
POLITECNICO DI MILANO
Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Aeronautica

2.2 . | il marchio, il logotipo: le declinaZioni

Aerodynamic Optimization based on a
Discrete Adjoint Framework and Radial
Basis Function Mesh Deformation in SU2

Master thesis of:
Luca ABERGO
Person code: 920826

Supervisor:
Full Prof. Alberto GUARDONE

Co-supervisor:
Dr. Myles MORELLI

Company tutor (Leonardo S.p.A.):
Ing. Riccardo GEMMA

Anno Accademico 2020/2021

Dedicata ai miei due nonni
siete qui con me

Ringraziamenti
Concluso questo percorso è giunto il momento dei ringraziamenti verso coloro che l’hanno reso possi-
bile. Comporta guardarsi indietro e ripensare a questi cinque anni abbondanti al Politecnico, già sale il
magone e il timore che questa parte diventi più lunga della tesi stessa.
In primis un doveroso ringraziamento a chi ha reso possibile questa tesi: il Prof. Alberto Guardone e
il Dr. Myles Morelli. In questi mesi mi hanno dato fiducia, sfidato, stimolato, trasmesso una goccia
delle loro competenze, facendomi sentire questo lavoro veramente mio e portandomi a raggiungere pic-
coli traguardi, come l’AIAA Aviation o la collaborazione con Leonardo Velivoli, che mai inizialmente
avrei sperato. Un ringraziamento all’Ing. Gemma di Leonardo Velivoli per aver condiviso la sua espe-
rienza nell’ambito della progettazione aerodinamica, fornendomi le geometrie di veri aerei progettati
da Leonardo, che sono state per me fonte di stimolo, crescita e un po’ di orgoglio.
Il più grande dei ringraziamenti va però a Mamma e Papà, per me vero riferimento e modello di vita
che spero un giorno di emulare. L’educazione, i valori e la cultura del lavoro che mi avete trasmesso
sono stati il fondamento di questo percorso e di ogni mio passo avanti. Mi avete dato tutto per poter
affrontare il Poli in serenità, spianandomi la strada ma senza mai impormi quale fosse. Mi avete incor-
aggiato e sostenuto, anche nelle mie attività extra, anche se mi allontavano dai miei studi, facendomi
però notare quando esageravo.
Un grazie importante a Chiara, mia sorella, coinquilina, talvolta migliore amica, talvolta... mamma mia
quanto ti vorrei strozzare. Spesso non riesco a trasmettere quanto tu sia fondamentale per me e quanto
ti ammiri, non c’è e non ci sarà momento importante in cui io non ti vorrò al mio affianco. Un grazie
ai miei parenti, in particolare a zia Carla, zio Lino e nonna Carla, per l’affetto mai mancato, anche da
lontato. Mi avete trasmetto i valori dell’umiltà, dell’altruismo, ad aprezzare le cose semplici e che la
felicità non è per forza lontano da casa ma nelle persone di cui ci circondiamo.
Ai miei due nonni, entrambi mi hanno salutato durante questa tesi. Due persone molto diverse tra loro,
ma entrambi perfezionisti e gran lavoratori. Ti trasmettevano quella sensazione di sicurezza in tutto
ciò che facevano e ti trasmettevano davvero qualcosa ogni volta che parlavano. Questa tesi è vostra e
sarete sempre con me.
In questi anni ho incontrato davvero troppe persone e stretto amicizie, alcune intense ma passeggere,
altre forti e spero durature. Sono stato molto lontano da Genova, eppure di qualcuno proprio non sono
riuscito a liberarmi. Tipo Michi, Eli, Pampo, Deffe (TheLucas), semplicemente ci siete costantemente,
da sempre e spero per sempre. Possiamo non vederci per mesi ma resta tutto uguale, oppure vederci
ogni giorno e la voglia di stare assieme non diminuisce mai. Non so quanti miei momenti di stress vi
siete sopportati e ogni vostra visita a Milano rimarrà scritta negli annali. A Francesco, Stefano, Andrea,
coach fede, al cnuc e alla vela in generale, son cresciuto con voi, diventato più forte di fisico e di testa,
imparato ad apprezzare la tensione pre-regata, ad allenarsi sempre anche quando si gela o c’è tempesta,
a non mollare fino alla linea dell’arrivo dell’ultima prova. Tantissime prime volte sono state con voi
e di certo non possono comparire in una tesi ma sicuramente siamo cresciuti assieme durante i nostri
lunghissimi viaggi per l’Europa con le barche dietro sul carrello. Un ringraziamento speciale va ad Au-
rora, sei stata per quasi tutto questo viaggio la mia marcia in più, hai reso felici tantissime giornate di
puro studio, non sarei qui con questi risultati e probabilmente non sarei neanche questa persona senza
te.
Poi ci sono le persone che sono nella mia vita relativamente da poco, vera eredità di questi anni a Mi-
lano.
Fra, Ale e Barte, non c’è esame o progetto che non abbiamo preparato assieme, in certi momenti senza
dubbio le persone con cui ho trascorso più tempo e se il Poli è stato così bello è tanto tanto merito
vostro.
Un grazie ad Adriana, Eleonora, Giampi, Giuse, Titti e al resto del gruppo, avete reso speciali, sop-

ii

portabili e piene di risate le infinite giornate in aula, amicizie ben oltre il semplice studiare assieme che
spero di non perdere e coltivare. Impossibile non citare Tami, Iva, Jordi, e tutti quelli che sono passati
in viale Evaristo Stefini 2. Auguro a qualsiasi fuori sede di avere l’immensa fortuna che ho avuto io
di trovare una casa del genere e dei coinquilini così pazzi Le parole noia e monotonia erano bandite
eppure in quella continua aria di festa e via vai di gente ho trovato il perfetto mix di studio e svago.
Per ultimo, ma solo per ordine cronologico, un mega grazie a Tati, Ira, Giulia, Iacopo, Belen, Flavia,
tutto Quarantasmus (eravamo troppi per nominarvi tutti) per aver condiviso con me questo folle Eras-
mus in piena pandemia, avrebbe potuto essere un disastro invece è stata un’avventura indimenticabile.
Grazie a voi ho riscoperto la bellezza di vivere in modi diversi dal mio e la voglia di avvicinarmi a
nuove culture. Con voi mi sono innamorato del Portogallo e di Lisbona, dove ho conosciuto la sorpresa
più bella e inaspettata di questi mesi, che ha reso imprevedibili ed emozionanti questi mesi di tesi e che
mi spinge a migliorarmi senza neanche accorgesene, Giorgia.

iii

Abstract

Automatic shape optimization (ASO), based on gradient method and computational fluid dynamic
(CFD), is becoming a powerful tool for aircraft design. This framework is turning to be increasingly
popular due to its ability to improve the performance and the efficiency of lifting surfaces such as
airfoils, wings and rotors. Discrete Adjoint is used to compute a high fidelity gradient of a selected
objective function, usually an aerodynamic coefficient, with respect to some design variables that de-
scribe and control the body’s geometry. In the open-source SU2 software, to contain the elevated
computational cost of a design loop, the adjoint is implemented taking advantage of Automatic Dif-
ferentiation with operator overloading and expression templates. The cost of computing the sensitivity
does not scale with the number of design variables selected however with the number of targets and
aerodynamic constraints. The research of the optimal shape, guided by the Sequential Least Square
algorithm, can be obtained properly morphing at each step the original body to close the distance with
the optimum. However, the result obtained is always going to be in the neighbour of the starting point
and dependent on it, thus a local minimum. The deformation is guided by the sensitivity of an objec-
tive function with respect to some design variables. Usually, it is required to minimize the drag without
decreasing the lift and not influence the momentum applied to the rigid body. The extension of the
design space explored is strongly influenced by the type of parametrization of the body surface and the
method used to update the computational grid. The number of design variables and constraints needed
to obtain a proper improvement of the aerodynamic performance must be investigated for each case
and the results are often counter-intuitive.

In this thesis a Radial Basis Function (RBF) mesh deformation is introduced into the discrete adjoint
framework within the open-source toolkit SU2. The RBF mesh deformation technique allows to han-
dle more complex geometries than the more standard elastic deformation approach, while enabling
larger movements to expand the design space. Data reduction schemes including multilevel greedy
algorithms are used to improve the computational efficiency of RBF mesh deformation on large data
sets. Numerical experiments show a significant reduction of physical memory usage and cpu time over
the linear elasticity analogy both for two-dimensional cases and for large, three-dimensional problems.
Additionally, the mesh deformation process is differentiated by Automatic Differentiation within the
discrete adjoint approach, resulting in method-dependent sensitivity of the design variables, thus al-
lowing the Sequential Least Squares Programming optimizer to converge to a new local minimum by
modifying the geometrical shape towards the final design.

The ASO implemented in SU2 is tested on a wide range of 2D and 3D test cases, subsonic and tran-
sonic. Some benchmark test cased are proposed to the CFD community by AIAA Aerodynamic De-
sign Optimization Group (ADODG), including the the Common Research Model (CRM) wing and the
RAE2822 airfoil. Furthermore, it is applied to a subsonic regional aircraft wing, which has been pro-
vided by Leonardo Aeronautics Division, the Italian leader company in aerospace field. The ultimate
goal of optimizing a non-planar wing, specifically a wing-winglet configuration, is achieved proving
the flexibility and robustness reached by the software.

iv

Sommario

L’ottimizzazione automatica delle superfici di un corpo aerodinamico, basata su metodi al gradiente
e sulla fluidodinamica computazionale, sta diventanto un potente e sempre più popolare strumento
a disposizione dell’ingegnere durante la progettazione di un aereo. La sua popolarità è in costante
aumento per la capacità di incrementare le performance e l’efficienza di superfici portanti quali pro-
fili, intere ali e pale rotanti. L’aggiunto discreto viene utilizzato per calcolare con elevata precisione
il gradiente di una certa funzione obiettivo selezionata, rispetto a un vettore di variabili che control-
lano e descrivono la geometria del corpo. All’interno del software SU2 con licenza open, per ridurre
l’elevato costo computazionale, l’aggiunto è implementato utilizzando la differenziazione automatica
con tecniche quali “expression temple” e “operator overloading”. Il costo legato al calcolo della sen-
sitività non scala rispetto al numero di variabili di controllo ma con la quantità di obiettivi selezionati
e vincoli aerodinamici imposti. La ricerca della miglior forma, eseguita usando SLSQP come algo-
ritmo, è ottenuta deformando gradualmente ad ogni ciclo il corpo iniziale, avvicinandosi sempre di più
all’ottimo. Tuttavia, il minimo raggiunto sarà sempre vicino al punto iniziale e dipendente da esso, in-
dividuando così un minimo locale. La dimensione dello spazio delle configurazioni possibili esplorate
dipende fortemente dal tipo di parametrizzazione scelta per il corpo e dal metodo usato per deformare la
griglia computazionale. Il numero di variabili di controllo e vincoli geometrici necessari per ottenere
un adeguato miglioramento delle performance aerodinamiche va investigato per ogni applicazione e
risulta spesso controintuitivo.

In questa tesi il metodo di deformazione della mesh chiamato “Radial Basis Function” (RBF) è inte-
grato in SU2 con l’aggiunto discreto. RBF, rispetto al più comune metodo basato sull’analogia elastica,
garantisce la capacità di gestire geometrie più complesse e applicare deformazioni maggiori aumen-
tando il numero di forme investigabili. Per migliorare l’efficienza computazionale di RBF, soprat-
tutto quando usato con mesh di grosse dimensioni, vengono applicati dei metodi di riduzione dei dati
come “greedy algorithm” e riduzione dei nodi del dominio computazionale spostati. Le simulazione
numeriche evidenziano una importante riduzione della ram usata e tempo cpu impiegato sia in casi
bidimensionali ma soprattutto nel 3D. All’interno del calcolo delle variabili aggiunte, il processo di
deformazione viene differenziato influenzando il valore della sensibilità ottenuto, questo può portare il
metodo di ottimizzazione basato sul gradiente a convergere in un minimo locale differente.

Il processo di ottimizzazione implementato in SU2 viene testato su un ampio numero di casi 2D e
3D, subsonici e transonici. Alcuni, come l’ala CRM e il profilo RAE2822, sono stati proposti alla
communità CFD dal gruppo ADODG dell’AIAA, in modo da avere dei casi di riferimento comune
su cui confrontarsi. Inoltre è stata ottimizzata un’ala di un veivolo da trasporto regionale in regime
subsonico, progettata e fornita dalla divisione veivoli di Leonardo, azienda aeronautica leader in Italia.
L’obbiettivo ultimo di migliorare le prestazioni di un’ala non planare, cioè provvista di winglet, è stato
raggiunto dimostrando la robustezza e la flessibilità del software.

v

Contents

List of Figures viii

List of Tables xi

1 Introduction 1
1.1 Sensitivity Analysis . 2

1.2 Optimization Chain . 3

1.3 Research Objective and Contribution . 5

1.4 Thesis Outline . 6

2 Sensitivity Computation 7
2.1 Finite Difference . 8

2.2 Direct Linearization . 9

2.3 Discrete Adjoint: Lagrange Multipliers . 11

2.4 Double adjoint . 12

2.5 Duality Preserving FPI and RPM . 13

2.6 Error Estimation . 15

2.7 Approximations . 17

2.8 Adjoint Variables Interpretation . 17

3 SU2 Optimization Chain 19
3.1 Code Structure . 20

3.2 Automatic Differentiation . 22

3.2.1 Forward Mode . 23

3.2.2 Reverse Mode . 24

3.2.3 Expression Template . 25

3.3 Free Form Deformation . 26

3.4 Sequential Least SQuare Programming . 28

4 Mesh Deformation Methods 31
4.1 Spring Analogy . 32

4.2 Linear Elasticity . 36

vi

4.3 Inverse Distance Weighting . 38

4.4 Radial Basis Functions . 39

4.4.1 Formulation . 40

4.4.2 Greedy Algorithm . 41

4.4.3 Volume Point Reduction . 42

5 Results-2D 44
5.1 NACA0012 Drag Minimization . 44

5.2 NACA0012 Efficiency Maximization . 48

5.3 RAE2822 Drag Minimization . 51

5.3.1 RAE2822 Double Adjoint . 51

5.3.2 RAE2822 ADODG Benchmark Test . 54

5.3.3 2D Mesh Deformation Performance . 57

6 3D Results 60
6.1 Onera M6 Drag Minimization . 60

6.1.1 Mesh Deformation Performance . 66

6.2 CRM Wing Drag Minimization . 67

6.3 Wing-Winglet Optimization . 74

6.4 Subsonic Wing Multipoint Optimization . 79

7 Conclusions and Perspectives 82

Bibliography 84

List of Figures

1.1 Differences Between Discrete and Continuous Adjoint Solvers, from [1] 3
1.2 Automatic Shape Optimization ASO, from [2] . 5

2.1 Framework for Computing the Surface Sensitivity . 8
2.2 Object Oriented Mesh Adaptation, from [3] . 16

3.1 Top level approach of Adjoint solver in SU2, from [4] 21
3.2 Optimization Design Chain, from [4] . 22
3.3 Example of FFD Box, from [5] . 27

4.1 Mesh Deformation Using Linear Spring Analogy, from [6] 33
4.2 Spring Analogy Improved with Torsional Springs, from [7] 34
4.3 Negative Area Element Generated by Spring Analogy, from [7] 35
4.4 Subdivision Of Hexaedron Into Tetrahedra, from [8] 37

5.1 NACA0012: CD Convergence . 45
5.2 NACA0012: CP Distribution . 45
5.3 NACA0012: Farfield Investigation CD . 45
5.4 NACA0012: Farfield Investigation CL . 45
5.5 NACA0012: Cd Respect to DVs . 46
5.6 NACA0012: Cd Vs Design Loops . 46
5.7 NACA0012: Initial and Final Surface Sensitivity . 47
5.8 NACA0012: Airfoil Shape and Cp Distribution . 47
5.9 NACA0012: Final Mach Field with ELA . 48
5.10 NACA0012: Final Mach Field with RBF . 48
5.11 NACA0012: Efficiency Respect to DVs . 48
5.12 NACA0012: Efficiency w.r.t. Design Loops . 48
5.13 NACA0012: Initial and Final Surface Sensitivity for Efficiency 49
5.14 NACA0012: Profile Shape and Cp for Efficiency Maximization 50
5.15 NACA0012: Final Mach Field with ELA for Maximum Efficiency 50
5.16 NACA0012: Final Mach Field with RBF for Maximum Efficiency 50
5.17 NACA0012: Airfoil Shape and Cp for Efficiency Maximization and Drag Minimization 51

viii

5.18 RAE2822: Cd Convergence . 52
5.19 RAE2822: Cp Distribution . 52
5.20 RAE2822: Cd Variation wrt DVs . 52
5.21 RAE2822: Cd Variation wrt Design Loops . 52
5.22 RAE2822: Original Mach Field . 53
5.23 RAE2822: Final Mach Field . 53
5.24 RAE2822: Profile Shape and Cp Distribution . 53
5.25 RAE2822: Final FFdbox . 54
5.26 RAE2822: O Grid Mesh . 54
5.27 RAE2822 ADODG: Optimization Process . 55
5.28 RAE2822 ADODG: Pressure Coefficient . 56
5.29 RAE2822 ADODG: Airfoil Shape . 56
5.30 RAE2822 ADODG: Original Mach Field . 56
5.31 RAE2822 ADODG: Optimized Mach Field . 56
5.32 RAE2822: Mesh Orthogonality with ELA . 57
5.33 RAE2822: Mesh Orthogonality with RBF . 57
5.34 RAE2822: Control Points 1 Level . 58
5.35 RAE2822: Control Points 2 Levels . 58
5.36 RAE2822: Control Points 3 Levels . 58
5.37 RAE2822: RAM Usage RBF 1 Level . 59
5.38 RAE2822: RAM Usage RBF 2 Levels . 59
5.39 RAE2822: RAM Usage RBF 1 Level . 59
5.40 RAE2822: RAM Usage ELA . 59

6.1 Onera M6: Medium Mesh . 60
6.2 Onera M6: Cd Convergence . 61
6.3 Onera M6: Cl Convergence . 61
6.4 Onera M6: Cp Convergence y=80%b . 61
6.5 Onera M6: Cp Convergence y=95%b . 61
6.6 Onera M6: Cd Variation . 62
6.7 Onera M6: volume and torque variation . 63
6.8 Onera M6: Isopressure Lines Upper Surface . 64
6.9 Onera M6: Isopressure Lines Bottom Surface . 64
6.10 Onera M6: Cp Optimization . 64
6.11 Onera M6: RBF Case 1 Control Points . 65
6.12 Onera M6: Adjoint Variable . 65
6.13 Onera M6: Performance Case 1 Rbf . 67
6.14 Onera M6: Performance Case 4 Rbf . 67
6.15 Onera M6: Performance Case 5 Rbf . 67
6.16 Onera M6: Performance Ela . 67

ix

6.17 CRM Mesh Convergence . 68

6.18 CRM: Cd Optimization . 69

6.19 CRM: Volume and Cmy Variation . 70

6.20 CRM: Pressure Isolines Upper Part . 71

6.21 CRM: Pressure Isolines Lower Part . 71

6.22 CRM: Adjoint Density . 72

6.23 CRM: Adjoint Energy . 72

6.24 CRM: Cp Optimization . 73

6.25 CRM: Original and Optimized Polar . 73

6.26 CRM: Cl Respect To AoA . 73

6.27 CRM: Efficiency Respect to Cl . 74

6.28 Onera M6 With Winglet Attached CAD . 75

6.29 Onera M6 With Winglet Mesh Convergence . 75

6.30 Onera M6 Original and Deformed Winglet . 76

6.31 Onera M6 Winglet Cd Optimization . 77

6.32 Onera Winglet: Cp Optimization . 78

6.33 Polar M=0.405 . 80

6.34 Efficiency vs Lift M=0.405 . 80

6.35 Polar M=0.2073 . 80

6.36 Efficiency vs Lift M=0.2073 . 80

6.37 Multipoint Optimization Cp . 81

*

List of Tables

3.1 Code Interpretation of a Generic Function . 23

3.2 Evaluation procedure using forward AD . 23

3.3 Compacted Evaluation procedure using forward AD 24

3.4 Code interpretation of a generic function . 25

4.1 Wendland Compact Support Functions . 41

5.1 Free Stream Conditions NACA0012 . 45

5.2 Free Stream Conditions RAE2822 1st Test . 51

5.3 Free Stream Conditions RAE2822 2nd Test . 54

5.4 RAE2822 Literature Results . 57

5.5 Mesh Deformation RAM Consumption . 58

6.1 Free Stream Conditions Onera M6 . 61

6.2 RBF Parameters . 66

6.3 Performance Results . 66

6.4 Free Stream Conditions CRM Wing . 68

6.5 CRM Mesh Orthogonality . 70

6.6 Free Stream Conditions Onera M6 with Winglet . 74

6.7 Mesh Orthogonality . 77

6.8 High Mach Multipoint Optimization . 79

*

xii

Chapter 1

Introduction

Automatic Aerodynamic Optimization based on Computational Fluid Dynamics (CFD) is a powerful
tool, able to improve the aero-performance, which has become a key step of a general aerodynamic
design process. It is applied to a wide range of aerodynamic lifting surfaces including airfoils, wings
and rotors. These aerodynamic lifting surfaces are highly sensitive to geometric modifications and even
slight changes in the shape can have a significant influence on the final design’s performance. The high
number of scientific papers about this topic highlights the sharp and increasing interest of the CFD
community and the aerospace industry. In fact, a recent review of the state of the art regarding shape
optimization [2] identifies a total of 304 remarkable papers, which appeared in more than 120 con-
ferences and journals. In the last forty years, researchers have focused efforts towards making shape
optimization reliable and robust, although many improvements are possible and necessary, especially
concerning multi-disciplinary design (MDO) and multi-objective optimization (MO).
As announced by the agenda of the Advisory Council for Aeronautics Research in Europe, the target
is to reduce by 75% the CO2 emissions per passenger kilometre and the noise by 65%. The airframe
contribution is estimated around 20%, besides automatic shape optimization (ASO) could play a key
role.
Optimization is intended as the search of the best configuration where, especially concerning gradient-
based ASO, the shape obtained is not a global minimum although is clearly superior than the original
one. The initial point, the type and the number of constraints, and the dimension of the design space
strongly affect the final result. For instance, Chernukin and Zingg [9] generated 224 random initial
shapes of a blended wing with a fixed number of DVs and they obtained 8 local optima. Every solution
satisfies the optimal condition with a 5% range among the objective functions obtained. In contrast to
what could be expected, increasing the Design Variables (DVs) or reducing the constraints does not
always improve the performance of the optimizer [10].
The optimization chain is really a secession of multiple steps interconnected, the complexity is due to
the fact that many different tools, sub-problems and mathematical aspects are involved, often they are
an open and active field of research. Shahpar from Rolls Royce [11] identifies and describes seven mod-
ulus, each one has clear inputs, a process and outputs, and he calls them the “optimization seven pillar”.
They are geometry parametrization, mesh generation and deformation, flow solver, optimization algo-
rithms, postprocessing, workflow management, and last IT issues. They are all connected and affect
each others thus a unique and consistent strategy is needed. The developer must have an overall view
of the context, from the mathematical aspects to programming challenges. This thesis briefly introduce
each modulus and presents more in details the Discrete Adjoint and Mesh Deformation methods.

1

Introduction

1.1 Sensitivity Analysis

In the early 1980’s, the CFD community began to include in their codes the capability to perform a sen-
sitivity analysis [12], which consist in the evaluation of the first derivatives of an aerodynamic quantity,
which has a clear dependence both on geometry and the flow, with respect to some design variables.
The DVs are the control parameters of functions that describes the surface of the body. Originally,
the gradients of interest were calculated by Finite Differences, which is the simplest method. Firstly
introduced by Reneaux and Thibert[13], it requires no modification of the solver itself, however the
computational cost scales up with the number of design parameters. A more advanced and sophisti-
cated method partially solving some issues linked to FD was proposed by Lyness and Morelli [14],
named complex step FD. However, the turning point was the application of optimal control theory
to incompressible flow equations, introduced by Pironneau [15]. Later, only with the famous article
of Jameson [16] (1988) in which the continuous adjoint method for aerodynamics was introduced,
shape optimization became attractive and affordable. For the first time it was possible to compute the
objective sensitivity with respect to design variables at the cost scaling with the number of objective
functions. The complexity of the applications progressed from 2D airfoil [17] to 3D wings [18] and
finally the optimisation of a complete aircraft. The continuous adjoint approach theory derives from a
natural extension of the linear algebraic duality theory to the partial differential equations (PDE). To
the variables space containing the flow state the duality variables vector is added, named in this context
as adjoint variables. It requires a deep manipulation of the flow equations and the boundary conditions,
only at the end the equations are discretized to perform the numerical solution. The complexity of
the mathematical formulation of the adjoint and the corresponding boundary conditions was partially
overtaken by Shubin and Frank[19]. They created a discrete version of Jameson’s adjoint method, that
they named “implicit gradient approach” but, soon after, it was called “discrete adjoint method”. In
this latter approach, the control theory is applied directly to the set of discrete flow equations. The final
system can be found also applying the duality theory, which seems more natural for some uses of the
adjoint variables such as error analysis where constrains are not involved.
This was the beginning of an endless debate between who is in favor of the Jameson’s method and
those in favor of the discrete formulation. They represent two very different ways of reaching almost
the same result. Many authors have dealt with the question which one is better by comparing different
codes, notably are the studies of Giles and Pierce [1] and Nadarajah and Jameson [20].
If the discrete adjoint equation is solved exactly, then the resulting values of the Lagrange multipli-
ers generate a perfect gradient of an inexact cost function and the derivatives are fully consistent with
complex-step gradients independent of the mesh size. This guarantee that the optimisation process can
converge. Meanwhile the accuracy of the continuous adjoint increases as the mesh is refined, although
there is a slight inconsistency between the discrete objective functions and the computed gradient. As
result, the optimisation process is more likely to get stuck in a local minimum. Indeed, the continu-
ous approach yields to a discrete approximation of the gradient of the analytic objective function with
respect to each of the DVs. It is not perfectly identical to the gradient of a discrete approximation of
the objective function. The implementation of the continuous adjoint is simpler, quicker and requires
way less virtual memory. There is total freedom on how to discretize the adjoint PDE, the choice is
not dictated by the primal flow discretisation since the solution of the adjoint system is consecutive to
the direct simulation and only the converged flow state is shared. In the context of the analytic for-
mulation, while studying a transonic Euler flow, the shocks have to be treated as discontinuities across
which the Rankine-Hugoniot shock jump relations are enforced. An additional boundary condition
must be imposed along the shock, requiring an automatic identification of the shock position, which is
still an hard task to accomplish. In practice, codes that use the continuous adjoint do not enforce this

2

Introduction

extra condition since it has been proven that the quality of the result is not affected [21]. Last, it does
not exist a continuous adjoint formulation for integral quantities defined inside the fluid domain since
the term of the flow sensitivity can not be cancelled along the integration contour of the farfield.
Concerning the open-source multiphysics solver SU2 [22], the discrete adjoint code is implemented by
Albring, Saugeman and Gauge [4]. The choice is driven by the capability to use Automatic Differentia-
tion to calculate the numerous Jacobians involved taking advantage of an external library named Codi-
Pack [23]. Even if the exact Jacobian, obtained by manually differentiate each terms were available,
it is often ill-conditioned avoiding the convergence of the solution. Software structure is conceptually
straightforward with the combination of automatic differentiation (AD) and discrete adjoint. However,
it is significantly more complex from the coding point of view. One of the major advantages is the
possibility to easily introduce different turbulence models and apply the adjoint also to multiphysics
cases such as fluid-structure interaction (FSI) or noise reduction [24]. [25].

Figure 1.1: Differences Between Discrete and Continuous Adjoint Solvers, from [1]

1.2 Optimization Chain

The exploration of the design space generating different shapes is entrust to a gradient-based optimiza-
tion algorithm based on the sensitivity computed with the adjoint. This natural choice has attached
some limitations. It is only applicable when the value of the design variables is continuous and in the
case that the objective function has multiple minimum, then the gradient approach will likely converge
to the nearest local minimum, where “nearest” is intended respect to the starting point. This means that
the software is not able to drastically change the shape of a body. It is a powerful tool in the last steps
of a design process, when the general characteristics of the object are defined, the performances are al-
ready sufficiently close to the standard required, and it is necessary to further improve the aerodynamic
coefficient in a way that is manually difficult to achieve. Therefore, not the entire designed space, just a
limited area around the starting point is explored properly. An error in just one step of the optimization
loop, due to a lost of mesh quality during the deformation process or a Jacobian ill-conditioned, would
lead to a strong interruption of the optimisation chain. If a genetic algorithm would be applied, a flow

3

Introduction

code failure would be treated as one member of the population not evaluated. Although, the choice of
a genetic algorithm (GA) limits the number of design variables to less than ten, while regarding 3D
bodies a sufficient accurate description of a surface requires hundreds of design variables. Moreover,
the convergence of gradient based codes is significantly improved with respect to genetic algorithm
codes. The open-source suite SU2 performs optimisation using the Sequential Least Squares Program-
ming (SLSQP) [26], the process ends when the convergence criteria, the Karush-Kuhn-Tucker (KKT)
conditions are satisfied [27] or the maximum number of design iterations is reached.
Once the surface sensitivity is obtained by the adjoint method, in order to explore the entire design field
the software must have the capability to morph the body and update the mesh. Firstly, the wall bound-
aries need to be mathematically described. Shape parameterisation techniques can be divided into eight
categories [28]: free-form deformation, partial differential equations, polynomials and splines, basis
vector, domain element discrete or analytic, and computer-aided design (CAD). Only FFD and CAD
among all these are efficient, compact and suitable for complex configuration. CAD is also able to
describe large geometry deformation, commercial codes are based on FBSM functions to generate the
parametric description. Existing feature-based solid modeling concept are not able to calculate sen-
sitivity derivatives analytically so, up to now, they are not suitable for automatic shape optimisation.
Instead, FFD is a subset of the Soft object animation codes adopted in computer graphics for morphing
images. In this thesis it is extensively applied for its ability to handle arbitrary geometry and as it does
not require the grid connectivity. FFD directly parametrize the nodes locations, meaning that it does
not need the abstraction of the geometry, although is able to handle only small or medium geometry
changes. The basic idea is to embed the body and the mesh inside a box of flexible plastic then, as the
block is deformed, the grid is consistently shifted [29]. The box, which can have a cuboid, cylindrical
or spherical shape, can be segmented in an arbitrary number of sub-modulus which vertices are shifted
for beginning the deformation process.
The surface grid displacement is extracted with a local interpolation inside the FFD box, then the
volume mesh is update to the new boundaries for the subsequent simulation. Concerning three-
dimensional problems, remeshing the entire geometry has been adopted in the past as in the NERONE
project [30]. Automatic mesh generation is time and CPU consuming moreover, a proper mathematical
description of the object is required. Each surface has to be split in regions by segments of Bspline
curves, for non-planar geometries this is still a hard task. In the case of 3D viscous flow, an hybrid
mesh able to capture the boundary layer and respect the turbulence model requirement of y+ < 1 is
needed, therefore the human intervention is currently unavoidable. Moreover, mapping the solution
from the previous mesh to the new one consumes extra CPU effort and time. Consequently, remeshing
is undesirable and the approach is not considered within this thesis. The mesh deformation option is
for now more reliable and intensively investigated by the CFD community. Many methodologies have
been developed, since mesh deformation is also used in the context of unsteady simulations with bodies
moving in relative motion. They differentiate from each other for the robustness, the capability to ob-
tain large deformation, to handle an arbitrary type of grid and the requirement of the mesh connectivity.
Handling structured grid is way easier than unstructured and dealing with small deformation is simpler
than large deformation. Talking about deformation, what is relevant is the entity of the local displace-
ment, the relative movement between two adjacent nodes, not the entire body distortion such as the
inflexion of the tip of a wing respect to the root. The techniques for modifying the fluid mesh matching
the new solid body can be split into two main classes: physical analogy and interpolation technique
[31]. The first one creates a similarity with a physical process that can be modeled using numerical
methods, the spring analogy introduced by Batina [32] and linear elastic equations first presented by
Baker and Cavallo [33] belong to this category. The most relevant drawback of physical analogy meth-
ods is that they generate a large system of equations, implying a higher computational cost. They also

4

Introduction

are more difficult to parallelize. Mesh deformation using interpolation does not need the connectivity
information, therefore can be apply to any kind of mesh that contain general polyhedral elements or
hanging nodes [34]. The two main techniques are Inverse Distance Weighting methods (IDW) and Ra-
dial Basis Function (RBF). Memory requirement is clearly less compared to physical schemes, however
the coding complexity is increased and an intrinsic error due to interpolation is introduced.

Figure 1.2: Automatic Shape Optimization ASO, from [2]

1.3 Research Objective and Contribution

Inside the optimization chain, the mesh deformation module has been identified by the author of this
thesis a crucial and critical module. The routine to update the mesh is differentiated inside the ad-
joint computation accordingly it directly influences the computation of sensitivity of design variables.
Besides, the possibility of the mesh deformation techniques of handling arbitrary geometry and apply
significant displacements to the nodes strongly impacts the possibility of properly explore the design
space. A loss of quality properties in the output grid could cause the divergence of the RANS or of the
adjoint simulation. Moreover, the computational cost, especially the ram consumption of this step is
not irrelevant, sometimes even higher than during the computation of the sensitivity.
The key contribution from this thesis is the introduction of Radial Basis Function mesh deformation
into a gradient based discrete adjoint design optimization framework. Radial Basis Function mesh de-
formation has successfully been used in the past as part of design optimization frameworks and its has
been already highlighted [35]. However the significant computational cost of standard Radial Basis
Function mesh deformation has meant alternative mesh deformation techniques have been preferable
for three-dimensional problems. Moreover Radial Basis Function mesh deformation is yet to be used
alongside a discrete adjoint framework. This thesis seeks to address this and investigates the benefits
of Radial Basis Function compared to standard mesh deformation techniques in a gradient based dis-
crete adjoint framework. This work harnesses state-of-the-art data reduction schemes to address the
major weakness of radial basis function mesh deformation for large-scale three-dimensional problems.

5

Introduction

The robustness and high mesh quality properties of radial basis function mesh deformation allow for
the design optimization of topologically complex geometries including transonic wings and winglets.
Therefore the Radial Basis Function mesh deformation method implemented in SU2 [36], has been in-
troduced into with the discrete adjoint framework. The target is to obtain a process of optimization that
is able to handle more complex geometries, while enabling larger deformations to expand the design
field automatically explored. This should make SU2 automatic shape chain easier and more attractive
for industrial applications. To further increase the robustness it has been modified the way with the
DVs sensitivity are scaled at each design loop, assuring that the maximum surface displacements is
contained inside the range [0.5mm;1cm]. Moreover, it is now possible to apply geometrical constraints
also on planes with norm in z direction, which is essential for the optimization of a non-planar wing.
The new optimization chain is compared with a shape optimization process using a linear elastic anal-
ogy as mesh deformation method. The comparison is made with the 2D and 3d wing benchmark
optimization problems proposed to the CFD community by AIAA Aerodynamic Design Optimization
Group (ADODG). Every test case is performed both with RBF and ELA for updating the grid, the
results are compared also in terms of virtual memory consumption. Thanks to Leonardo Aeronautics
Division which provided the CAD of real subsonic wing of a regional airplane, the ASO robustness is
evaluated also on an industrial case. The final goal is to optimize a non-planar wing. The optimization
of a combined wing-winglet is primary executed using wind tunnel experiments [37], zero gradient
method [38] or codes based on vortex lattice methods [39].

1.4 Thesis Outline

The thesis is structured as follows: Chap. 2 describes the numerical methods used for compute the
sensitivity including the discrete adjoint approach and how to solve the system obtained. Chap. 3 ex-
plains how the automatic shape optimization is implemented in SU2 and how the required Jacobian are
computed using Automatic Differentiation. Besides, the same chapter contains the gradient-based op-
timization algorithms description and the mathematical formulation of the geometrical parametrization
method FFD. In the Chap. 4 interpolation technique and physical analogy for mesh deformation are
exploited with a deep focus on RBF. Chap. 5 and Chap. 6 show the results of the 2D and 3D test cases.
Finally, Chap. 7 discusses the main findings from the work done and the perspectives moving forward.

6

Chapter 2

Sensitivity Computation

With Automatic Shape Optimization by mean of Computational Fluid Dynamics, it indicates a process
whose target is to increase the aero-performance of a generic solid modifying the external part of a body
in contact with the fluid. First of all, a mathematical description of the wet surface is needed, generating
some free and continuous parameters that directly manage the shape. The object is immersed in a flow
volume that has to be discretized by a grid. The mesh itself has a clear dependence on the wall surface.
The design parameters are collected in a vector denoted α with size nα that belong to an abstract domain
Dα which represents all the infinity possible shapes of the solid. The volume mesh is indicated with
Xvol of size nv and the surface grid Xsur f of size ns. The mutual connection can be underlined writing
X = Xvol(Xsur f (α)) which is supposed to be at least continuously differentiable. Selecting a specific
objective function J, such as an aerodynamic coefficient as Cd or torque moment, the minimization
problem can be written as:

min
α

J(U(α),X(α))

subject to R(U(α),X(α)) = 0 (2.1)

The state variables U of a steady flow solution are computed using a finite volume scheme that dis-
cretize the compressible RANS equations. Selecting a specific numerical flux including Jameson-
Schmidt-Turkel (JST)[40] or Roe approximate Riemann solver [41] and a slope limiter that enables
second-order space integration, the flow residual R(U) is obtained. The optimization problem has a
steady state constraint that is expressed by equation 2.1. In every cell where the RANS calculation is
performed, the flow is assumed to be exactly converged:

R(Ui,Xi) = 0 and det(
∂R
∂W

)[Ui,Xi] 6= 0 (2.2)

From this assumption derives the practical necessity to obtain a very small final residual during the
iterative solution of the flow equations. The existence of an open set DX containing Xi and C1 unique
function U is certificated by the implicit function theorem, such that:

U(Xi) =Ui R(U(X),X) = 0 ∀X ∈ DX (2.3)

U is assumed to be continuous and differentiable respect to the design parameters α all over Dα . Since
the Navier-Stokes equations are solved, U can be split in two vectors, pure flow variables U f and
usually one or two terms linked to the turbulence model adopted, accordingly we have:

U :=
(

U f

Ut

)
R(U f ,UT) =

(
R f (U f ,Ut)
Rt(U f ,Ut)

)
(2.4)

7

Sensitivity Computation

The research inside Dα of the best shape is driven by a gradient-based algorithms, therefore the sensi-
tivity of the functional respect to the design variables is required. In general J can be composed by n f

functions denoted as Jk, each one has to be defined and differentiated w.r.t the design parameters. The
dependence among the objective functions, α and the mesh can be clarified by:

Jk(α) = Jk(U(α),X(α)) k ∈ {1 . . .n f } (2.5)

Originally, the goal was to calculate ∂Jk(α)
∂αi

which are n f × nα derivatives. Instead, more recent codes
compute the total derivative dJk

dX with k ∈ {1 . . .n f } that incorporate the direct influence of the nodes po-
sitions and the indirect influence caused by a change in the flow field to reach steady state convergence.
In this chapter different methods to compute the tangent are reported in chronological order, starting
from Finite Difference in Sec. 2.1. A deep focus is posed on the discrete adjoint in Sec. ??, which
method is implemented in SU2 and used in this thesis inside the optimization chain. Moreover, the
approximations introduced with the adjoint are underlined in Sec. 2.7 and an attempt to give a physical
interpretation and a different use of the adjoint variables are described in Sec. 2.6 and Sec. 2.8.

Figure 2.1: Framework for Computing the Surface Sensitivity

2.1 Finite Difference

Finite Difference is the simplest and oldest method for obtaining the object function gradient since it
does not require any modification of the solver. It was used in the optimization scheme for airfoils
by Hicks [42] and Vanderplaats [43]. The discrete flow solution has to be calculated around the foil
defined by α and also for perturbed α + δα and α − δα . Typically, a second-order finite difference
is used. If the body is described using an FFD box, which method is described in Chap. 3, δαl with
l ∈ (1 . . .nα) means a shift of a vertex, marked as design variable, in the direction l of a quantity δα .
Two mesh deformations, X(α + δαl) and X(α − δαl), need to be performed and two flow solutions
computed on the morphed grids, satisfying:

R(U(α−δα),X(α−δα)) = 0, R(U(α +δα),X(α +δα)) = 0 (2.6)

The method is impractical for a large number of design variables since the matrix dJ(α)
dα

is computed at
the cost of 2× nα times the cost of a single flow solution. The single component of the matrix is the
approximation of the derivative in the direction δα by a centered finite difference formula:

dJk(α)

dαl
δαl ≈

1
2
[Jk(U(α +δα),X(α +δα))− Jk(U(α−δα),X(α−δα))] ∀k ∈ {1 . . .n f } (2.7)

8

Sensitivity Computation

One critical point is how to set the step size ‖ δα ‖. The choice strongly influences the accuracy of
the gradient computed. If the step is too small, the rounding error becomes important otherwise, if too
large, the truncation of the higher orders in the Taylor expansion operated is not valid anymore. If ε

is the machine error, which is the upper bound of the relative error due to rounding in floating point
operations, then:

‖ δα ‖>> ε ‖ α ‖ ‖ δα ‖>> ε
|J(α)|
|dJ(α)

dα
|

(2.8)

The ideal step can be found only through a time-consuming parametric study. Since J has to be eval-
uated two times, the two simulations must converge in the same number of iterations on two very
similar meshes with almost the same quality properties. In case of complicated configurations also, the
presence of multiple solutions represents a serious issue [44]. To address this issue, a complex step
finite difference method was introduced. Originally developed by Lyness and Moler in 1967 [14], they
introduced a reliable way to compute the nth derivative of an analytic function. The potential for shape
optimization was fully understood by Anderson in 1999 [45]. This approach is now used as a method
of validation for discrete adjoint approach [46]. Consider a function, f = u+ iv, of complex variable
z = x+ iy. If f is differentiable in the complex plane, the Cauchy-Riemann equations apply:

∂u
∂x

=
∂v
∂y

, (2.9)

∂u
∂y

=−∂v
∂x

.

Once a real h quantity is chosen, the right hand side of the first equation can be modified using the
definition of the derivative.

∂u
∂x

= lim
h→0

v(x+ i(y+h))− v(x+ iy)
h

(2.10)

Since the function of interest is of real variables imposing y = 0, v(x) = 0, u(x) = f and a small enough
h the previous equation can be simplified in:

∂ f
∂x
≈ Im[f (x+ ih)]

h
(2.11)

This method is not subject to subtractive cancellation errors which is advantageous. Furthermore, h
can be chosen close to ε machine [47].

2.2 Direct Linearization

Discrete adjoint equations can be obtained in several different ways. Two approaches widely used in
literature are discussed in the following sections. The fundamental assumption for all the theories is
that the computed flow state U∗ is a fully converged solution of the discretized flow equations, given in
residual form as:

R(U∗(α),X(α)) = 0 (2.12)

J = J(U∗(X(α)),X(α)) is the objective function that has to be minimized. Design variables do not
appear explicitly. However, it can be noticed that the flow residual and the objective function depend
on the flow variables at the grid point position, which in turn are linked to the shape of the body, thus

9

Sensitivity Computation

to the vector, α . The gradient of J respect to α is obtained by straight forward differentiation. The
superscript ∗ indicating the converged flow variables has been dropped for clarity of the reader:

dJ
dα

=
∂J
∂X

∂X
∂α

+
∂J
∂U

∂U
∂X

∂X
∂α

(2.13)

The slope of the flow variables with respect to the grid coordinates can be extracted by differentiating
Eq. 2.13, which yields: [

∂R
∂U

]
∂U
∂X

=− ∂R
∂X

(2.14)

Substituting Eq. 2.13 in the Eq. 2.14 it is obtained:

dJ
dα

=

[
∂J
∂X
− ∂J

∂U

[
∂R
∂U

]−1
∂R
∂X

]
∂X
∂α

(2.15)

Thus with a sequence of matrix-vector multiplications the sensitivity of the objective function with
respect to the design variables is obtained. The Jacobian of the governing flow equations has to be sep-
arately computed and stored, further also the mesh sensitivity has to be available. The Jacobian matrix
is in general sparse, instead the inverse matrix is dense and in general not feasible to be computed.
Further, it is memory consuming. For each variable the product:[

∂R
∂U

]−1
∂R
∂X

∂X
∂α

(2.16)

can be also produced by solving the system of equations:[
∂R
∂U

]
∂U
∂α

=− ∂R
∂α

(2.17)

The adjoint method solves the issue of evaluating numerous linearized flow solutions for a large number
of design parameters by computing at the beginning the product:

∂J
∂U

[
∂R
∂U

]−1

= Λ
T (2.18)

and inserting Eq. 2.18 in Eq. 2.15. Finally, rearranging Eq. 2.18 the Adjoint Equation is obtained:[
∂R
∂U

]T

Λ =

[
∂J
∂U

]T

(2.19)

How to properly compute the solution is explained in Sec. 2.5. The cost of the solution is the same of a
single linearized flow equation problem. With the discrete adjoint it is possible to compute the tangent
of a Jk respect to all the elements contained in α , at the cost of a flow and an adjoint simulation. The
cost scales linearly with the number of objective functions selected and the aerodynamic constraints
since they are treated as a target of the optimization. If nk becomes comparable to nα , considering
the high Cpu cost of the adjoint and the complexity of the code involved, it is more appropriate to
use the traditional Finite Difference approach. Although, this case is not typical in the aeronautical
industry where the target is usually to minimize the drag or maximise the efficiency with a couple
of aerodynamic constraints regarding the lift and torque moment. Meanwhile, the solid that needs
to be investigated, especially in 3D, requires hundreds of design variables for a proper geometrical
description. As a result, the discrete adjoint approach is computationally advantageous.

10

Sensitivity Computation

2.3 Discrete Adjoint: Lagrange Multipliers

The easier way to introduce the adjoint formulation is to use the Lagrange multipliers. Again, the
optimization problem including a steady state constraint can be expressed as:

min
α

J(U(α),X(α))

subject to R(U(α),X(α)) = 0 (2.20)

X(α) = M(α) .

In analogy with the work of Nielsen [48] the problem can be rewritten defining a Lagrangian function:

L(α,U,X ,Λ) = J(α,U,X)+Λ
T R(α,U,X) (2.21)

The vector of Lagrange multipliers is denoted by Λ, every element is an unbounded free parameter.
A change in value of a design variable means a modification of a certain physical boundary where a
wall condition is applied. This would cause a deviation of the flow state U from the original value to
satisfy the new boundary conditions and similarly a change of the surface and volume grid. It is always
assumed to be dealing with smooth and continuous variations. Since Eq. ?? has to be respected, we are
adding a null term, meaning that the Lagrangian function L has the same value of the objective function
J, however the derivatives of L will reflect the fact that the constraint must be satisfied. Differentiating
Eq. 2.21 with respect to the design parameters yields:

dL
dα

=

{
∂J
∂α

+

[
∂X
∂α

]T
∂J
∂X

}
+

[
∂U
∂α

]T {
∂J
∂U

+

[
∂R
∂U

]T

Λ

}
+

{[
∂R
∂α

]T

+

[
∂X
∂α

]T [
∂R
∂X

]T }
Λ

(2.22)
Since Λ is arbitrary it is possible to remove the terms multiplied by

[
∂U
∂α

]
solving the adjoint equation:

[
∂R
∂U

]T

Λ =

[
∂J
∂U

]T

(2.23)

Using a different approach, the same Eq. 2.19 has been obtained. Therefore, the unknown vector of
Lagrange multipliers can be now computed, meanwhile the remaining terms of Eq. 2.22 can be used to
evaluate the Lagrangian sensitivity:

dL
dα

=

{
∂J
∂α

+

[
∂X
∂α

]T
∂J
∂X

}
+

{[
∂R
∂α

]T

+

[
∂X
∂α

]T [
∂R
∂X

]T }
Λ (2.24)

The terms
[

∂R
∂U

]T
and

[
∂R
∂X

]T
, which represent the derivative of the residual with respect to the flow

variables and the grid nodes, for a structured grid they can be explicitly constructed and stored. The
first term is closely linked to the discretization method used. The term

(
∂X
∂α

)
is the mesh sensitivity, it

depends on the mesh movement strategy implemented. While considering the linear elasticity analogy
technique for updating the mesh, the equations which require solving are:

∇
2u+

1
1−2ν

∂∇V
∂x

= 0 ∇
2v+

1
1−2ν

∂∇V
∂y

= 0 (2.25)

where ν is the Poisson’s ratio and V is a two component vector (u,v) which elements are the node
displacements in the two directions. However the cost of solving the equations is significant. The

11

Sensitivity Computation

overall system can be written using the stiffness matrix K, which can be computed with a loop on each
cell and than stored:

KX = Xsurf (2.26)

At the same cost of a mesh movement however for each design variable in α the mesh sensitivity can
be computed from:

K
∂X
∂α

=

(
∂X
∂α

)
surf

(2.27)

The CPU cost and the high virtual memory consumption linked to the calculation of the volume mesh
sensitivity are however significant limitations for large three-dimensional problems.

2.4 Double adjoint

In summary, three type of sensitivity are required: flow, shape and grid sensitivity. The latter has a com-
putational cost that strongly impact the optimization chain, especially concerning large unstructured
meshes. “Double adjoint” or “adjoint mesh” is a technique that for the first time allows the discrete
adjoint computation to be really free from any cost related to the number of design variables involved.
In the mid 2000’s it became clear that computing ∂X

∂α
was computationally restrictive limiting in prac-

tice the cost independence of the adjoint from the length of α vector. All costs scaling with the design
parameters must be avoided. One elegant way to remove the volume mesh sensitivity from the discrete
adjoint was proposed by Nielson and Park [49]. It must be highlighted that the surface sensitivity still
depends on the grid deformation method selected even if the volume mesh sensitivity is eliminated.
The total mesh can be considered as sum of two different components X = Xvol +Xsurf = M(α) where
Xvol = Xvol(Xsurf). It means that the volume grid depends explicitly on the wall mesh, that depends in
a smooth way on the design variables. No assumptions on the structure of M are considered, except
that is differentiable. The solution process of Eq. ?? can be transformed into a fixed point equation
Un+1 =: G(Un) which is discussed in the following chapter. The optimization problem acquires an
additional constraint and now takes the form of:

min
α

J(U(α),X(α))

subject to U(α) = G(U(α),X(α)) (2.28)

X(α) = M(α) .

A new Lagrangian equation associated to this problem can be created:

L(α,U,X ,∆ f ,Λg) = J(U,X ,α)+ [G(U,X)−U]T Λ f +[M(α)−X]T Λg (2.29)

where Λ f represents the adjoint variables linked with the flow state, meanwhile Λg is a new set of
adjoint variables multiplying the residual of the grid movement problem. Both vectors can assume
arbitrary values. Introducing in Eq. 2.29 the shifted Lagrangian N(U,Λ f ,X) := J(U,X)+G(U,X)T Λ f

a more simple expression is obtained:

L(α,U,X ,Λ f ,Λg) = N(U,Λ f ,X)−UT
Λ f +[M(α)−X]Λg (2.30)

As in the previous section L has to be differentiated with respect to the design variables using the chain
rule. Taking advantage of the free value of the adjoint vectors, the terms ∂U

∂α
and ∂X

∂α
can be eliminated.

This leads to two adjoint systems that need to be solved:

Λ f =
∂N
∂U

=
∂JT

∂U
+

∂GT

∂U
Λ f (2.31)

12

Sensitivity Computation

Λg =
∂N
∂X

=
∂JT

∂X
+

∂GT

∂X
Λ f (2.32)

The total derivative of J is reduced to:

dL
dα

T
=

dJ
dα

T
=

dM(α)T

dα
Λg. (2.33)

For the sake of clarity, if the linear elasticity approximation is selected as grid deformation strategy,
Eq. 2.26 provides the explicit relation between volume and surface mesh. Therefore, equations Eq. 2.29
and Eq. 2.33 can be specialized to this case:

L(α,U,X ,Λ f ,Λg) = J(U,X ,α)+ [G(U,X)−U]T Λ f +[Xsurf−KX]T Λg (2.34)

KT
Λg =−[

∂J
∂X

+

(
∂R
∂X

)T

Λ f] (2.35)

The final form of the sensitivity vector turns out to be:

dL
dα

=
∂J
∂α

+Λ
T
f

∂R
∂α
−Λ

T
g

∂Xsur f

∂α
(2.36)

With respect to the previous section, the term ΛT
g

∂Xsurf
∂α

is cheaper to be calculated and it only requires
an explicit inner product. Its size is linked to the length of the α vector and to the number of surface
nodes and not to the entire grid extension. ∂Xsurf

∂α
depends on the shape parametrization selected, which

creates the mathematical relation between the surface nodes and the DVs, it is usually linearized using
finite difference. It is interesting to notice that if the design variable is a flow entity, such as the Mach
number or the side slip angle, the terms ∂R

∂X and ∂X
∂D are null therefore the Eq. 2.36 becomes really fast

and cheap to be computed.

2.5 Duality Preserving FPI and RPM

In this section it is explained how to solve the discrete flow and adjoint equations. Besides, a stabi-
lization method is introduced. Once the finite volume method has been applied to the RANS equation,
using an implicit Euler scheme with pseudo-time integration we end up with a linear system to be
solved in n iterations: (

Dn +
∂R(Un)

∂Un

)
∆Un =−R(Un) (2.37)

∆Un
i =Un+1

i −Un
i (Dn)i j =

|Ωi|
∆tn

i
δi j (2.38)

where Ωi is the volume of the cell i. The pseudo time associated has a different value in each cell
owing to a local time-stepping technique. Eq. 2.37 can be rearranged into a Fixed Point Iteration (FPI)
U = G(U). The same feasible solution can be extracted from:

Un+1 = G(Un) :=Un−P(Un)R(Un) where P(U) :=
(

D+
∂ R̃(U)

∂U

)−1

(2.39)

The tilde suggests that an approximated Jacobian can be used. G is stationary only at the feasible point.
Once the converged solution U∗ is available, we can solve the adjoint Eq. 2.31. The convergence of the
adjoint equation is guaranteed under the assumption that G is contractive, than also ∂N

∂U is contractive.

13

Sensitivity Computation

The condition ‖ ∂G
∂U ‖< 1 should be reached at a certain level of convergence.

A more general fixed point iteration, including Runge-Kutta and implicit schemes can be expressed
using a preconditioning matrix M like:

M(Un+1−Un) =−R(Un) (2.40)

Linearizing around the exact solution U∗, we obtain:

Un+1 = (I−M−1A)Un +g(U∗)+ ‖Un−U∗ ‖2 (2.41)

where A= ∂R
∂U is the Jacobian evaluated at the exact solution and g(−) is a general function independent

of the iteration. A close relation with the linearized problem is evident. We consider the Fixed Point
Iteration:

M(Ωn+1−Ω
n) =

∂R
∂X

∂X
∂α
−AΩ

n (2.42)

Ω
n+1 = (I−M−1A)Ωn +M−1

(
∂R
∂X

∂X
∂α

)
(2.43)

In these two iterations W n and Ωn are the same, therefore for a converged nonlinear iteration the errors
contract at the same speed, therefore the convergence behaviour is the same. The rate of convergence is
dictated by the greatest eigenvalue of (I−M−1A). Regarding the adjoint expression, it can be obtained
a very similar FPI:

MT (Λn+1−Λ
n) =

[
∂J
∂U

]T

−AT
Λ

n (2.44)

or rearranged into:

Λ
n+1−Λ

n = (I−M−T AT)M−T
[

∂J
∂U

]T

(2.45)

Remembering that any real matrix and its transpose have identical eigenspectra, Eq. 2.45 will have the
same convergence property of Eq. 2.43. A further convergence statement can be expressed requiring
that Ω0 = Λ0 = 0 and expanding the two equations to the Nth iteration:

Ω
n+1 =−

N

∑
n=0

(I−M−1A)nM−1
[

∂R
∂X

∂X
∂α

]
(2.46)

Λ
n+1 =−

N

∑
n=0

(I−M−T AT)nM−T
[

∂J
∂U

]T

(2.47)

It quickly follows that: [
Λ

n+1]T [∂R
∂X

∂X
∂α

]
=

[
∂J
∂U

]T

Ω
n+1. (2.48)

Therefore the adjoint and the flow results for ∂J
∂α

are identical not only when the equations are fully
converged, although also at every intermediate step.
Going back to the simpler formulation, in reality the condition ‖ ∂G

∂U ‖< 1 is not granted, the solver
could end up in a limit cycle oscillation, where the residual cannot be reduced anymore. Minor unsteady
physical phenomena are often present and they are reflected by the fixed point iteration behaviour due
to the pseudo-time introduced, causing the stall of the convergence. Therefore, the lack of convergence
is linked to the presence of m eigenvalues of the matrix G(U∗)T with modulus greater than one:

|λ1| ≥ · · · ≥ |λm| ≥ 1. (2.49)

14

Sensitivity Computation

From the eigvector corresponding to the greatest eigvalue in modulus, we define the unstable subspace:

P := span{v1,v2, . . . ,vm} (2.50)

and its orthogonal complement Q = P⊥P. They both are linear sub-spaces and the sum creates RN ,
thus every x ∈ RN can be expressed as:

x = xp + xq xp ∈ P, xq ∈Q (2.51)

If V ∈RNxm is an orthogonal base of P and VV T = I, two orthogonal projections P and Q can be defined
as:

P :=VV T , Q := I−VV T (2.52)

For the Recursive Projection Method (RPM), a more stable method is used on the projection of the
iteration into the unstable subspace P while the usual iteration is applied on the stable complementary
projection. This can be translated into:

Λ
n+1
q = QNU(Λ

n
p +Λ

n
q) (2.53)

Λ
n+1
p = PNU(Λ

n
p +Λ

n
q) (2.54)

Λ
n+1 = Λ

n+1
p +Λ

n+1
q (2.55)

Eq. 2.53 converges if Λn
p is fixed. However, Eq. 2.54 has poor convergence properties. It must be

replaced with an implicit equation and by a linearization around Λn
p:

Λ
n+1
p = PNU(Λ

n+1
p +Λ

n
q)+PGT

U P(Λn+1
p −Λ

n
q) (2.56)

∆Λ
n
p = (I−PGT

U P)−1 [PN(Λn)−Λ
n
p
]

so Λ
n+1
p = Λ

n
p +∆Λ

n
p (2.57)

where ∆Λn
p = Λn+1

p −Λn
p. What is missing is how the basis V can be constructed. The original method

was proposed by Shroff and Keller [50], called Krylov acceptance criterion. It is based on the idea
that the vectors ∆Λn

q lie in the dominant eigenspace of QGT
U Q since they are power iterations applied

to ∆Λ0
q. The problem is the fact that only the residual of the eigenspace of QGT

U Q is used and not its
eigenvalues, so the dimension of the unstable subspace can be overestimated [51].

2.6 Error Estimation

This section shows one possible usage of the adjoint variables different from the optimization process.
Discrete Adjoint is becoming widely spread in the field of mesh adaptation. Consider a coarse mesh
ΩH [52], dense enough to obtain a good convergence however at the same time affordable respect to
the computational resources available. H is a characteristic length associated with the cell spacing
in a finite volume scheme. The interest is always to compute an object function J(U) increasing the
accuracy. Since we are able to solve the Eq. 2.20 the discrete value JH(U∗H) is computed and stored.
A finer mesh Ωh can be constructed from the coarser one, splitting each element into n self-similar
sub-elements, where n is an integer number. The parameter n can be easily computed: n =

[H
h

]d where
d is the spatial dimension of the problem. To estimate Jh(Uh) without running a CFD simulation on the
finer mesh, the object function has to be expanded in Taylor series:

Jh(Uh) = Jh(UH
h)+

∂Jh

∂Uh

∣∣∣
UH

h

(Uh−UH
h)+ . . . (2.58)

15

Sensitivity Computation

The term ∂Jh
∂Uh

∣∣∣
UH

h

is the linear sensitivity of the fine-mesh functional. UH
h is a vector indicating the

coarse mesh solution mapped into the fine mesh using a prolongation operator IH
h :

UH
h = IH

h UH (2.59)

The order of the operator must be greater or at least equal to the order of the discretization. In addition,
equation ?? needs to be linearized around the coarse-grid solution:

Rh(Uh) = Rh(UH
h)+

∂Rh

∂Uh

∣∣∣
UH

h

(Uh−UH
h)+dots (2.60)

Dropping the higher order terms and imposing that the residual has to be null once the convergence is
obtained, we can extract:

(Uh−UH
h) =−

[
∂Rh

∂Uh

∣∣∣
UH

h

]−1

Rh(UH
h). (2.61)

Inserting this expression into the estimation of the objective function become:

Jh(Uh) = Jh(UH
h)− ∂Jh

∂Uh

∣∣∣
UH

h

[
∂Rh

∂Uh

∣∣∣
UH

h

]−1

Rh(UH
h) (2.62)

The term multiplying the residual looks familiar. It is the adjoint vector denoted ΛT
h computed on the

fine-space using the linearization around the injected coarse-space solution UH
h . Finally, we obtain an

error estimation of the functional:

Jh(Uh)− Jh(UH
h) =−Λ

T
h Rh(UH

h) (2.63)

In summary, the adjoint variables can be used to underline the lack of accuracy in the space discretiza-
tion for the calculation of the selected objective function J. It is opinion of the author of this thesis that
goal-oriented mesh adaptation will soon be part of any automatic optimization chain. The introduc-
tion is certainly simplified by the already existing strong interconnection with the adjoint. The mesh
required for obtaining the convergence of the adjoint is often significantly different to that of the direct
simulation. Taking as example a transonic wing with a shock on the upper part, the operator has to
think what part of the fluid domain is influencing the position of the shock. The refinement zone has
to be placed from the leading edge to the farfield right up the flow. Mesh adaptation can be an efficient
tool to identify where unexpected refinements are needed and how to combine the mesh’s requirements
of both direct and adjoint simulation obtaining a robust solution. Fig. ?? shows how starting from the
same grid, different refinement zones are obtained and how they can be smoothed together in a unique
mesh.

Figure 2.2: Object Oriented Mesh Adaptation, from [3]

16

Sensitivity Computation

2.7 Approximations

Due to the complexity of obtaining an accurate linearization of some Jacobian in the adjoint equation,
certain assumptions have been introduced to simplify the problem. Many papers such as [45] examined
the accuracy of the derivatives extracted with the adjoint approach simplified and estimate the amount
of error generated.
In order to have a complete second-order accurate scheme, the linearization of the inviscid terms in the
residual requires information from more mesh points than the ones immediately adjacent to the node.
Thus, a large stencil is needed for the linearization making it complicated. The use of a first-order
accurate scheme for the convective terms generates an easier linear system to solve and the bandwidth
of the coefficient matrix is reduced significantly. However, the derivatives obtained have a discrepancy
and often with an incorrect sign, this could affect the optimization process, particularly if the starting
point is already near a local minimum.
The most widely used approximation is called “frozen turbulence” or “frozen eddy viscosity”. The idea
is to consider the variables linked to the turbulence model as constant, therefore the highly complex
linearization of the turbulence model is not required. The complexity is strongly linked to the fact
that the artificial viscosity term is dependent on the flow variables as well as on the distance from the
wall. Nowadays only five turbulence models have been linearized by hand or using AD: the algebraic
Balwin-Lomax, the one-equation model of Spalart-Allmaras [53] and the two equations models k− ε ,
k−ωSST [54] and the Wilcox k−ω [55]. The solution of the final linear system with full linearization
can be exceptionally poorly conditioned [56]. The error introduced increases if the flow is largely
separated, the magnitude of the error is always small although the sign of the derivatives is not always
correct. This approximation is used within this thesis since it helps the convergence of the adjoint
simulation.
The most extreme approximation was suggested by Mohammadi [57], all aerodynamic contributions
to the gradient are neglected:

dJ(α)

dα
=

∂J
∂X

dX
dα

+
∂J
∂U

dU
dα
' ∂J

∂X
dX
dα

. (2.64)

This truncation is based on the observation that the first term is often dominant in the case where J is
an integral of boundary quantity and α deform directly that boundary. It gives good results near the
leading edge also in the case of multi-elements configuration although it performs poorly at the trailing
edge where the aero-gradients are stronger.

2.8 Adjoint Variables Interpretation

The adjoint variables can be treated as a pure mathematical object. It can be interpreted as the multiplier
of the direct differentiation equation as in Sec. 2.2 which value is set to remove the flow sensitivity,
or as in Sec. 2.3 interpreted as Lagrange multipliers. In both cases, the dual vector is related to the
residual R and the mesh X , besides also to the numerical scheme adopted. Instead, Giles and Pierce
firstly proposed a physical meaning [58]. The results presented were extracted using a continuous
adjoint approach, the idea was transposed in the discrete adjoint context in Ref. [59]. In this section
the residual R is a discretization of the Euler equations, the flux balance is not divided by the volume
thus the discrete and continuous adjoint fields are similar. Four local perturbations δR are introduced
in all cells of index m at the location ξ , the first one is a unit mass source injecting fluid with the local
value of stagnation pressure and enthalpy:

δR1 = [1,u,v,H] (2.65)

17

Sensitivity Computation

The second source term is an applied force in the normal direction to the local flow:

δR2 = [0,−ρu,−ρv,H] (2.66)

The third perturbation is very similar to the previous one, it consists in a change of the total enthalpy
at fixed static and total pressure:

δR3 =

[
− 1

2H
,0,0,

1
2

]
(2.67)

The last one changes the total pressure at fixed total enthalpy and static pressure. The objective
function taken into consideration is the integral over the airfoil of pressure times h, which involves
the forces generated by the inviscid drag and lift. The variation of J due to the source term in cell
m,
[
δR1

m,R
2
m,R

3
m,R

4
m
]

is calculated from:

(δJ1
m,δJ2

m,δJ3
m,δJ4

m) = (Λ1
m,Λ

2
m,Λ

3
m,Λ

4
m)

δR1

1,δR2
1,δR3

1,δR4
1

δR1
2,δR2

2,δR3
2,δR4

2
δR1

3,δR2
3,δR3

3,δR4
3

δR1
4,δR2

4,δR3
4,δR4

4

 (2.68)

The four perturbations of R are linearly independents. By inversion of Eq. 2.68 the adjoint vector
can be obtained and analysed. For the first perturbation in a transonic flow, it appears that there is no
singularity at the sonic line. This is in contrast with a previous results obtained for the same perturbation
in a quasi 1D equation. The reason can lie in the fact that the flow in 2D is never perpendicular to the
local streamlines. In addition the response to a punctual force (the second perturbation) is continuous
across the stagnation streamline, the sonic line and any shocks. No perturbation of the pressure is
produced by the third component, accordingly the associated linear functional is zero. Meanwhile, the
last case highlights the existence of an inverse square-root singularity crossing the incoming stagnation
streamline. There is no knowledge of work for the 3D case or for the complete RANS equations.

18

Chapter 3

SU2 Optimization Chain

The Stanford University Unstructured software [60] was created with the specific task of solving par-
tial differential equations (PDE), multiphysics analysis and pde-constrained optimization problems on
structured and unstructured grids. The core of the code is a RANS iterative solver able to simulate
compressible, turbulent flows which are typical cases in the aerospace field. Multiple turbulence mod-
els are available, the one-equation Spalart Allmaras[53] typically used for airfoils with attached flow
or very low separation, and the two-equation model Shear Stress Transport introduced in 1994 [54].
The usage of these turbulence models without wall functions impose the mesh requirement of having
y+ < 1. The discretization of Navier-Stokes equations is performed using the Finite-volume method
on vertex-based median-dual grid. Numerica schemes to solve the convective fluxes are implemented
including JST, ROE, AUSM, moreover to enable a second-order space integration some slope limiters
are available. The SU2 solver can also be used from multi-physics problems including Fluid-Structure
interaction problems [61] and acoustics[24]. Additionally it can also be used for automatic shape op-
timization. The ability to compute the surface sensitivity using the discrete adjoint, described in the
previous chapter, is only a small step of the complete chain. Chap. 2 introduced the mathematical
theory of how to extract the adjoint equations and a modern method to solve them, what is lacking is
how to compute the Jacobian that are inside of the adjoint equation. It is a specific and crucial choice
of any single software, it strongly influences the overall computational cost and the quality of the final
result. Formally, the exact linearization of the flow residual is demanded, although this requirement
contrasts with the flow solver itself where an approximated Jacobian is sufficient to obtain convergence.
To circumvent this problem in SU2 “Automatic Differentiation” is applied to the top-level routine of
the solver, as explained in Sec. 3.2. The performances are still competitive, obtaining more flexibility
and a more affordable extension to new turbulence models, transition models, or objective functions.
Once the surface sensitivity is computed, it is then projected into the design space by a different C++
modulus of SU2 as explained in Sec. 3.1. How to mathematically describe the body with the design
variables is another specific choice of the user, many options are available in 2D although only few for
the three-dimensional case. This thesis takes advantage of the Free Form Deformation method that is
more extensively described in Sec. 3.3. The following step consist in the update of the mesh around the
body, since this part is the core of the thesis it is discussed in details in Chap. 4. Finally, the research of
the minimum of the objective function is driven by a gradient-based optimization algorithm explained
in Sec. 3.4.

19

SU2 Optimization Chain

3.1 Code Structure

The automatic optimization chain is performed by separated C++ modules, the sequential execution
is driven by a Python script, in this case shape− optimization.py. Each C++ section reads its part
of interest from the config file defined by the user and writes the state in a .dat file. Other outputs,
such as .vtu files for the visualization of the results, must be explicitly demanded and do not influence
the correct execution of the code. Every time that a C++ module is completely executed, the virtual
memory is cleaned, and this is done to reduce the risk of accumulate useless data in the virtual memory.
A baseline mesh is taken as input of the design cycle, along with an objective function, optimization
constraints and a vector α of design variables. The configurations file contains the definition of the free-
stream conditions, numerical methods, turbulence model, and convergence criteria. If the description
of the body is made using FFD, the box vertices are written directly inside the mesh.su2 file and the
active design variables are specified in the .c f g file. The principal modules called in the process are:

• SU2-CFD: performs flow and adjoint analysis.

• SU2-GEO: calculate the geometric characteristics of the airfoil or the wing to use them as con-
straints in the design cycle.

• SU2-DEF: deforms the grid surface and accordingly the surrounding volume mesh given the
displacement of the design variables.

• SU2-DOT: calculate the gradient by projecting the surface sensitivity into the design space
through a dot product.

Once the gradient of J is available, the Sequential Least Squares Programming optimiser is employed
to guide the search for the optimum design. The optimisation cycle is considered converged when the
Karush-Kuhn-Tucker conditions are fulfilled or the number of design loops exceeds a declared value.
First of all, a converged numerical solution U∗ of the RANS equations is needed. As seen in the
previous chapter, the request of null flow residual can be translated into a fixed point equation, from
which we can compute a feasible flow solution and the coupled turbulent variables:

Un+1 = G(Un) :=Un−P(Un)R(Un) where P(U) :=
(

D+
∂ R̃(U)

∂U

)−1

(3.1)

The preconditioner P contains an approximation of the partial Jacobian of the residual. The coupling
between the flow and turbulent equations is neglected, accordingly the extra diagonal elements in P are
null. Moreover, the implicit terms are treated with a first-order approximation even though a higher
order spatial discretization is applied to the rest. From the adjoint duality condition:

∂J
∂U∗

∂U∗

∂X
=−Λ f

[
∂R
∂X

]T

(3.2)

which is preserved for each iteration Λn we obtain the adjoint equation:

Λ
n
f +1 = P−T ∂J

∂U∗
+

(
I−P−T

[
∂R

∂U∗

])
Λ

n
f (3.3)

A dual adjoint approach is used in SU2 to not treat explicitly the volume mesh sensitivity with respect
to α . Once U∗ is calculated, an evaluation of the objective function and flow iteration routine is needed

20

SU2 Optimization Chain

in order to compute the gradient of any linear combination of G and J with respect to U∗. Starting
with a proper initial guess, we can perform Eq. 3.3 until convergence is achieved. Now, with a single
evaluation of J in Eq. 2.33, we can obtain the geometric adjoint vector Λg.

Figure 3.1: Top level approach of Adjoint solver in SU2, from [4]

The surface mesh sensitivity is calculated in the three Cartesian directions and then projected in the
local normal direction, collecting the values for each surface cell inside the vector ∂J

∂ s . However, the
shape of the object is parametrized with respect to the design variables and not respect to the wall mesh.
Theoretically it would be possible to use directly the surface nodes to describe the model, however the
computational cost would be excessive. Therefore, ∂J

∂ s is projected into the space Dα through a dot
product between the geometric and surface sensitivities, this operation is conducted by the SU2−DOT
module. The geometric sensitivity matrix indicates the influence of a change in a design variable’s
value on the location of a surface mesh node. It is computed using a finite difference method, which
cost is almost negligible respect to the solution of a partial differential equation.

∂J
∂α1
∂J

∂α2
...

∂J
∂αnα

=

∂ s1
∂α1

· · · ∂ sns
∂αnα

...
. . .

...
∂ s1

∂xnα

· · · ∂ sns
∂xnα

∂J
∂ s1
∂J
∂ s2
...

∂J
∂ sns

 (3.4)

The gradient just calculated can be amplified or reduced with a scale factor defined inside the .c f g to
have a movement of the FFD’s vertex between 10−3m and 10−2m. Now the maximum displacement
of the design variables is confronted with the upper and lower values declared in the configuration file
that the program takes as input. In case the requirement is not fulfill, all values are scaled in order to
be inside the admitted range. This part of the code has been updated and improved in the context of
this thesis. SU2−DEF has a double key function, it morphs the FFD box and consistently everything
that is inside, including the surface grid. Lately the same C++ module deforms the entire grid updating
the coordinates of each node. The RBF mesh deformation method which has been implemented inside
the module SU2−DEF . An updated direct simulation can be now performed on the new grid until the
criteria of convergence are matched.

21

SU2 Optimization Chain

Figure 3.2: Optimization Design Chain, from [4]

3.2 Automatic Differentiation

At this point it should be more clear how to derive the adjoint set of equations and how to solve them
efficiently. Although, before applying a fixed point iteration, a certain number of Jacobians contained
in the system need to be computed. The accuracy and the method used to obtain the tangents is going to
affect the quality of the results and the overall computational cost. Concerning a discrete approach im-
plementation, five approaches are known: analytical method, finite-difference, complex-step method,
AD and symbolic differentiation. The second and third options have been already exploited in the pre-
vious chapter. Instead, hand-written adjoint algorithms are really powerful, usually the cost is 3-4 times
the original code [62], however they are extremely complex to extend, to debug and time consuming to
conceive. The manual differentiation of turbulence models usually requires some short-cut assumptions
whose physical meaning is not clear, besides how this approximation may impact on the value of the
adjoint variables is difficult to understand and predict. Therefore, the analytic method, widely spread
in the early codes, has largely fallen out in the last years with the development of other approaches.
Symbolic differentiation has many similarities with the AD although in contrast it directly manipulates
the complete mathematical expression of a function. It has to be expressed in a closed form, which is
rare in CFD where instead iterative solutions are widely used and the mathematical expression created
can be prohibitively long, therefore computationally expensive. Symbolic differentiation is still used in
the FEM community [63]. Automatic Differentiation, also known under the name of Algorithmic Dif-
ferentiation, is an attractive tool used in the context of SU2 to obtain the adjoint equation automatically
from the original code. There are two approaches which can be used for implementing AD: source
code transformation and operator overloading. Concerning source code transformation, it consist in a
code modification adding new statements that computes the tangent of the original one. It is the most
efficient way however it requires many interventions on the software. However, since SU2 is coded in
C++, which is an object-oriented code, the implementation of the AD is based on the extensive use of
Operator Overloading, which is the only option. The code is more virtual memory demanding although
it is easier to implement and extend. The central idea is that every arithmetic operators and function
are overloaded, following when called in the code, the original operation and the computation of the
tangent are simultaneously done and stored. A benefit of AD is that it does not incur in any truncation
error and yield derivatives with an approximation small as the epsilon machine. In similitude with
symbolic differentiation, AD works applying the chain rule, therefore the full precise expression of the

22

SU2 Optimization Chain

derivative is not created. AD is often introduced starting from the consideration that the most complex
mathematical code is in reality just a long concatenation of basic functions with at most two indepen-
dent variables. This premise is intuitive however inefficient if applied in practice, since it requires the
storage of every single operation. A more successful approach is to use AD at statement-level, where
the information that need to be stored are independent from the number of operations internally in-
volved [64]. A generic function f where f : Rn→ Rm can be described as a succession of l statements
ϕi : Rni → R. Each one is a local evaluation arbitrary complex. In the following Tab. 3.1 it is shown
how an arbitrary articulated expression is interpreted by the code and broken down into small and sim-
ple arithmetical operations.Where f takes as n inputs x and generates m outputs named y. Furthermore,
ui := (v j) j≺i ∈Rni exploits the relation between the intermediate variables vi and v j, where the first one
depends directly on the second.

Table 3.1: Code Interpretation of a Generic Function

vi = xi i = 1 . . .n
vi+n = ϕi(ui) i = 1 . . . l
yi = vn+l−i+1 i = 1 . . .m

A more sophisticated representation of f can be given by the expression:

f (x) = Qm ∗Φl ∗Φl−1 ∗ · · · ∗Φ2 ∗Φ1 ∗PT
n (x) (3.5)

where the function Φi : V → V with V := Rn → Rl sets vi+n to ϕ(v j) j≺i although it does not change
any other v j. The final matrix Q has the rule of extract from a vector of (n+ l) components the last m
elements.

3.2.1 Forward Mode

Taking advantage of the chain rule and applying it to each simple function present in Fig. 3.3, each
statement can be augmented with its own derivative, which generates the forward AD. The name “for-
ward” is linked to the fact that the values vi are carried along at the same time with the derivatives v̇i.

Table 3.2: Evaluation procedure using forward AD

vi−n = xi i = 1 . . .n
v̇i−n = ẋi i = 1 . . .n

vi = ϕi(v j) j≺i i = 1 . . . l
v̇i = ∑ j≺i

∂ϕi(ui)
∂ v̇ j

i = 1 . . . l

yi = vl−i i = m−1 . . .0
ẏi = v̇l−1 i = m−1 . . .0

The chain rule is the major difference from symbolic differentiation, where ∂ϕi(ui)
∂v j

would be substituted
with an algebraic expression and putting them together, it would create a derivative expression of

23

SU2 Optimization Chain

increasing complexity. Instead, with forward AD the memory used and the runtime are a priori limited,
although an error is introduced due to the roundoff of the floating point values. Note that with the
forward approach an input variable is selected and the first-order derivative of the intermediate steps
needed to reach the output is calculated with respect to that input. Since the automatic differentiation
is coded using Operator Overload, we want to stress that ϕ and ϕ̇ are calculated at the same moment,
sharing intermediate results. To do that a new notation is introduced, the tangent function can be written
has:

ẏ = Ḟ(x, ẋ) = F ′(x)ẋ where Ḟ : Rn+n→ Rm (3.6)

that we can combine in a unique expression:

[y, ẏ] =
[
F(x), Ḟ(x, ẋ)

]
(3.7)

This is consistent with the SU2 solver while using Automatic Differentiation. An external library
named CoDiPack [23] will replace, where it is necessary, every su2double with a special structure
called ActiveReal < su2double,su2double >. This couple of doubles are the computed value and the
gradient of the operation. The entire general tangent procedure can be rewritten as:

Table 3.3: Compacted Evaluation procedure using forward AD

[vi−n, v̇i−n] = [xi, ẋi] i = 1 . . .n
[vi, v̇i] = [ϕi(ui), ϕ̇i(ui, u̇i)] i = 1 . . . l

[ym−i, ẏm−i] = [vl−i, v̇l−i] i = 1 . . .m

3.2.2 Reverse Mode

Reverse mode is attractive for all that kind of problems where a single or a small number of objective
functions depend on a large set of variables. Discrete Adjoint is a perfect example since we need the
sensitivity of J with respect to the long vector α . In contrast to the forward modality, a single output
is selected and the first-order derivative with respect to each of the intermediate variables and the input
variables is calculated in an unique process. Reverse AD, coded using expression templates, is 2.7-4
times slower than a direct simulation, making it comparable to the hand-written Jacobians. However,
reverse AD requires a large amount of physical memory, some techniques as local preaccumulation
and the usage of checkpoints can help to contain the ram consumption [65]. First of all, to each vi is
associated a new variable v̄i =

∂y
∂vi

called “adjoint variable” and to the output selected an extra variable
ȳ = 1. Now equation 3.5 has to be differentiated using the chain rule:

ẏ = QmAlAl−1 . . .A2A1PT
n ẋ where Ai = ∇Φi (3.8)

which is the tangent relation rewritten as an evaluation procedure. The Jacobian of the function can be
immediately retrieved:

d f (x)
dx

= QmAlAl−1 . . .A2A1PT
n (3.9)

Recalling the duality identity ȳẏ = x̄ẋ, the adjoint relation is obtained transposing the previous expres-
sion:

x̄ = PnAT
1 AT

2 . . .A
T
l−1AT

l QT
mȳ =

(
d f
dx

)T

ȳ (3.10)

24

SU2 Optimization Chain

This equation can be interpreted also as an evaluation procedure. Every product between matrix and
vector is calculated for i = l, l− 1, . . . ,1. This is done backwards with respect to the sequence shown
in Tab. 3.3. First, it is required to compute the value of each vi values and temporary store it, this is
called the forward sweep and it is due to the high physical memory consumption of this AD mode.
Additionally, the sequence of the concatenation has to be registered, then it is inverted in the return
sweep in order to have the tangent values. The reverse sweep is shown in the second part of the
Tab. 3.4.

Table 3.4: Code interpretation of a generic function

vi−n = xi i = 1 . . .n
vi = ϕi(v j) j≺i i = 1 . . . l

ym−i = vl−i i = m−1 . . .0

vl−i = ym−i i = 1 . . .m−1
v̄ j = v̄ j + v̄i

∂ϕi(ui) j≺i
∂v j

i = l . . .1
x̄i = v̄l−n i = n . . . i

3.2.3 Expression Template

Reverse mode technique for automatic differentiation becomes more attractive and computationally
affordable if it is implemented using expression templates. This C++ technique drastically reduces
the virtual memory’s requirement. They were introduced to accelerate the evaluation of mathematical
expressions based on operations or arrays. Nowadays, they are implemented in many C++ matrix
libraries including Adept and CoDiPack. The central idea is that every operator has to be modified
such that it does not return a value, however a new object that describes the type of operation that
should be executed and registers the type of input expected. This object is called “Expression”, every
type of variables, arithmetical operators and functions are derived from one unique base class. The
concept used in this kind of code is known as static polymorphism, an object of one type is hidden by
another one, although the compiler is aware of this only when running the code. The use of virtual
functions is avoided, which would have made the program way slower. Let us take as example the
simple function:

f = sin(a+b)(c−d)

each operator can be rewritten:
ExprA×ExprB→ ExprA×B

Therefore, concatenating together all the expressions and creating just one operator for the whole state-
ment, we obtain:

SIN < MULT < ADD < su2double,su2double >,SUB < su2double,su2double >>>

The information of the entire statement is available and no intermediate values are generated, just one
operation with four arguments is stored. To be able to differentiate any expression applying the chain
rule for every f (a,b), such as a simple multiplication between two doubles, a member method has
to be implemented. It takes ∂ f

∂a and ∂ f
∂b and multiplies them with w, which is the value of the chain’s

25

SU2 Optimization Chain

derivatives up to that point, and pass it to its arguments a and b. Every double is substitute with
a ADtype, in the case of CodiPack is ActiveReal < su2double,su2double >, the first double is the
primal value the second is the specific data for the tape.
If we recall the Reverse AD equation:

v̄ j+= v̄i
∂ϕi(ui)

∂v j
, j ≺ i, i = l . . .1 (3.11)

For evaluating this expression, the value of v̄i and ui need to be known. Storing the gradient in an
ADtype, as it is done in for forward mode, is not an option available since it would run out of scope
when the direct evaluation loop is ended. Therefore it would be subsequently not available when the
adjoint is computed. Instead, we use an identification technique. To every elementary operations ϕi that
are inside f, an index is assigned. It goes from zero to l, which is the number of operations involved,
the index is a global counter that increases every time that we store a statement. The zero index is used
for passive variables as constants. The same index is also assigned to the intermediate variable on the
left side of the assignment. Thus, for every elementary ϕ with n input, which are doubles (8 bytes), we
need n indexes, another one for the output and one byte to store the number of arguments that can be
at maximum 255. In total for each elementary statement 8×n+(n+1)×4+1 bytes are used. Every
statement is then evaluated during the reverse sweep but just in the opposite order. In SU2 the adjoint
is entirely implemented using only the reverse method for computing the Jacobians.

3.3 Free Form Deformation

At this point, the displacement of each design variable is known. For the entire thesis the DVs used
to describe the geometry of the body are the vertices of an FFD box. At the moment, FFD is the
best option available for 3D simulation. A better representation of the shape could be obtained using
feature-based solid modeling concepts, which are commonly adopted inside cad software. However,
FBSM tools are not able to perform the sensitivity derivatives [66]. FFD is a remarkable versatile tool
originally developed for computer graphics for deforming pics and morphing models. It can handle
small and medium geometry changes, moreover the exact knowledge of the body is not necessary since
only the grid’s nodes are shifted. For this reason, the mesh connectivity never changes and the method
is suitable for any type of grid and body. The central idea is straightforward, the FFD box is like a
parallelpiped of deformable plastic in which an object that has to be morphed is immersed [5]. Also
the body has to be considered flexible and it can change shape consistently with the box. The FFD
container can also be cylindrical or spherical, both are implemented in SU2 however not used in this
context since a simple parallelepiped can perfectly contain a wing or an airfoil.
Mathematically, FFD consists in a mapping from R3 to R3 through a tensor product Bernstein polyno-
mial. First of all, a local coordinate system is set inside the delimited volume, any grid point X inside
the control box has coordinates (s, t,u), also called lattice coordinates:

X = X0 + sS+ tT +uU

The box is divided into l x m x k sub-control volumes, which coordinates of the vertex (i, j,k) respect
to a global reference system are contained in the matrix Pi, j,k. Some of these points or all of them can
be used as design variable for the optimization process. The required displacement ∆Pi, j,k is obtained
through the discrete adjoint and than the projection of the surface sensitivity into the design space. The
movement of any point in local coordinates is calculated by:

x(s, t,u)+∆x(s, t,u) =
l

∑
i=1

m

∑
j=1

n

∑
k=1

[
Bi−1

l−1(s)B
j−1
m−1(t)B

k−1
n−1(u)

]
∗
[
Pi, j,k +∆Pi, j,k

]
(3.12)

26

SU2 Optimization Chain

where the Bernstein polynomial of degree l-1, also called the blending function, is determined as
follows:

Bi−1
l−1(s) =

(l−1)!
(i−1)!(l−1)!

si−1(1− s)l−i (3.13)

Moreover, FFD can be easily formulated using B-spline or NURBS functions. FFD provides also
the possibility to monitor the change of volume that the body undergoes. The Jacobian of the FFD
indicates the rate of volume change imposed to each element. Imposing as constraint the Jacobian of
F it is assured that the volume is preserved. Instead, if an inequality is used in the previous expression,
it is required that the volume can only increase or reduce, besides a change of sign is forbidden.
Another interesting feature of FFD is the possibility to combine two or more control volumes adjacent
and keep cross-boundary derivative continuity. It is considered to have two FFD boxes X1(s1, t1,u1)
and X2(s2, t2,u2) which have in common a plane s1 = s2 = 0. The chain rule can be applied and find
the tangent of the morphed surface:

∂X1(v,w)
∂v

=
∂X1

∂ s
∂ s
∂v

+
∂X1

∂ t
∂ t
∂v

+
∂X1

∂u
∂u
∂v

∂X1(v,w)
∂W

=
∂X1

∂ s
∂ s

∂W
+

∂X1

∂ t
∂ t

∂W
+

∂X1

∂u
∂u
∂W

(3.14)

All second terms in the dot product are independent of the deformation. To impose a first derivative
continuity it is necessary to impose:

∂X1(0, t,u)
∂ s

=
∂X2(0, t,u)

∂ s

∂X1(0, t,u)
∂ t

=
∂X2(0, t,u)

∂ t
∂X1(0, t,u)

∂u
=

∂X2(0, t,u)
∂u

(3.15)

Figure 3.3: Example of FFD Box, from [5]

27

SU2 Optimization Chain

The usage of multiple FFD box helps to better describe and control complex bodies. However, in SU2
the common plane is block and the increasing number of continuity conditions reduced the possibility
to morph the body. Moreover, the fact of having some slice of the body fixed drives the optimization
far from the real optimum. This part of SU2 needs to be improved in the future.

3.4 Sequential Least SQuare Programming

Solving an optimization problem means to find at least one minimum of an objective function selected.
A major difficulty for the algorithm, especially for the gradient-based, is to know if the minimum
reached is a local or a global one. Concerning Su2, the process is driven by the gradient method
SLSQP, which is provided by an external Python library Numpy/Scipy [67]. The best performance of
this numerical scheme are obtained when the number of variables are between the number of constraints
m and 50 ∗mand a high degree of non-linearity is present, which is the typical case for aeronautical
shape optimization [68]. No others algorithms have been tested inside the thesis, the choice of SLSQP
is highly motivated by the results obtained in [69] where different methods, also genetic algorithms,
were tested and SLSQP provide the best results in a relative limited number of iterations. It belongs to
a more general family of algorithms called Sequential Quadratic Programming that are an extension of
the Newton Methods for constrained nonlinear problem:

min
x

f (x)

subject to g j(x) = 0 j = 1, . . . ,me (3.16)

g j(x)> 0 j = me +1, . . . ,m .

In this section we will indicate as A(x) the matrix which has as column the vectors ∇gT
j (x) and G j(x) :=

∇2
xxg j(x). The non linear problem is solved iteratively from an initial guess vector x0, after k loops we

will have:
xk+1 = xk +α

kdk (3.17)

where dk is called the search of direction and αk is the step length. The two variables introduced are
computed separately.
A quadratic programming subproblem QP is generated to find d. First, a classical Lagrangian function
can be associated with the NLP and the constraints must be linearized:

L(x,λ) = f (x)−
m

∑
j=1

λ jg j(x) (3.18)

Generating in the standard way of quadratic programming the following problem:

min
d

1
2

dT Bkd +∇ f (xk)d

subject to ∇g j(xk)d +g j(xk) = 0 j = 1, . . . ,me (3.19)

∇g j(xk)d +g j(xk)≥ 0 j = me +1, . . . ,m .

where B := ∇2
xxL(x,λ) was introduced by Wilson [70] in 1963 .

Considering the step size, which has a strong analogy to the search of direction in the Newton’s scheme,
a one dimensional minimization has to be performed. More specifically, the following non-diffentiable
penalty function has to be minimized:

φ(x,e) := f (x)+
me

∑
j=1

e j|g j(x)|+
m

∑
j=me+1

e j|g j(x)| (3.20)

28

SU2 Optimization Chain

It is also necessary a merit function ϕ(α) := φ(xk +αdk) ϕ : R1→ R1, where xk and dk have been
already computed and e j are the penalty parameters. Many proposals are present in the literature to
set these parameters [71] [72]. It is essential for practical applications to evaluate the Hesse-matrix of
the Lagrange function Bk using only first-order information. Concerning unconstrained optimization,
the BFGS algorithm is widely spread. Powell [71] developed an analogue formula for the constrained
case, no deep explanation is reported here, just the strategy for updating the matrix:

Bk+1 = Bk +
qk(qk)T

(qk)T sk −
Bksk(sk)T Bk

(sk)T Bksk (3.21)

with sk := αkdk. The crucial point is that in the case of constrained optimization Bk could not remain
positive definite for a positive definite initial estimate, although concerning the previous equation it can
be avoided enforcing some conditions on the parameters involved.
The necessary conditions that have to be fulfilled for solving a nonlinear problem are called Karush-
Kuhn-Tucker conditions (KKT) [73]. Each functions involved has Lipschitz continuous second deriva-
tives and a feasible solution x∗ of the NLP exist if:

∇xL(x∗,λ ∗) = 0

g j(x∗) = 0 j = 1, . . . ,me (3.22)

g j(x∗)≥ 0 j = me +1, . . . ,m

λ j(x∗)≥ 0 j = me +1, . . . ,m

g j(x∗)λ j(x∗) = 0 j = me +1, . . . ,m .

Many algorithms could be used to solve the QP such as a primal method, a dual quadratic programming
or interior point method. In the context of SU2, NNLS is chosen, which was introduced by Lawson and
Hanson [68]. The quadratic problem is transformed into an equivalent Linear Least Square formulation
(LSEI) which is easier to be solved:

min
x

1
2
||Ex− f ||2

subject to AT x≥ b (3.23)

CT x = d .

SU2 is also able to run an optimization with multiple objective functions combined and multiplied by
a specific weight imposed by the user. It can be required to minimize the drag and reduce the moment
respect to a specific axis, the sideforces or the total pressure on a selected surface.

min
x

f (x) = f1(x)∗w1 + f2(x)∗w2 + · · ·+ f j(x)∗w j (3.24)

The user can also impose some aero-constraints such as requiring that the final lift has to be higher
than a certain value or the pitch moment inside a certain range. An extra adjoint simulation is required
for each of them and for each objective function required, therefore the computational cost and time
required linearly increase. If the total number of aero constraints and objective functions is comparable
or even higher than the length of the design variables vector, the adjoint approach is no more conve-
nient. Geometrical constraints can be imposed without increasing significantly the cpu time, such as a
maximum thickness can be required or the wing volume must not decrease. Each constraint is multi-
plied by a specific weight, the lower it is the more “strong” is the constraint: it has to be respected for
each iteration and not only close to the minimum that we are looking for. The constraints are treated in

29

SU2 Optimization Chain

a hard way, therefore they must not be violated during the entire ASO, if a constraint is not respected
the corresponding weight is increased. The sensitivity is computed only when the new point found
is feasible and the objective function is better than the previous evaluation. Otherwise, SLSQP keeps
morphing the grid and computes only the direct simulation and the geometrical description. With the
same technique, SQP can handle multi-point optimization (MO), the same objective function is mini-
mized for different free stream conditions such as different angle of attack, Reynolds, and Mach. In all
these cases obtaining a feasible solution x∗ that minimizes every function is unobtainable. It is possi-
ble to obtain a Pareto solution and the Pareto dominance concept is essential to compare two different
points for a deeper knowledge [74].

30

Chapter 4

Mesh Deformation Methods

In this Chapter the different approaches for mesh deformation are discussed.Mesh deformation is re-
quired to update the node positions. Furthermore, it also influences the surface sensitivity for the design
optimization. In SU2 the routine of the method is differentiated taking advantage of AD as suggested
by Korivi [75], thus it is an active part in the computation of the adjoint vectors. This different result
can drive the gradient base SLSQP to search a completely new point of equilibrium. Mesh deforma-
tion can be computationally prohibitive and require a large amount of virtual memory more than the
adjoint simulation itself. Many methods are not robust and produce poor quality mesh. Mesh defor-
mation is not only a prerogative of automatic optimization however it is required every time that a wall
boundary undergoes a displacement. This is common for unsteady simulations where there is a relative
movement between two parts or in Fluid-Structure interaction (FSI) problems, bio-mechanics and free
surface flows. Theoretically, an entire mesh could be generated automatically from zero around the
new boundaries as it is done by Sadrehaghighi[76] for airfoils. However, this would require a high
level of knowledge of the body’s geometry instead of just the old grid, which is complicated for 3D
cases. Moreover, for full viscous simulations a hybrid mesh is often required for better capture the
boundary layer and respecting the requirement of y+ < 1 imposed by the turbulence models. With a
totally new mesh with different connectivity there is an extra effort to map the old flow state into the
new nodes when it is necessary, instead with a deforming mesh an ALE approach can be used [77].
Two general classes of mesh deformation methods exist: physical analogy and interpolation. The first
one model the process of deformation according to a physical process that can be solved applying a nu-
merical method. Well known routine belonging to this category are introduced in Sec: 4.1 and Sec. 4.2.
Usually they generate a slow mesh degradation in case of large deformations.
Instead, the second category transfers an imposed boundary’s movement to the fluid mesh using an
interpolation function. Interpolation schemes can be applied to any arbitrary grid types, including both
structured and unstrustured meshes, since they do not require the mesh connectivity. Therefore, also
the typical mesh with high aspect ratio cells near viscous surfaces used for high Reynolds flows can be
treated, which is the typical case where physical analogy methods fail.
The two most widely used mesh deformation techniques include the linear elasticity analogy and radial
basis function techniques. These mesh deformation techniques will now be discussed in further detail
in Sec. 4.3 and Sec. 4.4. RBF was already implemented in SU2 and used for unsteady simulations
and ice prediction [36]. In this thesis, RBF is incorporated inside the shape optimization chain making
it compatible to work with CoDiPack for the automatic differentiation of the process. Radial Basis
Function mesh deformation technique has been developed extensively throughout the literature and its
potential for design optimization has been highlighted [35]. RBF guarantees an output mesh with high
quality properties and it is able to manage larger displacements than the physical analogy approaches.

31

Mesh Deformation Techniques

Concerning the design optimization process, RBF has been rarely used in the past and especially not
coupled with the discrete adjoint approach. This is primarily due to the fact that the standard RBF
mesh deformation technique is computational expensive. In the follow sections techniques to improve
the efficiency of RBF mesh deformation are discussed. Consequently, RBF mesh deformation is only
now becoming a viable option for the design optimization process on complex problems.

4.1 Spring Analogy

Tension Spring Analogy is the most widely used method for updating a mesh, it belongs to the first cat-
egory and was originally proposed by Batina [32]. Two different kinds of spring analogy are presented:
the vertex springs and the segment springs. Besides, a first development based on semi-torsional spring
it is also introduced. Generally, non linear equations are avoided to keep it simple and cheap. Both
methods consist in replacing the mesh edges with fictitious springs, the main difference lies on the
equilibrium length chosen.
Regarding the vertex case the equilibrium length is imposed at zero. Since the springs are considered
linear the force at each node i, applied by the connected node j, is determined taking advantage of the
Hook’s law:

~Fi =
vi

∑
j=1

αi j(x j− xi) (4.1)

where αi j is the stiffness of the edge between node i and j and vi the number of edges connected to
node i. It is required a solution of equilibrium, which is the one with lower energy accordingly the
force at each node must be null. The iterative equation that need to be solved is:

~xk+1
i =

∑
vi
j=1 αi jxk

j

∑
vi
j=1 αi j

(4.2)

The equation must be solved for each node, this time the number of iterations is contained since the
model is used to retain mesh regularity. Dirichlet boundary conditions are applied, meaning that the
movement of the boundary is strongly imposed. In practise, we are solving an elastic problem where
the nodal position xi is computed based on the weighted average of the near nodes. Mathematically,
a linear system [A] (x) = (b) is generated, where the matrix contains the spring stiffness, the vector
on the left represents the nodes positions and the right side is the non-homogeneous terms linked to
the boundary movement. Every spring is under tension since the equilibrium is set for a null distance
between nodes, therefore the mesh can be morphed even when the boundary is stationary.

32

Mesh Deformation Techniques

Figure 4.1: Mesh Deformation Using Linear Spring Analogy, from [6]

The second way to characterized the springs is the original one thought for a pitching airfoil, called
segment spring analogy [7]. In the original position the springs are relaxed since the equilibrium length
is set equal to the initial length of the segments. This time it is the displacement of the node δi that
generates a force computed using the Hook’s law:

~Fi =
vi

∑
j=1

αi j(δ j−δi) (4.3)

The static equilibrium of the system is reached when the total force at every node j is zero. This can
be obtained solving the iterative equation:

~δ k+1
i =

∑
vi
j=1 αi jδ

k
j

∑
vi
j=1 αi j

(4.4)

The stiffness of the springs are proportional to the inverse of the distance between two nodes:

αi j =
1√

(xi− x j)2 +(yi− y j)2 +(zi− z j)2
(4.5)

Node collision and element inversion, illustrated in Fig. ??, are two of the main problem that could
happen using spring analogy. Since node collision is more likely in a dense region, the second way of
setting the stiffness helps to avoid this problem since mesh points that are closer to each other generates
a more intense rejective force. However, the second method has the disadvantage to be more memory
demanding since all the displacements must be kept in memory. In the end the updated node position
is simply computed:

xnew
i = xold

i +δ
k,final
i (4.6)

The torsional stiffness of each spring can be introduced to improve the robustness of the mesh defor-
mation. Considering a two dimensional case, the target is to prevent adjacent triangles from interpen-
etrating each other. With only linear springs, the stiffness is not related to the area of the triangle or to
the internal angles, therefore the element does not become more rigid when the area tends to be zero or

33

Mesh Deformation Techniques

to have a bad aspect ratio.
As shown in Fig. ?? to each vertex i of the triangular element T i jk a torsional spring is attached with
stiffness:

Ci jk
i =

1

sin(θ i jk
i)2

(4.7)

where θ
i jk
i is the angle included between the two edges i j and ik. This spring may prevent the vertices

from crossing any edge and could prevent the triangle to become with a negative area since when
θ

i jk
i → π or θ

i jk
i → 0 the stiffness tends to infinity. Although this method does not totally eliminate the

presence of elements with a bad aspect ratio. We can express everything as function of the edge lengths
and the element area since:

sin(θ i jk
i) =

2Ai jk

li jlik
(4.8)

Ci jk
i =

l2
i jl

2
ik

4A2
i jk

(4.9)

Figure 4.2: Spring Analogy Improved with Torsional Springs, from [7]

First, we need to determine the angular displacement, the entire process is well described in [44], the
general 2D results is only reported here:

∆θ
i jk
i = (bik−b jk)ui +(ai j−aik)v j +bi ju j−ai jv j−bikuk +aikvk (4.10)

where (ui,vi) are the node i displacement in the two directions and

ai j =
xi j

l2
i j

bi j =
yi j

l2
i j

We can collect all the angular displacements in matrix form as:

∆θ
i jk
i = Ri jkqi jk (4.11)

where:

∆θ
i jk =

∆θi

∆θ j

∆θk

Ri jk =

bik−bi j ai j−aik bi j −ai j −bik aik
−b ji a ji b ji−b jk a jk−a ji b jk −a jk
bki −aki −bk j ak j bk j−bki aki−ak j

34

Mesh Deformation Techniques

qi jk =

ui

vi

u j

v j

uk
vk

Then, in order to determine the contribution of the added springs to the elastic forces acting on the
mesh, we need to calculate the moments generated using a matrix formulation:

Mi jk =Ci jk
∆θ

i jk (4.12)

It can be further adjusted explicating the nodal displacement dependence:

Mi jk =
[
Ci jkRi jk

]
qi jk (4.13)

To easily combine the torsional effect with the linear springs and use the manipulation of the system
already implemented, we convert the three moments into six forces F i jk

torsion requiring that the work done
by this two vectors is the same:

F i jk
torsionqi jk = Mi jkt

∆θ
i jk (4.14)

we can finally obtain that:

F i jk
torsion =

[
Ri jkt

Ci jkRi jk
]

qi jk = Ki jk
torsionqi jk (4.15)

The superposition of the linear and torsional springs results in a dynamic mesh where the total fictitious
force based on the edge length is described by:

F i j
total = Ki j

linearq
i j +∑

[
Bi jk

i j Ki jk
torsion

]
qi j (4.16)

where B is a Boolean operator that for each triangle it extracts a vector of sub-components associated
with the edge i j.

Figure 4.3: Negative Area Element Generated by Spring Analogy, from [7]

35

Mesh Deformation Techniques

4.2 Linear Elasticity

Linear Elasticity is the most used method for mesh deformation in the context of shape optimization,
especially in SU2 [78, 79, 80]. This method was implemented to avoid that a node crosses over an
element face during the deformation process. The robustness is increased however at the same time
it is computationally prohibitive and remains unable to handle large displacements [81, 82]. In this
case the grid is described as an elastic continuum, the generation of a negative area is prevented by
a natural mechanism. We could call this technique a FEM model which target is to compute the
node displacement considering the mesh element as an homogeneous and isotropic material. Calling
u(x) = (u,v,w) a small displacement:

∇σ = f on Ω (4.17)

where the computational area is called Ω, f is some body force and σ is the stress tensor. Considering
the strain tensor ε the constitutive law can be written as:

σ = λTr(ε)I +2µε (4.18)

where λ and µ are properties of the elastic material known under the name of Lamé’s constants, instead
Tr indicates the trace of the tensor. These are usually expressed as function of E the Young’s modulus
and ν the Poisson’s ratio:

λ =
νE

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

(4.19)

with E > 0 and −1 < ν < 1
2 . A higher value of the Young modulus indicates rigidity. Besides, ν

indicates, as consequence of an elongation in the axial vector, how much the material shrinks in the
lateral direction. The kinematic law is:

ε =
1
2
(∇u+∇uT) (4.20)

The system is completed by imposing a Dirichlet boundary condition u = g on ∂Ω.
A Galerkian method based on trial and test space is applied to discretize the governing equation:

Uh = {uh|uh ∈ Hh(ω)n,uh = gh on ∂Ω}

Φ
h = {φ h|φ h ∈ Hh(ω)n,φ h = 0 on ∂Ω} (4.21)

where Hh indicates a finite-dimensional function space on the computational domain of dimension n.
We can formulate a finite element problem as:

f ind uh ∈Uh such that ∀φ h ∈Φ
h

∫
Ω

ε(φ h) : σ(uh)dΩ =
∫

Ω

φ
h f dΩ (4.22)

In order to simplify the implementation Hh is selected as the space of linear functions on the cells of
the grid therefore ε(φ h) : σ(uh) is constant on the elements. The outcome linear system is solved with
GMRES method.
The quality of the output mesh is strongly linked to how the two new variables E and ν are chosen,
many proposals are presented in the literature. Tezduyar [83] for first suggested to link the stiffness
to the dimension’s elements. From this idea the POLIMI University [8] developed a code where the

36

Mesh Deformation Techniques

Young modulus is proportional to the minimal vertex distance and an exponent β freely defined that
can increase the stiffness of the smaller tetrahedra:

Eel =
1

min||x j− xi||β
(4.23)

The Poisson coefficient is modified inside the range [0;0.45] to adjust the conditioning number of the
matrix. Taking this choice, the mesh near the body where the element are typically smaller is rigid,
therefore the most severe movement and deformations are relegated to the farfield’s cells, which can
absorb more strain. However, the specific code can treat only tetrahedrons. Therefore, an algorithm
that splits a generic hexahedron into tetrahedra of good quality must be implemented. Concerning SU2,
this issue is avoided since E is set to be E = 1

Vi
, where Vi is the element volume, thus the type of grid

considered does not effect the result. Since the information needed to construct the matrix K are only
geometrical, the mesh can be easily split into areas and each one assigned to a processor that is going
to compute the properties of the cells.

Figure 4.4: Subdivision Of Hexaedron Into Tetrahedra, from [8]

Another option is to set E as constant in the entire domain and tune ν such as the term 1
1−2ν

is compa-
rable to the aspect ratio of the cell. In some articles, the Young modulus is chosen equal to the element
condition number, also inversely proportional to the distance from the morphing boundary has produced
good results [84]. It has also been noticed that increasing the value of E where the mesh has a poor qual-
ity makes the method more rigid. This variety of proposals pushed the community to find a more sys-
tematic and mathematical approach to obtain the optimal stiffness distribution, Yang and Mavriplis [85]
proposed an adjoint based optimization with a gradient-based Broyden–Fletcher–Goldfarb–Shanno al-
gorithm (BFGS) [86] that computes the search direction. The solution of the final system to compute
the new node position remains linear. E at each grid element is considered as design variable, a single
objective function is defined L. We need to compute the gradient of L with respect to a very large
number of DVs, millions for a typical three-dimensional mesh, so as seen in the previously chapters,
the adjoint method perfectly suits. The objective function is defined as dependent on the cells’ volume
V :

L = L(V) (4.24)

The global mesh quality must be described by L and the value has to increase where the element volume
is vanishing. For multi-dimensional problems:

L =
N

∑
i=1

Li and Li = ea(ξi−1)n−1 (4.25)

37

Mesh Deformation Techniques

where a and n are control variables and ξi is related to the change of volume ξi =
Vi
V0i

, where V0i is
the initial volume and the numerator the final one. When ξi tends to zero, accordingly the cell i is
vanishing, the value of Li strongly increases. To compute the gradient, the volume V is considered
function of the mesh initial position xo and the displacement δx.

V =V (x0 +δx) (4.26)

The nodes movements depend on the starting grid configuration, on the prescribed movement of the
boundary xb and on the distribution of Ei that generates a different stiffness matrix K(E). Therefore,
δx = δx(E,δxb,x0). Recalling the mesh motion equation:

K(E)δx = F(δxb) (4.27)

applying the chain rule, the derivative of L with respect to the design variables is expressed:

dL
dEi

=
dL
dV

dV
d(δx)

∂ (δx)
∂Ei

(4.28)

Besides, equation 4.27 has to be differentiated and inserted in the previous one:

dK
dEi

+K
∂δx
∂Ei

= 0 (4.29)

dL
dEi

=− dL
dV

dV
d(δx)

K−1 dK
dEi

(4.30)

Defining the transpose of a dual vector Λ equal to the first three terms, the adjoint equation to solve is:

KT
Λ =−

[
dL
dV

dV
d(δx)

]T

(4.31)

The computation of the final sensitivity is obtained through a matrix-vector multiplication:

dL
dEi

= Λ
T dK

dEi
(4.32)

In order to compute the sensitivity at each iteration of the optimization loop one mesh deformation
problem must be solved and a mesh adjoint system. The computational cost increases with the com-
plexity of the method, even if the accuracy of the result is improved. The physical memory required is
linked only to the dimension of the grid. Essential for the robustness of this method is the quality of the
input grid. Especially, the volume ratio among the cells strongly influences the final result, when the
first cell of the boundary layer is really small (high Re) the progression to the larger cells of the farfield
must be very smooth. The method will not fail in the deformation process, since regarding shape op-
timization the displacement are little. However, the consecutive RANS simulation on the deformed
mesh will not converge interrupting the optimization process. This increases the number of cells of the
grid accordingly the overall virtual memory consumption and cpu time.

4.3 Inverse Distance Weighting

This method, originally applied for creating the contour maps in meteorology and geography, belongs
to the second class of mesh deformation technique: Interpolation Analogy. The connectivity is not re-
quired thus it can be applied to any type of mesh. With respect to the physical analogy, these schemes

38

Mesh Deformation Techniques

are less ram demanding and easier to parallelize although as any interpolation process they are asso-
ciated with an intrinsic error. In comparison with RBF, IDW does not require solving a linear system
since the movement of each internal point is computed with a direct algebraic expression. The dis-
placement is inversely proportional to the distance between the boundary element where a Dirichlet
boundary condition is applied and the node considered inside the computational domain. This gener-
ates a distance decay effect, although the algebraic expression is globally applied, every node of the
mesh has to be evaluated. If an interpolation surface w(x) is considered, using n data collected in the
vector v = (v1,v2, . . . ,vn) which can easily be associated with the displacement of the boundary nodes,
the inverse distance weighting is given by:

w(x) =
∑

n
i=1 viΦ(ri)

∑
n
i=1 Φ(ri)

(4.33)

where Φ(r) = r−c, and r is the Euclidean length between a data sample x and the fluid node position xi,
accordingly r = ||x− xi|| > 0. The exponent c is crucial in this kind of technique, if c < 1 w(x) is not
differentiable, for c > 1 the displacement is smoothed. Best quality of the mesh is obtained for c = 2;
if the value is further increased, the orthogonality of the elements does not improve.
A more sophisticated way to set the weights is presented in [34]. This different option should better
preserve the orthogonality of the cells close to the morphing surface, to avoid that a more refined area
of the grid does not augment its influence in the interpolation scheme, the surface cadet is included in
the weighting function.

Φi(r) = Ai ∗{(
Ldef

||r||
)a +(

αLdef

||r||
)b} (4.34)

where Ai is the area weight concentrated to node i, Ldef is a certain length of the region undergoing the
deformation, α is a fraction of Ldef indicating the size of the region near the body most influenced by
the morphing process. Usually a is set to 3 and b = 5, this value are suggested by a bunch of testes
performed. In comparison to RBF, Witteveen [87] underlines that with IDW is not necessary to solve a
system of equations and comparing the two methods, IDW is computationally less demanding however
it has poorer mesh quality. In both the cited publications RBF doesn’t have the volume reduction
method implemented here and it is not declared how many control points are selected and how many
levels are required to the greedy algorithm, both factor strongly influences the CPU time. It is clear
that both schemes are more robust than the physical analogy methods.

4.4 Radial Basis Functions

In the class of interpolation methods, RBF is one of the most attractive scheme. Initially thought for
scattered data [88, 89], it was applied with great success since it is able to interpolate in the entire
space a scalar function which the correct value is known only in some discrete points. In the context
of mesh deformation RBF is used to transfer the known displacement of a certain boundary to the fluid
grid. This scheme generates an output high-quality mesh with the orthogonality well preserved near the
morphing profile. The extension of the method from the bi-dimensional cases to 3D grids is straight-
forward and it can be applied to any kind of mesh, both structural and unstructured hybrid mesh, since
the connectivity is not required. Furthermore, the system of equations generated is linear, meaning that
a large and well established amount of efficient schemes to solve it are available in literature. The size
of the system is strongly linked to the mesh dimensions and if no expedient is coded the system matrix
is strictly Ns×Nv, where Ns are the surface nodes and Nv the volume points. Remarkable are the works
of Rendall and Allen [90] and the study of Sheng [91]. They introduced the use of data reduction

39

Mesh Deformation Techniques

schemes, in particular the multilevel greedy-algorithm for the selection of surface nodes described in
Subsec. 4.4.2 and the volume reduction method for a large data set presented in Subsec. 4.4.3. Thanks
to this, RBF is more efficient and less computationally expensive, therefore it can be applied to large
problems such as wing-winglet optimization which is the ultimate target of this thesis. Since RBF
from the fluid solver requires only the desired movement of a surface that is going to be treated as a
Dirichlet boundary condition, the mesh deformation method can be treated and coded as a “black box”
toll, which is ideal for unsteady simulations or shape optimization [92]. Regarding SU2, the RBF tool
with the data reduction schemes has been implemented by Morelli and Bellosta [93] and used in the
context of complex ice geometries.

4.4.1 Formulation

The general theory of RBF, extensively displayed by Wendland [94] and Buhmann [95] is based on a
series of functions whose value is linked to the distance between the selected position and a supporting
point named “control point” or “source points” [96]. The general formulation of a volume spline,
consisting of a transformation R→ R used for interpolation is:

φ(r,ri) = φ(||r− ri||) (4.35)

where ri is the radial basis centre and the distance is intended as an Euclidean distance, meaning the
spatial length between two considered nodes. The displacement of a collection of nodes in the flow
volume can be described by an interpolation function F(r) which is a sum of basis functions multiplied
by a scalar which is unknown. The interpolation firstly introduced in [97] can be expressed as:

F(r) =
N

∑
i=1

αiφ(||r− ri||) (4.36)

To compute the weight coefficients, an exact recovery of the assigned function values at the control
points has to be performed. This method requires the knowledge of the desired displacement of the
entire surface grid. Concerning the optimization process implemented in SU2, from the adjoint solution
projected into the design space the movement of the vertices of the FFD box is computed. Subsequently,
with the free form deformation routine, which is also in this case an interpolation inside the control
volume, the surface displacement is obtained. The vector ∆X collect the surface nodes movement
which is underlined by the subscript “s”, it is described by:

∆Xs = [∆xs1 ,∆xs2 , . . . ,∆xNs]

∆Ys = [∆ys1 ,∆ys2 , . . . ,∆yNs] (4.37)

∆Zs = [∆zs1 ,∆zs2 , . . . ,∆zNs]

The three Cartesian directions can be combined in a more simplified formulation:

∆S = ∆Xsx̂+∆Ysŷ+∆Zsẑ (4.38)

In analogy also the weight coefficients are collected in a vector:

αx = [αx,s1 ,αx,s2 , . . . ,αx,Ns]
T (4.39)

The y and z coefficients are analogous. Following, the weights can be extracted by solving the linear
system:

∆S = Φs,sα (4.40)

40

Mesh Deformation Techniques

where Φ is the universal basis matrix, it is generated with the radial basis function evaluated at each
surface nodes, meaning that the matrix has size of N2

s . The compact form of the universal basis function
is expressed as:

Φs j,si = φ ||rsi− rs j || (4.41)

The next step is to compute the volume base matrix Φv,s of size Nv×Ns, where “v” indicates a volume
point. Finally, the volume displacement can be interpolated multiplying the above-mentioned matrix
with the weights previously computed:

∆V = Φv,sα (4.42)

The behaviour of the interpolation between points or outside the dataset (extrapolation) is linked to
the kind of radial function selected. Many options are present in literature and can be grouped into
three main categories: the global supported, local supported, and compact supported ones. The global
support functions are everywhere non-zero and the value grows with increasing the distance from the
source point. The second type are always non-zero however they get close to zero value with increasing
distance from the control point. Instead, compact functions decay to exactly zero with increasing ||r||.
The choice of the interpolating base is crucial, indeed with a global supported RBF a fully populated
linear system has to be solved, often with a ill-conditioned matrix. Instead with compact supported
ones, there are some computational advantages, since the matrix is sparse, however at the cost of losing
accuracy. In practice, the most used for complex applications are the Wendland [94] compact support
functions listed in the next table:

Table 4.1: Wendland Compact Support Functions

Name Definition

Wendland C0 ϕ(η) = (1−η)2

Wendland C2 ϕ(η) = (1−η)4(4η +1)
Wendland C4 ϕ(η) = (1−η)6(35η2 +18η +3)
Wendland C6 ϕ(η) = (1−η)8(32η3 +25η2 +8η +1)

Where η = ||r−ri||
d and d is the supporting radius usually set to one. In this thesis, according to the

papers of Randell [90] and Costin [98], the default option of SU2 is used: the Wendland C2. This
compact base increase the smoothness and the quality of the final mesh with respect to the C0 option
and meanwhile it gives computational advantages respect to higher order functions.

4.4.2 Greedy Algorithm

Up to now Ns surface nodes were used to generate the interpolation global basis matrix Φ, resulting
in a cost of solving the linear system proportional to N3

s and for updating the entire volume grid of
Ns×Nv. For three dimensional large-scale problems, the number of surface nodes can be of hundreds
of thousands. In such cases, a reduction scheme is essential to reduce the computational cost of RBF
mesh deformations scheme. It consist in a process of selection of the surface nodes to obtain a subset
set Pc with limited dimension. The algorithm is created to obtain a set of sample points according to
the error generated by describing the entire surface displacement with a reduced RBF interpolation.
The scheme start with a single point, the one used does not affect the final results therefore the first
one in the mesh file is picked, then adding an extra surface node where the difference between the

41

Mesh Deformation Techniques

interpolated value and the exact one is maximum. This loop is repeated until the interpolation meets
a selected tolerance. The selected nodes are collected in a vector Xc of increasing size Nc where the
subscript “c” denotes the control point. The error vector E is computed using:

E = ∆S−Φs,cα (4.43)

where the matrix Φs,c is now of size Ns×Nc and where E is always of size Ns. The prescribed tolerance
ε is compared with the normalized largest error with respect to the maximum displacement:

Emax

∆S
< ε (4.44)

Each time that a node is selected the linear system to obtain the weights must be solved. Therefore,
the CPU cost of the greedy algorithm is of the order of N4

c , where the final number of control points
selected is the number of iterations of the process plus one. In the case of large displacement of complex
geometry the computational cost of the simple greedy scheme becomes too large. The problem has been
overtaken by introducing a multi-level subspace radial basis function interpolation, firstly introduced
by Wang [99]. The object for the second level of interpolation is set equal to the error of the first step
E(0). In a general form, it can be expressed as:

∆Sl+1 = E(l) (4.45)

where the next step of the multi-level selection process is indicated by the subscript “l + 1”. The
residual of Eq. 4.40 at the second level can be expressed as:

∆S(1) = ∆S(0)−ΦW (1) = ∆S−Φ(α(0)+α
(1)) (4.46)

the size of the displacement is strongly reduced ∆Sl+1 << ∆Sl . The computational cost for the multi-
level greedy algorithm is now of order of Nl×N4

c instead of (Nl×Nc)
4 for the single step. The overall

process can be summarised:

∆S =
i=Nl−1

∑
i=0

∆S(i) =
i=Nl−1

∑
i=0

Φ
(i)
s,cα

(i)

∆V =
i=Nl−1

∑
i=0

∆V (i) =
i=Nl−1

∑
i=0

Φ
(i)
v,cα

(i) (4.47)

4.4.3 Volume Point Reduction

The CPU cost of the volume interpolation, after the multi greedy point selection, is now of the order
of Nl ×Nc×Nv. In the case of large scale geometry, it is of interest to find how to decrease Nv. One
method was proposed by Xie and Liu [100]. They introduced a function which value is based on the
distance from the closest wall:

ψ = ψ

(
d(r)

D

)
. (4.48)

where d(r) is the space distance and D a support value imposed. We define the ratio between the
two distances as ξ . The function decays in value when the distance increase and is zero outside the
supported distance, so it is a compact support function. It can be expressed as:

ψ(ξ) =

{
(1−ξ) 0≤ ξ < 1
0 ξ ≥ 1

(4.49)

42

Mesh Deformation Techniques

The value of support distance D depends on the maximum surface displacement multiplied for a volume
reduction factor k imposed by the used. Mathematically it can be expressed as:

D = k(∆Sl)
max (4.50)

k in practice defines the range around the body inside which the flow nodes are going to be shifted,
besides we are requiring that the elements outside this volume are not affected by the surface movement.
It can be notice that is exactly the opposite behaviour respect to the linear elasticity analogy of the
previous section where the higher stiffness of the grid’s elements close to the wall boundary cases that
the distortion is absorbed by the largest elements which are close to the farfield.
The interpolation Eq. 4.36 is modified in order to include the wall distance correction:

F(r) = ψ

(
d(r)

D

) N

∑
i=1

αiϕ(||r− ri||) (4.51)

When the volume points reduction method is combined with a multilevel greedy algorithm, as it is done
in SU2, at the first level Nc is relative small meanwhile Nv remains high to absorb the large deformation.
The volume point interpolation is then computed with:

∆Vl = Φv,cα (4.52)

At each level the support distance is updated with the new maximum displacement. Since, as explained
previously, ∆Sl+1 << ∆Sl the range of influence of the basis function is strongly reduced, at the same
time also the number of volume points is decreased Nv,l+1 << Nv,l . The computational cost descends
with the number of steps.

43

Chapter 5

Results-2D

Several bi-dimensional benchmark test cases concerning airfoils have been performed to verify the re-
liability of the code on simple flows. Two classical airfoils are selected, the symmetric NACA0012
and the transonic RAE2822. The process of shape optimization is performed taking advantage of the
discrete adjoint present in SU2 for computing the surface sensitivity. Furthermore, shape modification
is conducted comparing RBF with ELA as strategy for the mesh deformation. It should be underlined
that the comparison of the results is significant in the context of SU2 community. Regarding the physi-
cal analogy, the element stiffness is computed with an inverse volume criterion, accordingly the smaller
elements are more rigid and the deformation is absorbed by the larger elements usually placed far from
the profile. Concerning RBF, three levels are required in the greedy algorithm for the selection of the
control points. The compact support function Wendland C2 is selected as the base of RBF. The support
distance k, used for the reduction of the number of volume nodes (Nv) considered during the defor-
mation, is ten times the maximum surface displacement. As previously anticipated the airfoil shape
is described and parametrized using an FFD box, the displacements of the vertices are kept in a range
between 10−3m and 10−2m. To obtain the best performance from the gradient based SLSQP, once dJ

dα

is computed then is scaled to have it at approximately 10−6. The last benchmark test presented in this
chapter is exactly the one proposed by AIAA Aerodynamic Design Optimization Group (ADODG) so
the results are comparable with the other tests present in the literature [101, 102, 103]. The NACA0012
benchmark has the additional challenge of a non unique solution, instead the RAE2822 present the is-
sue of a separated flow after the shock wave which can be challenging in case of frozen viscosity.

5.1 NACA0012 Drag Minimization

The optimization of the classical airfoil NACA0012 has been performed, differently from what sug-
gested by ADODG the optimization is based on RANS equations instead of Euler, also in the viscid
case a non unique solution is found. A hybrid mesh is generated in order to have high-quality mesh
properties. To guarantee the convergence of the RANS simulation with SA as turbulence model [53]
the y+ < 1 everywhere. The cells close to the airfoil are structured rectangles, the total height of this
region have to contain the entire boundary layer. Meanwhile, the rest of the grid is unstructured. The
free stream conditions selected are:

44

Mesh Deformation Techniques

Table 5.1: Free Stream Conditions NACA0012

Mach 0.76
AoA 2◦

Re 6.04E6
Temperature 215.38K

Experimental data are provided by NASA [104], and the mesh convergence is performed according to
the method proposed by Roache [105]. The value of the drag coefficient estimated for an infinitely
dense mesh is shown in Fig. 5.1, while the CP convergence is displayed in Fig. 5.2:

2 4 6 8 10 12 14

Number of Mesh Elements 10
4

0.0119

0.012

0.0121

C
d

Drag Coefficient

CFD Results

Roache Prediction

3 4 5 6 7 8 9

Number of Mesh Elements 10
4

0

0.5

1

1.5

C
d
 e

rr
o
r

Cd Relative Error

Figure 5.1: NACA0012: CD Convergence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

-1.5

-1

-0.5

0

0.5

1

1.5

-C
p

coarser

medium

denser

experimental data

Figure 5.2: NACA0012: CP Distribution

Selected the third mesh, also the influence of the farfield dimension on the drag and lift coefficients has
been investigate. The same mesh although with different radius of the computational domain are tested
and the relative error computed:

0 50 100 150 200 250 300 350 400

Farfield Radius

0.0117

0.0118

0.0119

0.012

0.0121

C
d

Drag Coefficient

CFD Results

Roache Prediction

40 60 80 100 120 140 160 180 200 220 240

Average Farfield Radius

0

0.5

1

1.5

C
d
 E

rr
o
r

Cd Relative Error

Figure 5.3: NACA0012: Farfield Investigation CD

0 50 100 150 200 250 300 350 400

Farfield Radius

0.285

0.29

0.295

C
l

Lift Coefficient

CFD Results

Roache Prediction

40 60 80 100 120 140 160 180 200 220 240

Average Farfield Radius

0

0.5

1

1.5

2

C
l
E

rr
o
r

Cl Relative Error

Figure 5.4: NACA0012: Farfield Investigation CL

The goal of the optimization is to reduce the drag by modifying the shape without decreasing the
maximum thickness of the airfoil. A constraint within the optimization is to maintain the Cl . Therefore,

45

Mesh Deformation Techniques

two adjoint simulations are performed,one for the drag and the second regarding the lift sensitivity. The
angle of attack is kept fixed. The NACA0012 airfoil is inserted inside an FFD box and split in a certain
number of vertical rectangles, which vertices are selected as design variables. The approximation of
frozen viscosity is used in this test case. Since the output of the optimization is strongly related to how
is constructed the α vector, the first analysis shown in Fig. 5.5 is to find how many DVs are required
to obtain the best performance. The optimization procedure is stopped after ten adjoint evaluations or
if KKT [73] conditions are reached. While using sixteen design variables for the optimization process,
the variation in the Cd with the number of deformations is shown in Fig. 5.6.

0 5 10 15 20 25 30 35 40

Number of DVs

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

C
d

10
-3

ELA

RBF

Figure 5.5: NACA0012: Cd Respect to DVs

0 2 4 6 8 10 12 14 16 18 20

Design Iterations

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

C
d

10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ELA

RBF

Figure 5.6: NACA0012: Cd Vs Design Loops

It is evident from Figs. 5.5 & 5.6 that the optimization process with RBF finds a deeper minimum of
the Cd and it is also achieved quicker than with ELA. The Cd obtained using the RBF technique is
11.47% lower than the coefficient obtained with elastic analogy. Moreover, the reduction with respect
to the original coefficient is 56%. In this specific case the large difference between the two methods is
due to the computed surface sensitivities which are dissimilar in both sign and amplitude as shown by
Fig. 5.7. Owing to this, the gradient-based optimization algorithm reaches two distant minimum, this
highlights that at least one of the two is a local minimum and not a global one. Therefore, the shape of
the profile undergoes to two disjointed movement, with ELA the upper part is thicker instead with RBF
where most of the surface area is concentrated under the leading edge zone. The two sensitivity guide
the optimization algorithm to obtain two different pressure distribution as it can be seen in Fig. 5.8

46

Mesh Deformation Techniques

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-15

-10

-5

0

5

10

S
e
n
s

Surface Sensitivity Upper Part ELA

Initial Sensitivity

Final Sensitivity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-2

-1.5

-1

-0.5

0

0.5

1

S
e
n
s

Surface Sensitivity Upper Part RBF

Initial Sensitivity

Final Sensitivity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-15

-10

-5

0

5

10

15

S
e
n
s

Surface Sensitivity Bottom Part ELA

Initial Sensitivity

Final Sensitivity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

S
e
n
s

Surface Sensitivity Bottom Part RBF

Initial Sensitivity

Final Sensitivity

Figure 5.7: NACA0012: Initial and Final Surface Sensitivity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

y
 C

o
o
rd

Profile shape ELA

Original Airfoil

Optimized Airfoil

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x coord

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

y
 c

o
o
rd

Profile shape RBF

Original Airfoil

Optimized Airfoil

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

-1.5

-1

-0.5

0

0.5

1

1.5

C
p

Cp Distribution ELA

Original Cp

Optimized Cp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

-1.5

-1

-0.5

0

0.5

1

1.5

C
p

Cp Distribution RBF

Original Cp

Optimized Cp

Figure 5.8: NACA0012: Airfoil Shape and Cp Distribution

The shock positioned on the upper surface of the airfoil in the second case is moved more forward, this
means that the Mach one bubble has a shorter radius. The shock is subsequently less intense and the
jump of pressure that impose is reduced.

47

Mesh Deformation Techniques

Figure 5.9: NACA0012: Final Mach Field with
ELA

Figure 5.10: NACA0012: Final Mach Field with
RBF

5.2 NACA0012 Efficiency Maximization

As in the previous section, a NACA0012 is optimized. The mesh is the same used for the drag mini-
mization and the convergence of the aerodynamic coefficients with respect to the increasing number of
cells is visible in Fig. 5.1. Moreover, the free stream conditions are always the one reported in Tab. 5.1.
The optimization chain is repeated using first RBF and than ELA for the mesh deformation. Instead,
the target of the optimization is different: the efficiency has to be maximize. Every maximization prob-
lem is easily transformed in a standard minimization changing the sign to the objective function. Also
the constraints are untouched, lift and maximum thickness must not decrease. The hypothesis of frozen
viscosity is assumed. This specific test case is not proposed by AIAA, although it is of interest to see
the difference obtained between the two results touching just the objective function J.
First of all, it is investigated the number of design variables necessary to obtain the maximum Fig. 5.11,
then the best case is selected and how the efficiency increase with the optimization loops is shown in
Fig. 5.12.

0 5 10 15 20 25 30 35 40

Number of DVs

20

25

30

35

40

45

50

55

C
l/
C

d

ELA

RBF

Figure 5.11: NACA0012: Efficiency Respect to
DVs

0 2 4 6 8 10 12

Design Iteration

24

26

28

30

32

34

36

38

40

E
ff
ic

ie
n
c
y

ELA

RBF

Figure 5.12: NACA0012: Efficiency w.r.t. Design
Loops

From this two figure some differences and some analogies can be underlined comparing with the min-
imization of the drag of the previous section. The RBF method provides again the best results, besides

48

Mesh Deformation Techniques

in this case less design variables are sufficient to achieve a great optimization and less deformations
of the airfoil are computed before finding the maximum, six instead of nine. This can suggest that
the starting shape of the NACA, therefore also the starting point of the optimization, is closer to the
optimum. Comparing Fig. 5.13 with Fig. 5.21 it can be noticed that the surface sensitivity computed in
this test case has an higher average value with remarkable picks. This means a greater gradient for the
SLSQP algorithms, thus a quicker descent to the stabilization point.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-200

-150

-100

-50

0

50

100

150

200

S
e
n
s

Surface Sensitivity Upper Part ELA

Initial Sensitivity

Final Sensitivity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-4

-3

-2

-1

0

1

2

3

4

5

S
e
n
s

Surface Sensitivity Upper Part RBF

Initial Sensitivity

Final Sensitivity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-100

-50

0

50

100

150

S
e
n
s

Surface Sensitivity Bottom Part ELA

Initial Sensitivity

Final Sensitivity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-4

-3

-2

-1

0

1

2

3

S
e
n
s

Surface Sensitivity Bottom Part RBF

Initial Sensitivity

Final Sensitivity

Figure 5.13: NACA0012: Initial and Final Surface Sensitivity for Efficiency

Using the RBF technique the efficiency is increased respect to the original airfoil of the 118%, the value
reached with ELA is lower of the 48%. This is meanly linked to the fact that the shock wave on the
upper part of the airfoil is strongly decreased by the optimization with RBF, the position is way closer
to the leading point accordingly also the Mach one bubble radius is shorter. It is obtained generating a
flatter upper part of the airfoil and most of the airfoil area is moved below the nose, see Fig. 5.14. It is
interesting to notice from Fig. 5.16 that the change of shape is creating a shock wave in the lower part
that was not present before.

49

Mesh Deformation Techniques

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

y
 c

o
o
rd

Profile Shape ELA

Original Airfoil

Optimized Airfoil

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

y
 c

o
o
rd

Profile Shape RBF

Original Airfoil

Optimized Airfoil

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

-1.5

-1

-0.5

0

0.5

1

1.5

C
p

Cp Distribution ELA

Original Cp

Optimized Cp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

-1.5

-1

-0.5

0

0.5

1

1.5

C
p

Cp Distribution RBF

Original Cp

Optimized Cp

Figure 5.14: NACA0012: Profile Shape and Cp for Efficiency Maximization

Figure 5.15: NACA0012: Final Mach Field with
ELA for Maximum Efficiency

Figure 5.16: NACA0012: Final Mach Field with
RBF for Maximum Efficiency

Since the mesh used, the free stream conditions and the constraints of the optimization are the same of
the previous section, we can compare the results. Taking into account only the RBF data, the different
final shape is shown in Fig. 5.17. In the second test case, the efficiency obtained is 30% higher, mainly
since the lift is strongly increased.

50

Mesh Deformation Techniques

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

y
 c

o
o
rd

Profile Shape

NACA0012

Drag

Efficiency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-1

-0.5

0

0.5

1

C
p

Pressure Distribution

NACA0012

Drag

Efficiency

Figure 5.17: NACA0012: Airfoil Shape and Cp for Efficiency Maximization and Drag Minimization

5.3 RAE2822 Drag Minimization

The second benchmark test case is around the classical transonic airfoil RAE2822. At the chosen flow
conditions, a strong shock is located on the airfoil upper surface as the Fig. 5.22 shows. Two different
ways of minimizing the drag are analysed in this section, keeping fix the objective function and the
geometrical constraints. Also the selected free stream conditions are slightly changed yet the results
are strongly comparable. The second one is exactly the benchmark case proposed by AIAA group
ADODG, which is faced introducing a multiphase optimization.

5.3.1 RAE2822 Double Adjoint

The goal is to reduce the Cd without decreasing the overall lift and the angle of attack. However,
differently from the NACA, this time the area of the airfoil is fixed. The experimental data for the Cp
comparison are provided by Cook [106]. The free stream conditions imposed are: Firstly, the mesh

Table 5.2: Free Stream Conditions RAE2822 1st Test

Mach 0.75
AoA 2.81◦

Re 6.2E6
Temperature 273.15K

generated with Pointwise has to be reliable. Therefore, as previously done with the NACA0012 airfoil,
a sequence of meshes with increasing number of segments on the profile is generated and tested. The
aerodynamic coefficients must become stable in value as illustrated in the following figures:

51

Mesh Deformation Techniques

1 2 3 4 5 6 7 8 9 10

Number of Mesh Elements 10
4

0.0145

0.015

0.0155

0.016

0.0165

C
d

Drag Coefficient

CFD Results

Roache Prediction

1.5 2 2.5 3 3.5 4 4.5 5

Number of Mesh Elements 10
4

0

2

4

6

8

C
d
 E

rr
o
r

Cd Relative Error

Figure 5.18: RAE2822: Cd Convergence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

-1.5

-1

-0.5

0

0.5

1

1.5

-C
p

Coarser

Medium

Dense

Experimental Data

Figure 5.19: RAE2822: Cp Distribution

The same procedure as in the first benchmark test case is applied here. This time the two final forms
of the airfoil are comparable and presented in the Fig. 5.24. The final shape of the FFD box is shown
in Fig. 5.25 While using ten design variables the difference between the Cd obtained is less than the
1%. The gain of performance respect to the original airfoil for the selected flight conditions is further
investigated in the next section.

0 5 10 15 20 25 30 35 40

Number of DVs

0.0108

0.01085

0.0109

0.01095

0.011

0.01105

0.0111

0.01115

0.0112

C
d

ELA

RBF

Figure 5.20: RAE2822: Cd Variation wrt DVs

0 2 4 6 8 10 12 14 16 18 20

Design Iteration

0.01084

0.01085

0.01086

0.01087

0.01088

0.01089

0.0109

0.01091

0.01092

0.01093

0.01094

C
d

ELA

RBF

Figure 5.21: RAE2822: Cd Variation wrt Design
Loops

52

Mesh Deformation Techniques

Figure 5.22: RAE2822: Original Mach Field Figure 5.23: RAE2822: Final Mach Field

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

y
 c

o
o
rd

Airfoil Shape ELA

Original Airfoil

Optimized Airfoil

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

y
 c

o
o
rd

Airfoil Shape RBF

Original Airfoil

Optimized Airfoil

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

-1.5

-1

-0.5

0

0.5

1

1.5

C
p

Cp Distribution ELA

Original Cp

Optimized Cp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

-1.5

-1

-0.5

0

0.5

1

1.5

C
p

Cp Distribution RBF

Original Cp

Optimized Cp

Figure 5.24: RAE2822: Profile Shape and Cp Distribution

53

Mesh Deformation Techniques

Figure 5.25: RAE2822: Final FFdbox

5.3.2 RAE2822 ADODG Benchmark Test

This time exactly the test case proposed by ADODG is followed. The target is always to decrease
the drag keeping the lift fixed, although the angle of attack is free to change. Therefore, the direct
simulation is conducted at fixed Cl. The area of the airfoil can not be reduced and the torque moment
must no increase. The freestream conditions are reported in the following table:

Table 5.3: Free Stream Conditions RAE2822 2nd Test

Mach 0.729
Cl 0.829
Re 6.5E6

Temperature 288.15K

Figure 5.26: RAE2822: O Grid Mesh

An O-grid is generated around the same discretization of the airfoil selected in the previous case, the
literature indicates that the best results are obtained for 252 wall nodes which is close to our segmen-

54

Mesh Deformation Techniques

tation obtained after a mesh convergence very similar to the previous section therefore not reported
again. A starting y+ = 0.45 is obtained, the first three cells have a constant height then a growth ra-
tio of 1.2 is chosen, the farfield is of 150 chords. A preliminary study about the number of design
variables is conducted, the complete optimization is performed using 16 DVs. A multi starting point
strategy is adapted, the ASO is composed by three different stages. First the Cl is kept fixed during
the direct simulation and the angle of attack is free to change. The initial process is stopped when
the drag reduction between two consecutive adjoint evaluations is lower than 0.1 drag counts. Starting
from the last deformed mesh a new ASO is performed, this time the AoA is kept fixed and the lift is
conserved computing the corresponding sensitivity. The last phase is equal to the first one. Since the
gradient-based algorithms are strongly influenced by the initial point and the minimum found are all
locals, the scheme proposed helps to find a lower final value of J(α). The deformation of the mesh is
executed applying RBF, set as in the previous section. It is interesting to notice that during the second
stage the lift is increased even if the drag keeps diminishing, the convergence is obtained after a few
loops, which underlines the proximity to the minimum point. The drag is reduced from 182.7 counts to
111.8, the shock wave is almost completely eliminated. In addition, ELA has been tested too, yet the
results are not reported since the final drag value obtained is 10% higher.

0 10 20 30 40 50 60 70

Design Iteration

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

C
d

0.825

0.826

0.827

0.828

0.829

0.83

0.831

C
l

RBF Cd

RBF Cl

Figure 5.27: RAE2822 ADODG: Optimization Process

55

Mesh Deformation Techniques

Figure 5.28: RAE2822 ADODG: Pressure Coeffi-
cient

Figure 5.29: RAE2822 ADODG: Airfoil Shape

Figure 5.30: RAE2822 ADODG: Original Mach
Field

Figure 5.31: RAE2822 ADODG: Optimized
Mach Field

He et al. [103] collected the results found in the literature about the RAE2822 benchmark test, our
optimization did not achieve the best results however it is comparable with the others. The table is
reported here, the values are in drag counts:

56

Mesh Deformation Techniques

Table 5.4: RAE2822 Literature Results

Result Cells DVs RAE 2822 Optimized Reduction %

He et al. [103] 131,071 40 194.4 108.9 -85.4 43.98%
Anderson et al. [107] - 14 196.0 124.0 -72.0 36.73%

Bisson and Nadarajah [108] 3,264 16 177.8 102.3 -75.5 42.46%
Carrier et al. [10] 7,894,172 10 189.2 103.9 -85.3 45.08%

Gariepy et al. [109] 211,968 24 187.3 104.3 -83.0 44.31%
Lee et al. [79] 47,824 17 234.4 131.8 -102.6 43.77%

Poole et al. [110] 98,304 6 174.3 90.4 -83.9 48.13%
Zhang et al. [111] 165,888 18 194.0 103.62 -90.47 46.58%

Present work RBF 40,050 16 188.57 111.18 -77.52 41.08%

5.3.3 2D Mesh Deformation Performance

Taking advantage of the data obtained with the optimization of the RAE2822, certain aspects of the
mesh deformation step are highlighted in this section. First of all, it is important that the quality of
the mesh does not decrease due to the deformation. Some metrics are used to identify the quality such
as volume ratio, skewness, orthogonality. In the context of the thesis, the orthogonality angle is used
to evaluate the mesh quality. For bidimensional optimization, the displacement of the surface nodes
is limited, both ELA and RBF methods preserve the quality of the mesh as shown in Fig. 5.32 and
Fig. 5.33.

Figure 5.32: RAE2822: Mesh Orthogonality with
ELA

Figure 5.33: RAE2822: Mesh Orthogonality with
RBF

More interesting is the comparison between the two methods of the ram consumption. Regarding
RBF, the ram usage is related to the number of levels performed by the greedy algorithms. This can
influence the number of control points selected on the surface. The second parameter is the volume
reduction factor k, which in 2D has been noticed to be almost irrelevant thus it is kept fixed to ten. The
deformation of the mesh with RBF has been repeated three times increasing the number of levels. The
control points used are shown in the next table and figures.

57

Mesh Deformation Techniques

Table 5.5: Mesh Deformation RAM Consumption

Type Control Points RAM

RBF one level 11 91Mb
RBF two level 43 93 Mb

RBF three level 253 108 Mb
Linear elasticity all 680 Mb

Figure 5.34: RAE2822: Control Points 1 Level

Figure 5.35: RAE2822: Control Points 2 Levels

Figure 5.36: RAE2822: Control Points 3 Levels

The evolution in time of the allocated virtual memory during in the deformation process is shown in
Fig. ?? for RBF with different level of selection of the control points, instead in Fig. 5.40 for the ELA
method. Almost a factor of six is evident between the two. If a single level greedy algorithm is used in
RBF, also the wall time is slightly lower, instead with two levels the two methods become comparable
concerning the time.

58

Mesh Deformation Techniques

Figure 5.37: RAE2822: RAM Usage RBF 1 Level Figure 5.38: RAE2822: RAM Usage RBF 2 Levels

Figure 5.39: RAE2822: RAM Usage RBF 1 Level Figure 5.40: RAE2822: RAM Usage ELA

59

Chapter 6

3D Results

6.1 Onera M6 Drag Minimization

The ONERA M6 can be described as a swept, semi-span wing with no twist. The symmetric ONERA
D section is used as an airfoil. It is a typical test case for turbulence flow over a transonic wing, widely
adopted for CFD validation. Experimental data for the comparison of the pressure distribution are
provided in [112]. The flight conditions are chosen to deal with a strong shock on the upper part of the
wing collocated close to the 25% of the chord.

Figure 6.1: Onera M6: Medium Mesh

60

Mesh Deformation Techniques

Table 6.1: Free Stream Conditions Onera M6

Mach 0.84
AoA 3.06
Re 14.6E6

Temperature 300K

Firstly, mesh convergence has been performed, four hybrid meshes are generated. The smallest one,
even if it is able to properly predict the intensity of the shock and the pressure distribution, it is then
used for optimization. This choice is dictated by the computational power available. The first three
layers of the mesh have constant height than the growth ratio decrease from the coarse to the finer grid.
The number of layers of the structured part has an opposite behaviour. Since the surface grid is almost
everywhere structured, the number of points in the x,y direction are easily multiplied by a factor of
1.5 for the convergence. The following figures report the aerodynamic coefficients obtained and the
relative error, in accordance to the bi-dimensional case, also the predicted value for an infinity dense
mesh is marked. Moreover, the Cp distribution at four different stations is monitored.

0 1 2 3 4 5 6 7

Number of Mesh Elements 10
6

0.016

0.018

0.02

0.022

0.024

C
d

Drag Coefficient

CFD Results

Roache Prediction

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Number of Mesh Elements 10
6

0

5

10

15

C
d

 E
rr

o
r

Cd Relative Error

Figure 6.2: Onera M6: Cd Convergence

0 1 2 3 4 5 6 7

Number of Mesh Elements 10
6

0.265

0.27

0.275

C
l

Lift Coefficient

CFD Results

Roache Prediction

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Number of Mesh Elements 10
6

0.5

1

1.5

2

C
d

 E
rr

o
r

Cl Relative Error

Figure 6.3: Onera M6: Cl Convergence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-1

-0.5

0

0.5

1

1.5

-C
p

Coarse

Medium

Denser

Experimental Data

Figure 6.4: Onera M6: Cp Convergence y=80%b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-1

-0.5

0

0.5

1

1.5

-C
p

Coarse

Medium

Denser

Experimental Data

Figure 6.5: Onera M6: Cp Convergence y=95%b

61

Mesh Deformation Techniques

The goal of the optimization is to reduce the drag as much as possible without decreasing the lift and the
volume occupied by the body. The angle of attack is free to change, the variation of the torque is only
monitored. Only six geometrical constraints are imposed: the final maximum thickness at different
span stations cannot be lower than the 75% of the initial value. The gradient based optimization using
the SLSQP algorithm is performed once with RBF as mesh deformation method, then with ELA.
Regarding RBF, the maximum number of control points selectable is the 10% of the surface’s nodes, the
volume reduction factor k is set at 5 and the Wendland C0 is selected as the interpolation function. This
configuration makes RBF really robust, fast, and computationally cheap. Instead, considering ELA a
final residual of 10(−10) is required for the solution of the linear system and the stiffness of the cells
is computed inversely with respect to their volume. Free Form deformation volume approach is used
to parametrize the wing surface, no study was conducted to see the effect of different parametrization,
luckily [113] compared FFD with B-splines. The drag reduction was very similar suggesting to choose
FFD in this thesis since it makes easier to manipulate complex geometry. Results are reported in the
following figures:

0 5 10 15 20 25 30 35 40

Design Iteration

0.0164

0.0166

0.0168

0.017

0.0172

0.0174

0.0176

0.0178

0.018

0.0182

C
d

0.261

0.2615

0.262

0.2625

0.263

0.2635

0.264

C
l

RBF Cd

ELA Cd

RBF Cl

ELA Cl

Figure 6.6: Onera M6: Cd Variation

62

Mesh Deformation Techniques

0 5 10 15 20 25 30

Design Iteration

-0.5

0

0.5

1

1.5

2

2.5

3

 C
m

x
 %

-1.5

-1

-0.5

0

0.5

 V
o

lu
m

e
 %

RBF Cm
x

ELA Cm
x

RBF Vol

ELA Vol

Figure 6.7: Onera M6: volume and torque variation

Fig 6.6 clearly shows that both methods are able to conserve the lift and reduce the drag, however
the optimization process seems to be way more robust using RBF with a more clear convergence.
The process is interrupted after 72 hours of computation. Regarding RBF, the overall drag reduction is
around 9.15%, particularly the drag reduction between the last two loops is insignificant underlying the
achievement of a minimum. Instead, ELA obtains a slightly smaller reduction of the Cd around 8.57%.
The evolution of the drag with respect to the deformation loops is oscillating, this behaviour has been
observed also by other researchers [114]. Further, the optimum is obtained at the 18th iteration than a
big jump happens and this seems to be typical of SU2 [115]. Both method increase the torque of the
2% and slightly reduce the volume even if a clear geometrical constraint is imposed. How the shape of
the sections and thus the pressure distribution are modified after the optimization is shown in the next
pics. The sections close to the root are more morphed, instead the tip of the wing is just more twisted.
Especially close to the wing’s tip, the peak of suction is decreased and this results in a less intense
shock wave, accordingly a lower jump of pressure Fig. 6.10. The position of the shock does not change
as we found for the 2d test cases.

63

Mesh Deformation Techniques

Figure 6.8: Onera M6: Isopressure Lines Upper Surface

Figure 6.9: Onera M6: Isopressure Lines Bottom Surface

Figure 6.10: Onera M6: Cp Optimization

64

Mesh Deformation Techniques

Moreover, Fig. 6.11 shows that the control points selected on the upper part of the wing, the distribution
is strictly linked to the shape of the deformation wanted. In this case, the movement was the result of
the first loop of optimization and it is evident that the tip is not touched instead the leading edge and
the central part of the wing are more affected. The region of greater displacement should correspond to
a zone of the surface with higher sensitive. It is confirmed by Fig. 6.12 where is shown the value of the
adjoint variables for the last equation of the adjoint system and the magnitude of the three momentum
equations combined.

Figure 6.11: Onera M6: RBF Case 1 Control Points

Figure 6.12: Onera M6: Adjoint Variable

65

Mesh Deformation Techniques

6.1.1 Mesh Deformation Performance

The Onera M6 test case has been used to compare the wall time and the ram consumption of the two
mesh deformation considered in this text. The grid considered is hybrid, with 7319 surface nodes and
446685 cells. The performances of RBF are measured considering different settings: interpolation
function, k, number of levels, amount of control points. The mesh deformation processes are executed
on a single core of an AMD EPYCT M of 2.4 GHz. The latter are imposed as a percentage of the total
surface points. The next table reports the combination of the parameters tested and the results obtained.

Table 6.2: RBF Parameters

N. Wendland Control Points K N. Levels

0 C0 5% 5 one
1 C0 10% 5 one
2 C0 15% 5 one
3 C0 10% 10 one
4 C0 10% 5 two
5 C2 10% 5 one

Three outputs are of our interest: the maximum virtual memory allocated, the wall time excluded the
deallocation of the data and the error due to the surface interpolation. Regarding ELA, as said in the
previous section, the stiffness of the cells is set with an inverse volume logical. The final linear system
has to be solved with a final residual of 10(−10) in maximum 800 iterations which are largely sufficient,
this is the classical setting for the linear elasticity analogy proposed in the SU2 tutorials. The results
are reported in the next table:

Table 6.3: Performance Results

N. RAM (Gb) Interpolation Error Cpu Time (min)

RBF.0 1.94 2.18% 1.81
RBF.1 2.55 1.07% 3.33
RBF.2 5.41 0.51% 7.89
RBF.3 2.55 0.98% 3.4
RBF.4 3.68 0.47% 6.46
RBF.5 2.74 0.15% 6.53
ELA 14.8 0% 13.66

The comparison between ELA and the RBF number one, which is used for the optimization, shows
remarkable results. The RAM usage is almost six times lower and the time employed is one quarter.
Considering only RBF, in order to have a very low interpolation error maintaining excellent perfor-
mance, the comparison shows that is better to increase the order of the interpolation function instead of
the number of levels of the greedy algorithm. The maximum number of control points selectable should
be the 10% of surface nodes. In every 3D optimization ELA has shown a better ability to conserve the
volume of the wing, it could be linked to the interpolation error introduced using RBF. This underline

66

Mesh Deformation Techniques

the necessity to contain as much as possible the approximation introduced. The following figures show
the allocation of the data in the virtual memory with respect to the cpu time. It can be noticed that the
behavior of RBF and ELA are completely different, RBF is progressive, instead ELA quickly allocate
all necessary information, then the ram consumption remains constant until the linear system is solved.

Figure 6.13: Onera M6: Performance Case 1 Rbf Figure 6.14: Onera M6: Performance Case 4 Rbf

Figure 6.15: Onera M6: Performance Case 5 Rbf Figure 6.16: Onera M6: Performance Ela

6.2 CRM Wing Drag Minimization

The NASA CRM geometry was thought for validation studies of CFD codes [116]. AIAA Aerody-
namic Design Optimization Discussion Group proposes to optimise only the wing extracted from the
complete CRM cad where also the body, the nacelle and the tail are present. The wing is developed
for transonic conditions, with a blunt trailing edge and a strong similarity with the Boeing 777-200.
Respect to the Boeing wing it has 10.3% less wet area and in order to make it more attractive for re-
search purposes a strong pressure recovery is introduced in the outboard wing. The wing is optimised
for working in combination with the fuselage, accordingly its performance is degraded when the body
and the tail are removed. Furthermore, the root is positioned on the symmetry plane and all the coor-
dinates are divided with the mean aerodynamic chord obtaining a reference length of one meter. Since
the reference area is mesh dependent, the assigned value of 3.407014m is fixed. Many information
about how to properly generate a mesh for this geometry are present in literature since CRM is used by
AIAA for the CFD drag prediction Workshop [117]. However, the computational resources available
for this thesis are limited, especially the bottleneck is the maximum RAM of 64Gb. To not exceed
this value during the adjoint simulation maximum a mesh of 0.8 million of cells can be used, therefore
the drag is not properly captured. The main part of the wing’s surface is discretized with a structured
grid, at the trailing edge the first cell length is 0.075% of the local chord instead the value of 0.1% is

67

Mesh Deformation Techniques

chosen for the leading edge . The trailing edge i vertically cut and dived in 11 cells. Instead, for the
tip an unstructured surface mesh is applied. Regarding the volume grid, the first cell size guarantee a
maximum y+< 0.43, the first three layer have constant thickness that a growth rate of 1.3 is used. The
farfield is fixed at 100 times the half span of the wing which is 3.76m.
A mesh convergence is performed at fixed Cl , the relative error between the different meshes is small
and the starting drag not far from the one obtained in the reference paper thus the optimization will
provide reliable results. The second mesh is selected for the ASO which represents a good balance
between the convergence of the aerodynamic coefficients and the computational power available.

0 2 4 6 8 10 12

Number of Mesh Elements 10
6

0.02

0.0202

0.0204

0.0206

0.0208

C
d

Drag Coefficient

CFD Results

Roache Prediction

0 1 2 3 4 5 6 7

Number of Mesh Elements 10
6

0

1

2

3

C
d

 E
rr

o
r

Cd Relative Error

Figure 6.17: CRM Mesh Convergence

The optimization’s target is reducing the drag coefficient without decreasing the lift and increasing the
pitching moment. No constraint is imposed on the moment coefficients, they are just monitored. The
free stream conditions selected are:

Table 6.4: Free Stream Conditions CRM Wing

Mach 0.85
Cl 0.5
Re 5E6

Temperature 288.15K

The angle of attack is free to change to adjust the lift and the internal volume is forced to be equal
or grater to the baseline one. ADODG proposes to impose a maximum thickness of 1

4 with respect
to the original at sections A : 2.35%, B:26.7%, C : 55.7%, D : 69.7%, E : 82.8% and F : 94.4% of
the span. These values are unrealistic, however it helps to guide the optimization process to achieve
a reasonable final shape. The results of reference belongs to the MDO laboratory research group of

68

Mesh Deformation Techniques

Prof. Martins. Working on adjoint optimization since 2002, they produced extraordinary results on the
CRM contained in the publication of the 2018 [114], with a reduction of the drag of 8.5%. However,
the root of the wing is free to change and, as it can be observe in the pictures of that paper, the final
thickness of the root strongly increased cancelling the shock wave in that zone. This is not possible in
SU2 where the root has to be constrained, in my opinion this is even more meaningful since the wing
is extracted from a complete aircraft and the optimization of the root should be done combined with
the fuselage. Therefore, to be able to compare our values with them we decided to replicate the test
case proposed in section 4.2 of [114]. The only difference between the ADODG benchmarks is the
geometrical constraints are imposed at 30 spanwise sections and the root cannot twist. They obtained
that the drag is cut from 206.7 to 196.6 counts, which corresponds to a reduction of 4.83%. The type of
grid that they are using is very different, an o-grid with high growth ratio. They implemented a multi
stage optimization method that we cannot use due computational resource constraints. They start with
a very coarse mesh, when the optimization slows down they generate a denser and more accurate mesh
on the morphed surface and proceed with the ASO. The initial grid is composed by half million cells
to ends with 28 million volumes which is simple not affordable for us.

0 5 10 15 20

Design Iteration

0.0196

0.0197

0.0198

0.0199

0.02

0.0201

0.0202

0.0203

0.0204

C
d

0.485

0.49

0.495

0.5

0.505

C
l

RBF Cd

ELA Cd

RBF Cl

ELA Cl

Figure 6.18: CRM: Cd Optimization

69

Mesh Deformation Techniques

0 5 10 15 20

Design Iteration

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

 C
m

x
 %

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

 V
o
lu

m
e
 %

RBF Cm
x

ELA Cm
x

RBF Vol

ELA Vol

Figure 6.19: CRM: Volume and Cmy Variation

The wing is entirely immersed into a single FFD parallelepiped. In this reference case 128 DVs are
used, equally distributed on 8 spanwise planes. There is no direct control of the section rotation,
the twist optimization is performed by the z-direction movement of the FFD vertices. Regarding the
mesh deformation, RBF can select as control points maximum 10% of the surface nodes and the more
accurate Wendland C2 is used as a base for the interpolation. A single level greedy point is applied,
the intrinsic error is for the entire ASO lower than 0.6%. ELA is set as in the other sections. The
improvement of the Cp plot and the shape deformation are reported about sections B,C,D and F. The
history of the optimization reported in Fig. 6.19between the two methods seems to be identical. Once
more the optimization obtained with RBF provides a better result. The volume is reduced of 0.8%, the
other constraints are perfectly respected. The central portion of the wing is strongly morphed, the wing
is less twisted, the lower part has more gentle curvature, instead the upper part is more rounded. The
drag is reduced from the starting 203.68 0f 196.74 drag counts, which corresponds to a percentage of
3.41%. The shock wave is reduced especially close to the tip which is more free to deform. Fig. 6.22
and 6.23 highlight how the average value of the surface sensitivity at the end of the optimization is
decreased, which indicates that the optimization is working and converging. The orthogonality of the
mesh is reported for the starting grid and the final one, ELA shows a progressive decay of the grid
quality:

Table 6.5: CRM Mesh Orthogonality

Deformation Method Initial Final

RBF 27.12 27.06
ELA 27.12 -29.80

70

Mesh Deformation Techniques

Figure 6.20: CRM: Pressure Isolines Upper Part

Figure 6.21: CRM: Pressure Isolines Lower Part

71

Mesh Deformation Techniques

Figure 6.22: CRM: Adjoint Density

Figure 6.23: CRM: Adjoint Energy

72

Mesh Deformation Techniques

Figure 6.24: CRM: Cp Optimization

The polar of the wing has been computed both on the original wing and on the optimized one. Mach,
Re and free stream temperature are fixed and equal to the previously selected. The results show an
unexpected improvements of the performance also far from the design condition selected. The same
value of lift is always shifted to a lower angle of attack Fig. 6.26. Looking the data at a fixed Cl the
efficiency is increased in the entire range selected [0◦;6◦] Fig. 6.27. The maximum efficiency is slightly
shifted to a lower value of the lift which is not the one around which the CRM has been optimized.
These results are unexpected since only a single point optimization is conducted, probably the original
wing was far from the optimum point, the strong shock is present in the entire range, therefore the
optimization decreased the intensity also in off-point conditions.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Cl

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C
d

Original

Optimized

Figure 6.25: CRM: Original and Optimized Polar

0 1 2 3 4 5 6

AoA

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
l

Original

Optimized

Figure 6.26: CRM: Cl Respect To AoA

73

Mesh Deformation Techniques

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Cl

8

10

12

14

16

18

20

22

24

26

E
ff

Original

Optimized

Figure 6.27: CRM: Efficiency Respect to Cl

6.3 Wing-Winglet Optimization

The ultimate goal of this thesis is to optimized a complex geometry including a non-planar wing.
Regarding SU2, the task has been already faced by prof. Palacio in the project NERONE[30]. However,
in that case the mesh is not deformed although entirely generated from scratch for each iteration and an
inviscid optimization is performed. A more high fidelity ASO is presented in this section, where RANS
equations with SA turbulence model are resolved and RBF is applied to deform the hybrid mesh. The
Onera M6 wing is used, to which a winglet has been added. The winglet is drawn at the CAD software
generating a loft by a gradual contraction of the tip’s airfoil until it halves the initial chord. The free
stream conditions are the same used in Onera section, the target Cl is recomputed for the new geometry:

Table 6.6: Free Stream Conditions Onera M6 with Winglet

Mach 0.84
AoA 3.06
Re 14.6E6

Temperature 300K
Target Cl 0.263

74

Mesh Deformation Techniques

Figure 6.28: Onera M6 With Winglet Attached CAD

The convergence of the mesh is conducted at fixed Cl , since the surface grid is structured the number of
points in the three directions is multiplied for 1.5. The boundary layer structured mesh progressively
has a lower growth ratio and an higher number of first cells with constant height. Although only
the coarser grid is used for the optimization to respect the virtual memory available. Therefore, the
optimization starts from an inaccurate value of the drag which is still highly mesh dependent. The
results should be considered as a demonstration of the capability to improve the aero-performace of a
non planar wing and not as a benchmark to match.

0 0.5 1 1.5 2 2.5 3

Number of Mesh Elements 10
7

0.015

0.016

0.017

0.018

0.019

C
d

Drag Coefficient

CFD Results

Roache Prediction

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Number of Mesh Elements 10
6

0

5

10

15

C
d
 E

rr
o
r

Cd Relative Error

Figure 6.29: Onera M6 With Winglet Mesh Convergence

Regarding the optimization, the drag is selected as the objective function, the lift and the volume must
not decrease. The angle of attack is free to change, the y-momentum is just monitored, while the root is
fixed. The area of five sections on the wing and three on the winglet cannot become lower than the 75%

75

Mesh Deformation Techniques

of the initial value. A hybrid mesh of 0.7 million cells is generated, with the first two layers of constant
height proving a starting y+< 0.9. A single level RBF is used with Wendland C0 as the basis function
and maximum 10% od the surface nodes selectable as control points. This configuration provides for
all the design loops a maximum error of the displacement lower than 0.5%. The optimization process
is split in two stages. First, two FFD boxes are used, one containing the wing with 144 DVs that can
translate only in z-direction and a second around the winglet with 70 DVs free to shift in y,x direction.
The sensitivity computed for wing DVs is one order of magnitude higher, accordingly the nodes of the
horizontal part of the body are more shifted than the rest of the wing. When the drag reduction starts
to be too low, the ASO restarts from the last output grid, this time with only FFD on the winglet. The
number of DVs is increased to 160, this way the winglet is proper morphed and the difference is visible
also with the naked eye.

Figure 6.30: Onera M6 Original and Deformed Winglet

76

Mesh Deformation Techniques

0 10 20 30 40 50

Design Iteration

0.016

0.0165

0.017

0.0175

0.018

0.0185

0.019

C
d

0.26

0.2605

0.261

0.2615

0.262

0.2625

0.263

0.2635

0.264

C
l

Cd

Cl

Figure 6.31: Onera M6 Winglet Cd Optimization

As can be seen in the previous figure, the drag is reduced from 185.34 counts to 163.43 which corre-
spond to a decrease of 11.82%. The volume is perfectly preserved, however the y-momentum, which is
only monitored in this case, remarkably increases from−0.112 to−0.148. The shape of the section and
the Cp distribution are reported for four positions, two related to the winglet and two to the horizontal
part.The optimization has been tested also with an elastic analogy method for the mesh deformation.
The orthogonality of the mesh after the first design loop is chosen as indicator of the grid quality. Con-
cerning ELA, if the stiffness is set with an inverse volume criteria the following direct simulation on
the updated grid diverges. It must be underlined that it does not happen in case of constant stiffness or
wall distance method for creating the matrix of the system although the minimum orthogonality is a bit
lower than the one obtained with RBF suggesting a progressive lost of quality.

Table 6.7: Mesh Orthogonality

Method Nc Nv Min Orthogonality

RBF C0 1100 392619 6.32
ELA inv volume 12676 645590 -43.92

ELA constant 12676 645590 6.21
ELA wall distance 12676 645590 6.28

77

Mesh Deformation Techniques

Figure 6.32: Onera Winglet: Cp Optimization

78

Mesh Deformation Techniques

6.4 Subsonic Wing Multipoint Optimization

This section is the result of a collaboration with the Leonardo SPA, which is the leading Italian
aerospace company. The goal is to increase the performance of an isolated planar wing extracted
from a regional aircraft which is able to operate from the most rudimentary airstrips and in extreme
environmental conditions. The CAD file is provided directly by the Leonardo Aeronautical Division
that produces the aircraft. The RANS optimization is conducted in subsonic regime M = 0.405. The
company provided the polar data for the desired flight conditions, the coefficients are matched through
a mesh convergence process than to be compatible with the computational power available the grid
selected is strongly relaxed bringing the ASO to start from an inexact aero-coefficients. The results ob-
tained should be interpreted as the prof that SU2 is usable also for real industrial applications although
not as reference values for the project. The optimization should be repeated exactly with the same
criteria on a more proper and refined mesh. As in the rest of the thesis it is required to reduce the drag
without changing the lift and the wing volume. The angle of attack is free to change, the moments re-
spect to the three axes are only monitored for reducing the computational cost. At 28 stations spanwise
the maximum thickness of the section must not become lower than 75% of the initial value. The wing
is really straight with almost no arrow angle and tapering. Only RBF is used for deforming the grid at
each design loop. The optimization is first conducted selecting one Cl value obtained for an AoA = 2◦.
Just one FFD box is used for containing the body, different number and distributions of DVs are tried.
Only the best result is reported, which is obtained for 240 vertices equally allocated on 20 sections of
the wing . Besides, a multipoint optimization is conducted around three lift value initially computed
for AoA = 0◦,2◦,4◦. In both cases the polar of the final morphed wing is computed and compared with
the initial distribution.

Table 6.8: High Mach Multipoint Optimization

Cl ∆α ∆Cd ∆Cmy

0.332 −0.292◦ −0.65% +4.7%
0.526 −0.29◦ −1.14% +3.57%
0.717 −0.28◦ −1.36% +2.89%

The multipoint and single point optimization provide practically the same results, the drag reduction is
limited since we re subsonic, no shock wave is present, the wing is already optimized and there is no
separation of the flow to control. What can be notice from the following images is that the same lift is
obtained for a lower angle of attack and the efficiency is slightly increased for the entire range of angle
considered. This is happening for both the free stream conditions selected.The maximum efficiency is
shifted to a little higher value of lift.

79

Mesh Deformation Techniques

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Cl

1

2

3

4

5

6

7

C
d

Original

Single Point

Multipoint

Figure 6.33: Polar M=0.405

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Cl

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

E
ff

Original

Single Point

Multipoint

Figure 6.34: Efficiency vs Lift M=0.405

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Cl

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

C
d

Original

Single Point

Multipoint

Figure 6.35: Polar M=0.2073

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Cl

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

E
ff

Original

Single Point

Multipoint

Figure 6.36: Efficiency vs Lift M=0.2073

To confirm the results the original and optimized surface mesh has been extracted, each elements is
split in two cells, a more accurate boundary layer structured mesh is generated and a wake refinement
is added, with the first 5 cells of constant height and than a growth ratio of 1.18. The two grid are
tested in the case of high Mach and two target Cl obtained around 0◦ and 2◦ as angle of attack. The
converged RANS confirm a little reduction of 0.55 drag counts and the angle of attack for obtaining
the same CL is lower of 0.25◦. However, the increase of the y-momentum is confirmed around 4% for
the first angle of attack and 3.3% for the second. The Cp distribution and the section shape are reported
at A = 24.5%,B = 48.8%,C = 73.29%,D = 96.23% of the span for the lower lift value. The peak
of suction near the leading edge is reduced and the backward part of the wing is generating more lift
causing the increment of the y momentum. Moreover, due to the change of the twist distribution more
lift is generated close to the tip.

80

Mesh Deformation Techniques

Figure 6.37: Multipoint Optimization Cp

81

Chapter 7

Conclusions and Perspectives

The aim of this thesis was to increase the robustness and the possibility of the gradient based aerody-
namic optimization chain implemented inside the open-source SU2. Considering only steady RANS
simulations, the software has to be able to improve the aero-performance of a 3D rigid body in super-
sonic or subsonic conditions and regarding Su2 for the first time of a wing-winglet configuration. All
the targets have been achieved combining the discrete adjoint, for computing the surface sensitivity,
and RBF for deforming the computational grid. As optimization in this context it is intended the re-
search of the body shape that provides a lower value of the objective function selected.

Both C++ modulus were already coded inside the software, however they were not interconnected and
RBF needed to be adapted to be compatible with the Automatic Differentiation. The displacements
of the design variables are directly affected by the method selected for morphing the grid. This could
drive the gradient based optimizer SLSQP to find a different minimum, as is evident in the NACA0012
test case. The version of RBF implemented in SU2 includes two data reduction schemes: a multi-
level greedy algorithms and a volume reduction system. Selecting the maximum number of the control
points permitted, the levels and the base function it is possible to regulate the computational time and
the virtual memory usage. This is extremely useful in case of scarce computational resource available.
Concerning the computational efficiency, the benchmark testes highlight a remarkable improvement
respect to the elastic analogy method ELA, widely used not only in SU2, for updating the grid. In
the 3D Onera M6 case the ram usage is reduced of the 80% and the cpu time of the 75%, since the
mesh is deformed at each design loop it means also a quicker optimization. Two test cases proposed
by ADODG has been performed, the transonic RAE2822 and the CRM wing. This way the results
obtained with SU2 are compared with the global CFD community showing that our ASO is inline with
the more advanced methods implemented. To increase the robustness of the multidimensional opti-
mization it has been modified the method to control the maximum surface displacement and eventually
scale all the values, obtaining at each design loop a movement of the order of millimeters. Regarding
the non planar case, it has been necessary to add the ability to impose geometrical constraints also on
planes with z norm. To further test SU2 with more difficult tasks, a multipoint subsonic optimization
of the wing of Leonardo’s regional aircraft has been performed. The reduction of drag is achieved
for a considerable range of angle of attack and for two different free-stream conditions. Concerning
SU2, for the first time it has been successfully optimized a wing-winglet geometry with a 11.82% drag
reduction at the cost of an increasing y-momentum. It has been accomplished thank to RBF which
is able to morph more complex grids and manage larger displacements, in fact with ELA this type of
geometry is not well handled and the ASO easily fails.

82

Mesh Deformation Techniques

This thesis, thanks to the collaboration with Leonardo Aeronautics Division which provided the CAD,
demonstrates that the optimization chain implemented in SU2 with the discrete adjoint and RBF can
be applied to real industrial geometries, achieving remarkable improvements in the aero coefficients.
Since it is gradient based, it will always find the closest local minimum respect to the starting point
therefore it is a tool perfect for the last steps of a design project yet not for define the body from scratch.
Even if now the ASO is more robust and flexible, many improvements are still necessary and possible.
Some ideas strictly related to the possible advancement in the SU2 software are here proposed:

• The direct simulation and the adjoint solutions requires sometimes different refinement zone in
the grid. Moreover the deformation of the body could strongly impact the flow solution making
the original distribution of cells not optimal to capture the flow behaviour. One way to overcome
this issue is to introduce inside the optimization chain a goal oriented mesh adaptive scheme that
also smooth the direct and adjoint necessity. Besides, SU2 already is compatible with INRIA
AMG Library [118] making this solution easy implementable.

• FFD is really limiting for the deformation process. It is difficult to proper contain a complex
geometry with only one box. If more boxes are used, the faces in common cannot move limiting
the design space explorable. This constraint is too hard and not strictly necessary, it should be
relaxed and also the continuity conditions can be handled in a more flexible way.

• The position and number of the design variables should become adaptive. It could help the
optimization and slightly reduce the computational cost to be able to add a vertices of control
above that region of the surface where the sensitivity is higher. With the same concept some DVs
which prescribed displacement is irrelevant could be switch off in the successive design loop.

• To generate a proper tool for designing a wing since the first steps of the project, the gradient
based optimization should be combined with a GA algorithm. The general shape of the wing
could be described by less than ten parameters such as the span, root chord, tip chords, arrow an-
gle. First, the GA generating a certain population could identify a sub-optimal shape. Secondly,
the ASO used in this thesis could work on the best body previously found further reducing the
Cd . This solution, not implemented in SU2, is known in literature under the name of Hybrid
Optimization.

————-

83

Bibliography

[1] Giles, M. B. and Pierce, N. A., “An introduction to the adjoint approach to design,” Flow, turbu-
lence and combustion, Vol. 65, No. 3-4, 2000, pp. 393–415.

[2] Skinner, S. N. and Zare-Behtash, H., “State-of-the-art in aerodynamic shape optimisation meth-
ods,” Applied Soft Computing, Vol. 62, 2018, pp. 933–962.

[3] Juan J. Alonso, Thomas D. Economon, V. M., “Mesh Adaptation for SU2 with INRIA AMG
Library,” 1st ANNUAL SU2 DEVELOPERS MEETING, Tu Delft, Netherlands, Set.2016.

[4] Albring, T. A., Sagebaum, M., and Gauger, N. R., “Efficient aerodynamic design using the
discrete adjoint method in SU2,” 17th AIAA/ISSMO multidisciplinary analysis and optimization
conference, 2016, p. 3518.

[5] Sederberg, T. W. and Parry, S. R., “Free-form deformation of solid geometric models,” Proceed-
ings of the 13th annual conference on Computer graphics and interactive techniques, 1986, pp.
151–160.

[6] Lin, X., Ruan, S., Qiu, T., and Guo, D., “Nonrigid medical image registration based on mesh
deformation constraints,” Computational and mathematical methods in medicine, Vol. 2013,
2013.

[7] Blom, F. J., “Considerations on the spring analogy,” International journal for numerical methods
in fluids, Vol. 32, No. 6, 2000, pp. 647–668.

[8] Cavagna, L., Quaranta, G., and Mantegazza, P., “Application of Navier–Stokes simulations for
aeroelastic stability assessment in transonic regime,” Computers & Structures, Vol. 85, No. 11-
14, 2007, pp. 818–832.

[9] Chernukhin, O. and Zingg, D. W., “Multimodality and global optimization in aerodynamic de-
sign,” AIAA journal, Vol. 51, No. 6, 2013, pp. 1342–1354.

[10] Carrier, G., Destarac, D., Dumont, A., Meheut, M., Salah El Din, I., Peter, J., Ben Khelil,
S., Brezillon, J., and Pestana, M., “Gradient-based aerodynamic optimization with the elsA
software,” 52nd Aerospace Sciences Meeting, 2014, p. 0568.

[11] Shahpar, S., “Challenges to overcome for routine usage of automatic optimisation in the propul-
sion industry,” Aeronautical Journal, Vol. 115, No. 1172, 2011, pp. 615.

[12] Sobieszczanski-Sobieski, J., “The case for aerodynamic sensitivity analysis,” Sensitivity Anal-
ysis in Engineering, compiled by H.M. Adelman and R. T. Haftka, NASA CP 2457, Feb 1987,
pp. 77–96.

84

Mesh Deformation Techniques

[13] Reneaux, J. and Thibert, J.-J., “The use of numerical optimization for airfoil design,” 3rd Applied
Aerodynamics Conference, Colorado Springs, 1985, p. 5026.

[14] Lyness, J. N. and Moler, C. B., “Numerical differentiation of analytic functions,” SIAM Journal
on Numerical Analysis, Vol. 4, No. 2, 1967, pp. 202–210.

[15] Pironneau, O., “On optimum profiles in Stokes flow,” Journal of Fluid Mechanics, Vol. 59,
No. 1, 1973, pp. 117–128.

[16] Jameson, A., “Aerodynamic design via control theory,” Journal of scientific computing, Vol. 3,
No. 3, 1988, pp. 233–260.

[17] Jameson, A., “Re-engineering the design process through computation,” Journal of Aircraft,
Vol. 36, No. 1, 1999, pp. 36–50.

[18] Reuther, J. J., Jameson, A., Alonso, J. J., Rimllnger, M. J., and Saunders, D., “Constrained
multipoint aerodynamic shape optimization using an adjoint formulation and parallel computers,
part 2,” Journal of aircraft, Vol. 36, No. 1, 1999, pp. 61–74.

[19] Shubin, G. R., “Obtaining\cheap" optimization gradients from computational aerodynamics
codes,” Applied Mathematics and Statistics Technical Report AMS, Boeing Computer Services,
1991.

[20] Nadarajah, S. and Jameson, A., Studies of the continuous and discrete adjoint approaches to
viscous automatic aerodynamic shape optimization.

[21] Giles, M., “Analysis of the accuracy of shock-capturing in the steady quasi-1D Euler equations,”
1995.

[22] Palacios, F., Colonno, M. R., Aranake, A. C., Campos, A., Copeland, S. R., Economon, T. D.,
Lonkar, A. K., Lukaczyk, T. W., Taylor, T. W., and Alonso, J. J., “Stanford University Unstruc-
tured (SU2): An open-source integrated computational environment for multi-physics simula-
tion and design,” AIAA paper, Vol. 287, 2013, pp. 2013.

[23] Sagebaum, M., Albring, T., and Gauger, N. R., “High-performance derivative computations
using codipack,” ACM Transactions on Mathematical Software (TOMS), Vol. 45, No. 4, 2019,
pp. 1–26.

[24] Zhou, B. Y., Albring, T. A., Gauger, N. R., Economon, T. D., Palacios, F., and Alonso, J. J.,
“A discrete adjoint framework for unsteady aerodynamic and aeroacoustic optimization,” 16th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2015, p. 3355.

[25] Zhou, B., Albring, T. A., Gauger, N. R., Ilario, C., Economon, T. D., and Alonso, J. J., “Re-
duction of airframe noise components using a discrete adjoint approach,” 18th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, 2017, p. 3658.

[26] Johansen, T. A., Fossen, T. I., and Berge, S. P., “Constrained nonlinear control allocation with
singularity avoidance using sequential quadratic programming,” IEEE Transactions on Control
Systems Technology, Vol. 12, No. 1, 2004, pp. 211–216.

[27] Kuhn, H. W. and Tucker, A. W., “Nonlinear Programming,” Proceedings of the Second Berkeley
Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley,
Calif., 1951, pp. 481–492.

85

Mesh Deformation Techniques

[28] Samareh, J. A., “Survey of shape parameterization techniques for high-fidelity multidisciplinary
shape optimization,” AIAA journal, Vol. 39, No. 5, 2001, pp. 877–884.

[29] Samareh, J., “Aerodynamic shape optimization based on free-form deformation,” 10th
AIAA/ISSMO multidisciplinary analysis and optimization conference, 2004, p. 4630.

[30] Pustina, L., Cavallaro, R., and Bernardini, G., “NERONE: An Open-Source Based Tool for
Aerodynamic Transonic Optimization of Nonplanar Wings,” Aerotecnica Missili & Spazio,
Vol. 98, No. 1, 2019, pp. 85–104.

[31] Selim, M., Koomullil, R., et al., “Mesh deformation approaches–a survey,” Journal of Physical
Mathematics, Vol. 7, No. 2, 2016.

[32] Batina, J. T., “Unsteady Euler airfoil solutions using unstructured dynamic meshes,” AIAA jour-
nal, Vol. 28, No. 8, 1990, pp. 1381–1388.

[33] Baker, T. and Cavallo, P., “Dynamic adaptation for deforming tetrahedral meshes,” 14th Com-
putational Fluid Dynamics Conference, 1999, p. 3253.

[34] Luke, E., Collins, E., and Blades, E., “A fast mesh deformation method using explicit interpola-
tion,” Journal of Computational Physics, Vol. 231, No. 2, 2012, pp. 586–601.

[35] Jakobsson, S. and Amoignon, O., “Mesh deformation using radial basis functions for gradient-
based aerodynamic shape optimization,” Computers & Fluids, Vol. 36, No. 6, 2007, pp. 1119–
1136.

[36] Morelli, M., Bellosta, T., and Guardone, A., “Efficient radial basis function mesh deforma-
tion methods for aircraft icing,” Journal of Computational and Applied Mathematics, 2021,
pp. 113492.

[37] Belferhat, S., Meftah, S., Yahiaoui, T., and Imine, B., “Aerodynamic Optimization of a Winglet
Design,” EPJ Web of Conferences, Vol. 45, EDP Sciences, 2013, p. 01010.

[38] Cella, U. and Romano, D., “Assessment of Optimization Algorithms for Winglet Design,”
EnginSoft-Newsletter Year 7nl, 2010.

[39] Weierman, J. and Jacob, J., “Winglet design and optimization for UAVs,” 28th AIAA Applied
Aerodynamics Conference, 2010, p. 4224.

[40] Swanson, R. C. and Turkel, E., “On central-difference and upwind schemes,” Journal of compu-
tational physics, Vol. 101, No. 2, 1992, pp. 292–306.

[41] Roe, P. L., “Approximate Riemann solvers, parameter vectors, and difference schemes,” Journal
of computational physics, Vol. 43, No. 2, 1981, pp. 357–372.

[42] Hicks, R. M., Murman, E. M., and Vanderplaats, G. N., “An assessment of airfoil design by
numerical optimization,” 1974.

[43] Vanderplaats, G. N. and Hicks, R. M., “Numerical airfoil optimization using a reduced number
of design coordinates,” 1976.

[44] Haftka, R. T., “Sensitivity calculations for iteratively solved problems,” International Journal
for Numerical Methods in Engineering, Vol. 21, No. 8, 1985, pp. 1535–1546.

86

Mesh Deformation Techniques

[45] Nielsen, E. J. and Anderson, W. K., “Aerodynamic design optimization on unstructured meshes
using the Navier-Stokes equations,” AIAA journal, Vol. 37, No. 11, 1999, pp. 1411–1419.

[46] Gao, Y., Wu, Y., and Xia, J., “Automatic differentiation based discrete adjoint method for aero-
dynamic design optimization on unstructured meshes,” Chinese Journal of Aeronautics, Vol. 30,
No. 2, 2017, pp. 611–627.

[47] Martins, J. R., Sturdza, P., and Alonso, J. J., “The complex-step derivative approximation,” ACM
Transactions on Mathematical Software (TOMS), Vol. 29, No. 3, 2003, pp. 245–262.

[48] Nielsen, E. J., Aerodynamic design sensitivities on an unstructured mesh using the Navier-Stokes
equations and a discrete adjoint formulation, Ph.D. thesis, Virginia Tech, 1998.

[49] Nielsen, E. J. and Park, M. A., “Using an adjoint approach to eliminate mesh sensitivities in
computational design,” AIAA journal, Vol. 44, No. 5, 2006, pp. 948–953.

[50] Shroff, G. M. and Keller, H. B., “Stabilization of unstable procedures: the recursive projection
method,” SIAM Journal on numerical analysis, Vol. 30, No. 4, 1993, pp. 1099–1120.

[51] Peter, J. E. and Dwight, R. P., “Numerical sensitivity analysis for aerodynamic optimization: A
survey of approaches,” Computers & Fluids, Vol. 39, No. 3, 2010, pp. 373–391.

[52] Venditti, D. A. and Darmofal, D. L., “Adjoint error estimation and grid adaptation for func-
tional outputs: Application to quasi-one-dimensional flow,” Journal of Computational Physics,
Vol. 164, No. 1, 2000, pp. 204–227.

[53] Spalart, P. and Allmaras, S., “A one-equation turbulence model for aerodynamic flows,” 30th
aerospace sciences meeting and exhibit, 1992, p. 439.

[54] Menter, F., “Zonal two equation kw turbulence models for aerodynamic flows,” 23rd fluid dy-
namics, plasmadynamics, and lasers conference, 1993, p. 2906.

[55] WILCOX, D., “A half century historical review of the k-omega model,” 29th Aerospace Sciences
Meeting, 1991, p. 615.

[56] Dwight, R. P. and Brezillon, J., “Adjoint algorithms for the optimization of 3d turbulent config-
urations,” New Results in Numerical and Experimental Fluid Mechanics VI, Springer, 2007, pp.
194–201.

[57] Mohammadi, B., “Dynamical approaches and incomplete gradients for shape optimization and
flow control,” 14th Computational Fluid Dynamics Conference, 1999, p. 3374.

[58] Giles, M., Pierce, N., Giles, M., and Pierce, N., “Adjoint equations in CFD-Duality, boundary
conditions and solution behaviour,” 13th Computational Fluid Dynamics Conference, 1997, p.
1850.

[59] Peter, J., Contributions to discrete adjoint method in aerodynamics for shape optimization and
goal-oriented mesh-adaptation, Ph.D. thesis, UNIVERSITE DE NANTES, 2020.

[60] Palacios, F. and Economon, T., “Stanford University Unstructured (SU2): Open-Source Anal-
ysis and Design Technology for Turbulent Flows, 52nd AIAA Aerospace Sciences,” National
Harbor, Madrid, 2014.

87

Mesh Deformation Techniques

[61] Sanchez, R., Kline, H., Thomas, D., Variyar, A., Righi, M., Economon, T. D., Alonso, J. J.,
Palacios, R., Dimitriadis, G., and Terrapon, V., “Assessment of the fluid-structure interaction
capabilities for aeronautical applications of the open-source solver SU2,” 2016.

[62] Hogan, R. J., “Fast reverse-mode automatic differentiation using expression templates in C++,”
ACM Transactions on Mathematical Software (TOMS), Vol. 40, No. 4, 2014, pp. 1–16.

[63] Grabmeier, J. and Kaltofen, E., Computer Algebra Handbook: Foundations, Applications, Sys-
tems;[with CD-ROM], Springer Science & Business Media, 2003.

[64] Albring, T. A., Sagebaum, M., and Gauger, N. R., “Development of a consistent discrete ad-
joint solver in an evolving aerodynamic design framework,” 16th AIAA/ISSMO multidisciplinary
analysis and optimization conference, 2015, p. 3240.

[65] Griewank, A. and Walther, A., Evaluating derivatives: principles and techniques of algorithmic
differentiation, SIAM, 2008.

[66] Yamazaki, W., Mouton, S., and Carrier, G., “Efficient design optimization by physics-based
direct manipulation free-form deformation,” 12th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, 2008, p. 5953.

[67] Bauckhage, C., “NumPy/SciPy Recipes for Data Science: Ordinary Least Squares Optimiza-
tion,” researchgate. net, Mar, 2015.

[68] Boggs, P. T. and Tolle, J. W., “Sequential quadratic programming for large-scale nonlinear opti-
mization,” Journal of computational and applied mathematics, Vol. 124, No. 1-2, 2000, pp. 123–
137.

[69] Lyu, Z., Xu, Z., and Martins, J., “Benchmarking optimization algorithms for wing aerodynamic
design optimization,” Proceedings of the 8th International Conference on Computational Fluid
Dynamics, Chengdu, Sichuan, China, Vol. 11, Citeseer, 2014.

[70] Wilson, R. B., “A simplicial algorithm for concave programming,” Ph. D. Dissertation, Gradu-
ate School of Bussiness Administration, 1963.

[71] Powell, M. J., “A fast algorithm for nonlinearly constrained optimization calculations,” Numer-
ical analysis, Springer, 1978, pp. 144–157.

[72] Hock, W. and Schittkowski, K., “Test examples for nonlinear programming codes,” Journal of
optimization theory and applications, Vol. 30, No. 1, 1980, pp. 127–129.

[73] Kuhn, H. W., “Nonlinear programming: a historical view,” Traces and Emergence of Nonlinear
Programming, Springer, 2014, pp. 393–414.

[74] Fliege, J. and Vaz, A. I. F., “A SQP type method for constrained multiobjective optimization,”
Proc. Optim. Online, 2015, pp. 1–35.

[75] Korivi, V. M., Newman, P. A., and Taylor III, A. C., “Aerodynamic optimization using sensitivity
derivatives from a three-dimensional supersonic Euler code,” Journal of aircraft, Vol. 35, No. 3,
1998, pp. 405–411.

[76] Sadrehaghighi, I., Smith, R. E., and Tiwari, S. N., “Grid sensitivity and aerodynamic optimiza-
tion of generic airfoils,” Journal of aircraft, Vol. 32, No. 6, 1995, pp. 1234–1239.

88

Mesh Deformation Techniques

[77] Lomtev, I., Kirby, R., and Karniadakis, G., “A discontinuous Galerkin ALE method for com-
pressible viscous flows in moving domains,” Journal of Computational Physics, Vol. 155, No. 1,
1999, pp. 128–159.

[78] Truong, A. H., Oldfield, C. A., and Zingg, D. W., “Mesh movement for a discrete-adjoint
Newton-Krylov algorithm for aerodynamic optimization,” AIAA journal, Vol. 46, No. 7, 2008,
pp. 1695–1704.

[79] Lee, C., Koo, D., Telidetzki, K., Buckley, H., Gagnon, H., and Zingg, D. W., “Aerodynamic
shape optimization of benchmark problems using jetstream,” 53rd AIAA Aerospace Sciences
Meeting, 2015, p. 0262.

[80] Yang, G. and Da Ronch, A., “Aerodynamic shape optimisation of benchmark problems using
SU2,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
2018, p. 0412.

[81] Nielsen, E. J. and Anderson, W. K., “Recent improvements in aerodynamic design optimization
on unstructured meshes,” AIAA journal, Vol. 40, No. 6, 2002, pp. 1155–1163.

[82] Dwight, R. P., “Robust mesh deformation using the linear elasticity equations,” Computational
fluid dynamics 2006, Springer, 2009, pp. 401–406.

[83] Tezduyar, T. E., Behr, M., Mittal, S., and Johnson, A., “Computation of unsteady incompress-
ible flows with the stabilized finite element methods: Space-time formulations, iterative strate-
gies and massively parallel implementations,” ASME PRESSURE VESSELS PIPING DIV PUBL
PVP., ASME, NEW YORK, NY(USA), 1992,, Vol. 246, 1992, pp. 7–24.

[84] Yang, Z. and Mavriplis, D. J., “Higher-order time integration schemes for aeroelastic applica-
tions on unstructured meshes,” AIAA journal, Vol. 45, No. 1, 2007, pp. 138–150.

[85] Yang, Z. and Mavriplis, D. J., “Mesh deformation strategy optimized by the adjoint method on
unstructured meshes,” AIAA journal, Vol. 45, No. 12, 2007, pp. 2885–2896.

[86] Nocedal, J. and Wright, S., Numerical optimization, Springer Science & Business Media, 2006.

[87] Witteveen, J. and Bijl, H., “Explicit mesh deformation using inverse distance weighting interpo-
lation,” 19th AIAA Computational Fluid Dynamics, 2009, p. 3996.

[88] Hardy, R. L., “Multiquadric equations of topography and other irregular surfaces,” Journal of
geophysical research, Vol. 76, No. 8, 1971, pp. 1905–1915.

[89] Hardy, R. L., “Theory and applications of the multiquadric-biharmonic method 20 years of
discovery 1968–1988,” Computers & Mathematics with Applications, Vol. 19, No. 8-9, 1990,
pp. 163–208.

[90] Rendall, T. C. and Allen, C. B., “Efficient mesh motion using radial basis functions with data
reduction algorithms,” Journal of Computational Physics, Vol. 228, No. 17, 2009, pp. 6231–
6249.

[91] Sheng, C. and Allen, C. B., “Efficient mesh deformation using radial basis functions on unstruc-
tured meshes,” AIAA journal, Vol. 51, No. 3, 2013, pp. 707–720.

89

Mesh Deformation Techniques

[92] Morris, A., Allen, C., and Rendall, T., “Domain element paramterisation for CFD-based op-
timisation of aerofoils using deformation by radial basis functions,” International Journal for
Numerical Methods in Fluids, Vol. 58, No. 8, 2008, pp. 827–860.

[93] Morelli, M., Bellosta, T., and Guardone, A., “Efficient Radial Basis Function Mesh Deforma-
tion Methods for Aircraft Icing,” In the 7th European Seminar on Computing, Pilsen, Czech
Republic, June 8-12, 2020.

[94] Buhmann, M. D., Radial basis functions: theory and implementations, Vol. 12, Cambridge
university press, 2003.

[95] Wendland, H., Scattered data approximation, Vol. 17, Cambridge university press, 2004.

[96] Biancolini, M. E., Fast radial basis functions for engineering applications, Springer, 2017.

[97] Rendall, T. C. and Allen, C. B., “Unified fluid–structure interpolation and mesh motion using
radial basis functions,” International journal for numerical methods in engineering, Vol. 74,
No. 10, 2008, pp. 1519–1559.

[98] Costin, W. and Allen, C., “Numerical study of radial basis function interpolation for data transfer
across discontinuous mesh interfaces,” International Journal for Numerical Methods in Fluids,
Vol. 72, No. 10, 2013, pp. 1076–1095.

[99] Wang, G., Mian, H. H., Ye, Z.-Y., and Lee, J.-D., “Improved point selection method for hybrid-
unstructured mesh deformation using radial basis functions,” AIAA Journal, Vol. 53, No. 4, 2015,
pp. 1016–1025.

[100] Xie, L. and Liu, H., “Efficient mesh motion using radial basis functions with volume grid points
reduction algorithm,” Journal of Computational Physics, Vol. 348, 2017, pp. 401–415.

[101] Li, D. and Hartmann, R., “Adjoint-based airfoil optimization with discretization error control,”
International Journal for Numerical Methods in Fluids, Vol. 77, No. 1, 2015, pp. 1–17.

[102] Shi, Y., Mader, C. A., He, S., Halila, G. L., and Martins, J. R., “Natural Laminar-Flow Airfoil
Optimization Design Using a Discrete Adjoint Approach,” AIAA Journal, Vol. 58, No. 11, 2020,
pp. 4702–4722.

[103] He, X., Li, J., Mader, C. A., Yildirim, A., and Martins, J. R., “Robust aerodynamic shape opti-
mization—from a circle to an airfoil,” Aerospace Science and Technology, Vol. 87, 2019, pp. 48–
61.

[104] Ladson, C. L., Hill, A. S., and Johnson, W., “Pressure distributions from high Reynolds number
transonic tests of an NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel,”
1987.

[105] Celik, I. B., Ghia, U., Roache, P. J., and Freitas, C. J., “Procedure for estimation and report-
ing of uncertainty due to discretization in CFD applications,” Journal of fluids Engineering-
Transactions of the ASME, Vol. 130, No. 7, 2008.

[106] Cook, P., McDonald, M., and Firmin, M., “Aerofoil RAE 2822: Pressure Distribution and
Boundary Layer and Wake Measurements. AGARD AR 138,” Research and Technology Organi-
sation, Neuilly-sur-Seine, 1979.

90

Mesh Deformation Techniques

[107] Anderson, G. R., Nemec, M., and Aftosmis, M. J., “Aerodynamic shape optimization bench-
marks with error control and automatic parameterization,” 53rd AIAA Aerospace Sciences Meet-
ing, 2015, p. 1719.

[108] Bisson, F. and Nadarajah, S., “Adjoint-based aerodynamic optimization framework,” 52nd
Aerospace Sciences Meeting, 2014, p. 0412.

[109] Gariepy, M., Trepanier, J.-Y., Petro, E., Malouin, B., Audet, C., LeDigabel, S., and Tribes,
C., “Direct search airfoil optimization using far-field drag decomposition results,” 53rd AIAA
Aerospace Sciences Meeting, 2015, p. 1720.

[110] Poole, D. J., Allen, C. B., and Rendall, T., “Control point-based aerodynamic shape optimization
applied to AIAA ADODG test cases,” 53rd AIAA Aerospace Sciences Meeting, 2015, p. 1947.

[111] Zhang, Y., Han, Z.-H., Shi, L., and Song, W.-P., “Multi-round surrogate-based optimization for
benchmark aerodynamic design problems,” 54th AIAA Aerospace Sciences Meeting, 2016, p.
1545.

[112] Schmitt, V., “Pressure distributions on the ONERA M6-wing at transonic mach numbers, exper-
imental data base for computer program assessment,” AGARD AR-138, 1979.

[113] Lee, C., Koo, D., and Zingg, D. W., “Comparison of B-spline surface and free-form deformation
geometry control for aerodynamic optimization,” AIAA Journal, Vol. 55, No. 1, 2017, pp. 228–
240.

[114] Yu, Y., Lyu, Z., Xu, Z., and Martins, J. R., “On the influence of optimization algorithm and initial
design on wing aerodynamic shape optimization,” Aerospace Science and Technology, Vol. 75,
2018, pp. 183–199.

[115] Palacios, F., Economon, T. D., and Alonso, J. J., “Large-scale aircraft design using SU2,” 53rd
AIAA aerospace sciences meeting, 2015, p. 1946.

[116] Vassberg, J., Dehaan, M., Rivers, M., and Wahls, R., “Development of a common research
model for applied CFD validation studies,” 26th AIAA Applied Aerodynamics Conference, 2008,
p. 6919.

[117] Tinoco, E. N., Brodersen, O. P., Keye, S., Laflin, K. R., Feltrop, E., Vassberg, J. C., Mani, M.,
Rider, B., Wahls, R. A., Morrison, J. H., et al., “Summary data from the sixth AIAA CFD drag
prediction workshop: CRM cases,” Journal of Aircraft, Vol. 55, No. 4, 2018, pp. 1352–1379.

[118] Loseille, A., “Unstructured mesh generation and adaptation,” Handbook of Numerical Analysis,
Vol. 18, Elsevier, 2017, pp. 263–302.

———–

91

	List of Figures
	List of Tables
	Introduction
	Sensitivity Analysis
	Optimization Chain
	Research Objective and Contribution
	Thesis Outline

	Sensitivity Computation
	Finite Difference
	Direct Linearization
	Discrete Adjoint: Lagrange Multipliers
	Double adjoint
	Duality Preserving FPI and RPM
	Error Estimation
	Approximations
	Adjoint Variables Interpretation

	SU2 Optimization Chain
	Code Structure
	Automatic Differentiation
	Forward Mode
	Reverse Mode
	Expression Template

	Free Form Deformation
	Sequential Least SQuare Programming

	Mesh Deformation Methods
	Spring Analogy
	Linear Elasticity
	Inverse Distance Weighting
	Radial Basis Functions
	Formulation
	Greedy Algorithm
	Volume Point Reduction

	Results-2D
	NACA0012 Drag Minimization
	NACA0012 Efficiency Maximization
	RAE2822 Drag Minimization
	RAE2822 Double Adjoint
	RAE2822 ADODG Benchmark Test
	2D Mesh Deformation Performance

	3D Results
	Onera M6 Drag Minimization
	Mesh Deformation Performance

	CRM Wing Drag Minimization
	Wing-Winglet Optimization
	Subsonic Wing Multipoint Optimization

	Conclusions and Perspectives
	Bibliography

