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1| Acronyms

Here are mentioned the acronyms used in the current document.

Acronym Explanation
AaSI Aalto-1 Spectral Imager
AHSI Advanced Hyperspectral Imager
AIS Airborne Imaging Spectrometer
AIS-2 Airborne Imaging Spectrometer-2
AIUS Atmospheric Infrared Ultraspectral
ARTEMIS Advanced Responsive Tactically Effective Military Imaging

Spectrometer
ASI Italian Space Agency (Agenzia Spaziale Italiana)
AVIRIS Airborne Visible-Infrared Imaging Spectrometer
C2RCC Case 2 Regional Coast Colour
CASI Compact Airborne Spectrographic Imager
CHIME Copernicus Hyperspectral Imaging Mission for the Environ-

ment
Chl-a Chlorophyll-a
CHRIS Compact High-Resolution Imaging Spectrometer
CNN Convolutional Neural Network
CRF Conditional Random Fields
DAIS Digital Airborne Imaging Spectrometer
DESIS DLR Earth Sensing Imaging Spectrometer
DLR German Aerospace Center
DN Digital Number
DPC Directional Polarization Camera
EMI Environment Monitoring Instrument
ENVISAT Environmental Satellite
ESA European Space Agency
FLEX Fluorescence Explorer
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FLI Fluorescence Line Imager
FLORIS Fluorescence Imaging Spectrometer
FOV Field of View
FTHSI Fourier Transform Hyperspectral Imager
GF-5 GaoFen-5
GHGSat-D Greenhouse Gas Satellite - Demonstrator
GISAT-1 Geo Imaging Satellite
GMI Greenhouse-gases Monitoring Instrument
GomX-4B GomSpace Express-4B
GRU Gated Recurrent Unit
GSD Ground Sampling Distance
HICO Hyperspectral Imager for the Coastal Ocean
HIRIS High-Resolution Imaging Spectrometer
HJ-1 Huan Jing - 1
HSI Hyperspectral Imager
HYDICE Hyperspectral Data and Information Collection Experiment
HySI Hyperspectral Imager (Indian)
HyspIRI Hyperspectral Infrared Imager
IMS-1 Indian Microsatellite -1
ISA Israeli Space Agency
ISRO Indian Space Research Organization
ISS International Space Station
JPL - NASA NASA’s Jet Propulsion Laboratory
LEO Low Earth orbit
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MERIS Medium Resolution Imaging Spectrometer
MHRIS Miniature Hyperspectral SWIR Imaging Spectrometer
MIVIS Multispectral Infrared and Visible Imaging Spectrometer

MRF
Markov Random
Fields

MSI Multispectral Imager
MSX Midcourse Space Experiments
MWIR Mid-wave infrared
NASA National Aeronautics and Space Administration
NDVI Normalized difference vegetation index



1| Acronyms 3

NDWI Normalized difference water index
NSO Netherlands Space Office
OCI Ocean Color Instrument
OLCI Ocean and Land Color Imager
PACE Plankton, Aerosol, Cloud, Ocean Ecosystem
PCA Principal Component Analysis
PRISMA PRecursore IperSpettrale della Missione Applicativa
PROBA-1 Project for On-Board Autonomy-1
RBF Radial Basis Function
RF Random Forest
RMSE Root Mean Square Error
RNN Recurrent Neural Network
S3 Sentinel 3
SFSI SWIR Full Spectrographic Imager
SHALOM Spaceborne Hyperspectral Applicative Land and Ocean Mis-

sion
SIMILE Informative System for the Integrated Monitoring of Insubric

Lakes and their Ecosystems
SISEX shuttle imaging spectrometer experiment
SMIRR Shuttle Multispectral Infrared Radiometer
SNR Signal to Noise Ratio
SSI Spectral Sampling Interval
SVM Support Vector Machine
SVR Support Vector Regressor
SWIR Shortwave Infrared
TIR Thermal Infrared
UV Ultraviolet
VIMS Visual and Infrared Multispectral Sensor
VNIR Visible and Near Infrared
VSWIR Visible to Short Wave Infrared
WFD Water Framework Directive
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2| Introduction and main

objectives

The main objective of this work was to determine the concentration of chlorophyll-a in a
selection of Insubric Lakes, namely Lake Maggiore, Lake Como, and Lake Lugano, located
in the cross-basin between Italy and Switzerland. These lakes were previously analyzed
in the "Informative System for the Integrated Monitoring of Insubric Lakes and their
Ecosystems" (SIMILE) project [14], which provided the baseline for the production of
ground truth information used in our study. Further details about SIMILE will be pro-
vided in Section 4.3.

Considering the importance of freshwater for communities and the role of lakes in ecosys-
tems, it becomes evident that monitoring and managing water quality is a critical require-
ment for society. Specifically, this study aimed to develop a model to predict chlorophyll-a
concentrations using hyperspectral imagery, with a set of previously computed chlorophyll-
a (Chl-a) concentration maps from the SIMILE project serving as the ground truth data.

Chlorophyll-a is a relevant parameter in the monitoring of the lakes because it can be used
as an estimator of their biomass concentration. This parameter is particularly important
because it allows understanding the trophic state of the lakes, which is associated with
their biodiversity: the presence of nutrients in a lake can produce an overgrowth of algae
and other aquatic plants that when they die are decomposed causing consumption of the
oxygen in the water and affecting the biodiversity, process known as eutrophication [72].

The decision of using hyperspectral imagery was mainly based on the advantage provided
by this kind of information which offers a higher spectral resolution with respect to multi-
spectral imagery. Given that the hyperspectral images provide a high spectral resolution,
they form a datacube in which the number of channels adds a third dimension and for each
pixel, it is provided the spectral response of each of the measurement bands [60]. This
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high spectral resolution can be exploited to understand the physicochemical composition
of the Earth [60]. In our specific case, we used this information to train machine and
deep learning models in order to predict chlorophyll-a concentrations on the mentioned
insubric lakes.

To understand the complete development of the hyperspectral imagers throughout history,
our project described in a detailed manner, the different missions that were established
making use of aircraft and spacecraft vehicles, and provided information about the main
technical characteristics of the analyzed imagers. Also, it specified the future evolution
of this field, introducing the main aspects of ongoing missions.

Additionally, our study aimed to present the importance of chlorophyll-a parameter for
measuring the lake water quality and it introduced the SIMILE project which signifies
a relevant initiative to understand and manage the lake water quality of the previously
mentioned lakes under study.

From the technical perspective, there was also introduced the background related to the
machine and deep learning methods which could be used for classifying hyperspectral
imagery.

Our study selected the Italian hyperspectral imager PRecursore IperSpettrale della Mis-
sione Applicativa (PRISMA) as the instrument to get the input data used for the proposed
objective. The PRISMA mission was led by the Italian Space Agency (ASI), launched in
2019, and it is composed of VNIR and SWIR spectrometers and a panchromatic camera
[60][18]. For this reason, a relevant aspect that was also covered in the project was related
to the presentation of the PRISMA acquisitions used in the study and their associated
chlorophyll-a maps. A first analysis of the available hyperspectral PRISMA images was
carried out to determine which were the most suitable images to be considered according
to a set of quality controls: cloud coverage, the extension of chlorophyll-a associated maps
and the presence of glint. After the selection of the acceptable use cases to be taken into
consideration for the study, an statistical analysis was performed for each of the finally
selected acquisitions to understand the main statistics of the related chlorophyll-a maps.

Then, in the experimental development section 6, were explained the complete set of
manipulations carried out on the input data: coregistration of input images, the inter-
section between hyperspectral PRISMA images and the associated chlorophyll-a maps,
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pre-processing steps related to the removal of anomalous pixels, among others. Also,
was mentioned the approach considered for determining which images corresponded to
the training-validation set and which to the test set, and the normalization and dimen-
sionality reduction techniques applied. Apart from this, there were specified the results
obtained with each of the four model typologies taken into account in this project: Ran-
dom Forest Regressor, Support Vector Regressor, Long-Short Term Memory networks and
Gated Recurrent Unit networks. Finally, the document details the results achieved while
inferring with 30-meter GSD inputs.

All the code developed in this project is publicly available in the following
repository: https://github.com/juanfranciscoamieva54/Regression-Chl-a-PRISMA.

git

https://github.com/juanfranciscoamieva54/Regression-Chl-a-PRISMA.git
https://github.com/juanfranciscoamieva54/Regression-Chl-a-PRISMA.git
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3| Structure of the document

The current document is structured in different chapters and the content of the main ones
is detailed in the following:

Chapter 4 presents a review of the state of the art related to the main theoretical as-
pects that form the background of the entire project. The main motivation here was to
provide a comprehensive theoretical foundation to the readers, introducing the various
aspects covered in the project. These aspects include:

1. An explanation of the different hyperspectral missions that have been previously
developed, as well as the ongoing ones, along with their main characteristics.

2. The importance of the chlorophyll-a parameter in assessing the water quality of lake
bodies.

3. The SIMILE project, which was considered to obtain ground truth chlorophyll-a
maps for this study.

4. An overview of the various classification approaches available for hyperspectral im-
agery.

Then, in Chapter 5, the input data that was considered and ultimately used for this work
is presented. The main aim here was to provide a comprehensive introduction to:

1. The identification and pre-selection process of the available PRISMA hyperspectral
acquisitions and their associated chlorophyll-a maps.

2. The final selection process after conducting a series of quality controls.

3. A detailed statistical analysis of each of the use cases, presenting the key statistics
of the corresponding chlorophyll-a maps.

This approach has the objective of fully presenting the different aspects necessary to
understand the data considered in the study.

Chapter 6 explains the entire experimental development that was carried out in our work
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with the intention of communicating the complete process and convey the main concepts
learned. The chapter covers the following aspects:

1. The pre-processing applied to the input hyperspectral images and the related chlorophyll-
a maps.

2. The approach followed for defining the training-validation and test sets, as well as
the normalization and dimensionality reduction techniques applied.

3. Detailed descriptions of the different experiments performed for each selected model
typology (Random Forest Regressor, Support Vector Regressor, Long-short Term
networks, Gated Recurrent Unit networks), specifying the main concepts learned.

4. The results obtained from performing inference on 30-meter GSD inputs.

5. A concluding discussion that highlights the main aspects of the chapter.

The objective of this chapter is to provide a comprehensive understanding of the exper-
imental process, communicate the methodologies employed, and convey the key insights
gained from the conducted experiments.

Finally, Chapter 7 was prepared with the intention of providing a summary of the main
conclusions of the work. Among other aspects this chapter discusses:

1. The main insights of the experimental development carried out.

2. Limitations of the amount of available data.

3. Highlighting the significance of the developed models as tools for monitoring Chlorophyll-
a levels in the analyzed lakes.

4. Exploring the possibility of expanding the models to different regions.

The objective of this chapter is to consolidate the main findings and outcomes of the
study, address any limitations, and suggest avenues for further investigation.
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4| State of the Art

This chapter explores the state of the art providing an analysis of the main theoretical
background required for the development of the present work:

• specifies the current and future evolution of hyperspectral imagery,

• describes the importance of the chlorophyll-a parameter for the monitoring and
assessment of the lake water,

• introduces the SIMILE project

• describes some of the alternative approaches for classifying hyperspectral imagery.

4.1. Hyperspectral imagery evolution: from airborne

to satellite missions

This section analyzes the evolution of hyperspectral imagery by describing in chronologi-
cal order the initial developments in the field, by means of aircraft vehicles, then explores
some of the main spaceborne missions and finally provides a summary of some of the main
upcoming hyperspectral spaceborne missions.

4.1.1. Introduction to Imaging Spectrometry

In the remote sensing field, data is acquired by using different types of sensors. There are
active sensors such as Synthetic Aperture Radar (SAR) and passive sensors, specifically
optical sensors that rely on the acquisition of reflections from the Earth’s surface. In
this latter group, they are commonly mounted on top of various platforms like aircraft or
satellites, and the characteristics of the instruments can also vary significantly.

Optical imagers have been well-established since their initial development in the early
1970s. Nowadays, many satellite missions have been launched that incorporate this type
of instrument. Initially, they consisted of multispectral imagers, which had a limited
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number of bands. However, a more recent development has been the introduction of
Hyperspectral Imagers or Imaging Spectrometers. These instruments have a substantial
characteristic: high spectral resolution, offering continuous coverage of the spectrum with
a higher number of spectral bands.

Regarding hyperspectral imagers, in the early 1980s, they were mounted on top of aircraft
vehicles. However, the first well-known spaceborne hyperspectral imager was released
at the beginning of this millennium [60]. Hyperspectral imagers have the capability to
measure the spectrum of each pixel in a certain acquisition, which is a powerful tool
for studying and analyzing the Earth [60]. The spectral measurements are useful for
determining the physicochemical composition of the Earth, leading to scientific research
and applications on a regional scale [60].

Hyperspectral imagers order their information, producing a stack with different spectral
bands. This structure is typically called a datacube, and it allows for the exploitation
of the spatial and spectral information [60]. The sampled information for each pixel is
a spectral vector that, in each of its components, has the value associated with each
spectral band of the corresponding acquisition. Given the characteristics of this data,
Hyperspectral Imagers are suitable for analyzing different challenging problems in various
fields of application such as ecology, atmosphere, ocean, agriculture, and forestry, among
others [71].

Figure 4.1 provides a representation of the acquisition of data by a generic spaceborne
hyperspectral imager. It also presents an example of the mentioned datacube structure
formed by the different spectral bands and some representations of spectral signatures
associated with various components.

4.1.2. Initial development of airborne hyperspectral imagers

The first airborne hyperspectral imager was the Airborne Imaging Spectrometer (AIS)
which was built by the National Aeronautics and Space Administration (NASA) at the
beginning of the 1980s and covers the Shortwave Infrared (SWIR) spectrum from 1200 to
2400 nm with a Spectral Sampling Interval (SSI) of 9.3 nm [60].
Among the main drawbacks of this imager were found the following ones[60]:

• It did not cover the Visible and Near-infrared (VNIR) region, just the SWIR one.

• also had a narrow Field Of View (FOV) of around 3.7°.

• A third drawback was that it had a small detector array which meant that only a
wavelength range of 32 x 9.6 nm = 307 nm could be covered.
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Figure 4.1: Representation of data acquisition by a generic hyperspectral satellite and
examples of signatures [60] (Source: Qian, Shen-En, 2021).
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Figure 4.2: Evolution of SNR - AVIRIS [60] (Source: Qian, Shen-En, 2021).

In order to cover the complete range from 1200 to 2400 nm it had to rotate its grating
into four positions within a short integration time.
Also, it is mentioned in [60] that AIS flew aboard NASA C-130 aircraft to be tested over
a set of geological, geobotanical, natural and agricultural targets in the United States.
These flights together with a later one over the Cuprite Mining District were valuable
experiences in order to understand the potential of hyperspectral imaging and helped as
a starting point for the later development.
Some years later, an improved version was developed: AIS-2. This version consisted of
an imager covering a spectral range from 800 to 2400 nm and it improved some of the
drawbacks of the previous version [60].

In 1983, JPL-NASA proposed the development of the Airborne Visible-Infrared Imag-
ing Spectrometer (AVIRIS) imager which is considered the first operational airborne
hyperspectral imager. Its development started in 1984 and the first flight was per-
formed in 1986 aboard the NASA-ER2 aircraft [60].
Regarding its characteristics, it covers the spectrum that ranges from 400 to 2500 nm at
10 nm SSI, offering the best calibrated hyperspectral data due to its high Signal-to-noise
ratio (SNR= and its calibration system and procedure. Also, it is worth mentioning that
in order to cover its spectral range it uses four spectrometers instead of a rotating grating
[60]. The instrument also suffered a set of upgrades which implied a relevant improvement
over the initial expectations [60].

Due to the previous aspects mentioned, AVIRIS is the main hyperspectral data provider
to the scientific community since its first flight [60].
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In 1981 Canada’s federal government Department of Fisheries and Oceans (DFO) also
started the development of the first Canadian airborne hyperspectral imager: the Flu-
orescence Line Imager (FLI). The imager was built by two Canadian companies called
Moniteq Ltd. of Toronto and ITRES Research Ltd. of Calgary and it was possible to be
flown in 1983 [60].
This imager had two modes for its operation, one called spatial mode (digitizes and records
a limited number of bands while maintaining full spatial resolution) in which it was pos-
sible to obtain a Ground Sampling Distance (GSD) of 2.5 m at 2 Km altitude and the
second one called spectral mode in which it was offering a total of 288 bands covering the
range from 430 to 800 nm. The imager had a distinct characteristic that consisted of its
high SNR of about 1900:1 for a band of 16 elements [60].
FLI airborne flew over many different target locations, including phytoplankton mapping,
benthic vegetation, and measurement of water depths in lakes and coastal areas. This
imager was successful in determining the chlorophyll fluorescence which was one of its
main objectives [60].

The Canadian company ITRES Research Limited developed another hyperspectral air-
borne imager but in this case for commercial purposes: in 1989 it was marketed the
Compact Airborne Spectrographic Imager (CASI) [60]. This imager had the same modes
of operation as FLI and also among its main aspects it had a total of 288 bands covering
the range from 400 to 926 nm with an SSI of 1.8 nm, a GSD around 2-5 m and a swath
width of 1-5 Km [60].
Some years after the release of CASI, ITRES added some modifications to CASI models
in order to improve its performance [60].

In the same period, ITRES was involved in the development of another line of hyper-
spectral imagers which were focused on covering other regions of the spectrum: SWIR,
mid-wave infrared (MWIR), and thermal infrared (TIR) [60].

Also, the Canada Center for Remote Sensing developed the first Canadian SWIR hy-
perspectral imager called SWIR Full Spectrographic Imager (SFSI) in 1992. Its main
characteristics were its high spatial resolution of 0.5 m (from an airborne platform) and
high spectral resolution of 10 nm covered by 122 bands from 1200 to 2400 nm [60].

Table 4.1 compares the main airborne imagers developed by Canada and the United
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States.

Parameters FLI CASI SFSI AIS AVIRIS
Period of
Operation

1984-1990 Since 1989 Since 1992 1983-1985 Since 1987

Country Canada Canada Canada USA USA
Spectral
Range (nm)

430-805 418-926 1200-2400 1200-2400 approx.
410-2450

Number of
spectral
elements

288 288 122 128 after
rotating to

the 4
positions

224

SSI (nm) 1.3 1.8 10 9.3 10
Airplane
altitude
(km)

2 2 2 6 20

Swath width
(km)

4.8 1-5 0.26 0.37 11

GSD (m) 2.5 2-5 0.5 11.4 20

Table 4.1: Comparison of the main airborne of Canada and United States. Elaboration
based on [60]

During the 1980s-1990s, there were developed also in other countries a series of hyper-
spectral airborne imagers. Among them can be distinguished [60]:

• Multispectral Infrared and Visible Imaging Spectrometer (MIVIS): Developed in 1993
by a company called Daedalus Inc. it covered the visible, near-IR, mid-IR, and
thermal-IR regions with a total of 102 spectral bands.

• The Hyperspectral Data and Information Collection Experiment (HYDICE) was
operated in 1994. It covered the range from 400 to 2500 nm with a GSD of 3 m at a
6 Km altitude. Its SNR exceeded considerably the one of AVIRIS. It was acquired
under the control of the Department of Defense (DoD) of the United States.

• The Digital Airborne Imaging Spectrometer (DAIS) was a development of Geophys-
ical Environmental Research of Millbrook, NY which entered into operation in 1994,
covering visible, SWIR, and TIR with a total of 79 bands.

• The Australian Hyperspectral Imager (HyMap) was built by the Hy Vista Corpora-
tion. It had a swath of 2.3 km with 5 m GSD at 1.3 km altitude or 4.6 km with 10 m
GSD at 2.6 km altitude, it covered a total of 32 bands in each of its 3 spectrographic
modules: visible module, and the near-infrared and short-wave infrared-1 (SWIR1)
and 2 (SWIR2) modules.
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4.1.3. Evolution of hyperspectral spaceborne imagers

The beginning of the development of the spaceborne hyperspectral imagers could be as-
sociated in some way with the implementation of the Shuttle Multispectral Infrared Ra-
diometer (SMIRR) led by JPL- NASA which was initially planned to fly in 1979 but was
finally launched in November 1981 [60].

The instrument comprised a set of ten bands spanning the spectral regions of the VNIR
and SWIR [60]. The main aim of this mission was to determine if it was feasible to iden-
tify minerals from space using hyperspectral imaging [60].

Given the success of the AIS and SMIRR missions, NASA started developing a hyper-
spectral program that initially considered three new projects [60]: i) AVIRIS which was
the next-generation aircraft hyperspectral imager, ii) the shuttle imaging spectrometer ex-
periment (SISEX), and iii) the free-flyer High-Resolution Imaging Spectrometer (HIRIS).
Although the development and operation of AVIRIS were successfully reached, in the case
of SISEX it was cancelled because of the space shuttle Challenger disaster in 1986, and
HIRIS was not launched because the complete program was reduced to one-fourth of its
original size [60].

The first spaceborne hyperspectral imager was for military purposes and it was called Ul-
traviolet and Visible Imagers and Spectrographic Imagers (UVISI). It was mounted on the
Midcourse Space Experiments (MSX) satellite mission of the United States Department
of Defense, which was launched in 1996 [60]. It had five spectrographic imagers in UV to
VNIR and four UV and visible multispectral imagers. The main drawback of this imager
was that it had a GSD of 770 m, which is another reason why it is not so well-known
in the scientific community. The coverage of this instrument specifically comprised the
region of wavelengths between 110 to 900 nm with a total of 1360 spectral bands and a
swath width of 15 Km [60].

During the beginning of the 90’s NASA associated with TRW Inc in order to develop
a spaceborne imaging spectrometry system HyperSpectral Imager (HSI) for the LEWIS
mission. It comprised 128 bands in the VNIR region of 400 - 1000 nm (5 nm SSI) and
256 bands in the SWIR region of 900–2500 nm (6.5 nm SSI) [60]. The instrument also
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considered a swath width of 7.7 Km and a GSD of 30 m. Although HSI was launched,
the control of the LEWIS satellite was lost on the third day after its launch in September
1997 [60].
The next hyperspectral imager developed by NASA was Hyperion which was mounted
on top of the EO-1 satellite; it represented a really successful mission which had a long
period of operation considering that it was launched in the year 2000 and decommissioned
in March 2017 after 17 years of operation. Given its success, it is well known in the sci-
entific community and it is usually considered the first spaceborne hyperspectral
imager [60].
It is reported in [60] that the main characteristics of Hyperion were that it comprised a
telescope and two spectrometers, one on the VNIR region comprising 400–1000 nm range
of the spectrum and the other in the SWIR around the 900–2500nm. The overlapping
region between 900-1000 nm was used for the cross-calibration of the spectrometers. Hy-
perion had an SSI of 10 nm, a GSD of 30 m and the swath width was around 7,65 Km.
According to [60], the SNR was between 140:1 and 190:1 in the VNIR region from 550 to
700 nm, 96:1 at 1225 nm, and 38:1 at 2125 nm.

The table 4.2 details the relevant information regarding access to Hyperion’s data.

Data portal’s URI https://earthexplorer.usgs.gov/
Conditions of access and use Registration is required. Data are freely

available for registered users.
Product levels *L1R: This level corresponds to radiance

and radiometrically corrected data but is
not georeferenced. *L1T: In this case the

data of L1R level is orthorectified and
geocoded (UTM projection). *L1Gst: It

corresponds with terrain-corrected
information and it is delivered in 16-bit

radiance values.
Data formats L1R Product in HDF format, L1Gst

Product in GeoTiff format, and L1T
Product in GeoTiff format.

Table 4.2: Hyperion’s data main characteristics [61] [51]

The next hyperspectral spaceborne imager was the Compact High-Resolution Imaging
Spectrometer (CHRIS), led by the European Space Agency (ESA) and it was launched in

https://earthexplorer.usgs.gov/
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PROBA-1 satellite in the year 2001. In [28] are reported the main parameters of CHRIS:
its spatial resolution is 18 m at the nadir, the swath width is 14 Km, the spectral range
goes from 400 to 1050 nm in VNIR, a spectral resolution from 1.25 to 11 nm and an image
size of 13 Km x 13 Km. Regarding the available modes it is possible to use the following
ones [28]:

• MODE 1: Full swath width, 62 spectral bands, 773 nm / 1036 nm, nadir ground
sampling distance 34 m at 556 km.

• MODE 2 WATER BANDS: Full swath width, 18 spectral bands, nadir ground
sampling distance 17 m at 556 km.

• MODE 3 LAND CHANNELS: Full swath width, 18 spectral bands, nadir ground
sampling distance 17 m at 556 km.

• MODE 4 CHLOROPHYLL BAND SET: Full swath width, 18 spectral bands, nadir
ground sampling distance 17 m at 556 km.

• MODE 5 LAND CHANNELS: Half swath width, 37 spectral bands, nadir ground
sampling distance 17 m at 556 km.

In table 4.3 are described the main characteristics of CHRIS’ data.

Data portal’s URI https://eocat.esa.int/
Conditions of access and use Registration is required. Data are freely

available for registered users.
Product levels The 5 mentioned modes can be requested.
Data formats HDF format.

Table 4.3: CHRIS’ data main characteristics

In the year 2002 was launched the Environmental Satellite (ENVISAT) which had on-
boarded the Medium Resolution Imaging Spectrometer (MERIS). The first reception of
data from the instrument was in May 2002 and it was operational until 2012 [32].

MERIS was mainly dedicated to ocean colour observations but also comprised in its
scope objectives related to atmospheric and land surface studies [32]. According to [60],
MERIS could record 520 bands in the range from 390 to 1040 nm with a high spectral
resolution of 1,25 nm. The wide swath was of 1150 Km and the GSD varied from 260 m

https://eocat.esa.int/
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at the nadir to 390 m at the extremities.
Another fortress of MERIS was its SNR which was around 1700 in the ocean colour bands.
Although the high spectral resolution, MERIS had a restriction in the downlink and only
transmitted 15 channels which was an average of the native spectral elements.

Details about MERIS’ data characteristics can be observed in table 4.4.

Data portal’s URI https://meris-ds.eo.esa.int/oads/
access/collection

Conditions of access and use Registration is required. Data are freely
available for registered users.

Product levels There are four available product levels:
*L1 Full Swath Full ResolutionInfo,
*L2 Full Swath Full ResolutionInfo,
*L1 Reduced ResolutionInfo, and
*L2 Reduced Resolution: Level 1

products are composed of 22
measurements data files (15 radiance

bands + 7 annotation data files) [1] while
the Level 2 products are composed by

composed of 64 measurement files
containing: Water-leaving reflectance,
Land surface reflectance, and TOA

reflectance, and additional measurement
on Ocean, Land and Atmospheric

parameters and annotation [2]. The
full-resolution products cover the

complete instrument swath and the
Reduced Resolution data was acquired

over 80 % of the descending track.
Data formats NetCDF 4.

Table 4.4: MERIS’ data main characteristics [33]

The National Committee for Disaster Reduction and State Environmental Protection Ad-
ministration of China developed a minisatellite constellation called HJ-1 (Chinese abbre-
viation of “Huan Jing” which means “environment”). It comprises three satellites HJ-1A,
HJ-1B, and HJ-1C.
In [56] it is explained that the objective of the mission is mainly to establish an earth-
observing system for disaster monitoring and mitigation.

https://meris-ds.eo.esa.int/oads/access/collection
https://meris-ds.eo.esa.int/oads/access/collection
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In the year 2008 was launch of the HJ-1A and HJ-1B satellites of the constellation. The
HJ-1A satellite comprises two optical cameras and the Fourier Transform Hyperspectral
Imager (FTHSI). The FTHSI imager is characterized by 115 spectral bands, a spectral
range that goes from 450 to 950 nm (VNIR region), 100 m GSD a 50 Km of swath width,
and an SNR around 50-100. The data of FTHSI is not publicly available.

Also, in 2008 the Indian Space Research Organization (ISRO) launched the Indian Mi-
crosatellite – 1 (IMS-1) which supported a multispectral camera and the Hyperspectral
Imager (HySI). It is mentioned in [57] that the main objectives were to obtain experience
in this type of payload and in the handling of hyperspectral data to generate application
models.
Regarding the main technical aspects of HySI, it is also explained in [57] that it covered a
spectral range from 400 to 950 nm (VNIR) with a total of 64 bands, characterized by an
SSI of 8 nm a GSD of 550 m at nadir and a swath width of 128 Km. It just had coverage
over India.
The IMS-1 mission had its end of life on 31 July 2013 [57].

Table 4.5 describes the main characteristics of HySI data.

Data portal’s URI https://bhuvan-app3.nrsc.gov.in/
data/download/index.php

Conditions of access and use Registration is required. Data are freely
available for registered users.

Product levels Radiance and TOA Reflectance
Data formats GeoTiff.

Table 4.5: HySI’s data main characteristics

In May 2009 the TacSat-3 satellite was successfully launched, supporting the Advanced Re-
sponsive Tactically Effective Military Imaging Spectrometer (ARTEMIS). It is explained
in [60] that it was the third in a series of satellites of the United States Department of
Defense and here the objective was to demonstrate the ability to provide real-time data
collected from space to combatant commanders in the field.
Although TacSat-3 was initially designed for six months of operation, with a goal of one
year, [55] explains that it outlives its originally designed life and also surpassed the ini-
tial goals and in the year 2010 it transitioned from experimental to operational status,

https://bhuvan-app3.nrsc.gov.in/data/download/index.php
https://bhuvan-app3.nrsc.gov.in/data/download/index.php
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transferring the control from the Air Force Research Laboratory and Space and Missile
Systems Center to the Air Force Space Command. Finally, in the year 2012, the satellite
reentered Earth´s atmosphere almost three years after its launch.
Regarding the technical characteristics of ARTEMIS, in [55] it is detailed that this in-
strument comprised a spectral range from 400 nm to 2500 nm (coverage in VNIR and
SWIR regions), provided an SSI of 5 nm implying a total of more than 400 bands, also
[60] mentions that ARTEMIS had a GSD of 4 m and a swath width of 4 km.

Information about how to access ARTEMIS data is not available.

On the 23rd of September 2009 was deployed in the International Space Station (ISS) the
Hyperspectral Imager for the Coastal Ocean (HICO). [19] explains that HICO was the first
spaceborne coastal Maritime Hyperspectral Imager designed to have a high SNR for dark
coastal scenes, capturing large scenes at moderate spatial resolution and offering high
sensitivity in the blue and full coverage of water-penetrating and near IR wavelengths.
Also, it is detailed in [19], that given the mentioned requirements, the main applications
of HICO are to derive bathymetry, water optical properties, bottom type, and terrain and
vegetation maps for coastal areas of interest around the world.
HICO was developed by The Naval Research Laboratory for the Office of Naval Research
as an Innovative Naval Prototype [46]. After its success as a prototype, it continued the
operation for five years ending in 2014.
About the main parameters in [60] is described that HICO operated in the VNIR region
from 380 to 960 nm with an SSI of 5.7 nm. It had a swath width of 51 km when the ISS
altitude was 420 km. Its GSD was 100 m and it offered a reasonably high SNR: peak
SNR 470:1 at 480 nm, SNR > 200:1 in the spectral range 400–600 nm.

The table 4.6 explains the data access details of this instrument.

In the launch of ESA’s Sentinel 3A satellite on February 2016, it was put in orbit the
Ocean and Land Color Imager (OLCI). According to [60], OLCI is the successor of MERIS
(which was out of service in 2012) and it was designed to “provide global and regional mea-
surements of ocean and land surface with high radiative accuracy based on the heritage
design from MERIS” [60].
OLCI transmits 21 spectral bands covering the spectral range from 400 to 1020 nm, it
has a swath width of 1270 Km, a GSD of 300 m [35] and its revisit time is 3 days [60].
In order to minimize the impact of the solar reflection from sea surfaces (“sun-glint”), an
asymmetric swath width with respect to the satellite ground track was adopted [60]. The
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Data portal’s URI https://oceancolor.gsfc.nasa.gov/
cgi/browse.pl?sen=amod

Conditions of access and use Registration is required. Data are freely
available for registered users.

Product levels *L1A: applies instrument/radiometric
calibrations to the raw data. *L2:

derived geophysical variables at the same
resolution as the source Level 1 data.

Data formats NetCDF.

Table 4.6: HICO’s data main characteristics [45]

design lifetime is 7.5 years [35].

In table 4.7 are described the main aspects related to data accessing for this instrument.

Data portal’s URI https:
//scihub.copernicus.eu/dhus/#/home

Conditions of access and use Registration is required. Data are freely
available for registered users.

Product levels *Level-1 TOAR: This level corresponds
with the top of atmosphere radiance
(mW/m2/sr/nm) maps. *Level-2
OTCI: The second level OTCI

corresponds with OLCI Terrestrial
Chlorophyll Index maps. *Level-2

GIFAPAR: In this case the OLCI Green
Instantaneous Fraction of Absorbed

Photosynthetically Available Radiation
information is provided. *Level 2 IWV:

The last available level refers to the
OLCI Integrated Water Vapour it is

expressed in kg/m2.
Data formats NetCDF.

Table 4.7: OLCI’s data main characteristics [26] [9]

In June 2016 was launched Greenhouse Gas Satellite - Demonstrator (GHGSat-D) has the
Miniature Hyperspectral SWIR Imaging Spectrometer (MHRIS) as a secondary payload.
GHGSat is a commercial venture of GHGSat Inc. of Montreal, Canada, a subsidiary of
Xiphos Systems Corporation [58].
The mission of GHGSat is to be a global reference for the measurement of greenhouse
gases and air quality gas emissions from industrial locations using remote sensing [58].

https://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=amod
https://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=amod
https://scihub.copernicus.eu/dhus/##/home
https://scihub.copernicus.eu/dhus/##/home
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Among the technical requirements of the GHGSat-D mission is the quantification of car-
bon dioxide total atmospheric columns above target sites and quantifying greenhouse gas
columns at a ground sample distance of 50 m or less.

During its operation, the satellite performed observations of Oil gas facilities (wells, com-
pressor stations, refineries, LNG, etc), Power stations (thermal and hydroelectric), Coal
mines (open-pit and underground), Landfills, Animal feedlots and Natural sources (e.g.
mud volcanos, localized seeps, etc) [58].

The MHRIS hyperspectral imager of the GHGSat-D satellite covers from 1600 to 1700
nm wavelengths with a total of more than 300 bands, implying an SSI of around 0.1 nm.
Regarding the swath width, it is 15 Km and the GSD is under 50 m [60].
Table 4.8 describes the main characteristics of the instrument data accessing.

Data portal’s URI https://earth.esa.int/eogateway/
catalog/ghgsat-archive-and-tasking

Conditions of access and use ESA offers for scientific research and
application development, access to the
archive, and new tasking data from the
GHGSat mission upon submission and

acceptance of a project proposal.
Product levels *Abundance dataset (Level 2): This

level offers per-pixel abundances (ppb or
mol/m2) for a single species, and

per-pixel measurement error.
*Concentration Maps (Level 2): It

corresponds with a high readability
pseudocolour map which combines

surface reflectance, and column density
expressed in ppb or mol/m2.*Emission
Rates (Level 4): It is the instantaneous

emission rates from certain targeted
sources, estimated using abundance

datasets.
Data formats GeoTiff.

Table 4.8: MHRIS’ data main characteristics [34]

Aalto-1 Spectral Imager (AaSI) is the main payload of the Aalto-1 satellite developed
by VTT Technical Research Centre of Finland and launched on June 2017. AaSI has a
spectral range from 500 to 900 nm with a spectral resolution that can be adjusted elec-

 https://earth.esa.int/eogateway/catalog/ghgsat-archive-and-tasking
 https://earth.esa.int/eogateway/catalog/ghgsat-archive-and-tasking
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tronically from 10 to 30 nm [60].

Information about how to access AaSI data is not available

The DLR Earth Sensing Imaging Spectrometer (DESIS) is a hyperspectral imager devel-
oped by the company Teledyne Brown Engineering and the German Aerospace Center
(DLR) [15]. DESIS is predominantly a commercial mission that was launched on June
2018 and it was installed on the exterior of the ISS on August 2018 where it is hosted in
the multiuser system for earth sensing [60].
A main difference of DESIS with respect to the other hyperspectral imagers is that it has
the capability to point forward and back directions up to ±15°. It operates in static mode
and also in a dynamic mode which allows the acquisition of continuous observations of
the same targets [60]. Among other relevant technical parameters, it is worth mentioning
that it operates in the VNIR region from 400 to 1000 nm with a minimum SSI of 2.55
nm. It has a ground swath width of 30 km with a GSD of 30 m [60], the revisit time is
around 3-5 days (mainly depending on the manoeuvres) and the expected lifetime is from
2018 to 2023 [15].

Table 4.9 mentions the main aspects related to data access for the DESIS mission.

Data portal’s URI https://eoweb.dlr.de/egp/main
Conditions of access and use Can be ordered for free for scientific

purposes. It requires a short description
of the use of the data in form of a

proposal and a subsequent review process.
Product levels *L1B: Level 1B applies corrections on

certain systematic effects: odd-even,
non-linearity, and non-uniformity. Also

converts digital numbers (DN) to physical
at-sensor radiance values. *L1C: Level
1C applies geometric correction of the
L1B Earth Products. This level is a

geometrically corrected image, resampled
and transformed into a map projection

system.*L2A: It is derived from the L1C
product, but it is applied atmospheric
correction and the data is converted to

ground surface reflectance values.
Data formats GeoTiff.

Table 4.9: DESIS’ data main characteristics [16] [8]

 https://eoweb.dlr.de/egp/main
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HyperScout is a hyperspectral satellite on board the CubeSat GomSpace Express-4B
(GomX-4B) developed by the ESA and the Netherlands Space Office (NSO) which was
launched on February 2018 and It is planned to be operative until December 2022 [30].
The GomX-4B is part of a constellation of the two CubeSats GomX-4A and GomX-4B
which has as one of the principals aims the demonstration of the inter-satellite linking
radio communication subsystem and integration of partner contributions [59].
The main objective of HyperScout is the demonstration of hyperspectral applications on
a CubeSat and the demonstration of early warning capabilities. Among its main appli-
cations are the detection of floods, change detection, crop water factor and vegetation
monitoring [30].
The coverage of HyperScout is from 400 to 1000 nm in the VNIR range with an SSI of 15
nm a swath width of 200 Km and a GSD of 70 m [60].

For HyperScout was determined in [31] that the data format is HDF5 but its
access is constrained.

In May 2018 was launched the Gao Fen – 5 (GF-5) satellite, developed by the Chinese
National Space Administration with a planned lifetime of 8 years [42].
The main payload GF-5 is the Advanced Hyperspectral Imager (AHSI) and its additional
payloads are a Visual and Infrared Multispectral Sensor (VIMS), a Greenhouse-gases
Monitoring Instrument (GMI), an Atmospheric Infrared Ultraspectral (AIUS), an En-
vironment Monitoring Instrument (EMI) and a Directional Polarization Camera (DPC)
[42].
The AHSI imager has 330 spectral bands which cover the spectrum from 400 to 2500 nm
in the VNIR and SWIR regions. In the VNIR region (400 – 1000 nm) the SSI is 5 nm
and, in the SWIR, (1000 – 2500 nm) it is 10 nm. The swath width is 60 Km, the GSD
is 30 m and the peak SNR is 654:1 which is remarkably high if it is compared with the
one of Hyperion with a peak SNR of 190:1 [60]. Information about AHSI imager is not
publicly available.

In March 2019 was launched the PRecursore IperSpettrale della Missione Applicativa
(PRISMA) satellite with the objective of qualifying the technology, contributing to the
development of applications, and providing products to institutional and scientific users
for environmental observation and risk management [60].
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The PRISMA satellite was built by the Italian Space Agency (ASI) with OHB Italia Spa
as the prime contractor and Leonardo Space Airborne Systems was responsible for the
payloads. About the payloads, they are VNIR and SWIR spectrometers and a panchro-
matic camera with a high spatial resolution of 5 m [18].

Regarding the main technical attributes, it is characterized by a lifetime of 5 years, a
revisit time is 29 days, a GSD of 30 m in the hyperspectral imagers (VNIR-SWIR), a
swath width of 31 Km, coverage of the VNIR range from 400 to 1010 nm with 66 spectral
bands and 174 bands cover the SWIR range from 920 to 2500 nm implying an SSI of 12
nm [18].

Table 4.10 describes the main characteristics related to data access for PRISMA.

Data portal’s URI http://prisma.asi.it/
Conditions of access and use First, It is required to submit a user

request specifying the further use of the
information. Registered users can access

the data freely.
Product levels *L1: It corresponds with radiometrically

corrected and calibrated radiance data in
physical units. *L2B: Here is provided

geolocated at Ground
(Bottom-of-Atmosphere) Spectral

Radiance Product. *L2C: This level
offers geolocated At-surface

(Bottom-of-Atmosphere) Reflectance
Products. *L2D: This is the higher

processing level and corresponds with the
geocoded version of the level 2C products.

Data formats HDF5.

Table 4.10: PRISMA’s data main characteristics [4]

The Hyperspectral Imager Suite (HISUI) is a development of the Japanese Ministry of
Economy, Trade and Industry which was launched on December 2019 and is currently
onboard the ISS. The main objective of the project is to acquire data to start a full-
scale practical application development for hyperspectral remote sensing. In particular,
it is intended to determine if the instrument is useful in applications such as oil resource
exploration and evaluate the potential of the imager to acquire know-how for later devel-
opments [69].
A relevant aspect to mention is that HISUI has an HSI and an MSI which can operate

 http://prisma.asi.it/
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simultaneously or not. Among other main technical aspects of the HSI, it consists of a
telescope and two spectrometers covering VNIR and SWIR. In the VNIR it has an SSI of
10 nm with a total of 57 bands and in the SWIR it possesses 128 bands with an SSI of
12.5 nm, the swath width is 20 Km and the GSD is 30 m [60].
Also, it is worth mentioning that given the downlink constraints in the ISS the data is
partially transmitted to the ground stations, and the remaining data are recorded, stored,
and shipped to earth three or four times a year [60].
The key aspects of HISUI’s data access are detailed in table 4.11.

Data portal’s URI Not found.
Conditions of access and use Data Policy under consideration. For

research purposes, HISUI will give
priority observation, downlink, and

distribution for free. For other science
users, HISUI will distribute archive data.

Product levels L0: Raw data. L1A: It refers to the raw
DN product with all radiometric

calibration coefficients. L1R:
Top-of-atmosphere spectral radiance
product. L1G: This level offers a

geometrically corrected / orthorectified
top-of-atmosphere spectral radiance

product. L2: Atmospherically corrected
surface spectral reflectance product

corresponds with this level.
Data formats Tif, GeoTiff, TBD.

Table 4.11: HISUI’s data main characteristics [68] [25]

One of the latest missions was the Indian Geo Imaging Satellite (GISAT-1) class which
failed in its launch on August 2021 [43]. This instrument was designed with the
objective of offering a high revisit capability orbiting in a geostationary orbit.
There were two identical GISAT satellites, each of them with an MSI and an HSI. The
HSI was a VNIR spectrometer, covering the range from 380 to 1000 nm with a GSD of
318 m and another spectrometer capturing the SWIR from 900 to 2500 nm with a GSD
of 191 m [60].
According to [43] it is planned a second satellite GISAT-2 which consist in a repeat of the
first one.

On March 2022 was launched the Environmental Mapping and Analysis Program (En-
MAP) german hyperspectral satellite[23]. This satellite has the mission of monitoring
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and characterizing the Earth’s environment on a global scale, measuring and modelling
the Earth’s ecosystems processes, and extracting geochemical, biochemical, and biophys-
ical information critical to further understand various ecosystems [24].
The main parameters of the imager are its spectral range which goes from 420 to 1000
nm in the VNIR region with an SSI of 6.5 nm and from 900 to 2450 nm in the SWIR with
an SSI of 10 nm, the swath width of 30 Km and a GSD of 30 m. It is also characterized
by a better SNR than the other available spaceborne hyperspectral imagers: SNR 500:1
at 495 nm (VNIR) and 150:1 in the SWIR region can be achieved [60].

There are detailed in table 4.12 the main aspects of the access to EnMAP data.

Data portal’s URI https://planning.enmap.org/
Conditions of access and use Registration is required. Data are freely

available for registered users. Access
levels are approved after a required

submission.
Product levels *L1B: Raw values converted into

at-sensor radiance physical values.
*L1C: Orthorectified images. *L2A:
The atmospherically corrected imagery
reflectance values for land and water
areas. Also provided several quality

masks.
Data formats Tif.

Table 4.12: ENMAP’s data main characteristics [22]

 https://planning.enmap.org/
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Table 4.13 summarizes the main aspects already mentioned about the different hyper-
spectral spaceborne imagers explored in the document.

Hyperspectral
Imager

Satellites -
Platform

Launch
Year

Spectral
range (nm)

Number
of Spectral
bands

SSI (nm) GSD (m) Swath
width (Km)

Data Plat-
form’s
URI

HSI LEWIS 1997 400 - 1000
and 900 -
2500

128 and 256 5 and 6.5 30 7.7 Not found

Hyperion EO-1 2000 400 - 2500 220 10 30 7.7 https://
earthexplorer.
usgs.gov/

CHRIS PROBA 2001 400 - 1000 19-62 1.25-11 25-50 13 https:
//eocat.
esa.int/

MERIS ENVISAT 2002 390 - 1040 520 (trans-
mit 15)

1.25 300 1150 https:
//meris-ds.
eo.esa.
int/oads/
access/
collection

FTHSI HJ-1A 2008 450 - 950 115 4 100 50 Not pub-
licly avail-
able

HySI IMS-1 2008 450 - 950 64 8 500 130 https://
bhuvan-app3.
nrsc.gov.
in/data/
download/
index.php

ARTEMIS TacSat-3 2009 400 - 2500 400 5 4 4 Not found
HICO ISS 2009 350 - 1080 128 5.7 90 51 https://

oceancolor.
gsfc.nasa.
gov/cgi/
browse.pl?
sen=amod

OLCI Sentinel 3A 2016 390 - 1040 520 (trans-
mit 21)

1.25 300 1270 https:
//scihub.
copernicus.
eu/dhus/#/
home

MHRIS GHGSat-D 2016 1600 - 1700 512 0.2 50 15 https://
eoiam-idp.
eo.esa.int/

AaSI Aalto-1 2017 500 - 900 6 - 20 7 - 10 192 97 Not found
DESIS ISS 2018 400 - 1000 235 2.55 30 30 https://

eoweb.dlr.
de/egp/main

HyperScout GomX-4B 2018 400 - 1000 45 15 50 200 Constrained
access

AHSI GaoFen-5 2018 400 - 2500 330 5 (VNIR) -
10 (SWIR)

30 60 Not pub-
licly avail-
able

PRISMA PRISMA 2019 400 - 2510 237 12 30 30 http:
//prisma.
asi.it/

HISUI ISS 2019 400 - 2500 185 10 (VNIR)
- 12.5
(SWIR)

30 20 Not found

HSI -
GISAT 1

GISAT Failed
launch

380 - 1000
and 900 -
2500

158 and 256 3.92
(VNIR)
- 6.25
(SWIR)

318 and 191 160 and 190 Not avail-
able

EnMAP German HS 2022 420 - 2500 244 5 (VNIR) -
10 (SWIR)

30 30 https:
//planning.
enmap.org/

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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https://eocat.esa.int/
https://eocat.esa.int/
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Table 4.13: Summary of the main information of the principal spaceborne hyperspectral
imagers.

In figure 4.3 are summarized the different spaceborne hyperspectral missions discussed in
the current sub-section.



32 4| State of the Art

F
ig

ur
e

4.
3:

Su
m

m
ar

y
of

m
ai

n
hy

pe
rs

pe
ct

ra
ls

pa
ce

bo
rn

e
m

is
si

on
s



4| State of the Art 33

4.1.4. Planned Spaceborne Hyperspectral Imagers

According to [52], the company Planet plans to launch a set of two hyperspectral satellites
during the year 2023 to complement its constellation of optical imagers. The name of this
planned mission is Tanager and their main characteristics are its spatial resolution of 30
meters, an SSI of 5 nm covering a total of 400 bands that range from 400 nm to 2500
nm [53]. The main applications considered by this mission are related to the detection
of social, environmental and climate risks by the understanding of human activities and
their economic and environmental impacts [53].

The Ocean Color Instrument (OCI) is a hyperspectral imaging radiometer onboard NASA’s
Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE) [60] which is planned to be launched
in 2024 [49].
Its coverage extends from 340 to 890 nm in the ultraviolet (UV) to near-infrared spectrum
at 5 nm resolution but it is a goal to increase this SSI to 2,5 nm. It also includes 7 discrete
bands from 940 nm to 2260 nm in the shortwave infrared (SWIR) spectrum [48]. It also
will be characterized by a GSD of 1000 m and a swath width of 2663 Km [60].

Another upcoming mission is NASA’s Hyperspectral Infrared Imager (HyspIRI) that was
recommended in the 2007 National Research Council Decadal Survey requested by NASA,
NOAA, and USGS [47]. The main objectives of this instrument are to "study the world’s
ecosystems and provide critical information on natural disasters such as volcanoes, wild-
fires, and drought. HyspIRI will be able to identify the type of vegetation that is present
and whether the vegetation is healthy. The mission will provide a benchmark on the state
of the world’s ecosystems against which future changes can be assessed. The mission will
also assess the pre-eruptive behaviour of volcanoes and the likelihood of future eruptions,
as well as the carbon and other gases released from wildfires" [47].
The main characteristics of HyspIRI are that it will consist of two instruments: a multi-
spectral imager and a hyperspectral imager. Regarding the HSI, it will cover the Visible
to Short Wave Infrared (VSWIR) from 380 to 2510 nm with an SSI of 10 nm, the GSD
will be 60 m at nadir, and the revisit time 19 days. The satellite will be launched in LEO
but at the moment it is not specified the date [60].

The European Space Agency (ESA) is planning to launch Mid-2024 on the Vega-C rocket
from Kourou, French Guiana the Fluorescence Explorer (FLEX) satellite that will sup-
port the Fluorescence Imaging Spectrometer (FLORIS) which is a high-resolution imaging
spectrometer [29].
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The main goals of the mission are to provide globally a measurement of the vegetation
fluorescence, give a quantification on the photosynthetic activity and plant stress, allow
the capability to understand the functioning of the photosynthetic machinery and the
health and performance of the terrestrial vegetation, and to produce global maps with a
monthly frequency[29].
The prime contractor of FLORIS is Leonardo Space and Airborne Systems and it will
consist of two spectrometers covering the spectral range between 500 and 780 nm. One of
the spectrometers will measure the fluorescence spectrum within two oxygen absorption
bands called O2A and O2B with an SSI that varies from 0.1 nm to 0.5 in the range of
677 to 780 nm. The other spectrometer is focused on the measure of other parameters of
the atmosphere and the vegetation, and it covers the range of 500 to 740 nm with an SSI
that goes from 1 to 2 nm. The GSD is 300 m and the swath width is 150 Km [60]. The
estimated lifetime of the mission is 3.5 years [29].

Another ongoing mission of ESA is the Copernicus Hyperspectral Imaging Mission for
the Environment (CHIME) that will contribute to the generation of information to help
the design of policies to manage natural resources in the European Union and also it will
support the actions to ensure food security at a global scale [27]. At the moment it is not
reported a specific date for its launch.
CHIME will cover the VSWIR from 400 to 2500 nm with an SSI of 10 nm, a GSD of 20-30
m, and a 128 Km swath width. The satellite will operate in a sun-synchronous LEO orbit
and offer a revisit time of around 10 to 12.5 days [60].

Finally, it is worth mentioning the Spaceborne Hyperspectral Applicative Land and Ocean
Mission (SHALOM) which is a co-funded and managed mission by the Italian Space
Agency (ASI) and the Israeli Space Agency (ISA) [50]. SHALOM is introduced in [50] as
a next-generation mission because it expects to provide a commercial service with high
spatial resolution, high daily area coverage, short revisit times and precise geo-location
[50]. Specifically, [50] describes the following mission requirements:

• GSD: Less than 10 meters.

• Swath width: More than 10 Km.

• Revisit time: Below 4 days.

• Spectral coverage: 400-2500 nm.

• Spectral sampling interval: 10 nm.
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• Daily area coverage: More than 200.000 Km2.

• SNR: > 200 in the range between 400 nm and 1750 nm, and higher than 100 in
the range from 1750 nm until 2350 nm.

• Geolocation accuracy: Higher than 30 meters.

• Panchromatic Camera: 2,5 - 5 meters GSD, 10 Km Swath width, VNIR band
SNR > 240.

According to [41], the launch of this satellite mission is planned for the year 2025 and it
is expected an operation time of 5 years.

In table 4.14 there is a summary of the previously introduced planned spaceborne hyper-
spectral imagers.

Mission GSD [m] Spectral Range
[nm]

SSI [nm] Agency or
Company

Planned year

Tanager 30 400 - 2500 5 Planet 2023
OCI 1000 340 - 890 and 7

bands in SWIR
2,5 to 5 NASA 2024

HyspIRI 60 380 - 2510 10 NASA, USGS
and NOAA

Not specified

FLORIS 300 500 - 780 0,1 to 0,5 ESA 2024
CHIME 20 - 30 400 - 2500 10 ESA Not specified
SHALOM <10 400 - 2500 10 ASI - ISA 2025

Table 4.14: Summary of Planned Spaceborne Hyperspectral Imagers.

4.2. Chlorophyll-a parameter for Lake Water quality

assessment

When nutrients like nitrogen and phosphorus are introduced into a lake, they can cause
an overgrowth of algae and other aquatic plants. This overgrowth is known as an algal
bloom, and it can have a significant impact on water quality. As these algae and plants die
and decompose, they consume oxygen in the water, leading to a process known as eutroph-
ication which can produce changes in the species composition of the lakes (biodiversity)
[72].

According to [73] the plant pigments of algae and cyanobacteria consist of chlorophylls
and carotenoids. Specifically, chlorophyll-a is the most dominant pigment and considering
it alone is possible to estimate the algal biomass.
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In conclusion, a high concentration of chlorophyll-a can indicate an overgrowth of algae
and other plants, which may be a sign of poor water quality. For this reason, chlorophyll-
a is a valuable tool for assessing the health of aquatic ecosystems. By monitoring their
levels, it is feasible to detect changes in water quality and take decisions to prevent or
mitigate the harmful effects of algal blooms and eutrophication.

4.3. SIMILE project: monitoring of lake water qual-

ity parameters in Insubric Lakes

The "Informative System for the Integrated Monitoring of Insubric Lakes and their
Ecosystems" (SIMILE) 1 is a project which objective is to monitor the water quality
of the insubric lakes which are in the cross-basin between Italy and Switzerland improv-
ing their coordinated management and promoting the stakeholder participation [14]. The
Prealp lakes which are part of the SIMILE project are an important source of fresh water
for their region: Lake Maggiore, Lake Como and Lake Lugano (During the last time also
included in the SIMILE project Lake Varese but it is not part of this study). Specifically,
in the case of Italy, these lakes together with other Prealp lakes represent around 80% of
the freshwater of the whole country [62].

For complying with their objectives the project employs in-situ measurements but also
remote sensing techniques. Among the remote sensing monitoring, the project computed
three main indicators for the water quality assessment of the lakes: Total Suspended Mat-
ter, Lake Water Surface Temperature and Chlorophyll-a [70]. In particular, the latter is
the one which is also of relevance to our study.

In order to generate Chl-a maps, in [70] were employed images from the ESA’s Sentinel-3
A/B OLCI instrument, which have a daily revisiting time and a spatial resolution of 300
m. The authors used the Case 2 Regional Coast Colour (C2RCC) processing technique,
described in [13], to perform radiometric and atmospheric corrections and calculate Chl-
a concentrations using a Neural Network model. Furthermore, they utilized the C2RCC
neural net flags to identify water spectra anomalies and potential cloud cover, with flagged
pixels being excluded. Lastly, the authors applied the 3 σ rule to remove any outliers.
The result of the previously described process is a set of 389 chlorophyll-a maps whose
initial acquisition dates from 15/01/2019 and the last one is from 05/11/2022 [7].

1https://progetti.interreg-italiasvizzera.eu/it/b/78/
sistemainformativoperilmonitoraggiointegratodeilaghiinsubriciedeiloroe
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4.4. Classification of Hyperspectral imagery

Although the aim of the current work is not focused on the classification of chlorophyll-a
ranges from hyperspectral data but instead it is desired to perform regression, by predict-
ing their continuous values, this section introduces some of the state-of-the-art techniques
used to perform the classification of Hyperspectral data. Then, in most cases, their adap-
tation to regression problems is quite simple because it just requires the output to be a
continuous variable instead of a categorical one.

4.4.1. Traditional Approaches

In this sub-section are described some of the traditional approaches that could be applied
for classifying hyperspectral imagery. They are categorized as traditional because they
rely in some statistical approaches or in Machine Learning methods not based on data
driven techniques.

Spectral Classification

According to [6], the more straightforward way to perform HSI classification is by consid-
ering each pixel as a spectral signature that then is used to fit a statistical model. Among
the approaches described in the previously mentioned reference are:

• Unmixing: Considering that usually, a pixel corresponds to a surface made of
several materials, it will produce a spectral mixture. For this reason, the method
involves finding the individual materials present in a mixed spectrum by comput-
ing their abundance maps. These abundance maps correspond to the proportional
contributions of each material to each pixel. [6] also explains that to obtain the
abundance maps it is necessary to solve a linear system by means of linear alge-
bra and numerical methods. Additionally, [6] details that it is possible to solve
this kind of problem by using for example clustering methods and finding unknown
end-members.

• Dimensionality Reduction: [6] describes that the neighbour intensities are highly
correlated and so the spectral signature is quite redundant. For this reason, it is
quite useful many times to reduce the spectral dimension of the inputs and then
make use of any classification techniques to perform the desired task, among which
the paper mentions: Decision Trees, Random Forests and Support Vector Machines.
In order to reduce the spectral dimension, [6] proposes the traditional PCA tech-
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nique, band selection or the computation of indices that summarize the physical
priors of the band response (i.e.: Normalized difference vegetation index (NDVI),
Normalized difference water index (NDWI), etc.).

Spatial-Spectral Classification

In [6] it is also highlighted the limitations of using a spectral-only approach for hyperspec-
tral image classification as it ignores the spatial structure of the image because neighbour-
ing pixels often share structural relationships, and accounting for these dependencies can
improve the model’s robustness and efficiency. The paper identifies three main approaches
to incorporating spatial information in the classification process, which differ based on
when the spatial aspect is considered.

• Spatial Regularization: It consists in first classifying the individual spectra and
then regularising the result of the classification with a spatially-structured model.
For the regularization, [6] introduces that it is possible to use the Markov Random
Fields (MRF) or Conditional Random Fields (CRF) models.

• Pre-segmentation: This second approach performs an unsupervised spatial reg-
ularization. This regularization involves segmenting the hyperspectral image first,
and then aggregating in the spectrum dimension the features of each segmented
region in order to ensure local consistency.

• Joint-learning: This last approach explained in [6] consists in learn the spatial and
spectral dimensions at the same time by means of kernels. The before-mentioned
reference emphasizes that a possible way to implement this approach is by designing
a spatial-spectral kernel for SVMs.

4.4.2. Deep Learning Approaches

In this sub-section are introduced some of the data driven approaches used for the clas-
sification of hyperspectral data.

Spectral classification

In [6] are also introduced the Deep Learning approaches based on Spectral Classification.
In this case, the difference with respect to the traditional cases relies on the fact that in-
stead of using a standard classifier, a deep fully-connected network is utilized. In the cited
reference, it is explained that these approaches could alternatively make use of Recurrent
Neural Networks (RNN) because of the intrinsic characteristics of the Hyperspectral Data:
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it is sequential data.
RNNs are well suited for the modelling of sequential data because they are helpful to
model both long and short-range dependencies in the spectral dimension.
Finally, also [6] describes that it is feasible to follow unsupervised approaches by perform-
ing dimensionality reduction by means of autoencoders and then followed by classification
with a simple perceptron.

Spatial-spectral classification

• 1D or 2D Convolutional Neural Networks (CNNs): Typically, in computer
vision, the CNNs are designed in a way that the first part is a set of convolutional
filters which extract the features and the final one is a fully connected layer that
performs the classification task [6]. The issue with HSI data is their high dimen-
sionality implies the need for several filters because they depend on the number of
channels of the inputs. For the previous reason, according to [6] different works pro-
posed to reduce the dimensionality of the inputs in order to allow their treatment
in the CNN networks. The issue with these methods is that they force the inputs
to be reduced and in some cases, they rely on unsupervised approaches to perform
that reduction which could imply an uncontrolled loss of the Hyperspectral imaging
properties [6].

• 2D + 1D CNNs: Considering the importance of the spectral dimension, the doc-
ument [6] details that there were developed approaches in which the CNN architec-
tures alternate spatial and spectral convolutions, processing the complete hypercube
of data but reducing in an alternate manner the size of the feature maps. Alterna-
tively, an unsupervised approach also was proposed to handle the hypercubes with
a 2D CNN with a residual learning paradigm that is able to obtain an efficient
low-dimensional representation of the hyperspectral pixels and their neighbours [6].

• 3D CNNs: The document [6] finally introduces as a promising approach the use of
3D CNNs, which work on all three dimensions simultaneously producing 3D feature
cubes that are better suited for pattern recognition in a volume. Compared to
spectral or 2D+1D CNNs, these architectures combine both pattern recognition
strategies into one filter, requiring fewer parameters and layers. Studies have shown
that 3D CNNs perform better than their 2D counterparts for hyperspectral image
classification [6].
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The data available for achieving the objectives of the study consist of the following two
main components:

• Hyperspectral imagery: A set of PRISMA acquisitions were selected and ex-
tracted from the official platform of this satellite mission. The initial set consisted
of a total of 27 images and after refinement there were filtered a set of 12 images.

• Chlorophyll-a: The second dataset available was the introduced in the section 4.3.
It consists of a total of 389 chlorophyll-a maps from where there were chosen the
ones that correspond to the selected PRISMA images.

5.1. Initial selection

A first search was performed on the official platform of PRISMA mission to obtain images
in the area that covers the lakes of the SIMILE project: Maggiore, Lugano and Como.
Then, there were also considered the dates on which were available Chlorophyll-a maps.
According to these criteria, a total of 27 PRISMA images were pre-selected: for each pre-
selected PRISMA acquisition, a corresponding chlorophyll-a map was assigned according
to the dates.

Acq.
ID

PRS
Date

L.
Como

L.
Mag-
giore

L.
Lugano

Pix.
>90 pct
Chl-a

Chl-a
date

Spatial
ext.

Clouds Accept.
Glint

1 24/04/20 YES NO YES 0 23/04/20 OK OK OK
2 24/04/20 YES NO NO 0 23/04/20 KO OK OK
3 25/04/20 NO YES NO 0 23/04/20 OK KO OK
4 25/04/20 NO YES NO 0 23/04/20 OK OK OK
5 24/05/20 NO YES NO 0 24/05/20 OK OK KO
6 03/07/20 NO YES NO 0 05/07/20 OK OK OK
7 19/08/20 NO YES NO 0 20/08/20 OK KO OK
8 17/09/20 NO YES NO 3 17/09/20 OK KO OK
9 28/06/21 YES NO NO 0 25/06/21 KO KO OK
10 09/07/21 YES NO YES 0 09/07/21 KO OK OK
11 25/08/21 YES NO NO 0 26/08/21 KO KO OK
12 25/08/21 YES NO NO 0 26/08/21 KO KO OK
13 31/08/21 YES NO NO 0 31/08/21 OK KO OK
14 31/08/21 YES NO NO 0 31/08/21 OK KO OK
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15 29/09/21 YES NO NO 0 30/09/21 KO KO OK
16 29/09/21 YES NO YES 0 30/09/21 KO KO KO
17 16/10/21 NO YES NO 336 16/10/21 KO OK OK
18 22/10/21 YES NO NO 112 22/10/21 OK OK OK
19 22/10/21 YES NO YES 112 22/10/21 OK OK OK
20 08/11/21 YES NO NO 964 08/11/21 KO KO OK
21 26/11/21 NO NO YES 404 24/11/21 OK KO OK
22 03/02/22 NO YES NO 13 03/02/22 KO OK OK
23 09/02/22 NO YES NO 426 09/02/22 OK OK OK
24 27/03/22 YES NO NO 56 25/03/22 OK OK OK
25 27/07/22 YES NO YES 0 27/07/22 KO KO OK
26 31/08/22 YES NO YES 0 29/08/22 KO KO OK
27 06/09/22 YES NO YES 0 08/09/22 OK KO OK

Table 5.1: Initial Selection of PRISMA Acquisitions.

5.2. Final dataset

Starting from the initially selected set of images, a second filtering was performed and it
was possible to define a set of 12 images. These images were chosen as the final dataset
because they passed a set of controls related to the cloud coverage, the spatial extension
of the Chlorophyll-a map associated with each image and the acceptability of the glint
disturbance. Although ideally, the area of coverage of each chlorophyll-a map should
comprise all the lakes of the SIMILE project, on some dates, due to the removal of the
anomalous pixels explained in section 4.3 and the further pre-processing related to the
removal of anomalous pixels but by means of spectral ratios that will be introduced later
on sub-section 6.2.3, the extension of the PRISMA acquisitions and chlorophyll-a maps
considered was reduced.

The final selection is detailed in the table 5.2 and then are also analyzed the chlorophyll-a
maps associated with each acquisition.

Acq.
ID

PRS
Date

L.
Como

L.
Mag-
giore

L.
Lugano

Pix.
>90 pct
Chl-a

Chl-a
date

Spatial
ext.

Clouds Accept.
Glint

1 24/04/20 YES NO YES 0 23/04/20 OK OK OK
2 24/04/20 YES NO NO 0 23/04/20 KO OK OK
4 25/04/20 NO YES NO 0 23/04/20 OK OK OK
6 03/07/20 NO YES NO 0 05/07/20 OK OK OK
10 09/07/21 YES NO YES 0 09/07/21 KO OK OK
13 31/08/21 YES NO NO 0 31/08/21 OK KO OK
17 16/10/21 NO YES NO 336 16/10/21 KO OK OK
18 22/10/21 YES NO NO 112 22/10/21 OK OK OK
19 22/10/21 YES NO YES 112 22/10/21 OK OK OK
21 26/11/21 NO NO YES 404 24/11/21 OK KO OK
23 09/02/22 NO YES NO 426 09/02/22 OK OK OK
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24 27/03/22 YES NO NO 56 25/03/22 OK OK OK

Table 5.2: Final Selection of PRISMA Acquisitions.

In order to provide a standardized reference of the season associated with each acquisition,
the Water Framework Directive (WFD) seasons were taken into account, in the following
sub-sections, while analyzing each case, the corresponding season from this framework is
detailed. The seasons of the WFD are specified in the table 5.3.

Case ID 1

The date of the PRISMA acquisition is 24/04/2020 and its associated Chl-a map is from
23/04/2020, therefore it corresponds to the spring season according to the WFD seasons
described in table 5.3. From figure 5.1 it is possible to appreciate that the Chl-a map
covers almost the whole extension of Lake Como and the right side of Lake Lugano.
Additionally, figure 5.2 presents the distribution of their values.
Regarding the main statistics it is possible to highlight the following ones:

• Min: 1,42 µg/L

• Max: 5,48 µg/L

• Mean: 3,40 µg/L

• Std. dev.: 0,57 µg/L

Case ID 2

Also, the PRISMA acquisition related to this case took place on 24/04/2020 and for that
reason, it was associated with the Chl-a map from 23/04/2020, which, according to the
table 5.3 also corresponds to the Spring Season of the WFD. Figure 5.3 shows that this

WFD Season Initial date Final date
Winter 01-Jan 20-March
Spring 01-Apr 15-May
Transit. spring-summer 15-May 15-Jun
Summer 01-Jul 31-Aug
Transit. summer-autumn 01-Sep 01-Oct
Autumn 01-Oct 30-Nov

Table 5.3: Water Framework Directive seasons’ initial and final dates. [11]
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Figure 5.1: Chlorophyll-a map ID 1.

acquisition has poor spatial coverage because it is just present in some bottom areas of
Lake Como and a small region of Lake Lugano, however, it was kept for the final dataset
because the PRISMA acquisition does not have problems of cloud coverage. Figure 5.4
describes the distribution of the Chl-a values and their main statistics are the next:

• Min: 1,71 µg/L

• Max: 3,81 µg/L

• Mean: 2,79 µg/L

• Std. dev.: 0,67 µg/L

Case ID 4

In this case, the PRISMA acquisition was from 25/04/2020 and its associated Chl-a map
is from 23/04/2020, therefore it corresponds with the spring season of the WFD detailed
in table 5.3. Figure 5.5 displays the chlorophyll-a map corresponding to this acquisition
and from there, it is observed that it covers most of the bottom part of Lake Maggiore.
Figure 5.6 presents the histogram for this acquisition and their main statistics are the
following ones:

• Min: 0,61 µg/L

• Max: 4,49 µg/L

• Mean: 3,07 µg/L
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Figure 5.2: Distribution of Chl-a map ID 1.

• Std. dev.: 0,37 µg/L

Case ID 6

This case corresponds to a PRISMA acquisition from 03/07/2020 which has been associ-
ated with a Chl-a map from 05/07/2020. In this case, the period of acquisition corresponds
to the Summer season from the WFD seasons described in table 5.3. By observing figure
5.7 it is noticeable that the chlorophyll-a map for this case covers most of Lake Maggiore
and also from figure 5.8 it is possible to observe its data distribution where it is evident
that in comparison with the previous cases, the data distribution is centred in higher
values.
The main statistics for this case are the following ones:

• Min: 0,61 µg/L

• Max: 5,51 µg/L

• Mean: 4,18 µg/L
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Figure 5.3: Chlorophyll-a map ID 2.

• Std. dev.: 0,46 µg/L

Case ID 10

In this case, both the PRISMA image and the Chl-a map date from 09/07/2021, associated
with the Summer season of WFD seasons, detailed in table 5.3. The Chl-a map is displayed
in figure 5.9 and its data distribution is presented in figure 5.10. Here are the main
statistics for the Chl-a map distribution:

• Min: 1,38 µg/L

• Max: 3,62 µg/L

• Mean: 2,44 µg/L

• Std. dev.: 0,53 µg/L

Case ID 13

The PRISMA image and the Chl-a map date from 31/08/2021 for this case. Observing
table 5.3 is possible to confirm that the acquisition date lies exactly at the end date of
the Summer season from the WFD seasons. Figure 5.11 presents the Chl-a map and its
associated histogram is in figure 5.12. The main statistics for the Chl-a map distribution
are the following:

• Min: 1,44 µg/L
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Figure 5.4: Distribution of Chl-a map ID 2.

• Max: 5,71 µg/L

• Mean: 3,64 µg/L

• Std. dev.: 0,43 µg/L

Case ID 17

In this case, the corresponding PRISMA acquisition and the Chl-a map are from 16/10/2021
which, according to the table 5.3 is associated with the Autumn season from the WFD
seasons. Figure 5.13 presents the Chl-a map from where it is noticeable that the spatial
coverage is quite sparse, however, it is important to observe that there are certain areas
in which the pixels take high values. Its associated histogram is in figure 5.14 and from
the principal statistics which are presented in the following, can be appreciated that the
maximum value and the standard deviation, are higher with respect to the previously
presented cases:

• Min: 0,21 µg/L
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Figure 5.5: Chlorophyll-a map ID 4.

• Max: 9,56 µg/L

• Mean: 5,16 µg/L

• Std. dev.: 1,41 µg/L

Case ID 18

The PRISMA image and the Chl-a map associated with this case are from 22/10/2021.
Also in this case the acquisition date is related to the Autumn season from the WFD
seasons described in table 5.3. As it can be observed in figure 5.15 the Chl-a map covers
most of the top region of Lake Como. Its corresponding histogram is in figure 5.16 and
the main statistics for the Chl-a map are:

• Min: 0,49 µg/L

• Max: 7,33 µg/L

• Mean: 4,88 µg/L

• Std. dev.: 1,20 µg/L

Case ID 19

Also in this case both the PRISMA image and the Chl-a map associated are from
22/10/2021, corresponding to the Autumn season of the WFD seasons. Figure 5.17
presents the Chl-a map which covers the two bottom branches of Lake Como and the
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Figure 5.6: Distribution of Chl-a map ID 4.

right side of Lake Lugano. The data distribution of the Chl-a map is also presented in
figure 5.18 and the statistics for the Chl-a map of this case are:

• Min: 0,32 µg/L

• Max: 7,60 µg/L

• Mean: 4,49 µg/L

• Std. dev.: 1,25 µg/L

Case ID 21

The PRISMA acquisition associated with this case is from 26/11/2021 but the Chlorophyll-
a map is from 24/11/2021. Again, in this case, the acquisition date lies in the autumn
season according to table 5.3. The spatial distribution of the Chl-a map is quite sparse,
it covers most of the top edge of Lake Lugano and some small regions of lakes Como
and Maggiore, this can be noticed in the figure 5.19. Also figure 5.20 presents the data
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Figure 5.7: Chlorophyll-a map ID 6.

distribution of the Chl-a map and from there can be understood that this case has higher
values of chlorophyll-a in comparison with the previously mentioned cases, also this can
be confirmed from the main statistics of this case which are introduced next. This case
also presents the highest standard deviation among all the cases considered in the study:

• Min: 0,01 µg/L

• Max: 9,86 µg/L

• Mean: 4,85 µg/L

• Std. dev.: 2,71 µg/L

Case ID 23

In this case, both the PRISMA acquisition and the Chl-a map are from 09/02/2022. Ob-
serving table 5.3 is possible to determine that the acquisition date for this case corresponds
to the winter season. From figure 5.21 can be appreciated that the Chl-a map covers most
of the bottom part of Lake Maggiore. Also figure 5.22 displays the data distribution of
the Chl-a map it allows us to comprehend that this case also presents high values of the
parameter. The principal statistics that are useful to summarize the values of the Chl-a
map for this case are presented in the following:

• Min: 0,88 µg/L

• Max: 8,92 µg/L
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Figure 5.8: Distribution of Chl-a map ID 6.

• Mean: 5,21 µg/L

• Std. dev.: 0,85 µg/L

Case ID 24

The PRISMA image associated with this case is from 27/03/2022 and the Chl-a map is
from 25/03/2022, which, accordingly to the table 5.3 is closest to the Spring season. In
this case, as it can be verified from figure 5.23, the spatial coverage is on the bottom part
of the Lake Como. Additionally, figure 5.24 presents the distribution of the Chl-a values
and from there is possible to notice that this case also presents high values of the Chl-a
indicator, considering the following main statistics:

• Min: 1,93 µg/L

• Max: 7,06 µg/L

• Mean: 5,21 µg/L
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Figure 5.9: Chlorophyll-a map ID 10.

• Std. dev.: 1,02 µg/L
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Figure 5.10: Distribution of Chl-a map ID 10.

Figure 5.11: Chlorophyll-a map ID 13.
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Figure 5.12: Distribution of Chl-a map ID 13.

Figure 5.13: Chlorophyll-a map ID 17.
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Figure 5.14: Distribution of Chl-a map ID 17.

Figure 5.15: Chlorophyll-a map ID 18.



56 5| Dataset description

Figure 5.16: Distribution of Chl-a map ID 18.

Figure 5.17: Chlorophyll-a map ID 19.
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Figure 5.18: Distribution of Chl-a map ID 19.

Figure 5.19: Chlorophyll-a map ID 21.
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Figure 5.20: Distribution of Chl-a map ID 21.

Figure 5.21: Chlorophyll-a map ID 23.
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Figure 5.22: Distribution of Chl-a map ID 23.

Figure 5.23: Chlorophyll-a map ID 24.
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Figure 5.24: Distribution of Chl-a map ID 24.
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6| Experimental development

In order to predict the concentration of chlorophyll-a starting from hyperspectral imagery,
different experiments were carried out in this study. This chapter will describe all the
relevant aspects to introduce the reader to the experimental development that was done.
Additionally, the results of each experiment are provided and analyzed to arrive at the
definition of the best model.

6.1. Acquisition of L2D PRISMA imagery from ASI

official portal

In order to acquire the input PRISMA imagery, a submission request on the official web
platform of ASI1 was performed for each of the required input images. Among the differ-
ent processing levels available for downloading the PRISMA images, it was selected the
L2D level [3]. The decision of this selection was based on the fact that this level provides
geocoded bottom-of-atmosphere information [3].
Also, it is worth mentioning that the document [44] carried out an analysis of different
atmospheric correction approaches against the standard atmospheric correction procedure
considered by default in the PRISMA processing chain and the final conclusion was that
the atmospheric correction correspondent to the PRISMA L2D products was outperform-
ing the other explored options.

6.2. Pre-processing of the inputs

The PRISMA images and the corresponding chlorophyll-a maps had to be manipulated
to be properly fed into the different models. This section explains each of the steps taken
into consideration for the proper use of the data. A graphical summary is provided in
figure 6.1.

1http://prisma.asi.it/js-cat-client-prisma-src/

http://prisma.asi.it/js-cat-client-prisma-src/
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Figure 6.1: Pre-processing steps for the input data.

6.2.1. Coregistration of PRISMA images

When working with geospatial information, one of the critical steps is that the information
to be processed is properly coregistered in order to correctly represent the reality of each
pixel. In the case of our study, the coregistration of the chlorophyll-a maps was previously
performed in the SIMILE project which was introduced in section 4.3 but the PRISMA
images had to be coregistered.
For the coregistration of the PRISMA acquisitions, the approach considered in this work
was to use the Gefolki python library 2 which considers two main steps:

• Optical flow computation: The algorithm takes an image as a reference and
another image as a follower in order to compute the optical flow, i.e. the vertical
and horizontal displacements for each pixel between the follower and the reference
image.
As reference image was considered the green band of the Sentinel 2 mosaic built
with acquisitions from the period from 11/09/2022 until 18/09/2022 and, in the
case of the follower image, it was considered the equivalent wavelength band of each
PRISMA acquisition individually.

• Apply coregistration: Once the optical flows for each PRISMA acquisition were
2Its Github repository is available in: https://github.com/aplyer/gefolki

https://github.com/aplyer/gefolki
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determined, those matrices of vertical and horizontal displacements were used to
coregister all the bands of each PRISMA acquisition.

6.2.2. Intersection of PRISMA images with Chl-a maps

After the coregistration of the PRISMA images, there were performed two additional
tasks but this time related to the Chlorophyll-a maps:

• Determination of intersected areas: Taking for each case the PRISMA image
and its corresponding Chlorophyll-a map, it was determined the intersection area
among them. Once the intersected areas were determined, the areas outside them
were removed.

• Mask null values: Additionally, it was relevant to mask the pixels that were not
null in the PRISMA image of a specific case but null in its chlorophyll-a map or
vice versa.

6.2.3. Removal of anomalous pixels

The final pre-processing step for the input data involved removing anomalous pixels. To
accomplish this, three indices were computed from the reflectances of Sentinel 3 - OLCI
(S3-OLCI) corresponding to each chlorophyll-a map. Based on the values of these indices,
a decision was made regarding whether or not to remove the corresponding pixels from
the PRISMA image and Chl-a map.

The following lines provide a summary of the computed indices and their associated
conditions:

• Index 1: If for a certain pixel of one of the Chlorophyll-a maps its value is above 10
µg/L but the following index [38] is smaller than 1, the pixel is considered anomalous
and should be removed:

Index 1 =
Band 11 (708nm)
Band 8 (665nm)

(6.1)

Specifically, band 11 of S3-OLCI is associated with the Chlorophyll fluorescence
baseline red edge transition and band 8 is related to the 2nd Chlorophyll absorption
maximum [36].

• Index 2: It consists of the ratio between the bands 12 and 11 of the OLCI instru-
ment [12]. The pixels of the S3-OLCI acquisition, where this ratio is higher than
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one, refer to an anomaly so it implies the removal of its corresponding PRISMA and
Chl-a pixels:

Index 2 =
Band 12 (753nm)
Band 11 (708nm)

(6.2)

Band 12 of the OLCI instrument is related to Oxygen absorption, clouds and vege-
tation [36].

• Index 3: Finally, the third condition is formed by two components. The first one
measures the ratio between bands 6 and 3:

Index 3a =
Band 6 (560nm)

Band 3 (442.5nm)
(6.3)

And its second component refers to the ratio between bands 6 and 4:

Index 3b =
Band 6 (560nm)
Band 4 (490nm)

(6.4)

If one of the two components is higher than 1 but the other is not, then it refers
to an anomalous pixel and it should be removed. Instead, if both components are
below 1 it means that it is related to an area with very blue water and if is the case
that both components are above 1 it means that it is expected to find phytoplankton
in that area.

Band 3 is related to the Chlorophyll maximum absorption, band 4 is associated
with high chlorophyll and band 6 is considered as a reference for the chlorophyll
minimum [36].

Figure 6.2 summarizes the procedure previously described.

6.3. Determination of input sets: Train, validation,

test

In order to determine the acquisitions that were considered in each of the sets the next
steps were followed.
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Figure 6.2: Summary of procedure to remove anomalous pixels from each case.

1. Initially, it was intended to perform a homogeneous distribution between the training
and validation set with respect to the testing set. For this purpose, it was performed
an iterative process in which different sets of images were assigned to one of the two
alternative groups (testing vs. train-validation) until achieving the best fitting of
the Quantile-Quantile-plot (QQ-plot) that relates both distributions. The final QQ
plot of both data distributions is detailed in figure 6.3 and from that figure it is
possible to appreciate that the data points of the two distributions fit the identity
function with a R2 of 0.876.

2. In the second place, it was performed a split of the training-validation set. The split
assigned 80% of the total input data from the training-validation set to the training
subset and the remaining 20% was assigned to the validation set. To perform this
split, it was taking into account a stratification procedure to keep the same data
distribution in both subsets.

6.4. Dimensionality reduction, normalization techniques

and data imbalance manipulations

To properly model the inputs, different alternatives of normalization were considered:
min-max scaling, standard scaling and normalization to reflectance units. Also, was ma-
nipulated the amount of null data fed to the different models in order to avoid class
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Figure 6.3: QQ-plot of Training-validation set vs. Testing set.

imbalance.
Additionally, the traditional dimensionality reduction technique of Principal Component
Analysis (PCA) was explored for reducing the spectral dimension of the inputs. Fur-
thermore, an alternative approach of downsampling the spatial dimension instead of the
spectral dimension was also investigated.

In the following lines, there is a summary of each of these processes and how they were
implemented.

• Min-max scaling: This technique considers the maximum and minimum values of
the inputs to normalize them to the range [0-1]. It means that for the case of this
study, the Digital Number values of the PRISMA images were scaled to the range
previously specified by taking into account the following formula.

xscaled =
x− xmin

xmax − xmin
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• Standard scaling: This is another common data preprocessing step used to scale
the values in a dataset. This technique scales the values so that they have a mean of
0 and a standard deviation of 1. For this study also were scaled the Digital Numbers
of the PRISMA images. The formula of their implementation is described in the
following.

xscaled =
x− µ

σ

• Normalization to reflectance units: Also it was explored the possibility to scale
the input digital numbers to reflectance units by the normalization formula proposed
in the PRISMA user manual [5] which is detailed next:

xscaled = L2scaleXXXmin+

xDN
.(L2scaleXXXmax − L2scaleXXXmin)

65.535
(6.5)

Where XXX refers to the specific area of the input spectrum: “VNIR” or “SWIR”.
L2scale min and max are the minimum and maximum scaling factors specified in
the metadata related to each PRISMA image. The number 65.535 used for this
normalization, came from the computation 216−1 because the digital numbers used
to store the information of each pixel are 16 bits coded.

• Manipulation on null values: To mitigate issues related to data imbalance caused
by areas of the acquisitions where values are not present, all the null values which
are associated with the areas outside the lakes were excluded from the training and
validation set.

• Principal Component Analysis: Principal Component Analysis (PCA) is a
widely used technique for dimensionality reduction in machine learning and data
analysis, originally proposed in 1901 by Pearson [54]. This technique is used to
identify patterns in data and to reduce the dimensions of a large dataset by trans-
forming it into a new coordinate system that aligns with the principal components
of the data. The steps for performing PCA are as follows:

– Calculation of the mean of the input data:

µ =
1

n

n∑
i=1

xi
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where xi is the ith observation in the dataset and n is the number of observa-
tions. In our case, it refers specifically to the digital numbers of the PRISMA
images.

– Subtract the mean from each observation to center the data:

xcentered = x− µ

where x is an observation in the dataset.

– Compute the covariance matrix of the centered data:

C =
1

n− 1

n∑
i=1

(xi − µ)(xi − µ)T

where T denotes the transpose of a matrix.

– Compute the eigenvectors and eigenvalues of the covariance matrix:

Cv = λv

where v is an eigenvector and λ is the corresponding eigenvalue.

– Sort the eigenvectors in descending order based on their eigenvalues, and choose
the first k eigenvectors as the principal components. The number of principal
components, k, is chosen based on the amount of variance in the data that
needs to be retained.

– Project the centered data onto the principal components to obtain the reduced-
dimension representation of the data:

xreduced = vTxcentered

where vT is the transpose of the matrix of eigenvectors.

The eigenvectors and eigenvalues of the covariance matrix represent the principal
components of the data. The principal components are orthogonal to each other,
and they capture the directions of maximum variance in the data. By projecting
the data onto these directions, we can obtain a lower-dimensional representation of
the data that retains most of the information.
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By applying PCA the spectral dimension of the input data was reduced from the
initial 230 bands of the PRISMA images to 30 principal components.

• Spatial Downsampling: Considering that the input images have a spatial reso-
lution of 30 meters but the ground truth one of 300 meters, it was explored also if
spatial downsampling of the PRISMA input images to 300 meters was beneficial for
the objective of this study. To this aim, there was considered the nearest neighbour
interpolation approach.

Additionally, during some of the experiments that will be later detailed, this ap-
proach was complemented with the extraction of additional features by means of
some traditional filters such as the following ones:

– Mean filter: Also known as Box Filter, this filter replaces the center pixel of
a 3×3 window with the average of its surrounding pixels [39]. The filter kernel
is given by the following matrix [39]:1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9


– Sobel-X filter: This filter emphasizes vertical edges in an image by convolving

the input with the Sobel-X kernel [66]. The Sobel-X kernel is given by the next
matrix [66]: −1 0 1

−2 0 2

−1 0 1


– Sobel-Y filter: This filter emphasizes horizontal edges in an image by con-

volving the input with the Sobel-Y kernel [66]. The Sobel-Y kernel is the
following [66]: −1 −2 −1

0 0 0

1 2 1


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6.5. Regression of Chl-a values

One of the primary goals of the study was to estimate chlorophyll-a values in the se-
lected lakes. To accomplish this objective, several models were employed, and various
data processing techniques were utilized. This sub-section summarizes the main models
implemented, the different configurations of parameters taken into account, and finally
the results are described for each case.

6.5.1. Models

Among the possible models to be implemented for this task, there were considered the
following ones:

1. Random Forest Regressor: This type of model corresponds to the category of
Traditional Approaches - Spectral Classification, previously described in subsection
4.4.1. In a Random Forest Regressor [10, 20], the algorithm builds multiple decision
trees on randomly selected subsets of the training data, and the final prediction
is the average of the predictions of all trees. This algorithm was implemented by
means of the Python library "Scikit-learn" 3. The parameters that were sensitized
were the next:

• Number of estimators: Number of decision trees chosen [63]. Higher num-
bers could imply better performance but also higher computational costs.

• Minimum number of samples-leaf: This parameter determines the mini-
mum number of samples to be a leaf node of the tree (to take a decision) [63].
This parameter also works in the regularization task because by increasing its
value can reduce overfitting.

• Maximum depth of each decision tree: By increasing its value is also
possible to achieve more complex models and then conduce to overfitting [63].
For this reason, it is another parameter to be set to regulate the tradeoff
between variance and bias.

2. Support Vector Regressor (SVR): Also this model corresponds to the category
of Traditional Approaches - Spectral Classification introduced in subsection 4.4.1.
SVR is used for both linear and nonlinear regression tasks and is known for its
ability to handle high-dimensional data. In a Support Vector Regressor [21, 65],

3https://scikit-learn.org/stable/

https://scikit-learn.org/stable/
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the algorithm finds a hyperplane that maximizes the margin between the training
data points and the regression line. The hyperplane is selected based on the sup-
port vectors, which are the data points closest to the hyperplane. Support Vector
Regressor is suitable for hyperspectral data because it can handle a large number
of features. In our particular case, considering the kernels offered by the Python
library "Scikit-learn" it was decided to use the radial basis function (RBF). With
the selected kernel, several trials were performed sensitizing the following key pa-
rameters:

• Gamma: This is the kernel coefficient for the RBF kernel and it determines
the shape of the decision boundary [64]. A larger gamma value means a more
complex decision boundary and may lead to overfitting.

• C: Controls the width of the margin and how many data points are allowed
to be misclassified [64]. For this reason, it is a regularization parameter and
defines the tradeoff between achieving a low training error and a low testing
error.

3. Long Short-Term Memory (LSTM): This model lies in the category of Deep
Learning Approaches - Spectral classification, introduced in subsection 4.4.2. LSTM
[37, 40] is a type of recurrent neural network (RNN) that is widely used for time-
series data. In the case of hyperspectral data, the spectral bands can be considered
as a time series. LSTMs are designed to handle long-term dependencies and can
remember information from previous time steps. In an LSTM neural network, the
algorithm uses multiple memory cells and gates to control the flow of information.
The gates regulate the information flow by deciding what information to keep or
forget. LSTM neural network is suitable for chlorophyll-a estimation from hyper-
spectral data because it can capture the sequential dependencies between the spec-
tral bands. For its implementation, it was used the Python package called "Tsai"4.
Among the main parameters that were sensitized in this case are the following ones.

• Hidden state: It refers to the internal memory of the LSTM cell that stores
information about the previous steps in a sequence.

• Number of layers: The number of LSTM cells stacked on top of each other.

• Dropout in the recurrent neural network cells: Dropout is a regulariza-
tion technique that prevents overfitting by randomly dropping out a fraction

4https://timeseriesai.github.io/tsai/

https://timeseriesai.github.io/tsai/
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of the neurons [67]. In the case of recurrent neurons, the dropout technique is
applied in the connection between consecutive recurrent hidden cells.

• Dropout in the fully-connected layer: here the technique is applied to the
outputs of the fully-connected layer.

• Directionality: There were explored unidirectional and bidirectional LSTM
networks. The difference between them is that the bidirectional networks com-
pute the hidden state at each time step taking into account both the past and
future inputs but the unidirectional networks instead just consider the past
inputs.

4. Gated Recurrent Unit (GRU): Also this model corresponds to the classification
of Deep Learning Approaches - Spectral classification, described in subsection 4.4.2.
GRU was proposed in [17] and it is another type of RNN architecture. GRU is
similar to LSTM, but it has fewer parameters and is faster to train. In this case,
the input sequence is passed through a series of hidden layers, and each layer uses
a gated mechanism to selectively remember or forget the information from previous
sequence steps. Also, this architecture was implemented by relying on the Tsai
package. Regarding the parameters that were sensitized for this architecture, they
coincide with the ones described for the LSTM architecture.

6.5.2. Results of each model typology and discussion

In this subsection, the results of the different experiments conducted during this study
are presented. Alternative models were trained, and various parameters were sensitized
to achieve the best possible configuration for the project’s objective. To measure and
evaluate the performance of all the experiments, two well-known metrics commonly used
in the scientific community were adopted, with the unit of measure being µg/L.:

• Mean Absolute Error (MAE): This metric measures the average absolute error
between the predictions and the actual values [74], in the following equation n refers
to the number of samples, yi to the actual value and ŷi is the prediction.

MAE =
1

n

n∑
i=1

|yi − ŷi|

• Root Mean Square Error (RMSE): This second metric, is another way to evalu-
ate the predictions where the residuals between the actual values and the predictions
are computed and squared, then their summation is performed and finally the result
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is divided by the total number of samples and the squared root is computed [74].

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

Random Forest Regressor

Initially, experiments were conducted with the three normalization techniques introduced
in section 6.4 (RF-1 to RF-3) to determine the most appropriate alternative. The result
achieved by the three options was almost identical in terms of the evaluated metrics as it
can be appreciated from table 6.1.
Then, the possibility of applying PCA to reduce the dimensionality was evaluated in order
to extract the 30 principal components (PCs) from the original 230 bands of PRISMA im-
ages. This operation has shown a worse result in comparison with the previous attempts,
by analyzing table 6.1 can be observed that the MAE and the RMSE of experiment RF-4
are higher with respect to the first three experiments.
Next, it was analyzed during experiment RF-5, if including additionally extracted fea-
tures was improving the performance of the model. In this experiment was kept the same
normalization approach as in experiment RF-2 (Standard Scaling) and no dimensionality
reduction was applied. For each pixel were applied the Mean, and the Sobel x and Sobel
y filters. The result of experiment RF-5 suggested that the addition of the features was
not helpful for the model because experiment RF-2 which had the same parameters and
normalization on the input data was achieving a better performance without the need of
including additional features.
Then, experiments were conducted from RF-6 to RF-11 to evaluate the various possible
configurations for the hyperparameters of the model and select the best alternative (i.e.
solving the typical model selection problem). Among these experiments, RF-10 stood out
with a better performance with respect to the other alternatives.
Finally, it was evaluated if the use of PRISMA images with a spatial resolution of 30
meters (original resolution) instead of 300 meters (downsampled images) allowed us to
achieve a better performance in the predictions. In order to perform this evaluation,
experiment RF-12 used almost the same configuration as the one used for experiment
RF-10 -except the number of trees parameter due to computational constraints- but the
PRISMA images were considered in their original resolution and the chlorophyll-a maps
were upsampled by the nearest neighbour method to 30 meters (original resolution of
PRISMA images). Observing the table 6.1 is possible to appreciate that the result of
RF-12 exhibits a higher error (MAE and RMSE) with respect to RF-10.
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Id Res [m] PCA Norm. Data
augm.

N°
trees

Min.
leaf

Max.
depth

MAE RMSE

RF-1 300 No Minmax No 1000 3 10 0,931 1,112
RF-2 300 No Std. No 1000 3 10 0,931 1,112
RF-3 300 No Reflect. No 1000 3 10 0,931 1,112
RF-4 300 30 PC’s Std. No 1000 3 10 1,020 1,245
RF-5 300 No Std. Yes 1000 3 10 1,106 1,296
RF-6 300 No Std. No 1000 3 5 1,032 1,192
RF-7 300 No Std. No 1000 3 20 0,930 1,113
RF-8 300 No Std. No 100 3 20 0,947 1,128
RF-9 300 No Std. No 10000 3 20 0,924 1,107
RF-10 300 No Std. No 10000 2 20 0,915 1,099
RF-11 300 No Std. No 10000 10 20 0,934 1,114
RF-12 30 No Std. No 1000 2 20 0,986 1,181

Table 6.1: Results of Random Forest experiments.

Among the different attempts, the best performance was obtained in the experiment RF-
10. The results associated with each test case are described in table 6.2, the corresponding
predictions, ground truths and their residuals are in figure 6.4 and the figure 6.5 presents
the histogram with the distribution of the residuals for each of the cases of the testing
set.

Id MAE-4 RMSE-4 MAE-23 RMSE-23 MAE-24 RMSE-24
RF-10 0,464 0,622 0,903 1,106 1,378 1,570

Table 6.2: Results of experiment RF-10 for each of the three test cases.

Support Vector Regressor

In the analysis of the normalization techniques carried out with experiments SVR-1 to
SVR-3, it was deduced that the best alternative for normalising the inputs is the Stan-
dard Scaling technique. This can be appreciated by observing in table 6.3 the result of
experiment SVR-2 with respect to the results of experiments SVR-1 and SVR-3 which
refer to the other two normalization techniques.
Regarding the utility of applying PCA on the input PRISMA images, it was determined
from experiment SVR-4 that the performance increases. The previous affirmation can be
seen in table 6.3 by comparing the result achieved in experiment SVR-2 with respect to
the one obtained by experiment SVR-4. For this reason, this technique was also consid-
ered for the following experiments.
Experiment SVR-5 evaluated the benefit of using data augmentation on the input data. It
was determined that it was not helpful to improve the performance of the model because
it produced a worse result with respect to SVR-4.
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From experiments SVR-6 to SVR-9 were evaluated different possible setups for the hyper-
parameters C and gamma of the Support Vector Regressor model but it was determined
that the best results were still achieved by experiment SVR-4 and for that reason this
configuration was preferred.
Finally, experiment SVR-10 analyzed the performance of using 30 meters of spatial reso-
lution for the input data, which corresponds to the original PRISMA images and Chl-a
maps upsampled by the nearest neighbour method. The results of this experiment were
not promising because the MAE and RMSE metrics were higher than the previous best
model (SVR-4).

Id Res [m] PCA Norm. Data
augm.

Gamma C MAE RMSE

SVR-1 300 No Minmax No 0,001 15 1,285 1,431
SVR-2 300 No Std. No 0,001 15 0,699 0,898
SVR-3 300 No Reflect. No 0,001 15 1,253 1,394
SVR-4 300 30 PC’s Std. No 0,001 15 0,687 0,895
SVR-5 300 30 PC’s Std. Yes 0,001 15 0,909 1,126
SVR-6 300 30 PC’s Std. No 0,0001 15 0,752 0,993
SVR-7 300 30 PC’s Std. No 0,01 15 0,956 1,152
SVR-8 300 30 PC’s Std. No 0,001 1,5 0,756 0,955
SVR-9 300 30 PC’s Std. No 0,001 150 1,106 1,307
SVR-10 30 30 PC’s Std. No 0,001 15 1,260 1,555

Table 6.3: Results of Support Vector Regressor experiments.

According to the experimental development of this set, the best configuration corresponds
to the one of experiment SVR-4. Table 6.4 presents the results of this model for each
of the three test cases. In figure 6.6 are exposed the predictions, ground truths and the
corresponding residuals for each case and figure 6.7 presents the distribution of the errors
in each of the test cases.

Id MAE-4 RMSE-4 MAE-23 RMSE-23 MAE-24 RMSE-24
SVR-4 0,544 0,688 0,712 0,961 0,806 1,036

Table 6.4: Results of experiment SVR-4 for each of the three test cases.

Long-Short Term Memory network

From experiments LSTM-1, LSTM-2 and LSTM-3 was possible to determine that the
best normalization approach was the Standard scaling technique which corresponds to
experiment LSTM-2. These results are detailed in table 6.5.
Later, was evaluated if applying PCA to the input data was useful or not for the per-
formance of the model. From the results of experiment LSTM-4 is possible to determine
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that it was helpful for improving the performance because it exhibits lower values of MAE
and RMSE with respect to experiment LSTM-2.
Starting from experiment LSTM-5 until experiment LSTM-12 were sensitized all the
hyper-parameters of this model architecture which were previously introduced in the sub-
section 6.5.1. Among these experiments, the best alternative referred to the experiment
LSTM-10 because, as it can be observed from table 6.5 it obtained the lowest values for
MAE and RMSE.

Additionally, experiment LSTM-13 kept all the parameters with the same values as in ex-
periment LSTM-10 but it considered bidirectional flow. In this case, the result obtained
was superlative with respect to the previous best model (LSTM-10).

Finally, was analyzed the use of inputs with a spatial resolution of 30 meters in experiment
LSTM-14, keeping the same configuration for the model hyper-parameters and normal-
ization of the inputs as in experiment LSTM-13 but the result was not improving against
the previous best model (LSTM-13).

Id Res
[m]

PCA Norm. Hidden
state

Layers Drop.
RNN

Drop.
FCN

Bidir. MAE RMSE

LSTM-
1

300 No Minmax 10 2 0,6 0,4 No 1,443 1,584

LSTM-
2

300 No Std. 10 2 0,6 0,4 No 1,303 1,431

LSTM-
3

300 No Reflect. 10 2 0,6 0,4 No 1,897 2,012

LSTM-
4

300 30 PC’s Std. 10 2 0,6 0,4 No 1,298 1,428

LSTM-
5

300 30 PC’s Std. 5 2 0,6 0,4 No 1,386 1,522

LSTM-
6

300 30 PC’s Std. 15 2 0,6 0,4 No 1,323 1,452

LSTM-
7

300 30 PC’s Std. 10 4 0,6 0,4 No 1,494 1,635

LSTM-
8

300 30 PC’s Std. 10 1 0,6 0,4 No 1,334 1,490

LSTM-
9

300 30 PC’s Std. 10 2 0,2 0,4 No 1,342 1,475

LSTM-
10

300 30 PC’s Std. 10 2 0,8 0,4 No 1,278 1,407

LSTM-
11

300 30 PC’s Std. 10 2 0,8 0,6 No 1,366 1,498

LSTM-
12

300 30 PC’s Std. 10 2 0,8 0,2 No 1,305 1,434

LSTM-
13

300 30 PC’s Std. 10 2 0,8 0,4 Yes 1,211 1,345

LSTM-
14

30 30 PC’s Std. 10 2 0,8 0,4 Yes 1,278 1,455
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Table 6.5: Results of LSTM model experiments.

Based on the previous information, the best-performing model for this set of experiments
was LSTM-13. Table 6.6 describes the error achieved by this model in each of the three
cases of the test set. The predictions of this experiment, the corresponding ground truths
for each test case and the differences between predictions and ground truths are described
in figure 6.8. Additionally, figure 6.9 exposes the histogram of the differences between the
predictions and the ground truths for each case.
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Id MAE-4 RMSE-4 MAE-23 RMSE-23 MAE-24 RMSE-24
LSTM-13 0,992 1,053 1,288 1,442 1,355 1,538

Table 6.6: Results of experiment LSTM-13 for each of the three test cases.

Gated Recurrent Unit network

The first set of experiments (GRU-1 to GRU-3) were analyzing the best normalization
approach, obtaining as a result the standard scaling method (GRU-2). The results can
be appreciated in table 6.7.
Experiment GRU-4 allows us to determine that the use of PCA method for this model was
not useful because the experiment provided a lower performance with respect to GRU-2.
Then, from experiment GRU-5 until experiment GRU-15 were sensitized all the hyperpa-
rameters previously introduced in the sub-section 6.5.1, achieving the best performance
with the configuration adopted in experiment GRU-8.
Later, in experiment GRU-16 was analyzed if taking the configuration of GRU-8 and
setting the network with bidirectional flow improved the performance or not: the result
of this experiment exhibited a lower performance according to what is detailed in table 6.7.

Finally, experiment GRU-17 was conducted to analyze the model’s performance when
using input data with a spatial resolution of 30 meters, keeping the same configuration as
in experiment GRU-8. The obtained result of this new experiment was worse with respect
to GRU-8.

Id Res
[m]

PCA Norm. Hidden
state

Layers Drop.
RNN

Drop.
FCN

Bidir. MAE RMSE

GRU-1 300 No Minmax 10 2 0,6 0,4 No 1,367 1,499
GRU-2 300 No Std. 10 2 0,6 0,4 No 1,287 1,416
GRU-3 300 No Reflect. 10 2 0,6 0,4 No 1,559 1,698
GRU-4 300 30 PC’s Std. 10 2 0,6 0,4 No 1,305 1,433
GRU-5 300 No Std. 5 2 0,6 0,4 No 1,435 1,575
GRU-6 300 No Std. 20 2 0,6 0,4 No 1,235 1,366
GRU-7 300 No Std. 40 2 0,6 0,4 No 1,221 1,352
GRU-8 300 No Std. 60 2 0,6 0,4 No 1,186 1,321
GRU-9 300 No Std. 100 2 0,6 0,4 No 1,271 1,408
GRU-
10

300 No Std. 60 1 0,6 0,4 No 1,236 1,373

GRU-
11

300 No Std. 60 10 0,6 0,4 No 1,231 1,362

GRU-
12

300 No Std. 60 2 0,2 0,4 No 1,272 1,419

GRU-
13

300 No Std. 60 2 0,8 0,4 No 1,194 1,340
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GRU-
14

300 No Std. 60 2 0,6 0,2 No 1,202 1,355

GRU-
15

300 No Std. 60 2 0,6 0,8 No 1,260 1,399

GRU-
16

300 No Std. 60 2 0,6 0,4 Yes 1,213 1,363

GRU-
17

30 No Std. 60 2 0,6 0,4 No 1,203 1,382

Table 6.7: Results of GRU model experiments.

According to the previous explanation, the best model was corresponding to experiment
GRU-8, which metrics are described in table 6.8. In figure 6.10 can be observed the
predictions of this experiment for the three cases of our test set, their associated ground
truths of chlorophyll-a maps and the difference between the predictions and the ground
truths. Additionally, figure 6.11 describes the distribution of the residuals for each of the
test cases.

Id MAE-4 RMSE-4 MAE-23 RMSE-23 MAE-24 RMSE-24
GRU-8 0,929 0,997 1,262 1,420 1,365 1,544

Table 6.8: Results of experiment GRU-8 for each of the three test cases.

6.5.3. Summary of best models

In this subsection are briefly summarized the results of the best models of each type.
Among the different alternatives, the SVR achieved with its best model (experiment
SVR-4) the higher performance. The results of the best models for each type of model
are detailed in the table 6.9.
Id Model MAE

general
RMSE
general

MAE-4 RMSE-
4

MAE-
23

RMSE-
23

MAE-
24

RMSE-
24

SVR-4 SVR 0,687 0,895 0,544 0,688 0,712 0,961 0,806 1,036
RF-10 RF 0,915 1,099 0,464 0,622 0,903 1,106 1,378 1,570
GRU-8 GRU 1,186 1,321 0,929 0,997 1,262 1,420 1,365 1,544
LSTM-
13

LSTM 1,211 1,345 0,992 1,053 1,288 1,442 1,355 1,538

Table 6.9: Comparison of metrics for the best models.

6.5.4. Inference on 30 meters GSD inputs

After the determination of the best models from the experimental development that was
carried out, it was possible to observe that the experiment which achieved the higher
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performance used input data with 300 m GSD. This spatial resolution is the same as
the Sentinel 3 imagery and it refers to a value of low spatial resolution. However, con-
sidering that the PRISMA images were originally of 30 m GSD, it was evaluated the
performance of the best models summarized in the previous subsection 6.5.3, when pre-
dicting chlorophyll-a maps of 30 meters instead of 300 meters. For this reason, both Chl-a
ground truth and the associated PRISMA images of each of the three test cases (id 4, 23
and 24) were upsampled to 30 meters. The upsampled PRISMA images were input into
the trained models to obtain the corresponding predictions and finally, the performances
were determined for each of the model typologies by comparing the obtained predictions
against the upsampled Chl-a ground truths. Table 6.10 details the performance achieved
for each of the three test cases. From table 6.10 is possible to appreciate that using the best
models previously determined, which were trained with 300 meters GSD input data, is
feasible to achieve acceptable results while predicting cases which are with 30 meters spa-
tial resolution. This is quite relevant because it implies that when having a new PRISMA
image over the area of interest, instead of obtaining a chlorophyll-a map at 300 meters,
the resulting map will have 30 meters which is 10 times better than the Sentinel 3 imagery.

Additionally, it is worth mentioning that in this new evaluation with 30 meters of input
data, the best model among the four preselected ones is the Random Forest Regressor
(exp. RF-10) instead of the Support Vector Regressor (exp. SVR-4). Also, observing the
figure 6.14 is possible to notice that the output produced an average value for each of
the three test cases which is something undesired, for this reason, it is also preferred the
RF-10 when evaluated with 30-meters input data.

Then, were compared the results of the models trained with 300-meter inputs evaluated
with 30-meter inputs with respect to the models both trained and evaluated with 30-meter
inputs. In table 6.10 is presented a summary of the results. It can be observed that in the
case of Random Forest and Gated Recurrent Unit models, the performances are better.
In contrast, training and inferring on 30-meter inputs but in the case of Support Vector
Regressor and LSTM network models it was better to train with 300-meter inputs and
then evaluate on 30-meter inputs.

The conclusion is that, among all the possible alternatives, if the final objective is to
produce chlorophyll-a maps with 30-meter GSD, it is recommended to use the Random
Forest model (exp. RF-12) trained with 30-meter input data.

The following figures provide further details about the results of each of the models trained
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with 300-meter inputs but evaluated with 30-meter data:

• Figures 6.12, 6.13: predictions, ground truths and differences for experiment RF-10

• Figures 6.14, 6.15: idem for experiment SVR-4.

• Figures 6.16, 6.17: idem for experiment LSTM-13.

• Figures 6.18, 6.19: idem for experiment GRU-8.

And the figures that present the visual results of the models both trained and evaluated
on 30-meter inputs are:

• Figures 6.20, 6.21: predictions, ground truths and differences for experiment RF-12

• Figures 6.22, 6.23: idem for experiment SVR-10.

• Figures 6.24, 6.25: idem for experiment LSTM-14.

• Figures 6.26, 6.27: idem for experiment GRU-17.

Id Model Train
GSD
[m]

Eval.
GSD
[m]

MAE
gen-
eral

RMSE
gen-
eral

MAE-
4

RMSE-
4

MAE-
23

RMSE-
23

MAE-
24

RMSE-
24

RF-10 RF 300 30 1,076 1,241 0,988 1,071 0,836 1,068 1,405 1,585
RF-12 RF 30 30 0,986 1,181 0,815 0,921 0,707 0,987 1,435 1,635
SVR-4 SVR 300 30 1,107 1,266 1,578 1,620 0,778 1,017 0,964 1,161
SVR-
10

SVR 30 30 1,260 1,555 1,052 1,571 1,043 1,235 1,686 1,859

LSTM-
13

LSTM 300 30 1,234 1,369 0,826 0,905 1,413 1,556 1,462 1,648

LSTM-
14

LSTM 30 30 1,278 1,455 1,004 1,112 1,004 1,214 1,826 2,039

GRU-
8

GRU 300 30 1,248 1,393 0,643 0,746 1,294 1,448 1,808 1,986

GRU-
17

GRU 30 30 1,203 1,382 0,598 0,727 1,518 1,732 1,493 1,686

Table 6.10: Evaluation of the best models using 30 m GSD inputs.

Finally, taking into consideration the model that achieved the highest performance when
inferring 30-meter input data (RF-12), it was analyzed if the use of the bilinear interpola-
tion method for upsampling the ground truth chlorophyll-a maps to 30 meters GSD was
better than the previously used method of Nearest Neighbour.
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To make this comparison, the edges of the lakes had to be removed from all the acqui-
sitions because the bilinear interpolation method produced a border effect that was not
desired. An example of the mentioned border effect can be appreciated in Figure 6.28
where the original chlorophyll-a map is presented together with the two evaluated upsam-
pling methods.

The removal of the lakes’ edges was done by applying a buffer of 300 meters which cor-
responds to the size of a pixel from the original chlorophyll-a maps to be upsampled.
This operation was considered in the two experiments that were set for the comparative
analysis (RF-13 and RF-14).

The conclusion of this comparison of upsampling methods was that the bilinear interpola-
tion achieved slightly better performance with respect to the nearest neighbour technique
but in the third test case (acquisition Id 24) the error was in a higher order of magnitude
for the bilinear interpolation method. For this reason and because of the previously intro-
duced border effect, it was preferred the nearest neighbour method. This conclusion can
be confirmed by observing Table 6.11 where the results of experiments RF-13 and RF-14
are presented.

Exp.
Id

Ups.
method

MAE
general

RMSE
general

MAE-4 RMSE-
4

MAE-
23

RMSE-
23

MAE-
24

RMSE-
24

RF-13 Bilinear 1,04 1,20 0,54 0,65 0,59 0,79 2,00 2,14
RF-14 Nearest 1,05 1,20 0,79 0,86 0,69 0,88 1,67 1,86
Diff. 13 -
14

- -0,01 0,00 -0,25 -0,21 -0,10 -0,08 0,33 0,28

Table 6.11: Results of comparison between upsampling methods.

6.6. General discussion of the chapter

This chapter described the complete process developed to produce a model able to per-
form predictions of chlorophyll-a on lakes: it started detailing the aspects related to the
acquisition and preparation of the data, then specified all the different experiments and
the criteria taken into consideration to decide how to select the best possible models
among the existing alternatives and, once was determined the most performing option
for each of the model typologies, a second evaluation for each of the best models were
performed in order to determine the capabilities to be used for predicting chlorophyll-a
maps with 30 meters spatial resolution.

According to the achieved results, while tuning each of the model typologies, was ob-



6| Experimental development 83

served that the use of 30 meters of input data for training the models was not improving
the performances, for this reason, the experiments with the higher performances of each
typology used 300 meters of input data. Specifically, among the four selected experiments
(RF-10, SVR-4, LSTM-13 and GRU-8), the best performance referred to SVR-4.

Then, to understand if those preselected models that were trained with 300-meter GSD
input data were useful for predicting 30 meters chlorophyll-a maps, a second evaluation
was done. The result of this second evaluation allowed us to understand that the Random
Forest Regressor (experiment RF-10) was the model which outperform the others. How-
ever, it was also relevant to determine if these models that were trained with 300-meter
inputs and evaluated on 30-meter inputs were achieving a better performance than the
experiments in which 30-meter inputs were used also for training. The results showed
that in two of the four model typologies, it was better to use 30-meter inputs for training
and evaluating and among all the possible alternatives, the best option corresponds with
experiment RF-12. The conclusion of this second analysis is that if the objective is to
achieve a chlorophyll-a map with a GSD of 300 meters, the best alternative is to follow the
settings considered in experiment SVR-4, but if the objective is to predict a chlorophyll-
a map with a 30-meter GSD, is better to follow the configuration of experiment RF-12
which used 30-meter inputs for training and testing.

Also, taking into account the configuration used for experiment RF-12 (which achieved
the highest performance when predicting 30-meter chlorophyll-a maps), it was evaluated if
the bilinear interpolation method could be better than the used nearest neighbour method
when upsampling the original chlorophyll-a maps to 30 meters of spatial resolution. For
this purpose, there were set experiments RF-13 and RF-14 and from their results was
possible to observe that although the performance of the bilinear interpolation method
was slightly better, for one of the test cases, the result with this upsampling method was
strongly affected and also this technique produced undesired border effects. For these two
reasons, the preferred method is the nearest neighbour for upsampling the ground truth
chlorophyll-a maps to 30 meters GSD.

Finally, another important insight was the fact that generally, the model typologies which
achieved higher performances were part of the category of Traditional approaches (Ran-
dom Forest and Support Vector Regressor) instead of Deep Learning ones (Long-short
Term Memory and Gated Recurrent Unit networks).
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Figure 6.4: Predictions, Ground Truths and difference GT-Preds. of experiment RF-10
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Figure 6.5: Distribution of the errors of experiment RF-10



86 6| Experimental development

Figure 6.6: Predictions, Ground Truths and difference GT-Preds. of experiment SVR-4
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Figure 6.7: Distribution of the errors of experiment SVR-4
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Figure 6.8: Predictions, Ground Truths and difference GT-Preds. of experiment LSTM-
13
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Figure 6.9: Distribution of the errors of experiment LSTM-13
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Figure 6.10: Predictions, Ground Truths and difference GT-Preds. of experiment GRU-8.
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Figure 6.11: Distribution of the errors of experiment GRU-8.
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Figure 6.12: Predictions, ground truths and differences when exp. RF-10 was evaluated
with 30-meter inputs.
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Figure 6.13: Distribution of the errors of experiment RF-10 when evaluated with 30 m
inputs.
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Figure 6.14: Predictions, ground truths and differences when exp. SVR-4 was evaluated
with 30-meter inputs.
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Figure 6.15: Distribution of the errors of experiment SVR-4 when evaluated with 30 m
inputs.
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Figure 6.16: Predictions, ground truths and differences when exp. LSTM-13 was evaluated
with 30-meter inputs.
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Figure 6.17: Distribution of the errors of experiment LSTM-13 when evaluated with 30
m inputs.
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Figure 6.18: Predictions, ground truths and differences exp. when GRU-8 was evaluated
with 30-meter inputs.
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Figure 6.19: Distribution of the errors of experiment GRU-8 when evaluated with 30 m
inputs.
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Figure 6.20: Predictions, ground truths and differences when exp. RF-12.
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Figure 6.21: Distribution of the errors of experiment RF-12.
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Figure 6.22: Predictions, ground truths and differences when exp. SVR-10.
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Figure 6.23: Distribution of the errors of experiment SVR-10.
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Figure 6.24: Predictions, ground truths and differences when exp. LSTM-14.
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Figure 6.25: Distribution of the errors of experiment LSTM-14.
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Figure 6.26: Predictions, ground truths and differences exp. when GRU-17.
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Figure 6.27: Distribution of the errors of experiment GRU-17.

Figure 6.28: Visual comparison of nearest neighbour and bilinear upsampling methods.
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7| Conclusions

The project covered theoretical and practical aspects related to the modelling of Chlorophyll-
a from hyperspectral imagery, developing a valuable tool for the monitoring of the Chlorophyll-
a parameter in the lakes under the objective of this study.

In this sense, initially, the theoretical background was described to allow any reader to
understand properly the theme of hyperspectral imagery, knowing deeply the relevance of
the Chlorophyll-a parameter, the situation of the SIMILE project and the methods that
allow the modelling of the hyperspectral information.

Then were analyzed the different cases that compound the initial and final datasets, ex-
plaining the criteria used for the selection of the final set.

Finally, the experimental development was completely described: All the manipulations
on the inputs were specified, the different models employed were detailed, and the deci-
sions that were taken to determine which was the most suitable model.

After choosing the best options for each model typology, a second evaluation was done but
taking into account models trained with 300 meters GSD inputs and tested on 30-meter
inputs. In this case, the model performances of the best models were decreased but the
main insight was that the models trained with 300-meter inputs were able to at least
provide an acceptable prediction when tested with 30-meter inputs.

Additionally, a comparative analysis between nearest neighbour and bilinear interpolation
methods was performed to understand which of them was the most suitable approach to
upsample the ground truth chlorophyll-a maps to 30-meter GSD. The results achieved
allowed us to conclude that the nearest neighbour method was better than the bilinear
interpolation one because the bilinear method produced undesired border effects and did
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not improve the performance with respect to the nearest neighbour method.

Also, it is worth mentioning that among the four evaluated model typologies, it was deter-
mined that the traditional approaches (RF and SVR) always achieved higher performance
than the deep learning methods (LSTM and GRU). Specifically, it was determined that
the best alternative when testing with 300-meter inputs is the Support Vector Regressor
but when testing with 30-meter inputs the best alternative considered was Random Forest
Regressor.

However, in order to complement the previously mentioned analysis was performed a
comparison by evaluating if the results achieved with those models trained with 300-
meter inputs and evaluated on 30-meter inputs were achieving higher performance than
the corresponding ones but trained-evaluated with 30-meter inputs. The conclusion of this
comparison allowed us to determine that in two of the four model typologies was better
to consider also 30-meter input data for training if the objective is to predict 30-meter
chlorophyll-a maps because the final performances are better in this way. Among all the
alternatives used for inferring 30-meter GSD chlorophyll-a maps, the best option was set
in experiment RF-12 which used both for training and testing 30-meter input data.

Also, the following additional aspects could be remarked:

• By increasing the number of images available and improving their quality in terms of
the considered parameters (mainly: clouds, and glint), a higher performance would
be achieved with any of the four model typologies already analyzed in the document.

• The trained models achieved an acceptable performance and they could represent
a valuable tool to monitor and mitigate any distortion in the water quality of the
lakes of this study.

• Although the current study just analyzed a group of three lakes located in the shared
basin between Switzerland and Italy (Lake Como, Lugano and Maggiore), it could
be interesting to expand the study to different locations and evaluate if the models
prepared are able to generalize and produce acceptable predictions for different lake
conditions.
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