
Executive Summary of the Thesis

Design and optimization of an FPGA-based system for real-time
human stress level assessment

Laurea Magistrale in Electronics Engineering - Ingegneria Elettronica

Author: Nicolò Campanini, Salvatore Torsello

Advisor: Prof. Christian Pilato

Academic year: 2022-2023

1. Introduction
In recent decades, everyday human life is sur-
rounded by a connected and dynamic world, so
the individual is exposed to mental pressure sit-
uations which could lead to stress conditions.
Several researches have been conducted on stress
evaluation and different engineering fields are in-
volved when monitoring is needed.
This thesis propose an FPGA-based solution for
the assessment of human stress level in real-time,
giving particular attention on the development
of a modular system, which could be part of a
more complex and portable device. Starting by
the analysis of the possible signals related to the
stress level, our work first addresses the prob-
lem with an high-level approach by developing
a Python-based processing chain and training a
classifier, then it moves to the design of a low-
level system composed by an hardware acceler-
ator and a Linux application. A complete de-
scription of the validation methods is reported
at the end, comparing the simulated model with
the one implemented on the target board.

2. Problem assessment
Since stress produces changes in the human
physiology, different parameters of the body are
influenced by it. To create a stress estimation

system we had to choose some of those parame-
ters to be used as input. We selected Electrocar-
diogram (ECG) and the electrodermal activity
(EDA) for our work and we developed a pro-
cessing chain for them. Those two signals were
specifically chosen due to being easy to measure
in a non-invasive fashion, requiring cheap sen-
sors and having been intensively studied in the
medical community.

2.1. Datasets and signals
To develop a signal processing algorithm for
stress detection, experimental data were needed.
Due to the constraints imposed by this work
of thesis, no ad-hoc experiment could be cre-
ated but publicly available datasets have to be
used. For our work we choose to use two of those
datasets: WESAD[6] and DRIVEDB[4].
Those are based on different experiments and
different stressors (office work and driving task),
but they provide similar stress-level rankings
(Relaxed, Normal, Stressed) as well as the input
signals we need. We assumed that the induced
stress-levels were equal between the two dataset
and therefore merged their data for the develop-
ment of our algorithm.
The two signals used are ECG and EDA.

1



Executive summary Nicolò Campanini, Salvatore Torsello

Figure 1: Python algorithm Overall structure

ECG The electrocardiogram signal is describ-
ing the electrical activity of the heart over a pe-
riod of time. It is as voltage signal obtained
using multiple electrodes placed on the patient
skin to detect the small electrical changes that
are a consequence of cardiac muscle depolariza-
tion and re-polarization.

EDA The ElectroDermal Activity is the ca-
pacity of the human skin to conduct an electrical
current in response to different types of stimuli.
The common measuring technique consists into
the application of a weak electrical current or a
low voltage source (which could be DC or AC)
across two electrodes places next to each other
on the skin, and measuring respectively the volt-
age or the current.

2.2. Algorithm development
Our Python algorithm, developed in Jupyter, is
composed of two separate pipelines which can
be individually run and tuned, one for features
extraction and the other for classifier training.
As it is shown in Figure 1, the Feature Extrac-
tion pipeline is comprised of the processing of
the physiological signals and the time windowing
of the resulting characteristics. Different time
window sizes were tried during features extrac-
tion, ranging from 20s to 60s, with step size of
5s. The Classifier Training pipeline is used to
explore and clean the feature set, train different
classifiers and validate them with 10-fold cross-
validation method.
In the following two paragraphs, the processing
of the two physiological signals is explained in
detail.

ECG The ECG processing chain is mainly fo-
cused on extracting the necessary meaningful
signals for Heart Rate Variability (HRV) analy-

sis [1]. HRV is the physiological phenomenon of
variation in the time interval between heartbeats
and it has been shown to be linked to stress level
and mental status. The processing chain is cen-
tered around a QRS-detection algorithm used to
extract heart-beat position from the raw signal.
In our work we choose to use the Pan-Tompkins
algorithm [5] due to its ease of use and high
detection accuracy. From the heart-beat posi-
tions two meaningful signal are computed from:
NN and Cardiotach. NN signal describes the
evolution of the beat-to-beat interval between
different beats while Cardiotach signal describes
the same change in time. Features are extracted
from those signals in three domains: time, non-
linear and frequency. The features of the first
two domain are computed directly from the NN
and Cardiotach signal while a Lomb-Scargle pe-
riodogram is used to perform the spectral anal-
ysis.

EDA The main objective of the EDA process-
ing chain is to compute and extract some char-
acteristics that are strictly correlated with the
applied stress stimuli [2]. In order to remove
individual-to-individual variations, we chose to
apply a percentile normalization, centering
the signal at zero (subtracting the median) and
scaling the samples by the Inter-Quantile Range
(IQR). Then we decomposed the the result-
ing signal into tonic and phasic. The tonic
component, also called Skin Conductance Level
(SCL), was extracted by low-pass filtering the
normalized EDA signal with a cutoff frequency
of 0.05Hz. It describes long term changes
and slow spontaneous electrical fluctuations, on
which statistical features were computed. The
phasic component, also called Skin Conductance
Response (SCR), was obtained by band-pass fil-
tering with cutoff frequencies of 0.05Hz and

2



Executive summary Nicolò Campanini, Salvatore Torsello

1.8Hz. It refers to the faster changing elements
of the EDA signal and from it critical points [3]
were detected consisting in peaks, points of on-
set (point at which a change in the slope of the
curve occurs) and half recovery points (point at
which the signal decreases to half of the peak
value). At the end, from phasic and the detected
critical points we computed the syntactical fea-
tures which give a geometric description of the
signal.

Classifier After a cleaning step which removes
features with correlation coefficient higher than
0.95, the classifier pipeline applies different fea-
ture selection algorithms and train different clas-
sifier model through an iterative approach. The
training process was performed for the EDA part
on both normalized and non-normalized data.
Since applying the normalization step in a real-
time setup requires the entire signal to be known
in advance, we chose to use the non-normalized
data, even if this led to a lower accuracy (−9%).
In the end, the best result was obtained with
a XGBoost [7] model, trained on 25 features,
chosen with the CHI-2 selector, on a 60s time
window. The resulting accuracy we achieved
was of 61%.

3. Proposed solution
We choose to implement the Python algorithm
as a heterogeneous system based on the Zynq™
7010 SoC [8] to better satisfy the modularity
requirements. The chosen system architecture is
shown in Figure 2. It is composed of a Biosignal
Coprocessor, implemented in the FPGA part of
the SoC, and a Linux application running on the
SoC CPU.

Figure 2: System architecture idea

3.1. Hardware accelerator
The accelerator, designed in Vitis™ HLS, ac-
cepts as inputs the two data streams at 500Hz

(ECG and EDA), it performs all filtering and
processing operations required for the extraction
of meaningful signals from the two sensors and
it produces as output the meaningful signals for
the current time window at 1Hz.

Figure 3: Biosignal Coprocessor structure

Downsampling Here the input data, received
from the sensors through AXI-4-Stream inter-
faces, are downsampled from 500Hz to 125Hz
(ECG) and 25Hz (EDA). To perform this op-
eration we implemented and tuned two different
downsampling chains based on FIR filters.

Preprocessing After the downsampling step,
here ECG and EDA raw data are treated dif-
ferently. For the ECG signal we performed
the QRS detection using a variant of the Pan-
Tompkins algorithm [5] to find the position of
the heartbeats. The EDA signal instead is firstly
separated into its tonic and phasic components
using a specific filtering chain. Then the zero-
crossing of the phasic first derivative and the
sign of the phasic second derivative are com-
puted here to be later used for EDA critical
points detection.

Data collector The output data produced by
the two preprocessing block are aggregated into
1s data blocks, this requires storing 125 samples
for ECG and 25 samples for EDA. The aggre-
gated blocks are provided at 1Hz at the pro-
cessing stage.

Processing The processing stage is keeping
track of the last 60 blocks received by the Data
collector stage and performing different opera-
tions on them. For the ECG signal, we ex-
tracted the NN and Cardiotach and we filtered
the Cardiotach signal with a zero-phase filtering
approach. On the EDA signal, instead, we ap-
plied the critical points detection algorithm, to

3



Executive summary Nicolò Campanini, Salvatore Torsello

flag the corresponding position of those points.
At the end the output produced for both signals
are transferred to the main system memory.
After the processing is completed, data are ready
to be read from the Linux application. In order
to signal this to the CPU, we added an interrupt
source which is raised only in those cycles when
the system has completed both (ECG and EDA)
output data transfers to memory.

Implementation Once all the stages were de-
veloped, tested and connected together, we used
Vitis™ HLS to synthesize the required Biosig-
nal Coprocessor IP core to be later used in Vi-
vado™. The most important configurations used
during the implementation are the fabric clock,
at 100MHz, and the use of hls::stream object to
create FIFO communication channels between
the stages. We also used arbitrary precision data
types (ap_int and ap_fixed) to reduce resource
usage, improve performance and avoid floating
point arithmetic. We chose to use a Memory-
Mapped AXI-4 interface to write data outputs
to system memory without CPU intervention,
optimizing it to perform burst write by automat-
ically widening the port bit-width greatly en-
hancing performance. The designed IP core pro-
vides also an AXI-4 Lite interface which we used
to configure memory addresses for the Memory-
Mapped interface and to control the core itself.

3.2. Linux application
Once we exported the IP core from Vitis™ HLS
we moved to Vivado™ to generate the platform
bit-stream using it to compile a custom Petal-
inux [9] distribution. On top of it, we developed
a multi-thread application using Vitis™ IDE as
sketched in Figure 4. We designed the appli-

Figure 4: Linux application structure

cation using the producer-consumer paradigm,
with a mutex and a conditional variable to en-
sure reliable and stable synchronization between
the threads. We validated all the described
stages with unit-testing, comparing each block
output with a golden one obtained by its equiv-
alent in Python. The different threads are now
explained in details.

ADC emulation This thread runs at the
ADC target frequency of 500Hz and focuses on
the emulation of real signal coming from sensors.
This is done by firstly loading data on physical
memory reading from stimulus files and trans-
ferring them to AXI4-stream channels through
DMAs. This stage will be not needed in the final
system since it was designed only for validation
purposes.

Biosignal Coprocessor This thread inter-
faces directly to the Biosignal Coprocessor IP
core through the AXI4-Lite slave interface and
the driver generated by Vitis™ HLS, which works
on top of the UIO driver. After data have been
transferred at the input of the Biosignal Copro-
cessor, the thread waits for an interrupt from the
hardware core doing a blocking read on the cor-
responding character device. After the function
returns, thread operation is restored, and the
feature extractor thread is notified, signalling
that data are ready to be read at the predefined
memory addresses.

Feature extractor The scope of this thread
is to perform features extraction on the signals
received from the Biosignal Coprocessor. The
ECG and EDA signals are again processed in a
separate fashion and the resulting features are
merged in a single data structure composed of
41 double precision floating point values. The
Lomb-Scargle periodogram is calculated from
the ECG NN signal to allow for spectral features
computation. After the computation of the fea-
tures, the thread notifies the classifier signalling
that data are ready to be consumed.

Classifier The last stage of the chain is the
classifier thread, which waits for a new set of
computed features and then applies the stress
classification on them, obtaining as output the
stress label.

4



Executive summary Nicolò Campanini, Salvatore Torsello

3.3. Results
We tested the developed IP-core and the overall
system to validate their performance in terms of
classification accuracy, resource occupation, and
timings.

Timing results The logic timings we ob-
tained from Vitis™ HLS and Vivado™ are re-
ported in Table 1. As shown by the obtained
clock periods and Worst-Negative-Slack (WNS)
for both Vitis™ HLS and Vivado™, the Biosignal
Coprocessor as well as the entire system are able
to run at the target clock frequency of 100MHz
with a consistent margin.

Parameter Value

CP Vitis™ HLS 8.397ns (119.1MHz)

CP Vivado™ 9.580ns (104.4MHz)

WNS Vitis™ HLS 1.603ns

WNS Vivado™ 0.420ns

Table 1: Biosignal Coprocessor logic timings

We extracted the execution timings of the dif-
ferent blocks of the system using different ap-
proaches. For the hardware part we used the
cosimulation from Vitis™ HLS to extract the la-
tency if the Biosignal Coprocessor. For the dif-
ferent software threads, instead, we used a hard-
ware timer to measure the time each thread re-
quires to execute. The timings we obtained are
reported in Table 2. The obtained results are
well below the requirements for both the hard-

ware part as well as the software part.

Classification results We extracted the clas-
sification results using the ADC emulation ap-
proach previously explained. The results are
shown in Figure 5 normalized over the rows. It

Figure 5: Classification results

can be easily seen that misclassification is oc-
curring a lot between the Relaxed and Normal
levels while the system is extremely accurate at
detecting the Stressed condition. In our opinion
this classification error is mainly caused by inter-
individual variability which plays a more signifi-
cant role at those specific stress levels. Moreover
the datasets we used for training are based on
different stressors and this could affect the ob-
tained classification accuracy. A more specific
set of experiment is needed to train the clas-
sification algorithm and obtain a more reliable

Min Avg Max

Biosignal Coprocessor 2ms (500Hz)

Result [s] 2.40µs 9.97µs 1.39ms

Result [Hz] 416.7KHz 100.3KHz 714.9Hz

Feature Extractor 1s (1Hz)

Result [s] 2.23ms 29.7ms 48.9ms

Result [Hz] 448.5Hz 33.7Hz 20.5Hz

Classifier 1s (1Hz)

Result [s] 255.5µs 438.1µs 839.3µs

Result [Hz] 3.91KHz 2.28KHz 1.12KHz

Table 2: System timing results

5



Executive summary Nicolò Campanini, Salvatore Torsello

estimation.

Resource occupation Table 3 shows the re-
source occupation of the entire system when
composed in Vivado™. This includes the IP core
as well as DMA blocks used for ADC emulation
and all interconnection structures.
The entire system is able to fit inside the Zynq™
7010 SoC without exceeding the available re-
sources. Additional resources are still available
and can be easily used for further improvements
of the Biosignal Coprocessor IP core.

Resource Used Available Used %

LUT 12054 17600 68.49%

FF 20240 35200 57.50%

DSP 27 80 33.75%

BRAM 23 60 −

Table 3: Resource occupation from Vivado™

4. Conclusions
The estimation of human stress level is an hot
topic of the affective-computing world and is an
important step in the creation of healthier and
safer work environment as well as preventing ac-
cidents on high-risk jobs.
With the system we developed in this work of
thesis we were able to estimate the stress level
in real-time using ECG and EDA, two signals
easy to collect with simple and cheap sensors in
a non-invasive fashion. The obtained stress esti-
mation performances were satisfactory knowing
that only data from publicly available datasets
have been used.
The proposed heterogeneous architecture pro-
cesses data in hardware at high frequency di-
rectly from sensor, thus simplifying the extrac-
tion of the meaningful signals and avoiding the
use of CPU computational power for those tasks.
The software application also allows for an easy
scalability of the system and simplifies the de-
velopment of additional software part of the sys-
tem. The obtained system, with its modular and
expandable architecture, can therefore be con-
sidered a platform which can be improved on
and act as a base for the creation of more com-
plex wearable stress detection systems.

References
[1] George E Billman, Heikki V Huikuri, Jerzy

Sacha, and Karin Trimmel. An introduc-
tion to heart rate variability: methodolog-
ical considerations and clinical applications,
2015.

[2] Jason J Braithwaite, Derrick G Watson,
Robert Jones, and Mickey Rowe. A guide
for analysing electrodermal activity (eda) &
skin conductance responses (scrs) for psy-
chological experiments. Psychophysiology,
49(1):1017–1034, 2013.

[3] Michael E Dawson, Anne M Schell, and
Diane L Filion. The electrodermal sys-
tem. Handbook of psychophysiology, 2:200–
223, 2007.

[4] Jennifer A Healey and Rosalind W Picard.
Detecting stress during real-world driving
tasks using physiological sensors. IEEE
Transactions on intelligent transportation
systems, 6(2):156–166, 2005.

[5] Jiapu Pan and Willis J Tompkins. A real-
time qrs detection algorithm. IEEE transac-
tions on biomedical engineering, pages 230–
236, 1985.

[6] Philip Schmidt, Attila Reiss, Robert
Duerichen, Claus Marberger, and Kristof
Van Laerhoven. Introducing wesad, a multi-
modal dataset for wearable stress and affect
detection. In Proceedings of the 20th ACM
international conference on multimodal
interaction, pages 400–408, 2018.

[7] XGBoost Python Package 2014; xg-
boost 1.7.6 documentation — xg-
boost.readthedocs.io. https://xgboost.
readthedocs.io/en/stable/python/
index.html, n.d. [Accessed 24-08-2023].

[8] Xilinx. AMD Adaptive Computing Doc-
umentation Portal — docs.xilinx.com.
https://docs.xilinx.com/v/u/en-US/
zynq-7000-product-selection-guide,
n.d. [Accessed 25-08-2023].

[9] AMD Adaptive Computing Docu-
mentation Portal — docs.xilinx.com.
https://docs.xilinx.com/r/en-US/
ug1144-petalinux-tools-reference-guide/
Introduction, n.d. [Accessed 31-08-2023].

6

https://xgboost.readthedocs.io/en/stable/python/index.html
https://xgboost.readthedocs.io/en/stable/python/index.html
https://xgboost.readthedocs.io/en/stable/python/index.html
https://docs.xilinx.com/v/u/en-US/zynq-7000-product-selection-guide
https://docs.xilinx.com/v/u/en-US/zynq-7000-product-selection-guide
https://docs.xilinx.com/r/en-US/ug1144-petalinux-tools-reference-guide/Introduction
https://docs.xilinx.com/r/en-US/ug1144-petalinux-tools-reference-guide/Introduction
https://docs.xilinx.com/r/en-US/ug1144-petalinux-tools-reference-guide/Introduction

	Introduction
	Problem assessment
	Datasets and signals
	Algorithm development

	Proposed solution
	Hardware accelerator
	Linux application
	Results

	Conclusions

