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Abstract

This work aims at developing a Virtual Reality software which allows users to easily create
a shared space environment where physical and virtual space coincide.

Users will use a hand gesture to trigger the colocation process and easily position other
users who shares the same physical room with them, in the same virtual room, within the
same reference system.

We will first describe other colocation methods with their pros and cons, then our personal
hand-tracking method and under which circumstances our method is better or worst than
the other already existing ones.

Then we will describe experiments and demos which aim at proving the preciseness of our
colocation method together with an idea on how one could make use of colocation in a
VR application.

Finally, we bring our conclusions on how the software can be enhanced and what can be
expected from the future of VR.
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Abstract in lingua italiana

Questo lavoro consiste nello sviluppo di un software di Realtà Virtuale che permette agli
utenti di creare facilmente un ambiente di spazio condiviso dove lo spazio fisico e virtuale
coincidono.

Gli utenti useranno un gesto con la mano per innescare il processo di colocazione e po-
sizionare facilmente gli altri utenti che condividono la stessa stanza fisica con loro, nella
stesso spazio virtuale, all’interno di un sistema di riferimento comune.

Prima descriveremo gli altri metodi di colocazione esistenti con i loro pro e contro, poi il
nostro metodo personale basato sul tracking delle mani e sotto quali condizioni il nostro
metodo è migliore o peggiore degli altri metodi già esistenti.

Poi descriveremo le sperimentazioni e le dimostrazioni fatte che mirano a provare la pre-
cisione del nostro metodo di colocazione insieme a degli esempi su che tipo di uso si possa
fare della colocazione in una applicazione di realtà virtuale.

Infine, concludiamo sul come il software potrebbe essere migliorato e su cosa aspettarci
dal futuro della realtà virtuale.

Parole chiave: Colocazione, Oculus, Realtà Virtuale, Unity, Tracking delle Mani, Spazi
Condivisi
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1| Introduction

Many Virtual Reality (VR) applications exploit multi-user experiences, such as multi-
player games in VR (FPS style shooters [51] or Survival Horror games [16][43]), virtual
meeting environments emphasizing social interactions or casual VR chat platforms. Even
in the area of facility management, a multi-user shared virtual environment can be used
to improve the efficiency of communication. Multi-user VR experiences can take place in
a number of physical setups. Setups in which users share the physical and virtual space
simultaneously are defined as colocated shared VR. Such colocated VR scenarios can
be used in walkable arena-scaled environments (e.g., games or exploratory VR scenarios
[24][1]), often exploiting the arena in a shooter style game, such as Space Pirate Trainer
DX Arena [44].

They can also be used in seated VR scenarios, where users typically do not navigate
extensively but still need to be aware of the positions of other users in the same virtual
(and physical) environment. In a functioning colocated VR application, poses of all users
within the same coordinate frame need to be known. Often, this coordinate frame is asso-
ciated with the shared physical environment itself. Other softwares offer camera systems
for large physical environments to track each user inside the shared space. These solutions
always need external cameras and a complicated setup to implement a colocated shared
VR experience, as we can see here at Oculus Connect [5].

Currently, head-mounted displays (HMDs) that use in-built visual SLAM (Simultane-
ous Localization and Mapping) techniques for head tracking are gaining popularity in the
consumer VR market [12]. SLAM-tracked HMDs demonstrate a substantial advantage of
not requiring an external camera setup for fast and precise 6-DOF (Degrees Of Freedom)
tracking, often in environments that are larger than those that similarly-priced external
tracking camera installations can cover. Tracking algorithms based on visual SLAM map
the environment while simultaneously calculating the pose of the HMD within the map
that is being created.
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In Figure 1.1, a robot observes the environment relative to its own unknown pose. Also,
the relative motion of the robot is measured. From this input, a SLAM algorithm com-
putes estimates of the robot’s pose and of the geometry of the environment. A camera
on a robot measures the relative position of artificial features on the floor (light lines),
while the sensor’s motion is provided by the robot’s odometry (light arrows). The output
is the robot’s pose (dark, circled arrow below the robot) and the global position of each
feature (dark crosses). In Figure 1.2, a SLAM device is attached on a robot and the pose
is calibrated via its head. After calibration, the SLAM device is located in front of the
robot head, and the robot is localized in the map coordinate system.

Figure 1.1: The camera equipped robot [12].

Figure 1.2: (a) Attaching the SLAM device on a robot and calibrating the relative pose
via moving the robot head (b) [12].
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Oculus Quest is an example of a SLAM-enabled HMD available to consumers. Compared
to other popular VR headsets, the Oculus Quest is independent of external hardware
such as tracking cameras. Being a standalone Android-running computer, it provides an
entirely untethered experience. As a SLAM-tracked device, each Oculus Quest creates an
individual tracking map that cannot be read out and copied to other devices. This fact
makes creating a shared colocated VR experience a challenging task.

So we developed a software that enables users in the same room to easily colocate in
the same virtual space, using hand tracking [23][26]. Hand tracking is a new functionality
of Quests which let users ignore controller usage and use their hands to point, pinch, grab
and much more. The reason hands can be used for colocation, is that Oculus Quests
can recognize only a pair of hands at a time [48], and therefore the hands of a secondary
user may be perceived as its own, making them an excellent object usable as a point of
information sharing.

In this thesis, we will first speak about the current state of the art, describing the other
2 main methods for colocation, tested out by [34], with their requirements, their setup,
and their calculations, also discussing for each method their pros and cons.

Then we will speak about our personal colocation method, used for this software, which
exploits Oculus Quests’ hand tracking functionality; a big section will help readers under-
stand which math calculations we used for the colocation process, then an accuracy report
will compare this method with the other availables, finally concluding with a discussion
about pros and cons.

We will then describe 3 experiments present in the software, which will help users under-
stand how colocation works; furthermore, following the various descriptions, each demo
will have its personal accuracy evaluation that will demonstrate the preciseness of our
colocation system. Each demo is developed directly inside the software and can be easily
triggered by users with a series of controller buttons pressed simultaneously.

Finally, we will conclude by first describing how users can actually use the software and
which changes they could bring to their own taste and/or usability, and then by describ-
ing possible future enhancements and some thoughts on the future of Oculus HMDs and
hand tracking functionalities.
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2| State of the Art

In this chapter, we will spek about the other 2 possible different ways to colocate two
or more users in the same room. We will first describe their basic mechanism and their
requirements, both hardware and software, and we will then debate their pros and cons
based on the above-said information.

2.1. Fixed-point Calibration

In the fixed-point calibration method, all colocated HMDs are placed at predefined posi-
tions within the physical environment. This calibration method is the most simple and
straightforward of the two presented methods, and we will first describe an analytical
procedure brought on by [34].

To prepare the physical environment for calibration, a specific point is fixed and marked
(e.g., the room’s center): we will call this point UR. Then, a point in the virtual world
UV is manually set up that should correspond to UR. After the calibration, a user at the
position UR in the physical space should have the position UV in the virtual space. A set
of distinct UR and UV positions is determined for each colocated user.

As a calibration example, we could position the HMD of each user on the floor at their
corresponding UR and rotate in the direction that is set with UV. Reference points can be
set at arbitrary distances, as long as their relative poses in the physical world correspond
to those in the virtual environment.

In Figure 2.1, on the left, the users’ headsets are positioned on predefined locations in the
real world. On the right, virtual users who are repositioned to UV, which is the virtual
representation of UR. The distance ∆dU is the same in the real and virtual world. Red
arrows represent the view direction of the user.
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As you might have inferred by the description above, you can either use the same refer-
ence points for all users, calibrating user positions one after another, or you can choose
to setup a unique reference point pair for each user, enabling simultaneous calibration.
Using the same reference points for all users means that every one of them will have to
place their HMD on the predefined spot (usually on the floor) with the correct rotation.
This can be incredibly time consuming, not to mention the recalibration effort that could
be needed in case of a big positional or rotational drift that can happen during usage.

In the former case, a button could be pressed to associate each player with the pre-
defined virtual position; every user must go back to the center of the room, facing a
coherent direction with the virtual transform predefined in the software, while developers
will ensure that the software’s initial player spawn position respects the given parame-
ters. Simultaneous calibration instead can be really fast and reliable, but it may need
extra implementation steps, bigger effort by each player and a correspondence between
the virtual scene and the physical room in which players are positioned;

Indeed, another possible implementation could be that every user gets marked with a
number and a corresponding position in the physical room. The same mark is associated
to a virtual position that is correspondant to the physical position associated to it; if the
distance between these positions and the rotation of each one is coherent with the virtual
ones set up by the developers, then pressing a button while each player is standing on top
their mark is all that is needed to colocate them correctly.

Figure 2.1: A visual representation of the fixed-point calibration mechanism [34].
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2.1.1. Pros

First of all, fixed-point calibration doesn’t need any additional hardware (in opposition to
the marker-based calibration described in the subsequent section): a generic HMD is all
that is needed to perform this kind of colocation. It is not mandatory to have an Oculus
Quest or another HMD endowed of hand-tracking either, or any other type of specific
tracking functionalities, as any SLAM-device is enough.

As said above, this is the easiest between the methods as no additional software and/or
plugins are required either: in the case of the hand tracking colocation, plugin and func-
tionalities must be manually activated from within the Quest software, while here, both
software and hardware requirements are zeroed out. The absence of any type of gesturing,
and the fact that no moving object is involved in this method, makes it incredibly easy
to perform in any situation.

Both in the standard case of colocating users one by one, or in the more complex but
better simultaneous colocation scenario, a simple button press is what is actually required
by the software; we will see later in Section 3.3.2 how using hands can cause usability
problems with users bound to remove their HMD at a certain point of the process: here,
pressing a simple button gives user the chance to keep their HMD at all times, and this
can be really scalable for any kind of game or social experience a developer might add as
a corollary of the colocation software.

We must notice how not needing any of these requirements is helpful for performance
reasons too: the lesser plugins are in the software, the lighter it is; we can imagine that
in a big future evolution of VR where colocated experiences are more common, a non-
resource consuming colocation software might be really useful in helping developers choose
which calibration method to pick for their games.

Finally, we can say that precision can still be quite accurate, as we will see in Figure 3.8
in Chapter 3, with respect to the one-handed hand tracking-based calibration method:
the median error between real and virtual positions, as you can see in the figure, is placed
around 10-12 mm.
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2.1.2. Cons

The main problem with this colocation method is that execution of the fixed-point calibra-
tion requires certain involvement on the part of users as they need to take place (or place
their HMDs) at predefined locations as accurately as possible. The virtual initial posi-
tions and rotations must correspond with the HMDs position and rotation so preciseness
depend on these factors. That means that both communication and coherency is needed
between users and developers during the whole process: while positional miscalculations
can be actually negligible, if users place their HMD with a slightly different rotational
angle with respect to their virtual rotation, the small drift that is initally created, might
become bigger and bigger in case a user decides to move in the room.

Moreover, this method may ask for a little extra effort by the side of developers as a
correspondence between the scene structure and the physical room could be required.
In case of a fully immersive experience, such as a shooter game where the map level is
structurally identical to the room [51], developers must take in account where to make
players stand while spawning their virtual bodies.

Another big downside is recalibration: when the positional and rotational drift becomes
too big during the usage of the software, recalibrating is necessary. And if recalibration
is necessary during the application run-time, users would have to remove their HMDs
and reposition them into their original/initial place; consequently, a software restart may
be necessary too if the software doesn’t keep the association between players and their
original spot throughout the level: this slows down the whole pace of recalibration.

Finally, we must mention another possible inconveniency: since the colocation process
happens while HMDs are placed on the floor and not worn by users, in case of bugs it
might not be so easy to understand what is going on inside the software; this could be
avoided with Unity’s play mode or Meta Quest’s mirroring function, but it can still be
annoying to perform this kind of extra step as a mandatory procedure for debugging.
We will speak further on in Chapter 3, Subsection 3.2.2, why the hand-tracking based
calibration will instead, on the contrary, help developers in this.
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2.2. Marker-Based Calibration

In the marker-based calibration method, a marker is placed in the physical environment
and needs to be tracked simultaneously by all client applications running on users’ HMDs.
A possible implementation of the method, brought on by [34], uses an ArUco (Augmented
Reality University of Cordoba) marker placed on the floor in the tracking space as a spa-
tial anchor for the colocated HMDs.

A Zed mini AR (Augmented Reality) camera [35] was attached to Oculus Quest to detect
the ArUco marker. However, HMDs front-facing cameras could be used as well, as long
as their video feed can be made accessible to the developer. Using the OpenCV (Open
Source Computer Vision Library) framework [28], the position and rotation of the de-
tected marker in camera space was used to recalculate the position and rotation of the
camera in the coordinate frame associated with the marker. This marker also has a refer-
ence representation in the virtual world. This representation was the virtual anchor from
which users are relocated. Opposed to the fixed-point calibration, where UV was known
as the location to be aligned with, in marker-based calibration, this pose was calculated
after a marker was detected. Since the markers world space pose (e.g, MV) is known in
the virtual world, the world space location (UV) to which the user is wanted to be aligned
was determined.

The marker recognition software provides the marker location in the user’s camera space.
This can be inversed to determine the user’s location in marker space (we define this with
UM). It is now easy to determine UV with UV = MV + UM. Since UV is known, it can
be possible to relocate the virtual user to this location. This calibration can be used for
each user independently or simultaneously. The process is either triggered by pressing a
button on a controller or from an admin computer. This way, it could be controlled and
easily redone during the experiment, as long as the marker is in sight of the AR camera.

Therefore, an extra implementation step may be needed: both the camera and the
marker’s API’s must be integrated into the code so to enable the possibility to access
their functionalities; the marker’s position must be easily accessable to everybody, and its
information must be rapidly sent via network to the other users; more in detail, what we
would send to other users is not quite the marker’s position, rather than our own position
with respect to it.
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The best case scenario would be simultaneous calibration: at each frame, every user
sends the marker’s position to the other users, and everybody relocates consequently.
This can be highly resource-consuming and performance could be heavily affected, but
it would be undoubtly one of the most precise calibration methods at all time, since the
position of the players is updated so frequently.

In Figure 2.2, on the left, we can see the users standing in the real world detecting a
marker; on the right, virtual users who are relocated depending on the detected marker.
The virtual user is moved by ∆p and rotated by α to get to UV, which is the user’s
position p⃗m and rotation r⃗m in marker space.

While computer vision frameworks are getting more precise, we can expect this method
to produce better results in the future; nonetheless, until these camera functionalities
will still be only available on dedicated hardware, and not integrated into the cameras of
modern HMDs, users will always need to resort to extra hardware to perform this type
of calibration, spending extra money and more time to implement the APIs.

Finally, we could conclude saying that this method is overall better than the fixed-point
one, even with the economical and physical constraints of extra equipment needed. We
might say that our priority when researching the best calibration method for colocating
users is definitely the accuracy, and, as said above, we can easily affirm that having the
user-marker positions sent at every frame is probably a zero-error precision method. If on
the contrary, users prefer an easy setup/calibration method, and avoiding to buy extra
equipment, we can instead say that the hand-tracking calibration method, which we will
describe in the following Chapter 3, is definitely the best option to choose.

Figure 2.2: A visual representation of the marker-based calibration mechanism [34].
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2.2.1. Pros

The execution does not present any difficulty for users since they would only need to
position themselves in a way that allows the calibration marker to be seen in the camera
image. So the HMD frontal side must be always looking at the marker without any other
objects obstructing the view.

The calibration process can be made even easier if continuous tracking is used and mark-
ers are attached directly to each user. So instead of tracking a single marker in the middle
of the room, users can directly track each other, sending each others positions at every
frame, via network layer.

For the reasons just mentioned, using continuous tracking could potentially be the most
precise method of all. Unfortunately, we do not have an accuracy test as we never ex-
plored this mechanism, but it is pretty straightforward that if at every frame, we could
calculate the position of each user by tracking a marker directly attached to their HMD,
we could possibly reach a 100% accuracy software, as the drift problem which usually
comes out after a long usage, would never occur.

Simultaneous tracking doesn’t only have the quality of accuracy in his assets: it liter-
ally cancels any type of effort needed by the side of the users; continuously tracking each
other’s position is a developer-side feature, that must be programmed at compile-time
and therefore overrides users from taking any kind of actions such as button presses, hand
pose gestures and other possible inputs.

Consequently, we could say that while this method might seem complicated for devel-
opers to set up for a ready-to-use scenario, it can potentially be really easy for users:
we can’t imagine a better user experience than literally wearing an HMD, loading up a
software and realizing that the virtual users you see in the world are already aligned with
their real-world positions as the tracking algorithms that relate cameras to markers do all
the hard work by themselves.

Finally, we can conclude saying that as in the fixed-point calibration method, not re-
lying on any type of internal procedure to colocate users, is an excellent merit as this
gives users the chance to keep their HMD on their head at all times; this is comfortable
and contributes to a positive usability of the software during the play session.
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2.2.2. Cons

The first big con of this method is pretty straightforward: it might require additional
hardware and software, depending on whether the HMD has integrated cameras that can
be accessed to enable marker tracking or whether an external camera needs to be used.

As of today, access to Oculus Quest external cameras is subject to several restrictions
for privacy issues: the novel Passthrough API (Application Programming Interface) [20]
only allows users to modify what they see through their external cameras, and do not give
you the chance to access other people’s cameras. Not only this, but the use of marker
tracking itself requires additional implementation.

Therefore, there is indeed a contraindication in using this type of calibration if developers
aren’t already aware of how to put in relationship the tracking algorithms of cameras and
markers chosen as pivotal points. Another consequence of this is that putting together
markers, cameras, and computer vision algorithms, can become seriously performance
heavy if not optimized in the correct way; especially in the simultaneous tracking scenario.

Another consequence of the need for extra equipment, is definitely the economical side
of cameras: while most computer vision frameworks are open source and available to
everybody, modern cameras for advanced AI driven image recognition, such as the latest
version of the zed camera mentioned in the section above, are becoming more and more
expensive; it therefore would be an economic disadvantage in case users are looking for
the most precise software, hence the best type of equipment.

Finally, we can conclude by saying that in case of recalibration, users may need to return
to the marker, making recalibration dependant on the location of the real-world marker.
In a big open spaced environment where users may get very far away from their original
spawning point, it may result uncomfortable to move back to the initial position. This
obviously won’t be a problem in case of simultaneous tracking, as attaching markers di-
rectly to players makes recalibration a process that will actually never be needed.
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3| Hand Tracking

In this chapter, we will first describe the mechanism and the setup needed to perform
colocation with the hand-tracking method, with the help of images taken both internally
(screenshots from inside the software) and externally (photos of the physical room during
the process). Then, we will list the formulas and discuss the calculations that allowed
us to align virtual and reality world of both users. Finally, we will compare pros and
cons, speaking about some of the reasons for which we believe that the hand-tracking
methodology is the best between the other mentioned ones, and concluding with a couple
of downsides that we noticed while developing this system.

3.1. Hand-Tracking Calibration

In the hand-tracking calibration method, the hands of one of the colocated users are used
as spatial anchors: these hands will be used as a point of information sharing between the
virtual worlds of the players. In our implementation, we worked with an Oculus Quest;
technically one could use just one tracked hand (usually the right one) to relocate the
user according to the tracked pose, but in our case, we relocate the user by tracking both
hands and calculating a mean point between the two to which the user is reoriented.

In Figure 3.1, we can see a visual representation of how this method works; on the
left, the users standing in the real world detecting the same hand; On the right, the user
gets relocated by difference ∆p. α is the difference in rotation of the tracked own hand
and received reference hand. What we actually do here is rotate around the mean point
between the two hands, of an amount α which we calculate with the formulas described
in subsection 3.1.1. The positional change only happens after the rotation, as the mean
point may or may not be wrongly rotated of 180°: this can happen because the mean
rotation of a point between the hands can often be negative. After the first rotation, we
calculate the conditions for an eventual extra rotation of 180° so to ensure that players are
one in front of the other: only after this last step, the position of the player is moved so
to match the real position as if he was behind those hands virtual position in the master
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client’s origin system. Keep in mind that using the mean point between hands not only
solves the problem of an up-side down rotation, but greatly enhances the precision and
therefore diminishes the median error, as shown in the accuracy table 3.8.

Figure 3.1: A visual representation of the hand-tracking calibration mechanism [34].

First of all, the user who wants to be colocated, must press simultaneously the A button,
the Grip button and the Trigger button on their right controller. A blue capsule will
appear above their head, indicating that he is the player who wants to be colocated, as
shown in Figure 3.2; his ID will be sent to the master client so the admin knows who,
between the several possible players in the scene, must be positioned in front of him.
When the colocation is over, or if the user presses those buttons again, the blue capsule
will disappear. Users not ready for colocation won’t have a capsule above their head at all.

The master client (admin) cannot candidate for colocation, as his reference system will be
the origin system of all the rest of the users. He will have a red capsule above his head, as
shown in Figure 3.3: this will always indicate who is in charge of colocating other users.
In case of disconnection, the red capsule and therefore the master client role, will pass
to the oldest player (i.e, the player who was in the game before everyone else remaining)
[30]. In this case, if the colocation was already done for every player, nothing will change.
But if some users were not colocated yet, then the process must be restarted using the
new master client as admin, as his origin system will be the new reference for the rest of
the players from that moment on.
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Figure 3.2: Blue capsule above the
head of the player ready for coloca-
tion.

Figure 3.3: Red capsule above the
Master Clients’ head.

The blue-capsuled user must walk towards the master client’s real position in the room,
standing right in front of him, and watching directly towards their HMDs; in case of more
players, the master client must communicate its real position in the room to the player
to colocate. In case the master client is not aware of his role, as it may happen if the first
admin disconnects, he can read his personal UI (User Interface) Canvas that follows him
everywhere which not only contains information on his role, but will help him throughout
the whole process with clear instructions. As a last resort, he may always ask to the other
players to check the presence or not of a red capsule above his head.

During the calibration process, the blue capsule users’ hands are held behind their back
to prevent the headsets from accidentally tracking these hands, as shown in Figure 3.5:
the admin user is then holding their hands in front of both headsets, so both track it.
These hands must be still and steady: users will have a green cylinder in front of them
(which represents the position and rotation of the mean point between the hands), and
must try to maintain the green cylinder vertical and still during the process, as shown
in Figure 3.4. The colocation must not be triggered in case one of the hands isn’t fully
distinguishable to one of the users, and cannot be triggered if both hands aren’t entirely
visible to the admin. In 3.4 you can see the green cylinder mentioned above, while in 3.5,
as already said, on the right the admin shows his hands to the client on the left, which
keeps his hands behind his back.
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The colocation process starts by posing a number 2 with the fingers: the master client
sends the position and rotation of the mean point of both tracked hands via Unity Event
[10]. We can see this process happening in Figure 3.6 and in Figure 3.7. The receiving
blue capsule user calculates the position and rotation of his mean point (the hands are
the same, but the position and rotation are different due to the two distinct reference
systems). Finally, the blue capsule user rotates around the mean point to match the first
users origin system. From now on, the users are colocated. In 3.6, if the admin sees two
cylinders at the same height, then that means his hands are both visible to other player
and colocation can be triggered; in 3.7, we can see the client on the left keeping his hands
behind his back while the admin (on the right) makes a number two with his right hand.

Figure 3.4: Internal view of the first
phase of the colocation process.

Figure 3.5: External view of the
first phase of the colocation process.

Figure 3.6: Internal view of the sec-
ond phase of the colocation process.

Figure 3.7: External view of the sec-
ond phase of the colocation process.
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3.1.1. Calculations

In this subsection, i will describe the formulas used to calculate and apply the correct
position and rotation to the user to colocate. Pedices 1 and 2 will refer respectively to
player 1 (master client) and player 2 (player who wants to be colocated), while pedices l
and r being respectively left and right (hands).

First we calculate the mean hand position of the master client (origin system) with the
equation below (which is the extended version of the lerp function):

PM1 = Pr1 +
Pl1 − Pr1

2
(3.1)

Unity’s lerp function is then used to approximate the mean rotation between the two
hands of the master client:

RM1 = Lerp(Rl1 , Rr1 , 0.5) (3.2)

The two mean positions and rotations are sent from the master client to the second
player (the user who wants to be colocated). The user then calculates his own mean hand
position with the equation below (as above, the extended version of the lerp function):

PM2 = Pr2 +
Pl2 − Pr2

2
(3.3)

Unity’s lerp function is used to approximate the mean rotation between the two hands of
the user who wants to be colocated:

RM2 = Lerp(Rl2 , Rr2 , 0.5) (3.4)

Then we can use the calculated mean positions and rotations of both players to compute
the (delta) position and rotation that we need to apply to player 2 so that his virtual
transform, matches his real world transform in player’s 1 origin system. For the rotation,
we only take in consideration the Y component of the transform, while we set to 0 the Y
component of the position as the height is automatically detected by the HMD:

∆RM2 = RM1y
−RM2y

(3.5)

∆PM2 = PM1 − PM2 (3.6)

∆PM2y
= 0 (3.7)
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Finally, we can apply the above found delta position and rotation to the position and
rotation of player 2:

R2Final
= R2 +∆RM2 (3.8)

∗(CONDITIONAL) : R2Final
= R2Final

+ 180 (3.9)

P2Final
= P2 +∆PM2 (3.10)

*As briefly described in Section 3.1, there are some cases in which the rotation of the
client is wrongly drifted of 180° around the hands: it is as if the client gets colocated in
the same exact place of the admin. This is due to the fact that the mean point between
the hands, can wrongly perceive an upside down rotation as it probably takes as input a
negative rotation of one the two hands around the Y axis.

Therefore, after rotating, but before positioning, an extra and final rotation of 180° around
the hands is applied in case the dot product between the forward vector of the two players
is positive (i.e, they are watching the same direction): we can see this in Equation 3.9.

The reason it happens before positioning, is that the rotation always goes around the
mean point of the two hands; if the player’s position get changed, his initial hands posi-
tion will be in the wrong place; rotating around that position, sets the player far away
from the admin’s hands. With this extra step, we can ensure that the rotation of the
cylinder around the X axis is not going to influence the final result anymore.

As mentioned above, the only requisite of the green cylinder is that it is vertical to the
ground, so parallel to the Y axis: therefore his Z axis rotation remains the most important
parameter to respect in order to avoid misplacements; we will speak about this better in
Subsection 3.3.1.
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3.1.2. Accuracy

If colocation is triggered correctly, accuracy can potentially be 100% precise: the virtual
head’s position and rotation often corresponded millimetrically equal to the real one.

In Figure 3.8, we can see the comparison between the different colocation methods: for
each method, the calibration was performed 25 times; the error between the ground-truth
distance between the HMDs and the distance derived from the calibrated positions was
recorded during 1000 frames after each calibration. They then calculated the median
error for each dataset of 1000 error values, obtaining four datasets of median errors with
25 entries in each.

The fixed-point calibration method showed the greatest variability among the four evalu-
ated methods demonstrated by the largest span of median error values and their interquar-
tile range. The hand tracking-based calibration method demonstrated the strongest con-
sistency when two tracked hands were used in the calibration process. The increased
consistency compared to the other tested methods is reflected in the much more compact
span of the median error values and their interquartile range.

According to our evaluation, the greater accuracy of this method combined with the
clearly better consistency and the ease of execution on the part of the users makes it the
best method for calibrating two-user colocated scenarios.

Figure 3.8: Accuracy comparison between the different methods [34].
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3.2. Pros

In this section, we will describe the two main pros about this method: how easily one
can setup the hardware and software to prepare for the process, and how little effort is
needed in order to calibrate and recalibrate the orientation of players.

3.2.1. Ease of Setup

While it is indeed true that this method has still some hardware requirements (an HMD
with integrated hand tracking is needed [26]), for preparation this method shows to be
the least demanding among the above described methods: neither a physical marker nor
a fixed location has to be set in the real world.

Avoiding to have the obligation to place users in predefined spots is extremely helpful
as it is a procedure which can take time and space to perform correctly; in this method
instead, users can start their software anywhere in the same room, without any kind of
positional or rotational requirement. They may be far away from each other, facing in
any direction, while they select the software from the Oculus menu and wait for Unity to
load it up, and it will still never affect the colocation system as it will be a process which
will trigger inside the software at run-time.

In the end, since both type of users (non-master clients and admins) will have personal
instructions written out on their personal UI Canvas which updates dynamically the in-
structions based on the phase of the process, any type of player can decide to be a master
client, booting up the software before anyone else; there are no type of restrictions on
who must be the admin and who must not.

The absence of any type of marker or external equipment, is a big pro in terms of both
economical comfortability and technical feasibility; at the status quo, we could say that
any type of HMD still available on the market (therefore not declared obsolete), has all
the tracking functionalities needed to perform this kind of operation.
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3.2.2. Calibration/Recalibration Effort

Calibration is really easy due to the fact that the only real requirement is that both hands
of a user need to be simultaneously visible to both users. While other type of objects
used as markers may or may not be easily found and bought on the market, relying on
parts of your own human body to trigger the colocation makes it virtually impossible for
anyone to have any kind of difficulties.

As already decribed in the previous sections, pressing predefined buttons to candidate
for colocation and standing in front of the admin with their hands behind their back [23]
on a side, and simulating a pre-defined hand pose that doesn’t need any type of external
vision on the hands on the other side, makes it an incredibly easy and comfortable cali-
bration method.

Depending on the HMDs tracking accuracy, the reorientation can be redone every time
the headsets’ drift gets too big. Since it does not require any preparation in the real
world, this can be done anytime and anywhere during application; the users infact do not
need to return to a specific spot in the real world: all they need to do is press the buttons
again, walk towards the master client, and remake the procedure.

While we saw in previous methods that recalibration forces users to take off their HMD
and place them in predefined spots, in the hand-tracking calibration method, recalibration
can be performed exactly in the same way as calibration works.

Actually, we could say recalibration is even much easier: while for a first time calibration,
virtual and real positions don’t match and therefore users must rely on communication to
find each other in the same room, for recalibration we can expect virtual users to be just
slightly drifted away from their real position, so finding each other in the same room, is
a much easier process to endure rather than before.

Finally, since this method entirely happens at run-time, while users are actually wearing
their HMDs, users can have the possibility to actually watch and experience how each one
of them gets moved and rotated during the colocation process: this can be really helpful
in terms of debuggability as observing the process come together piece by piece can help
developers in case of any kind of problems that may occur during the software’s possible
and various enhancements.
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3.3. Cons

In this section, we will describe the two main cons about this method: first of all, the
dependancy that the software’s precision has on the green cylinder’s transform, and then,
the incapability of the HMD to simultaneously track both hands and controllers, which
can cause problems in usability, especially since it slows down the whole process.

3.3.1. The green cylinders’ transform

A big con of this calibration method is that accuracy is highly dependant on how "cor-
rectly" the hands are rotated and positioned in front of both users. The green cylinder
will help out users in understanding how to position their hands in the best way to achieve
the most precise colocation possible.

Tilting incorrectly the hands may lead to a faulty colocation. This will induce the soft-
ware into thinking that the player’s head will have a different rotation with respect to the
real rotation of the head of the player looking directly towards the admin; therefore, this
will lead to a slightly wrong colocation; this type of error is still acceptable as it will be
a difference of only some centimetres.

The worst case scenario is if one or both hands are not entirely visible or distinguish-
able to one or both users: in this case, the colocation will miss completely; this is a
pretty obvious and expected outcome, as if one of the hands is not visible, the Meta
Quest software will perceive it as if it was on the floor, therefore calculating the mean
point between the visible hand and the floor. This is the most important requisite to re-
spect and not fulfilling it can be avoided with good communication between the two users.

We conclude nonetheless by saying that this situation just described can be easily recog-
nized by other users, even if the hands aren’t theirs, as you would see the green cylinder
at a lower height with respect to the hands. Patience at the beginning of the process is
required as old HMDs (especially Oculus Quest 1, who only supports the old Hand Track-
ing functionality [21]) always take a little while in rendering, positioning and rotating the
hands correctly, as well as distinguishing them from one another.
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3.3.2. Absence of simultaneous hands-controller tracking

Another big problem is the impossibility for the Oculus Quest to track simultaneously
both the hands and the controllers; this is due to the fact that the Quest uses IR (In-
frared) to track the controllers, while using visible light to track the hands: only one of
these two tracking systems may be activated at a time.

When the controller buttons for colocation are pressed, the hands disappear, as con-
trollers are effectively being used; the same happens if the controllers are moving: hands
will still disappear as the controllers will still be perceived as being used. On the con-
trary, when hands are tracked, the controllers will disappear from sight. So after the
client presses those buttons, he won’t be able to track any kind of hands until he lays the
controllers on a table, or on the floor; after the colocation is ended, while hands are still
being tracked, on the contrary, he won’t be able to see any controller until he picks one
of them back up.

This causes a major usability problem: both the former laying and the latter picking-
up of the controllers, necessitates vision of the users’ surroundings; the blindness of this
operation may cause the user to inadvertently step on the controllers if laid on the floor,
or bump into obstacles while trying to pick up controllers which were previously laid on
a table.

Users therefore are obliged to either uncomfortably remove and re-wear their HMDs dur-
ing both phases, or to activate their external cameras so to see where to lay the controllers
and consequently, where to pick them back up. Unfortunately, the external cameras of
the Quest cannot be activated by code (as one could access other users cameras, and
in case those users aren’t in your same room, you could possibly observe their personal
surroundings, rising several privacy issues).

The best option for users is to activate the possibility to turn on and off the cameras
with a double tap on the side of the Quest; this function is easily accessable in the set-
tings menu of the Quest and is highly suggested as it is easy, fast and comfortable to
use, and it generally avoids any problems caused by the above mentioned impossibility to
track the controllers at certain times.
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4| Experiments

Users can experiment the accuracy of the colocation system through the use of 3 different
demos. In this chapter, we will describe each demo one by one, accompanied by pictures,
both taken internally and externally to the software, and for each demo, we will discuss
several accuracy tests we performed.

4.1. First Demo

Our first demo uses circles to demonstrate the software’s positional accuracy of players.
Every time a user presses the X and Y buttons simultaneously on their left controller, a
circle gets drawn under their location at that moment. If those buttons are pressed again,
the circle disappears.

In Figure 4.1, we can see the two pink circles spawning beneath the players: to draw
them, we used a Line Renderer component [40] attached to a spawned object [29].

The aim of the demo is to make two normal users (or a user and the master client)
swap places, by walking to the other users’ circle and standing inside it. If a player is
in the same real world position as the other user was before (i.e, when he generated the
circle), then that means that real world and virtual world positions correspond and there-
fore the colocation process was successful.

In Figure 4.2 and 4.3 respectively, we can see the first and second phase of the demo:
before swapping places, each player standing on top of their circles, and the aftermath,
when they are standing in each other’s circles.

The best results are achieved if players are looking directly in front of them: since it
is not possible to track a users’ feet (unless you make use of additional hardware and
sensors), circles are spawned directly beneath the head of the user; therefore, if the user’s
head is tilted forward, then the circle might spawn slightly in front of them; circles must
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be spawned while the user is keeping his head vertical and aligned to his body, and is
watching straight in front of them, as we see in the mentioned 4.2/4.3.

The best way to check the preciseness of this demo is to place some real-life objects
just beneath every users’ feet as soon as the circles are spawned, and use them as mark-
ers. Then, users may temporarily take off their HMDs (or activate their passthroughs
[20]) so to walk towards the real life objects of the other users: when they put back their
HMDs, if they are exactly on the virtual circles spawned by the other users, then the
colocation is correct.

Figure 4.1: The two drawn circles beneath the players’ heads.

Figure 4.2: First phase of the first
demo.

Figure 4.3: Second phase of the first
demo.
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4.1.1. Accuracy

The tests results were extremely good when circles spawned exactly under the users. As
said above, since there exists no leg/body tracking in VR without external hardware, the
circles spawn under the head of the player (which follows the HMD real world position).
If a player keeps his head vertical to his body while spawning the circles, the circles will
effectively spawn right beneath them.

In Table 4.1 below, we can observe the measurements errors in six different tests for
demo one. The numbers in millimetres represent the distance between the two players:
P1 -> P2 means how "far" was Player 1 from Player 2 original position, and viceversa P2

-> P1, means how "far" was Player 2 from Player 1 original position. The measurements
are taken from the player’s (feet) position to the center of the other user’s circle; the
two factors that make this test precise is how users’ heads are positioned while spawning
the circle and how precisely the real-world object/marker is actually placed beneath their
feet/at the center of their personal circle.

Test One Test Two Test Three Test Four Test Five Test Six

P1 -> P2 70mm 10mm 50mm 13mm 80mm 20mm

P2 -> P1 65mm 10mm 40mm 11mm 90mm 19mm

Table 4.1: Measurements errors in six different tests for the first demo.

Swapping places with more than two users demonstrated that two different (non-master)
clients could find themselves in slightly different positions, but nethertheless, still keeping
a really small measurement error, depending on how precisely the circles were spawned
under them. Users must keep track of each other’s markers in the real world so to not
confuse them when players are more than two.
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4.2. Second Demo

Our second demo uses crosses to demonstrate the software’s positional accuracy of the
mean point between two players. Every time a user (non-master client) presses the Grip
and Trigger buttons simultaneously on their left controller, a cross gets drawn with a
Line Renderer component attached [40]; the cross is drawn at the median point between
that player and the master client. If those buttons are pressed again, the cross disappears.

You can see this pink cross in Figure 4.5; in our case, the cross is actually composed
of four different segments [4] that go on and forth between the four angles and the center.

The aim of the demo is to make the user and admin meet at halfway, where the cross is
drawn. If the two players find themselves in the same position, nearly bumping into each
other in real life, then that means that real world and virtual world positions correspond
and therefore the colocation process was successful: you can see this happening in Figure
4.5, where the two players are meeting at halfway in the room.

Similiarly to before, since we evaluate the position of the heads, the best mid point for the
X is found if both users are looking straight in front of them. Ideally a third user should
place a real-life object onto the real-life midpoint between the two players: then the two
players can walk to each other and find themselves onto the marker to demonstrate that
the virtual and real world mid-point correspond.

Figure 4.4: Internal view of the pink
spawned cross.

Figure 4.5: External view of the two
players meeting halfway.
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4.2.1. Accuracy

As said before, the X spawns in the median point between the two heads. So for maximum
precision, the users heads must be positioned coherently to one another: if one user keeps
his head vertical to its body, the other user should do the same; if one user tilts his head
forward while spawning the X, the other user should do the same.

In Table 4.2 below, we can see the comparison between distances to the X in six dif-
ferent tests for demo two. The number in millimetres represent the distance between a
player and the X: P1 -> X means the distance between Player 1 and the X, and, co-
herently, P2 -> X means the distance between Player 2 and the X. More precisely, the
distance between a player and the X means exactly the distance between its feet, and the
center of the X. Since it is impossible for two people to stand in the exact same spot,
measurements were taken while they were standing at the borders of the X. The more
these two values are close to each other, the more it means that the X was effectively the
median point between the user and the master client, and therefore confirms the precise-
ness of the colocation software.

Test One Test Two Test Three Test Four Test Five Test Six

P1 -> X 20mm 19mm 8mm 15mm 17mm 22mm

P2 -> X 15mm 18mm 8mm 14mm 17mm 21mm

Table 4.2: Comparison between distances in six different tests for the second demo.

This test can still be performed with more than two users, but only non-master client can
make the X spawn, and the tests would still be measured between each client and the
master client, and not between non-master client users. So this test cannot be performed
simultaneously by more users, but must be done one at a time between the admin and
each client; a third user can still be helpful by positioning a real-life object at the mid-
point between the client and the admin and/or ensuring that the two players won’t bump
onto each other by communicating their position in real-life.
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4.3. Third Demo

Our third and last demo, uses boxes that can be grabbed and passed [7] to each other.
This demo is not triggerable by any button, instead, it consists of a series of boxes already
present in the scene and positioned on the floor. Once colocated, users can experiment
both the precision of the colocation software (by experimenting the precision of their hands
in this case) and the hand tracking functionality by grabbing and passing the boxes to
one another.

In Figure 4.6 and in Figure 4.7 respectively, we can see the internal and external view of
the two players passing boxes to each others. As you can see, to grab the box it is suffi-
cient to place the right controller to the side or into the box and press the Grip button.
While you keep the button pressed, you keep the box gripped; as soon as you release the
button, you release the grab of the box. You can also see how the real-life right hands of
the two players are very near to one another: the distances between the two controllers
will be the object of the accuracy tests displayed in Table 4.3.

If users manage to correctly and coherently grab, pass or throw/catch the boxes, then
that means that users see the boxes in the same virtual spot. Therefore, the two reference
systems coincide and the colocation process was successful. Keep in mind that automatic
interpolation is not very good in Photon [11] and/or Unity [37], so you may see the box
stutter while under the control of other players. Instead, while the box is under your
control and ownership [31], you can see it move perfectly throughout the frames.

Figure 4.6: Internal view of the
third demo.

Figure 4.7: External view of the
third demo.
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4.3.1. Accuracy

This demo was the most difficult demo in which to test errors/measurements, as it is
not a positional demo. As long as the colocation is averagely correct, players would still
see the boxes in the same place and therefore easily grab and pass them to the other
player; precision in this case actually depends on how big or small the cube collider is,
and therefore how much close you have to get to actually manage to grab it.

In Table 4.3, we can see the distances between the two controllers (Oculus Touch) while
passing the boxes. The distance is measured in millimetres and is taken between the up-
per edge of the controllers: as grabbing the edge of the box was enough to take control of
it, we decided that taking the center of the controllers as a reference would not have been
correct and coherent to the measurement system; it may seem obvious that for better
results and error measurement, the boxes should be as small as possible; nethertheless,
the boxes were of a sufficient dimension (i.e, as big as normal human head) so to easily
favour the grabbing.

Test One Test Two Test Three Test Four Test Five Test Six

Distance 10mm 9mm 3mm 7mm 1mm 5mm

Table 4.3: Distances between the two controllers (Oculus Touch) in the third demo.

Since what we actually managed to measure here was the distance between the two right
controllers engaged in the box passing, it helped us understand how much offset was ac-
tually present between the position of the box in the reference system of one player and
the reference system of the other player: the smaller the number, the better the colocation.

As in demo one, every user can engage with each other in this demo, by passing these
boxes from hand to hand with any other user (both non-master and master clients); while
the precision between two different authorative clients was usually extremely high, when
two different non-master clients tried engaging in the box passing, the offset between the
boxes was slightly bigger than before.
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In conclusion we will first speak about which changes an average user can bring to his own
taste/usability, and then we will finalize the thesis by speaking about future developments.

Regarding gestures, users have three choices: first of all, they could obviously simply
use our predefined gesture; another option available to them, is creating their own, by
pressing the spacebar button while hand posing with the right hand in play mode [46];
this will copy on the Unity editor, during play mode, the transform positions of all of
the finger bones with the respect to the base of the hand. Since these coordinates will
disappear as soon as play mode is interrupted, users must copy them and finally paste
them into the inspector, outside of play mode, in an ready-to-use array which will be
under the Gesture Detector script component. Our personal script reads the transforms
of the tracked hand finger bones and compares them with the above mentioned pre-saved
arrays: if the distance between the finger bones and the base of the hand are below a cus-
tomizable threshold, then the gesture is recognized as such and a customizable function
is triggered.

Finally, the third option available for users is that they could directly create their own
Gesture Detector (the most recent Oculus SDK [36] brings a whole new kind of gesture
detection, easier to implement (as no code is required) and more precise) and simply pro-
gram the detector to trigger the CoLocate() function inside the Co-Location Synchronizer
script when the gesture is made.

The above mentioned Oculus SDK gives users the chance to customize for each hand,
in the Unity inspector, which finger bones to keep closed, semi-open or open, with dif-
ferent kind of orientations with the respect to the ground, and how to easily trigger a
function when such criterias are met. This greatly enhances the gesture detector preci-
sion and not only allows the software to avoid reading a wrong pose, but gives a great
performance edge as the software must not compare potentially big transform arrays with
each finger bone anymore to understand which hand pose has just been performed.
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Regarding colocation, users have two choices, and the first path is probably the less
intuitive: they can add the first level of their game to the main scene of the software.
Therefore, they can teleport/load a new scene, ensuring to keep the relative positions.
This may not always be the case, so players must autonomously implement the players
spawning in the same spots, in between scenes. Group teleportation [45] is becoming a
frequently used functionality and it could help in this scenario.

The second and best path is to simply create your own player and/or Network Man-
ager, being sure to create a public head variable of the player that obviously refers to
its head (or a simple sphere). This head object will be needed to ensure colocation gets
done correctly, and most importantly, the player’s head/sphere must be programmed to
follow the OVRCameraRig game object at all times. Users can then simply attach both
the Co-Location Synchronizer script and the Gesture Detector script to their players.

In Figure 5.1, the Unity hierarchy of the OVRCameraRig [32]. The blue prefab icon
means the prefabs were added afterwards. The OVRControllerPreab is simply a pre-
fab with the shape of a controller, while the CustomHandLeft/CustomHandRight are 2
prefabs representing a fake hand holding onto the controller and pressing buttons. The
real hand prefabs, fundamental for hand-tracking, are the OVRLeftHandPrefab and the
OVRRightHandPrefab. Their simple presence as a child respectively of the LeftHandAn-
chor and the RightHandAnchor enables the Oculus to track and recognize hands bone
movement.

In Figure 5.2, the Unity hierarchy of the Network Player. The Head, Right and Left
eye are simply used to track the virtual position of the player. The Mean Hand game
object is the green cylinder (with an Up vector indicator object as a child). Finally, we
can see the PlayerStateCapsule (which can be red, blue or disabled) and the personal UI
Canvas with the instructions and steps to take for each user based on its role.

After a couple of months of research and API studying, I started developing the code
and it took me about a month to finish. First of all, Oculus SDK is in continuous im-
provement, therefore names, scripts, prefabs and objects are subject to change within a
year of difference: this lead to several difficulties in understanding which were the best
ready-to-use kits to use; furthermore, following tutorials prior to one or two years ago was
useless due to their obsolete nature.
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After the best prefabs were selected to use, and the software started taking place, some
problems occurred in understanding how the VR Camera Rig worked (OVRCameraRig
in my case [9]). This prefab contains the mandatory OVRManager script, which is a
singleton and therefore can exist only on local players. It would have been much easier if
every remote player could have their own Rig.

Finally, the last obstacle before the end of the software was the fact that the hand tracking
functionality of the Oculus Quest, cannot distinguish between right and left hands if these
hands are placed with their palms directed towards the external cameras (i.e, they are
someone else’s hands). I solved this problem by using a mean point between the hands
as a reference point, which in the end, was the better choice in accuracy too.

Figure 5.1: The OVRCameraRig Unity prefab hierarchy.

Figure 5.2: The Network Player Unity prefab hierarchy.
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5.1. Future Developments

The software is ready to use; nonetheless, there could be some possible modifications/additions
to it, both aesthetic and functional: a better and more realistic head and body may be
added to players [47], together with a voice recognition to the player’s head for lip sync
[33]. Adding a skybox to the level, background music and name to players are still some
aesthetic additions that could be made to make the software more comprehensible.

Creating a group teleportation system in order to give players the chance to move to-
gether in the level can be a really great functional improvement to the software so to
help users mantain the same reference system as the post co-location system [45]. The
software may be used to creating a unique game (e.g, a FPS game in VR), to be added or
swapped with the already existing demos, which exploits the software and helps the user
understand the huge potential of VR colocation [13][25]. Finally, while the Hand Tracking
functionalities improve with new Oculus Quest, we can expect the improvement of the
general precision of the system too, so to minimize the amount of attempts necessary to
colocate users perfectly.

Using hands as a point of common information sharing between users in different ref-
erence system, has proved to be highly efficient and effective. Not only due to the reasons
mentioned in the dedicated section above, but due to its easy preparation and prerequi-
sites: all you need, other than your HMD, is your hands.

While it is true that we could consider a Meta Quest as an "external hardware with
hand tracking capabilities", we can’t ignore the fact that at the status quo, year 2022,
most of the available HMD on the market, already have hand tracking capabilities in-
cluded in the HMDs software. Not only this, but we must mention the fact that the
software was developed on Oculus Quest 1, where hand tracking was still at its early
stages.

Now, with Hand Tracking 2.0 [22], available only from Oculus Quest 2 onwards, small
precision mistakes and bugs regarding hand tracking are nearly vanished and users’ hands
are virtually replicated in an extremely precise way: users can overlap their hands and
the Quest 2 sensors are still able to track both hands and replicate fingers correctly. We
can see this in figures 5.3 and 5.4; both are taken from showcase videos [18][19] made by
Meta Quest.
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In Figure 5.3, you can see how the main features allows the HMDs cameras, thanks
to machine learning processes, to distinguish between two very close or even overlapping
hands; now, several manual activities that employs both hands next to each other, can
be simulated.

In Figure 5.4, there is an example of above said new manual activities: you can ma-
nipulate complex objects and use them to interact in the space; with the previous hand
tracking software, you couldn’t pass an object in between fingers of different hands; now,
the software track hands so precisely you can literally play with small objects through
your fingers.

Figure 5.3: Comparison between overlapping hands recognition, Meta Quest, 2022

Figure 5.4: Comparison between close finger manipulation, Meta Quest, 2022
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To finish off, we must say that finally, in October 2022, Meta Quest officially announced
that their newest Meta Quest Pro headset, is getting support for colocation. Based on
the description of the technology [8], it likely works similarly to the colocation features
already present in Apple’s ARKit and Google’s ARCore.

Inside-out tracking generates a point cloud of static features in the room. Algorithms
find shared unique patterns in the point clouds of multiple devices and use them to align
the virtual spaces. The process requires no external sensors, base stations, or specific
markers.

To be clear, this is a developer-side feature that will require apps to specifically sup-
port it. It’s called Shared Spatial Anchors, an extension of the existing Spatial Anchors
feature that lets you place virtual content in a specific position in your room so it stays
there the next time you use the app.

This technology is still at its early stages of development, and therefore its not still a
ready-to-use software, as it is in our case. But we can say that if the colocation algo-
rithms will prove to be extremely precise in recognizing common patterns of the physical
room shared by two or more players, we can easily predict that this might be the best
option in terms of accuracy.

Since this will be an internal feature, which will probably use the Meta Quest enhanced
Passthrough functionality, usability will be a great positive trait too; as a matter of fact,
this kind of process looks definitely faster, comfortable and easier to use than the ones we
mentioned in this thesis.

Further details are yet to be available, but knowing that this feature will only be available
on the newest Meta Quest Pro, our colocation method might still be the best option for
the average user in terms of accessibility: indeed, the newest Quest has a really prohibitive
cost, and will not be available to everybody during the first years of its presence on the
market.

On the contrary, our software can be deployed and used by any Meta Quest, and its
algorithms are actually ready to be used on any HMD available on the market too; there-
fore, if this feature will ever be available on older and cheaper VR headsets model, until
that moment, users should prefer relying on a much more scalable software such as the
one we developed.
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Appendix A: Glossary - Acronyms

Acronym Description

VR Virtual Reality

FPS First Person Shooter

HMD Head Mounted Display

SLAM Simultaneous Localization and Mapping

DOF Degrees Of Freedom

ArUco Augmented Reality University of Cordoba

OpenCV Open Source Computer Vision

API Application Programming Interface

SDK Software Development Kit

IR Infrared

UI User Interface

Lerp Linear Interpolation

OVR Oculus Virtual Reality
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UR Real world position of a player
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