b).

Given a sample ps1, rx1sq, . . . , psk, rxksq, where psi, rxisq P Rp ˆ X{T , we aim to
describe the relationship:

f : Rp
Ñ X{T

minimizing:
k
ÿ

i“1

d2
X{T prxis, fpsiqq (4.1)

over all the possible functions belonging to a prescribed family. In this section, we describe
how such families of functions in Graph Space X{T can be defined and parametrized, and
how to estimate the resulting regression model.

First, we recall the definition of generalized geodesics:

Definition 4.1.1 (Generalized Geodesics). Denote by ΓpXq :“ tγ : Rp Ñ Xu the set of
all straight lines (p “ 1), planes, or hyper-planes (p ą 1) in the total space X . A curve,
surface or hypersurface δ is a generalized geodesic, or generalized geodesic subspace, on
the Graph Space X{T , if it is a projection of a straight line, plane, or hyper-plane on X:

ΓpX{T q “ tδ “ π ˝ γ : γ P ΓpXqu. (4.2)

where π : X Ñ X{T is the canonical projection from total to quotient space.

Next, we consider two potential classes of regression models.

Definition 4.1.2 (Generalized Linear Regression Models - Class I). Consider the regres-
sion model

fβ : Rp
Ñ X{T, s ÞÑ fβpsq P X{T

given by fβpsq “ π ˝ hβpsq, where hβ : Rp Ñ X “ RJ is a linear regression model on X
of the form

hβpsiqa “
p
ÿ

j“0

φjpsiqβjpaq (4.3)

where the φj are continuous, possibly non-linear, basis functions φj : R Ñ R, j “
1, . . . , p, for edge- and node-wise coefficients βjpaq, where a “ 1, . . . , J .
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Definition 4.1.3 (Generalized Geodesic Regression Models - Class II). Consider the re-
gression model

fβ : Rp
Ñ X{T, s ÞÑ fβpsq P X{T

where fβ P ΓpX{T q is a generalized geodesic. This can be written as fβpsq “ π ˝ hβpsq,
where hβ : Rp Ñ X “ RJ is a linear regression on X of the form:

hβpsiqa “
p
ÿ

j“0

sijβjpaq (4.4)

again for edge- and node-wise coefficients βjpaq where a “ 1, . . . , J .

See Appendix 4.3 for the matrix representation of the problem. Given these two
classes, we define the family of generalized linear regression models by FpX{T q :“ tfβ :
Rp Ñ X{T u, i.e. the family of models such that fβpsq “ π ˝hβpsq, where hβpsq is defined
as in Definition 4.1.3 or Definition 4.1.2.

Note that FpX{T q contains the family ΓpX{T q of generalized geodesic regression
models. To simplify the notation, we omit the β writing hβpsq “ hpsq and fβpsq “ fpsq
in the following paragraphs.

By using the concept of generalized linear models and the concept of alignment with
respect to a regression model, the Generalized Linear Regression Model is defined in the
following way:

Definition 4.1.4 (Generalized Linear Regression). Given a sample tps1, rx1sq, . . . , psk, rxksqu
where psi, rxisq P RpˆX{T , their Generalized Linear Regression f P FpX{T q is the one
that minimizes the residuals as specified by Equation (4.1).

From intrinsic residuals on X{T to Euclidean residuals on X

Given a sample tps1, x1q, . . . , psk, xkqu, psi, xiq P Rp ˆX consisting of independent vari-
ables si P Rp and dependent variables given by specific graph representatives xi P X , the
modelling of a regression line h : Rp Ñ X is well known in statistics as a multiple output
regression model. This regression line can be projected onto a generalized geodesic in
the quotient space. However, the estimation of hpsq entirely on how the representatives xi
for the graphs have been selected – since for any node permutation ti, the representation
tixi P X is also a representative of the same graph. Here, we introduce the concept of
optimal alignment with respect to a regression line in order to select the optimal represen-
tative tixi P rxis, ti P T, i “ 1, . . . , k for the graphs rxis. The original concept of optimal
alignment was introduced to minimize the distance between a geodesic and an equivalence
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hβ (s)i

tixi

Figure 4.1: Alignment Differences between the Geodesic Principal Component Alignment and the
Geodesic Regression Alignment

class in the context of Principal Components (Section 3.3). In a regression problem, we in-
stead seek to minimize the prediction residual, which is the distance between the predicted
points along the regression line fpsiq and the observed datum rxis. The optimal repre-
sentative tx of the equivalent class rxs is the point that minimizes the distance not with
respect to the whole regression line (i.e. the projection along the line), but with respect to
the predicted point fpxq along the Generalized Linear Regression model:

Definition 4.1.5 (Alignment with respect to a regression model). Consider psi, rxisq P
Rp ˆX{T, i “ 1, . . . , k, t P T , and f : Rp Ñ X{T a generalized linear model in X{T
with associated h : Rp Ñ X . The graph representative tixi P X is in optimal regression
position with respect to the regression line f on X if

dXptixi, hpsiqq “ dX{T prxis, fpsiqq. (4.5)

Figure 4.1 illustrates the difference between alignment with respect to a Generalized
Geodesic Principal Component (Section 3.3) and the alignment with respect to a regression
model. In our case, the alignment distance is not the distance between an observation and
its orthogonal projection onto the line, but the distance between the observation and the
associated prediction along the regression line.

In Theorem 4.1.6 we show that this estimation strategy actually corresponds to regress-
ing with intrinsic residuals from X{T .
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Estimation: The Align All and Compute Algorithm for Regression

Inspired by the AAC algorithm for Generalized Geodesic Principal Components defined
in the previous section, we next introduce an AAC algorithm for regression, where the
alignment procedure is adapted to regression.

While the regression model of Definition 4.1.4 is framed intrinsically in the Graph
Space X{T , we obtain a simple estimation procedure by the Align All and Compute Algo-
rithm for Regression (AAC), which combines the Euclidean regression model estimation
in the total space X with iterative alignment to the current model estimate. For complete-
ness and notation, we recall the reader the analytical solution of the Multiple Output Least
Square Linear Regression model in Appendix 4.3.

Reminding that we are minimizing the sum of squared residuals loss function

k
ÿ

i“1

d2
X{T prxis, fpsiqq.

The AAC algorithm optimizes the loss with respect to one argument at a time: first with
respect to ti, freezing fpsiq (i.e. aligning the points), and consequently optimizing with re-
spect to fpsiq freezing the optimally aligned points tixi, by minimizing the corresponding
loss function on the total space X:

k
ÿ

i“1

d2
Xptixi, hpsiqq (4.6)

In Algorithm 4, the detailed steps of the implementation are shown. As a result (proven
in Theorem 4.1.6 below), the loss decreases in every step, which is crucial for its conver-
gence.
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Chapter 4. Prediction in the Graph Space

Algorithm 4 AAC to compute the Generalized Geodesic Regression
Data: tps1, rx1sq, . . . , psk, rxksqu P Rp ˆX{T
Result: Generalized Geodesic Regression fpsq P FpX{T q
Initialize:

Select randomly tixi P rxis among trx1s, . . . , rxksu, ti P T ;
Align all the observations to the representative tixi, obtaining a set of points
tt1x1, t2x2, . . . , tkxku P X in optimal position with respect to tixi;
Perform a Regression tps1, t1x1q, ps2, t2x2q, . . . , psk, tkxkqu in X obtaining hpsq P ΓpXq
solving Equation 4.6;
Project as fpsq “ π ˝ hpsq;
Set f̃psq “ fpsq

while δ ą ε do
Align all the points trx1s, rx2s, . . . , rxksu with respect to the generalized geodesic regres-
sion f̃psq, obtaining a new set of aligned points t1x1, t2x2, . . . , tkxk P X;
Perform GGR on tps1, t1x1q, ps2, t2x2q, . . . , psk, tkxkqu in X obtaining hpsq P ΓpXq by
solving Equation 4.6;
Project onto FpX{T q as fpsq “ π ˝ hpsq;
Compute the step as the distance between the sum of square prediction errors δ “

Dpf̃psq, fpsqq;
Align all the observations wrt fpsq, obtaining a set of points tt1x1, t2x2, . . . , tkxku P X
as explained in Definition 4.5;
Set f̃psq “ fpsq.

end
Return fpsq P FpX{T q
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4.1. Graph-Valued Regression

The following Theorem 4.1.6 proves the convergence in finite time of the AAC to a
local minimum.

Theorem 4.1.6. Let Graph Space X{T be endowed with a probability measure η which
is absolutely continuous with respect to the the push forward of the Lebesgue measure
m on X , and let λ be a probability measure absolutely continuous with respect to the
Lebesgue measure on Rp. Let the sample tps1, rx1sq, . . . , psk, rxksqu, psi, rxisq P RpˆX{T
be sampled from λˆ η.

Assume that the AAC for Regression (Algorithm 4) fits the regression model fβ defined
in Definition 4.1.3. Assume moreover that the basis functions φj : Rp Ñ R satisfy the
following properties:

i) φ0 :“ 1

ii) Sample s from λ and let pβ0, . . . , βpq ‰ pβ̃0, . . . , β̃pq. Then, with probability 1,

p
ÿ

j“0

βjφjpsq ‰
p
ÿ

j“0

β̃jφjpsq.

iii) The matrix

ΦpSq “

»

—

–

1 φ1ps1q . . . φpps1q

... . . . ...
1 φ1pskq . . . φppskq

fi

ffi

fl

has full rank.

Under these circumstances, we claim that

a) The AAC algorithm terminates in finite time, and

b) With probability 1, the estimated regression curve fβ returned by the AAC algorithm
is a local minimum of the function

β ÞÑ
k
ÿ

i“1

d2
X{T prxis, fβpsiqq. (4.7)

Note that the assumptions i) and ii) are reasonable and hold both for the linear basis
functions used in ordinary least square regression model, as well as for other type of basis
function such as polynomial basis functions. In Appendix 4.3, the proof of the theorem is
reported. In the Appendix 4.3, the above theorem is declined to the case where the hpsq
belongs to Class II as in Definition 4.1.2.
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Case Studies

In this section, we show the potential of the model applied to two real datasets. To un-
derstand the AAC approach, we will compute at each iteration of Algorithm 4 two errors:
the Regression Error and the Post Alignment Error. The Regression Error is the with-in
sample prediction error at step m. It is computed as the distance between the prediction
along the regression line at step m (i.e. hmpsiq) and the observations used to fit the current
regression tipmqxi:

k
ÿ

i“1

d2
Xphmpsiq, tipmqxiq (4.8)

The Post Alignment Error is the distance between the prediction along the line at step m,
and the graph representative optimally aligned with respect to this prediction as defined
in Definition 4.5. Note also, that this distance coincides with the distance in Graph Space
X{T between the graphs represented by hmpsiq and xi, where the graph rhmpsiqs coincides
with fmpsiq “ πphmpsiqq.

k
ÿ

i“1

d2
Xphmpsiq, tipm`1qxiq “

k
ÿ

i“1

d2
X{T prhmpsiqs, rxisq (4.9)

In other words, this is an intrinsic residual between the Graph Space regression model f
and the observation rxis P X{G. Note also that the aligned points obtained at step m
are the points used to fit the regression line at step m ` 1. The AAC for Regression is
implemented as a method in the GraphSpace python package (Calissano et al., 2020c). In
the following experiments, the algorithm step is the difference between the coefficients of
determination of the regression models, estimated at the current and previous iteration.

Crypto-currencies correlation networks

The analysis of how the stock market evolves in time is a broadly discussed and com-
plex problem, and the correlation networks are commonly used to model currency inter-
dependencies (Mizuno et al., 2006). We collect the prices in USD of the nine crypto-
currencies (Bitcoin, Dash, Digibyte, Dogecoin, Litecoin, Vertcoin, Stellar, Monero, Verge)
from the first recorded price of bitcoin on July 18th 2010, until April 3rd 2020 (from the
repository Coins). Based on the price data, we compute correlation networks describing
how pairs of crypto-currencies varies in price over time by computing, for every 7 days,
their correlation over a time period of the following 20 days. In this way, we obtain a set
of 506 correlation matrices, split into a training set of 400 matrices and a test set of 106.
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4.1. Graph-Valued Regression

The convergence of the algorithm is illustrated in Figure 4.2, where the plot shows
that more than one step is required to converge to the optimal aligned final model. The
necessity of using an iterative algorithm such as the AAC is clear from the decreasing
tendency of the errors – it would not suffice to align all the graphs with a representative of
the mean and carry out a single regression model in X . This would suffer from the same
distorted residuals as tangent space regression for manifold data.

0 1 2 3 4

7

8

9

10

Regression Error
Post Alignment Error

Iteration

M
ea

n
 S

q
u
ar

e 
E
rr

or

Figure 4.2: The Regression Error and Post Alignment Error are computed at every iteration of
the model estimation procedure. At the final step, R2 “ 0.381. The plot shows that the model
converges within relatively few iterations, but also that a single iteration, analogous to the
tangent space approach from manifold statistics, would not have been sufficient.

In Figure 4.3, we show, for each crypto-currency, the frequency of permutation with
other crypto-currencies in the analysis. This carries information on which crypto-currency
has a more interchangeable or a unique role in the market. We see that Bitcoin, which
appeared significantly earlier than the other crypto-currencies, is very rarely interchanged
with the rest. Similarly, Dash, Vertcoin and Monero are interchanged at noticeable rates.
In Figure 4.4, we see the predicted correlation networks at a number of different test time
points, along with the ground truth network. The networks are illustrated both as adjacency
matrices (heat-maps) and plotted as networks for intuitive comparison; note that while the
nodes may be permuted compared to their original order, the prediction and ground truth
are aligned and thus comparable.

Public Transport and Covid-19 in Copenhagen, Denmark

In this example, we analyse the public transport mobility networks in Copenhagen (Den-
mark) during the various phases of the Covid-19 epidemic in 2020. The mobility networks
are derived from the Rejsekort (travel card) data provided by Trafikselskabet Movia - the

63



Chapter 4. Prediction in the Graph Space

0.0

0.2

0.4

0.6

0.8

1.0
Bitcoin

Bi
tco

in
Da

sh
Di

gi
by

te
Do

ge
co

in
Li

te
co

in
Ve

rt
co

in
St

ell
ar

M
on

er
o

Ve
rg

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Dash

Bi
tco

in
Da

sh
Di

gi
by

te
Do

ge
co

in
Li

te
co

in
Ve

rt
co

in
St

ell
ar

M
on

er
o

Ve
rg

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Digibyte

Bi
tco

in
Da

sh
Di

gi
by

te
Do

ge
co

in
Li

te
co

in
Ve

rt
co

in
St

ell
ar

M
on

er
o

Ve
rg

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Vertcoin

Bi
tco

in
Da

sh
Di

gi
by

te
Do

ge
co

in
Li

te
co

in
Ve

rt
co

in
St

ell
ar

M
on

er
o

Ve
rg

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Litecoin

Bi
tco

in
Da

sh
Di

gi
by

te
Do

ge
co

in
Li

te
co

in
Ve

rt
co

in
St

ell
ar

M
on

er
o

Ve
rg

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Dogecoin

Bi
tco

in
Da

sh
Di

gi
by

te
Do

ge
co

in
Li

te
co

in
Ve

rt
co

in
St

ell
ar

M
on

er
o

Ve
rg

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Stellar

Bi
tco

in
Da

sh
Di

gi
by

te
Do

ge
co

in
Li

te
co

in
Ve

rt
co

in
St

ell
ar

M
on

er
o

Ve
rg

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Monero

Bi
tco

in
Da

sh
Di

gi
by

te
Do

ge
co

in
Li

te
co

in
Ve

rt
co

in
St

ell
ar

M
on

er
o

Ve
rg

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Verge

Bi
tco

in
Da

sh
Di

gi
by

te
Do

ge
co

in
Li

te
co

in
Ve

rt
co

in
St

ell
ar

M
on

er
o

Ve
rg

e

Figure 4.3: Permutation frequencies for the different cryptocurrencies.

bus company operating in the Copenhagen Region. The travel cards register the check
in and check out on the buses of the travellers, along with the corresponding bus stops.
Our mobility networks are based on trips between the 27th of February and the 13th of
May, 2020. These transport data are modelled as the daily origin-destination matrices be-
tween the 10 different areas in the municipalities of Copenhagen and Frederiksberg. As
shown in Figure 4.5, all the bus stops belonging to an area are aggregated into a single
network node. The edges correspond to the number of people travelling between the areas
during one day (00 : 01 to 23 : 59). The regression model describes the relationship be-
tween the origin destination networks and the categorical variable indicating the Covid-19
lock-down phases in Denmark. After the first registered case the 27th of February 2020,
Denmark imposed a lock-down from the 13th of March to the 13th of April. During this
month, the majority of the activities such as offices, gyms, and pubs were closed. During
the following Phase II, a slow reopening has been taken place. The time regressors is
modelled using three categorical variables describing the different phases. Note that this
regression problem corresponds to an Anova problem, where the analysis of variance is
conducted on the set of origin destination networks as a function of a three level categor-
ical variable describing the lockdown phases. The regression is conducted both in the X
space (i.e. without node permutation) and in the X{T space (i.e. with node permutation).
The two analyses address two different research questions. In the X space regression,
every neighbourhood maintains its own label. It is clear from the predicted trips in Figure
4.6, that the bus usage during lock-down almost disappeared without a full recover during
the Phase II. If the regression is conducted on theX{T space, the neighbourhoods become
interchangeable by allowing node permutation. In Figure 4.7, the network after the lock-
down shows the same structure as the one of the pre-lock-down, but with an overall lower
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Figure 4.4: True and Predicted crypto-currencies represented as heat-maps and networks
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Figure 4.5: Bus stops in the different areas of Copenhagen and Frederiksberg.

0 4000

Figure 4.6: Prediction of the labelled networks (i.e. the nodes attributes) of three days randomly
sampled from the three periods: 03{03{2020, 12{04{2020, and 22{04{2020
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4.1. Graph-Valued Regression

Figure 4.7: Prediction of the unlabelled networks of three days randomly sampled from the three
periods: 03{03{2020, 12{04{2020, and 22{04{2020. The dimension of the node is proportional
to the within area flux. The position of the nodes is computed using Spectral Layout of the
Networkx python package.

Pre Lockdown Lockdown Phase II

Figure 4.8: Most popular optimal matching with the node Indre By as a function time. Vertical
Lines describe transitions between different phases of the lockdown.

intensity of trips. While the regression in the X space allows for the interpretation of each
neighbourhood role in the network over time, the regression in the X{T space offers an
unlabeled network vision, focusing on which role each area is playing in the whole system
at every time step. To better understand this idea, in Figure 4.8 we represent the permuta-
tions along time of Indre By. Indre By is the shopping central area in Copenhagen. While
before and after the lock-down, its role in the network is unique, during the lock-down it
becomes interchangeable with Valby and Bispebjerg. These last two neighbourhoods are
mostly residential areas. The permutations show how the city usage drastically changed
during the emergency. As soon as the Phase II started, the unique role of Indre By in the
city network is immediately reestablished.
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Chapter 4. Prediction in the Graph Space

4.2 Conformal Prediction Intervals

After the definition of a regression model for graphs, we move to the construction of a
methodology for the uncertainty quantification. First, we introduce the concepts of confor-
mal prediction in a labelled setting (Subsection 4.2). Second, we extend it in an unlabelled
setting (Subsection 4.2).

The content of this section is extracted from the work Calissano et al. (2020d).

Conformal Prediction Parallelotopes for Labelled Graphs

Consider an i.i.d. population of graphs X1, . . . , Xk, xi P X , sampled from a distribution
P. The problem we want to tackle is define an interval for an estimator. Formally, we
define a prediction set Ck,1´α :“ Ck,1´αpX1, . . . , Xkq as

P pXk`1 P Ck,1´αq ě 1´ α (4.10)

where α P r0, 1s. Let Xpjq, j “ 1, . . . , J1 be a generic element of the flattened adja-
cency matrix X , where J “ n2 since the attributes are scalars, and we are working with
weighted adjacency matrices. As we said previously, Xpjq P R, and the measure on X
is the Lebesgue measure defined on the Borel σ´algebra. With respect to a univariate
setting, the case of formulating prediction sets for complex data poses a serious question
in terms of interpretability and practical usefulness of the obtained intervals. It is intuitive
to understand that the best case in terms of interpretability for a prediction set is a region
in space that allows a component-wise identification of an element that is inside or outside
the prediction region. In more mathematical terms, we are interested in a set defined as:

C :“ tX P X : Xpjq P Cpjq, @ j P 1, . . . , Ju , (4.11)

where Cpjq Ď R. The sets described in Equation 4.11 are the Cartesian product of J
intervals of the real line. A set like this forms a parallelotope in RJ

The prediction set in the shape of a parallelotope allows a practitioner to project the
multivariate prediction region which is valid at a level α, in intervals for each element of
X without changing the coverage level. Our applied goal is thus to identify parallelotope-
shaped sets with a given unconditional coverage level, namely: P pXk`1 P Ck,1´αq ě 1´α.
A method which has the explicit aim to identify prediction sets of the type described in
Equation 4.11 is the Conformal Prediction Method (Vovk et al., 2005; Zeni et al., 2020).

1The index j “ 1, . . . , J was used to refer to j “ 1, . . . , p - regressors - in Section 4.1, to be coherent with the
regression literature.
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4.2. Conformal Prediction Intervals

The key quantity around which a Conformal Prediction framework revolves is a so called
conformity (or non-conformity) measure, on which a very weak “quasi-model" (in the
sense of Cella and Martin, 2020) is imposed, and it allows to obtain prediction sets. By
aptly choosing a non-conformity measure with the desired iso-contours, one is able to
obtain prediction sets with the minimal size and/or with the desired shape.

Let us put ourselves in a Split/Inductive Conformal Framework (see Lei and Wasser-
man (2014); Papadopoulos et al. (2002) for an introduction). We start by splitting our
X1, . . . , Xk in a proper training set I1 and a calibration set I2, where |I1| ` |I2| “ k,
indexing the sets as: l P I1 and m P I2.
@Xm, m P I2, one can compute an empirical P-value:

pXm :“
|ti P I2 : Ri ě Rmu|

|I2| ` 1

where R : Xk Ñ R is a non-conformity measure as defined in Vovk et al. (2005). The
conformal prediction set defined using the above definition of P-value is:

Ck,1´α :“ tX P X : pX ą αu (4.12)

where α is the desired coverage level. To identify a prediction set that is also a set in the
sense of Equation 4.11, we can use the Linf metric. Namely, we define our non-conformity
measure (NCM) R : Xk Ñ R to be

Rm “ max
jP1,...,J

|Xmpjq ´ µ̂pjq| , m P I2 (4.13)

where µ̂ “ A ptXl, l P I1uq is an estimator of central tendency based on a algorithm A,
trained on Xl, l P I1. We can also note that, having defined a prediction set as in Equation
4.18, and the NCM as in Equation 4.13, one can say that Xk`1 P Ck,1´α ðñ Rk`1 ď h,
with h the rp|I2| ` 1qp1´ αqs-th smallest value in the set tRm : m P I2u. Then

max
jP1,...,J

|Xk`1pjq ´ µ̂pjq| ď h

ñ|Xk`1pjq ´ µ̂pjq| ď h @ pjq

ñXk`1pjq P rµ̂pjq ´ h, µ̂pjq ` hs @j “ 1, . . . , J

Therefore, the split conformal prediction set induced by the nonconformity measure (4.13)
is

Ck,1´α :“ tX P X : Xpjq P rµ̂pjq ´ h, µ̂pjq ` hs @j “ 1, . . . , Ju . (4.14)

The described procedure is summarised in Algorithm 5. The calculation of these sets
is very convenient: we require to train the central tendency estimation algorithm A only
once, and we have a closed form for the calculation of the semi-amplitude of the set.
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Algorithm 5 Split Conformal Prediction Parallelotopes for Populations of Graphs

1: Require: Data Xi, i “ 1, . . . , k,, type-1 error level α P p0, 1q, central tendency estimation
algorithm A

2: split randomly t1, . . . , ku into two subsets I1, I2

3: µ̂ “ A ptXl, l P I1uq

4: Rm “ maxj“1,...,J pXmpjq ´ µ̂pjqq , m P I2

5: h is the rp|I2| ` 1qp1´ αqs-th smallest value in the set tRm : m P I2u

6: Ensure: Ck,1´α :“ tX P X : Xpjq P rµ̂pjq ´ h, µ̂pjq ` hs @ju

Amplitude Modulation

The main shortcoming of the approach proposed in Section 4.2 is that the identified par-
allelotope has constant amplitude across all j “ 1, . . . , J . While there may be situations
in which such feature is desirable, practitioners usually face cases in which edge attributes
have different variability, and may want to take into account such variability when making
a global prediction (for instance, with wider or narrower sets). The limit situation in this
case would be the one where a vertex is completely absent from the population of graph
analysed, meaning that Xpjq “ 0 for the position j assigned to the null node. Any am-
plitude different from 0 for the interval in Bpjq is not desirable, since we do not want to
“add" a node that never appears in the observed data.

To do so, following Lei et al. (2018), we condition the amplitude of Equation 4.14
across j P 1, . . . , J using a local notion of variability. Namely, we modify Equation 4.13
in the following fashion:

Rm “ max
jP1,...,J

„

|Xmpjq ´ µ̂pjq|

ŝpjq



(4.15)

Where ŝ “ S ptXl, l P I1uq is an estimator of local variability, trained on the set tXl, l P I1u

using the symmetric algorithm S. Please note that the modulation function is computed
on the training set only. We summarise the Split Conformal Procedure with Modulation in
Algorithm 6

According to the choice of the algorithm to compute S , the modulating behaviour
dramatically changes. We mention two notable cases: (i) When ŝpjq “ 1 @j and no
modulation is taking place, Algorithm 6 will yield results equal to Algorithm 5; (ii) If
ŝpjq “

a

V arpXpjqq the resulting set amplitude will be modulated according to the local
variability of the attributes of the graph.

Remark. Consider the case when ŝpjq “
a

V arpXpjqq, if an attribute of an element of
the graph is deterministic, the attentive reader can immediately understand that both the
numerator and the denominator of the non-conformity function will be equal to zero. This
yields to an indeterminate form. To solve this computational problem, we will use, as a
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Algorithm 6 Split Conformal Prediction Parallelotopes for Populations of Graphs with Amplitude
Modulation

1: Require: Data Xi, i “ 1, . . . , k,, type-1 error level α P p0, 1q, regression algorithm A,
amplitude modulation algorithm S

2: split randomly t1, . . . , ku into two subsets I1, I2

3: µ̂ “ A ptXl, l P I1uq, ŝ “ S ptXl, l P I1uq

4: Rm “ maxj“1,...,J

´

|Xmpjq´µ̂pjq|
ŝpjq

¯

, m P I2

5: h “ is the rp|I2| ` 1qp1´ αqs-th smallest value in the set tRm : m P I2u

6: Ensure: Ck,1´α :“ tX P X : Xpjq P rµ̂pjq ´ hŝpjq, µ̂pjq ` hŝpjqs @ju

modulation function ŝpjq “
a

V arpXpjqq ` ε, where ε is a very small constant. This
yields to a prediction interval for a deterministic values centered in the actual value of the
constant, and of negligible length, while allowing the computation of the global set to be
performed.

Prediction Class of Parallelotopes for Unlabelled Graphs

In this section, we extend the concept previously introduced for tX1, . . . , Xku P X to
trX1s, . . . , rXksu P X{T . We recall the definition of probability measure on Graph Space,
already introduced in Theorem 3.3.5.

Definition 4.2.1. The Graph Space X{T is endowed with a probability measure η which
is absolutely continuous with respect to the push-forward of the Lebesgue measure m on
X . In particular, for A Ă X{T , we have ηpAq “ 0 if mpπ´1pAqq “ 0.

An interval in the quotient space becomes:

Definition 4.2.2. A set C P X as defined in Equation 4.11 can be projected on the Graph
Space as:

rCs “
|T |
ď

t“1

J
ą

j“1

Cpσtpjqq, rCs Ď X{T (4.16)

where σt : t1, . . . , Ju Ñ t1, . . . , Ju is the relabelling function associated to the permuta-
tion t P T

The idea is to define a set of intervals that follow the index permutation of the elements
in the Graph Space. For the sake of simplicity we define:

Ct “
J

ą

j“1

Cpσtpjqq
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where Cpσtpjqq Ď R, Ct Ď RJ .
The probability of this interval in the Graph Space can be computed using the projec-

tion on the total space X:

Pη

˜

|T |
ď

t“1

Ct
¸

“

|T |
ÿ

t“1

¨

˚

˝

p´1qt´1
ÿ

IĎt1,...,|T |u
|I|“t

PpAIq

˛

‹

‚

where AI :“
Ş

tPI Ct

x(1)=x(2)=x(3)

x(1)=x(2)

x(2)=x(3)

x(1)=x(3)

X(1)

X(2)

X(3)

Figure 4.9: Conceptual visualization of the shape of an interval in the Graph Space and its back-
projection π´1 in the total space for an undirected graph with three nodes and no attributes on
the nodes.

Example. Consider an undirected graph with three nodes n “ 3, real attributes on edges
and no attributes on nodes. This graph can be described as a point in R3. The number of
permutation is 3! “ 6. The interval C is the Cartesian product of three intervals on the real
line C “ Cp1q ˆ Cp2q ˆ Cp3q. If we permute this shape with the following permutation
t “ t2, 1, 3u, we obtain a new set Ct “ Cpσtp1q “ 2q ˆ Cpσtp2q “ 1q ˆ Cpσtp3q “ 3q. The
union of all their possible permutations is rCs, shown in Figure 4.9

As in the labelled case, we can define the interval with a given coverage level:

Pη prXsk`1 P rCsk,1´αq ě 1´ α (4.17)

We start by splitting our set of unlabelled graphs trX1s, . . . , rXksu in a training set I1 and
a calibration set I2, where |I1| ` |I2| “ k.
@rXms,m P I2, one can compute an empirical P-value define exactly as in the labelled

case:

prXms :“
|ti P I2 : Ri ě Rmu|

|I2| ` 1
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4.2. Conformal Prediction Intervals

where R is a non-conformity measure as defined by Vovk et al. (2005). The conformal
prediction set defined using the above definition of P-value can be identified as

rCsk,1´α :“
 

rXs P X{T : prXs ą α
(

(4.18)

We define our non-conformity measure Rm to be

Rm “ max
j“1,...,J

|tmXmpjq ´Apjq| (4.19)

where:
tm “ arg min

tPT
pdXptXm,Aq (4.20)

where A is a symmetric function of the data. This non-conformity measure selects the
permutation that optimally aligns the two graphs and consequently selects the edge or
node that are mostly far apart from each other.

In the case of amplitude modulation, the Equation 4.19 becomes:

Rm “ max
j“1,...,J

|tmXmpjq ´Apjq|
ŝpjq

(4.21)

Where ŝ is an estimator of the variability of the edge or node j after the alignment with
respect to the central estimator A. The whole procedure is summarised in Algorithm 7.

Algorithm 7 Split Conformal Prediction Parallelotopes for Populations of Unlabelled Graphs with
Amplitude Modulation

1: Require: Data rXis, i “ 1, . . . , k,, type-1 error level α P p0, 1q, Predictive algorithm A,
amplitude modulation algorithm s

2: split randomly t1, . . . , ku into two subsets I1, I2

3: µ̂ “ A ptrXls, l P I1uq, ŝ “ S ptrXls, l P I1uq

4: Find tt1, . . . , t|I2|u s.t. tm “ arg mintPT pdXptmXm, µ̂qq

5: Rm “ maxj“1,...,J

´

|ptmXmqpjq´µ̂pjq|
ŝpjq

¯

“ maxj“1,...,J

´

|Xmpσtm pjqq´µ̂pjq|
ŝpjq

¯

, m P I2

6: h is equal to rp|I2| ` 1qp1´ αqs-th smallest value in the set tRm : m P I2u

7: Ensure: Ck,1´α :“ trXs P X{T : ptXqpjq P rµ̂pjq ´ hŝpjq, µ̂pjq ` hŝpjqs @j @tu

Remark. The reader should note how it is not required to specify anything about A. This
generality, which is one of the main interesting features of the conformal prediction frame-
work, allows for the use of any predictive algorithm, either statistical inspired, machine-
learning inspired, or a combination of the two. However, due to the geometrical complex-
ity of the Graph Space, extending regression strategies as well as neural network strategy
to this framework is not straightforward. In this section, we are going to use the Fréchet
Mean as the A (see (Calissano et al., 2020a) for definitions and details).
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Simulation and Case Study

In this section, we illustrate the theoretical results described in the previous section on
two simulated dataset and one case studies. In all these examples, the A function is going
to be a Fréchet Mean estimator. In the unlabelled case, the Fréchet mean corresponds to
the Sample Mean, while in the unlabelled case, the Fréchet Mean is computed with the
Align All and Compute Procedure (Calissano et al., 2020a). The Conformal Prediction
Parallelotopes is implemented as a function in the Python Package Graph Space (Calissano
et al., 2020c).

Simulation: Labelled Case

In this simulation, we compute the Empirical Coverage of different parametric intervals
and the conformal prediction intervals. We generated a set of graphs 130 graphs (|I1| `

|I2| “ 30 is the training set - eventually divided in training and calibration for the split
conformal method- and 100 is the test set). Every directed graph has 5 nodes with Gaussian
attributes Np0, 1q and 20 edges following four different distributions:

1. Gaussian attributes Np0, 1q,

2. Uniform attributes Up´1.7, 1.7q,

3. t-Student attributes with 4 degrees of freedom,

4. t-Student attributes with 1 degree of freedom,

Having two different distributions on nodes and edges attributes is very common in the ap-
plications, because nodes and edges usually describe two different phenomena. For every
generated model, we compute the sample mean and three different prediction intervals, in
a labelled fashion:

1. Univariate Gaussian Intervals:

x̄i ˘ tk´1pα{2q

c

1`
1

k
ŝi

2. Univariate Gaussian Intervals with Bonferroni Correction:

x̄i ˘ tk´1ppα{pq{2q

c

1`
1

k
ŝi
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4.2. Conformal Prediction Intervals

3. Simultaneous Gaussian Intervals:

x̄i ˘ ŝi

d

ˆ

1`
1

k

˙

pk ´ 1qp

pk ´ pq
Fpp,k´pqpαq

4. Gaussian Ellipse

px´ x̄q1Ŝ´1
px´ x̄q ď

`

1`
1

k

˘pk ´ 1qp

pk ´ pq
Fpp,k´pqpαq

where tk´1pα{2q and Fpp,k´pqpαq denotes the upper quantile. Ŝ denotes the sample co-
variance matrix and ŝi the estimated sample variance; x̄ “ rx̄1, . . . , x̄ps the sample vector
mean.

Given a set of 100 different different α and 100 rounds of simulations, we compute the
average empirical coverage on the test set, defined as:

Êp1´ αq “
1

100

K
ÿ

k“1

100
ÿ

i“1

1xiPICkpαq
100

(4.22)

In the Figures 4.10, we show the calibration curves α for the the different generative mod-
els and the different intervals. As expected, and coherently with the theory, Univariate
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Figure 4.10: Empirical Coverage as a function of the Nominal Coverage for the different models.
Each one of the plot visualizes a different interval.

gaussian intervals are wildly under-covering in a global sense, given the absence of any
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multiplicity correction. Bonferroni-corrected intervals are quite conservative in the gaus-
sian case, and very conservative in leptocurtic cases such as the uniform one. With respect
to the two platicurtic cases (t-student with 1 degree of freedom and t-student with 4 degrees
of freedom), we observe a generic conservativeness for low levels of nominal coverage,
generated by the Bonferroni correction: this effects tends to disappear for higher cov-
erage levels. We see that Bonferroni-corrected intervals are under-covering for nominal
levels that are commonly used in the practice. The projection over the components of
multivariate gaussian intervals generates, similarly to our method, prediction sets with the
shape of a parallelotope: It appears evident how they are grossly conservative. Multivari-
ate gaussian prediction ellipses are exact in the gaussian case, and provide a conservative
approximation in the uniform case, while they fail to cover for platicurtic distributions. In
any case a high-dimensional prediction ellipse such as this one is of very relative practical
value. The only method providing a properly calibrated prediction intervals - regardless
of the distribution and interpretable (thanks to their parallelotopic shape)- is the proposed
conformal one. In the Conformal Prediction Intervals, if the size of the calibration and
training sets increases, the number of possible estimated values of the Empirical Coverage
also increases, thus the Empirical Coverage converges to the Nominal Coverage. This is
clear from Figure 4.11, where the CP intervals for different numbers of observations are
estimated: |I1| ` |I2| “ 30, 130, 230. The lines of the four different distributions tent to
the quadrant bisector, when the number of observations increases.
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(b) |I1| ` |I2| “ 130
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(c) |I1| ` |I2| “ 230

Figure 4.11: Estimations of the Empirical Coverage for the conformal prediction intervals with
different calibration and training size. The size of the test set is 100 in all three simulations.

Simulation: Unlabelled Case

In this example, we simulated 500 pentagons from the equivalence classes shown in Figure
4.12. First, we randomly select one of the equivalent class and then we randomly pick one
element from the class (i.e. a random permutation of the graphs shown in the figure).
These pentagons have constant attribute on nodes (10) and decreasing attributes on edges
(100, 80, 60, 40, 20). The interesting part of this example reside on the simplicity of the
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4.2. Conformal Prediction Intervals

graph topology and the possibility of visualizing and understanding the correct alignment
as shown in Figure 4.12. Note that this dataset is the same as the one used in Section 3.3.

Figure 4.12: A candidate for each one of the equivalence classes of the unlabelled dataset.
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Figure 4.13: Labelled Setting: Conformal Prediction interval of level 95%.
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Figure 4.14: Unlabelled Setting Conformal Prediction interval of level 95%.

In Figures 4.13 and 4.14, we show the Fréchet Mean and the corresponding 95% inter-
vals for both the labelled (no alignment procedure is applied to the data) and the unlabelled
setting. The exact values of the intervals are visualized on top of each edge. The example
shows the capability of the conformal prediction intervals to capture the topology and the
attributes, when working in an unlabelled setting.
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M-B

(a) Lombardy Region Map

Other
M-B

Varese

Como
Sondrio

Milano

BergamoBrescia

Pavia

Cremona

Mantova

Lecco

Lodi

(b) A data point (i.e. one of the graphs)

Figure 4.15: A map of the Lombardy Region with the 11 provinces (M-B stands for Monza-Brianza)
and an example of a data point randomly sampled from the Origin-Destination Population.

Application: Mobility and Covid-19 in Lombardy Region

In this section, we apply the methodology to a case study concerning the mobility during
the outbreak of the COVID-19 pandemic in the Italian region of Lombardy. Covid-19 hit
with particular violence the northern part of Italy. The Italian government decided for a
complete lockdown from the 21st of March 2020. The so-called phase II started the 4th of
May 2020, with a slow reopening of the commercial activities. The data are provided by
a location marketing company Cuebiq and consists of GPS locations gathered via smart-
phone of anonymous users in the Lombardy Region from the 17th of February to the 17th

of May 2020. Among the anonymous users, we randomly sampled 50000. This anony-
mous data are collected from users who opt-in to share their data for research purposes,
through a GDPR-compliant framework. Cuebiq then applies additional privacy preserva-
tion techniques to remove sensitive locations from the dataset, and to obfuscate personal
areas such as home locations by “up-leveling" them to 600m x 600m geo-hash tiles. Data
have been aggregated in Origin-Destination Matrices (ODM). ODMs - a standard data
type commonly used in transport and mobility modelling - are graphs where the nodes are
geographical locations and the edges are the flows of people between the locations. In this
case study, we focus on the peoples’ trips arriving before 7 p.m. of the working days of
the given period. The result is a datset of 65 labelled graphs with 11 nodes. In Figure 4.15,
the map of the 11 provinces of Lombardy and an example of a ODM is reported.

The conformal prediction intervals for the Fréchet Mean are computed at three different
levels of α “ t0.25, 0.5, 0.75u, to shows how this conformal prediction strategy can be
used to understand the distribution of a complex phenomena. In Figure 4.16, we report
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Figure 4.16: Intervals with α “ 0.25, 0.5, 0.75 for the outgoing and incoming edges of the
province of Bergamo. Data has been standardized and negative values are set to zero.

the intervals of the incoming and outgoing edges from the province of Bergamo (cut for
negative values and standardized due to privacy reasons). Bergamo was the province most
hit by the COVID-19 epidemic in Lombardy and it is an important regional and national
economic hub, being at the centre of a very industrialized area. As it is clear from the
prediction intervals, the COVID lockdown decreased the mobility to and from Bergamo
province and the mobility activities have not recovered in the Phase II. From a modelling
perspective, the plots shows how the intervals sizes increase for higher values of 1 ´ α.
Note that the prediction intervals are in dimension 144 and in the Figure 4.16 we are only
showing the components along 11 axes, even if the coverage is in the higher dimension.
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4.3 Discussion

In the first section of this chapter, we developed a graph-valued regression model, includ-
ing scalar, basis functions, or vectors - as independent variables - and graph-valued datum
- as dependent variable. The application of the model broads to every problem where a set
of graphs varies according to an external value. To define an intrinsic regression model,
we implemented the Align All and Compute Algorithm for Regression in the Graph Space
by iteratively aligning points to the regression line and estimating the Multiple Output
Least Square Regression as a regression model on the total space. The novelty of the AAC
for Regression with respect to the AAC for GPCA (see Section 3.3) resides in making
compatible the alignment procedure and the regression procedure. As a further develop-
ment, this algorithmic framework can be extended to different regression strategies rather
that the Multiple Output OLS regression, such as Gaussian Processes or Neural Networks.
The requirement for these extensions is to check that the regression loss function and the
optimization of the alignment procedure lead to the same minimum - i.e. getting the points
closer to the geodesic and the geodesic closer to the points. Note that one of the main ap-
plication of this framework is time series: a network evolving over time. Thus, a more
tailored time series regression model can be defined for this specific application. The time
series approach to networks could also be interpret as a network-on-network regression
problem, where the inputs are the networks measured at t ´ 1, . . . , t ´ k and the outputs
are the networks measured at t . Defining a network-on-network regression problem is an
interesting research question: this original regression should be equivariant with respect
to the permutation action.

In the second section, we addressed the uncertainty quantification problem, proposing
a model-free, computationally efficient forecasting method, based on Conformal Predic-
tion. Due to the novelty of prediction intervals for graphs, we introduced the strategy for
both labelled and unlabelled graphs. The issue of predicting with uncertainty a complex
statistical units is a key research topic in modern statistics, from both a theoretical and
an applied perspective. Only few works have been proposed on the topic, which focus
on set forecasting techniques based on either distributional assumptions - that are hard
to justify - or on heavy computational methods. In addition to that, they concentrate on
producing forecasts for well-behaved objects, for which an embedding in an Euclidean or
mildly non-Euclidean space is possible. The conformal prediction strategy instead cre-
ates intervals with the correct expected coverage in the quotient space and with a possible
visualization of the intervals along the edges and the nodes, allowing for a possible inter-
pretation of the results. A natural extension of this chapter is the application of conformal
prediction intervals to the regression model, substituting the A function with the devel-
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oped regression model.

Two interesting case studies about the Covid-19 outbreak and the effect on urban move-
ment are illustrated in this chapter. The first case study regards the public transport system
in Copenhagen (Denmark). Thanks to the graph-valued regression, we showed how the
system demand changed during the lockdown. The unlabelled perspective on the public
transport system revealed the relational roles of the different areas and the evolution of
the roles over time within the network. The second case study regards the analysis of
GPS traces in the Lombardy Region (Italy), focusing on general urban movement (not
only related to public transport). We showed how the distribution of the trips between
the different provinces in the region changed over times, using conformal prediction as
an exploration tools to visualize the distribution of a complex data. These two examples
show the high potential impact of the developed statistical theory on the analysis of urban
movements.
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Appendix

Appendix 1: Proof of Theorem 4.1.6

Remark. Definition (4.1.3) describes a length J “ n2 vector (corresponding to a flattened
nˆ n matrix) of linear regression models whose ath entry is given by

hpsiqa “
p
ÿ

j“0

φjpsiqβjpaq

Note that the index a corresponds to either a node or an edge, and we thus have one re-
gression model for each edge and each node, Generalized geodesic regression on X{T
fits linear regression to aligned data point representatives in X , and corresponds to basis
functions φ0psq “ 1 and φipsq “ spiq where spiq denotes the ith coordinate of s. How-
ever, the model also enables using more general nonlinear basis functions φipsq as known
from Euclidean statistics, leading to linear regression models with potentially nonlinear
regressors, such as e.g. polynomial regression.

Proof. First, we prove convergence in finite time. Algorithm 4 consists of two steps re-
peated iteratively, fitting the generalised regression model 4.1.3 to the observations
tps1, rx1sq, . . . , psk, rxksqu P RˆX{T .

Consider the squared error loss function

k
ÿ

i“1

d2
Xphmpsiq, tipmqxiq, (4.23)

where hm is our current estimate of the regression model at stepm inX , hmpsiq P X is the
corresponding regression estimate corresponding to input si, and tipmqxi is the current rep-
resentative in X of the sample network rxis. Note that the first step of Algorithm 4, which
aligns output representatives of rxis to the corresponding predicted value hpsiq along the
current estimation of the regression line, cannot increase the value of (4.23) as an improved
alignment would indeed lower it by definition. Similarly, the second step of Algorithm 4,
which is the re-estimation of the generalized geodesic regression given the new alignments,
also cannot increase the value of (4.23) as, again, an improved estimate would lower its
value. Moreover, if the value of (4.23) stays fixed two iterations in a row, the algorithm
will terminate. Thus, the iterative algorithm will never see the same set of sample-wise
alignments twice without terminating. As there are only finitely many such alignments,
the algorithm is forced to terminate in finite time.
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Next, we turn to proving that the estimated regression model fβ is, indeed, a local
minimum. We need to show that for some ε ą 0, }β̃´β} ă ε implies that, with probability
1,

k
ÿ

i“1

d2
X{T prxis, fβpsiqq ď

k
ÿ

i“1

d2
X{T prxis, fβ̃psiqq

We shall rely on the following lemma:

Lemma 4.3.1. Given representatives tx1, . . . , xku of trx1s, . . . , rxksu with generalized lin-
ear regression model fpsq “ π ˝ hpsq obtained minimizing (4.23), hpsq : Rp Ñ X , the
following holds with probability 1:

For all i “ 1, . . . , k and for all t P T zTxi ,

dXphpsiq, xiq ‰ dXphpsiq, txiq,

where Txi is the stabilizer Txi “ tt P T |txi “ xiu.

If the lemma holds, then we may define

ν “ mintdXphpsiq, txiq ´ dXphpsiq, xiq | i “ 1, . . . , k, t P T zTxiu ą 0.

Since the map β ÞÑ hβpsq is continuous for any fixed s P Rp, where h “ hβ depends
on the weights β as in Eq. 4.4, we can find some ε ą 0 such that }β ´ β̃} ă ε indicates
dXphpsiq, h̃psiqq ă

ν
2

for all observed independent variables si, i “ 1, . . . , k.
We now consider β̃ P Bpβ, εq; we wish to show that for all i “ 1, . . . , k and all

t P T zTxi , we have dph̃psiq, xiq ă dph̃psiq, txiq, namely that the optimal representative of
rxis is left unchanged for all i “ 1, . . . , k, even if we perturb the regression model. This
would complete the proof.

Note that by the definition of ν, we have for any i “ 1, . . . , k and t P T zTxi

dphpsiq, xiq ď dphpsiq, txiq ´ ν.

We compute

dph̃psiq, xiq ď dph̃psiq, hpsiqq
looooooomooooooon

ă ν
2

`dphpsiq, xiq ă
ν

2
` dphpsiq, xiq ď

ν

2
` dphpsiq, txiq ´ ν

ă ´
ν

2
` dphpsiq, h̃psiqq
looooooomooooooon

ă ν
2

`dph̃psiq, txiq ă ´
ν

2
`
ν

2
` dph̃psiq, txiq “ dph̃psiq, txiq,

where the second and fourth inequalities follow from the triangle inequality. This com-
pletes the proof of Theorem 4.1.6 under the assumption that Lemma 4.3.1 holds.
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The proof of Lemma 4.3.1 relies on the following :

Lemma 4.3.2. Let β P Rpp`1qˆJ be the parameters of the output of AAC as stated in
Theorem 4.1.6. This β encodes p ` 1 flattened matrices (of dimension J) of coefficients,
where βj is the jth flattened matrix, and βjpaq is the jth coordinate corresponding to the
ath node or edge, and we denote by βpaq the pp` 1q-dimensional vector of coefficients for
the node or edge a.

Then, with probability 1, βpa1q ‰ βpa2q P Rpp`1q for all a1 ‰ a2 P t1, . . . , Ju, giving
tβ ‰ β for all t P T ztIdu.

Proof. From the analytical solution of a linear regression model in X (see Eq. (4.27)), we
recall that

β̂ “ pΦpSqTΦpSqq´1ΦpSqTX.

Since, by the assumptions of the theorem, ΦpSq has full rank, so does
pΦpSqTΦpSqq´1ΦpSqT . Thus, if βpa1q “ βpa2q for some a1 ‰ a2, then the corresponding
elements of X belong to the same fiber of pΦpSqTΦpSqq´1ΦpSqT , which happens with
probability 0.

Now, we are ready to prove the final Lemma 4.3.1. We prove the Lemma in the case
where s P R, for simplicity of notation. The extension to the vector case s P Rp easily
follows.

Proof of Lemma 4.3.1. In order to prove the lemma, we will show that the set

XT “

$

’

&

’

%

`

ps1, rx1sq, .., psk, rxksq
˘

P pRˆX{T qk
ˇ

ˇ

ˇ

ˇ

ˇ

dphpsiq, xiq “ dphpsiq, txiq

for some repr. x1, . . . , xk,

i “ 1, . . . , k and t P T zTxi

,

/

.

/

-

has measure pλˆ ηqkpXT q “ 0, where pλˆ ηqk is the product measure induced by pλˆ ηq
on pRˆX{T q ˆ . . .ˆ pRˆX{T q

looooooooooooooooooomooooooooooooooooooon

k

.

For each element t P T , denote by X t “ tx P X|tx “ xu the fixed point set of t. Note
that pλˆ ηqkpXT q “ pλˆmqkppIdR ˆ πq´1pXT qq, and that

pIdR ˆ πq
´1
pXT q “

k
ď

i“1

ď

tPT

Xi,t,

where

Xi,t “

#

ps1, x1, .., sk, xkq P pRˆXqˆ..ˆpRˆXzX t
q

loooooomoooooon

ith

ˆ..ˆpRˆXq
ˇ

ˇ

ˇ

ˇ

dXphpsiq, xiq

“ dXphpsiq, txiq

+
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and
Xi,t Ă pRˆXq ˆ ¨ ¨ ¨ ˆ pRˆXq

looooooooooooooomooooooooooooooon

k

.

The preimage F´1
i p0q of the function

Fi : X ˆ ¨ ¨ ¨ ˆX
loooooomoooooon

k

Ñ R, ps1, x1, . . . , sk, xkq ÞÑ d2
Xphpsiq, xiq ´ d

2
Xphpsiq, txiq

satisfies

F´1
i p0q X pRˆXq ˆ . . .ˆ pRˆXzX t

q
loooooomoooooon

ith

ˆ . . .ˆ pRˆXq “ Xi,t.

We show that Fi is a submersion on pR ˆXq ˆ . . . ˆ pRˆXzX t
qq

loooooomoooooon

ith

ˆ . . . ˆ pR ˆXq by

showing that it has nonzero gradient.

Note that

Fips1, x1, . . . , sk, xkq “ d2
Xphpsiq, xiq ´ d

2
Xphpsiq, txiq

“ }hpsiq ´ xi}
2 ´ }hpsi ´ txi}

2

“ phpsiq ´ xiq
T phpsiq ´ xiq ´ phpsiq ´ txiq

T phpsiq ´ txiq

“ 2hpsiq
T ptxi ´ xiq.

It follows that
∇xiFips1, x1, . . . , sk, xkq “ 2hpsiq

T
pt´ Iq.

We would like to show that 2hpsiq
T pt ´ Iq is nonzero with probability 1. Note that

2hpsiq
T pt ´ Iq “ 0 if and only if tThpsiq “ hpsiq, which also indicates that thpsiq “

ttThpsiq “ hpsiq. By Lemma 4.3.2, we know that tβ ‰ β with probability 1, and by the
assumptions of Theorem 4.1.6, we then have thpsiq ‰ hpsiq with probability 1. Hence, we
may conclude that with probability 1, 2hpsiq

T pt´ Iq ‰ 0, giving

∇xiFips1, x1, . . . , sk, xkq ‰ 0.

It follows that Fi is a submersion on

pRˆXq ˆ . . .ˆ pRˆXzX t
q

loooooomoooooon

ith

ˆ . . .ˆ pRˆXq.

As a result, the set

F´1
i p0q X pRˆXq ˆ . . .ˆ pRˆXzX t

q
loooooomoooooon

ith

ˆ . . .ˆ pRˆXq “ Xi,t
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has co-dimension 1 and, in particular,

mkpXi,tq “ mkpF´1
i p0q X pRˆXq ˆ . . .ˆ pRˆXzX t

q
loooooomoooooon

ith

ˆ . . .ˆ pRˆXq “ 0.

But then,

pλˆ ηqkpXkq “ pλˆmqkppIdR ˆ πq´1pXT qq “ pλˆmqk
´

Ťk
i“1

Ť

tPT Xi,t
¯

ď
řk
i“1

ř

tPT pλˆmqkpXi,tq “ 0,

which proves the lemma.

Appendix 2: Multiple Output Least Square

We recall the Ordinary Least Square regression model with multiple output (see Chapter 3,
Hastie et al. (2009)), declined in the context where the output is a set of flatted adjecency
matrices. Having a set of regressors and graphs ps1, rx1sq, . . . , psk, rxksq where psi, rxisq P
Rp ˆ X{T . Every graph can be represented as an equivalence class of flat adjacency
matrices of dimension J “ n2, where n is the number of nodes. Suppose we have, for
each equivalence class rxs P X{T , chosen an optimal representative x P X using the
criterion defined in 4.5. Then, the regression problem can be reformulated as follows:

X “ S ˆ B ` E (4.24)

and in matrix form:
»

—

–

x1,1 . . . x1,J

... . . . ...
xk,1 . . . xk,J

fi

ffi

fl

“

»

—

–

1 s1,1 . . . s1,p

... . . . ...
1 sk,1 . . . sk,p

fi

ffi

fl

»

—

–

β1,1 . . . β1,J

... . . . ...
βp`1,1 . . . βp`1,J

fi

ffi

fl

`

»

—

–

ε1,1 . . . ε1,J
... . . . ...
εk,1 . . . εk,J

fi

ffi

fl

where X represents the output matrix, S the matrix of regressors with the intercept added
as a first column, B the matrix of coefficients, and E the error matrix. In terms of single
elements of the graph - using the above index notation - the regression model describe the
element pi, aq in the adjacency matrix:

xia “
p
ÿ

j“0

sijβjpaq ` εia

Note that if i “ j the regression is describing a node, if i ‰ j the regression is describing
an edge. As in Multiple Linear Regression, the estimated matrix of coefficients B̂ can
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be computed by minimizing the least squares error. The analytical solution (under the
hypothesis of full rank of the matrix S) is:

B̂ “ pSTSq´1STX. (4.25)

The model can be re-framed by using basis functions φpsq : R Ñ R, rewriting the model
as:

X “ ΦpSqB ` E.

where ΦpSq is defined as:
»

—

–

1 φ1ps1q . . . φpps1q

... . . . ...
1 φ1pskq . . . φppskq

fi

ffi

fl

(4.26)

In this case, the analytical solution is given by

B̂ “ pΦpSqTΦpSqq´1ΦpSqTX (4.27)

Appendix 3: Corollary of Theorem 4.1.6

Corollary 4.3.3. Let Graph Space X{T be endowed with a probability measure η which
is absolutely continuous with respect to the the push forward of the Lebesgue measure
m on X , and let λ be a probability measure absolutely continuous with respect to the
Lebesgue measure on Rp. Let the sample tps1, rx1sq, . . . , psk, rxksqu, psi, rxisq P RpˆX{T
be sampled from λˆ η.

Assume that the AAC for Regression (Algorithm 4) fits the regression model fβ in
Definition 4.1.2. Assume moreover that the design matrix S P Rkˆp of the regressors
satisfies the following properties:

i) s0 “ r1, . . . , 1s
T - the first column models the intercept;

ii) Sample s from λ and let pβ0, . . . , βpq ‰ pβ̃0, . . . , β̃pq. Then, with probability 1,

p
ÿ

j“0

βjsj ‰
p
ÿ

j“0

β̃jsj

iii) The matrix

S “

»

—

–

1 s11 . . . s1p

... . . . ...
1 sk1 . . . skp

fi

ffi

fl

has full rank.
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Under these circumstances, we claim that

a) The AAC algorithm terminates in finite time, and

b) With probability 1, the estimated regression curve fβ returned by the AAC algorithm
is a local minimum of the function

β ÞÑ
k
ÿ

i“1

d2
X{T prxis, fβpsiqq. (4.28)
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CHAPTER5
Conclusion

In this thesis, we focused on the statistical analysis of populations of graphs and the ap-
plication to urban movements. We started from the description of the chosen embed-
ding space, the Graph Space, and the study of its geometrical properties (Chapter 2). We
showed an example of cluster analysis, we discussed the property of the Fréchet Mean, and
we defined the Generalized Geodesic Principal Components (Chapter 3). We focused on
the prediction of graphs, proposing a graph-valued regression model and a non-parametric
conformal interval for the uncertainty quantification of a prediction (Chapter 4). Along
these chapters, we introduced a general methodology for the estimation of intrinsic statis-
tics on the Graph Space: the Align All and Compute algorithm (AAC). The AAC is a
flexible strategy, which can be extended to the estimation of different other statistical
methods. All these methodologies are applicable to both labelled and unlabelled, direct
and un-direct, weighted and unweighted, one and multi-layered graphs. The mathematical
innovation of the thesis lays at the intersection of geometry and statistics. Note that the
Graph Space is a quotient space and it is not a manifold. This poses modelling questions
intractable from the manifold statistics perspective. Defining statistical methods on quo-
tient spaces (both intrinsic and extrinsic) is an urgent research field, which has been mostly
explored in the shape analysis literature. Quotient spaces are a very general concept, po-
tentially describing all sorts of phenomena, and they are yet very little explored in the
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statistical literature. In addition, this thesis offers a compendium of challenges and possi-
ble solutions encountered in the analysis of complex non-Euclidean data, starting from the
embedding of the data, moving to the definition of original statistical methods. As for all
complex problems, the thesis is a partial exploration of the phenomenon and every section
arouse many new research questions discussed at the end of the chapters.

In terms of applications, the current work focused on the analysis of urban movement,
both by discussing the importance of the usage of complex data analysis and by applying
the developed tools to several case studies. In the analysis of movements, the intuitive rep-
resentation has always been the spatial one, the Euclidean one. In this thesis, we lay the
foundations to look at a spatial occurrence in a relational perspective, where movements
become objects in an abstract space. If a spatial phenomenon is interpreted as a relational
phenomenon, a different geometry is considered to analyse the physical space,and geom-
etry is no more an auxiliary tool for measuring reality, taken for granted a priori. The
choice of geometry becomes a first and important step of the analysis. To understand if the
relational representation is a useful description of the reality, we proposed different case
studies throughout the chapters: the micro scale analysis of citizens’ usage of a square
(Section 3.1); the mobility at urban level in the city of Copenhagen (Section 4.1); the
origin destination matrices within the Lombardy region using census data (Section 3.3)
and gps data (Section 4.2). Looking at these results, there are several gains in using the
Graph Space framework. First, the Graph Space approach is trying to avoid reducing the
complexity of the datum, by analysis it in its natural complexity and natural embedding.
Second, the relational approach allows to perform comparison of spacial phenomena that
would be otherwise incomparable (e.g. two equal square usage that differs only form the
entry point). On the other hand, scholars can argue that the main point of the spatial anal-
ysis is the spatial dependency itself. The complex data analysis aims at giving insights
about a phenomenon that could be a posteriori grounded again in the physical space. As
clearly shown by the example of Piazza Leonardo (Section 3.1) and the example of Copen-
hagen bus system data (Section 4.1), analysing movement in a non-Euclidean space can
reveal interesting insights about the actual usage of a location, dis-anchoring it from its
pure geographical position and embedding it in a interconnected network perspective.

This thesis consists of two small steps: one in the direction of the statistical analy-
sis of complex non Euclidean data and the other in the dialogue between statistics and
qualitative disciplines, trying to define a trustful quantitative paradigm for the analysis of
complex data and complex phenomena. The collaboration with urban planners and land-
scape designers revealed to me the importance of statistics: the power of embracing the
complexity of reality, admiring its variability, and quantifying its blurriness.

90



Bibliography

B. Afsari, R. Tron, and R. Vidal. On the convergence of gradient descent for finding the
Riemannian center of mass. SIAM J. Control and Optimization, 51(3):2230–2260, 2013.

C. Anderson. The end of theory: the data deluge makes the scientific methods obsolete.
Wired, 2008.

A. Antoniadis, X. Brossat, J. Cugliari, and J.-M. Poggi. A prediction interval for a
function-valued forecast model: Application to load forecasting. International Jour-
nal of Forecasting, 32(3):939–947, 2016.

M. Arnaudon and L. Miclo. A stochastic algorithm finding generalized means on compact
manifolds. Stochastic Processes and their Applications, 124(10):3463–3479, 2014.

M. Arnaudon, F. Barbaresco, and L. Yang. Medians and means in Riemannian geometry:
Existence, uniqueness and computation. In Matrix Information Geometry, pages 169–
197. Springer, 2013.

A. L. Barabási. Network science. Cambridge university press, 2016.

M. Batty. A new theory of space syntax. Centre for Advanced Spatial Analysis (UCL),
2004.

M. Bačák. Computing medians and means in Hadamard spaces. SIAM Journal of Opti-
mization, 24(3):1542–1566, 2014.

U. Beck. Mobility and the cosmopolitan perspective. In Exploring Networked Urban
Mobilities, pages 156–168. Routledge, 2017.

91



Bibliography

R. Bhattacharya and V. Patrangenaru. Large sample theory of intrinsic and extrinsic sample
means on manifolds. Annals of Statistics, 31(1):1–29, 2003.

L. J. Billera, S. P. Holmes, and K. Vogtmann. Geometry of the space of phylogenetic trees.
Advances in Applied Mathematics, 27(4):733–767, 2001.

R. Boel and L. Mihaylova. A compositional stochastic model for real time freeway traffic
simulation. Transportation Research Part B: Methodological, 40(4):319–334, 2006.

S. Bonnabel. Stochastic gradient descent on Riemannian manifolds. IEEE Transactions
on Automatic Control, 58(9):2217–2229, 2013.

G. E. Bredon. Introduction to compact transformation groups. Academic press, 1972.

N. Brenner. The urban question: reflections on henri lefebvre, urban theory and the politics
of scale. International journal of urban and regional research, 24(2):361–378, 2000.

N. Brenner. Implosions/explosions. Jovis, Berlin, 2014.

M. R. Bridson and A. Haefliger. Metric spaces of non-positive curvature. Springer, 1999.

R. Brunet. Les villes "européennes": rapport pour la DATAR, Délégation à
l’Aménagement du Territoire et à l’Action Régionale. La Documentation Française,
1989.

H. Bunke and K. Riesen. Improving vector space embedding of graphs through feature
selection algorithms. Pattern Recognition, 44(9):1928–1940, 2011.

A. Calissano, A. Feragen, and S. Vantini. Populations of unlabeled networks: Graph space
geometryand geodesic principal components. MOX Report, 2020a.

A. Calissano, A. Feragen, and S. Vantini. Graph-valued regression: Predicting network
from vectors. MOX Report, 2020b.

A. Calissano, A. Feragen, and S. Vantini. Graphspace python package.
https://github.com/annacalissano/GraphSpace.git, 2020c.

A. Calissano, M. Fontana, G. Zeni, and S. Vantini. Conformal prediction sets for popula-
tions of networks. MOX Report, 2020d.

A. Calissano, P. Sturla, P. Pucci, V. Fedeli, and S. Vantini. Going beyond the euclidean
setting in the statistical analysis of human movement in urban landscape. Journal of
Digital Landscape Architecture, 1:150–158, 2020e.

A. B. Cambel. Applied chaos theory: A paradigm for complexity. Elsevier, 1993.

92



Bibliography

K. Carley. Dynamic network analysis. In Summary in NRC Workshop on Dynamic social
network modeling and analysis, pages 133–145. National Academies Press, 2003.

L. R. Casse and R. Casse Jr. Projective geometry: an introduction. Oxford University
Press, 2006.

L. Cella and R. Martin. Valid distribution-free inferential models for prediction.
arXiv:2001.09225, 2020. arXiv: 2001.09225.

R. Chakraborty and B. C. Vemuri. Recursive Fréchet mean computation on the Grassman-
nian and its applications to computer vision. In Proceedings of the IEEE International
Conference on Computer Vision, pages 4229–4237. IEEE, 2015.

G. Chartrand. Introductory graph theory. Courier Corporation, 1977.

S. Chowdhury and F. Mémoli. Distances and isomorphism between networks and the
stability of network invariants. arXiv preprint arXiv:1708.04727, 2017.

S. Chowdhury and F. Mémoli. The metric space of networks. arXiv preprint
arXiv:1804.02820, 2018.

C. Coins. Cryptocurrency database. Accessed: 2020-09-04.

V. Colizza, A. Barrat, M. Barthelemy, A.-J. Valleron, and A. Vespignani. Modeling the
worldwide spread of pandemic influenza: baseline case and containment interventions.
PLoS medicine, 4(1):e13, 2007.

R. M. Colombo. A 2ˆ 2 hyperbolic traffic flow model. Mathematical and computer
modelling, 35(5-6):683–688, 2002.

D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in pattern
recognition. International journal of pattern recognition and artificial intelligence, 18
(03):265–298, 2004.

H. S. M. Coxeter. Non-euclidean geometry. Cambridge University Press, 1998.

B. C. Davis, P. T. Fletcher, E. Bullitt, and S. Joshi. Population shape regression from
random design data. International journal of computer vision, 90(2):255–266, 2010.

D. A. Degras. Simultaneous confidence bands for nonparametric regression with func-
tional data. Statistica Sinica, 21(4):1735–1765, 2011.

I. Dryden and K. Mardia. Statistical analysis of shape. Wiley, 1998.

A. Duncan, E. Klassen, and A. Srivastava. Statistical shape analysis of simplified neuronal
trees. The Annals of Applied Statistics, 12(3):1385–1421, 2018.

93



Bibliography

D. Durante and D. B. Dunson. Nonparametric bayes dynamic modelling of relational data.
Biometrika, 101(4):883–898, 2014.

D. Durante, D. B. Dunson, and J. T. Vogelstein. Nonparametric Bayes modeling of pop-
ulations of networks. Journal of the American Statistical Association, 112(520):1516–
1530, 2017.

D. K. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez- Bombarelli, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams. Convolutional networks on graphs for learning
molecular fingerprints. In Advances in Neural Information Processing Systems, pages
2224–2232, 2015.

F. Emmert-Streib, M. Dehmer, and Y. Shi. Fifty years of graph matching, network align-
ment and network comparison. Information Sciences, 346:180–197, 2016.

I. Epifani, L. Ladelli, and G. Posta. Appunti di calcolo delle probabilita. Dispense di
Probabilità e Statistica per l’Informatica, 2005.
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