
A C*-Algebraic Approach
to Topological Phases for Insulators

Tesi di Laurea Magistrale in
Mathematical Engineering - Ingegneria matematica

Author: Lorenzo Scaglione

Student ID: 946439
Advisor: Prof. Franco Fagnola
Co-advisors: Prof. Johannes Kellendonk (Institut Camille Jordan, Lyon)
Academic Year: 2020-2021





i

Abstract

Topological insulators are materials with very interesting properties from a physical point
of view: they are electrical insulators in the bulk, while on the surface they can be char-
acterised by the presence of robust currents. These properties are characterised by the
"topological phase" of the material, i.e. their equivalence class with respect to continuous
deformations in a given topology. This means that small external perturbations or micro-
scopic irregularities of the material, which we can consider as "continuous" deformations
of the insulator, will not affect the intrinsic physical properties of the phase.

Particular physical symmetries can be considered. Thanks to mathematical tools from
operator algebra, it is possible to give a mathematical "structure" to the set of homotopy
classes. In this paper I describe and comment with examples a possible classification.
This classification is based on a particular approach to K-theory for C∗-algebras: the
great advantage, which makes the novelty of the classification, is the ability to give a
compact description for all types of symmetry.

Keywords: topological phases, operator algebra, C∗-algebras, K-theory





Abstract in lingua italiana

Gli isolanti topologici sono materiali che presentano proprietà molto interessanti dal punto
di vista fisico: sono isolanti elettrici al loro interno, mentre in superficie possono essere
caratterizzati dalla presenza di correnti robuste. Queste proprietà sono caratterizzate dalla
"fase topologica" del materiale, cioè dalla loro classe di equivalenza rispetto alle defor-
mazioni continue in una data topologia. Questo significa che piccole perturbazioni esterne
o irregolarità microscopiche del materiale, che possiamo considerare come deformazioni
"continue" dell’isolante, non avranno conseguenze sulle proprietà fisiche intrinseche della
fase.

Particolari simmetrie fisiche possono essere considerate. Grazie a strumenti matematici
provenienti dall’algebra degli operatori, è possibile dare una "struttura" matematica
all’insieme delle classi di omotopia. In questo lavoro descrivo e commento con esempi
una possibile classificazione. La classificazione è basata su un particolare approccio alla
K-teoria per le C∗-algebre: il grande vantaggio, che rende la classificazione descritta in-
novativa, è la capacità di dare una descrizione compatta per tutti i tipi di simmetria.

Parole chiave: fasi topologiche, algebra degli operatori, C∗-algebre, K-teoria
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1

Introduction

This work is the result of a research internship carried out in collaboration with the
University of Lyon (France). For me it was the first time I heard about topological
insulators and before I had just a vague idea of what "operator algebra" means and
what we can do with it. As a consequence, the great majority of the internship was
dedicated to learn and familiarise with subjects at the same time from quantum physics
and mathematics (in particular from solid physics, abstract algebra and operator theory).
For this reason, the first two chapters of this work present a brief review of what I read
about, as an introduction to the core of the subject. In the first chapter, I deal with the
physics part. We will see the modelling of a simple example of a solid, namely a regular
crystal. From quantum physics, we know that a physical system is described by the
hamiltonian of the system (that is, by its energy). Even if the physical situation is quite
simple, due to the huge number of atoms, several approximations are necessary: I will
introduced the "tight binding approximation", which is a kind of spatial discretisation of
the system. Then, we will be able to talk about the "band theory", which can help us to
understand the difference of behaviour between a conductor and an insulator. Finally, we
can introduce "topological insulators", their fundamental properties and what it means
to classify them.

In quantum physics, the hamiltonian of a system is usually considered as a linear operator
(for us, also bounded) on an Hilbert space. Therefore, an insulator is identified with its
hamiltoninan. For some reasons I will explain, we can see hamiltonians in a particular
subspace of the bounded linear operators: this subspace is a C∗-algebra. In the second
chapter, we will see the definition of C∗-algebra and some of the properties that make
it a key object of "operator algebra". The structure of a C∗-algebra can be investigated
further thanks to K-theory: after giving a brief review of it, we will also see a particular
approach to it (the Van Daele’s K-theory), which is the central idea for the approach
for the classification of topological insulators presented in the following chapter. Finally,
in chapter 3 we enter in the core of the work. Here I present the approach proposed
in the paper [5]: the goal of the paper is to classify topological insulators satisfying
particular symmetry conditions. Modulo some technicalities (involving among others
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Clifford algebras), the approach of Van Daele to K-theory applies almost straightforward
to topological insulators and the author presents a compact classification.

In chapter 4, I present my part of "research work". I present some examples and exercises
which helped me to give a less abstract understanding of the physical and mathematical
objects I was dealing with. In particular I present the Haldande model, an example of
topological insulator, and I show that it is a non-trivial insulator (we will discuss the
concept of triviality). I also prove some results on the gradings and real structures on
fundamental C∗-algebras, the key ingredients to talk about symmetries in C∗-algebras:
I show which are the possible gradings and real structures and I explain the relation
between these examples and the applications.
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1| Physical framework

From our point of view, an insulator is defined abstractly: it is a self-adjoint invertible
element of a C∗-algebra. Why does this definition make sense? In quantum mechanics,
the behaviour of a material is characterised by its hamiltonian. Moreover, hamiltonians
are self-adjoint elements of L(H), the linear operators on a (separable) Hilbert space H:
we identify the concrete material with an operator. For some deep reasons, which we will
discuss in the next chapter, we can think the hamiltonian in a smaller subset of L(H):
this choice leads us to see it in a C∗-algebra. We will see that also the property of being
an inversible operator has a reasonable physical interpretation.

In this chapter we well review briefly some topics of solid-state physics in order to give
a motivation, or at least an intuition, for the previous abstract definition. I will rely on
the first three chapters of [2] to recall basic results and concepts (as, for example, the
tight binding approximation, the Fermi energy or the Bloch theory) coming from physics
of electrons in a solid, which are necessary to give a justification for the definition.

At the end of the section, we will discuss what are "topological phases" for insulators. We
will see which are the properties of topological insulators and why they are particularly
important for us.

1.1. General hamiltonian for a solid

We can simplify a solid as a collection of Nn atomic nuclei (for simplicity all identical)
with mass M and electrical charge Ze and Ne electrons with mass m0. We can then write
the hamiltonian for this solid



4 1| Physical framework

H =
1

2M

Nn∑
i=1

P2
i +

1

2m0

Ne∑
j=1

p2
j

+
Z2

2

Nn∑
i,j=1,i ̸=j

Vc (Ri −Rj)− Z

Nn∑
i=1

Ne∑
j=1

Vc (rj −Ri)

+
1

2

Ne∑
i,j=1,i ̸=j

Vc (ri − rj)

Where Ri are the positions of the nuclei, rj the positions of electrons, Pi and pj are the
momentum operators for the nuclei and electrons and the Coulomb potential is given by

Vc(r) =
e2

4πϵ0|r|
.

As the order of magnitude of atoms in a solid is of 1023, it is impossible to compute a
solution for the Schrödinger equation with the previous hamiltonian. An approximation
becomes necessary. Then, we consider the following assumptions.

• We can neglect the kinetic energy of nuclei and suppose they are localised at fixed
points Ri.

• We consider an average electron-electron interaction (this assumption is justified if
the electrons are not too close). Then, we can introduce an "effective potential" Vat
which sums up the interaction of the electron with one nucleus and all the other
electrons.

We get the following approximated hamiltonian

He =
1

2m0

Ne∑
j=1

p2
j +

Nn∑
i=1

Ne∑
j=1

Vat (rj −Ri)

=
Ne∑
j=1

[
p2
j

2m0

+
Nn∑
i=1

Vat (rj −Ri)

]
=

Ne∑
j=1

Hj

This hamiltonian is separable. It is enough to study the hamiltoninan for one electron

H1 =
p2

2m0

+
Nn∑
l=1

Vat (r−Rl) .

If ψk(r) is a eigenvector of H1 for the energy Ek, we can easily find an eigenvector Ψ for
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He with respect to the energy E

Ψ(r1, r2, . . . , rNe) = ψk1 (r1)ψk2 (r2) . . . ψkNe
(rNe) ,

E =
Ne∑
i=1

Eki .

However, we must satisfy the anti-symmetric condition for fermions given by the Pauli
principle: as a consequence, we look for a linear combination of vector of the previous
form which satisfies this constraint. Therefore, we get the following eigenvector (written
using the so-called Slater determinant)

Ψ(r1, r2, . . . , rNe) =
1√
Ne!

∣∣∣∣∣∣∣∣∣∣
ψk1 (r1) ψk1 (r2) · ·
ψk2 (r1) · · ·

· · · ψkNe−1
(rNe)

ψkNe
(r1) · ψkNe

(rNe−1) ψkNe
(rNe)

∣∣∣∣∣∣∣∣∣∣
1.2. Tight binding approximation

In the "tight binding" approximation we consider a further assumption: the electrons are
strongly bounded to the nuclei. We first consider the Schrödinger equation for an atom[

p2

2m0

+ Vat(r)

]
χn(r) = Enχn(r)

where Vat is the potential of a neutral atom where the eigenstate of lowest energy E1, E2...

En...Ev are occupied by Z electrons. We want to study the last energy state χv of the
solid with energy Ev.
{χv (r− Rn)}n are the eigenfunctions corresponding to the potential centred in each site
Rn. In the "tight binding" approximation, we do the hypothesis that we can write ψk (r)

as a linear combination of the orbitals χv (r− Rn). If we note |Rl⟩ the state associated
to the orbital χv (r− Rl), we get

|ψk⟩ =
1√
Nn

Nn∑
l=1

ak,l |Rl⟩

We also assume that |Rl⟩ form an orthonormal set. We define

Vl(r) =
Nn∑

m=1,m ̸=l

Vat (r−Rm)
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and the transfer integrals
−tn,l = ⟨Rn |Vl(r)|Rl⟩

We get the equation

−
Nn∑
l=1

tn,lak,l = (Ek − Ev) ak,n

There is a non zero solution if Ek −Ev is an eigenvalue of the matrix with elements −tn,l:
the problem is reduced to the computation of the solution of a linear system.

1.3. 1D chain of atoms

We can apply the previous approximation to a simple, but instructive, example. We
consider a 1D chain of Nn atoms where a is the distance between them (see figure 1.1).

Figure 1.1: 1D chain of atoms.

We consider periodic conditions on the (finite) linear chain, i.e. we impose the condition

ak,n+Nn = ak,n

Thanks to the periodicity of Vat and the properties of χv, tn,l depends only on the difference
|n− l|

tn,l = t|n−l|.

Moreover, as the translation operator commutes with the hamiltonian (the potential is
translation invariant), we can apply Bloch’s theorem. ψk has the form

ψk(x) = eikxuk(x) where uk(x+ a) = uk(x)

All previous considerations lead to a condition on k and we have

k =
2πm

Nna
, m integer

Furthermore, thanks to the exponential decay with the distance of χv, we can assume
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that tn = 0 if |n| > 1 and we get a formula for the eigenvalues Ek

Ek = Ev − t0 − 2t1 cos ka

Figure 1.2: Tight binding approximation: energy band of the valence level for the 1D
atom chain.

The interval −π
a
< k ≤ π

a
is called first Brillouin zone. In 1.2 we observe the existence

of a band of permitted energies. We could also consider deeper energy levels, but in this
case the electrons are more strongly bounded to the nucleus and the energy bands are
much narrower than in the previous case: therefore, we can "forget" about them.

In the previous situation we observed just one band of energy, but it is not always the
case. For example, we can consider the case in which the electrons are almost unbounded
and the tight binding approximation does not hold. Now, we observe that the crystalline
potential can be viewed as a perturbation. With the help of the perturbation theory (see
[3] chapter 9) we get the energy bands represented in figure 1.3. We observe several bands
of energy and, between them, some "gaps" in the spectrum: there are bands of forbidden
energy.
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Figure 1.3: Almost free electrons.

1.4. Conductors and insulators

We can now give an explanation for a different behaviour of conductors and insulators.

If we consider the energy bands in the spectrum of a solid, we can imagine to fill a band
with electrons coming from the most external atomic orbital of each atom: thanks to
the Pauli principle, the electrons (which are fermions) cannot be in the same state and
they will dispose themselves in states corresponding to increasing energy. We call Fermi
energy the energy of the last electron added at 0K temperature. Two situations can
occur. The last band of the solid containing electrons could be not completely full (see
1.4), i.e. the Fermi energy belongs to the spectrum. In this case, with an arbitrarily small
amount of energy an electron can be excited in the band: the material is a conductor!
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Figure 1.4: Energy band partially filled.

On the other hand, if the last band is full (see 1.5), a new electron must absorb enough
energy to achieve the following empty band. The Fermi energy does not belong to the
spectrum and the material is an insulator. At the beginning, we said that an insulator is
an invertible element: indeed, by means of a translation of a real quantity of the spectrum
of the insulator’s hamiltonian, we can consider the Fermi energy at 0 and therefore, it is
invertible.

Figure 1.5: Full energy band.

1.5. Topological insulators

Given a physical situation, our goal is to classify the insulators, i.e. we want to put in
the same class hamiltonians which preserve some fundamental characteristics of the solid,
as for example symmetry conditions, locality of the operator or the spatial structure. We
say that two insulators belong to the same class (the same topological phase) if we can
find an homotopy (a continuous path with respect to a chosen topology) between them
which does not close the gap; moreover, if we impose one or more symmetry conditions,
the continuous path must respect the symmetry too. The very delicate aspect is to choose
in which topological space hamiltonians live. This definition is reasonable because we can
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look at the homotopy as a sequence of small perturbations (inevitable in the real world)
of the hamiltonian and we are interested in physical phenomena which are stable to the
perturbation and which we can see as an intrinsic feature of the topological phase. For
these phenomena, we will be able to measure with great precision the quantities associated
to them: this fact could have important application in technology (see [7], [12]).

One of the first examples of topological insulator was found experimentally in 1980, when
the quantum Hall (QH) effect was discovered. The QH state provided the first example
of a quantum state which is topologically distinct from all states of matter known before.
We describe briefly the QH effect. We consider a two-dimensional electron gas at a very
low temperature (T < 4K) subject to a strong perpendicular magnetic field (B ∼ O(T )).
By applying a constant electric field E, a constant current density J emerges. E and J

are related by the conductivity σ.
J = σE

where

σ =

(
σxx σxy

−σxy −σyy

)
The resistivity matrix ρ is simply the inverse of σ. Experimentally, we observe that the
bulk of the sample is insulating and the electric current is carried only along the edge of
the sample. Moreover, we observe a peculiar behaviour of the quantity ρxy: it is quantised
(see figure 1.6) and given by

ρxy =
2πℏ
e2

1

ν
, ν ∈ Z

Figure 1.6: Resistivities as functions of the magnetic field, ρxx in red and ρxy in green.

The plateau values are independent of the sample details and the precise value of the
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magnetic field: they are a topological property!

1.6. C∗-algebra for a crystal

We consider a crystal lattice in Zd invariant with respect to the directions a1, a2...ad ∈ Zd

and a periodic potential with the same periodicity of the lattice. For simplicity, let us
consider just the case d = 1 with a1 = 1. We consider also that electrons have N internal
degrees of freedom, which can correspond, for example, to the their spin or to the presence
of more types of atoms in the unit cell of the crystal (see example 4.1). Thanks to the
tight binding approximation, we can assume that the spatial part of state function for
each electron is characterised by the probability of being associated to one single nucleus
of the lattice: for this reason we can take as underlying Hilbert space ℓ2(Z)⊗CN , where
CN stands for the internal degrees of freedom and it is called the fiber. Therefore, we can
consider a sub-C∗-algebra A of periodic (i.e. commuting with the translation operator)
operators of B(ℓ2(Z)⊗ CN).
In order to have a better insight on this C∗-algebra, we introduce the Bloch-Floquet
transform F : ℓ2(Z) → L2 (S1) (see [8], first chapter)

(Fϕ)(k) = (2π)−
1
2

∑
x∈Z

ϕ(x)e−ixk

S1 is the Brillouin zone in the one dimensional case and in our case it is just the interval
(−π, π]. We can see at the Bloch-Floquet transform as a discrete version of the Fourier
transform. We can verify that F is unitary (it preserves scalar products) and it has inverse
F∗ given by

(F∗ψ)(n) = (2π)−
1
2

∫
S1
ψ(k)einkdk

The Bloch-Floquet transform is useful to partially diagonalise periodic operators (and for
N = 1, i.e. no internal degree, it fully diagonalises them). Indeed, proposition 2.18 in
[11] shows that for a periodic hamiltonian H, we can write

FHF∗ =

∫ ⊕

S1
dkH(k)

where in general H(k) ∈ L(L2 (S1)) (linear operators over L2 (S1)) and, in particular in
our case, K(k) is a matrix of size N continuous in k. The meaning of the direct integral
is

(FHF∗)(ψ)(k) = (H(k)(ψ))(k)
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(see [9] for a rigorous introduction to the direct integral). The spectrum of FHF∗ is given
by

σ(FHF∗) =
⋃
k∈S1

σ(H(k))

There is a compact formula to apply AdF(·) = F(·)F∗ to an hamiltonian, namely Peierls’s
substitution. Fix I a finite subset of Z and be an ∈ Mn(C) for n ∈ I given; define T the
translation operator over ℓ2(Z). Then, Peierls’s substitution is given by

H =
∑
n∈I

anT
i 7→

∑
n∈I

aneikn

In section 4.1, I will present an easy example/exercise where we can see how the Bloch-
Floquet transform helps us to compute the energy band of an hamiltonian.
Finally, we can show that AdF(·) is a isomorphism between A (the C∗-algebra in the
"position" domain with N degrees of freedom) and C((S1)d)⊗MN(C) (the tensor product
between the continuous functions over the torus of dimension d and the operators over
CN). The C∗-algebra which is usually considered is indeed

A = C((S1)d)⊗MN(C).
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2.1. C∗-algebras: basic results

We briefly recall the definition and the fundamental results and theorems for a C∗-algebra.
For this section, I mostly rely on [6].

Definition 1. A (C-)C∗-algebra A is a C-algebra with a norm and an involution a 7→ a∗,
a ∈ A, such that A is complete w.r.t. the norm, and such that ∥ab∥ ≤ ∥a∥∥b∥ and
∥a∗a∥ = ∥a∥2 for every a, b in A.

A C∗-algebra A is called unital if it has a multiplicative identity 1. We observe that a C∗-
algebra is a particular type of Banach algebra. Some fundamental examples of C∗-algebras
are:

• The scalar field C is a unital C∗-algebra with involution given by complex conjuga-
tion λ 7→ λ̄.

• If Ω is a locally compact Hausdorff space, then C0(Ω) is a C∗-algebra with involution
f 7→ f̄ .

• If H is a Hilbert space, then B(H) with the operator norm is a C∗-algebra.

As in the context of Banach algebras, an element a ∈ A is invertible if there is an element
b ∈ A such that ab = ba = 1. We define the spectrum of an element to be:

σ(a) = {λ ∈ C | λ1− a is not invertible}

If A is not unital, there is a standard way to extend it to a unital C∗-algebra Ã. Therefore,
we can extend the definition of spectrum of an element also in the case of non unital
algebras as σA(a) = σÃ(a). We can also define the multiplier algebra of A, M(A), as the
unital C*-algebra that is the largest unital C∗-algebra that contains A as proper ideal. In
general Ã ⊆M(A).

Much of the reason for the interest in C∗-algebras comes from the following theorems.
The first one is a characterisation of commutative C∗-algebras.
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Theorem 2.1 (Gelfand). Every abelian C∗-algebra is isometrically ∗-isomorphic to the
C∗-algebra C0(Ω) for some locally compact Hausdorff space Ω.

The second one allows us to see C∗-algebras as an "abstraction" of physical operators
over an Hilbert space.

Theorem 2.2 (Gelfand-Naimark). Every C∗-algebra is isomorphic to a sub-C∗-algebra
of B(H) for some Hilbert space H.

It is useful to give some definitions. An element a ∈ A is called:

• self-adjoint if a = a∗;

• normal if aa∗ = a∗a;

• positive if it is self-adjoint and σ(a) ⊆ R+;

• a projection if it is self-adjoint and a2 = a;

• unitary if aa∗ = 1 and a∗a = 1.

2.2. Why a C∗-algebra?

As we have already said several times, an hamiltonian h is a self-adjoint operator on
an Hilbert space H. In our case, we assume furthermore that h ∈ B(H), the bounded
linear operators on H. We identify each concrete material with its hamiltonian and a
Fermi energy level, as they characterise completely its behaviour. An insulator is an
hamiltonian h such that its Fermi level belongs to a "gap" in the spectrum of h. As we
want to study the topological properties of the set of the insulators, we must choose a
good topology for B(H). We could try with the strong topology. We say that Ti → T

in the strong operator topology if and only if ∥Tix− Tx∥ → 0 for each x in H. For this,
we have to keep in mind that in the literature about topological insulators, the "index
theory" approach revealed very useful and we do not want to dispense with it. With the
strong topology, the "index theory" of the algebra becomes trivial and therefore, it is
not satisfying. We try with the weak topology, i.e. the weakest topology on the set of
bounded operators on a Hilbert space H, such that the functional sending an operator
T to the complex number ⟨Tx, y⟩ is continuous for any vectors x and y in H. However,
in this way, we would have too many continuous paths! Therefore, we would have no
topological information. Another "natural" candidate for the topology is the one given
by the operator norm. Nevertheless, equipped with this norm, B(H) has a trivial K-
theory (because it is not separable). In this optic, we would like to "restrict" B(H) in
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order to use the operator norm. Moreover, for physical reasons, we are interested in local
operators. Therefore, we consider the set of local operators and we take the closure with
respect to the operator norm topology: we get a C∗-algebra!

If we are interested in the case of crystal structures, we would like to consider periodic
hamiltonians: we restrict furthermore the C∗-algebra. In general, if no symmetry con-
dition is imposed, there is no obstruction to do a translation of the spectrum of h, a
self-adjoint element in the C∗-algebra, in order to consider the Fermi energy at 0: there-
fore, 0 does not belong to the spectrum of h and so this latter is an invertible element
of the algebra. We define an abstract insulator as an invertible self-adjoint element of a
C∗-algebra.

2.3. Symmetries

In the following, we will consider hamiltonians which could possibly satisfy one or more
symmetry conditions. We assume that the symmetries act only on the fiber of the C∗-
algebra, not on the "spatial" part of it. The "physical" symmetries are translated in
algebraic conditions with the help of order two linear or anti-linear ∗-automorphism. We
give the following definitions:

Definition 2. A grading on a (complex or real) C∗-algebra A is a ∗-automorphism γ of
order two (γ2 = id).

Definition 3. A real structure on a complex graded C∗-algebra (A, γ) is an anti-linear
∗-automorphism r of order two which commutes with the grading γ and preserves the
norm.

Definition 4. A complex C∗-algebra with a real structure (A, r) is called a Real C∗-
algebra or a C∗,r-algebra. The r-invariant elements furnish a real C∗-algebra which we
call the real subalgebra of the C∗,r-algebra.

A graded C∗-algebra (A, γ) is a C∗-algebra A equipped with a grading γ. γ-invariant
elements are called even, and elements with γ(a) = −a are called odd.

In the following we will often consider special gradings, inner gradings and balanced
gradings.

Definition 5. A grading γ is called inner if γ = AdΓ for some self-adjoint unitary Γ in
A. The self-adjoint unitary Γ is called the generator of γ or the grading operator.

Definition 6. A grading on a C∗-algebra is called balanced if C∗-algebra contains an
odd self-adjoint unitary e.
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In our physical setting, the hypothesis of having a balanced grading is equivalent to say
that it exists at least one insulator.

We have three relevant symmetries.

Definition 7. Let A be a C∗-algebra and h ∈ A an abstract hamiltonian.

• h has chiral symmetry if there is a grading γ on A such that γ(h) = −h;

• h has time reversal symmetry (TRS) if there is a real structure t on A such
that t(h) = h;

• h has particle hole symmetry (PHS) if there is a real structure p on A such
that p(h) = −h.

We have that the product of a time reversal symmetry together with a particle hole
symmetry yields a chiral symmetry. We thus have the following combinations:

• no symmetry

• chiral symmetry

• time reversal symmetry

• particle hole symmetry

• chiral symmetry and time reversal symmetry (and therefore, also particle hole sym-
metry).

These five cases will be refined (we will define an odd/even TRS and PHS) and we will
obtain two complex cases and eight real cases.

2.4. Clifford algebras

Clifford algebras are a technical tool which will allow us to give us a unified framework to
treat all cases of symmetries (the five cases of symmetries presented at the end of section
2.3).

We give a definition of Clifford algebra suited for our case.

Definition 8. The Clifford algebra Clr,s is the graded real C∗-algebra generated by r self-
adjoint generators e1, . . . , er which square to 1 and s anti-self-adjoint generators f1, . . . , fs
which square to −1 and all generators anti- commute pairwise. The grading is defined by
declaring the generators to be odd.
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Definition 9. The complex Clifford algebra Clr+s is the complexification of Clr,s, Clr+s =

C⊗ Clr,s.

The generators define completely the grading, which is noted st. We remind the expression
of the Pauli matrices

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)

Recall that the quaternions H form a real C∗-algebra which is spanned as a real vector
space by {1, iσx, iσy, iσz}. We consider H always as trivially graded. We give a list of
useful properties for some examples of Clifford algebras.

• (Cl1, st) ∼= (C⊕ C, ϕ) with grading ϕ(a, b) = (b, a) and generator (1,−1). Indeed, ϕ
is the only possible non-trivial grading on C⊕ C (see 4.3.2).

• (Cl2, st) ∼= (M2(C),Adσz).

• (Cl1,0, st) ∼= (R⊕ R, ϕ) with ϕ(a, b) = (b, a) and generator (1,−1).

• (Cl0,1, st) ∼= ({(a, ā) ∈ C⊕ C}, ϕ) with ϕ(a, b) = (b, a) and generator (i,−i).

• (Cl1,1, st) ∼= (M2(R),Adσz).

• Cl2,0 is generated by σx and σy.

• Cl0,2 is generated by iσx and iσy.

• (Cl0,3, st) ∼= (H⊗ Cl1,0, id ⊗ st)

• (Cl3,0, st) ∼= (H⊗ Cl0,1, id ⊗ st)

• (Cl0,4, st) ∼= (H⊗ Cl1,1, id ⊗ st)

The eight real Clifford algebras appearing in the previous list will be useful when consid-
ering the eight real cases related to TRS and PHS.

2.5. What we need from K-theory

In [10] we can find a friendly approach to K-theory for C∗-algebras. I will rely on this
text to introduce this subject. Here we consider for simplicity the case of K-theory
over a C-C∗-algebra, the real case being more technical. In our context, the goal of K-
theory is to associate to homotopy classes of particular elements in the C∗-algebra A

(either projections or unitaries) an abelian group: it will be called K0(A) in the case of
projections and K1(A) in the case of unitaries. This is a very nice feature because we
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can give a structure to homotopy classes. This fact allows us to use tools from algebraic
topology.

First of all, we have to introduce the matrix algebra for a C∗-algebra A: it is the algebra
Mn(A) equipped with the element-by-element involution defined by the involution on A

and the (unique) norm that makes it a C∗-algebra. This algebra is necessary to talk about
the stabilisation of A. The stabilisation of A is just the fact of replacing A with the set⊔

n∈N

Mn(A)

2.5.1. K0(A)

In this case, we focus on the projections of A. We denote with P(A) the set of projections
of A. Then, we define

Pn(A) = P(Mn(A)) and P∞(A) =
⊔
n∈N

Pn(A)

Define the equivalence relation ∼0 on P∞(A) as follows. If p ∈ Pn(A) and q ∈ Pm(A),
p ∼0 q if there is an element v ∈ Mm,n(A) such that p = v∗v and q = vv∗ (in the case
n = m, this is also called the Murray-von Neumann equivalence). We also define the
binary operation ⊕ on P∞(A) by

p⊕ q =

(
p 0

0 q

)
∈ Pn+m(A), p ∈ Pn(A), q ∈ Pm(A)

We introduced these new concepts, namely the stabilisation of A and the ∼0 relation,
because we can prove that, "up to stabilisation", the homotopy equivalence and ∼0 are
equivalent. Therefore, we can just focus on ∼0 equivalence, as it is easier to handle.

Starting from the previous object, now we can define the semigroup D(A).

Definition 10. With (P∞(A),∼0,⊕), set

D(A) = P∞(A)/ ∼0

For each p ∈ P∞(A) let [p]D denote the equivalence class containing p. Define addition
on D(A) by

[p]D + [q]D = [p⊕ q]D, p, q ∈ P∞(A)
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It is easy to see that (D(A),+) is an abelian semigroup. Now, the construction of K0(A)

is very simple (to fix ideas we just consider the case of an unital C∗-algebra, the non unital
case being more technical). First, we define the Grothendieck construction which gives
us an abelian group starting from an abelian semigroup: K0(A) is just the application of
the Grothendieck construction to (D(A),+)! The Grothendieck construction is nothing
more than the generalisation of the construction of the set Z starting from N.

Let (S,+) be an abelian semigroup with the equivalence relation ∼ on S × S

(x1, y1) ∼ (x2, y2) ⇐⇒ ∃z ∈ S s.t. x1 + y2 + z = x2 + y1 + z

We define the group G(S) = S × S/ ∼, note with ⟨x, y⟩ the equivalence class of (x, y) ∈
S × S and define the addition:

⟨x1, y1⟩+ ⟨x2, y2⟩ = ⟨x1 + x2, y1 + y2⟩

Take y ∈ S. The map
γS : S → G(S), x 7→ ⟨x+ y, y⟩

is independant of the choice of y and is called the Grothendieck map.

Definition 11. For an unital C∗-algebra A define

K0(A) = G(D(A))

Define [·]0 : P∞(A) → K0(A) by

[p]0 = γ([p]D) ∈ K0(A), p ∈ P∞(A)

where γ = γD(A) is the Grothendieck map of D(A).

A very important property of K0(A) is its uniqueness in an "universal" way. Moreover, we
can show that K0(A) is a functor from the category of unital C∗-algebras to the category
of abelian groups.

2.5.2. K1(A)

Now we focus on the set of unitary elements of A, U(Mn(A)). We define

Un(A) = U(Mn(A)) and U∞(A) =
⊔
n∈N

Un(A)
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Again, we define the binary operation ⊕ on U∞(A) by

u⊕ v =

(
u 0

0 v

)
∈ Un+m(A), u ∈ Un(A), v ∈ Um(A)

Define the equivalence relation ∼1 on U∞(A) as follows. If u ∈ Un(A) and v ∈ Um(A),
u ∼1 v if there exists a natural number k ≥ max{m,n} such that u ⊕ 1k−n ∼h v ⊕ 1k−m

in Uk(A), where 1r is the unity of Mr(A) and ∼h is the homotopy equivalence in Mr(A).
The following definition of K1(A) is valid without further precaution also when A is a
non-unital C∗-algebra.

Definition 12. For each C∗-algebra A define

K1(A) = U∞(Ã)/ ∼1

Let [u]1 ∈ K1(A) denote the equivalence class containing u ∈ U∞(Ã). Define addition on
K∞(A) by

[u]1 + [v]1 = [u⊕ v]1, u, v ∈ U∞(Ã)

The properties for K1(A) are analogous to those of K0(A). In particular, K1(A) is a
functor from the category of C∗-algebras to the category of abelian groups.

2.5.3. Higher order Kn(A) groups

A very important result about K-theory for complex C∗-algebras is

Kn(A) ∼= Kn−2(A), n ≥ 2

This is the so-called Bott periodicity. For this reason, we just have to construct K0(A)

and K1(A). In the case of real C∗-algebras, we have a richer landscape:

Kn(A) ∼= Kn−8(A), n ≥ 8

2.6. Van Daele’s approach to K-theory

In [13], A. Van Daele proposes a new approach to K-theory for Banach algebras (not just
for C∗-algebras, but we will apply this theory just to the C∗-algebra case) in a particular
situation: here, we want to associate an abelian group to the homotopy classes of a subset
of the elements of the Banach algebra which satisfy a symmetry condition. This is exactly
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what we want to obtain physically and Van Daele’s approach applies directly to our case.
Finally, in some cases, Van Daele manages to link (i.e. find an isomorphism between) his
K-groups and the standard K-groups (those presented in 2.5).

Let A be a real or complex C∗-algebra with a grading α. Also in this case, we just consider
the case of an unital C∗-algebra (in Van Daele’s paper also the non-unital case is treated).
We define

F (A,α) = {a ∈ A | a self-adjoint and unitary, α(a) = −a}

We first assume that F (A,α) is not empty, i.e. the grading is balanced (physically it
means that we have at least an insulator). We denote by F (A,α) the set of homotopy
equivalence classes of F (A,α).
We let

Fn(A,α) = F (Mn(A), αn) and Fn(A) = F (Mn(A), αn)

where αn is application of α element-by-element on Mn(A). Analogously to the construc-
tion of K0(A) and K1(A), we define the direct sum as a map from Fn(A) × Fm(A) to
Fm+n(A).

Definition 13. Choose an element e ∈ F (A,α) and define DKe(A) = lim
−→ Fn(A,α)

where the inductive limit is taken with respect to the maps x→ x⊕ e from Fn(A,α) to
Fn+1(A,α). We will denote by [x] the image of x in the inductive limit.

It is interesting that we have to choose a reference element e: physically, it means that
we must choose a reference insulator. We have the following propositions.

Proposition 2.1. The direct sum induces an abelian semi-group structure on DKe(A).
The neutral element is [e].

Proposition 2.2. If e and −e are homotopic in F (A,α) then DKe(A) is a group.

Now we can define the Van Daele K-group DK(A). The definition is quite technical, as
it must deal with several special cases (for example, when F (A) is empty); we refer to
Van Daele’s paper for the notation.

Definition 14. Let DK(A) be the group DKe(M4(A)) where on M4(A) the automor-
phism γ (depending on α) and the explicit element e ∈M4(A) are given in [13] paragraph
3.

We have the following proposition.

Proposition 2.3. If A has an element e0 ∈ F (A) then DK(A) is the Grothendieck group



22 2| Mathematical framework

of the semi-group DKe0(A).

Remark. We can also consider a symmetry with respect to a real structure r. If (A, γ, r)
is a graded unital C∗,r-algebra, we define

F (A, γ, r) :=
{
x ∈ A : x∗ = x−1, γ(x) = −x, r(x) = x

}

Definition 15. Let (A, γ, r) be a graded unital C∗,r-algebra. Suppose that F (A, γ, r)

contains an element e which is homotopic to −e in F (A, γ, r). The K-group of Van Daele
is

DKe(A, γ, r) := DKe(A
r, γ).

We can define for an algebra (A, γ) with a choice of an odd self-adjoint unitary e ∈ A as
GVe(A, γ), the Grothendieck construction applied to the semigroup

Ve(A, γ) :=
⊔
n∈N

F (Mn(A), γn) / ∼e
h

We could show that GVe(A, γ) and DK(A). This remark allows us to give the following
important result.

Corollary 2.2.1. Consider two odd self-adjoint unitaries x ∈Mn(A), y ∈Mm(A). x and
y define the same class in DK(A) if and only if there exist k such that x⊕ ek ⊕−en+k is
homotopic to y ⊕ en+k−m ⊕−en+k in F (M2(n+k)(A), γ).

Before introducing Van Daele’s higher K-groups, we give a useful result. We have

DKe

(
A⊗̂Clr,s, γ ⊗ st

) ∼= DKe

(
A⊗̂Clr+1,s+1, γ ⊗ st

)
In particular, it implies that DKe

(
A⊗̂Clr,s, γ ⊗ st

)
depends only on the difference s− r.

The key result to obtain the previous isomorphism is

(A⊗ Cl2, γ ⊗ st) ∼= (M2(A), γ2)

where the isomorphism depends on the choice of the reference element e.

We show here Van Daele’s higher K-groups.

Definition 16. Let (A, γ) be a unital graded complex or real C∗-algebra containing an
odd self-adjoint unitary e. The Kn-group of (A, γ) in Van Daele’s formulation is
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Kn(A, γ) := DKe

(
A⊗̂Cl1,n, γ ⊗ st

)
.

For C∗,r-algebras, it is defined as Kn(A, γ, r) = Kn(A
r, γ)

We remark that the definition of Kn depends on the choice of a base point. A fundamental
property of the K-groups Kn(A, γ) is their periodicity. We have Kn = Kn−8 and if we are
in the complex case we also have Kn = Kn−2.

We conclude this section with a list of useful results in some particular cases. We will use
this results in chapter 3.

• If the algebra is trivially graded:

1. case of a complex C∗-algebra (A, id)
Van Daele shows that

Kn(A, id) = DK (A⊗ Cln+1, id⊗ st) ∼= KUn(A)

where KUn(A) is the standard Kn-group (n taken modulo 2) of A seen as un-
graded complex C∗-algebra. In particular, in the case n = 0, the isomorphism
is given by sgn(h) 7→ pF (h), where sgn(h) is the spectral flattening of h and
pF (h) is the Fermi projector (we will define them in chapter 4).

2. case of a C∗,r-algebra (A, id, r)
We have

DK (A⊗ Clr+s, id⊗ st, r⊗ lr,s) ∼= Ks−r+1 (A
r, id) ∼= KOs−r+1 (A

r)

where lr,s are real structures on Clr+s such that Cllr,sr+s = Clr,s and KOn(A) is
the Kn-group of A seen as real ungraded C∗-algebra.

• If the grading of the algebra is inner:

1. case of a complex C∗-algebra (A, γ)

We have
DK(A, γ) ∼= K1(A, id) ∼= KU1(A)

2. case of a C∗,r-algebra (A, γ, r), where γ = AdΓ

If r(Γ) = Γ, then

DK(A, γ, r) ∼= K1 (A
r, id) ∼= KO1 (A

r)
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If r(Γ) = −Γ, then

DK(A, γ, r) ∼= K−1 (A
r, id) ∼= KO−1 (A

r)
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3| Description of the approach

In this chapter, we outline the goals and the main steps presented in the paper [5].

3.1. Goals

Paper [5] has two main goals. The first one is to give a classification of the possible
"physical frameworks". Indeed, in section 2.3 we saw that there are five possible cases of
symmetries: each case corresponds to a specific physical situation and they are potentially
infinitely many. Considering further assumptions to simplify the mathematical problem,
the author presents a compact classification of possible symmetries. The key idea is to
consider a reference real structure: in this way, it is possible to define a relation between
all the other real structures and classify them.

The second goal is the original one: given one of the previous cases of symmetry, we
want to give a description of the algebraic structure of the topological phases. Also in
this case, the idea is to choose a reference element (a "trivial" insulator) and to define an
equivalence relation. Then, it is possible to apply Van Daele’s construction to obtain an
abelian group.

3.2. Classification of real structures

We cannot study all possible real structures, they are too many. Therefore, we decide to
fix a reference real structure and we define two notions of equivalence between the real
structures: we define the concept of inner related (weaker equivalence relation) and inner
conjugated (stronger equivalence relation).

Definition 17. Let A be a graded complex C∗-algebra with two real structures r, s. We
call them inner related if there exists a unitary u (the generator of s◦r) in the multiplier
algebra of A such that s ◦ r = Adu.
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If r and s are inner related with generator u, then the following diagram commutes.

A A

A

r

Adu

s

Definition 18. Let A be a graded complex C∗-algebra with two real structures r, s. We
call them inner conjugate if there exists a unitary w in the multiplier algebra of A such
that s ◦ Adw = Adw ◦ r and Adw preserves the grading.

If r and s are inner conjugate, then the following diagram (using w of the definition)
commutes.

A A

A A

r

Adw Adw

s

Inner conjugation is a stronger equivalence relation than inner relation. Indeed, we can
show that (lemma 4.11 in [5]), if r and s are inner conjugate then it exists a unitary w ∈ A

such that they are also inner related with generator given by wr(w∗).

Definition 19. Let (A, γ) be a graded C∗-algebra with two inner related real structures
r, s. The relative signs between r and s are

ηr,s =
(
η1r,s, η

2
r,s

)
:= (ur(u), uγ(u)∗)

where u is any generator for s ◦ r.

An important result obtained in the paper is Corollary 4.14: it states that, under further
technical hypothesis, given a reference real structure, up to stabilisation and inner conju-
gation, there is a finite number of real structures inner related to the first one. Below
we determine these real structures for a class of algebras which is usually considered in
condensed matter (see chapter 4 for some examples and a further discussion of Corollary
4.14). We will achieve a compact description of K-groups for all real structures inner
related to a reference real structure.

3.3. How to use Van Daele’s construction

The goal is to classify hamiltonians (i.e. self-adjoint invertible elements of a C∗-algebra)
which satisfy one of the symmetry conditions presented at the end of paragraph 2.3. Van
Daele’s construction (presented in 2.6) allows us to obtain a K-group corresponding to
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the homotopy classes in the set of unitary self-adjoint elements which satisfy a chiral
symmetry. We will see how to adapt each case in order to apply Van Daele’s construction.
In some cases, it could seem an artificial and too complicated procedure: for example,
in the case of "no symmetry" we introduce an artificial chiral-symmetry to apply the
construction. However, we can argue that Van Daele gives us a common framework
to treat in a compact way different situations. Moreover, this approach can handle at
the same time the commutative case and the non-commutative one. An explanation is
needed. In chapter 1, we have considered the case of a crystal with a periodic potential:
to describe this physical situation, we can choose a commutative C∗-algebra, namely the
algebra of continuous functions over the Brioullin zone. The approximation to a periodic
crystal is typical in physics and often effective, but we can easily realise that in "real life"
crystals are not perfect and that a perturbation of the periodicity is inevitable. We get
that disorder destroys commutativity. For this reason, we would like to consider both
cases.

In the paper, the author associates to each symmetry case a K-group (a Van Daele K-
group or a standard one). Two classifications are presented. The first one is a "rough"
classification, under minimal assumptions. The second is finer and it is a classification
with respect to a reference real structure. The classifications can be improved if we assume
the grading to be inner.

Before entering in the description of the classification, we give a general result which is
fundamental to apply Van Daele’s construction to all cases of symmetry. In a C∗-algebra
A, any invertible self-adjoint element h is homotopic to a self-adjoint unitary, namely its
sign sgn(h); this is referred to as spectral flattening. To define sgn(h), we introduce the
Fermi projector of h, pF (h). If we think A represented on a Hilbert space using theorem
2.2, pF (h) is the projector on the eigenspaces corresponding to the eigenvalues below the
Fermi energy (in our case, the negative eigenvalues). If p⊥F (h) is the projection on the
orthogonal of the previous subspace, then sgn(h) can be defined as

sgn(h) = pF (h)− p⊥F (h)

sgn(h) is clearly self-adjoint and unitary. It is easy to see that sgn(h) "flatten" the negative
part of spectrum of h to −1 and the positive part to +1. It can be shown that there is a
continuous path between sgn(h) and h which preserves the symmetry condition (if any).
In this way, we are allowed to consider just unitary self-adjoint elements, as all generic
self-adjoint elements are in the same homotopy class of one of them.
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3.3.1. Rough classification

We consider the graded (A, γ), with, for simplicity, A unital. Most of the following results
are still valid in the non-unital case.

No symmetry

No symmetry is equivalent to a trivial grading, γ = id. Therefore, there is no odd element.
The trick to recover an odd element is to extend the algebra A to A⊗Cl1. Indeed, the map
(x,−x) 7→ x from the self-adjoint odd unitaries of (A⊗ Cl1, id ⊗ st) to the self-adjoint
unitaries of (A, id) is a bijection (we consider the isomorphism between Cl1 and C ⊗ C,
as reminded in 2.4). The advantage is that now each insulator is associated to an odd
element of a C∗-algebra and we can apply straightforwardly Van Daele’s construction.
Thanks to the results showed in 2.6, we get the K-group

DK (A⊗ Cl1, id⊗ ϕ) = K0(A, id) ∼= KU0(A)

The isomorphism is given by sgn(h) 7→ pF (h).

Chiral symmetry

Now the grading γ is non trivial and we assume that the grading is balanced, i.e. it
exists at least a self-adjoint odd element (otherwise, the grading is not physically very
interesting). We can use without further precaution Van Daele’s construction, which gives
the K-group

DK(A, γ) = K1(A, γ)

In this case, we need A to be unital. Moreover, as there is no element a self-adjoint with
stricly positive spectrum and chiral symmetry (if λ > 0 ∈ sp(a), then −λ ∈ sp(a)), there
is no trivial reference insulator and we must choose a non-trivial reference.

Time reversal symmetry

We consider the trivially graded C∗,r-algebra (A, t). Analogously to the case without sym-
metry, we consider (A⊗ Cl1, id⊗ ϕ, t⊗ c) (c is the complex conjugation) and we identify
an odd self-adjoint unitary h with the element h ⊗ (1,−1) in A ⊗ Cl1 which is odd and
t⊗ c-invariant. Therefore, we get the K-group

DK (A⊗ Cl1, id⊗ ϕ, t⊗ l1,1) = K0

(
At, id

) ∼= KO0

(
At
)
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Particle hole symmetry

We consider the trivially graded C∗,r-algebra (A, p). Now we consider the algebra

(A⊗ Cl1, id⊗ ϕ, p⊗ ϕ ◦ c)

We see that the element h ⊗ (1,−1) is invariant with respect to the new real structure.
We get the K-group

DK (A⊗ Cl1, id⊗ ϕ, p⊗ ϕ ◦ c) = DK (Ap ⊗ Cl0,1, id⊗ ϕ) = K2 (A
p, id)

∼= KO2 (A
p) .

Chiral symmetry and time reversal symmetry

We have a real structure t and the grading γ is balanced. We get immediately the K-group

DK(A, γ, t) = K1(A
t, γ)

If the grading is inner, we get a finer classification. We say that a grading γ = AdΓ is
real with respect to the real structure t if t(Γ) = Γ, imaginary if t(Γ) = −Γ. We have

Symmetries K-group
Only inner chiral KU1(A)

Real inner chiral KO1 (A
t)

Imag. inner chiral KO−1 (A
t)

3.3.2. Classification w.r.t. a reference real structure

We assume that there is a "more natural" real structure f over the C∗-algebra: it will serve
as a reference real structure. We choose to classify only the real structures which are inner
related to f. From 3.2 we know that up to stabilisation and inner conjugation, there is a
finite number of real structures inner related to f. The great advantage is that now we just
have to consider a finite number of cases. Indeed, if γ is a grading and r and s are two inner
conjugate real structures, we have that (A, γ, r) and (A, γ, s) are isomorphic as graded
C∗-algebras equipped with a real structure: therefore, the DK-groups are isomorphic and
we just have to focus on one real structure for each inner conjugation "equivalence class".
We give the following definition.

Definition 20. A real symmetry r is called even (odd) if the relative sign η1r,f to the
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reference structure f is +1 (−1).

In the case of chiral symmetry and time reversal symmetry t, in the "rough" case we
found that the K-group was K1(A

t, γ). Now we can describe better this latter. Indeed,
we find that it is isomorphic to the K-groups of the table

ηt,f K-group K-group (inner case)
(+1,+1) K1

(
Af, γ

)
KO1(A

f)

(+1,−1) K−1

(
Af◦γ, γ

)
KO−1(A

f)

(−1,+1) K5

(
Af, γ

)
KO3(A

f)

(−1,−1) K3

(
Af◦γ, γ

)
KO5(A

f)

Again, if we assume the grading to be inner, we can get a finer classification.

If the grading is trivial, again we tensor with Cl1 to restore odd elements. We get

Symmetry η
(1)
r,f s K-group

TRS even +1 +1 KO0

(
Af
)

TRS odd −1 +1 KO4

(
Af
)

PHS even +1 −1 KO2

(
Af
)

PHS odd −1 −1 KO6

(
Af
)

Where we noted with s = +1 or −1 the real structure over Cl1 which gives Cl1,0 or Cl0,1.
The K-group in the table is KO0 (A

t) or KO2 (A
p) , for TRS or PHS, respectively (we

obtained these groups in the "rough" classification).
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Here we see some "practical" examples of what we have discussed in the previous chapters.
I will discuss some examples and show some explicit computations: they were for me very
useful exercises which helped me to understand better the kind of objects I was dealing
with. At the same time, these examples are fundamental and a reference for further
development.

In the first two sections, we will consider two explicit hamiltonians and we discuss their
properties as insulators. In the second case, we can show the non-triviality of the insulator;
this proof gives us the opportunity to introduce the important notion of Chern number.
In the third part we will discuss and do explicit calculation to find gradings and real
structures in some easy (but fundamental) cases.

4.1. Energy band of a simple periodic hamiltonian

As in 1.6, we consider the Hilbert space ℓ2(Z) (we neglect the internal degrees of freedom).
We define T as the right-shift operator in B(ℓ2(Z))

(Tψ)(n) = ψ(n− 1)

and the periodic operator V

(V ψ)(n) = ψ(n)V (n) V (n) = (−1)na, a ∈ R+

We propose the following hamiltonian:

H = T + T ∗ + V

The term T +T ∗ is a kind of discretisation of the laplacian operator over L2(R). We want
to compute the energy bands for this hamiltonian. We would like to use Bloch’s theory
to partially diagonalise H. However, to do this, we need that H commutes with the
translation operator, which it is not the case. Nevertheless, we observe that H commutes
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with T 2: to recover the commutativity with the "simple" translation, it is enough to
consider the fundamental cell of the crystal as made of two points (figure 4.1).

Figure 4.1: Unit cell of a 1D chain of atoms.

To see it, we observe

ℓ2(Z) = ℓ2(Zeven)⊕ ℓ2(Zodd) ≃ ℓ2(Z)⊗ C2

We see each couple of points as a single point with two internal degrees of freedom. We
note with δn ⊗ (1, 0) and δn ⊗ (0, 1) the vectors of the basis for the nth-cell. Using this
basis, we can rewrite the operator T

T (δn ⊗ (1, 0)) = δn ⊗ (0, 1) and T (δn ⊗ (0, 1)) = δn+1 ⊗ (1, 0)

We can introduce the translation operator with respect to the newly introduced unit cell

S(δn ⊗ v) = δn+1 ⊗ v

We can write the representation of T in the new basis

T =

(
0 S

1 0

)

Therefore,

H =

(
a 1 + S

1 + S∗ −a

)
Using Peiels’s substitution (see 1.6) to partially diagonalise H, we get

H 7→ Ĥ =

(
a 1 + eik

1 + e−ik −a

)

We compute the characteristic polynomial of Ĥ

P (λ) = (λ+ a)(λ− a)− (1 + eik)(1 + e−ik) = λ2 − a2 − 2− 2 cos k
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The eigenvalues E(k) of Ĥ are (figure 4.2)

E(k) = ±
√
2 cos k + 2 + a2

Figure 4.2: Bands in the spectrum of H (a = 0.25).

If we set the Fermi energy at 0, we see that the material is an insulator.

4.2. A non-trivial insulator: Haldane’s model

An insulator with strictly positive spectrum corresponds to the physical situation where
the Fermi level is under the first value of energy which is possible for an electron: it is
an empty insulator! If the spectrum is strictly negative, we have an insulator which is
completely filled up. We define these two types of insulators as trivial. If we consider the
topological classes of equivalence, we say in general that an insulator is trivial if it is in the
same homotopy class as the empty or full insulator. We could find an explicit continuous
path between them, but in general it may be an hard task. Another way is to compute the
Chern number of the insulator: it is an integer which is an invariant for the homotopy class
and it is zero if and only if the insulator is trivial. We will see here a famous example of a
non-trivial insulator, and, to show its non-triviality, we will compute the Chern number.
We refer to [4] for the details of the description of the physical framework. We consider a
two band model displaying a topological insulating phase, namely the model proposed by
Haldane. We consider a tight-binding model of spinless electrons on a two-dimensional
hexagonal (honeycomb) lattice. The unit cell contains two types of atoms A and B (see
figure 4.3)
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Figure 4.3: Honeycomb lattice used in Haldane’s model.

The lattice parameter a, defined as the shortest distance between nearest neighbours, sets
the unit of length: a = 1. We define the vectors

b1 =

(
−
√
3/2

3/2

)
b2 =

(
−
√
3/2

−3/2

)
b3 = −b1 − b2 =

( √
3

0

)

b1 and b2 are a basis for the Bravais lattice and we get a basis for the reciprocal lattice
{b∗1, b∗2} (to have an introduction to the notions of Bravais and reciprocal lattice, see [2])
imposing

bib
⋆
j = 2πδij, i ∈ {1, 2}

We get the basis

b⋆1 = 2π

(
−1/

√
3

1/3

)
b⋆2 = 2π

(
−1/

√
3

−1/3

)

We consider as Hilbert space H of square integrable functions over the sites of type A
and B. The form of the hamiltonian for Haldane’s model is:

Ĥ = t
∑
⟨i,j⟩

|i⟩⟨j|+ t2
∑
⟨⟨i,j⟩⟩

|i⟩⟨j|+M

[∑
i∈A

|i⟩⟨i| −
∑
j∈B

|j⟩⟨j|

]

where |i⟩ represents an electronic state localised at site i , ⟨i, j⟩ represents nearest neigh-
bours lattice sites i and j, ⟨⟨i, j⟩⟩ represents second nearest neighbours sites i, j, i ∈ A

represents sites in the sublattice A (resp. i ∈ B in the sublattice B) and t and t2 are hop-
ping parameters. The first term represents the transition of the electron from one site to
the nearest neighbour sites (the nearest neighbour hopping term), while the second term
stands for the transition to the second neighbour sites. The third term contains a projec-
tion on the sites of type A and a projection on sites of type B. Using the Bloch-Floquet



4| Comments and examples 35

transform, we obtain the following hamiltonian:

H(k) =
∑

j∈{0,x,y,z}

hj(k)σj

where σj are the Pauli matrices (σ0 = I2) and hj are real functions given by

h0 = 2t2 cosϕ
3∑

i=1

cos (k · bi) hz =M − 2t2 sinϕ
3∑

i=1

sin (k · bi)

hx = t [1 + cos (k · b1) + cos (k · b2)] hy = t [sin (k · b1)− sin (k · b2)]

The parameter ϕ is the Aharonov-Bohm phase due to the local magnetic flux.

We notice, as it should be, that for n, m ∈ Z

h⃗(k + nb∗1 +mb∗2) = h⃗(k).

The periodicity of h⃗(k) with respect to the translations by b∗1 and b∗2 allows us to identify
the opposite sides in the parallelogram corresponding to b∗1 and b∗2: we get the torus S
(see figure 4.4). This torus is the Brioullin zone of the crystal.

Figure 4.4: Brioullin zone (quasimomentum space).

We can easily compute the eigenvalues ϵ± of H(k)

ϵ±(k) = h0(k)± h(k)

where h(k) =
√
h2x + h2y + h2z. Therefore, the insulator has two bands. We see that, when

h(k) > 0 ∀k (which corresponds, as we will see later, to the condition M
t2

̸= ±3
√
3 sin(ϕ)),
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the energy bands are separated. The material is an insulator whenever the lower band is
completely filled up and the upper one is empty. We are interested in the topology of the
filled band. Therefore, we look for the eigenvector u(k) of H(k) corresponding to ϵ−(k)
(i.e. such that H(k)u(k) = ϵ−(k)u(k)). We find

u(k) =

(
hz(k)− h(k)

hx(k) + ihy(k)

)

We must be careful: this vector is an eigenvector only for the values of k where u ̸= 0⃗. We
define û the normalisation of u and consider the projection operator P (k) = |û(k)⟩⟨û(k)|,
the projection along the û(k). The first Chern number is defined as (see [8] for an
introduction with more details)

c1 =
1

2πi

∫
S

Tr(P )dPdP

While we might not be able to extend û to a continuous non-zero eigenvector over all
of S, this can be done for P . Therefore, the previous integral is well defined. However,
to compute c1 practically, we can consider a surface Sε ⊂ S, where we exclude from
S a "small" surface of measure of order ε containing the singularities of û, and Cε its
boundary: we can show the following formula∫

Sε

Tr(P )dPdP =

∫
Cε

⟨û|dû⟩ =
∫ 1

0

⟨û(m(t))|dû(m(t))⟩dt (4.1)

where dû(m(t)) = dtû(m(t)), with m(t) a parametrisation of Cε. With this formula, we
get

c1 = lim
ε→0

1

2πi

∫
Cε

⟨û|dû⟩

We give a proof of 4.1. Using the properties of the exterior derivative d, we get

dPdP = |dû⟩⟨û|dû⟩⟨û|+ |û⟩⟨dû|dû⟩⟨û|+ |dû⟩⟨û|û⟩⟨dû|+ |û⟩⟨dû|û⟩⟨dû|

Last identity holds for points, at which û is well defined and C1. Then

Tr(PdPdP ) = ⟨û|dû⟩⟨û|dû⟩+ ⟨dû|dû⟩+ ⟨û|dû⟩⟨dû|û⟩+ ⟨dû|û⟩⟨dû|û⟩

The last two terms give ⟨û|dû⟩⟨dû|û⟩ + ⟨dû|û⟩⟨dû|û⟩ = (d⟨û|û⟩)⟨dû|û⟩ = 0 as ⟨û|û⟩ = 1.
Furthermore ⟨û|dû⟩⟨û|dû⟩ is the square of a scalar valued 1-form, hence also 0 (a property
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of the exterior derivative). Hence

Tr(PdPdP ) = ⟨dû|dû⟩

Finally, using the Stokes theorem, we get∫
Sε

Tr(P )dPdP =

∫
Sε

⟨dû|dû⟩ =
∫
Cε

⟨û|dû⟩

The singularities of u(k) correspond to the values of k for which u(k) = 0⃗ (namely where
u(k) is not an eigenvector for H(k)). The second component of u(k) is zero if and only if
hx(k) = hy(k) = 0 (remember that hx(k), hy(k) are real functions):

hx(k) = hy(k) = 0 ⇐⇒ sin k · b2 = sin k · b1 ∧ 1 + cos k · b1 + cos k · b2 = 0

We define the auxiliary scalar values k̃1 = k · b1 and k̃2 = k · b2 and k̃ as the corresponding
value of k. If sin k̃1 = sin k̃2, then either k̃1 = k̃2, either k̃1 + k̃2 = π. In the first case we
get

1 + 2 cos k̃1 = 0 ⇒ k̃1 = ±2π

3

In the second case, we get the contradiction

1 = − cos k̃1 − cos k̃2 = − cos k̃1 + cos k̃1 = 0

Therefore, k̃1 = k̃2 = ±2π
3

. When k̃1 = k̃2 =
2π
3

, we have in the standard basis of R2

k̃ =

(
−4π

√
3
9

0

)
= K∗

1

and
hz(K

∗
1) =M − 2t2 sinϕ(2 sin k̃1 + sin(−k̃1 − k̃2))) =M − 3

√
3t2 sinϕ,

while if k̃1 = k̃2 = −2π
3

k̃ =

(
4π

√
3
9

0

)
which is the same point on the torus as

k̃ + b∗1 + b∗2 =

(
−2π 4

√
3

9

0

)
= K∗

2
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and
hz(K

∗
2) =M + 3

√
3t2 sinϕ

By the way, we observe that h(k) ̸= 0 ∀k if and only if hz(K∗
1), hz(K∗

1) ̸= 0, i.e. M
t2

̸=
±3

√
3t2 sinϕ

When the second component of u(k) is zero, we have that the first one becomes

hz(k)− h(k) = hz(k)− |hz(k)|

Therefore, u(k) vanishes for k = K∗
1 (respectively K∗

2) if hz(K∗
1) ≥ 0 (respectively

hz(K
∗
2) ≥ 0). To fix ideas, we assume that t2 > 0 and sin(ϕ) > 0. We get the fol-

lowing table

M
t2

u(K∗
1)

u(K∗
2)

−3
√
3 sin(ϕ) 3

√
3 sin(ϕ)

̸= 0⃗ ̸= 0⃗ = 0⃗

̸= 0⃗ = 0⃗ = 0⃗

We choose K∗ ∈ {K∗
1 , K

∗
2} such that hx(K∗) = 0, we set ε > 0 and we define a curve Cε

with the map
m(t) = K∗ + ε(cos(2πt)b∗1 + sin(2πt)b∗2), t ∈ [0, 1)

Developing hx and hy around the point K∗, on Cε we can write

(hx + ihy)(k) = c(k)εξ(k) + o(ε)

where c ∈ O(1), c(k) > 0 and ξ(k) ∈ S1 ⊂ C. We saw previously that if hz(K∗) < 0, then
û(K∗) is properly defined. Therefore, we focus just on the case hz(K∗) > 0.

Using a Taylor expansion, we remark that

hz − h = hz

(
1−

√
1 +

h2x + h2y
h2z

)
= hz

(
1− 1− (cε)2

2h2z

)
+ o(ε2) = O(ε2).

We can write

u =

(
0

cεξ

)
+O(ε2)
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and we have |u| ≃ cε. Then

û =

(
0

ξ

)
+O(ε) ≃

(
0

ξ

)

Finally, ⟨û|dû⟩ = ξ̄dξ +O(ε) We define the map

γ : [0, 1] → C

t 7→ ξ(m(t))

We can link the formula for ⟨û|dû⟩ and the index for the curve γ. Indeed

2πi · indγ(0) =

∫ 1

0

γ′(t)

γ(t)
dt =

∫ 1

0

γ̄(t)γ′(t)

|γ(t)|2
dt =

∫
Cε

ξ̄dξ

=

∫
Cε

⟨û|dû⟩+O(ε)

= 2πi · c1 +O(ε)

Here the O(ε) must be 0, as we know that indγ(0) and c1 must be integer. Moreover, if
we define

ϕ : [0, 1] → C

t 7→ (hx + ihy)(m(t))

we see that, by definition of ξ, indγ(0) = indϕ(0). One way to compute indϕ(0) is using
the formula:

indϕ(0) = card ({s ∈ [0, 1) s.t. hx(m(s)) = 0, hy(m(s)) > 0, h′x(m(s)) < 0})

− card ({s ∈ [0, 1) s.t. hx(m(s)) = 0, hy(m(s)) > 0, h′x(m(s)) > 0})

Using the previous formula, we are just counting how many times we are crossing the
positive side of the imaginary axis; the sign of the derivative defines if the curve is crossing
it clock or anti-clockwise. For i ∈ {1, 2} we define the maps

ρi(t) = K∗
i + ε(cos(2πt)b∗1 + sin(2πt)b∗2), t ∈ [0, 1)

and the curve in C
ϕi : [0, 1] → C

t 7→ (hx + ihy)(ρi(t))

First we consider i = 1. We look for s̄ s.t. hx(ρ1(s̄)) = 0.

hx(ρ1(s)) = t

(
1 + cos

(
2

3
π + 2πε cos(2πs)

)
+ cos

(
2

3
π + 2πε sin(2πs)

))
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We define
f1(s) = cos

(
2

3
π + 2πε cos(2πs)

)
f2(s) = cos

(
2

3
π + 2πε sin(2πs)

)
We sum up in the following table the qualitative behaviour of hx(ρ1(s)) (up and down-
going arrows mean that the functions are strictly increasing and decreasing on the inter-
val).

s

f1

f2

hx(ρ1(s)) =

t(f1 + f2)

0 1
4

1
2

3
4 1

< −1
2

< −1
2

> −1
2

> −1
2

< −1
2

< −1
2

−1
2

−1
2

−1
2

−1
2

< −1
2

< −1
2

> −1
2

> −1
2

< −1
2

< −1
2

−1
2

< −1< −1 < −1< −1

> −1> −1 > −1> −1

< −1< −1

From the previous table we see that it exists s̄1 ∈ (1
4
, 1
2
) and s̄2 ∈ (3

4
, 1) such that s̄1 and

s̄2 are the only solutions of hx(ρ1(s)) = 0. We must check the sign of hy(ρ1(s̄i)).

hy(ρ1(s)) = t

(
sin

(
2

3
π + 2πε cos(2πs)

)
− sin

(
2

3
π + 2πε sin(2πs)

))
We easily see that just s̄1 satisfies hy(ρ1(s̄1)) > 0.

We note with ∂1 and ∂2 the derivatives in the directions b∗1 and b∗2. To simplify the
computation of ∂shx(ρ1(s)), we will use the following relations (coming from the conditions
bib

⋆
j = 2πδij when i ∈ {1, 2})

∂1 (k · b1) = 2π ∂1 (k · b2) = 0 ∂1 (k · b3) = −2π

∂2 (k · b1) = 0 ∂2 (k · b2) = 2π ∂2 (k · b3) = −2π
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We compute ∂shx(ρ1(s))

∂shx(ρ1(s)) = (∂1hx, ∂2hx)(ρ1(s)) · dsρ1(s)

= (−2πt sin(ρ1(s) · b1),−2πt sin(ρ1(s) · b2)) · (−2πε sin(2πs), 2πε cos(2πs))

= α

(
sin

(
2

3
π + 2πε cos(2πs)

)
sin(2πs)− sin

(
2

3
π + 2πε sin(2πs)

)
cos(2πs)

)
(α > 0)

We verify that ∂shx(ρ1(s̄1)) > 0 and therefore

indϕ1(0) = −1

Now we consider i = 2.

hx(ρ2(s)) = t

(
1 + cos

(
2

3
π − 2πε cos(2πs)

)
+ cos

(
2

3
π − 2πε sin(2πs)

))
We define

g1(s) = cos

(
2

3
π − 2πε cos(2πs)

)
g2(s) = cos

(
2

3
π − 2πε sin(2πs)

)
s

g1

g2

hx(ρ2(s)) =

t(g1 + g2)

0 1
4

1
2

3
4 1

> −1
2

> −1
2

< −1
2

< −1
2

> −1
2

> −1
2

−1
2

−1
2

−1
2

−1
2

> −1
2

> −1
2

< −1
2

< −1
2

−1
2

−1
2

−1
2

> −1> −1 > −1> −1

< −1< −1 < −1< −1

> −1> −1

Again, from the previous table we see that it exists q̄1 ∈ (1
4
, 1
2
) and q̄2 ∈ (3

4
, 1) such that
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q̄1 and q̄2 are the only solutions of hx(ρ2(s)) = 0.

hy(ρ2(s)) = t

(
sin

(
−2

3
π + 2πε cos(2πs)

)
− sin

(
−2

3
π + 2πε sin(2πs)

))
= t

(
sin

(
2

3
π − 2πε sin(2πs)

)
− sin

(
2

3
π − 2πε cos(2πs)

))
Just q̄1 satisfies hy(ρ2(q̄1)) > 0.

We compute ∂shx(ρ2(s))

∂shx(ρ2(s)) = (−2πt sin(ρ2(s) · b1),−2πt sin(ρ2(s) · b2)) · (−2πε sin(2πs), 2πε cos(2πs))

= α

(
sin

(
2

3
π − 2πε sin(2πs)

)
cos(2πs)− sin

(
2

3
π − 2πε cos(2πs)

)
sin(2πs)

)
(α > 0)

We verify that ∂shx(ρ2(q̄1)) < 0 and therefore

indϕ2(0) = 1.

The Chern number c1 is given by

c1 = indϕ1(0) + indϕ2(0)

(in the previous formula we set indϕi
(0) to 0 when u(K∗

i ) ̸= 0⃗). Finally, we obtain the
following table summing up the results.

M
t2

indϕ1(0)

indϕ2(0)

c1

−3
√
3 sin(ϕ) 3

√
3 sin(ϕ)

0 0 −1

0 1 1

0 1 0

When −3
√
3 sin(ϕ) < M

t2
< 3

√
3 sin(ϕ) the Haldane insulator is not trivial!

4.3. Gradings and real structures on examples

In order to understand better the nature of gradings and real structures, it was very useful
for me to practise on some examples. Moreover, even if we will focus on the easiest cases,
the following examples are fundamental as they recur often when dealing with topological



4| Comments and examples 43

insulators. In this section I will show how to find the possible gradings and real structures
in the case of the C∗-algebras C, C⊕ C, M2(C) and Mn(C).

In the following, we will often use the Pauli matrices

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)

These matrices anti-commute pairwise, are self-adjoint and they square to the identity
(therefore, they are unitary).

4.3.1. C

This case is extremely simple. The only possible grading is the identity. Indeed, if γ is a
grading, then we have γ(1) = 1 and therefore, by C-linearity, ∀a ∈ C, γ(a) = a. If r is a
real structure, by anti-linearity, r(a) = ā · r(1) = ā and therefore, the only possible real
structure is the complex conjugation (which of course commutes with the identity).

4.3.2. C⊕ C

Let γ be a grading over C⊕C. If we choose a basis for the finite dimensional vector space
C⊕ C (for example {(1, 0), (0, 1)}), by C-linearity we can represent γ via a matrix M ,

M =

(
a b

c d

)

γ preserves the unity (1, 1): we get the condition a+ b = c+d = 1. The condition γ2 = id
implies M2 = I2 which gives(

a2 + (1− a)(1− d) (a+ d)(1− a)

(a+ d)(1− d) d2 + (1− a)(1− d)

)
=

(
1 0

0 1

)

If a + d = 0, we just obtain γ = id. If a + d ̸= 0, the condition for γ of preserving the
multiplication implies

M =

(
0 1

1 0

)
and therefore, γ(s, t) = (t, s) (the "flip" automorphism). In this case there are just two
possible gradings. The trivial grading is of course not balanced (there is no odd element),
while the second one is balanced ((1,−1) is an odd element squaring to the identity). We
consider the flip automorphism as the standard grading for C⊕ C.
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We look for the real structures (which, by definition, commute with the grading). First of
all, we remark that r is anti-linear if and only if r̄ is C-linear. As before, we can say that
r̄ is represented by the matrix N . The commuting condition between N̄ and M forces N
to be under the form

N =

(
a b

b a

)
The condition r2 = id gives N̄N = I2. Therefore(

|a|2 + |d|2 āb+ b̄a

āb+ b̄a |a|2 + |d|2

)
=

(
1 0

0 1

)

r preserves the multiplication. We get that

• either a = 1 and b = 0: the corresponding real structure is

r(s, t) = (s̄, t̄)

• either a = 0 and b = 1: the corresponding real structure is

r(s, t) = (t̄, s̄)

4.3.3. M2(C)

Thanks to Skolem-Noether theorem, we know that for every C-linear automorphism γ on
M2(C) it exists σ ∈M2(C) such that γ = Adσ. γ2 = id, therefore, ∀M ∈M2(C)

σ2M(σ−1)2 =M ⇒ σ2M =Mσ2

i.e. σ2 commutes with all matrices of M2(C). As a consequence, we have σ2 = λI. As
we can multiply σ by a scalar without modifying the grading γ, we can choose λ = 1 and
then the eigenvalues of σ are contained in {1,−1}. There are two possibilities:

• either σ = I: γ is the trivial grading;

• either σ is similar to σz. Up to a changing of the basis, the only non-trivial grading
is γ = Adσz

Once more, the trivial grading is not balanced. On the other hand, σx is odd and squares
to I: Adσz is balanced.

If r is a real structure over M2(C), then r̄ is a C-linear automorphism: therefore it exists
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σ ∈ M2(C) such that r = Adσ. We note with c the complex conjugation. r commutes
with the grading γ, so

Adσz ◦ c ◦ Adσ = c ◦ Adσ ◦ Adσz ⇐⇒ Adσzσ = Adσσz

⇐⇒ (σσz)
−1(σzσ)M =M(σσz)

−1(σzσ) ∀M ∈M2(C)

⇐⇒ (σσz)
−1(σzσ) = µI µ ∈ C

and therefore
σzσ = µσσz

There is a unique decomposition of σ in an even term and a odd one, namely σ = σev+σodd

with
σev =

1

2
(σ + γ(σ)) σodd =

1

2
(σ − γ(σ))

On one side we have
Adσz(σ) = σzσσz = µσ = µσev + µσodd

and on the other
Adσz(σ) = γ(σev) + γ(σodd) = σev − σodd

Therefore, we have
(1− µ)σev = 0 and (1 + µ)σodd = 0

So

σzσ = ±σσz (4.2)

The condition r2 = id gives σ̄σM =Mσ̄σ, ∀M ∈M2(C) and therefore

σ̄σ = λI λ ∈ C (4.3)

Finally, the condition r(M∗) = (r(M))∗ gives σ∗σM =Mσ∗σ, ∀M ∈M2(C) and therefore

σ∗σ = ηI η ∈ C (4.4)

Now, we can put 4.2, 4.3 and 4.4 together.

• Case 1, σzσ = σσz. In this case σ is a diagonal matrix. Equation 4.3 gives
(remember that we can multiply σ by a scalar)

σ = σθ =

(
1 0

0 eiθ

)
θ ∈ (0, 2π]
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• Case 2, σzσ = −σσz. σ is a off-diagonal matrix.

σ =

(
0 b

c 0

)

Equation 4.3 implies that b̄c is real and equation 4.4 that |b| = |c|. These two
condition imply b = ±c. Therefore, σ = σx or σ = iσy

We define the real structures rθ = c ◦Adσθ
, rx = c ◦Adσx and ry = c ◦Adiσy . We see that

there are infinitely many real structures. However, we see that the real structures rθ are
quite "similar": we would like to say that they are equivalent. Indeed, we can prove that
they are inner conjugate (definition 18): we fix θ ∈ (0, 2π] and we show that r0 = c◦Adσ0

and rθ are inner conjugate. We define

wθ =

(
1 0

0 e
iθ
2

)

and we verify that wθ satisfies:

• w∗
θwθ = I (wθ is a unitary)

• r0(wθMw∗
θ) = wθrθ(M)w∗

θ , ∀M ∈M2(C)

• Adσz ◦ Adwθ
= Adwθ

◦ Adσz

Now, we would like to prove that between r0, rx and ry there are no inner conjugate couple.
We just show the case r0 and rx are not inner conjugate, the other cases being analogous.
If r0 and rx are inner conjugate via the unitary w, from r0(wMw∗) = wrx(M)w∗, ∀M ∈
M2(C) we get

wσx = λw̄

From Adσz ◦ Adw = Adw ◦ Adσz we get

σzw = µwσz

As before (decomposition of w in even and odd elements), we find µ = ±1. In both cases,
we find a contradiction with the previous equation.

Remark. We have just found that in the case M2(C), up to inner conjugation, we have
three possible real structures. It is interesting to compare this result to the Corollary 4.15
of [5].

Corollary 4.0.1. Up to stabilization and inner conjugation, there are four different bal-
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anced graded real structures on Mn(C) [...].

It means that three out of four real structures of Mn(C) appear in the n = 2 case. To
find the fourth real structure, we must consider the stabilisation of M2(C).

4.3.4. Mn(C)

If γ is a grading, then there exists Γ ∈ Mn(C) such that γ = AdΓ. With the same
computations as in the case of the gradings over M2(C), we can show that, up to changing
of the basis, Γ can be one of the Γk ∈Mn(C)

Γk =

(
Ik 0k,n−k

0n−k,k −In−k

)
, k ∈ {0, 1 . . . n}

We are interested in balanced gradings, namely a grading for which it exists M ∈Mn(C)
such that (1) γ(M) = −M and (2) M∗ =M =M−1. From (1)

−M = −

(
M1 M2

M3 M4

)
= ΓMΓ =

(
M1 −M2

−M3 M4

)

we have that M has the shape

M =

(
0 M2

M3 0

)
with M2 ∈Mk,n−k(C) and M3 ∈Mn−k,k(C). This shape implies

M

(
Ck

0n−k

)
=

(
0k

Cn−k

)
and M

(
0k

Cn−k

)
=

(
Ck

0n−k

)

From (2) we have that M is invertible, therefore, from previous condition, k = n− k and
so n = 2k. To sum up,

• if n is even, there is one and only one balanced grading γ = AdΓn/2
;

• if n is odd, there is no balanced grading.

Now we look for real structures. From corollary 4.0.1, we know that we there are just
four real structures. We obtain three of them just extending the ones we found in the
case n = 2. Indeed, we can see Mn(C) as Mk(M2(C)) ≃ Mk(C) ⊗M2(C): we extend
r real structure over M2(C) with c ⊗ r (c is the entry-wise complex conjugation) over
Mk(C) ⊗ M2(C) (we apply r to each 2 × 2 bloc of the matrix). To find the last real
structure, as described in the proof of 4.0.1, we must realise the last possibility for the
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sign (see definition 19). The last real structure appears over M2(C)⊗M2(C). It is defined
as

r4 = Adσy ◦ c⊗ c

We can "extend" this last real structure to Mk(M4(C)) ≃Mk(C)⊗M4(C) with c⊗ r4. To
sum up, the four real structures up to stabilisation and inner conjugation on Mn(C) are

Real structures on Mn(C)

n real structure

r1 2 c

r2 2 Adσx ◦ c
r3 2 Adσy ◦ c
r4 4 Adσy ◦ c⊗ c

4.3.5. Link with the classification of topological phases

As we saw at the end of 1.6, the typical C∗-algebra which is considered in the applications
is

A = C((S1)d)⊗MN(C)

where C((S1)d) stands for the spatial part and MN(C) acts on the internal degrees of
freedom. Following the approach described in chapter 3, when there is no chiral symmetry
we must tensor the C∗-algebra with Cl1 to recover the existence of an odd element and
to use Van Daele’s theory

C((S1)d)⊗MN(C)⊗ Cl1.

It is easy to see that
MN(C)⊗ Cl1 ∼= MN(C)⊕MN(C).

We can see how the study of the real structures over C∗-algebras of the type MN(C) is
important, as they appear recurrently.
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5| Conclusions and future

developments

Let us conclude this work with an overview of possible applications in technology of topo-
logical insulators. We have seen that the key property of topological phases is the stability
to exterior perturbations in the sense that we can find physical properties which are highly
robust to noise. For example we mentioned the Chern number and the Hall transversal
resistivity. Another example could be edge currents: we can easily imagine to use these
materials to encode information with a low risk of error. This is why topological insula-
tors are extremely interesting for the development of quantum computers, in particular
for the topological quantum computers (see [7]). Aside from quantum computers, other
promising applications are in the field of photodetectors, magnetic devices, field-effect
transistors and lasers: a review can be found in [12].

I hope that with this work I could give a glimpse of why mathematics has a fundamental
role to study these materials. Using C∗-algebras and K-theory we can obtain a fine
description of the possible physical frameworks and of the structure of the set of topological
phases. It is charming the idea that through mathematics we can predict the existence of
a material which still does not exist! Then, it will be the task of the chemist/engineer to
"build" in practice the hamiltonian which was postulated by the mathematician.

Concerning the continuation of this project, the idea is to compare the mathematical
approach to classify topological phases of [5] to another one, namely the one presented in
[1]. Also in the second approach Van Daele’s picture is used to classify topological phases
but taking a different starting point: it would be interesting to find the link between the
results of the two approaches and determine if they are equivalent.
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