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Abstract
The purpose of the present work is to address the problem of financial bubbles, with
the aim of developing a detection and forecasting procedure on historical time series.
Bubbles are events governed by irrationality and speculation and their bursts could
heavily affect financial markets and the real economy too, with particularly dramatic
consequences for the most unwitting investors. This work is an attempt to spread
awareness about the risks related with irrational markets.
Specifically, we rely on the Log Periodic Power Law (LPPL) model, originally created
by Johansen, Ledoit and Sornette in the late 1990s.
After an overview on the required theoretical background, the first part is dedicated
to a deep review of the literature of the LPPL model, with particular focus on latest
publications.
The second part is devoted to calibration methods with the purpose of implementing a
coherent detectionmethod able to find precursors of bubble crashes. Inmore detail, we
present three different techniques: Ordinary Least Squares (OLS), Generalized Least
Squares (GLS) and Maximum Likelihood Estimation (MLE), combined with the Ge-
netic Algorithm, a robust optimization method able to deal with the high non linearity
of the problem.
To conclude, we apply this methodology both to post-mortem and real-time case stud-
ies on Bitcoin’s historical prices (BTC/USD). In particular, we consider the time series
between December 2016 and January 2018, where Bitcoin’s prices skyrocketed for the
first time to almost 20’000 USD, and the most recent one between March 2020 and
March 2021, where Bitcoin’s price had a huge increase exceeding 60’000 USD.
Results obtained are in line with previous publications.

Keywords: Financial bubbles; Log Periodic Power Lawmodel; Ordinary Least Squares;
Generalized Least Squares; Maximum Likelihood Estimation; Genetic Algorithm; Bit-
coin.
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Sommario
Con questo elaborato si intende affrontare il problema delle bolle finanziarie, con
l’obiettivo di sviluppare una procedura di identificazione e predizione su serie storiche.
Le bolle finanziarie sono eventi governati da comportamenti irrazionali e speculativi e
il loro scoppio può colpire duramente i mercati e l’economia reale, con conseguenze
particolarmente drammatiche per gli investitori più inconsapevoli. Questo lavoro è un
tentativo di diffondere maggiore consapevolezza sui rischi legati a mercati irrazionali.
Nello specifico, adottiamo il "Log Periodic Power Law (LPPL) model", originariamente
sviluppato da Johansen, Ledoit e Sornette alla fine degli anni Novanta.
Dopo una overview sulle nozioni teoriche preliminari, la prima parte è dedicata ad
un’approfondita revisione della letteratura disponibile sul LPPL model, con partico-
lare attenzione alle pubblicazioni più recenti.
La seconda parte tratta dei metodi di calibrazione, con l’obiettivo di implementare una
procedura coerente in grado di individuare segnali di bolla precursori ai crolli. Più nel
dettaglio, proponiamo tre diverse tecniche: Ordinary Least Squares (OLS), Generalized
Least Squares (GLS) and Maximum Likelihood Estimation (MLE), combinate con Ge-
netic Algorithm, un robusto metodo di ottimizzazione in grado di affrontare l’elevata
non linearità del problema.
Per concludere, applichiamo questa metodologia sia ad analisi post-mortem che real-
time, prendendo in considerazione la serie storica di Bitcoin (BTC/USD). In particolare,
ci concentriamo sull’intervallo Dicembre 2016 - Gennaio 2018, dove Bitcoin ha quasi
raggiunto i 20’000 USD, e il periodo più recente Marzo 2020 - Marzo 2021, dove Bitcoin
ha avuto una notevole crescita oltrepassando i 60’000 USD.
I risultati ottenuti sono in linea con le pubblicazioni precedenti.

Parole chiave: Bolle finanziarie; Log Periodic Power Law model; Metodo dei min-
imi quadrati; Metodo dei minimi quadrati generalizzati; Metodo della massima vero-
somiglianza; Algoritmo Genetico; Bitcoin.
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1. Introduction
A financial bubble is a phenomenon where it is observed a consistent rise in the price
of an asset, exceeding by far its fundamental value.
Because speculative demand, rather than intrinsic worth, fuels the inflated prices, the
bubble eventually but inevitably pops, and massive sell-offs cause prices to decline,
often quite dramatically.

The lack of a formal definition on the concept of bubble make its detection pretty
challenging. Nonetheless, one can generally identify four stages:

1. Displacement: it occurs when investors get interested in a new paradigm, such as a
disruptive technology or a new asset class. This may become the seed of a bubble.

2. Boom: prices rise slowly at first, but then more participants enter the market,
fearing to miss a once in a lifetime opportunity. During this phase, the asset
attractswidespreadmedia coverage, increasing evenmore thenumberof investors
into the fold.

3. Euphoria: during this phase prices skyrocket, completely disconnecting from the
fundamental value of the underlying asset. New valuation metrics are invented
to try to justify this relentless rise in prices. The irrational idea that there will
always be buyers willing to pay more spreads everywhere.

4. Panic: even a relatively minor event can become the trigger of massive selloffs.
The bubble has bursted and now investors just want to liquidate at any price. As
supply overwhelms demand, asset prices may fall sharply.

The consequences of a bubble can affect financial markets for years and spread to the
real economy too. For example, the burst of the Dot-com bubble, inflated by excessive
speculation on Internet related activities in the late 1990s, made the Nasdaq Compos-
ite Index loose more than 75% of its market capitalization and many companies go
bankrupt.
In addition, the bursting of financial bubbles usually lead to weaker recoveries with
respect to typical down swings in the business cycle. Considering again the case of the
Dot-com bubble, the Nasdaq Composite Index managed to reach again its peak only in
2015.
Eventually, the role of credit dramatically affects how financial bubbles could hit
economies. Indeed, when fueled by credit, bubble bursts are responsible of deeper
recessions and slower recoveries (Jordà et al., 2015).
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1. Introduction

The present work focuses on the study and the detection of financial bubbles accord-
ing to the Log Periodic Power Law (LPPL) model, developed by Johansen, Ledoit and
Sornette from the late 1990s, (Sornette et al., 2001), (Sornette, 2003).
In a nutshell, the model states that the price of an asset is driven by a bubble behaviour
if the following relation holds:

ln[pi] = LPPL(ti;A,B,C, tc,β,ω,φ) + εi,

where {p1, ...,pn} are historical prices of the asset in correspondence of {t1, ..., tn},
{εi}ni=1 are the residuals of the fitting procedure and LPPL(ti;A,B,C, tc,β,ω,φ) indi-
cates the LPPL function, which corresponds to

LPPL(ti;A,B,C, tc,β,ω,φ) = A + B(tc − t)β + C(tc − t)βcos[ω ln(tc − t) + φ].

The parameters of the model, {A,B,C, tc,β,ω,φ}, must be calibrated in order to opti-
mally fit the asset prices on a fixed time window.
Moreover, if the estimated parameters satisfy specific constraints, the so called Sornette
bounds, one can state that the asset is under a bubble regime and the critical time, tc,
represents the candidate crash time.
The calibration of the parameters of the model is not an easy task, because of the high
non linearity of the LPPL function and the presence of many local minima where a
linear optimization method could get trapped.
The original calibration procedure moves under the assumption that residuals are ho-
moskedastic and uncorrelated, combining the Ordinary Least Square (OLS) method
with Genetic Algorithm, a non linear optimization method able to attack the problem
without any particular assumption on the shape of the function.

In the following decades, there has been a considerable body of research on this
matter. We briefly recall the most relevant publications.
An extensive mathematical formulation of the model has been proposed by Fantazzini
and Geraskin (Fantazzini et al., 2011).
A group of research, supervised by Didier Sornette himself, has been later established
at ETH Zurich University, carrying on many real case studies and further theoretical
development.
To this extent, we underline the institution of the Financial Crisis Observatory for the
monitoring of financial bubbles on the main Equity and Commodity Indices.
Following the stream of publications, we recall the formulation of theMaximumLikeli-
hood Estimation calibration procedure (Filomonov et al., 2016), which is able to provide
confidence intervals, and not only punctual results, for the estimation of the parame-
ters, providing a measure of the uncertainty related to the estimated critical time.
An attempt to relax the assumption on homoskedasticity and uncorrelation of residuals
required in the original calibration procedure has then beenmade with the proposition
of the Generalized Least Square calibration method (Scaringi, 2016), (Bianchetti et al.,
2018). This variant opens up to correlated residuals following an autoregressive pro-
cess and it has proved to provide more accurate forecasts.
Eventually, the Epsilon Drawdown/Drawup method and the Lagrange Regularisation
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approach for the estimation of bubble start dates (Demos, Sornette, 2017), (Demos, Sor-
nette et al., 2018) have provided a complete procedure for the post-mortem analysis of
financial time series, where clearly there is no forecasting ambition, but only the desire
to analyze the time series as a whole.

The rest of the thesis is organized as follows.
In Chapter 2, we provide a theoretical background, with basic notions on Times Series,
Regression Theory and No Arbitrage Theory.
Chapter 3 is devoted to the mathematical formulation of the model, with particular
focus on latest publications.
Chapter 4 deals with the calibration of the parameters of the model. In particular,
we present the original calibration procedure, together with two more recent and
reliable variants: the Maximum Likelihood Estimation (MLE) and the Generalized
Least Squares (GLS) method.
In Chapter 5, we carry on practical applications on Bitcoin’s historical prices, both
via post-mortem and real-time analyses. Specifically, we have focused on Bitcoin’s
time series between December 2016 and January 2018, when Bitcoin prices skyrocketed
from 1’000USD to almost 20’000USD, and on the recent period to establishwhether the
sharp increase in price observed throughout the last year was influenced by a bubble
behaviour or not.
Eventually, Chapter 6 summarizes the main results obtained.
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2. Theoretical Background
In this chapter, some relevant theoretical notions are presented with the idea of better
understanding their application in the subsequent chapters.

First, we recall basic concepts on Time series following (Adhikari et al., 2013).
Then, we present some techniques of Regression Theory gradually increasing the de-
gree of generalization.
Eventually, we recall a fundamental result from No Arbitrage Theory, that will be
required in Chapter 3.

2.1. Time Series
A time series is a sequential set of data points measured over successive times and
arranged in chronological order.
A time series is continuous if observations are measured at every instance of time,
whereas it is discrete if observations are measured at discrete points.
In particular, we will deal with discrete time series, for example daily closing prices of
a financial asset, mathematically represented as

x = {x1, x2, ..., xn}.

A time series x is a non deterministic process, so we cannot predict with certainty
what will occur in the future. For this reason, it is generally modeled as a stochastic
process with x assumed to follow a certain probability model, which describes the
joint distribution of the random variables xi. Thus, observations {xi}ni=1 are sample
realizations of the stochastic process x that produced them.

Time series canpresent some relevant properties. One of these is certainly stationarity,
which can be considered as a form of statistical equilibrium (Adhikari et al., 2013).

Definition 2.1. A time serie x is strictly stationary if the probability distribution of the process
is invariant under time translations, that is the joint probability of every pair of random variables
(xt; xt−s) depends only on the temporal distance t − s.

However for practical applications, the assumptionof strong stationarity is not always
needed and so a somewhat weaker form is accepted.

Definition 2.2. A time serie x is weakly stationary of order k if the statistical moments of the
process up to that order are time invariant.

21



2. Theoretical Background

As a consequence, a stochastic process x is second order stationary if its mean and
variance are time independent and its covariance depends only on s. Namely,

�[xt] = µ ∀t,
Var[xt] = σ2 ∀t,
Cov[xt, xt−s] = σs ∀t.

An example of stationary process is the White Noise,WN(0,σ2), i.e. a sequence of
independent and identically distributed (i.i.d) random variables with zero mean and
variance σ2.
An example of non stationary process is instead the random walk

xt = xt−1 + εt, (2.1)

with εt ∼WN(0,σ2).

In general, models for time series can havemany forms representingdifferent stochas-
tic processes. We will focus in particular on Autoregressive processes.

Definition 2.3. An Autoregressive process of order p, AR(p), is written as

xt = φ1xt−1 + φ2xt−2 + ... + φpxt−p + εt,

with {φi}pi=1 ∈ ℝ and εt ∼WN(0,σ2).
It is straightforward to see how the process x at time t, xt, is influenced by its previous

values xt−1, xt−2, ..., xt−p.

Within the class of Autoregressive processes, the easiest case is the AR(1) process

xt = ρxt−1 + εt, ρ ∈ ℝ.

For this specific class of processes, it can be proven that:

Proposition 2.1. AR(1) process is weakly stationary⇐⇒ |ρ| < 1.

For an extended proof, see (Adhikari et al., 2013, pag. 20).

This result will be widely used in Chapter 4, as we will deal with AR(1) processes
requiring stationarity.

2.2. Regression Theory
The term regression refers to a wide range of statistical methods used to examine the
relationship between an outcome variable y and one or more regressor variables x =

[x1, ..., xd]. It is typically formulated as

y = f (x;φ) + ε, (2.2)
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2.2. Regression Theory

whereφ is a vector of unknown parameters and ε is an error term representing random
noise.

Given n observations of y and x, the goal of Regression analysis is to estimate the
vector of parameters φ̂ that most closely fits the data, i.e. find

ŷ = f (x; φ̂),

that better resembles y dynamics.

In particular, we will deal with Linear regression models, where f is a linear function
and (2.2) is rewritten as

y = xTφ + ε, (2.3)

where xT represents the transpose of vector x.

We will deal in more detail with the Ordinary Least Squares method, which is
the most commonly used, and the Generalized Least Squares method, which is its
generalization.

2.2.1. Ordinary Least Squares
Let us consider a linear mono-dimensional model defined as

yi = α + βxi + εi, i = 1, ...,n (2.4)

with α, β ∈ ℝ and εi ∼WN(0,σ2).

The OLS method provides an estimate of the parameters, {α,β}, in such a way that
the sum of the squared residuals is minimized. Namely,

{α̂, β̂} = argmin
α,β

S(α,β), (2.5)

where

S(α,β) =
n∑
i=1
(yi − ŷi)2,

=

n∑
i=1
(yi − α̂ − β̂xi)2,

=

n∑
i=1
(ei)2.

In particular, {ei}ni=1, such that ei = yi − ŷi i = 1, ...,n, are called residuals and they
describe the error in adapting the model to real observations.
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2. Theoretical Background

Setting the partial derivatives of S(α,β) to be equal to zero,

∂S(α,β)
∂α

= 0

∂S(α,β)
∂β

= 0,

we are able to deduce explicit formulas for {α̂, β̂} (Hubele et al., 2011):

β̂ =
Sxy

Sxx
=

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

α̂ = ȳ − β̂x̄,

where x̄ indicates the sample mean of observations {xi}ni=1.

Considering now the multi-dimensional case,

Y = Xβ + ε, (2.6)

where Y is a n× 1 vector of outcome variables, X is a n× dmatrix, with n observations
of d independent variables, ε is a n × 1 vector of disturbance variables and β is a d × 1
vector of unknown parameters that require to be estimated.
In particular, the first column ofX is an identity vector, 1 = [1, ..., 1]T , in order to address
the model with a constant term.

Thanks to Gauss-Markov theorem, we can affirm the goodness of the OLS estimator
(Cameron et al., 2005).

Theorem 2.1 (Gauss-Markov Theorem). Given Formula (2.6), which can be equivalently
rewritten as

Yi =

d∑
j=1
βjXij + εi ∀i = 1, ...,n, (2.7)

if X has maximum rank and the disturbance variables εi are such that:

• they have zero mean, i.e. �[εi] = 0 ∀i,

• they are homoskedastic, i.e. Var[εi] = σ2 ∀i,

• they are uncorrelated, i.e. Cov[εi, εj] = 0 ∀i ≠ j,

then the Ordinary Least Squares Estimator,

β̂OLS = (XTX)−1XTy, (2.8)

is the Best Linear Unbiased Estimator (BLUE), meaning that
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2.2. Regression Theory

• β̂OLS is unbiased, i.e. �[β̂OLS] = β,

• β̂OLS is the most efficient estimator, i.e. it has the lowest variance compared to other
unbiased estimators.

In particular, the variance of β̂OLS corresponds to

Var[β̂OLS] = σ2(XTX)−1. (2.9)

Moreover, note that the assumptions of homoskedasticity and zero correlation together
imply the disturbances ε to be such that

Ω = Var[ε] =


σ2 0 · · · 0
0 σ2 · · · 0
... ... . . . ...
0 0 · · · σ2

 .
Eventually, adding the gaussianity assumption on disturbances εi, the OLS estimate β̂
is distributed in such a way that

β̂OLS ∼ N(β,σ2(XTX)−1). (2.10)

2.2.2. Generalized Least Squares
The Generalized Least Square (GLS) method is particularly useful when there is a cer-
tain degree of correlation between the residuals in a regression model, because in this
case the OLS version could reveal inefficient and provide misleading results.

Let us consider again the model

Y = Xβ + ε, (2.11)

if we mantain the homoskedasticity assumption on disturbances, but we relax the hy-
pothesis on zero correlations, we get that Var[ε] = Ω ≠ σ2I.

Under the assumption thatΩ is known, we can multiply (2.11) byΩ−1/2,

Ω−1/2Y = Ω−1/2Xβ +Ω−1/2ε,

where Ω = Ω1/2Ω1/2 is feasible thanks to Cholesky Decomposition, since Ω is a sym-
metric and definite positive matrix.
Note now that Var[Ω−1/2ε] = I, hence the transformed residuals are homoskedastic and
uncorrelated. For this reason, we can deduce the β̂OLS estimator ofΩ−1/2Y onΩ−1/2X.
This argument yields to the Generalized Least Squared (GLS) Estimator

β̂GLS = (XTΩ−1X)−1XTΩ−1Y. (2.12)
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2. Theoretical Background

Moreover,
Var[β̂GLS] = σ2(XTΩ−1X)−1. (2.13)

Thanks to Aitken Theorem, we can eventually state that β̂GLS is the BLUE estimator of
the model.
Theorem 2.2 (Aitken Theorem). Given Formula (2.11), where disturbances ε have some
degree of correlation, i.e. Var[ε] = Ω ≠ σ2I, the GLS estimator for β,

β̂GLS = (XTΩ−1X)−1XTΩ−1Y,
is the BLUE estimator of the model, since it is unbiased and with lowest variance.

For an extended proof, see (Greene, 2002).

Feasible Generalized Least Squares
To present the theoretical results above, we have assumed thatΩ, the covariancematrix
of the disturbances, was known, but actually most of the times this does not happen in
practice, hence it is required to provide an estimated matrix, Ω̂.

Without loss of generality, we suppose thatΩ depends over a parameter ρ,Ω = Ω(ρ),
so we can shift the consistency ofΩ to ρ, meaning that Ω̂ = Ω(ρ̂) and Ω̂ is consistent if
lim ρ̂ = ρ.
In this framework, the estimationprocedure is calledFeasibleGeneralizedLeast Squares
(FGLS) and all the results presented above for the GLS case still hold. Consequently,

β̂FGLS = (XT Ω̂−1X)−1XT Ω̂−1Y. (2.14)

Before presenting explicitly the FGLS procedure for a specific case, we underline that
β̂GLS and β̂FGLS are consistent only asymptotically (Cameron, 2005), hence for small
samples consistency could not be satisfied and Ω̂ could be an unreliable estimate ofΩ.

Now, we will consider in more detail FGLS procedure for a specific case, that will see
further application in Chapter 4.
Recalling (2.11), suppose that disturbances are modelled by the following dynamics

Yi =

d∑
j=1
βjXij + εi ∀i = 1, ...,n,

εi = ρεi−1 + ui, (2.15)
where ui ∼ N(0,σ2) for i = 1, ...,n and ρ ∈ ℝ, |ρ| < 1, is the parameter that we require
to estimate.
In other words, εi are correlated following an autoregressive process of order 1, AR(1).

To get an estimation of β̂FGLS we will follow Cochrane-Orcutt procedure (Scaringi,
2016):
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2.2. Regression Theory

1. Compute the covariancematrixΩ of the disturbances according to AR(1) process.
This leads to

Ω(ρ,σ2) = σ2

1 − ρ2


1 ρ ρ2 · · · ρn−1
ρ 1 ρ · · · ρn−2
ρ2 ρ 1 · · · ρn−3
... ... ... . . . ...

ρn−1 ρn−2 ρn−3 · · · 1


= σ2∆(ρ). (2.16)

2. Apply Cholesky decomposition and deduce matrix Ψ, such that

∆(ρ)−1 = ΨT (ρ)Ψ(ρ). (2.17)

Specifically, one can prove that Ψ is a lower triangular matrix

Ψ(ρ) =



√
1 − ρ2 0 · · · 0 0
−ρ 1 0 · · · 0
0 −ρ 1 . . . ...
... . . . . . . . . . 0
0 · · · 0 −ρ 1


. (2.18)

3. Consider the residuals ε̂ obtained via OLS estimation and deduce explicitely ρ̂
via OLS method

ε̂i = ρ̂ε̂i−1 + ui, i = 1, ...,n (2.19)

4. Provide a first estimation of Ψ(ρ) in (2.18), using ρ̂ from (2.19).

5. To provide an estimation of β̂FGLS, multiply the model for Ψ(ρ̂)

Ψ(ρ̂)Y = Ψ(ρ̂)Xβ + Ψ(ρ̂)ε, (2.20)

we can now assert that Ψ(ρ̂)ε = u ∼ N(0,σ2), so we can move to the OLS frame-
work.
Namely, (2.20) corresponds to the following quasi-difference equation

yi − ρ̂yi−1 = (α + βxi + εi) − ρ̂(α + βxi−1 + εi−1), i = 2, ...,n (2.21)

which can be rewritten in a more compact way as

y∗i = αs
∗ + βx∗i + ε∗i, i = 2, ...,n (2.22)

where
y∗i = yi − ρ̂yi−1
s∗ = 1 − ρ̂
x∗i = xi − ρ̂xi−1
ε∗i = εi − ρ̂εi−1 = ui.
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2. Theoretical Background

Since disturbance, ε∗
i
= ui, in (2.22) are uncorrelated, we are now able tominimize

S(α,β) =
n∑
i=1
(y∗i − αs∗ − βx∗i)2, (2.23)

following the OLS formulation.

Eventually, note that the quasi-difference equation (2.21) holds starting from i = 2,
because observations x0 and y0 do not exist.

2.3. No Arbitrage Theory
In this section, we will present a fundamental result of Asset Pricing theory, that will
be required in Chapter 3.

We defineArbitrage as the practice of exploiting market inefficiences in order to make
a profit out of nothing without taking any risk (Bjork, 2009). Namely,

Definition 2.4. An arbitrage opportunity on a financial market is a self-financed portfolio h
such that

Vh(0) =0,
P(Vh(T ) ≥ 0) =1,
P(Vh(T ) > 0) >0;

where V : t ∈ [0; T ] −→ ℝ is a function representing the value of a portfolio at time t.

A typical example of arbitrage consists in the simultaneous buying and selling of a
security in order to take advantage of price discrepancies within different markets.
Nonetheless, we will move under the assumption of Market efficiency, which requires
markets to be free of arbitrage possibilities.
In other words, we will always assume that strategies that aims at making profits in-
trinsically hide some kind of risk.

Before presenting the First Fundamental Theorem of Asset Pricing, let us briefly
recall some preliminary concepts on stochastic processes.

Definition 2.5. A stochastic process is a mathematical object X = (Ω,ℱ , (ℱt)t∈T , (Xt)t∈T ,ℙ),
where

• (Ω,ℱ ,ℙ) is a probability space;

• T ⊂ ℝ+ is called Time Span;

• (ℱt)t∈T is a family of increasing σ - algebras, ℱs ≤ ℱt ≤ ℱ ∀s ≤ t, called Filtration;

• (Xt)t∈T is a family of random variables ∀t ∈ T .
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Specifically, we are interested on martingale processes, because of their property
for which the conditional expectation of their future value, given the information
accumulated up to now, correspond to their current value.

Definition 2.6. Let (Ω, ℱ , ℱt, ℙ) be a filtered Probability space and let X = {Xt}t≥0 be
a continuous stochastic process adapted to the Filtration ℱt (or ℱt - measurable ∀t), X is a
martingale if

1. �[Xt] < +∞ ∀t,

2. �[Xt |ℱs] = Xs ∀s ≤ t.

We are now ready to enunciate the First Fundamental Theorem of Asset Pricing.

Theorem 2.3 (First Fundamental Theorem of Asset Pricing). Consider a marketM con-
stituted by a risk-free asset B = {Bt}t≥0 and by a risky asset S = {St}t≥0, modelled as a
continuous stochastic process.
The following statements are equivalent:

1. S does not allow arbitrage opportunities;

2. There exists a probability measureℚ on the measurable space (Ω,ℱ ), which is equivalent
to ℙ,

ℚ ∼ ℙ,

meaning that ℙ(A) = 0 ⇐⇒ ℚ(A) = 0,∀A ∈ ℱ .
Moreover, S is a martingale process under ℚ, that is

�Q
[
St

Bt
|ℱs

]
= Ss, ∀s < t.
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3. The Log Periodic Power Law Model
Since the model originally created by Johansen, Ledoit and Sornette in the late 1990s,
there has been a considerable body of research adopting an approach which relies on
agent-based models and using critical points with log-periodic corrections to identify
financial bubbles.
Such methodology is called Johansen-Ledoit-Sornette model or Log-Periodic Power
Law (LPPL) model.

3.1. A brief historical overview
The idea that certain phenomena subject to critical conditions could be described with
a log-periodic behaviour first came in 1991.
The original application concerned aerospace flights during the European missions of
Ariane IV and V rockets. Daniel Sornette realized that during the propulsion phase
the materials covering the rocket was characterized by specific critical oscillations. The
power laws and log-periodic patterns discovered in this context were found to perform
quite well.
In 1995, Sornette and Sammis extended the field of application to earthquakes, since the
model seemed to forecast quite reliably the critical rupture in heterogeneous materials.
Approximately in the same period as the extension to earthquakes was proposed,
Feigenbaum, Freund and Sornette independently suggested that another interesting
field of application could have been large financial crashes.
Since then, a theoretical frameworkhas beendeveloped andmanypractical applications
have been made.

3.2. Financial crashes dynamics and predictability
Market drawdowns are undoubtedly feared financial events, but it is important to un-
derline that they are intrinsically part of the process.
Indeed, bull markets in the last decades always had one or more corrections. This is
a natural part of the market cycle that wise investors welcome as a pullback for the
market to consolidate before going toward higher highs.
Nonetheless, a huge effort has been spent trying to explain the dynamics which might
trigger market crashes, which are more sudden and violent than simple corrections, at
least in case of financial bubbles when the crash can be somehow expected and justified
by a previous irrational behaviour of the market.
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3. The Log Periodic Power Law Model

According to LPPLmodel, a crash occurs because themarket has entered an unstable
phase and any disturbance might be the trigger of the instability.
According to this view, a crash has fundamentally an endogenous origin and exogenous
shocks only work as triggering factors. As a consequence, the origin of the crashes is
built progressively by the market as a self-organizing process.

Sornette presented a series of observations showing how financial markets constitute
one among many other systems exhibiting a complex organization and dynamics with
similar behaviour (Sornette, 2003).
In this scenario, the complex system approach, which consists in the analysis of the
system as a whole, is preferred to the analytical approach, which relies on the decom-
position in sub parts and on the detailed study of each component in order to determine
the functioning of the whole system.

Because of their complexity, these systems often cannot be provided with a mathe-
matical formulation or even an analytical description, but they can be explored only by
means of numerical simulations. For these reasons, they are considered to be generally
unpredictable.
However, they are also characterized by the occurrence of large scale collective behav-
iors resulting from repeated interactions among its constituents.
It turns out that most complex systems in natural and social sciences exhibit rare and
sudden transitions, ranging from large natural catastrophes, such as earthquakes or
volcanic eruptions, to the failure of engineering structures or crashes in financial mar-
kets.
It is essential to realize that the long-term behavior of these complex systems is often
controlled in large part by these rare catastrophic events and that they result from a
progressive and more global cooperative process occurring over the whole system by
repetitive interactions.

Considering more closely the reality of financial markets crashes, it is convenient to
distinguish between Black Swans and Dragon Kings (Sornette, 2009).
While drawdowns called Black Swans are considered to be unpredictable, Dragon
Kings are outliers, meaning that they are rare events with significantly elevated value.
To better understand the difference between Black Swans and Dragon Kings, Sornette
decided to consider financial crashes as drawdowns defined as follows.
Let X = (Xt)t>0 be a random process with X0 = 0, the drawdown at time T, D(T ), is

D(T ) B max
{
0, max
t∈(0,T )

X(t) − X(T )
}
.

A drawdown can be then viewed as the measure of the decline from a historical peak.

The analysis of drawdowns of Nasdaq Composite Index brought the presence of
dragon kings, as showed in Figure 3.1.
Sornette found out that the majority of the Dragon Kings were actually preceded by a
consistent asset price increase (Sornette, 2009). This result drove to the idea that these
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Figure 3.1: Distribution of Nasdaq Composite Index drawdowns from (Sornette, 2009).

crasheswould have been the inevitable consequence to periods of unsustainable growth
in price, due to a self-fulfilling enthusiasm which produced irrational behaviours.

3.3. The Original Formulation
Now we will deal with the theoretical presentation of the model as originally formu-
lated by Johansen, Ledoit and Sornette (Johansen et al., 2001) and reported by many
other successive works (Fantazzini et al., 2011), (Bingcun et al., 2018).

Let us consider an ideal market where dividends, interest rates, liquidity constraints
and risk aversion are ignored.
One can reasonably assume that the fundamental value of an asset is p(t) = 0, hence
any positive value of p(t) represents a bubble and similarly any negative value of p(t)
indicates that the asset is undervalued.
As a consequence, p(t) can be seen as the price in excess from the fundamental value
of an asset.

In this framework, there exist only two types of agents: rational players, identical
in their preferences and characteristics, and a group of irrational players with herding
behaviour.
The tendency of irrational agents to imitate a particular behaviour in the market, for
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3. The Log Periodic Power Law Model

example a long position on the same asset, is the main burst to the development of
a financial bubble. This behaviour will continue until a critical value, where a large
portion of investors will then assume the same short position, thus causing a crash.
Nonetheless, since the crash is not a certain deterministic outcome of the bubble it
remains rational for investors to remain in the market since they are compensated by
a higher return. Indeed, there is a finite probability of attaining the end of the bubble
without crash, but instead with a smooth correction.

The key variable to model the price behaviour before a crash is the hazard rate h(t),
which is the probability per unit of time that the crash will take place, given that it has
not yet occurred.
Financially speaking, the hazard rate measures the probability that a great number of
investors will take simultaneously a sell position, causing a substantial decrease in the
price of the asset.

3.3.1. Microscopic Modelling
The formulation proposed by Johansen, Ledoit and Sornette assumes that the group of
irrational players is connected into a network. Each agent i, i = 1, ..., I, can only have
two possible states: "long" (si = +1) or "short" (si = −1).
For "long" position we mean that investor i has a positive view about the growth of the
asset and he owns it into his portfolio or is going to buy it. Consequently, the same
investor i has a short position whenever he has a negative opinion on the future growth
of the asset.
Moreover, each player is directly connected withN(i) agents with a direct influence on
each one of them.

In this framework, the state of agent i is determined as:

si =

{ +1 if K
∑
k∈N(i)

sk + σεi > 0,

−1 if K
∑
k∈N(i)

sk + σεi ≤ 0,
(3.1)

where K > 0 and εi is i.i.d. N(0; 1).
While K governs the tendency of imitating the behaviour of other investors k =

1, ...,N(i), σ quantifies the idiosyncratic behaviour.
It is clear that the consequence of an increase in K is a better ordered system, while the
reverse is true when σ increases.
It is reasonable to affirm that there exists a critical point Kc, which is the separation
between these two different regimes: when K < Kc the disorder prevails and there is
not a significative predominance of one state. When K −→ Kc, groups of agents with
same positions start to form and themarket becomes extremely sensitive to small global
disturbances, like external news.
Finally, for K > Kc, the tendency to imitation is so strong that one position prevails
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3.3. The Original Formulation

among the community of players.

For sake of completeness, it can be interesting to include in the modelization also
a generic term G ∈ ℝ, called global influence, measuring external influence on each
single agent.
This quantity summarizes external contributions able to affect most or all the network,
like global news or events.
Adding G to (3.1), one gets:

si =

{ +1 if
(
K

∑
k∈N(i)

sk + σεi
)
+G > 0,

−1 if
(
K

∑
k∈N(i)

sk + σεi
)
+G ≤ 0.

(3.2)

Defining the average state of the market as

M =

∑
si

I
,

for G = 0 �[M] = 0, since εi is such that �[εi] = 0. Analogously, for G > 0 one will get
�[M] > 0, and for G < 0 �[M] < 0.
This means that if the global influence favors the "buy" state (G > 0) the network is
pushed towards that specific state and viceversa.

At this point, it is convenient to introduce the susceptibility of the system χ defined
as

χ =
d�[M]
dG

��
G=0.

χ is a measure of the sensitivity ofM to a small change in G. In other words, it can be
seen as a measure of the impact on a player if a directly connected agent is forced to a
specific state.

3.3.2. Price Dynamics and Derivation of the Model
We required the rational agent to be risk neutral and with rational expectations. Under
these assumptions, the asset price p(t)will follow a martingale process

�[p(t)|ℱs] = p(s), ∀t > s.

Previous bubble crashes on financial markets, for example the bursts of the dot-com
bubble in 2000 or the Bitcoin bubble in 2018, showed that there is a not zero probability
for the crash to happen, hence we can model such crash, happening at time tc, as a
jump process j, equal to 0 before it and equal to 1 after.
Since tc is unknown, it can be modelled by a stochastic variable having density q(t)
and cumulative distribution Q(t).
At this point, we will report an important result (Fantazzini et al., 2011) which allows
us to express the hazard rate h(t) as a function of q(t) and Q(t).
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3. The Log Periodic Power Law Model

Theorem 3.1. Given a jump process j with density q(t) and cumulative distributionQ(t), the
hazard rate h(t), probability per unit of time that the crash will take place given that it has not
yet occurred, is defined as:

h(t) = q(t)
1 −Q(t) .

Proof. Just apply the definition of hazard rate:

P(tc < t + h|tc > t)
h

=
P(t < tc < t + h)
hP(tc > t)

=
1
h

∫t+h
t

q(x)dx
1 −Q(t) −→

q(t)
1 −Q(t) = h(t).

�

Let us consider the asset price dynamics as given by:

dp = µ(t)p(t)dt − kp(t)dj, (3.3)

wherewe are assuming that during a crash the price falls of a fixed percentage k ∈ (0; 1).

The no arbitrage martingale condition together with the assumption of rational ex-
pectations require that �[dp] = 0, so

�[dp] = µ(t)p(t)dt − kp(t)E[dj]
= µ(t)p(t)dt − kp(t)[P(dj = 0)(dj = 0) + P(dj = 1)(dj = 1)]
= µ(t)p(t)dt − kp(t)h(t)dt,

because P(dj = 1) = h(t)dt.
One can easily deduce the following:

µ(t) = kh(t). (3.4)

Substituting it in the price dynamics (3.3) before the crash, i.e. when j = 0,

dp = µ(t)p(t)dt
= kh(t)p(t)dt

d(lnp(t)) = kh(t)dt

ln p(t)
p0

= k

∫ t
t0

h(s)ds

lnp(t) = p0 · k
∫ t
t0

h(s)ds. (3.5)

Hence it is clear that to capture the behaviour of p(t), the hazard rate h(t) needs to be
specified.
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In order to do that, it is necessary to better clarify the nature of the network where
agents are connected.

Bidimensional Ising Model
The first result was obtained for the bidimensional Ising model, which considers play-
ers connected in an uniform way as shown in Figure 3.2. Every node is an agent and
every line is a connection with another investor.

Figure 3.2: Representation of the two dimensional Ising model.

In this case, the following theorem holds (Johansen et al., 2008):

Theorem 3.2. A system of variables close to a critical point can be described by a power law
and the susceptibility χ of the system diverges as:

χ ≈ A(K − Kc)−γ.

Here Kc is the critical value of K defined in the previous section, A is a positive
constant and γ > 0 is the critical exponent of the susceptibility.
In particular, for the two-dimensional Ising model γ = 7

4 .

We do not know the dynamics that drive K, but it is reasonable to assume that it
evolves smoothly so that we can use a Taylor expansion around the critical point.
Let us define tc as the first time such that K(tc) = Kc, then before the critical time tc we
have that:

Kc − K(t) ≈ C · (tc − t).
Using this approximation,weposit that thehazard rateh(t)behaves as the susceptibility
χ close to the critical point (Johansen et al., 2008):

h(t) ≈ B · (tc − t)−α, (3.6)

with B > 0 and α ∈ (0; 1).
It is crucial to remember that tc is not the exact time of the crash, but only the most

probable, and that there exists the possibility for the crash not to happen at all.
This is fundamental for the theory presented, otherwise rational agents would antici-
pate the crash.

37
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Moreover, this model looses its reliability just after the critical time as the system enters
in a new unpredictable phase.

Although we would able to find a closed formula for the evolution of lnp(t), the
bidimensional Ising model is not a realistic description of financial markets, since they
are actually formed by very heterogeneous groups of investors differing significantly
in size and available connections, going from individual investors to large asset man-
agement funds.

Hierarchical Diamond Lattice
A more appropriate representation is given by the Hierarchical Diamond Lattice re-
ported in Figure 3.3, which can be described in the following way:
First, take two players linked to each other. Secondly, substitute this link with four new
links forming a diamond with two new traders added to the network. Then, continue
in the same way substituting each connection with four new ones and adding two new
traders at every substitution.
As a result, after n iterations there will beN = 2

3(2+4n) agents and L = 4n links among
them. Nonetheless, note that the last added agents only have two links, while the initial
players will have 2n neighbors.

Figure 3.3: Stages of the evolution of a Hierarchical Diamond Lattice.

For this network, Theorem 3.2 still holds, but the critical exponent γ is now a complex
number (Johansen et al., 2008).
In this case, the susceptibility is approximated as:

χ ≈ Re[A0(Kc − K)−γ +A1(Kc − K)−γ+iω + ...]
≈ A′0(Kc − K)−γ +A′1(Kc − K)

−γcos[ω ln(Kc − K) +ψ] + ...,

with A0, A1,ω and ψ ∈ ℝ.
It is interesting to note that now the power law is corrected with log-periodic oscilla-
tions which accelerate while approaching the critical time.

Following the same steps as in the previous case, we can deduce the hazard rate of a
crash:

38



3.3. The Original Formulation

h(t) ≈ B0(tc − t)−α + B1(tc − t)−αcos[ω ln(tc − t) +ψ′]. (3.7)

Note that tha hazard rate explodes near the critical date but now it also displays log-
periodic oscillations.
Applying (3.7) to (3.5), we eventually get this expression for the evolution of the asset
price before the crash

ln[p(t)] ≈ ln[p(tc)] −
κ

β

{
B0(tc − t)β + B1(tc − t)βcos[ω ln(tc − t) + φ]

}
, (3.8)

rewritten as

ln[p(t)] ≈ A + B(tc − t)β + C(tc − t)βcos[ω ln(tc − t) + φ]. (3.9)

This is the final formulation of the Log Periodic Power Law (LPPL).
The model requires seven parameters: A, B, C, ω, β, φ and tc, which is the most
relevant one since it expresses the critical time of the crash.
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4. Model Calibration
The Log-Periodic Power Law (LPPL) model has been developed for the detection of
financial bubbles and crashes.
As shown in the previous chapter, the main result of the model is that the logarithm
of the price of an asset is driven by a bubble trend if it follows a super exponential
behaviour represented by the so called LPPL function:

ln[p(t)] = A + B(tc − t)β + C(tc − t)βcos[ω ln(tc − t) + φ]. (4.1)

The seven parameters, {A, B, C, tc, β,ω, φ } must be calibrated to optimally fit the asset
prices on a fixed time window.
If the estimated parameters then satisfy certain constraints, the so called Sornette bounds
which we will discuss soon, it is possible to state that the asset behaviour is regulated
by a bubble regime and the critical time represents the candidate crash time.

The LPPL model theory claims that during a bubble the following relation holds

ln[pi] = LPPL(ti;A,B,C, tc,β,ω,φ) + εi, (4.2)

where {t1, ..., tn} and {p1, ...,pn} are the historical dates and prices of the time serie
considered, while εi, for i = 1, ..., n, are the residuals of the fitting procedure.

The calibration of the model can be seen as an optimization problem which consists
in finding the best set of LPPL parameters, { Â, B̂, Ĉ, t̂c, β̂, ω̂, φ̂ }, which minimizes a
cost function, as shown in Figure 4.1.
It is important to underline that this is a non trivial problem because we are dealing
with a non linear minimization problem with seven different parameters.

In this chapter, we describe three different methods for the optimization problem:
Ordinary Least Squares (OLS), Generalized Least Squares (GLS) and Maximum Likeli-
hood Estimation (MLE).
These three alternative methods are consistent with each other and they gave coherent
results in the practical applications where they were applied.

The Ordinary Least Squares (OLS) is the mostly used in LPPL model framework,
since it belongs to the original formulation of the model. The residuals εi in (4.2) are
modelled as a White Noise process,WN(0,σ2).
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Figure 4.1: Example of calibrated LPPL function to historical logprices.

The Generalized Least Squares (GLS) is a generalization which better applies to the
problem. Now the residuals are governed by an autoregressive process AR(1). Namely,

εi = ρεi−1 + ui, (4.3)

where |ρ| < 1 and ui ∼WN(0,σ2).

Finally, the Maximum Likelihood Estimation (MLE) is the most recent version pro-
posed in (Filomonov et al., 2016). It is able to provide interval estimations for the
parameters, meaning that it can return amore realistic interval forecast where the burst
of the bubble is more probable to happen.

Each method requires to be combined with a nonlinear optimization method. We
decide to use the Genetic Algorithm because of its ability to solve the problem without
any particular assumption on the shape of the function.
Let us underline the fact that, once the optimal solution is obtained, it is necessary to
check that every parameter falls inside the Sornette Bounds, otherwise the critical time
tc cannot be considered a valid bubble signal.

Sornette Bounds
Sornette Bounds are a list of constraints which require to be tested in order to deduce
whether an optimal set of parameters is a valid bubble signal or not. They come
from both mathematical considerations and empirical results on previous bubbles. We
present the adopted ranges in Table 4.1, from (Filimonov et al., 2016) and (Scaringi,
2016).
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Item Filtering Condition
A A > 0
B B < 0
C |C| < 1, C ≠ 0
tc t2 < tc < t2 + 0.375(t2 − t1)
β 0 < β < 1
ω 6 < ω < 13
φ 0 ≤ φ ≤ 2π
D D =

β|B|
ωC ≥ 0.8

Now we briefly discuss them in relation to their meaning:

• TheparameterA is required to be strictly positive because it is equal to the logprice
of the asset in correspondence of the critical time tc.

• We impose that the amplitude of power law acceleration B to be strictly negative,
in order to assure an explosive and accelerating behaviour of the hazard rate.

• The conditiononC, |C| < 1 andC ≠ 0, is required in order to control the amplitude
of the oscillations.

• The constraint on tc prevents the predicted critical time to be too distant from the
time window and for this reason unreliable.

• The limit 0 < β < 1 is necessary to have an accelerating hazard rate up to tc but
a finite and less than 1 integral up to t for all t ≤ tc.

• Empirical studies on previous bubbles (Filimonov et al., 2017) suggest to contain
the parameterω between 6 and 13.

• Finally, the damping factor D is imposed to be bigger than 0.8.

The theoretical assumption that the crash occurs in one immediate negative jump
actually requires D to be strictly bigger than 1. However, since this hypothesis is
counterfactual and crashes generally have a duration of weeks or even months, the
constraint on the damping factor can be relaxed.
It can be interesting to underline that it is not excluded a priori the possibility of negative
bubbles, which revert all the arguments discussed above. In this case, we have a general
pessimistic sentiment which produces negative feedback and the consequent falling of
the price.
All the theoretical foundations remain unchanged, except for the sign of the percentage
of price crash which becomes positive according to the possible rebound of the price.
The Sornette Bounds remain unchanged except for the parameter B and the damping
factorDwhich have opposite signs in order to capture the different and opposite price
behaviour.
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Time Windows
When the model is used with the scope of detecting bubbles, it is important to calibrate
it on time windows of different length.
The reason behind this choice ismotivatd by the fact that only a subsample of thewhole
historical serie could actually present signs of log-periodic behaviour. Moreover, as un-
derlined above, the calibration process is a nontrivial task which is strongly influenced
by data.
However, it is strongly suggested to consider time windows of at least one month in
order to keep an acceptable level of quality in the data inspected.

Before going further, it can be useful to specify the proper "nature" of the historical
dates considered. Two options are available: business dates, which do not consider
weekends and holidays, and calendar dates, where t continuously increases.
While the price dynamics considered are invariant to this choice, previous works were
carried on using calendar dates. This seems to be in line with the formulation of the
model where flows of information continuously transmit in the network and so influ-
encing irrational agents, even when trading operations are not allowed.

4.1. Original Calibration Procedure
Estimating LPPL model in general has never been easy, due to the presence of many
local minima of the cost function where the minimization algorithm could get trapped.

To find the optimal set of parameters, it is required tominimize the distances between
the historical logprices and the LPPL function (Fantazzini et al., 2011). This is done by
requiring the minimization of the sum of squared errors (SSE), which corresponds to

SSE =

n∑
i=1
(lnpi − LPPL(ti;A,B,C, tc,β,ω,φ))2. (4.4)

Let us recall now the well known LPPL formula:

LPPL(ti;A,B,C, tc,β,ω,φ) = A + B(tc − ti)β + C(tc − ti)βcos[ω ln(tc − ti) + φ].
(4.5)

The original calibration technique requires to reduce the number of free parameters by
slaving the three linear parameters, {A, B, C}, and compute them from the estimated
nonlinear parameters.
More specifically, (4.5) can be rewritten in the following compact way:

LPPL(ti;A,B,C, tc,β,ω,φ) = A + Bfi + Cgi, (4.6)

where yi = lnpi, fi = (tc − ti)β and gi = (tc − t)βcos[ω ln(tc − t) + φ].
It is straightforward to see that the linear parameters A, B and C can be obtained
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analytically using Ordinary Least Squares for fixed values of the nonlinear parameters,
{tc, β,ω, φ}.
The minimization problem is thus transformed into

{t̂c, β̂, ω̂, φ̂} = arg min
tc,β,ω,φ

F1(tc,β,ω,φ), (4.7)

where the cost function F1(tc,β,ω,φ) is given by

F1(tc,β,ω,φ) = min
A,B,C

SSE(tc,β,ω,φ,A,B,C). (4.8)

Now we have only four parameters to estimate but, because of the non linearity of
the function involved, it is required to use a robust method that is able to avoid local
minima and converge efficiently to the optimal solution, i.e. optimal set of parameters.
To this scope, it is frequently adopted the Genetic Algorithm.

Both the Ordinary Least Squares and the Genetic Algorithm will be discussed in
detail below, but first let us present a convenient reformulation of the model which has
proved to be very useful in the calibration procedure.

Reformulation of the model
An alternative formulation to the classic LPPL Formula consists in applying a variable
change that considerably simplifies the calibration of the parameters (Filimonov et al.,
2016) {

C1 = Ccos(φ)
C2 = Csin(φ) , (4.9)

in such a way that (4.5) becomes

ln[p(t)] ≈ A + B(tc − t)β + C1(tc − t)βcos[ω ln(tc − t)] + C2(tc − t)βsin[ω ln(tc − t)].
(4.10)

Now LPPLS function presents four linear parameters, {A, B, C1, C2}, and three non
linear parameters, {tc,ω, β}.

As a consequence, the calibration procedure is slightly modified as follows

{t̂c, β̂, ω̂} = arg min
tc,β,ω

F1(tc,β,ω), (4.11)

where F1(tc,β,ω) is now

F1(tc,β,ω) = min
A,B,C1,C2

SSE(tc,β,ω,A,B,C1,C2). (4.12)

In analogy with the original procedure, (4.12) is solved by OLS and (4.11) by non linear
optimization method.
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4.1.1. Ordinary Least Square Formulation
The Ordinary Least Square (OLS) method is used in the optimization procedure to
deduce the candidate optimal values of the linear parameters, {Â, B̂, Ĉ1, Ĉ2}.
In particular, the OLS method aims to solve the following problem:

F1(tc,β,ω) = min
A,B,C1,C2

SSE(tc,β,ω,A,B,C1,C2). (4.13)

The fundamental hypothesis behind its application, however, is that residuals εi in (4.2)
are a White Noise process, i.e. ε ∼WN(0,σ2).
Equation (4.13) has a unique solution obtained for fixed values of the nonlinear param-
eters: ©«
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where
yi = lnpi,
fi = |tc − ti |β,
gi = |tc − ti |β cos[ω ln(tc − ti)],
hi = |tc − ti |β sin[ω ln(tc − ti)].

As discussed previously, the reduction from four to three nonlinear parameters con-
siderably improves the computational complexity of the model.

4.1.2. Genetic Algorithm
The Genetic Algorithm (GA) is an algorithm inspired by Darwin’s "survival of the
fittest" and its theory was developed by John Holland in 1975. It aims at mimicking
the natural selection in biological systems, which is governed by survival of the fittest
individuals, breeding and mutation.
The main advantage of this method is that it does not require any particular constraint
about the continuity or smoothness of the cost function, so it can be applied to a wide
range of class of functions.
Moreover, it prevents the calibration to get trapped in local minima, so it is particularly
suitable for the LPPL case. This feature is determined by mutations that play a key role
in the evolution of a species, since they may increase its probability of survival, as well
as introduce less favorable characteristics.

Its procedure (Fantazzini et al., 2011) consists of four steps:

1. Initial population: Consider a population where each member is represented as a
vector of the three nonlinear coefficients, [tc,β,ω]. Each parameter is randomly
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drawn from a uniform distribution with a pre-specified range, then for each
member compute the corresponding estimates of linear parameters, [A,B,C1,C2],
and the value of the cost function.

2. Selection mechanism: From the initial population, select a percentage %s, the par-
ents population, according to the lower values of the cost function.

3. Breeding mechanism: A percentage %b of offsprings is obtained by randomly
drawing two parents, without replacement, and taking the arithmetic mean of
them in order to obtain a new offspring solution. Note that one parent can
generate offsprings with different partners, so betrayals are allowed.

4. Mutation mechanism: In order to allow new regions of the search space to be
explored so that premature convergence in local minima is avoided, a percentage
%m = 1 − %s − %b is implemented by adding random noise variables to the
value of each non linear parameter. The effect of the noise random variable on
the previous solution is very important, indeed large perturbations can actually
prevent the algorithm from finding the optimal solution, while small variations
can leave the search trapped inside a local minimum.

5. Merging mechanism: The three groups are then merged together obtaining a pop-
ulation having the same size of the initial one.

The procedure is then repeated until some termination criteria are met.

Figure 4.2: Genetic Algorithm procedure.

In the next chapter, some practical information on the setup adopted is given in
order to ease the replication of the results obtained. Nonetheless, it can be interesting
to report some considerations:
First of all, the setup of the percentages, %s, %b, %m, that we recall has to be in such
a way that %s +%b +%m = 1, is a delicate matter. Indeed, higher values of %s could
cause little change in the population across the generations and so a slower conver-
gence, while lower values mean that fewer members are kept for the next generation.
Mutation and Breeding are the two drivers of the Genetic Algorithm, but, while Muta-
tion is able to explore new regions of the search space, Breeding searches new solutions
locally, as it is the arithmetic mean of parent solutions. An higher %m percentage
results in more useless results, since mutated solutions often have higher values in the
cost function, while an higher %b percentage increases the risk to trap the algorithm in
a local minimum.
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A general rule for the ideal proportion of %s, %b and %m does not exist, since they
have to be set specifically for each problem.
Finally, the size of the population and the maximum number of iterations are funda-
mental in order to allow the GA to find the optimal solution, but take into account that
high values require an higher computational effort.

4.2. Other variants and generalizations
In this section, some interesting variations to the original formulation of the calibration
procedure are proposed with the aim of finding more reliable and consistent results,
once these methods are put into practice.
In particular, we propose the Generalized Least Square method (GLS) as a general-
ization of the Ordinary Least Square one and the Maximum Likelihood Estimation
methodwhich provides us with interval estimations of the parameters instead of punc-
tual results.

4.2.1. Generalized Least Squares Formulation
Even if the OLS version is the most adopted in literature, it is just a raw attempt in the
non trivial estimation of the parameters.
Indeed, the Ordinary Least Square method assumes that errors are homoskedastic and
uncorrelated, but for the short term dynamics of the price movement it is observed that
residuals actually show autocorrelation and heteroskedasticity (Fantazzini et al., 2011).

We now present a more developed approach which relies on Generalized Least
Square (GLS) method. It was first proposed in (Bianchetti et al., 2018) and widely
illustrated in (Scaringi, 2016).

The GLS approach aims to solve the same problem of the OLS case, hence recall that
during a bubble price regime the following relation holds

ln[pi] = LPPL(ti;A,B,C1,C2, tc,β,ω) + εi, (4.15)

where in this case {εi} follows an AR(1) process, namely

εi = ρεi−1 + ui. (4.16)

Note that the reformulation of the model presented for the OLS calibration procedure
is still adopted, therefore the calibration of the model requires the estimation of four
linear parameters, {A,B,C1,C2}, and three nonlinear parameters, {tc,β,ω}.

Moreover, the optimization is still divided in two different stages

{t̂c, β̂, ω̂} = arg min
tc,β,ω

FGLS(tc,β,ω), (4.17)
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where the cost function FGLS(tc,β,ω) corresponds to

FGLS(tc,β,ω) = min
A,B,C1,C2

SSEGLS(tc,β,ω,A,B,C1,C2). (4.18)

It is important to underline that residuals now do not follow anymore a White Noise
process, so we cannot use the previous cost functions for the calibration.
The new approach relies on Cochrane-Orcutt procedure specifically applied to the
LPPL case:

1. First, consider the relation (4.15) and express it in the linear form previously
adopted for the OLS version

yi = A + Bfi + C1gi + C2hi + εi, (4.19)

where
yi = lnpi,
fi = |tc − ti |β,
gi = |tc − ti |β cos[ω ln(tc − ti)],
hi = |tc − ti |β sin[ω ln(tc − ti)].

2. Apply the OLS method producing a first estimation of the linear parameters,
{Â, B̂, Ĉ1, Ĉ2}. However, since residuals εi are now distributed as an AR(1) pro-
cess, it is required to estimate the parameter ρ too.

3. In order to compute this additional parameter, construct the process of estimated
residuals by subtraction. Namely,

ε̂i = yi − Â − B̂fi − Ĉ1gi − Ĉ2hi. (4.20)

The AR(1) dynamics still hold, hence

ε̂i = ρε̂i−1 + ui, (4.21)

with ui being a White Noise.

4. Apply Yule-Walker formula for autoregressive processes (Adhikari et al., 2013,
pag. 19), in order to deduce

ρ̂ =
γ̂(1)
γ̂(0) , γ̂(k) = Cov(εi, εi+k).

γ̂(k) is the sample autocovariance of order k and γ̂(0) is the sample variance.
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5. Now, the following quasi difference relation holds

yi − ρ̂yi−1 = Â(1 − ρ̂) + B̂(fi − ρ̂fi−1) + Ĉ1(gi − ρ̂gi−1) + Ĉ2(hi − ρ̂hi−1) + (εi − ρ̂εi−1),
(4.22)

or more clearly

y∗i = A
∗ + B̂f∗i + Ĉ1g

∗
i + Ĉ2h

∗
i + ε∗i, i = 2, ...,n (4.23)

with
A∗ = Â(1 − ρ̂),
f∗i = fi − ρ̂fi−1,
g∗i = gi − ρ̂gi−1,
h∗i = hi − ρ̂hi−1,
ε∗i = εi − ρ̂εi−1 = ui.

6. Finally, ε∗
i
is a White Noise process, therefore we can compute OLS estimation of

the linear parameters, {A∗, B̂, Ĉ1, Ĉ2}

SSEGLS(tc,β,ω,A,B,C1,C2) =
n∑
i=2
[y∗i −A∗ − B̂f∗i − Ĉ1g

∗
i − Ĉ2h

∗
i]2. (4.24)

7. Once obtained the linear parameters {Â, B̂, Ĉ1, Ĉ2}, where

Â =
A∗

1 − ρ̂ ,

solve the optimization problem (4.18) iterating the previous steps with the new
estimates of the linear parameters, until ρ reaches convergence.

8. Eventually, solve (4.17) via Genetic Algorithm, which holds identically as in the
OLS case, or an equivalent non linear optimization method.

The algorithm has to be repeated until the parameter ρ achieves convergence. Usually
this happens quite soon, approximately between five and ten iterations, as shown in
Figure 4.3.

In the next chapter, we will show how this more advanced method provides more
reliable results with respect to the OLS case.

4.2.2. Maximum Likelihood Formulation
Sornette and others developed in 2016 a new bubble detection approach, with the idea
to find an alternative to the punctual estimation of the parameters (Filimonov et al.,
2016).
This new approach, calledMaximum Likelihood Estimation, is able to provide interval
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Figure 4.3: ρ convergence in GLS method.

estimations, giving a specific focus on the critical time tc and addressing the others
only as nuisance parameters.

First, we recall the well known relation between historical logprices andmodel prices

lnp(ti) = LPPL(ti; tc,ψ) + ε(ti),

where ψ = [A,B,C1,C2,β,ω].

This approach relies on the fundamental assumption that the residuals ε(ti) are
normally distributed. Under this hypothesis, the Likelihood function has a well known
form:

L(tc,ψ, s) =
1

(2πs)n/2
e−

SSE(tc ,ψ)
2s , (4.25)

where n is the number of points in the time serie and s is the sample variance of ε(ti).
This method consists in estimating the parameters of a statistical model given historical
observations, by finding the parameter values that maximize the likelihood of making
these observations.

As underlined many times in the previous chapter, in practical applications of LPPL
model the most important result is the value of the critical time tc, which identifies the
forecast of the burst of the bubble.
The MLE approach shares this view as it considers tc as the main parameter and the
others just in an ancillary role.

In the Bayesian approach, the elimination of nuisance parameters is a well known
problemwhich can be generally solved integrating them out. However, it is required to
specify a priori the distribution of all the parameters, calculating the posterior and then
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integrating out the nuisance parameters ψ in order to derive the posterior marginal
distribution of tc.
In the case of LPPL model, this procedure cannot be implemented directly as there
is no information to provide a priori distribution for the six nuisance parameters of
the model. Nonetheless, a simpler alternative consists in the so called Profile Likelihood
Function:

Lp(tc) = max
ψ
L(tc,ψ) = L(tc, ψ̂), (4.26)

where ψ̂ is the MLE of the nuisance parameters at each fixed value of the parameter of
interest tc. Namely,

ψ̂tc = argmax
ψ
L(tc,ψ). (4.27)

The profile likelihood approach is technically identical to the following procedure:

1. For fixed values of the nonlinear paramteres tc, β andω find via OLS method

F1(tc,β,ω) = min
A,B,C1,C2

SSE(A,B,C1,C2, tc,β,ω).

2. Now, instead ofminimizing the three nonlinear parameters at the same time, keep
tc fixed and compute

F2(tc) = min
β,ω

F1(tc,β,ω).

3. Eventually,
t̂c = argmin

tc
F2(tc).

In general, such extra subordination dramatically reduces the number of local extrema
of the cost function. Moreover, it allows one to analyze the whole profile of the cost
function F2(tc)with all the extrema detected and the corresponding values of β(tc) and
ω(tc).
For sake of completeness, let us give a formula for the estimation of ŝtc too

ŝtc =
SSE(tc, ψ̂)

n
=
F2(tc)
n

. (4.28)

As anticipated above, this approach is able to go over the idea of punctual estimation
of parameters, since it is able to provide time intervals where the burst of the bubble is
more probable to be detected.
It is interesting how this new approach is able to overcome the limits of the so called
Sornette Bounds, built both onmathematical considerations but also on previous bubble
detection studies.
Themain critic to the use of Sornette Bounds is that they heavily rely on previous results,
which is also the reason for different versions of them through the years and authors,
for example compare (Filimonov et al., 2016), (Bingcun et al., 2018), (Fantazzini et al.,
2011).

52



4.2. Other variants and generalizations

Anyway, past experience may not contain all possible situations and it is not possible
to be completely sure about the reliablity of the limits chosen.

Even if the profile likelihood approximation is often treated as a regular likelihood,
actually it is not a genuine likelihood function. In particular, it treats the nuisance
parameters at fixed ψ̂tc as if they were known. It may thus overstate the amount of
information about tc and under certain conditions it can provide unstable estimates
with respect to small changes in the observed data.

In order to overcome this limitation of the profile likelihood, an adjusted version has
been proposed, namely the Modified Profile Likelihood. It consists in adding an extra
factorM(tc), called modulating factor, to the profile likelihood

Lm(tc) =M(tc)Lp(tc) =
��I(ψ̂tc)��− 1

2

���� dψ̂
dψ̂tc

����Lp(tc), (4.29)

where we recall that ψ̂tc is the MLE estimation of the nuisance parameters for fixed tc.
I(ψ̂tc) is the Observed Fisher Information matrix on ψ assuming tc is known

I(ψ̂tc) = −
d2 lnL(tc,ψ)

dψdψT
���
ψ=ψ̂tc

,

while dψ̂
dψ̂tc

is the Jacobian matrix of the full MLE of the nuisance parameters ψ, with
respect to their MLE calculated for a fixed vaue of tc. Finally, |·| denotes the absolute
value of a matrix determinant.

Even if the Modified Profile Likelihood is a reliable approximation of the genuine
likelihood, it is extremely difficult to compute. In particular, the Jacobian Matrix in
(4.29).
For this reason, we will use an approximated version, but first it is useful to express the
Jacobian as

J(tc) =
���� dψ̂
dψ̂tc

���� = ��I(ψ̂tc)����C(tc, ψ̂tc ; t̂c, ψ̂)�� , (4.30)

where C(tc, ψ̂tc ; t̂c, ψ̂) is a matrix composed by the second order derivatives of a log-
likelihood L(tc, ψ̂tc ; t̂c, ψ̂,a) with a new parameter such that {t̂c, ψ̂,a} is a sufficient
statistic of the model

C(tc, ψ̂tc ; t̂c, ψ̂) =
d2 lnL(tc, ψ̂tc ; t̂c, ψ̂,a)

dψ̂tc dψ̂T
.

The computation of the second-order matrix C is a non trivial task, hence the following
approximation (Filomonov et al., 2016) is adopted

C(tc, ψ̂tc ; t̂c, ψ̂) ≈ Σ(tc, ψ̂tc ; t̂c, ψ̂), (4.31)
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where Σ is the covariance matrix of score functions.

Finally, we get the approximated formulation of Lm(tc) that we anticipated before

Lm(tc) ≈
��I(ψ̂tc)�� 12��Σ(tc, ψ̂tc ; t̂c, ψ̂)��Lp(tc). (4.32)

To express it in a clearer way, omitting terms that do not depend on tc

Lm(tc) ∝
(ŝtc)

−(n−p−2)
2

���∑ni=1 d2LPPLS(ti;tc,ψ)
dψdψT

���1/2
ψ=ψ̂tc�����∑ni=1 dLPPLS(ti;tc,ψ)

dψ

��� tc=tc
ψ=ψ̂tc

dLPPLS(ti;tc,ψ)
dψT

���tc=t̂c
ψ=ψ̂

�����
, (4.33)

where p = dimψ = 6, ψ̂tc is a vector of MLE estimates of nuisance parameters for a
fixed value of tc, while ŝtc is given by (4.28).

Let us define the rectangular n × pmatrix

Xij(tc,ψ) =
dLPPLS(ti; tc,ψ)

dψj
, (4.34)

and the p × pmatrix

Hij(tc,ψ) =
n∑
k=1
(lnp(tk) − LPPLS(tk; tc,ψ))

d2LPPLS(tk; tc,ψ)
dψiψj

, (4.35)

whereψj is the j-th element of the vector of the nuisance parameters, [A,B,C1,C2,β,ω].

Eventually, we can rewrite formula (4.33) as a function of matrices X and H as

Lm(tc) ∝
��XT (tc, ψ̂tc)X(tc, ψ̂tc) −H(tc, ψ̂tc)��1/2��XT (t̂c, ψ̂)X(tc, ψ̂tc)�� (ŝtc)−(n−p−2)/2. (4.36)

Extended formulas of the partial derivatives used in (4.34) and (4.35) are reported in
Appendix A.

For practical applications, it is more useful to consider the Relative Modified Profile
Likelihood, which takes value in [0; 1]

Rm(tc) =
Lm(tc)

maxtc Lm(tc)
. (4.37)

Thanks to it, we can finally identify the likelihood interval at 5% cutoff

LI(tc) =
{
tc : Rm(tc) =

Lm(tc)
Lm(t̂c)

> 0.05
}
. (4.38)
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Figure 4.4: Example of Relative Modified Profile Likelihood function, Rm(tc), with likelihood
intervals at 5% cutoff, LI(tc).

This is a confidence interval for the critical time tc, where the punctual estimation
corresponds to t̂c such that Rm(t̂c) = 1.
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In this chapter, we will provide numerical results on real financial time series, using
the methods presented in Chapter 4. In particular, we will deal with two different kind
of analysis:
First, a post-mortem analysis where crashes in the time series are studied after they
already occurred. Specifically, wewill analyze Bitcoin historical prices betweenDecem-
ber 2016 and January 2018, when Bitcoin prices skyrocketed from 1’000 USD to almost
20’000 USD.
Secondly, we will carry on a real-time bubble detection study with the aim to forecast
crashes caused by bubble behaviours. Again, we will focus on Bitcoin’s time series in
December 2017, in order to predict the crash that halved Bitcoin’s price in roughly one
month.

5.1. Post-mortem Analysis
A post-mortem analysis on crashes that already occurred clearly does not have a fore-
casting ambition, but instead it aims to analyze the time series in order to identify
drawdown and drawup periods and, in particular, to establish whether the drawup
phase was caused by a normal growth or by an irrational behaviour.
In order to do that, we will follow the procedure proposed in (Demos, Sornette et al.,
2018):

1. Identify the most relevant peak dates in the time series, in order to apply the
bubble detection method on the subsequent crashes.

2. Distinguish between drawdown and drawup periods within the time series and
evaluate their magnitude.

3. Establish whether the drawup periods were governed by a bubble behaviour or
by normal growth.

This approach has been applied to Bitcoin’s historical prices between December 1st
2016 and January 16th 2018, to try to replicate the results obtained in (Bianchetti et al.,
2018), where coherent bubble signalsweredetected in the secondhalf ofDecember 2017.

Nonetheless, first we need to introduce some theoretical concepts, that are required
in the analysis presented above.
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5.1.1. Theoretical background
In this section, wewill present the EpsilonDrawdown/Drawupmethod, used to distin-
guish within the time series between drawdown and drawup phases, and the Lagrange
Regularisation approach for the determination of bubble start times, applied ondrawup
phases in order to estimate the optimal start date of a bubble behaviour, if there exists
any.

5.1.1.1. Epsilon Drawdown/Drawup method

The Epsilon Drawup/Drawdown method is applied on historical price series, in order
to distinguish between drawdown and drawup periods.
It was first developed by Sornette and others while dealing with post-mortem analysis
of financial bubbles (Demos, Sornette et al., 2018). Their idea was to find a set of peak
dates where the asset experienced a consistent growth phase and test the Log Periodic
Power Lawmodel, extensively presented in Chapter 3 and 4, in order to establish if the
consequent crashes would have been caused by a bubble behaviour.

The Epsilon Drawup/Drawdown method consists of the following steps:

1. Calculate the daily logreturns

ri = lnp(ti) − lnp(ti−1) = ln p(ti)
p(ti−1)

∀i ≥ 1, (5.1)

where p(ti) is the closing price at time ti, ti = t0 + i∆t and ∆t = 1 day.

2. The first date t0 is the beginning of a drawup (drawdown) phase, indexed by ts,
if r1 > 0 (r1 < 0). Then, compute the cumulative return up to ti as

ps,i =

i∑
k=s

rk = lnp(ti) − lnp(ts) ∀ti > ts. (5.2)

3. For any ti verify whether the current drawup (drawdown) phase is still active or
not, by computing the largest deviation δs,i of the price trajectory from its previous
maximum (minimum)

δs,i =


max
s≤k≤i

ps,k − ps,i if drawup,

ps,i − min
s≤k≤i

ps,k if drawdown.
(5.3)

If the deviation exceeds a predefined tolerance ε at time ti, namely

δs,i > ε, (5.4)

the procedure has to be stopped. Indeed, the tolerance ε quantifies how much
the price is allowed to move in the direction opposite to the drawup/drawdown
behaviour.
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4. Once the procedure has been stopped at time ti, identify the actual end of the
current drawup (drawdown) phase, te, which actually corresponds to the highest
(lowest) price found:

e =


arg max

s≤k≤i
ps,k if drawup,

arg min
s≤k≤i

ps,k if drawdown.
(5.5)

The algorithm is then restarted setting ts = te + ∆t, until the whole time serie is di-
vided in drawups and drawdowns. Note that a drawup phase is always followed by a
drawdown and viceversa, by construction of δs,i.

Finally, a set of peak times {tp1 , t
p
2 , ...} is obtained taking the right extremum of each

drawup interval. These dates can be regarded as peaks of candidate bubbles.

It is important to underline, however, that the results obtained are very sensitive to
the tolerance ε adopted, so it is expressed as function of the volatility σ and a constant
multiplier ε0:

ε = ε0 · σ, (5.6)

in particular, the volatility σ corresponds to the annualized standard deviation of the
logreturns of the time series. Namely

σ =
√
252 · sr, sr =

∑n
i=1(ri − r̄)2
n − 1 , (5.7)

with r̄mean of the logreturns, {ri}.

In order to find a coherent set of peak dates, the EpsilonDrawup/Drawdownmethod
is repeated for different values of {ε0}j for j = 1, ...,Nε.

For each εj, a corresponding set of peak dates is found with the algorithm presented
above

Ωj = {tp1 , t
p
2 , ...}j j = 1, ...,Nε. (5.8)

The collection of all the elements that occur at least once is then the union of all the sets
Ωj

Ω =

Nε⋃
j=1
Ωj. (5.9)

To find the most valuable peak dates in the collectionΩ, we count the number of times
each element tp

i
occurred over all trials:

Ntp
i
=

Nε∑
j=1
Ij(tpi ), (5.10)
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where Ij(tpi ) is the Indicator function

Ij(tpi ) =
{1 if tp

i
∈ Ωj,

0 otherwise.
(5.11)

Then, each Ntp
i
is normalized by dividing it for the total number of tested pairs Nε.

Values are grouped in the set Λ, where each element corresponds to the fraction of
occurrences of each peak date with respect to the total number of trials

Λ = {ntp
i
=
Ntp

i

Nε
, tp
i
∈ Ω}. (5.12)

Finally, to select the most relevant peak dates, a thresholdΛT is set and only peak dates
that occur more frequently than ΛT are taken. Namely

ΩT = {tp
i
: ntp

i
> ΛT , tpi ∈ Ω}. (5.13)

These are the candidate peaks where the LPPL model is tested in order to detect
potential bubble behaviours of the underlying asset.

5.1.1.2. Lagrange Regularisation approach

The LPPL model is considered to be reliable in the modelization of log-price dynamics
only if the underlying asset has entered a bubble behaviour. For this reason, trying to
calibrate the LPPL parameters on windows corresponding to phases of normal price
growth could lead to spurious estimates.
As a consequence, it is important to develop a method able to identify the beginning of
a bubble behaviour and to apply calibration techniques only on time windows starting
after this date.
The Lagrange Regularisation approach, presented for the first time in (Demos, Sornette,
2017), is an attempt to provide a solution to this problem.

As recalled in Chapter 4, calibration techniques are usually made on many different
time windows, in order to find consistency in the results obtained.
In the case of post-mortem analyses, time windows are selected with fixed end time
at the peak of the drawup period, varying the start date across windows of different
length.
The crucial ideabehind theLagrangeRegularisationApproach is that, for fits conducted
with fixed end time t2 but at increasing window lengths ∆ti, i.e. moving backward the
start date t1, the Average Sum of Squared Errors

χ2(t1) =
SSE(t1)
N

=

∑N
i=1(lnpi − LPPL(ti; tc,ψ))2

N
, (5.14)

where we recall ψ = [A,B,C1,C2,β,ω], exhibits an approximate linear behaviour as a
function of the window length.
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5.1. Post-mortem Analysis

In other words, small windows tend to give smaller χ2 values.
Eventually, note that SSE(t1) in (5.14) corresponds to Formula (4.4) in the original cali-
bration technique.

If we choose the optimal fit t∗1 as the one minimizing χ2(t1),

t∗1 = argmin
t1
χ2(t1), (5.15)

small windows would be favoured, hence they would be more likely to be selected.

Therefore, in order to compare fits, χ2(t1), performed for different window sizes and
determine the optimal one, we add a penalty term addressing for the size of the fit
window (Demos, Sornette, 2017). Namely,

χ2λ = χ2 − λ(t2 − t1), (5.16)

hence the optimal fit t∗1 is obtained as

t∗1 = argmin
t1
χ2λ(t1), (5.17)

where λ is estimated empirically via linear regression of χ2(t1) on (t2 − t1).
This correction is required in order to consider detrended residuals over all window
sizes. At this point, we take the smallest residual as start date of the bubble behaviour.

All the data preceding the bubble start date need to be excluded from calibration
purposes, as they could return factitious results.

5.1.2. Bitcoin’s analysis between December 2016 and January 2018
In this section, we will try to replicate the results reported in (Bianchetti et al., 2018) on
Bitcoin historical prices betweenDecember 1st 2016 and January 16th 2018, represented
in Figure 5.1.
Without discussing in detail the intrinsic value of Bitcoin as digital currency or

commodity, for which we recall (Antonopoulos, 2017) and (Ametrano, 2016), we will
just deal with its time series, in order to assert whether Bitcoin entered an irrational
behaviour and to try to identify the beginning of the bubble period.
As anticipated above, we will follow the approach proposed in (Demos, Sornette et al.,
2018), that we recall for simplicity:

1. Detection of peak dates via Epsilon Drawup/Drawdown method.

2. Partition between drawup and drawdown methods.

3. Identification of bubble phases via Lagrange Regularisation approach.
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Figure 5.1: Bitcoin’s historical prices from 1st December 2016 to January 16th 2018.

1. Detection of peak dates
The key idea behind the detection of peak dateswithin the time series is the assumption
that a bubble is identified as a price run-up.
In this scenario, a drawup is just a sequence of positive returns that may be interrupted
by negative returns smaller than a pre-specified tolerance, ε. Analogously, a drawdown
is a sequence of negative returns that may be interrupted by positive returns no larger
in amplitude than ε.
To find the most relevant peak dates in the time series, we apply the Epsilon Draw-
down/Drawup method, whose detailed presentation is reported in the previous sec-
tion.

First of all, we compute the annualized volatility of the time series. It is interesting to
note how Bitcoin appears to be much more volatile compared to other traditional asset
classes during the same period of analysis. At the same time, it appears to be in line
with other criptocurrencies like Ether.

Asset Class Volatility
Bitcoin 76.09%
World Equity Index 6.80%
Global HY Index 5.40%
Gold 9.98%
Ether 81.28%

We apply the Epsilon Drawup/Drawdown method for different values of ε0, {ε0 =

0.1, 0.11, ..., 0.59, 0.6} with a frequency threshold ΛT = 0.6. The found peak dates, such
that Λ > ΛT , are:
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5.1. Post-mortem Analysis

Peak dates Λ

04/01/2017 0.65
11/06/2017 0.92
01/09/2017 0.75
16/12/2017 0.86

Column Λ represents the frequency of each peak, i.e. the fraction of occurrences with
respect to the total number of trials.
The most remarkable peak in the time series is surely the one in the second half of
December 2017, where the price of Bitcoin skyrocketed to almost 20’000 USD, however
there are three other candidates that require to be analyzed. Figure 5.2 shows the
detected peaks along the time series.

Figure 5.2: Bitcoin’s peak dates found via Epsilon Drawdown/Drawup method.

2. Partition between drawdown and drawup periods
Following the EpsilonDrawdown/Drawupmethod, we can distinguish between draw-
down and drawup periods. A drawdown shall be a correction regime or a sharp crash,
in any case it starts the day after a peak is reached and it ends the day the price reaches
its minimum value over the period from the beginning of the drawdown up to the next
peak.
Analogously, periods starting the day after the end of a drawdown and finishing with a
peak date are identified as drawup periods. Within them, we can find phases governed
either by normal growth or by an irrational behaviour.
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Drawdown phases Return Duration
05/01/2017; 11/01/2017 −18.75% 7 days
12/06/2017; 16/07/2017 −25.75% 35 days
02/09/2017; 14/09/2017 −25.94% 13 days
17/12/2017; 16/01/2018 −43.99% 31 days

The table above summarizes the drawdown periods found, which are also represented
in Figure 5.3.
Column Return reports the negative performances registered, while Duration indicates
their length. It is interesting to see how prices could either enter a correction regime
lastingmanyweeks or have a violent crashwith the asset loosing a consistent percentage
of its value in a couple of weeks.

Figure 5.3: Bitcoin’s drawdown phases between December 1st 2016 and January 16th 2018.

3. Identification of bubble phases
It remains to verify the existence of bubble behaviours during drawup phases and, if
there is any, estimate its start date via Lagrange Regularisation approach.
To detect for bubbles we apply the OLS version to many different time windows,
setting the right extremum, t2, at the bubble peak and moving backwards the left one,
t1. Moreover, we impose a minimum window length of at least 30 days.
Drawup periods are synthesized in the table below:

Drawup phases Return Duration Bubble
01/12/2016; 04/01/2017 45.09% 35 days N
12/01/2017; 11/06/2017 257.42% 151 days N
17/07/2017; 01/09/2017 124.51% 47 days N
15/09/2017; 16/12/2017 423.75% 93 days Y
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Analogously to the drawdown case, column Return reports the positive performance
registered, while Duration indicates the length of each period. In addition, the column
Bubble underlines whether a bubble behaviour is detected or not.

Clear bubble signals are found in the time window spanning from September 15th
2017 to December 16th 2017. In particular, we are able to estimate the start date of the
bubble behaviour on October 14th 2017, thanks to Lagrange Regularisation approach.
Coherent bubble signalsweredetected in the secondhalf ofDecember also in (Bianchetti
et al., 2018), correctly forecasting the subsequent crash which almost halved Bitcoin
prices in approximately one month.

To conclude, Figure 5.4 includes these final results. Specifically, red areas represent
drawdowns, grey areas are for normal growth phases and green ones show bubble
behaviour.

Figure 5.4: Bitcoin’s phases between December 1st 2016 and January 16th 2018.

Socioeconomic considerations
In this final section, we will briefly report some considerations on the socioeconomic
drivers behind Bitcoin’s bubble (Demos, Sornette et al., 2018).

The major factor behind the huge increase in Bitcoin’s price across 2017 can be re-
called to the rising demand from Chinese markets. The main reason behind that was
the devaluation of Chinese Yuan, promoted by the People’s Bank of China (PBoC) since
2014, in order to raise the competitiveness of exporting firms.
As a consequence to the depreciation of their currency, Chinese investors started buy-
ing Bitcoins, which was seen as a safer store of value. Undoubtedly, limitations on
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foreign-exchange investments too considerably contributed to this phenomenon.
When Chinese government started observing an outflow of capital from China, the
Central Bank of China required Chinese Bitcoin exchanges, which until then were com-
pletely unregulated, to comply with the country’s financial regulations, as it suspected
illegal activities, like money laundering. Then, in February 2017 the PBoC also forbade
Bitcoin withdrawals into currencies other than Chinese Yuan.
Nonetheless, when this restrictive measure was finally interrupted in June 2017, there
was a really positive reaction which caused a further increase in Bitcoin’s price.
In a completely unexpected way, in September 2017 Chinese government decided to
stop all trading activities related to the digital coin, reducing sharply trading volumes.
Although Bitcoin trading was considered officially dead, investors actually shifted to-
wards unofficial OTC exchanges and other foreign exchanges, which had a meaningful
growth during the previous months. In other words, activities on Chinese exchanges
were not suspended, but only redirected to other markets.

At this point, Bitcoin had already gained global attention, but, unlike in the past, this
brought interest on other cryptocurrencies too. During this period, the cryptocurrency
market changed considerably, as shown in Figure 5.5, with Bitcoin reducing its market
share from 90% at the beginning of 2017 to roughly 50% in June 2017, despite its huge
increase in price.
In the last quarter of 2017, the market capitalization of the whole crypto-market grew
more than 400%, sustained by the constant inflow of fresh money. However, with
the crash in the second half of December 2017, the capitalization of Bitcoin and other
cryptocurrencies dropped sharply, putting Bitcoin’s market share to an all time low.

Figure 5.5: Progressive maturation of the Cryptocurrency market during 2017. (Demos,
Sornette et al., 2018)
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Even though 2017 was a positive year for cryptocurrencies, the launch of new coins
and technologies was also perceived by Bitcoin’s investors as a threat, spreading the
idea that Bitcoin could become obsolete. This is surely a key factor in the violent
correction that occurred at the end of 2017.

5.2. Real-time bubble identification
In this section, we will deal with the non trivial task of identifying real-time bubbles,
i.e. during their development, in order to forecast the subsequent crash. This can be a
very useful practice, not only for risk management, but also for valuation and trading
purposes.
We will consider again Bitcoin historical time series and, in particular, we will focus on
the bubble bursting in the second half of December 2017.

It is important to underline that this is not an easy task. For this reason, we adopt
a bubble detection methodology supported by different methods, repeating iterations
on many different time windows of varying length.
In order to detect real-time bubbles, we apply the following approach:

1. Fix a present time of analysis, t∗, corresponding to the last available date or, in
case of real-time analysis on historical time series, to three days before the bubble
peak.

2. Apply the bubble detectionOLS version onNwindows of various length, keeping
fixed the right extremum t2 = t

∗ and moving the left one, t1.

3. Shift backwards t2, in such a way that t2 = t∗ − 1, and repeat point 2).

4. Iterate the process until t2 has been shiftedM times.

5. Compute the fraction of valid bubble signals on theN ·Mwindows inspected and
plot the predicted tc values.

6. Apply also MLE and GLS as supporting methods.

5.2.1. Bitcoin’s bubble identification in December 2017
We consider more in detail the Bitcoin’s bubble that bursted in the second half of De-
cember 2017, applying the real-time bubble detection method presented above.

Specifically, we set t∗ on December 13th 2017, three days before the peak reached on
December 16th. We span N = 20 windows, from a maximum length of 72 days to a
minimum of 53 days (Bianchetti et al., 2018). Moreover, we repeat it forM = 5 times,
i.e. moving backwards t2 until December 9th 2017.
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We get a fraction of valid bubble signals equal to 0.67, meaning that 67 over 100
detected time windows indicate the presence of a bubble behaviour. In particular, the
calibrated values of tc, corresponding to the predicted burst of the bubble are repre-
sented in Figure 5.6.
It is observed a cluster on December 17th, correctly predicting the imminent crash.

Figure 5.6: Bubble signals detected on December 13th 2017 via OLS version.

Nonetheless, most of the times signals obtained are not so easy to interpret, for
example we could obtain two distinct clusters which seems to forecast two different
scenarios.
If we apply the procedure above on December 8th, see Figure 5.7, we obtain a fraction
equal to 0.78 with valid bubble signals spanning fromDecember 9th to December 15th.
Similar situations require a more in-depth study, hence we rely both on the Gener-

alized Least Squares and Maximum Likelihood Estimation approaches, presented in
Chapter 4.
We recall that the main advantage of the GLS method is to model residuals with more
reliable dynamics, while the MLE approach is able to provide interval estimates of the
critical time, tc, where the burst of the bubble is more probable to happen.

Applying the MLE approach together with the GLS version on December 8th, we
can compare the shape of the Relative Modified Profile Likelihood, Rm(tc), with the
signals obtained via GLS and OLS version, as shown in Figure 5.8.
One can observe how the MLE approach identifies the most probable critical time, tc,
on December 15th, while bubble signals on December 9th are considered less reliable.

Regarding the GLS version, we have applied the calibrationmethod on the same time
windows used in the OLS case, obtaining results in line with MLE forecast, as most of
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Figure 5.7: Bubble signals detected on December 8th 2017 via OLS version.

the signals appear to be clusterized around December 15th.

Figure 5.8: Comparison among OLS version (black bars), MLE approach (red line) and GLS
version (green bars) on December 8th 2017.
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5.2.2. Bitcoin’s bubble identification in 2021

After the peak reached in December 2017, Bitcoin’s prices remained steadily below
13’000 USD for the following two years. In addition, in line with the drawdowns regis-
tered on themain Equity andCredit indices, inMarch 2020 Bitcoin lost almost half of its
market capitalization, as coronaviruswas perceived as a global threat and governments
were taking restrictive measures to slow down the pandemic.
After that, Bitcoin saw a huge increase in price, from 6’000 USD to 60’000 USD in ap-
proximately one year, as shown in Figure 5.9.

Figure 5.9: Bitcoin’s historical prices from April 1st 2020 to April 1st 2021.

After this sharp growth, one might ask whether Bitcoin has entered an irrational be-
haviour or not. To try to give an answer to this question, we apply the same bubble
detection method as above to Bitcoin’s prices. Results obtained show bubbles signals
in different points of the time series.

In more detail, we apply the real-time bubble detection method acrossM = 5 con-
secutive days, spanning N = 20 windows (from a maximum length of 72 days to a
minimum of 53 days), from the beginning of December 2020 till the end of March 2021.
We located this time period as Bitcoin approached and overcome its all-time high, pre-
viously reached in December 2017.

Bubble signals are detected in the first half of January 2021 and in the second half
of February 2021, as reported in Figure 5.10. In particular, the first cluster correctly
forecasts the correction registered in January 8th 2021 and the second one anticipates
the drawdown registered in February 21th 2021. The table below summarizes the
relevant data:
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Peak date Drawdown Duration Fraction Identification date
08/01/2021 −25.41% 20 days 0.49 05/01/2021
21/02/2021 −21.55% 8 days 0.24 20/02/2021

Figure 5.10: Bubble signals detected via OLS version.

Specifically, the first column, Peak date, refers to the date when the peak was reached,
the second one, Drawdown, reports the magnitude of the subsequent correction phase
and the third one, Duration, its length.
Eventually, Fraction indicates the fraction of valid bubble signals and Identification date
the date on which the bubble detection method was applied.

Considering more closely each bubble cluster and comparing the forecasts obtained
in the OLS case with MLE and GLS variants, see Figure 5.11 and Figure 5.12, we can
draw similar conclusions.
The first bubble cluster is concentrated between January 7th and January 10th, while
the second one is between February 20th and February 23th.

Despite these two sharp corrections, however Bitcoin’s price had a quick rebound
and now, on March 31th 2021, it is approaching again 60’000 USD. In our view, this is a
consequence of the positive news heard on the recognition and adoption of Bitcoin and
other cryptocurrencies by the financial community. Nonetheless, it remains a volatile
asset and we advise the reader to pay close attention.
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Figure 5.11: Comparison among OLS version (black bars), MLE approach (red line) and GLS
version (green bars) on January 8th 2021.

Figure 5.12: Comparison among OLS version (black bars), MLE approach (red line) and GLS
version (green bars) on February 21th 2021.
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In the current work, we have presented the Log Periodic Power Law (LPPL) model, as
a valid tool for the detection and forecast of financial bubbles.
We briefly recall that, according to LPPL model, an asset is governed by a bubble be-
haviour if its price is characterized by the LPPL function. The seven parameters of
the model, {A,B,C, tc,β,ω,φ}, must be calibrated in order to optimally fit the asset
prices on a fixed time window. Moreover, if the estimated parameters satisfy specific
constraints, the so called Sornette bounds, one can state that the asset is under a bubble
regime and the critical time, tc, represents the candidate crash time.

From a theoretical point of view, we have focused on reviewing all the past literature,
with particular attention to the latest publications. The main assumption to the theo-
retical framework is that the network of irrational agents is modelled as a Hierarchical
Diamond lattice, with the idea to mimic the heterogeneity of real financial networks.
This choice has revealed to better fit with respect to the Bidimensional Ising model. In
addition, we recall that the susceptibility function, χ, which regulates the system re-
sponse to perturbations, diverges in correspondence of the critical point of the system;
from a financial point of view, this means that an external source might act as trigger of
a massive selloff from a consistent group of investors, causing a violent fall in the price
of the asset.

The calibration of the parameters of the model has been a non trivial task, given the
high non linearity of the LPPL function and the presence of many local minima. To
solve this issue, we have proposed the original calibration procedure, together with
two more recent and reliable variants.
Indeed, while the original calibration procedure relies on the fundamental assumptions
that residuals are homoskedastic and uncorrelated, the Generalized Least Squares
(GLS) variant opens up to correlated residuals following an autoregressive process.
This has proven to provide more accurate forecasts, despite a higher computational
effort. In our view, a further development could be carried on by removing the ho-
moskedasticity assumption, by adopting a GARCH process for the residuals.
On the other hand, the Maximum Likelihood Estimation (MLE) method has the great
advantage to provide confidence intervals, andnot only punctual results, for the estima-
tion of the parameters, providing a measure of the uncertainty related to the estimated
critical time.

Calibratingmethods have been applied both on post-mortem and real-time analyses.
In particular, for post-mortem studies, where crashes in the time series are analyzed
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after they already occurred, we have proposed a newly approach, able to distinguish
between drawdown and drawup periods, identify periods of bubble activity and also
provide an estimate for the beginning of the bubble behaviour. In order to do that, we
relied on the Epsilon Drawdown/Drawup method (Demos, Sornette et al., 2018) and
the Lagrange Regularisation approach (Demos, Sornette, 2017).
For real-time analyses, where calibration has bubble forecasting purposes, we have im-
plemented a coherent bubble detection method, which combines the three calibrating
techniques.
All the methods have been implemented in Python. To this extent, we suggest the
adoption of parallel computing algorithms to ease the computational effort required.

Practical applications have been carried on Bitcoin’s historical time series.
Specifically, a post-mortem analysis on Bitcoin’s prices between December 2016 and
January 2018 identifies bubble signals in the second half of December 2017, in line
with previous publications (Bianchetti et al., 2018). In addition, some socio-economic
considerations have been reported to give the reader a wider view on the drivers of the
bubble behaviour and its subsequent crash.
At the same time, we have carried on a real-time analysis on the bubble phase registered
at the end of 2017, correctly forecasting the crash that almost halved Bitcoin’s market
capitalization.
Eventually, we havemade a real-time analysis on actual Bitcoin’s prices too, to establish
whether the sharp increase in price observed throughout the last year was influenced
by a bubble behaviour or not. We found evidence of bubble signals in correspondence
of the two peaks reached on January 8th 2021 and February 21th 2021, correctly an-
ticipating the subsequent sharp corrections. Despite its strong rebound in price, we
conclude that Bitcoin is under extremely volatile conditions and we advise the reader
to pay close attention.
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A. Appendix
We present the list of partial derivatives required in formula (4.34) for the calculation
of the Modified Profile Likelihood (Filomonov et al., 2016)

dLPPLS
dβ = |tc − t|β ln |tc − t|

[
B + C1 cos(ω ln |tc − t|) + C2 sin(ω ln |tc − t|)

]
,

dLPPLS
dω = |tc − t|β ln |tc − t|

[
− C1 sin(ω ln |tc − t|) + C2 cos(ω ln |tc − t|)

]
,

dLPPLS
dA = 1,

dLPPLS
dB = |tc − t|β ,

dLPPLS
dC1

= |tc − t|β cos(ω ln |tc − t|),

dLPPLS
dC2

= |tc − t|β sin(ω ln |tc − t|).

The second order derivatives required in (4.35) are:

d2LPPLS

dβ2 = |tc − t|β (ln |tc − t|)2
[
B + C1 cos(ω ln |tc − t|) + C2 sin(ω ln |tc − t|)

]
,

d2LPPLS

dωdβ = |tc − t|β (ln |tc − t|)2
[
− C1 sin(ω ln |tc − t|) + C2 cos(ω ln |tc − t|)

]
,

d2LPPLS

dβdB = |tc − t|β ln |tc − t| ,

d2LPPLS

dβdC1
= |tc − t|β ln |tc − t| cos(ω ln |tc − t|),

d2LPPLS

dβdC2
= |tc − t|β ln |tc − t| sin(ω ln |tc − t|),

d2LPPLS

dω2 = − |tc − t|β (ln |tc − t|)2
[
C1 sin(ω ln |tc − t|) + C2 cos(ω ln |tc − t|)

]
,

d2LPPLS

dωdC1
= − |tc − t|β ln |tc − t| sin(ω ln |tc − t|),

d2LPPLS

dωdC2
= |tc − t|β ln |tc − t| cos(ω ln |tc − t|).

All other second order derivatives are equal to zero.
Moreover, we recall that, thanks to Schwarz Theorem, d2LPPLS

dψi dψj = d2LPPLS
dψj dψi ∀ψi,ψj.
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