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Abstract

The aim of this work is the design of a supersonic turbine. To improve the efficiency
of gas turbines, recent researches investigated the possibility to adopt, in place of the
classical combustor, a Rotating Detonation Engine (RDE). This is a novel technology
based on the detonation combustion mode and thermodynamic cycle studies have
shown, at least theoretically, optimistic results in terms of performance and fuel saving.
The flow coming out from the detonative combustor is supersonic, non-uniform and
unsteady. Modern turbine stage have shown not to be able to withstand this kind of
flow without tremendous increasing of losses. For this reason a pioneering supersonic
turbine must be designed.
In this thesis, the turbine design was approached with a mean-line code, whose goal
is to find the better design parameters, to assure the starting of the blade passages
and to create a suitable profile for the incoming supersonic flow. The latter goal have
been achieved adopting an implicit version of the Method of Characteristics to create
blade profiles for inviscid and isentropic flows. The resulting blade shapes have been
thickened and properly rounded, inducing a detached bow shock wave in front of the
leading edge. In the mean-line code, this shock have been modelled, along with its
first and stronger reflection, and the resulting losses have been taken into account to
design the turbine.
Afterwards, the thesis work was focused on finding a proper loading criteria to define
the optimum number of blades, but the classic loading criteria are not thought for
supersonic rows, so an optimization procedure have been implemented. For both stator
and rotor rows, the performance have been optimized varying the Zweifel coefficient of
tangential force. The optimization algorithm adopted was the Golden-section search
method and the objective function (i.e. performance) was evaluated by means of the
mean-line code and of blade-to-blade simulation in Ansys CFX. The mean-line code
results and predictions have been validated.
In the last part of the work, off-design conditions have been studied for the stator
row and for the full turbine stage, by means of blade-to-blade simulations, varying
inlet Mach number and inlet flow angle. Positive incidence angles and lower inlet
Mach numbers than the design value have been found to not excessively penalize the
turbine stage performances.

Keywords: Supersonic turbine design; Rotating Detonation Engine; Shock waves
prediction models; Method of Characteristics; Solidity optimization; Off-design per-
formances.
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Sommario

Lo scopo di questo lavoro è la progettazione di una turbina supersonica. Per migliorare
l’efficienza delle turbine a gas, recenti ricerche hanno studiato la possibilità di adottare
un Motore a Detonazione Rotante (RDE), al posto del classico combustore. Si tratta
di una nuova tecnologia basata sulla modalità di combustione a detonazione e studi
sul ciclo termodinamico hanno mostrato, almeno teoricamente, risultati ottimistici
in termini di prestazioni e risparmio di carburante. Il flusso che esce dal combustore
detonante è supersonico, non uniforme e instabile. I moderni stadi a turbina hanno
dimostrato di non essere in grado di sopportare questo tipo di flusso senza un enorme
aumento delle perdite. Per questo motivo è necessario progettare una innovativa
turbina supersonica.
In questa tesi, il progetto della turbina è stato affrontato con un codice zero-
dimensionale, il cui scopo è trovare i migliori parametri di progetto, assicurare
l’avvio dei canali palari e creare un profilo adatto per il flusso supersonico entrante.
Quest’ultimo obiettivo è stato raggiunto adottando una versione implicita del Metodo
delle Caratteristiche per creare profili di pala per flussi non viscosi e isentropici. Le
pale risultanti sono state ispessite e adeguatamente arrotondate, inducendo un’onda
d’urto distaccata davanti al bordo d’attacco. Nel codice della linea media, questo
shock è stato modellato, insieme alla sua prima e più forte riflessione, e le perdite
risultanti sono state prese in considerazione per progettare la turbina.
Successivamente, il lavoro di tesi si è concentrato sulla ricerca di un corretto criterio
di carico per definire il numero ottimale di pale, ma i classici criteri di carico non sono
pensati per le schiere supersoniche, quindi è stata implementata una procedura di
ottimizzazione. Sia per la schiera statorica che per quella rotorica, le prestazioni sono
state ottimizzate variando il coefficiente di forza tangenziale di Zweifel. L’algoritmo
di ottimizzazione adottato è stato il metodo della sezione aurea e la funzione obiettivo
(ovvero le prestazioni) è stata valutata per mezzo del codice 0D e di simulazioni
blade-to-blade in Ansys CFX. I risultati e le previsioni del codice della linea media
sono stati convalidati.
Nell’ultima parte del lavoro sono state studiate condizioni di fuori progetto per lo
statore e per l’intero stadio di turbina, mediante simulazioni blade-to-blade, variando
il numero di Mach in ingresso e l’angolo di flusso in ingresso. È stato riscontrato
che angoli di incidenza positivi e numero di Mach in ingresso più bassi del valore di
progetto non penalizzano eccessivamente le prestazioni dello stadio.

Parole chiave: Progettazione di turbina supersonica; Motore a Detonazione Rotante;
Modelli di previsione delle onde d’urto; Metodo delle Caratteristiche; Ottimizzazione
della solidity; Prestazioni fuori progetto.
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Chapter 1

Pressure-Gain Combustion

Nowadays, gas turbine engines are playing a key role in several industry fields, most of
them crucial for the world economy. Every technology and device they are equipped
with is treated very carefully and developed with a lot of interest about the long-term
efficiency and reliability gain, that can be transferred to the gas turbines themselves.
By definition, gas turbines are continuous and internal combustion engines based on
the Brayton cycle, from a theoretical thermodynamic point of view. Although only
Diesel (compression ignition) engines and Otto (spark ignition) engines are commonly
considered internal combustion engines, also the gas turbines are included into this
classification because there is not a heat exchanger which transfer energy from the heat
source to the working fluid. In an ideal gas turbine, gases undergo four thermodynamic
processes: an isentropic compression, an isobaric (constant pressure) combustion,
an isentropic expansion and heat rejection. Together, these make up the Brayton
cycle (Fig. 1.1). These engines are mainly used for power production, in terms of
electricity or mechanical power for industrial application, and for aeronautical and
marine propulsion.

Figure 1.1. Idealized Brayton Cycle

The real thermodynamic cycle differs from the ideal one, for what concern compression
and expansion in the turbomachines, due to aerodynamic losses, mechanical losses of
various nature and so on. Regarding the combustion process, the constant pressure
combustion shows a relevant increase in terms of entropy production, also in the ideal
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Brayton cycle. This is the reason why a different combustion mode have been proposed
and analysed during the last decades almost together with the development of gas
turbines, started more than one century ago. Different way to overcome the efficiency
penalty inherent the combustion process at constant pressure, have been proposed and
a group of them, namely the Pressure Gain Combustion (PGC), is the leading and
most promising approach according to the last researches and scientific publications.
Two main type of Pressure-Gain Combustion engine are under development: the Pulse
Detonation Engine (PDE) and the Rotating Detonation Engine (RDE), the latter
object of interest for this thesis work.
It is important to notice again that this field of research is part of a technology area
which undergoes huge economic interest worldwide. In this framework, the last 40
years in the gas turbine world were characterised by a relevant positive trend in terms
of efficiency and any other performance indicator for these machines, as tested by
every single Original Equipment Manufacturer (OEM). For the power production,
for example, Gas Turbine Combined Cycle (GTCC) power plant is the most efficient
and least-polluting fossil fuel-based electric power generation technology. This kind of
power-plant will be crucial in the transition towards a full green-power generation.
Largely driven by Turbine Inlet Temperature (TIT) and pressure ratio, the Brayton
cycle based “J class” heavy-duty industrial gas turbines, with more than 40% net
thermal efficiency (Fig. 1.2), have been the foundation of combined cycle power plants
with field-proven 60+% net thermal efficiency (Fig. 1.3). Nevertheless, published
ratings and field performances show that the 30+ years old steady gain in performance
is rapidly approaching a plateau.

Figure 1.2. Gas turbine evolution, 1985–2016 [1]

Present state-of-the-art is 1600°C TIT with cycle pressure ratio of 23. The enabling
technologies are advanced Hot Gas Path (HGP) materials (superalloys), Thermal
Barrier Coatings (TBC), film cooling techniques and 3D-aero design software. The next
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class of machines are targeting 1700°C TIT, which is putting a big onus on Dry-Low-
NOx combustor technology, superalloy capabilities and HGP parts manufacturability
for commensurate film cooling effectiveness. Additive manufacturing (commonly
known as “3D Printing”) and ceramic matrix composite Ceramic Matrix Composite
(CMC) materials are two promising technologies to facilitate successful deployment of
the K class in the next decade or so [23]. Similar trends and results regard also the
other application of gas turbine engines and thermodynamic evaluations motivate the
interest for the PGC.

Figure 1.3. Gas turbine combined-cycle evolution, 1985–2016. [1]

1.1 Detonation Propulsion
Deflagration is the combustion mode currently exploited in gas turbine and, generally
speaking, in every kind of internal combustion engine. Detonation, instead, is a type
of combustion involving a supersonic exothermic front, which eventually drives a
shock front propagating directly in front of it, whose power has been well recognized
and analysed. It has been estimated that a 20 m2 detonation wave operates at a
power level equal to that received by the Earth from the sun [24]. Deflagration main
difference with respect to detonation is the exothermic front speed, which is subsonic.
It is intuitive to understand why, in the last century, scientists and engineers have
always tried to manage detonations for power production purpose, at least since
’40, but, up to now, practical applications of detonative combustion have been very
limited. In detonation, the reaction front in fuel-air mixture propagates with the
velocity of order of km/s and produces a significant pressure increase. In contrast to
detonation, deflagration flame velocity is of the order of dozens m/s, so combustion
needs to be organized at the stoichiometric ratio (higher burning velocity), that results
in a high combustion temperature and in production of high NOx concentration.
Since temperature of burned products is very high in jet engine, it is necessary to
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mix extra air before turbine, which makes the design more complicated. Moreover,
the pressure drops in combustion chamber, due to fluid dynamic losses. In contrast
to deflagration, the combustion zone in detonation is very small. If the detonation
propagates in a lean mixture, the combustion temperature is relatively low, so a low
emission of NOx is expected (also due to a small residence time). Thus, there is no
necessity to add extra air before the turbine (in turbojet engines). In addition, due
to the detonative combustion, chamber pressure is increased [2] and a different and
more efficient thermodynamic cycle is exploited by gas turbines. Briefly, the main
advantages, at least theoretically, of the detonative combustion are the following:

• Detonation velocity of the order of km/s

• Short combustion zone, so more compact combustor

• Combustion (detonation) of ultra-lean or rich mixtures

• Lower temperature

• Low NOx emission

• No necessity to mix extra air

• Pressure increases due to detonation

• Continuous injection of the fresh mixture, which results in fewer fluctuating
outlet conditions

• More efficient cycle for gas turbines

Figure 1.4. (a) classical turbofan engine. b) turbofan engine equipped with RDE. [2]

1.2 Cycle Analysis
In order to evaluate the advantages in adopting detonative combustion in gas turbine
engines in terms of purely thermodynamic cycle efficiency, it is necessary to model the
involved gas evolution. Whereas deflagration is well represented, with a reasonable
level of approximation, by constant pressure heat addiction in the already explained
Brayton cycle, detonation con be modelled with two different cycles: the Humphrey
and the Fickett–Jacobs ones.
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The Humphrey cycle is a thermodynamic cycle, which may be considered a modification
of the Brayton cycle, in which the constant-pressure heat addition process is replaced
by a constant-volume heat addition process. Hence, the ideal Humphrey cycle consists
of 4 processes:

• Reversible, adiabatic (isentropic) compression of the incoming gas. Stagnation
pressure and temperature increase because of the work done by the compressor.
Entropy is unchanged.

• Constant-volume heat addition. In this step, heat is added, while the gas is
kept at constant volume. Humphrey-cycle engines are considered open cycles in
which air flows through continuously and this makes difficult to have a "constant
volume" during the heat addition. Hence, the combustion mode is detonative
and the heat addition happens only for a small volume of charge (in a combustor
annulus) at a constant volume, while the remaining sections in the chamber
are refilled with fresh premixed charge. This method allows for continuous flow
in the system, while at the same time achieving the pseudo constant volume
requirement for the heat addition process.

• Reversible, adiabatic (isentropic) expansion of the gas. Stagnation pressure and
temperature decrease because of the work extracted by the turbine.

• Constant-pressure heat rejection. In open-cycle engines, this process represents
expulsion of gases from the engine

The Fickett–Jacobs (FJ) cycle is similar to the Humphrey one, but relies on the
Chapman–Jouguet (CJ) model for detonation. The working gas is first compressed by
a turbomachine, than subjected to detonation, i.e. compressed by the shock wave and
heated by the exothermic reaction, afterwards expanded isentropically to the initial
pressure and finally the cycle is closed by a fictitious isobaric process of heat rejection
to the initial state.
Experimental researches find that, among these cycles, FJ is the most representatives of
PGC, although the Humphrey cycle is good enough for comparison purpose. Moreover,
equations to evaluate the cycle efficiency are reported in (1.1) with reference to (Fig.
1.5) and used for calculation with different fuel in Table 1.1.The three cycle described so
far are represented in the Pressure-Volume diagram (Fig. 1.5) and in the Temperature-
Entropy diagrams (Fig. 1.6) shown below.

ηB = 1− 1(
p2
p1

) k−1
k

(1.1a)
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T2
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) 1
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Table 1.1. Comparison of calculated thermodynamic efficiencies for various fuels under
different cycles for initial compressor ratio equal to 5 [3].

Fuel Brayton Humphrey Fickett-Jacobs
Hydrogen (H2) 36.9 54.3 59.3
Methane (CH4) 31.4 50.5 53.2
Acetylene (C2H2) 36.9 54.1 61.4

Figure 1.5. Thermodynamic Brayton-Joule, Humphrey and RDE engine (Fickett- Jacobs)
cycles [3]

Figure 1.6. Thermodynamic Brayton-Joule, Humphrey and RDE engine (Fickett- Jacobs)
cycles [4]
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1.3 Pulse Detonation Engine
The most developed detonation engine concept, almost since the beginning of research
activities in this propulsion field, is the Pulse Detonation Engine. PDE and RDE are
the two most popular design concept to exploit the PGC and the only two exploitable
for subsonic flight in aircraft propulsion. Other design concept have been proposed in
literature with not remarkable success up to now or simply not exploitable for any
application, except hypersonic flight.
PDE typically consists of a sufficiently long tube, which is filled with fresh fuel-oxidizer
mixtures and ignited by sufficiently strong energy source. Flame initiated by ignition
must accelerate to detonation velocity in relatively short time, so the transition from
deflagration to detonation must happen in relatively small distance. Detonative
combustion produces high pressure, which is converted to thrust. After all mixture is
consumed by detonation, combustion products have to be evacuated from the tube and
fresh mixture must be quickly resupplied, and the cycle is repeated. Typical frequency
of such engine operation is usually in range of dozen Hertz, a too low value to obtain
a smooth trust curve in time. The system is complicated because fast purging and
refilling are required. Also the engine is operating in the stoichiometric condition, due
to necessity of fast detonation initiation, requiring extra air to decrease temperature
before the first turbine stage [2]. Other challenges are, again, related to initiation
and repeatability of detonation by either reproduce in every cycle a combustion event
sufficiently powerful, or by converting the downstream deflagration flame a supersonic
wave in a process known as deflagration-detonation transition [25].
PDE have been extensively studied and several research Center are involved in
numerical and experimental test all over the world, but the aspects listed previously
represent too relevant weaknesses for the integration with turbomachinery in Gas
Turbine engine.

Figure 1.7. First PDE designed by J.A. Nicholls at the University of Michigan
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1.4 Rotating Detonation Engine

1.4.1 Combustion Mechanism
Rotating Detonation Engine is the most promising technology able to enhance gas
turbine performances. During the last two decades, this technology has been the
object of growing interest. This engine type is characterised by one or more detonation
waves contained within an open-ended annular chamber. A fuel/oxidiser mixture is
fed into one end of the chamber, and the detonation wave consumes these reactants
azimuthally, expelling them from the open end of the annulus. In some literature, this
type of engine may also be referred to as a continuous detonation wave engine [26].
The detonation is continuously sustained by the injection of fresh reactants ahead
of the wave. A fresh mixture is continuously injected along the axial direction with
a certain velocity Vinj (creating the triangular refilling zone) while the transversal
detonation fronts (dashed red lines) move in a clock-wise direction at a peripheral
speed U, with an oblique shock wave anchored at a triple point [5]. The outlet flow is
supersonic and with relevant spatial variability.

Figure 1.8. (a) Three-dimensional CFD simulation of a stable RDC. b) 3D flow features on
a RDE with a clock-wise rotating detonation front. [5]

Moreover, both in numerical simulation and in experimental visualization the flow-field
presents other relevant features. In Fig. 1.9 it is possible to observe:

(A) detonation wave

(B) trailing edge shock wave

(C) slip line between freshly detonated products and older products

(D) fill region

(E) non-detonated burned gas region

(F) expansion region with detonated products
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(G) inlet region with blocked micro-nozzles

(H) inlet region with partial filling micro-nozzles

(I) inlet region with choked micro-nozzles

(J) secondary shock wave

Detonation wave is moving from left to right in Fig. 1.9, but the flow-field has
been solved in the wave-fixed reference frame, so in steady state simulation.

Figure 1.9. Numerical schlieren-like visualization of (top) temperature and (bottom) pressure
of an “unrolled” hydrogen-air RDE solution [6].

In Fig. 1.10 it is reported a schematization of the unfolded 2D flow-field in the
detonation front frame of reference, coming from a reduced order model. The fresh
mixture moves from left to right at Wcj (Chapman–Jouguet velocity) towards the
detonation front. At the triple point, a slip line and an oblique shock wave are
generated and propagated towards the outlet. The slip line splits the burnt gases in
two regions, by distinguishing those that just crossed the oblique shock wave. After
the detonation wave, the wall pressure is higher than the injector static pressure
which prevents the fresh mixture to refill the combustor [5]. Further away from
the detonation front, a Prandtl-Meyer expansion imposes a flow acceleration and a
progressive pressure decrease until it matches the injection pressure. At this point, the
refilling re-starts and fresh mixture is injected axially into the combustor, resulting in
a triangular refilling zone [9].
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Figure 1.10. 2D unfolded illustration of the flow features and identification of the corre-
sponding angles of a rotating detonation wave front [5]

1.4.2 Flow solver
Several numerical studies have been carried on to understand the flow structure in
this complex environment and an increasing number of experimental tests confirm
what was understood up to now. The flow nature itself is difficult to fully simulate
not only due to the classical limitation imposed by the Navier-Stokes system of
partial differential equations, but also because complex chemistry is involved and high
gradient value regions are present.
Different kind of solvers have been used with various degrees of accuracy and computa-
tional cost. The full set of 3D Unsteady Reynolds Averaged Navier–Stokes (URANS)
equations requires tremendous computational effort, but results are highly accurate
and full of relevant information about the engine behaviour. To reduce this effort,
different modelling strategies have been proposed in literature. A good trade-off
between computational cost and solution accuracy can be easily found in literature
with the radial thickness of the annulus chamber neglected and the fluid-dynamic
domain unfolded and solved with a two dimensional solver. The detonation process
can be modelled in several ways: using one-step reaction kinetics [27] with a limited
number of species; or with two-step chemical reaction models [28]; or with an induction
parameter which allows for larger grid size and time steps [7, 29]; or with detailed
reaction kinetics which lead to expensive computations [30].
The faster solvers developed during the last 15 years are based on the Method of Char-
acteristics (MOC) and include simple combustion models, generally the Zel’dovich -
von Neumann - Döring (ZND) 1D detonation model, to solve RDE flow-fields in the
wave-fixed reference frame. The MOC is a technique for solving partial differential
equations and it is valid for any hyperbolic partial differential equation. When the
flow can be considered fully supersonic, steady, adiabatic, inviscid and irrotational, the
Navier-Stokes equations became hyperbolic and the problem can be addressed with

10



1.4. Rotating Detonation Engine

this classical methodology. It consists in reducing a partial differential equation to a
family of ordinary differential equations, along which the solution can be integrated
from some initial data given on a suitable hypersurface. This method will implicitly
exploited in this thesis work to generate the blade profile.

Figure 1.11. Comparison of the flow features contour obtained with the two-dimensional
URANS solver (top) with the ones obtained with the MOC (bottom) [5]

Since this tool is the less computational expensive, it is the most suitable for paramet-
ric analysis to design the RDE [5,9, 31]. In Fig. 1.11 agreement between the reduced
order model based on the MOC and the 2D URANS solver can be appreciated even
qualitatively, comparing the contours. Typical pressure profile are reported in Fig.
1.12 below and agreed with experimental measurement.

Figure 1.12. from the left to the right: inlet static pressure; outlet static pressure; outlet
Mach number [7].
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1.4.3 Gas Turbine architecture with RDE
Some concepts of RDE have been proposed and design solution reported in literature
are quite similar to each other, presenting minor differences for the combustor itself
(Fig. 1.13), but also for the entire Gas Turbine architecture.
For what concern the combustor annulus, it is possible to have different positions
and number of detonation initiators, related to how many combustion fronts is more
convenient to establish [32, 33]. Other differences in technical design are related to
material choice, thermal analysis and mechanical assessment, due to the presence of
important heat flux caused by rotating detonations. The first step in this sense is
to evaluate the heat flux and how it is influenced by design choices and operation
events [31]; then the engineering task consists mainly in cooling system sizing and
assessment.

Figure 1.13. detonating combustion annulus [3].

Whereas adoption of the Rotating Detonation Engine will not heavily affect the
cold side of the Gas Turbine, except the important advantage of a lower pressure
ratio required to the axial compressor, several adjustments would be needed for the
hot side. First of all, in literature there is agreement about the necessity to use a
divergent nozzle placed at combustor outlet. The aim is to reduce non-uniformities
and accelerate the flow to prevent the unstarting issues within the supersonic flow-
passage in turbine stator [10]. Many studies have been performed to compare different
revolution profile (Fig. 1.13) for the annular diffuser [7] or outlet-to-inlet area ratio
and other geometrical features [16, 34] and their influence on the flow-field properties.
In [7] five different nozzles were investigated, each one with three distinct combustor
inlet total pressures: straight duct, conical, Bezier outer wall, Bezier inner wall, and
two Bezier surfaces (Fig. 1.14 and 1.15). Every divergent nozzle expands the flow
from sonic conditions to Ma = 2.25, beneficial for downstream turbine starting. For
identical outlet-to-combustor-inlet-area ratios, the Bezier-outer-wall nozzle is more
adequate at higher inlet pressures in terms of total pressure gain [7]. It offers the best
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1.4. Rotating Detonation Engine

performance in terms of flow fluctuation mitigation, achieving a global damping of
42.8% with a mass-flow averaged Mach number of 2. Moreover, this damping capacity
varies with the severity of combustor inlet quantity fluctuation, in such a way that
the downstream elements will be subjected to a constant level of oscillation regardless
of the combustor exhaust flow root mean square deviations [35].

Figure 1.14. a) Combustor shape, no nozzle; b) straight duct nozzle; c) conical nozzle, with
a constant radius inner wall; d) Bezier outer wall with a constant radius inner
wall; e) Bezier inner wall with a constant radius outer wall; and f) two Bezier
surfaces, combining the outer wall of d and inner wall of e. [7].

Figure 1.15. Isocontours of static temperature along the inner and outer walls for the
baseline and five different nozzle geometries: a) baseline (no nozzle), b) straight
duct, c) conical nozzle, d) Bezier outer wall, e) Bezier inner wall, and f) two
Bezier surfaces. [7].
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Whereas coupling of detonative combustor with downstream axial turbine is assured
by the Bezier outer wall divergent nozzle, coupling with upstream compressor con be
performed by an isolator (Fig. 1.16). In literature this component has not received
enough specific attention for Gas Turbine arrangements of RDE [27] [36], but scope
and shape have already been identified. It is a slightly divergent annulus, which links
the high-pressure compressor stage to the combustor inlet where the micro-orifice for
fuel feeding are placed. Isolator is envisioned to keep the inlet flow properties constant
since the detonation wave continually blocks a portion of the annulus entrance from
filling (Fig. 1.17). For a practical engine, a minimum length will be required to
dampen any waves propagating upstream from the annulus [8]. Moreover, numerical
simulations of RDE generally consider direct injection of premixed mixture, from
holes or from the full head-end annulus section, but the premixing of fuel and air
in the upstream isolator will be prohibited in practical RDE due to concerns with
flashback [27].

Figure 1.16. Basic engine geometry and stage designations (not to scale). [8].

1.4.4 Future Challenges
Previous paragraphs describe the RDE combustor section, on which the biggest part
of the literature focuses. As previously mentioned, scientific community attention has
grown during the last decades and understanding the behaviour of this innovative
combustion method is the key to assess the feasibility and to control the RDE.
Several progresses have been made and experiments successfully performed, although
just for brief time interval, but concerns and future challenges, nowadays, are related
to several aspect, listed below:

1. Turbine/PGC aerodynamic design and integration, object of this thesis work

2. Combustor heat flux evaluation and cooling system assessment

3. Detonation stability, scaling and control: turbulence-detonation interaction,
hot-spots presence

4. Turbine cooling system and mechanical design

5. Channel curvature and radial thickness effects for combustion and outlet flow
properties distribution
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Figure 1.17. Possible injection conditions for fuel and oxidizer: - top, sonic injection ( pw <
pcr,), premixed region expands almost linearly; - middle subsonic injection, (po
> pw > pcr); - bottom, no injection ( pw > pcr,) (reverse flow and flashback
risk). [3].

6. Prevent backflow into combustor inlet and/or seal

7. Accurate fuel-injection system design and investigation [36]:

• uniform mixing requirement of oxidizer and fuel in a short time
• detonation wave initiation in a single direction at start-up
• flashback risk attenuation: propagation of shock wave back into the injector

manifolds may cause destructive flashbacks

8. Instrumentation and Measurement: high frequency, large amplitude range, harsh
environmental thermal capabilities required [37]

All of these aspects are relevant, but for the Gas Turbine architecture it must be
noted that point 4) has massive effects. It has been already mentioned that TIT is
the key for classical gas turbine efficiency improvement, therefore its decrease is not
desirable. In order to maintain the usual values of TIT, fundamental is the adoption
of film cooling techniques, which, for RDE implementation, impose a new architecture.
Indeed, the air bled from the last compressor stage is at lower pressure, both static
and total, than the one delivered from the combustor and so it is not possible to eject
that air through the film cooling holes. There are two ways to deal with this problem:

• to use an auxiliary, smaller, compressor for the bled air

• to limit the TIT, exploiting only TBC and internal cooling, renouncing to some
of the efficiency gain obtained with RDE implementation
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1.5 Supersonic Turbine
In order to substitute classical combustors, used in modern Gas Turbines, with RDE
and achieve efficiency improvement, one of the main task to be accomplished regards
the design of turbine stages able to deal with supersonic flows. Innovative approaches
need to be implemented, since classical turbine stages have been studied and tested
for flows extremely different from the one coming from a proper designed divergent
nozzle [35], downstream of a RDC (Fig. 1.17). Also modern turbomachinery design
practice is not adequate for this application, although transonic flows and shock
predictions are common in gas turbine, nowadays.

Figure 1.18. Iso-Temperature contour on a three dimensional RDC. A – Detonation front,
B – Oblique shock wave, C – contact surface, D – Blocked injection due to the
higher post-detonation pressure, E – Refilling zone, F – slip-line. [9]

As previously explained, the flow-field is supersonic and highly unsteady. The only
aerodynamic alternative to avoid a supersonic flow consists in adopting a convergent
diffuser, in contrast to all the technical solution proposed in literature, downstream
of the RDC, in order to force the inhomogeneous combustor outlet flow to become
subsonic. In this way it is possible to adopt usual turbine stages, but this option has
been shown not to be promising: in [38] calculated turbine efficiencies is below 74%
when subsonic axial turbines are exposed to inlet fluctuations of 75% at frequencies
up to 10 kHz. The best solution proposed in literature up to now remains the use of
a divergent nozzle coupled to novel supersonic turbine [4,10,21]. For what concern
the flow-field unsteadiness, there are no methodologies to accomplish them during
the preliminary design phase. Anyway, recent studies shown that supersonic turbine
perform better than subsonic one under fluctuating inlet condition and reduced order
models have been proposed to predict the damping capacity of the single row [39–41].
The key aspects of supersonic turbine design are the following:

• assuring the turbine starting, controlling flow angles and blade height evolution
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• driving the supersonic flow through the passage by exploiting isentropic expan-
sion and compression characteristic lines

• rounding the blade profile in a way that minimize shock formation

• modelling detached shock and its reflection through the passage, evaluating the
induced total pressure loss

• evaluate skin friction losses (wet surface)

• optimize the solidity and any other geometrical parameter to find a trade-off
among minimum shock losses, risk of boundary layer detachment and minimum
friction losses

All these aspects have been treated in both classical and pioneering studies present
in literature and are object of this thesis work. In this innovative branch, A special
mention goes to previously mentioned researches [4,10,21,39–41]. Approaches followed
in these studies have inspired this thesis work and deserve to be exposed. For what
concern the turbine starting, classical turbomachinery literature have already explained
the main aspects involved in this phenomenon, which will be deeply treated in the
next chapter (Cap. 2). Only three kind of configuration for the turbine stage are
possible, displayed in Fig. 1.19:

(a) impulse design, low reaction, with a rotor diffusing channel;

(b) reaction concept with a rotor nozzle design

(c) stator-less configuration with the rotor diffusing the flow

Figure 1.19. Supersonic turbine stage concepts [4]

On the other hand, old NASA technical notes have already faced the problem of
designing supersonic blades [15, 42–46], whose resulting shape is similar to the one
used for Curtis stage in steam turbines, but is based on an implicit version of the
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MOC. Wall segments describe a passage based on the “vortex flow method”, where
the inlet parallel flow is converted into a vortex flow field with the proper design of
inlet transition arcs. Then the flow is turned through circular arcs and finally the
outlet transition arcs provide a uniform parallel flow. This design favours high turning
and loading. Obtained profiles need to be thickened and rounded and then tested by
means of a numerical simulation (Fig. 1.20).
Whereas concept (a) is unfeasible, results showed the ability of the other design to
ingest normal shock waves, allowing the passage to operate in the supersonic regime.
Moreover, density gradient contours and pressure losses analysis revealed that the
prime source of loss is the leading edge detached shock with its reflections across
the turbine passage [21]. This implicit version of the MOC allows producing blade
profile twice more efficient than the current state-of-the-art subsonic turbine designs,
if exposed to supersonic fluctuating flow [4].

Figure 1.20. Schlieren, iso-Mach number contours and static pressure distribution on the
rotor passage at three different inlet flow angles (configuration (c) ) [4]

In [10] the MOC has been extensively developed for these application. Instead of
exploiting the analytical and implicit MOC-based formulation of the "vortex method",
proposed in [42], the authors approaches numerically the system of equations.
In steady, supersonic, inviscid and irrotational flows the governing equations are
hyperbolic, being the flow properties at each point independent of the downstream
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conditions and the solution procedure is of marching-type. The MOC is a meshless
approach with a limited computational demand and so, particularly suitable for
optimization algorithms requiring relevant amount of objective function evaluation.
The key step involves the determination of the direction along which the cross derivative
of the potential velocity is undetermined. These directions represent the lines where
velocity derivative is discontinuous, which are known as characteristic lines. The
lattice of characteristics begins at the sonic line downstream of the subsonic section
caused by the detached shock wave at the leading edge and identified employing the
procedure exposed in [12]. This method has been coupled with mixing and friction
losses model, related to the BL growth, and produces highly accurate prediction of
flow-field inside the turbine passages (Fig. 1.21).

Figure 1.21. (a) Illustration of the characteristic net and the empirically predicted shock
waves. (b) Numerical Schlieren visualization obtained with 3D RANS simula-
tions. [10]
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Chapter 2

Mean-line design
by Noraiz Mushtaq

This chapter describes the completely original mean-line code developed to achieve
an advanced preliminary design of a supersonic turbine and it is the core of the entire
thesis, because every CFD simulation and every optimization process will start from
the results generated by this code.
The first part of the chapter is dedicated to build all of the theoretical elements that
are put together to compose the mean-line code. First of all a special care is given
to the description and matching of the Kantrowitz limit required for a started blade
row (section 2.2). The second element is an accurate evaluation and prediction of the
aerodynamic losses, where the mean-line code takes account of:

• the detached bow shock wave at the leading edge estimated using Moeckel
theory [12] (subsection 2.3.1);

• the first oblique shock wave reflection (subsection 2.3.2);

• the boundary layer and mixing losses, where first the boundary layer quantities
have been calculated using Stratford and Beavers procedure [47] and then Stew-
art’s method has been employed to calculate the losses [14] (subsection 2.3.3).

The final element and one of the most important pieces of the mean-line code is the
Goldman version of the method of characteristics [14], applied to generate the profile
of both the stator and the rotor of the supersonic turbine (section 2.4).
Finally, section 2.5 explains how all the elements are placed inside the while cycle and
shows the logical order in which all the operations have been executed. Two alternative
variants of the mean-line code have been developed: in variant A (subsection 2.5.1)
the stator blade height is maintained constant, while in variant B (subsection 2.5.2)
the channel height is variable both in the stator and in the rotor.
The last section of the chapter is dedicated to the validation process of the mean-line
code, accomplished by comparing the code outputs with the results extracted from
CFD simulations performed on the same case (section 2.6).
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2.1 List of symbols

Nomenclature

b blade height
bl boundary layer
c chord
Cft Zweifel’s tangential force coefficient
Cp heat capacity at constant pressure
D diameter
g blade pitch
Leul Euler work
M Mach number
m slope of a straight line
ṁ mass flow rate
MW relative Mach number
Nbl number of blades
p pressure
Peul power output
r radius
R air specific gas constant or radius
RX Reynolds number based on the local free stream conditions
s specific entropy
T temperature
th leading and trailing edge thickness
U peripheral velocity
V absolute velocity
v velocity
W relative velocity
X equivalent flat plate length
Y total pressure losses
α absolute flow angle
β relative flow angle
γ heat capacity ratio
δ fully idealized boundary layer thickness
δ∗ displacement thickness
ηt,t total to total efficiency
θ momentum thickness
λ angle of streamline relative to x-axis
µ Mach angle
ν Prandtl-Meyer angle
ρ density
σ isentropic contraction ratio from free stream to sonic velocity
φ local inclination of detached shock relative to x-axis or velocity

direction for MOC
χ stage reaction
ω rotor angular velocity
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Subscripts

0 free-stream condition (Moeckel’s theory)
1 stator inlet
2 stator outlet
3 rotor inlet
4 rotor outlet
ax axial component
bl boundary layer
c centroid of stream tube passing sonic line
cr conditions at Mach number of 1
e external
fs free stream
i inlet or internal
k index for iterative procedures
l lower
m mean-line
n normal component
max maximum
min minimum
o outlet
out outlet
S sonic point of detached shock
SB sonic point of body
t total quantity
te trailing edge
tg tangential component
th throat
tr total relative
u upper
x projection in x direction

Superscripts

∗ value of a parameter at sonic flow conditions or dimensionless quan-
tities

′ total quantity
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2.2 Started or unstarted blade row
A convergent passage when subjected to a supersonic flow behaves like a diffuser,
reducing the velocity and increasing the pressure of the stream. In these particular
conditions, it is critical to assess if the blade row is started or unstarted.
In a Laval nozzle a subsonic flow accelerates in the convergent part, reaches sonic
condition in the throat and becomes supersonic in the divergent section [48]. Now
suppose hypothetically that this flow could be reversed in order to obtain a supersonic
inlet diffuser with sonic condition in the throat section; in practice a flow of this type is
unattainable for stability reasons: the amount of mass entering the supersonic portion
of the diffuser is independent from what happens downstream, but at the same time
disturbances can propagate in the subsonic part leading to a temporary reduction of
the mass flow rate; the unbalance in mass flow rate between the two sides causes a
continuous accumulation of air at the throat section which finally is resolved through
the formation of a normal shock wave in front of the diffuser (unstarted diffuser).
Kantrowitz and Donaldson showed that the strength and the position of the shock
depends on the geometry of the diffuser and the Mach number upstream; in particular
if the contraction ratio Ath

A1
is increased, the normal shock wave first jumps from ahead

the diffuser to a stable position after the throat and then if the contraction ratio is
increased further but still lower than 1, the flow remains supersonic throughout the
whole diffuser without normal shocks (started diffuser).

(a) Unstarted blade row (b) Started blade row

Figure 2.1. Comparison between started and unstarted condition for a supersonic blade row
(Figure from [11]).

In the unstarted case the normal shock wave in front of the blade row causes huge total
pressure losses which are strongly dependent on the inlet Mach number; these losses
can be easily evaluated by applying the normal shock equations and their associated
value at varying inlet Mach number is reported in fig. 2.2. For this reason, it is really
important to design the stator and the rotor to work in started condition in which
the oblique shock waves originated at the leading edge generate significantly lower
total pressure losses [4].
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M1
p2t

p1t

1.5 0.9297
2 0.7208
2.5 0.4990
3 0.3283
3.5 0.2129
4 0.1387
4.5 0.0916
5 0.0617

(a) (b)

Figure 2.2. Total pressure losses through a normal shock wave.

A conventional one-dimensional flow theory, which is a quite good approximation in
this case, is applied to find the analytical limit for the starting of the blade row [4,48].
First of all, the contraction ratio required to reach a sonic condition in the throat is
determined by applying the conservation of mass.

A∗

A1
= ρ1v1

ρ∗v∗

= ρ1

ρt

ρt
ρ∗
M1
√
γRT1√

γRT ∗

=
(1 + γ−1

2 )
1

γ−1

(1 + γ−1
2 M2

1 )
1

γ−1
M1

(1 + γ−1
2 ) 1

2

(1 + γ−1
2 M2

1 ) 1
2

A∗

A1
=
( γ+1

2
1 + γ−1

2 M2
1

) γ+1
2(γ−1)

(2.1)

Eq. 2.1 actually gives the limit under which the blade row will always be unstarted
with a front normal shock. Kantrowitz and Donaldson showed then that the maximum
permissible contraction ratio to have a started condition is equal to the contraction
ratio that would be required for an isentropic compression to the Mach number of 1
multiplied by the total head ratio across the normal shock.

Ath
A1

∣∣∣∣
self−started

>

( γ+1
2

1 + γ−1
2 M2

normal

) γ+1
2(γ−1)

M2
normal = (γ − 1)M2

1 + 2
2γM2

1 − (γ − 1) Mach number behind normal shock

(2.2)
Finally in order to have a self-started blade row the contraction ratio should be
higher than the limit value calculated using eq. 2.2. As we can see in fig. 2.3 between
the self-started and the unstarted region, there is a third intermediate one: in this
region it is possible to achieve a started operating mode, but the diffuser must start
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from a self-started condition and then or the inlet Mach number should be reduced
or a variable diffuser geometry should be employed; these two options will not be
investigated further because they are not really practical for our case.

Figure 2.3. Contraction ratio for a started or unstarted blade row with varying inlet Mach
number.

The self-starting limit affects also the maximum allowable turning on which the amount
of work extracted in a turbine depends; the relation between the two quantities is
easily shown by calculating explicitly the area.

Ath
A1

= Aout
A1

= g2b2cos(α2)
g1b1cos(α1) >

( γ+1
2

1 + γ−1
2 M2

normal

) γ+1
2(γ−1)

(2.3)

As shown in eq. 2.3, the outlet flow angle is bounded by the self-starting limit and
this will affect significantly the design process of the turbine; a solution to ease this
limitation on the flow angles and at the same time to increase the amount of work
extracted by the turbine is to work with a varying channel height along the blade
length and this will be implemented in the mean-line code.

2.3 Evaluation and prediction of aerodynamic losses
Typically a profile working in a supersonic flow environment is less efficient than its
subsonic counterpart due to the complex shock pattern generation in the channel.
One of the key feature that was developed in the mean-line code is the capability to
estimate effectively the losses.
In a supersonic turbine the main source of losses are the following:

• the generation of strong bow shock waves at the leading edge reflected as oblique
shock waves on the suction and pressure side of the blades;

• boundary layer growth in a diffusing channel and its interaction with oblique
shock waves;
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• mixing and secondary flow losses.

Not all of these losses were considered in the mean-line code, but a really good
prediction was obtained by taking account the strong bow shock wave at the leading
edge (responsible alone of two third of the total losses), its first oblique shock wave
reflection, boundary layer and mixing losses; how all of these were estimated and
developed in a MATLAB code will be described extensively in the following paragraphs.

2.3.1 Detached bow shock wave
The detached shock generated from the leading edge is the main source of entropy
production inside the turbine and it is responsible of two thirds of the total losses; for
this reason calculating this component in an accurate way is fundamental to achieve
a good loss prediction. The procedure used is divided in two main steps:

1. the shape is predicted by applying the empirical method developed and validated
by Moeckel [12];

2. the entropy jump is locally evaluated through the oblique shock wave equations
and then averaged along pitch.

Figure 2.4. Detached shock wave and notation used in analysis (Figure from [12]).

Moeckel developed an approximate method to predict the location of detached shock
waves ahead of two-dimensional and axially symmetric bodies by applying the con-
tinuity relation on the sonic line. To approximate the problem to an equivalent
one-dimensional form, the following two main assumptions are made:

• the form of the detached wave from the axis to its sonic point is adequately
represented by an hyperbola asymptotic to the free stream Mach lines;

• the sonic line between the shock and the body is straight and inclined at an
angle that depends only on the free stream Mach number.
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The second assumption is fundamental because the leading shape geometry ahead
the sonic point is no more affecting the shape and location of the bow shock wave,
allowing a much easier application of the continuity equation; this model has also
some limitations because it oversimplifies the flow when applied to extremely blunt
bodies and does not work properly in the proximity of the sonic velocity, but this is
not a problem because our application is far from these limit conditions.
Moeckel model uses an hyperbola curve because, as the detached shock waves, these
curves are normal to the flow at their foremost point and they are asymptotic to the
free-stream Mach lines at large distances.

y = 1
β

√
x2 − x2

0 (2.4)

where β =
√
M2

1 − 1 is the cotangent of the Mach angle and x0 is the distance from the
vertex of the wave to the intersection of its asymptotes. While β is easily calculated
because the Mach number at inlet is known, determining x0 is more complicated.
First of all it is required to locate the sonic point on the body, which in this case
is coincident with the shoulder of the body because the sonic line is straight; the
shoulder is the point where the body is inclined to an angle corresponding to the
shock detachment, whose value λs is experimentally calculated at various inlet Mach
number and reported in Fig. 2.5. The angle φs is known from shock theory because it
is the angle at which the velocity behind the shock is sonic.

dy

dx
= tanφ =

√
x2

0 + β2y2

β2y
(2.5)

(a) (b)

Figure 2.5. Charts for the determination of supersonic air flow against inclined planes and
axially symmetric cones [12].

Rewriting eq. 2.5 in a different form and substituting the sonic point condition
calculated before, equation 2.6 is obtained.

x0

ySB
= β

yS
ySB

√
β2tanφ2

S − 1 (2.6)
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In formula 2.6 all the terms are known with the exception of the ratio yS
ySB

, which
will be now determined by applying the continuity equation on the sonic line; without
going in too much detail, which can be found in the original article, the ratio yS

ySB
can

be calculated through eq. 2.7, where σ is the contraction ratio required to decelerate
the free stream to sonic velocity isentropically.

yS
ySB

=
(

1−
(
p0

ps

)
c

σcosλS

)−1

(2.7)

Once all the parameters have been calculated, the detached bow shock wave can
be finally drawn in front of the leading edge; in order to assess the reliability and
the accuracy of the Moeckel model, the analytical shape of the bow shock wave
is compared with a CFD simulation done on a supersonic profile (sec. 2.4) in the
same flow condition. In fig. 2.6 in the background there is a post-processed image
obtained with a CFD simulation: it is shown the gradient of density to capture in the
best possible way the complex shock pattern; the shape of the detached shock wave
obtained with Moeckel theory is shown in yellow in the foreground. As proven by the
image, the predicted curves are really close to the ones obtained with CFD which
confirms that Moeckel model gives a really good approximation with a simplified
theory.

Figure 2.6. Comparison between the detached shock wave shape obtained with Moeckel
theory and CFD.

Once the detached shock has been drawn, all the informations required to calculate
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locally the entropy jump are available by applying the oblique shock relations.

Mn1 = M1sin(φ)

p2

p1
= 1 + 2γ

γ + 1(M2
n1 − 1)

ρ2

ρ1
= (γ + 1)M2

n1
(γ − 1)M2

n1 + 2

T2

T1
= p2

p1

ρ1

ρ2

∆s = Cp log
(
T2

T1

)
−R log

(
p2

p1

)

(2.8)

The entropy jump is calculated for each point of the detached shock wave and then
the results are averaged for the whole shock wave till the blade surface (Equation 2.9),
where the intersection between the shock waves is neglected as a simplifying assumption.
In conclusion the total entropy increases in each channel due to the detached shock
wave being the sum of the average entropy produced by the upper and lower shock
generated at the leading edge (Fig. 2.6).

∆stotal−bow−shock = 1
y2u − y1u

∫ y2u

y1u
∆su(y) dy + 1

y2l − y1l

∫ y2l

y1l
∆sl(y) dy (2.9)

Now by applying Moeckel theory and calculating the entropy jump as shown before, it
is possible to do a parametric study to find the best operating condition to minimize
the losses.

Figure 2.7. Parametric analysis on the total pressure losses caused by bow shock wave.

30



2.3. Evaluation and prediction of aerodynamic losses

The results of this analysis are shown in figure 2.7 and the following observations can
be made:

• the losses increase with Mach number because the detached shock wave becomes
stronger;

• the losses are strongly dependent on the adimensional ratio pitch to thickness
g
th
. This fact has physical meaning because a smaller thickness compared to the

blade passage makes the leading edge sharper and reduces the subsonic region
behind the bow shock, which is the main responsible of the losses. The reduction
in losses decreases faster in the first part and then it slows down till a plateau
is reached; finally it is important to remember that a too high ratio cannot be
used because the leading edge would be too small to be physically realizable.

2.3.2 First oblique shock wave reflection
When the detached shock wave reaches the blade surface it is reflected as an oblique
shock wave; to improve the accuracy in the calculation of the losses the first oblique
shock wave will be drawn and the associated losses calculated. Only the first reflection
is determined because first of all this is the strongest one and secondly significant
approximations are done to estimate it; so if the same assumptions are also applied
to the subsequent reflections, the reliability of the results will be seriously affected
and the increase in losses would not be that significant.

Figure 2.8. Regular reflection from a solid boundary (Figure from [13]).

The basic concept to calculate the reflection is that the flow immediately adjacent to
the wall must be parallel to it. As Anderson explains [13] in figure 2.8, in region 2
the streamlines are inclined at an angle θ to the upper wall and originating in B is a
reflected shock wave with sufficient strength to turn the flow parallel to the wall and
with un upstream Mach number M2; remember that the strength and the losses of
the reflected shock are lower because M2 is lower than M1 and for the same reason
the shock wave is not specularly reflected.
To calculate the flow angle behind the shock the formula 2.10 is used first to calculate
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the angle behind the bow shock wave and then it is used in an implicit equation which
is solved numerically to find the slope of the reflected shock.

tanθ = 2 cot β
[

M2
1 sin

2β − 1
M2

1 (γ + cos2β) + 2

]
(2.10)

It is important to observe that in this case the first shock is not oblique but a detached
bow shock wave, which means that the flow behind the shock is not uniform; for this
reason only the last portion of the incident shock is used to calculate the reflection
because only the flow closest to the wall must be parallel. Finally the entropy jump is
calculated by applying again eq. 2.8 and the comparison of the predicted reflected
shock with CFD is shown in figure 2.9.

Figure 2.9. Comparison between the reflected oblique shock wave determined analytically
(in purple) and CFD.

2.3.3 Boundary layer and mixing losses
The second most important source of losses in a supersonic blade row are boundary
layer and mixing losses. To calculate the reduction in efficiency caused by these
sources the first step is to estimate the boundary layer quantities.
There are available several method for the calculation of a compressible turbulent
boundary layer and for our code the procedure used is the one derived by Stratford
and Beavers [47]. Actually the authors of this article started from the extensive work
done previously on the topic by many researchers and found a correlation that can
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resume all the previous investigations reported in eq. 2.11

θ = f(M)XR−bX

X = P−1 ∫ x
0 P dx

RX = a0

ν0
XM

(
1 + M2

5

)−(3−ω)

P =
(

M

1 +M2/5

)4

(2.11)

where θ is the momentum thickness, X is the equivalent flat plate length, RX is the
Reynolds number based on the local free stream conditions and P is a Mach number
function.
In these studies the boundary layer is determined by applying the momentum equation
for a compressible turbulent boundary layer, while neglecting in most cases the pressure
gradient dependency; also the correlations derived are valid for an insulated wall, thus
restricting their range of application. The momentum thickness θ, the displacement
thickness δ∗ and the fully idealized boundary layer thickness δ are related through the
ratios δ∗/θ and θ/δ; in limited pressure gradients, these ratios can be approximated
with the results obtained for a flat plate and, as shown by Cope [49], the velocity
profile is independent from compressibility effects; after all these considerations, the
ratios can be calculated by applying the 1

7th power law (Figure 2.10). In conclusion
first the boundary layer thickness δ is calculated as independent of the Mach number
and then the momentum and the displacement thickness are obtained through the 1

7th
power law ratios. In this way the final set of formulae used to calculate the boundary
layer quantities is obtained (eq. 2.12 and 2.13).

for RX ≈ 106


δ = 0.37XR−

1
5

X

θ = 0.036(1 + M2

10 )−0.70XR
− 1

5
X

δ∗ = 0.046(1 + 0.8M2)0.44XR
− 1

5
X

(2.12)

for RX ≈ 107


δ = 0.23XR−

1
6

X

θ = 0.022(1 + M2

10 )−0.70XR
− 1

6
X

δ∗ = 0.028(1 + 0.8M2)0.44XR
− 1

6
X

(2.13)
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Figure 2.10. Trend of the boundary layer quantities ratios with respect to Mach number.

Once the boundary layer quantities have been calculated the first part of the procedure
is completed; now these new data will be used to determine the overall loss coefficients
associated with boundary layer and mixing losses through the method demonstrated
by Stewart [14].
In a turbomachine blade row the two-dimensional friction loss produced by the air
flowing between the blades is usually expressed as a mass averaged total pressure or
kinetic energy defect at the blade exit; after the flow leaves the blade, mixing takes
place until uniform conditions are reached. The total losses generated in the row are
obtained by comparing the completely mixed flow with the inlet conditions and these
losses are significantly higher then considering only the mass average loss at the blade
exit. In the study done by Stewart the following main observations can be drawn on
the topic:

• the loss coefficients based on kinetic energy both before and after mixing are
approximately independent of compressibility and for this reason are more
desirable in describing the compressible-flow blade loss characteristics;

• an accurate evaluation of the momentum thickness is fundamental to achieve
results that are reliable;

• the loss coefficients after mixing are significantly greater than those at the
trailing edge and this difference increase with higher velocity flows, especially
the supersonic ones;

• the overall loss coefficients are strongly dependent on the trailing edge thickness.

Now before going into the detail of the formulas required to calculate these losses, it
is necessary to give a nomenclature to the different stations (notice that this notation
is restricted only to this paragraph); as shown in figure 2.11, station 0 represents the
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inlet of the blade row where the flow condition is completely uniform, station 1 is
positioned just downstream the blades with a clear effect of the boundary layer and
trailing edge wake and finally station 2 is located sufficiently far from the row to reach
a completely mixed flow condition.

Figure 2.11. Stations nomenclature for boundary and mixing losses calculation (Figure
from [14]).

In Stewart’s method the boundary layer quantities are averaged between suction
side and pressure side; therefore to link this theory with the correlations derived by
Stratford and Beavers the following equations are applied:

δ∗∗ =
δ∗s + δ∗p
gcos(α1) = 2δ∗S−B

gcos(α1)

θ∗∗ = θs + θp
gcos(α1) = 2θ∗S−B

gcos(α1)

δ∗∗te = t

gcos(α1)

(2.14)

where the subscript S-B stands for Stratford-Beavers, g is the blade pitch and t is the
blade thickness at trailing edge.
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In the next paragraph the main steps to derive the overall loss coefficients are reported,
starting from the conservation of mass, momentum in tangential and axial direction
for a compressible flow in dimensionless form (the subscript t is used to indicate total
state quantities).
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Substituting the first equation into the third one with p1

p′0
= ( ρ

ρ′
)fs,1(1− Afs,1), equa-

tion 2.16 is obtained.
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Then by using the equation of state and energy and rearranging the terms through C
and D, a second order equation in function of ( vx

vcr
)2 is derived.

(
vx
vcr

)2

2
− 2γC
γ + 1

(
vx
vcr

)
2

+
(
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(2.17)

The solution of the second order equation allows two results and in the original article
by Stewart [14] it was always used the minus sign one to find the correct conditions
after mixing. This was consistent physically, because with a subsonic flow the increase
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in available area from the trailing edge to the mixed region reduces the velocity, but
in our case the flow is supersonic with an axial Mach number higher than 1, which
means that the channel will not behave like a diffuser but as a nozzle; hence to
take account of this factor, differently from Stewart the solution of the second order
equation selected is the one with the positive sign (eq. 2.18).

(
vx
vcr

)
2

= γC

γ + 1 +

√√√√( γC

γ + 1

)2

− 1 + γ − 1
γ + 1D

2 (2.18)

With the new results, the critical Mach number at station 2 can be calculated and
used in equation 2.19 to calculate the static to total ratio for the density at station 2;
then the total pressure loss between station 0 and station 2 is determined through
equation 2.20.

(
ρ

ρt

)
2

=
{

1− γ − 1
γ + 1

[
D2 +

(
vx
vcr

)2

2

]} 1
γ − 1 (2.19)

p2t

p0t
=

(
ρv

ρtvcr

)
fs,1

cosα1(1− δ∗∗ − δ∗∗te )(
ρvx
ρtvcr

)
2

(2.20)

Finally the losses associated to the boundary layer and mixing are quantified in two
different ways: the first one converts the total pressure drop in enthalpy increase,
while the second is based on the kinetic energy, which as stated before is independent
from compressibility considerations.

∆s = −R log
(
p2t

p0t

)

ē2 =

(
p0t

p2t

) γ−1
γ

− 1
(
p0t

p2

) γ−1
γ

− 1

(2.21)

During the previous steps two data were used that are not directly known in the
mean-line code: the critical Mach number and the flow angle at station 1. To solve
this issue the following strategy is applied:

• the function to calculate the boundary and mixing losses is inserted inside the
main mean-line code, in which the Mach number at station 2 has been already
determined; so the critical Mach number at the trailing edge is varied through
an iterative procedure in order to obtain the same Mach number after mixing
given by the external code (Fig. 2.12);

• the flow angle at trailing edge in first approximation is assumed equal to the
flow angle after mixing, known from the external mean-line code.

37



Chapter 2. Mean-line design

Input:
M0, M2, chord, T0t, T2t,
p0t, α2, g, thickness

Stratford and Beavers

equation 2.14

New guess M1

equation 2.17

Convergence
criteria

equation 2.19

equation 2.20

equation 2.21

Output: p2t

p0t
, ∆s, ē2

δ, θ, δ∗

δ∗∗, θ∗∗, δ∗∗te

M2−Stewart

M2−MeanLineCode
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Yes

( ρ
ρt

)2

p2t
p0t

Figure 2.12. Flowchart to illustrate the iterative process used to calculate the boundary and
mixing losses.
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2.4 Blade profile design through the method of
characteristics (MOC)

In a supersonic turbine the relative flow velocity inside the rotor, as the name suggests,
is supersonic. The main advantage of this particular machine is the capacity to
produce a large specific work output, enabling the possibility to have a configuration
with a reduced amount of driving fluid and fewer stages; on the other side, the super-
sonic turbine is also characterized by a lower efficiency due to the complex pattern
of shock waves and a higher kinetic energy losses at exit. In order to achieve the
highest efficiency possible, a specific method of characteristics developed by Louis J.
Goldman [15] has been used to define the shape of the stator and the rotor of the
supersonic turbine. Before describing Goldman version of the MOC, let’s introduce
some basic knowledge about the method of characteristics.

Figure 2.13. Design of ideal supersonic passage by method of characteristic (Figure from
[15]).

The method of characteristics is a general method for solving hyperbolic partial
differential equations, which is exactly the form in which Navier-Stokes equations
present themselves when specific hypothesis are included: the flow considered is a two
dimensional, steady, inviscid supersonic flow. Actually some of these hypothesis can
be relaxed and MOC can still be applied, but considering this simplified form does
not modify the main concepts behind this method and also Goldman version used in
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the code works precisely with the same simplifying hypothesis. To determine the flow
properties in the entire domain, three main steps must be performed [13]:

1. locate the characteristic lines: the coordinates of the points of these lines can be
determined because the flow variables (p, ρ, T, u, ν) are continuous, while the
derivatives (∂p/∂x, ∂u/∂y, etc.) are indeterminate and across them sometimes
the derivatives are even discontinuous;

2. convert the partial differential equations into ordinary differential equations
that hold only along the characteristic lines: these new equations are called
"compatibility equations" and they relate the velocity magnitude and direction
along the characteristic lines;

3. starting from the initial conditions given at some point or region in the flow, solve
the compatibility equations step by step along the characteristic lines determining
in this way the flow properties in the whole domain. In the most general case
the characteristic lines depend on the flow, while the compatibility equations
are in function of the location along the characteristic line; because they are
influenced by each other, the characteristic and the compatibility equations must
be solved simultaneously. The only exception is a two dimensional irrotational
flow, for which the compatibility equations are algebraic equations independent
of the location on the characteristic line.

It is important to underline that the solution of a hyperbolic partial differential
equation requires a downstream-marching method, which means that the properties
of the flow must be known on a line from which the method starts and solve the
entire flow domain; the flow properties on the line can be assigned through boundary
conditions or can be determined through other equations depending on the type of
the problem.
In a steady supersonic flow the disturbances cannot propagate upstream, while in
a subsonic flow the disturbances are felt everywhere in the domain. This particular
behaviour of a supersonic flow is clearly shown by the methods of characteristics: in
figure 2.14 the right and left running characteristic lines through point A divide the
domain in two separate regions; the upstream region is called domain of dependence
and is composed of all those points that may perturb the flow properties at point A,
while the downstream one is the region of influence and contains the points affected
by the flow in point A.

Figure 2.14. Domain of dependence and region of influence (Figure from [13]).
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Actually there are two method based on the method of characteristics to design the
profile of a supersonic blade row: corner-flow method by Shapiro [50] and vortex-flow
method by Goldman [15]. Before describing in detail the procedure for the vortex-flow
method, it is significant to describe briefly the logic behind the corner flow method
and why it was not selected for our purpose.

Figure 2.15. Supersonic blade row design by the corner-flow method (Figure from [15]).

The entering flow is uniform and parallel and it is subjected to a corner-type compres-
sion in region 1 along the pressure side of the blade; in region 2 the flow is horizontal
and finally in region 3 the flow undergoes a corner-type expansion until a uniform and
parallel flow of the desired Mach number is reached at the blade exit. This type of
blade is really easy to design because in each region there are only one type of waves
(compression or expansion), but at the same type it has also two main drawbacks:

• the velocity distribution is not ideal because the loading becomes zero in the
centre of the blade;

• for an assigned inlet Mach number, the amount of flow turning is limited by
sonic or higher velocity in region 2.

(a) corner-flow method (b) vortex-flow method

Figure 2.16. Velocity distribution comparison between corner-flow method and vortex-flow
method.
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Both these limitations are overcome by the vortex-flow method: the velocity distribu-
tion is significantly better with the most loaded region at the centre and the bound
on the flow turning is restricted not by the vortex-flow method (Figure 2.16), but by
the starting condition of the supersonic blade row; for all these reasons finally the
vortex-flow method by Goldman was selected to be implemented in the mean-line
code.
The vortex-flow method designs a blade profile that converts a uniform parallel flow
at the blade inlet into a vortex flow field, turns the vortex field and finally reconverts
it to a uniform parallel flow at the blade exit. The vortex flow method requires several
inputs to define the blade profile: inlet Mach number, outlet Mach number, lower
surface Mach number, upper surface Mach number, inlet flow angle and the specific
heat ratio of the working fluid.
To apply the method of characteristics the domain is divided into small regions and
within each of them the flow properties are assumed to be constant (Figure 2.13).
The boundaries between the regions are or characteristic lines (which are also Mach
lines as demonstrated many times in the theory of MOC) or physical boundaries that
the flow is forced to follow.

Figure 2.17. Blade profile division in vortex-flow method.

The blade profile is composed of the following fundamental parts and each of them
has a specific function (Figure 2.17):

• inlet transition arcs transform the assumed uniform flow at the inlet into a
vortex flow. On the lower transition arc the Mach number is reduced from the
inlet value Mi to the specified lower surface Mach number Ml, while on the
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upper transition arc the Mach number is increased to reach the upper surface
Mach number Mu (Figure 2.16);

• concentric circular arcs preserve the vortex-flow structure while turning the
flow with a constant surface Mach number;

• outlet transition arcs reconvert the vortex flow into a uniform parallel flow.
On the lower transition arc the Mach number is increased from Ml, while on the
upper transition arc the Mach number is decreased from Mu; both of them reach
at the exit section the input specified outlet Mach number Mo (Figure 2.16);

• straight lines are added to the upper surface of the blade in order to obtain a
closed geometry.

The total amount of flow turning produced by the upper surface or the lower surface
is the sum of the turning produced by the transition arcs and the circular arcs. To
quantify the total flow deviation it is more convenient to work with the Prandt-Meyer
angles ν, defined as the angle through which a flow turns isentropically from sonic
velocity to a designated Mach number. The formula to calculate the Prandtl-Meyer
angle is shown in equation 2.22, which requires first to determine the critical velocity
ratio M∗ through equation 2.23.

ν = π

4

(√
γ + 1
γ − 1−1

)
+1

2

{√
γ + 1
γ − 1arcsin[(γ−1)M∗2−γ]+arcsin

(
γ + 1
M∗2 −γ

)}
(2.22)

M∗ =
( γ+1

2 M2

1 + γ−1
2 M2

) 1
2

(2.23)

The flow turning produced by the transition arcs can be now comfortably calculated
as the difference between the Prandtl-Meyer angles and it is νi − νl for the inlet lower
transition arc, νo − νl for the outlet lower transition arc, νu − νi for the inlet upper
transition arc and νu − νo for the outlet upper transition arc. It is important to
observe that the maximum flow turning produced by the inlet or outlet transition
arcs cannot be grater than the inlet or outlet flow angles, βi or βo respectively.

2.4.1 Circular arcs
All the equations used in the profile construction are presented in the their dimen-
sionless form to employ a generalised approach and only at the end the shape will
be rescaled to obtain the dimensional blade geometry (dimensionless quantities are
distinguished using ∗ as superscript). In the circular part of the channel, as already
explained before, there is a vortex flow structure that respects equation 2.24.

M∗R∗ = 1 (2.24)
whereM∗ = v/vcr is the dimensionless velocity, R∗ = R/r∗ is the dimensionless radius,
vcr is the critical velocity and r∗ is the radius of the sonic velocity streamline in the
vortex field. Because the upper surface and lower surface Mach number are inputs,
the upper and lower radius R∗u and R∗l are calculated by equation 2.24.
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Figure 2.18. Dimensionless supersonic blade profile geometry for vortex-flow method (Figure
from [15]).

Once the radius of the two concentric arcs are determined, to draw the arcs it is
necessary to calculate the starting and the ending angles. Conventionally it is assumed
that the counter-clockwise direction is positive and then all four angles are calculated
by taking account of the flow turning produced by the upper and lower transition arcs
(Equation 2.25). 

αl,i = βi − (νi − νl)
αl,o = βo + (νo − νl)
αu,i = βi − (νu − νi)
αu,o = βo + (νu − νo)

(2.25)

In equation 2.25 all the quantities are already known or can be calculated using
equation 2.22; the only exception is the outlet flow angle βo, which was not specified
in the inputs of the method because it is now derived by applying the continuity
equation on the two dimensional blade passage (Equation 2.26).

βo = −arccos
{[

Mi

Mo

(
1 + γ−1

2 M2
o

1 + γ−1
2 M2

i

) γ+1
2(γ−1)

]
cos(βi)

}
(2.26)
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2.4.2 Lower inlet transition arc
Figure 2.19 shows the nomenclature used in the equations necessary to build the lower
inlet transition arc and notice that also in this case a dimensionless approach can be
used.

Figure 2.19. Lower inlet transition arc construction (Figure from [15]).

The transition arc starts from (x∗ = 0, y∗ = R∗l ); then the following points are
obtained sequentially through the intersection of the straight-line wall segments and
straight Mach lines associated to a small variation in flow turning. The Mach lines are
determined from the major vortex-expansion characteristic, while the wall segments
are parallel to the flow direction. Once the lower transition arc is constructed it
is rotated of an angle αl,i in order to place it in the correct position in the profile
geometry. Now let’s explicit all this procedure in its mathematical form.
On the characteristic line, the velocity direction φ and the dimensionless radius R∗
are linked together by equations 2.27 and 2.28.

φ = ±1
2f(R∗) + constant (2.27)

f(R∗) =
√
γ + 1
γ − 1arcsin

(
γ − 1
R∗2 − γ

)
+ arcsin[(γ + 1)R∗2 − γ] (2.28)

In equation 2.27 a sign must be selected considering physically the problem: a positive
sign corresponds to an expansion characteristic line, while a negative one represents a
compression line. Then to completely define the major vortex expansion characteristic
line, it is necessary to impose as boundary condition that the velocity direction is
horizontal φ = 0 at R∗ = R∗l .

φ = 1
2[f(R∗)− f(R∗l )] (2.29)

45



Chapter 2. Mean-line design

Equation 2.29 expresses the flow direction on each point of the major vortex expansion
characteristic line. If the domain is divided into small regions, it can be assumed that
in the regions adjacent to the characteristic line the flow direction is exactly the same;
for k transition arc segments, each of them producing ∆ν turning, the flow direction
in each segment is:

φk,i = νi − νl − (k − 1)∆ν (2.30)
where k is an integer that goes from k = 1 : [(νi− νl)/∆ν + 1]. Now let’s put together
equations 2.22, 2.24, 2.28, 2.29 and 2.30.

φk,i = 1
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f(R∗k,i) = 2νi −
π

2

(√
γ + 1
γ − 1 − 1

)
− 2(k − 1)∆ν (2.31)

Then for an assigned ∆ν and for each value of k, equations 2.28 and 2.31 are solved
together and R∗k,i is determined; finally the coordinates of the major expansion
characteristic line is obtained by projecting the radius on the axes (Equation 2.32).x∗k,i = −R∗k,isin(φk,i)

y∗k,i = R∗k,icos(φk,i)
(2.32)

The points of the major expansion characteristic line belong also to the straight Mach
lines (Figure 2.19), which are completely defined once the slope is calculated; the
slope of the Mach line is determined as an average between the two adjacent regions
(Equation 2.33), where the Mach line is inclined at an angle µ respect the velocity
direction.



mk,i = tan

(
φk,i + φk+1,i

2 + µk,i + µk+1,i

2

)

µk,i = −arcsin
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Mk,i
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= −arcsin
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2
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2
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(
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y∗ = mk,i(x∗ − x∗k,i) + y∗k,i Mach line equation

(2.33)

The transition arc segments are comfortably determined because they are straight
lines parallel to the flow direction φ (Equation 2.34).
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m̄k,i = tan(φk+1,i)
y∗ = m̄k,i[x∗ − (x∗l )k+1,i] + (y∗l )k+1,i Mach line equation

(2.34)

Notice that in equation 2.34, (x∗l )k+1,i and (y∗l )k+1,i are the coordinates of the lower
transition arc, which are unknown except at the starting point k = [(νi − νl)/∆ν + 1]
where x∗l = 0 and y∗l = R∗l . Hence all the remaining points are obtained in a sequential
procedure from k = kmax to k = 1 through the intersection of the straight Mach lines
with the straight wall segments (Equation 2.35).
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(2.35)

The final step of the procedure is to rotate the lower transition arc of an angle αl,i
(Figure 2.18)to place it in the correct reference frame X∗ and Y ∗ of the blade profile
geometry (Equation 2.36).

(X∗l )k,i = (x∗l )k,icos(αl,i)− (y∗l )k,isin(αl,i)
(Y ∗l )k,i = (x∗l )k,isin(αl,i) + (y∗l )k,icos(αl,i)

(2.36)

2.4.3 Upper inlet transition arc, lower outlet transition arc
and upper outlet transition arc

For the construction of all the other transition arcs the procedure conceptually is
identical to the lower transition arc; for the sake of brevity the complete proof with
all the steps will not be repeated for each arc, but at the same time the main formulas
required to build the profile are here reported to give a complete description.

Upper inlet transition arc

φ = −1
2f(R∗) + constant Major vortex-compression characteristic line
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(2.37)
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Lower outlet transition arc

φ = −1
2f(R∗) + constant Major vortex-compression characteristic line

φ = 1
2[−f(R∗) + f(R∗l )]

f(R∗k,i) = 2νo −
π

2

(√
γ + 1
γ − 1 − 1

)
− 2(k − 1)∆ν

µk,i = +arcsin
(

1
Mk,i

)
= +arcsin

[√√√√(γ + 1
2

)
R∗

2
k,i −

(
γ − 1

2

)]
k = 1 : [(νo − νl)/∆ν + 1]

(2.38)

Upper outlet transition arc

φ = +1
2f(R∗) + constant Major vortex-expansion characteristic line

φ = 1
2[f(R∗)− f(R∗u)]

f(R∗k,i) = 2νo −
π

2

(√
γ + 1
γ − 1 − 1

)
+ 2(k − 1)∆ν

µk,i = −arcsin
(

1
Mk,i

)
= −arcsin

[√√√√(γ + 1
2

)
R∗

2
k,i −

(
γ − 1

2

)]
k = 1 : [(νu − νo)/∆ν + 1]

(2.39)

2.4.4 Some examples and blade design limitations
The complete procedure shown before is coded in a MATLAB function, which generates
the dimensionless profile given all the inputs specified in the previous section. This
function is used here to understand how the different input affect the profile geometry.
The common flow condition between the various examples is that the inlet and outlet
Mach number are equal to Mi = Mo = 2.5 and the specific heat ratio of the fluid
used is γ = 1.4; the main conclusions that can be drawn by observing the results
(Figure 2.20) are the following:

• the lower surface Mach number (figures (a) and (b)) and the inlet flow angle
(figures (e) and (f)) have a substantial effect on the profile shape, while the
upper surface Mach number (figures (c) and (d)) has a really small effect;

• increasing Mu and decreasing βi generates thinner blades;

• all the parameters affect the solidity: increasing the lower surface Mach number
Ml or the specific heat ratio γ raises the blade solidity, while an increase in the
upper surface Mach number Mu or the inlet flow angle βi has the opposite effect.
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(a) Ml = 1, Mu = 3.5,
total flow turning 130°

(b) Ml = 1.5, Mu = 3.5,
total flow turning 130°

(c) Ml = 1.7, Mu = 3.5,
total flow turning 130°

(d) Ml = 1.7, Mu = 10.7,
total flow turning 130°

(e) Ml = 1.8, Mu = 3.5,
total flow turning 120°

(f) Ml = 1.8, Mu = 3.5,
total flow turning 140°

Figure 2.20. Supersonic blade profiles produced by the vortex-flow method at varying upper
and lower surface Mach number and total flow turning. Common inputs are
inlet and outlet Mach number Mi = Mo = 2.5 and specific heat ratio γ = 1.4.
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It is important to remember that not all designs are feasible, because on the supersonic
turbine there are significant limitations given by the necessity of supersonic starting
of the blade row and to avoid issues related to flow separation: the first restriction
has been extensively discussed in section 2.2, so let’s discuss how the second one has
been treated in the code.
Employing a high Mu is desirable for starting conditions, but at the same time this
produces a larger adverse pressure gradient on the upper surface that can lead to
a premature separation of the flow. Experimental investigations have been carried
out on simple shapes with incompressible flows at high pressure gradients and have
established that flow separation may be avoided if the pressure recovery coefficient,
defined as the ratio of the pressure rise to the dynamic pressure at initial point, is
less than 0.5 [51]. Without repeating the whole proof (which can be found on [15]), it
is possible to determine the maximum upper surface Mach number (M∗

u)max and the
minimum lower surface Mach number (M∗

l )min to obtain a pressure recovery coefficient
of 0.5 and prevent a premature flow separation.

(M∗
l )min =

√
γ + 1
γ − 1


1−

(
1− γ − 1

γ + 1M
∗2

i

)1 + 1
2


γ

γ + 1M
∗2
i

1− γ − 1
γ + 1M

∗2
i



γ − 1
γ



1
2

(2.40)

M∗
o =

√
γ + 1
γ − 1


1−

[
1− γ − 1

γ + 1(M∗
u)2
max

] 1 + 1
2


γ

γ + 1(M∗
u)2
max

1− γ − 1
γ + 1(M∗

u)2
max



γ − 1
γ



1
2

(2.41)
In the MOC function called in the main mean-line code, a further 12% safety factor
was added to these limit values (Mu = 0.88(M∗

u)max and Ml = 1.12(M∗
l )min) for two

essential reasons:

• it is not safe to select as working condition exactly the limit value between a
separated and a non separated condition because it can lead to instability in
the flow behaviour at the trailing edge;

• the experimental investigations on which the 0.5 value was extracted for the
pressure recovery coefficient worked with incompressible flow at high pressure
gradients; most probably the value of the coefficient for a supersonic flow is even
lower than 0.5 [15].
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Input:
Mi, Mo, βi, Mu, Ml, chord, thickness

Flow separation limit
Equations 2.40 and 2.41

Lower inlet transition arc

Lower outlet transition arc

Upper inlet transition arc

Upper outlet transition arc

Upper and lower circular arcs

Straight lines

Geometrical parameters
c∗, g∗, g/c

From dimensionless profile to
finite thickness dimensional profile

Output:
Profile coordinates X and Y , c∗, g∗, g/c, βo

Figure 2.21. Flowchart to illustrate the procedure used to calculate the supersonic blade
profile using the method of characteristics.
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2.4.5 From dimensionless to a finite thickness dimensional
blade profile

Once the dimensionless profile has been generated, two key geometrical parameters
can be calculated: the dimensionless chord c∗ and pitch g∗ (Figure 2.18). In the
mean-line code the only dimensional quantity that will be assigned regarding the
profile geometry is the chord, while all the other geometrical parameters (thickness,
pitch, etc.) will be obtained through dimensionless ratios carefully selected; starting
from this argument, the obvious choice to assign a dimension to the profile is the
chord.

c∗ = c

r∗
(2.42)

From equation 2.42 the adimensionalizing quantity r∗ is determined; then the dimen-
sional infinitesimal thickness blade profile is obtained multiplying the dimensionless
coordinates X∗ and Y ∗ by r∗.
The profile generated by the method of characteristics is optimal from an aerodynamic
point of view, because the oblique shock waves departing from the sharp leading
edge produce lower amount of losses respect to a detached bow shock wave. On the
other side a profile with zero thickness at leading and trailing edge is impossible to
manufacture and has poor mechanical and thermodynamic performance working with
a high velocity and high temperature flow: due to the concentration of stresses or
heat the leading edge would either break down or melt.
Hence the first and easier step is to shift the lower and upper surface to a distance
equal to the thickness selected for the leading and trailing edge of the blade; the
choice of the leading edge thickness is critical because, as seen in section 2.3, most of
the losses in a supersonic blade row comes from the detached bow-shock wave at the
front. Once an appropriate value of the thickness is selected and the blade surfaces
have been moved, it is required to realise a closed blade surface for the new blade.
In the developed MOC function, the circle has been selected to close the profile
because it is a really simple curve, but a possible future development could be a
study by CFD on different leading edge shapes (like ellipses or even fancier shapes)
to evaluate a possible reduction in losses. The constraints that the circle must fulfil
are the following:

• passage through the first point on the upper surface;

• passage through the first point on the lower surface;

• tangent in the first point to the upper surface;

• tangent in the first point to the lower surface.

The circle is completely defined by three parameters (Equation 2.43), so it can respect
only three of the four constraints reported above: the passage through both points
and the tangency to the upper surface in the first point. Even if the fourth conditions
is not respected, the profile is closed adequately and does not have significant issues
because the slope of the upper and lower surface at leading and trailing edge is exactly
the same (Figure 2.22). Luckily this problem is even minor for our working conditions,
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because at the inlet the flow is completely axial: the circumference will be tangent to
both surfaces automatically, because the leading edge slope is zero.

x2 + y2 + ax+ by + c = 0 (2.43)
The passage through the points is easily forced by simply substituting in equation 2.43
the coordinates of the two points. On the other side the tangency constraint is more
difficult to express, because the circumference equation is implicit; Dini’s theorem is
then applied to calculate the derivative of an implicit function.

dy

dx

∣∣∣∣
(x1,y1)

= −

∂C(x, y)
∂x

∣∣∣∣
(x1,y1)

∂C(x, y)
∂y

∣∣∣∣
(x1,y1)

= −2x1 + a

2y1 + b
(2.44)

Finally the three parameters defining the circumference (a, b and c) are found by
solving the system of equations 2.45, in which all the imposed conditions are resumed
and where m1 is the slope of the upper surface in the first point.

x2
1 + y2

1 + ax1 + by1 + c = 0
x2

2 + y2
2 + ax2 + by2 + c = 0

−2x1 + a

2y1 + b
= m1

(2.45)

Figure 2.22. Finite thickness dimensional blade profile.
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2.5 Mean-line code: description and logic explana-
tion

The mean-line code was not built directly with all its features, but following a software
development approach the code started from the basic theory of turbomachinery and
then, one by one, all the pieces of theory explained before (Kantrowitz limit for a
started blade row, evaluation and prediction of losses, MOC to generate the supersonic
profile shape, etc.) have been added and debugged to obtain the final version of the
code. Actually there is not one, but two variant of the final version of the code:

• variant A: in this case a constant blade height from inlet to outlet was forced
in the stator. This constraint was helpful both during the validation phase
of the code and also for the CFD-based optimization: in this way the profile
behaviour could be more realistically tested with a blade-to-blade approach
on the mean-line profile, while a complete 3D-CFD simulation would require a
much heavier computational cost. The main drawback of variant A is that the
Kantrowitz limit for a started supersonic blade row cannot be extended through
a varying channel height, which affects the flow deviation reducing the amount
of work extracted.

• variant B: another loop is added in the iterative procedure to design the stator;
this loop varies the channel height in order to obtain a constant axial velocity
along the stator. Because the stator inlet flow angle is 0°, the final blade height
at outlet is higher than at inlet. This condition is particularly favourable because
it extends the started blade limit and allows a greater amount of work extracted.
On the other side the only way to properly test a blade of this type is through
a complete 3D-CFD simulation.

The two variants of the mean-line code have in common almost all the inputs, so it
feels appropriate to report here the values selected to design the supersonic turbine
stage and how these numbers were chosen.

M1 = 2 Obviously the inlet Mach number is supersonic and the value chosen here
is a typical value found in literature regarding this subject ([16], [40]); it is important
to mention here that the supersonic turbine stage is not directly positioned after the
rotating detonation combustor, but between the two components there is a diverging
nozzle which is vital to obtain a better operation of the supersonic turbine. The
flow leaving the combustion chamber is strongly non-uniform in terms of pressure,
temperature and direction; in case such an unsteady flow feeds directly the turbine,
the latter would have a significant reduction in the efficiency. The diverging nozzle
will reduce the static temperature, pressure and increase the Mach number; all these
variations are beneficial because they alleviate the thermo-mechanical loading, while
favouring a started condition on the turbine. On the other side, this device will also
increase the total pressure losses.
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Figure 2.23. Assembly of a rotating detonation combustor with a diverging nozzle down-
stream (Figure from [16]).

α1 = 0◦, α4 = 0◦, χ = 0.5 The flow exiting the nozzle positioned downstream the ro-
tating detonating combustor has an improved uniformity with oscillations considerably
reduced; the inlet flow angle was assumed to be equal to zero, because this is exactly
the value that resulted from a mass-flow average. Then α4 = 0◦ and χ = 0.5 were
chosen because the aim was to design a repeated stage turbine with a good efficiency:
a completely axial flow at outlet reduces the losses in the subsequent channel, while
a reaction stage usually guarantees a higher efficiency and lower deviation angles
facilitating the starting of the blade row. Obviously all these inputs cannot be secured
with a direct approach, but a multi-cycle iterative approach will be employed, which
will be illustrated in detail in the following subsections.

g
th

∣∣∣∣
stator

= 25, g
th

∣∣∣∣
rotor

= 25, cstator = 200 mm, crotor = 200 mm Most of the
losses in a supersonic blade row are coming from the detached bow shock wave, which
is strongly dependent on the dimensionless ratio g

th
(Figure 2.7). As discussed before,

the higher the ratio, the lower will be the associated losses, but this value should
not be pushed too much because the function is non-linear and the benefits reduce
at larger g

th
. A compromise between these two considerations is reached at g

th
= 25,

which is obtained reducing the thickness or increasing the pitch; it is vital to notice
that the thickness cannot be reduced below certain limit values for structural and
thermodynamic reasons, while increasing the pitch is not a viable option because it
is calculated from the solidity obtained through an optimization process. Then the
value of the chord is assigned taking account of two aspects:

• the final thickness should be large enough to satisfy the mechanical requirements
and to allow enough space to embed advanced system of cooling essential in this
harsh environment;
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• a longer chord is favourable with a variable height design approach to reduce
the blade slope from inlet to outlet.

T1 = 1300 K The static temperature at stator inlet was found in literature ([16],
[40]) and the value chosen is a typical temperature of the flow leaving the nozzle
integrated with the rotating detonating combustor. Considering the supersonic inlet
Mach number M1 = 2, the total temperature at inlet is quite high T1t = 2340 K
and this would be the temperature of the surface of the blade at the leading edge
(stagnation point) if no cooling device is employed. To sustain these temperatures it is
necessary to apply the most advanced technology available for both the manufacturing
of the blade and the design of the cooling system: a possible solution is a single crystal
blade made in Nickel alloy, which maintains optimal mechanical performances at high
temperatures, cooled with multiple passage internal cooling and extensive film cooling.
Another really interesting solution could be the use of ceramic material, which has by
far the best mechanical performance at high temperature but suffers from fragility;
research is right now ongoing to overcome exactly this issue due to obvious reliability
requirements.

Cftstator = 0.228, Cftrotor = 0.245 Cft is Zweifel’s tangential force coefficient and it
is very important because it gives an immediate information of the loading on each
blade. In literature there are several studies available on optimal values of Cft for
subsonic axial turbines, but almost nothing regarding supersonic turbines. When
the blade profile was designed using the method of characteristics, one of the output
of the MOC was also the solidity which is directly linked with Zweifel’s coefficient;
the Cft given by the MOC is quite low and this happens because the main objective
of the MOC is to obtain a completely uniform flow at exit using a high number of
blades; on the other side, the main objective in our design is a blade row that satisfies
uniformity requirements on the flow, while minimizing the losses. The original MOC
designed a profile with infinitesimal thickness at leading and trailing edge, so when
a finite thickness blade was realized the blade channel and behaviour were modified
and hence a new optimal value of the tangential force coefficient must be found. To
do this first of all a range of Cft is selected in which the flow is sufficiently uniform
and then in this interval the optimal value that minimizes the losses is found through
an original completely automated optimization process, which make use of Python,
MATLAB and various packages of Ansys. Here a very brief description has been
given of the optimization process from which these values come from, but a whole
chapter will be dedicated in which all the procedure will be described in detail.

ṁ = 100 kg
s , p1t = 15 bar, r1i = 0.345 m The mass flow rate, the total pressure

at inlet and the internal radius at inlet are the last three inputs required by the
mean-line code to define completely the turbine stage and the numbers chosen are
typical values that are used in gas turbines.
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2.5.1 Variant A

Stator

Figure 2.24. Variant A turbine stage layout.

The first step is to completely define the stator inlet by calculating the main physical
quantities and the remaining geometrical dimensions.

T1t = T1

1 + γ − 1
2 M2

1

 = 2340 K (2.46)

p1 = p1t

 T1

T1t


γ
γ−1

= 1.917 bar (2.47)

V1 = M1

√
γRT1 = 1445 m/s (2.48)

To calculate the channel area the conservation of mass is applied.
ṁ = ρ1A1V1

r1e =
√
A

π
+ r2

1i = 402.3 mm
(2.49)

In variant A the blade height is equal at inlet and outlet and it is calculated quite
easily as the difference between inlet and outlet radius.

b1 = b2 = r1e − r1i = 57.3 mm (2.50)

Now an iterative approach is necessary in order to calculate the physical quantities at
stator outlet, which starts with an initial guess of the outlet flow angle α2. All the
next passages are done within a while cycle, which ends when the error calculated
through equation 2.51 is lower than the tolerance toll = 10−9. Notice also that all
the results that are presented in the following equations are the final values obtained
when the while cycle has reached convergence.

error = |α2(k + 1)− α2(k)|
α2(k) (2.51)

Once an initial guess of the outlet angle is available, it is possible to determine the
outlet area through equation 2.52.

A2

A1
= g2cos(α2)b2

g1cos(α1)b1
=

πD2m
Nbl

cos(α2)b2
πD1m
Nbl

cos(α1)b1
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where the D1m and D2m are respectively the inlet and outlet mean diameter and Nbl

is the number of blades in the stator.

A2 = A1
cos(α2)
cos(α1)

b2

b1

D2m

D1m
(2.52)

Then the solidity σ is calculated by reversing Zweifel’s formula for the tangential force
coefficient.

g

c

∣∣∣∣
stator

= Cftstator

2cos(α2)2

− (v1ax
v2ax

)
tan(α1) + tan(α2)

 = 0.357 (2.53)

In formula 2.53 the axial velocity at outlet V2ax is unknown at the first step, so as
initial guess it is assumed that V2ax = V1ax ; at the end of each iteration this velocity
will be updated and when the while cycle reaches convergence, the V2ax will also be
correct. 

gstator = g

c

∣∣∣∣
stator

cstator

Nblstator = 2πr2m

gstator
≈ 33

(2.54)

The number of stator blades has been rounded to the closest higher integer number
for obvious reasons, so the pitch gstator must be recalculated taking account of the
actual value of the solidity with an integer number of blades.

gstator = 2πr2m

Nblstator

= 71.1 mm (2.55)

Now using the dimensionless ratio g
th

∣∣∣∣
stator

given as input, it is possible to determine
the thickness at leading and trailing edge of the stator.

thstator = gstator
g

th

∣∣∣∣
stator

= 2.8 mm (2.56)

The next step in the while cycle is the estimation of the losses, but in order to predict
the reflected shock on the blade surface the profile shape is necessary; the profile
shape is generated applying the method of characteristics and the whole procedure
is performed in a dedicated MATLAB function (the process is described in detail in
section 2.4). Figure 2.25 reports all the inputs required by the MOC function and
all of them are available with the exception of M2; during the while cycle M2 will be
calculated, but that value takes account of both a variable blade height (in case of the
rotor) and the aerodynamic losses in the supersonic blade row. The Goldman version
of the method of characteristics is two-dimensional and isentropic, which means that
the M2 must be obtained in the same conditions. Calculating this M2 is not so trivial
and a separate MATLAB function has been developed, which does exactly the same
operations of the while cycle, but with no losses and with a constant blade height. In
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conclusion this function for the isentropic constant blade height stator is run before
the while cycle and gives the final input for the MOC function.

MOC function

Input:
M1, M2, α1, Mu, Ml, cstator, thstator

Output:
Profile coordinates X and Y , c∗, g∗, g/c, βo

Figure 2.25. Flowchart to illustrate the input and output of the MATLAB function that
generates the stator profile using the method of characteristics.

Once the stator profile has been generated, all the data required to estimate the losses
produced by the supersonic blade row are available; the entropy increase induced
by the detached bow-shock wave and its first reflection are determined through the
dedicated MATLAB function, whose inputs are shown in figure 2.26 (for more details
see section 2.3.1).

Shock wave losses function

Input:
M1, gstator, thstator,

stator profile coordinates X and Y

Output:
∆sstator−shock, p2t

p1t

∣∣∣∣
stator−shock

Figure 2.26. Flowchart to illustrate the input and output of the MATLAB function that
determines the losses associated to the detached bow-shock wave and its first
reflections in the stator.

The stator profile generated by the MOC function is shown in figure 2.27 and then
the detached bow-shock wave and its first reflection as an oblique shock wave are
plotted by the shock wave losses function.
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Figure 2.27. Detached bow-shock wave and its first reflection for the stator in variant A .

∆sshock−stator = 34.05 J

kg K

Then the next step is to estimate the boundary and mixing losses using again a
dedicated MATLAB function, whose inputs are shown in figure 2.28 (for more details
see section 2.3.3); T1t = T2t because of the conservation of the total temperature in a
stator, while as a guess for the first iteration M2 is assumed equal to M1.

Boundary layer and mixing losses function

Input:
M1, M2, cstator, T1t, T2t,
p1t, α2, gstator, thstator

Output: p2t

p1t
, ∆s(bl+mix)−stator, ē2

Figure 2.28. Flowchart to illustrate the input and output of the MATLAB function that
determines the losses associated to the boundary layer and mixing in the stator.
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∆s(bl+mix)−stator = 10.12 J

kg K

∆stotal−stator = ∆sshock−stator + ∆s(bl+mix)−stator = 44.17 J

kg K
(2.57)

From the results obtained in equation 2.57, it is again confirmed that the main source
of losses in a supersonic blade row are the shock waves, which in the case of the
stator represents 77.1 % of the total losses; this is the prime reason why a significant
effort was put to estimate accurately these losses and then parametric studies and
optimization process were performed to reduce them as much as possible.
The total entropy jump in the stator is also used to determine the total pressure at
stator outlet p2t (Equation 2.58).

∆s = Cpln

T2t

T1t

−Rln
p2t

p1t

 = −Rln
p2t

p1t



p2t = p1te
−

∆stotal−stator
R = 12.86 bar (2.58)

where Cp is the specific heat at constant pressure and R is the universal gas constant.
The losses produced in the stator have been expressed till now in terms of entropy,
but in order to have an easier value to interpret let’s calculate also the total pressure
loss coefficient Y.

Y = p1t − p2t

p2t − p2
= 20.68 % (2.59)

Then at least another quantity is necessary to completely define the outlet of the stator:
this data will be the outlet Mach number M2 obtained through the conservation of
mass.

ṁ = ρ2A2V2

= p2

RT2
A2V2

= p2t1 + γ−1
2 M2

2


γ
γ−1

1
R

1 + γ−1
2 M2

2

T2t
A2

√
γRT2M2

= p2t1 + γ−1
2 M2

2


γ
γ−1

1
R

1 + γ−1
2 M2

2

T2t
A2

√√√√γR T2t

1 + γ−1
2 M2

2
M2

= p2t√
T2t

1√
R
A2
√
γ

1 + γ − 1
2 M2

2

−
γ+1

2(γ−1)

M2
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ṁ = p2t√
T2t

1√
γR
γ−1

A2
γ√
γ − 1

1 + γ − 1
2 M2

2

−
γ+1

2(γ−1)

M2

= p2t√
Cp T2t

A2
γ√
γ − 1

1 + γ − 1
2 M2

2

−
γ+1

2(γ−1)

M2

ṁ
√
Cp T2t

A2p2t
= γ√

γ − 1

1 + γ − 1
2 M2

2

−
γ+1

2(γ−1)

M2 (2.60)

Solving equation 2.60 explicitly is not trivial, so a numerical approach is employed:
all the terms are brought on one side of the equation and then the stator outlet Mach
number that satisfies the conservation of mass is found by using MATLAB in-built
function "fzero".

⇒M2 = 1.72

T2 = T2t

1 + γ−1
2 M2

2
= 1468 K (2.61)


V2 =

√
γRT2M2 = 1324 m/s

V2−ax = V2cos(α2) = 1245 m/s
V2−tg = V2sin(α2) = 450 m/s

(2.62)

Figure 2.29. While cycle convergence for stator outlet properties.

The final step of the while cycle is to recalculate the stator outlet flow angle for the
next iteration, which is determined taking account of the reaction degree χ selected in

62



2.5. Mean-line code: description and logic explanation

the input (Equation 2.63). Then the error is calculated using equation 2.51 and the
while cycle iterates till the results converge and the tolerance requirement is satisfied
(Figure 2.29).

α2(k + 1) = atan

(
2U2(1− χ)
V2−ax

)
= 19.87◦ (2.63)

where U2 = 450 m/s is the peripheral velocity chosen for variant A. Once the
stator outlet quantities have been determined, the mean-line code performs two very
important verifications; first of all it verifies if the Kantrowitz limit for a started blade
row is satisfied or not (Equation 2.64), because, as explained in section 2.2, it is vital
that the starting condition is met to avoid designing a very poor performing machine.



A2

A1
>

( γ+1
2

1 + γ−1
2 M2

normal

) γ+1
2(γ−1)

X

M2
normal = (γ − 1)M2

1 + 2
2γM2

1 − (γ − 1) Mach number behind normal shock

(2.64)
After that the code verifies that the mass flow rate at stator inlet and outlet is exactly
the same.

ṁ1 = ṁ2 = 100 kg/s X (2.65)
All the calculations that have been performed in the previous pages refer to the mean-
line, therefore to complete the design of the stator it is necessary to determine how the
various quantities vary along the blade height. In the classic theory of turbomachinery
several strategies have been developed and used (free vortex, constant-swirl vortex,
exponential vortex, constant nozzle-angle, etc.); for our purposes the most suitable
solution is the constant nozzle-angle, because it yields a constant flow angle from
hub to shroud at the nozzle exit, which is a favourable condition for the design of the
rotor. The choice of the constant nozzle-angle is a right fit for this stator because the
radial extension of the blade compared to the mean radius is limited ( b1

r1m
= 15.3 %)

and at the tip there are no issues related to flow reversal. Finally the system of
equations 2.66 derived from the constant nozzle angle strategy gives the axial and
tangential velocity distribution at outlet along the blade height.

V2ax(r) = V2max

(
r2m

r

)sin2(α2)

V2tg(r) = V2mtg

(
r2m

r

)sin2(α2)
(2.66)

where the subscript "m" is used for all the quantities on the mean-line.

After determining the absolute velocity V along the blade height, the mean-line code
calculates also the relative velocity W(r) (Equation 2.67).
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U(r) = ωr

W2ax(r) = V2ax(r)
W2tg(r) = V2tg(r)− U(r)

(2.67)

where ω = U2m

r2m
= 11500 RPM is the angular velocity calculated from the known

peripheral velocity on the mean-line.

Figure 2.30. Absolute and relative velocity distribution at stator outlet obtained using
constant nozzle-angle solution (variant A).

Figure 2.31. Absolute and relative angle distribution at stator outlet obtained using constant
nozzle-angle solution (variant A).
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Stator inlet calculations
Equations 2.46, 2.47, 2.48, 2.49, 2.50

Function that calculates M2 in isoentropic and constant blade height conditions

New α2 guess for the new iteration
Equation 2.63

Stator outlet area computation
Equation 2.52

Zweifel’s formula to determine the number of blades
of the stator and all the related quantities

Equations 2.53, 2.54, 2.55, 2.56

MOC function Figure 2.25

Shock wave losses function Figure 2.26

Boundary layer and mixing losses function Figure 2.28

M2 obtained from mass conservation
Equation 2.60

Convergence
criteria

Equation 2.51

Started condition and mass conservation verifications
Equations 2.64, 2.65

Constant nozzle-angle strategy for radial blade design
Equation 2.66

No

Yes

Figure 2.32. Flowchart to illustrate the iterative process used to design the stator in variant
A of the mean-line code.
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Rotor

Between the rotor and the stator there is obviously a gap: for this version of the
mean-line code it is assumed that the stator outlet is equal to the rotor inlet, but the
code is structurally written in a way that allows future development in this direction
to improve the accuracy in the preliminary design phase.
The procedure developed to design the rotor is quite similar to the one employed for
the stator, but there are three significant differences:

• while the stator was designed with a constant blade height in variant A, the
rotor design in both versions is always with a variable height solution; this is
necessary first of all to facilitate the starting of the rotor blade row, feature
that is more difficult to achieve with a constant height solution because of the
reduction in Mach number in the stator. The variable height solution is vital
in order to obtain together a constant axial velocity along the rotor, a χ = 0.5
reaction turbine and a completely axial flow at outlet;

• in the stator the convergence of the while cycle worked with the stator outlet
angle α2, but in case of the rotor the absolute outlet angle is α4 = 0 for a design
choice; for this reason in the rotor the iterative cycle is based on the variation
of the blade height and the convergence is reached when the axial component of
the velocity at inlet and outlet is exactly the same;

• for the rotor the equations will be written using the relative quantities, which
maintains structurally the form of the equations similar to the ones for the
stator due to conservation of the relative quantities.

The first step in the procedure is to calculate the outlet blade height, where as a
design choice it was decided that the internal radius of the blade remains constant,
while only the external radius increases as shown in figure 2.24 (Equation 2.68). As
already done for the stator, all the reported results are the final values obtained when
the while cycle has reached convergence.

b4 =
(
b4

b3
(k)
)
b3 = 74.4 mm

r4i = r3i = 345.0 mm
r4e = r4i + b4 = 419.4 mm

(2.68)

As a guess for the first iteration it is assumed that b4
b3

= 1; then the ratio is updated
each iteration considering the normalized distance between the desired axial velocity
and the one obtained in that iteration (Equation 2.69). Finally the convergence of
the while cycle is reached when the error defined in equation 2.70 is lower than the
established tolerance, in this case toll = 10−9.

b4

b3

∣∣∣∣
k+1

= b4

b3

∣∣∣∣
k

(
1− V4ax − V3ax

V3ax

)
= 1.2975 (2.69)

error = |V4ax − V3ax|
V3ax

(2.70)
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When the blade height changes from inlet to outlet, it is very important to remember
that also the mean-line radius and all the associated quantities change.r4m = r4i + r4e

2 = 382.2 mm
U4 = ω r4m = 460.27 m/s

(2.71)

As already mentioned before, the flow direction at rotor outlet is completely axial to
reduce the losses and then by applying the velocity triangles relations it is possible to
calculate the relative flow angle at rotor outlet (Equation 2.72).

α4 = 0◦

β4 = atan

(
− U4

W4ax

)
= −20.29◦

(2.72)

where for the first iteration it is assumed that W4ax = W3ax . After that the mean-line
code calculates the rotor solidity σ using Zweifel’s formula for the tangential force
coefficient adapted for the rotor.

g

c

∣∣∣∣
rotor

= Cftrotor

2cos(β4)2

(W3ax
W4ax

)
tan(β3)− tan(β4)

 = 0.377 (2.73)

Once the solidity is known, first the rotor number of blades is approximated with the
closest higher integer number for obvious reasons and then the actual pitch of the
rotor is calculated. 

grotor = g

c

∣∣∣∣
rotor

crotor

Nblrotor = 2πr3m

grotor
≈ 32

(2.74)

Fortunately the number of blades of the stator and rotor are not exactly the same,
because otherwise the turbine stage would have suffered from significant stator-rotor
coupling issues.

grotor = 2πr3m

Nblrotor

= 73.4 mm (2.75)

Now using the the dimensionless ratio g
th

∣∣∣∣
rotor

given as input, it is possible to determine
the thickness at leading and trailing edge of the rotor.

throtor = grotor
g

th

∣∣∣∣
rotor

= 2.9 mm (2.76)

The next step in the while cycle is the estimation of the losses, but the profile shape
is necessary to predict the reflected shock on the blade surface; the profile shape is
generated applying the method of characteristics and the whole procedure is performed
in a dedicated MATLAB function (the process is described in detail in section 2.4).
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All the inputs required by the MOC function are reported in figure 2.33 and all of
them are available with the exception of the relative Mach number M3W . As already
explained for the stator, the M3W that is given as input to the MOC function is the
one obtained solving the rotor in isentropic and constant blade height conditions,
which are exactly the basic hypothesis of the Goldman’s version on the method of
characteristics; calculating thisM3W is not so trivial and a separate MATLAB function
is developed, which does exactly the same operations of the while cycle, but with no
losses and with a constant blade height. Then this function is executed before the
while cycle and prepares the last input required by the MOC function for the rotor.

MOC function

Input:
M3W , M4W , β3, Mu, Ml, crotor, throtor

Output:
Profile coordinates X and Y , c∗, g∗, g/c, βo

Figure 2.33. Flowchart to illustrate the input and output of the MATLAB function that
generates the rotor profile using the method of characteristics.

Now that the rotor profile has been generated, all the data required to estimate
the losses produced by the supersonic blade row are available; the entropy increase
induced by the detached bow-shock wave and its first reflection are determined through
the dedicated MATLAB function, whose inputs are shown in figure 2.34, where the
subscript "tr" means total-relative (for more details see section 2.3.1).

Shock wave losses function

Input:
M3W , grotor, throtor,

rotor profile coordinates X and Y

Output:
∆srotor−shock, p4−tr

p1−tr

∣∣∣∣
rotor−shock

Figure 2.34. Flowchart to illustrate the input and output of the MATLAB function that
determines the losses associated to the detached bow-shock wave and its first
reflections in the rotor.
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In figure 2.35 is shown the rotor profile generated by the MOC function and then the
detached bow-shock wave and its first reflection as an oblique shock wave are plotted
by the shock wave losses function.

Figure 2.35. Detached bow-shock wave and its first reflection for the rotor in variant A .

∆sshock−rotor = 17.68 J

kg K

Please note a significant reduction in shock losses between stator and rotor, because
this type of losses are strongly dependent on the inlet Mach number: for the rotor
M3W = 1.62, which is lower than the value for the stator M1 = 2.
Then the next step is to estimate the boundary and mixing losses using again a
dedicated MATLAB function, whose inputs are shown in figure 2.36 (for more details
see section 2.3.3). To calculate T4−tr the conservation of the rothalpy between rotor
inlet and outlet is imposed (Equation 2.78), which is fundamental to consider the
variation of the mean radius.

T3−tr = T3 + W 2
3

2Cp = 2239 K (2.77)

T4−tr = T3−tr + U2
4 − U2

3
2Cp = 2244 K (2.78)

p3−tr = p3

1 + γ − 1
2 M2

3W


γ
γ−1

= 11.02 bar (2.79)
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Boundary layer and mixing losses function

Input:
M3W , M4W , crotor, T3−tr, T4t−tr,

p3−tr, β4, grotor, throtor

Output: p4−tr

p3−tr
, ∆s(bl+mix)−rotor, ē2

Figure 2.36. Flowchart to illustrate the input and output of the MATLAB function that
determines the losses associated to the boundary layer and mixing in the rotor.

∆s(bl+mix)−rotor = 10.41 J

kg K

∆stotal−rotor = ∆sshock−rotor + ∆s(bl+mix)−rotor = 28.09 J

kg K
(2.80)

From the results obtained in equation 2.80, we can notice that there is a reduction in
losses in the rotor due to a weaker detached-bow shock wave, while the values of the
losses associated to boundary layer and mixing are really similar. On the other side,
the shock wave losses are still the main source of entropy production representing
62.9 % of the total losses in the rotor.
The total entropy jump in the rotor is used also to calculate the total relative pressure at
rotor outlet p4−tr (Equation 2.82). The approximation done in equation 2.81 is possible
because the two relative temperature are really close and the term ln(T4−tr

T3−tr
) = 0.0021

is negligible.

∆s = Cpln

T4−tr

T3−tr

−Rln
p4−tr

p3−tr

 ≈ −Rln
p4−tr

p3−tr

 (2.81)

p4−tr = p3−tre
−

∆stotal−rotor
R = 10.00 bar (2.82)

Then also for the rotor the total pressure loss coefficient is calculated to obtain a value
that gives a direct interpretation of the performance of the supersonic rotor blade row.

Y = p3−tr − p4−tr

p4−tr − p4
= 12.5 % (2.83)

Before applying the conservation of mass, it is necessary to calculate the outlet area
considering the relative flow angles and the blade height variation.
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A4

A3
= g4cos(β4)b4

g3cos(β3)b3
= cos(β4)
cos(β3)

b4

b3

D4m

D3m
= 1.24

A3 = (2πr3m)b3cos(β3)

(2.84)

Now finally the rotor outlet Mach numberM4W is calculated by forcing the conservation
of mass along the rotor. In this case the whole demonstration will not be repeated,
because the procedure is similar but with relative quantities. The final formula for
the mass conservation in the rotor is equation 2.85.

ṁ
√
Cp T4−tr

A4p4−tr
= γ√

γ − 1

1 + γ − 1
2 M2

4W

−
γ+1

2(γ−1)

M4W (2.85)

Equation 2.85 is solved using a numerical approach, where all the terms are brought
on one side and then the rotor outlet Mach number is found by using MATLAB
in-built function "fzero".

⇒M4W = 1.79
After that the code calculates all the remaining quantities on the rotor mean outlet
radius.

T4 = T4−tr1 + γ − 1
2 M2

4W

 = 1367 K (2.86)


W4 =

√
γRT4M4W = 1327.42 m/s

W4tg = W4sin(β4) = −460.27 m/s
W4ax = W4cos(β4) = 1245.06 m/s

(2.87)


V4tg = W4tg + U4 = 0 m/s
V4ax = W4ax = 1245.06 m/s

M4 = V4√
γRT4

= 1.68
(2.88)

The final step of the while cycle is to calculate the error as the normalized distance be-
tween the desired axial velocity and the one obtained in that iteration (Equation 2.70).
The iterative procedure ends if the error of the while cycle is lower than the established
tolerance (toll = 10−9), otherwise a new iteration starts with the new guess given by
equation 2.69. The while cycle presents a really good monotonous convergence as
shown in figure 2.37.
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Figure 2.37. While cycle convergence for rotor outlet properties.

Subsequently the mean-line code starts the verification process of the results obtained
for the rotor; first the code checks if the rotor blade row is working in a started
condition or not using the Kantrowitz theory (Equation 2.89): a supersonic blade row
must always work in started condition, otherwise the losses would be too high.



A4

A3
>

( γ+1
2

1 + γ−1
2 M2

normal

) γ+1
2(γ−1)

X

M2
normal = (γ − 1)M2

3W + 2
2γM2

3W − (γ − 1) Mach number behind normal shock

(2.89)
After that the code verifies that all the mass flow rate coming from the stator goes
through the rotor.

ṁ3 = ṁ4 = 100 kg/s X (2.90)
Till now all the calculations that were performed for the rotor regarded only the mean
radius, hence to complete the design of the blade row it is necessary to establish a
strategy to determine how the various quantities vary in the radial direction. The
strategy employed for the rotor is the constant angle, because the radial extension of
the blade compared to the mean radius is limited ( b4

r4m
= 19.5 %) and at the tip there

are no issues related to flow reversal. Finally the system of equations 2.91 derived from
the constant nozzle angle strategy gives the axial and tangential velocity distribution
at outlet along the blade height, where in this case the equations are written using
relative quantities. The blade clearance was not considered in this version of the code,
but future development can expand on this topic, where a really interesting study
could be the estimate of the clearance losses for this type of machine.
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W4ax(r4) = W4max

(
r4m

r4

)sin2(β4)

W4tg(r4) = W4mtg

(
r4m

r4

)sin2(β4)
(2.91)

After determining the relative velocity W (r4) along the blade height, the mean-line
code calculates also the relative velocity V (r4) (Equation 2.92).

U4(r4) = ωr4

V4ax(r4) = W4ax(r4)
V4tg(r4) = W4tg(r4) + U(r4)

(2.92)

(a) hub section (b) mid section

(c) tip section

Figure 2.38. Velocity triangles at hub, mid and tip section of the rotor (variant A).

73



Chapter 2. Mean-line design

Rotor inlet calculations
Equations 2.68, 2.71, 2.72

Function that calculates M4W in isoentropic and constant blade height conditions

New b4
b3

guess for the new iteration
Equation 2.69

Rotor outlet area computation
Equation 2.84

Zweifel’s formula to determine the number of blades
of the rotor and all the related quantities

Equations 2.73, 2.74, 2.75, 2.76

MOC function Figure 2.33

Shock wave losses function Figure 2.34

Boundary layer and mixing losses function Figure 2.36

M4W obtained from mass conservation
Equation 2.85

Convergence
criteria

Equation 2.70

Started condition and mass conservation verifications
Equations 2.89, 2.90

Constant nozzle-angle strategy for radial blade design
Equations 2.91, 2.92

No

Yes

Figure 2.39. Flowchart to illustrate the iterative process used to design the rotor in variant
A of the mean-line code.
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Finally with these last few passages the mean-line code completes the advanced
procedure developed to design a supersonic turbine stage with its stator and rotor.
Now that the machine has been defined, in its final step the code evaluates the Euler
work (Equation 2.93), the power output (Equation 2.94) and the turbine total to total
efficiency (Equation 2.95).

Leul = U3V3tg − U4V4tg = 202.50 kJ

kg
(2.93)

Peul = ṁLeul = 20.25 MW (2.94)
The total to total efficiency, or isentropic efficiency, is defined for a turbine as the ratio
between the actual work extracted by the machine and the ideal work that would be
obtained in isentropic conditions.

ηt,t = ∆ht
∆ht,is

= Leul
Cp(T1t − T4t,is)

= Leul

CpT1t

[
1−

(
p4t

p1t

) γ−1
γ
] = 56.9 % (2.95)

The supersonic turbine generates a large amount of work and power even if the flow
angles are limited to satisfy the Kantrowitz limit for a started blade row: this is
possible thanks to a high velocity flow that produces a large tangential component
even if the flow angles are small. Considering only this aspect, using higher Mach
numbers allows an important increase in work extraction because the Kantrowitz
limit is less restricting and the velocities are bigger.
As a first impression, by observing the value obtained for the total to total efficiency,
it seems that the designed turbine has a bad performance. It is very important to
understand that a supersonic turbine will always be less efficient than a subsonic
one because the complex shock waves generate huge amount of losses in the turbine
passage: this point has been thoroughly discussed both from a theoretical point of
view and then proved with the mean-line code results (such results are considered
very reliable as shown in section 2.6). To do a fair comparison, the efficiency obtained
above should be compared with machines that are working in the same supersonic
environment: Paniagua et al. [4] revealed up to 80 % of total pressure loss when
conventional subsonic turbine operate continuously at an inlet Mach number of 3.5;
compared to those values, the supersonic turbine designed by the mean-line code is a
major improvement with 20.7 % of total pressure losses in the stator and 12.5 % in
the rotor.
At this point is rather reasonable to ask why it is so important to put so much
effort in designing a supersonic turbine in a really complicated environment, if it
is already known that it is less efficient than a classic solution with a subsonic
flow? The supersonic turbine is designed to work downstream a rotating detonating
combustor, in which the combustion process propagates with a velocity of km/s
and produces a significant pressure increase; this particular thermodynamic cycle
(Fickett-Jacobs) can theoretically increase the efficiency by 15 % and develop a much
higher impulse on small engines. Hence even if the supersonic turbine is less efficient
than a conventional one, the overall engine has a higher performance and efficiency,
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lower emission of pollutants and CO2, more compactness and lower mass (For more
details see chapter 1).
On the other side it is vital to increase the efficiency of the turbine as much as possible
and this is why one of the main focus of the thesis was to find or develop optimization
processes dedicated to these type of machines:

• the optimal value of Zweifel’s tangential force coefficient that minimizes the
losses is found through an original completely automated optimization process,
which make use of Python, MATLAB and various packages of Ansys;

• the profile shape obtained with the method of characteristics will be optimized
through an evolutionary shape-optimization code developed by the laboratory of
fluid machines at Politecnico di Milano, based on a geometrical parametrization
technique based on B-Splines, a high-fidelity and experimentally validated CFD
solver and a surrogate-based evolutionary algorithm [52] (this part of the work
has been already started, but the work is still going on).

2.5.2 Variant B
The variant B of the mean-line code wants to design a repeated stage turbine, which
means that the absolute velocity at rotor outlet is equal to the absolute velocity at
stator inlet. This type of turbine is used in the intermediate stages of a multi-stage
machine, because the same optimized turbine is used in series to extract work with
flow velocities that remain constant at inlet and outlet.
The variant B of the code starts with what has already been done with the other
version: in variant A the flow velocity is completely axial at inlet and outlet of the
stage, but the values are different. This happens because while in the rotor the axial
velocity is constant, in the stator the axial velocity at outlet is lower than the inlet
due to a constant stator blade height solution. Hence the stator blade height must
be varied in order to achieve a constant axial velocity, that in the end will lead to a
repeated stage configuration.
From a code development point of view, the stator design process is carried out with
a double while loop:

• in the inner while loop all the operations that are performed are exactly the
same of variant A;

• in the outer while loop the stator blade height is varied according to the
normalized distance between the desired axial velocity and the one that is
obtained in that iteration (Equation 2.96). Finally the convergence of the
while cycle is reached when the error defined in equation 2.97 is lower than the
established tolerance, in this case toll = 10−9.

b2

b1

∣∣∣∣
k+1

= b2

b1

∣∣∣∣
k

(
1− V2ax − V1ax

V1ax

)
(2.96)

error = |V2ax − V1ax|
V1ax

(2.97)
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Most of the procedure used in variant B is exactly the same of variant A, so the
description is shortened. What can be more interesting to the reader are the results
obtained with this alternative version and therefore in the next pages the main
quantities and figures describing the turbine will be reported.

stator inlet stator outlet rotor inlet rotor outlet
r1i [mm] 345.0 345.0 345.0 345.0
r1e [mm] 402.3 433.8 433.8 495.2
r1m [mm] 373.7 389.4 389.4 420.1
b [mm] 57.3 88.8 88.8 150.2
V [m/s] 1445 1543 1543 1445
Vtg [m/s] 0 540 540 0
Vax [m/s] 1445 1445 1445 1445
M 2 2.26 2.26 2.27
α [°] 0 20.48 20.48 0
W [m/s] 1445 1558
Wtg [m/s] 0 -583
Wax [m/s] 1445 1445
MW 2.12 2.45
β [°] 0 -21.95
T [K] 1300 1155 1155 1010
Tt [K] 2340 2340 2340 2050
Ttr [K] 2195 2219
p [bar] 1.92 1.06 2.06 0.51
pt [bar] 15 12.49 12.49 6.03
ptr [bar] 9.99 7.95

Table 2.1. Inlet and outlet quantities for the stator and rotor designed with the variant B
of the mean-line code.

stator rotor turbine
Nbl 36 35
bout/bin 1.55 1.69
g [mm] 68.0 69.9
th [mm] 2.72 2.80
∆sshock [J/(kg K)] 34.07 42.17
∆sbl+mix [J/(kg K)] 18.38 23.21
Y 21.90 27.32
Leul [kJ/kg] 291.60
Peul [MW] 29.16
ηt,t 54.09 %

Table 2.2. Stator, rotor and turbine stage main parameters (variant B).
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Stator inlet calculations
Equations 2.46, 2.47, 2.48, 2.49, 2.50

Function that calculates M2
in isoentropic and constant blade height conditions

New b2
b1

guess for the new iteration
Equation 2.96

New α2 guess for the new iteration
Equation 2.63

Stator outlet area computation
Equation 2.52

Zweifel’s formula to determine the number of blades
of the stator and all the related quantities

Equations 2.53, 2.54, 2.55, 2.56

MOC function Figure 2.25

Shock wave losses function Figure 2.26

Boundary layer and mixing losses function Figure 2.28

M2 obtained from mass conservation
Equation 2.60

Convergence
criteria

Equation 2.51

Convergence
criteria

Equation 2.97

Started condition and mass conservation verifications
Equations 2.64, 2.65

Constant nozzle-angle strategy for radial blade design
Equation 2.66

No

No

Yes

Yes

Figure 2.40. Flowchart to illustrate the iterative process used to design the stator in variant
B of the mean-line code.
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Figure 2.41. Detached bow-shock wave and its first reflection for the stator in variant B.

Figure 2.42. Absolute and relative angle distribution at stator outlet obtained using constant
nozzle-angle solution (variant B).
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Figure 2.43. Detached bow-shock wave and its first reflection for the rotor in variant B .

Figure 2.44. Absolute and relative angle distribution at rotor outlet obtained using constant
nozzle-angle solution (variant B).
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Figure 2.45. Variant B turbine stage layout.

(a) hub section (b) mid section

(c) tip section

Figure 2.46. Velocity triangles at hub, mid and tip section of the rotor (variant B).
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2.6 Mean-line code results validation through CFD
simulations

This chapter describes in detail the mean-line code that was developed to do an ad-
vanced preliminary design of a supersonic turbine, but up to this section no discussion
was dedicated to the reliability of the results generated by the code. The validation
procedure is accomplished by comparing the code outputs with the results that are
extracted from CFD simulations performed on the stator blade.
The stator blade of variant A was selected as a test for the validation procedure
because in this way the profile behaviour could be more realistically tested with a
blade-to-blade approach on the mean-line profile and without a complete 3D-CFD
simulation, which requires a much heavier computational cost. The simulations were
performed using Ansys CFX and the details regarding the solver, the setting of the
simulation and the post-processing are thoroughly discussed in the next chapters.
Obviously, this verification process does not represent a complete validation of the
code, which would have required, considering the many inputs of the code, a huge
number of complete 3D-CFD simulations; the time and computational cost for the
whole procedure is enormous, so after the really promising results of the first validation
procedure around the selected working conditions, it was decided to dedicate our
efforts to the vital optimization process required to improve the efficiency of the
supersonic turbine. In particular, the first parameter to be optimized is the Zweifel’s
tangential force coefficient, directly related to blade solidity.
Indeed, as briefly introduced while describing the inputs of the mean-line code (section
2.5), the optimal value of Zweifel’s tangential force coefficient was determined through
an original completely automated optimization process (for more details see chapter 5).
Many simulations were performed during this optimization process and the associated
results will be used here to accomplish the verification process of the mean-line code.
In the following figures, the error between the mean-line code and the CFD simulation
result for a generic quantity X is defined in equation 2.98.

error % = 100 |XCFD −XmeanLineCode|
XCFD

(2.98)

In figure 2.47 the trend of the entropy with a varying Zweifel’s tangential force
coefficient is reported: the mean-line code losses prediction is really good with a
maximum error lower than 8 % and lower than 1 % in the selected working condition
of the turbine. Also the trend in Fig. 2.48 for the total pressure loss coefficient is in
good accordance with CFD simulations. With a lower Cft (higher number of blades
and smaller pitch g), the error increases because a higher number of oblique shock
wave reflections are generated in the passage, while the mean-line code takes account
of only the first one; at higher Cft than the design point (lower number of blades), the
increase in losses is explained by the small bubble of separation formed behind the
reflection point on a more loaded blade surface. Moreover, more loaded blades imply
the existence of undesired over-speed regions, where the BL stability becomes critical.
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Figure 2.47. Entropy production comparison between the mean-line code and the CFD
simulations.

Figure 2.48. Total pressure losses comparison between the mean-line code and the CFD
simulations for the stator.
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The smallest value of Cft is associated to the original value of the solidity given
by the method of characteristics: as shown in the plot, the entropy generated in
that condition is almost 18 % higher than the optimal value; this clearly justifies
the original optimization process developed to find the optimal value of Zweifel’s
tangential force coefficient.
The optimization process developed is CFD-based because, even though the mean-line
code is able to predict quite accurately the losses, it is not able to catch properly the
minimum of the curve.
In figure 2.49 it is possible to observe that the estimate of the mean-line code is very
satisfying in terms of total pressure with an error lower than 2%: this is really helpful
because the iterative procedure employed to design the rotor starts with accurate and
reliable quantities.
Finally figure 2.50 shows the standard deviation of the stator outlet flow angle mea-
sured at a chord distance from the trailing edge; when the tangential force coefficient
increases (lower number of blades), the flow obviously is less uniform, while the maxi-
mum uniformity condition is achieved at the the original value of the solidity given
by the MOC. The optimum value of the Cft obtained searching for the minimum of
losses must satisfy at the same time also the minimum requirement of flow uniformity,
established as a necessary condition.

Figure 2.49. Stator outlet total pressure comparison between the mean-line code and the
CFD simulations.
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Figure 2.50. Standard deviation of the stator outlet flow angle obtained from CFD simula-
tions and calculated at a chord distance from the trailing edge.
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Chapter 3

Computation Fluid Dynamic

3.1 Navier-Stokes equations
Modern calculators allow to deal successfully with a lot of problem related to turboma-
chinery (see Chapter 4), although several aspects require approximate physical model
and parameter calibration through experiments or statistical laws. In particular, it
is possible to simulate the flow-field evolution in time scale of industrial interest in
an acceptable amount of time, although with frequency still too low with respect
to the turbulence one. Despite the relevant progress in CFD, it is always necessary
to reduce the model complexity acting on geometrical features and on thermo-fluid
dynamic assumptions. This is particularly true since recursive calculations have to
be implemented for design optimization of the machine. Assuming known basic fluid
dynamic and turbomachinery concepts, some considerations need to be exposed before
reporting the governing equations solved by means the CFD techniques:

• Navier-Stokes equations for compressible fluids include mass conservation (3.1b),
momentum conservation (3.1c) and energy conservation (3.1a) equations along
with two equations of state, inherent the fluid nature itself. So, five non-linear
scalar partial differential equations and two algebraic equations (sometimes
the equation of state are substitute with tabular relation to deal with real gas
models).

• Differential equations includes diffusive terms, linked to disturbances propagation
without mass transportation (second derivatives in the equations), and convective
term, associated to system transport properties (first derivatives in equations).

• Governing equations include stress terms, that are expressed in function of the
strain rate.

• The equations are generically time-variant, but the turbulent effects, essentially
statistical and characterized by frequencies much larger than those of industrial
interest, are often introduced through turbulent viscosity and appropriate models.

Derivations of the governing differential equations are available in every text concerning
classical fluid-dynamic, with various level of mathematical rigour. Depending on the
hypotheses and simplifications, it is possible to face different form of these equations.
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The mathematical model is based on the formulation of conservation laws, i.e. the
variation of the total amount of a quantity inside a given domain is equal to the
balance between the amount of that quantity entering and leaving the considered
domain, plus the contribution from eventual sources generating that quantity. It is
possible to adopt different modelling strategies for the fluid flow. Below, for example,
are reported the tout-court Navier-Stokes partial differential system of equations (3.1)
for Calorically Perfect (3.1e) Ideal Gas (3.1f), in differential and conservative form.
Moreover, the gas is modelled as a Newtonian fluid, which means that the stress tensor
(not explicitly visible here) is isotropic, linear in strain rates and it is divergence zero
for fluid at rest. This assumption is common for lots of fluid in nature, but with some
relevant exception such as blood, paint, shampoo and so on (none of them of interest
for this thesis purpose).

∂

∂t
(ρ etot) +∇ ·

(
ρu htot + q + 2

3µ(∇ · u)u− µ(∇u +∇uT) · u
)

= ρg · u (3.1a)

∂ρ

∂t
+∇ · (ρu) = 0 (3.1b)

∂

∂t
(ρu) +∇ · (ρu⊗ u) = −∇p+∇ ·

{
µ
(
∇u +∇uT − 2

3(∇ · u)I
)}

+ ρg (3.1c)

q = −λ∇T (3.1d)

htot = cpT + ‖u‖
2

2 = etot + p

ρ
(3.1e)

p = ρR0T/w (3.1f)

with p [Pa] static pressure; ρ [kg m−3] density; u [m s−1] velocity vector; g [m s−2]
gravitational acceleration vector; T [K] static temperature; htot [J kg−1] total enthalpy;
etot [J kg−1] total internal energy; q [J s−1 m−2] heat flux density, cp [J kg−1 K−1]
constant pressure specific heat capacity; w [kg mol−1] molar mass of gas mixture; R0
[J K−1 mol−1] universal gas constant; µ [Pa s] dynamic viscosity; λ [J s−1 m−1 K−1]
fluid thermal conductivity.
For the sake of completeness it must be noted that µ, λ are function of temperature
and pressure (or other two thermodynamic intensive properties) and their expression
or tabular data need to be implemented in the code to well-pose the mathematical
problem, along with adequate boundary and initial conditions.

3.2 Turbulence modelling
Navier-Stokes equations are rather complex and strongly non-linear. This is due to
the flow compressibility, but, most of all, to the convection term, which is responsible
of turbulence. This is a great problem when Navier-Stokes are attacked analytically,
since this strong non-linearity implies non-uniqueness of the solution. In this frame,
it is important to distinguish between laminar flows and turbulent ones. Laminar
flows are characterised by a stable, parallel and well ordered movement with no strong
interaction between the different layers of the flow and low momentum convection.
Turbulent flows are a much more complicated phenomenon. Turbulence consists
of fluctuations in the flow field in time and space. It is a complex process, mainly
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because it is three-dimensional, unsteady and consists of many scales. According
to [53], turbulent flow is characterised by the following features:

• randomness: the turbulent flows seem chaotic and unpredictable, in contrast
with the laminar flow;

• non-linearity: it means that the flow is unstable. This causes two important
features in a turbulent flow:

– small perturbations can grow up to finite amplitude disturbances. If these
disturbances exceed the stability criteria, the flow becomes more unstable,
reaching a chaotic state;

– it causes vortex stretching, a process by which three-dimensional turbulent
flows keep their vorticity as constant.

• diffusivity: given the macroscopic mixing processes inside the turbulent flows,
they are characterised by an higher rate of diffusion of momentum and heat;

• vorticity: turbulence is characterised by high levels of fluctuations of all the
physical quantities, included vorticity. The swirling structures which can be
identified in a turbulent flow are called eddies. Turbulent flow is characterised
by a wide range of eddy sizes, from the width of the region occupied by the
turbulent flow up to very small eddies (Kolmogorov scale). The largest eddies
contain most of the energy and it is handed down from the largest to the smallest
scale by means of non-linear interactions (Fig. 3.1).

• dissipation: the vortex stretching mechanism transfers energy to smaller and
smaller scales of the vortices, up to a scale where the vortex itself is smeared
out by the fact that gradients are too strong. This is a dissipative phenomenon
dominated by the molecular viscosity.

(a) (b)

Figure 3.1. Turbulent eddies scale
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Turbulence occurs when the inertia forces in the fluid become significant compared to
viscous forces, and it is characterized by a high Reynolds Number. In principle, the
Navier-Stokes equations describe both laminar and turbulent flows without the need
for additional information. However, turbulent flows at realistic Reynolds numbers
span a large range of turbulent length and time scales, and would generally involve
length scales much smaller than the smallest finite volume mesh, which can be
practically used in a numerical analysis. The Direct Numerical Simulation (DNS)
of these flows would require computing power which is many orders of magnitude
higher than available in the near future. To enable the effects of turbulence to be
predicted, a large amount of CFD research has concentrated on methods that make
use of turbulence models. Turbulence models have been specifically developed to
account for the effects of turbulence without recourse to a prohibitively fine mesh and
direct numerical simulation. Most turbulence models are statistical turbulence model,
as described below. The two exceptions described in literature are the Large Eddy
Simulation (LES) model and the Detached Eddy Simulation (DES) model.
When looking at time scales much larger than the time scales of turbulent fluctuations,
turbulent flow could be said to exhibit average characteristics, with an additional
time-varying, fluctuating component. For example, a velocity component may be
divided into an average component, and a time varying component. In general,
turbulence models seek to modify the original unsteady Navier-Stokes equations
by the introduction of averaged and fluctuating quantities to produce the URANS
equations. These equations represent the mean flow quantities only, while modelling
turbulence effects without a need for the resolution of the turbulent fluctuations. All
scales of the turbulence field are being modelled. Turbulence models based on the
RANS equations are known as Statistical Turbulence Models due to the statistical
averaging procedure employed to obtain the equations. Simulation of the RANS
equations greatly reduces the computational effort compared to a Direct Numerical
Simulation and is generally adopted for practical engineering calculations. However,
the averaging procedure introduces additional unknown terms containing products
of the fluctuating quantities, which act like additional stresses in the fluid. These
terms, called ‘turbulent’ or ‘Reynolds’ stresses, are difficult to determine directly and
so become further unknowns. The Reynolds (turbulent) stresses need to be modelled
by additional equations of known quantities in order to achieve “closure.” Closure
implies that there is a sufficient number of equations for all the unknowns, including
the Reynolds-Stress tensor resulting from the averaging procedure. The equations
used to close the system define the type of turbulence model [19].

3.2.1 Reynolds Averaged Navier-Stokes equations
As described previously, turbulence models seek to solve a modified set of transport
equations by introducing averaged and fluctuating components. Once variables in
Navier-Stokes equations have been replaced with their decomposition quantities, the
averaging procedure must be performed. In compressible flows, instantaneous variables
are split into a mass-weighted mean and a fluctuating part.

φ = φ̃+ φ′′ with φ̃ = φ̃ρ

ρ̃
ρφ′′ = 0
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This decomposition is called Favre averaging and it is an outstanding mathematical
(not physical) simplification; it removes density fluctuations from the equations, not
from the turbulence. Small disturbance fluctuations in compressible flows can be
categorized into acoustic, total temperature (or entropy) and vorticity disturbances.
Morkovin’s hypothesis states that the effects of density fluctuations on the turbulence
structure are unimportant if ρ′ << ρ̄.
Pressure and density are the only variables decomposed in the Reynolds fashion:

ρ = ρ+ ρ′ with ρ = 1
t

∫
t
ρ(t)dt

p = p+ p′ with p = 1
t

∫
t
p(t)dt

Performing the time averaging procedure, the system displayed in Fig 3.2 is obtained:
In the Navier-Stokes equations, each component is decomposed as reported above and

Figure 3.2. Favre averaged Navier-Stokes equations from [17]

then a time averaging is performed. The linear terms are replaced by the corresponding
mean terms, while the non-linear term is given by a mean component and a non-
linear combination of fluctuating components under the divergence operator. In the
momentum equation fluctuating component acts like a stress added to the viscous
one: this is called Reynolds stress and it is a symmetric tensor. Reynolds stresses
physically represent the driving force (turbulent transport) that enhances diffusivity
and mixing rate in turbulent flows. Similarly, in the energy equation the non-linear
convective term causes the presence of a combined fluctuating term, which is called
turbulent heat flux. It represents the way in which the turbulent transport enhances
the diffusivity with respect to the molecular one. Boussinesq proposed a purely formal
analogy with the Newton’s stress strain-rate law, which represents the Reynolds stress
tensor as summation of two components: an isotropic part, related to the Turbulent
Kinetic Energy (TKE) (k in eq. 3.2), and a deviatoric one proportional to the mean
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strain rate matrix.

r = −ρu′′i u′′j = ∇ · (ρu′′ ⊗ u′′) = −ρ2
3kI + 2µtD with k = ‖u

′′‖2

2 (3.2)

The term µt is called turbulent viscosity or eddy viscosity, while λt is called turbulent
thermal conductivity. In this way, the problem is closed, but a modelling for these
two parameters is required. The value of turbulent thermal conductivity comes from
assumption on the turbulent Prandtl number, generally posed in a range between
0.85 and 0.95, but other solution are needed to model the turbulent viscosity.
Two approaches are available to face this problem:

• Boussinesq eddy-viscosity approximation, which assumes that the principal
axes of the Reynolds stress tensor are coincident with those of the mean strain
rate tensor (D in eq. 3.2) at all points in a turbulent flow. This assumption
is inaccurate, since it is incapable of capturing the more subtle relationships
between turbulent energy production and turbulent stresses caused by anisotropy
of the normal ones, sometimes leading to incorrect simulation of the flow.

• Reynolds Stress Models (RSM) deal with this theoretical gap since they are
turbulent models which close the Reynolds Averaged Navier–Stokes (RANS)
system by solving additional transport differential equations or algebraic equa-
tions Explicit Algebraic Reynolds Stress Model (EARSM) for each of the six
Reynolds stress component.

In this two main class of turbulence closure methodologies, different models are
available and differentiate each one with respect the other primarily for the number
and type of additional equations involved to model the Reynolds stresses.
In Ansys CFX are present several fluid model options:

• Laminar flow

– None (Laminar): Turbulence is not modelled.

• Boussinesq eddy-viscosity approximation, modelled as the product of a turbulent
velocity scale and a turbulence length scale. µt = ρUtlt

– Zero Equation (mixing length) model. Very simple eddy viscosity models
compute a global value for µt from the mean velocity and a geometric
length scale using an empirical formula. Because no additional transport
equations are solved, these models are termed ‘zero equation.’ A constant
turbulent eddy viscosity is calculated for the entire flow domain.

– Eddy Viscosity Transport Equation: a one-equation variation of the k-
epsilon model. In this transport differential equation there is the presence
of a destruction term, which accounts for the structure of turbulence and
is based on the von Karman length scale.

– Two-equation models: widely used, as they offer a good compromise
between numerical effort and computational accuracy. Both the velocity
and length scale are solved using separate transport equations (hence the
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term ‘two-equation’). The turbulence velocity scale is computed from
the turbulent kinetic energy k, which is provided from the solution of
its transport equation. The turbulent length scale is estimated from two
properties of the turbulence field, usually the turbulent kinetic energy and
its dissipation rate ε (or specific dissipation rate ω = ε/k), provided from
the solution of its own transport equation.

∗ standard k-ε. Its main disadvantage is how it performs in the near
wall region: the ε equation is problematic in these zones due to the
presence of a term, singular at the wall. For this reason, special
treatment is required i.e. wall function must be used. K-ε models,
despite this problem, are some of the most prominent turbulence
models, implemented in every general purpose CFD codes and are
considered the industry standard model. It has proven to be stable
and numerically robust with a well-established regime of predictive
capability.

∗ Standard k-ω. One of its advantages is the near wall treatment for
low-Reynolds number computations. The model does not involve the
complex non-linear damping functions required for the k-ε model and
is therefore more accurate and robust. A low-Reynolds k-ε model
would typically require a near wall resolution of y+ < 0.2 , while a
low-Reynolds number k-ω model would require at least y+ < 2. The
main problem with the k-ω model is its strong sensitivity to free-
stream conditions. Depending on the value specified for ω at the inlet,
significant result variations can be obtained.

∗ renormalisation group (RNG) k-ε: A variation of the k-epsilon model.
∗ Baseline (BSL)-zonal k-ω based model
∗ SST-zonal k-ω based model: recommended for accurate boundary layer

simulations and always adopted in this thesis work. It is the standard
for turbomachinery flow simulations (paragraph 3.2.2). Developed to
overcome the weaknesses of BSL-zonal k-ω based model.

• Reynolds stresses modelling

– k-ε EARSM / BSL EARSM: These models are a simplified version of the
Reynolds stress models with application to problems with secondary flows
as well as flows with streamline curvature and/or system rotation.

– ω RSM / BSL RSM
– QI / SSG / LRR RSM: Provides high accuracy for some complex flows.

• LES-based approach, in which some region of the flow are not averaged, but
solved directly. It is based on the concept of resolving only the large scales of
turbulence and to model the small scales. The classical motivation for LES is
that the large scales are problem-dependent and difficult to model, whereas
the smaller scales become more and more universal and isotropic and can be
modelled more easily. LES is based on filtering the Navier-Stokes equations over
a finite spatial region (typically the grid volume) and aimed at only resolving the
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portions of turbulence larger than the filter width. All of the following model
can be adopted only for unsteady simulation.

– LES Smagorinsky / LES WALE / LES Dynamic Model.
– DES.
– Stress Blended Eddy Simulation (SBES). This is a refinement of DES.
– Scale-Adaptive Simulation (SAS) SST.

3.2.2 k-ω SST
One of the main problems in turbulence modelling is the accurate prediction of flow
separation from a smooth surface. Standard two-equation turbulence models often
fail to predict the onset and the amount of flow separation under adverse pressure
gradient conditions. This is an important phenomenon in many technical applications,
particularly for airplane aerodynamics and for turbomachinery flows, because the stall
characteristics of a turbomachine (or a plane) are controlled by the flow separation
from the blade (or from the wing). In general, turbulence models based on the
ε-equation predict the onset of separation too late and under-predict the amount
of separation later on. This is problematic, as this behaviour gives an excessively
optimistic performance characteristic for an airfoil, not conservative at all.
The BSL model combines the advantages of k-ω and k-ε models, but still fails to
properly predict the onset and amount of flow separation from smooth surfaces.
This deficiency primarily arises because these models, which do not account for the
transport of the turbulent shear stress, overpredict the eddy-viscosity.
The k-ω based SST model fixes this defect by adopting a limiter to the formulation
of the eddy-viscosity (3.3c). Currently, the latter is the most prominent two-equation
models in this area. It accounts for the transport of the turbulent shear stress and
gives highly accurate predictions of the onset and the amount of flow separation under
adverse pressure gradients. Both BSL and SST models implement a blending function
(3.3d) to smoothly activate the ε or the ω transport equation, based on the distance
from the closer wall.

∂(ρk)
∂t

+ ∂(ρujk)
∂xj

= Pk − β′ρωk + ∂

∂xj

[(
µ+ µt

σk3

)
∂k

∂xj

]
(3.3a)

∂(ρω)
∂t

+ ∂

∂xj

(
ρujω −

(
µ+ µt

σω3

)
∂ω

∂xj

)
= α3ω

k
P − β3ρω

2 + (1− F1)2ρ
ωσω2

∂k

∂xj

∂ω

∂xj
(3.3b)

µt = ρa1k

max(a1ω, SinvF2) (3.3c)

F1 = tanh

[
min

(
max

( √
k

0.09ωd,
500ν
d2ω

)
,

4ρσω2k

CDkωd2

)]4 (3.3d)

Superior performance of this model has been demonstrated in a large number of
validation studies and therefore it is, nowadays, the standard for turbomachinery flow
simulation. To benefit from this model, a resolution of the BL of more than 10 points
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is required, along with a y+ < 3 at wall, to solve directly the viscous sublayer. For
free shear flows, the SST model is mathematically identical to the k-ε model. One of
the advantages of the SST formulation is the near wall treatment for low-Reynolds
number computations, where it is more accurate and more robust.

3.3 Turbulent Boundary Layer
In not hypersonic flows, which is always the case in turbomachinery the no slip
condition holds. It ensures that the fluid at the wall has its same velocity; in the case
in which the wall is stationary, the velocity of the fluid in that position is null. After
this statement is clear that there must be a region where the velocity passes from the
free stream value to zero; the region close to the wall, where there are strong velocity
gradients, is called boundary layer, and the velocity profile there it is in general
independent from the free stream condition. The fluid there cannot be described with
the classical Reynolds number theory. Approximating the fluid in the boundary layer
with the wall bounded shear-flow model, which is almost the case when the flow is
attached to the wall, we obtain a simplified equation for the velocity:(

µ

ρ
+ l2t

∂U

∂y

)
∂U

∂y
= τwall (3.4)

where:

lt is the turbulent mixing length;

y is the coordinate normal to the wall;

U is velocity component parallel to the wall;

τwall is shear stress at the wall.

Equation 3.4 can be made adimensional with the introduction of a friction velocity
and a viscous length scale, resulting in 3.5.(

1 + (l+t )2∂U
+

∂y+

)
∂U+

∂y+ = 1 (3.5)

where:

Uτ =
√
τwall/ρ is the friction velocity;

δv = µ
ρUτ

is the viscous length scale;

y+ = y/δv is the adimensional velocity;

U+ = U/Uτ is the adimensional distance.
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Figure 3.3. Boundary layer - dimensionless velocity profile

Equation (3.5) can be easily solved in two different conditions: really close to the wall,
where y+→ 0, and far from the wall, where (l+t )2 ∂U+

∂y+ � 1. The solutions in this two
extreme conditions are:

U+ =


y+ if 0 < y+ < 5→ viscous sub layer
1
n

log x+ C if 30 < y+ < 1000→ logarithmic layer
(3.6)

These considerations hold whenever we are considering an incompressible turbulent
boundary layer, but with the strong hypotheses implicitly adopted and the approxima-
tion introduced. Indeed this wall function, which includes a very important universal
logarithmic law, is the most simple among the various wall functions that can be
adopted for BL approximation. The parameter y+, anyway, plays a relevant role for
whatever turbulence model we are using, since its value at the wall gives us information
about if the near-wall mesh is fine enough for the purpose. In particular, for URANS
equations, the k − ω based models are able to solve directly the viscous sublayer if
a mesh resolution fine enough is adopted, as explained in paragraph 3.2.2, so y+ is
required to be less than 1 or at least less than 3. On the other side, the k − ε based
models present singularity near the wall, so aWhat as been described high value of
y+, at least 30, is needed, letting that wall functions approximate the BL solution.

Figure 3.4. Boundary layer behaviour along blade profile

These phenomenons are, in reality and in actual numerics, further complicated by the
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compressibility role and by the transitional behaviour of the boundary layer. Indeed,
the latter always presents an initial laminar behaviour that, along the blade profile,
change into a full turbulent behaviour, after a transitional phase characterized by
intermittent phenomenology (Fig 3.4). What has been described and observed in
every experimental work is much more difficult to simulate. Nowadays, a certain
number of models exist able to do that, but still relying on characteristic parameters
to be tuned in every different situation. For this reason, intermittency models for
transition BL behaviour have not been included in the simulations present in this
work.

3.4 Finite Volume Method - Ansys CFX
Assuming known all the mathematical and physical aspects of the governing equations
and the turbulence models, it is possible to deal with the numerical approaches,
developed during the last century to solve these equation. It is important to remark
that Navier-Stokes equations can be solved analytically only in very few cases, not of
practical interest and for this reason CFD is still under continuously development.
Computational Fluid Dynamics can be defined as a computer-based tool for simulating
the behaviour of systems involving fluid flow, heat transfer, and other related physical
processes. It works by solving the equations of fluid flow in integral form over a region
of interest, with specified conditions on the boundary of that region.
Historically, computers have been used to solve fluid flow problems for many years,
starting with codes for specific class of problems. From the mid-1970s, the complex
mathematics required to generalize the algorithms began to be understood and
general purpose CFD solvers were developed. Recent advances in computing power,
together with powerful graphics and interactive 3D manipulation of models, have
made the process of creating a CFD model and analysing results much less labour
intensive, reducing time and, hence, cost. As a result of these factors, CFD is
now an established industrial design tool, helping to reduce design time scales and
improve processes throughout the engineering world, although not at the same level of
other computational techniques such as mechanical stress or motion simulation. CFD
provides a cost-effective and accurate alternative to scale model testing, with variations
on the simulation being performed quickly, offering obvious advantages [19]. The
ultimate aim of developments in the CFD field is to provide a capability comparable
with other CAE (computer-aided engineering) tools such as stress analysis codes.
The main reason why CFD has lagged behind is the tremendous complexity of the
underlying behaviour, which precludes a description of fluid flows that is at the same
time economical and sufficiently complete [17].
The main part of every CFD code is related to domain and equation discretization
and to their solving procedure. The Navier-Stokes equations can also be solved in
conjunction with other algebraic or differential equations, describing related processes,
such as combustion. To solve these systems of equations, there are a number of
different methods which are used. The most common, and the one on which Ansys
CFX is based, is known as the Finite Volume Method (FVM). In this technique,
the region of interest is divided into small sub-regions, called control volumes. The
equations are discretized and solved iteratively for each control volume. As a result,
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an approximation of each variable value at specific points throughout the domain
can be obtained and exploited to derive a full flow behaviour picture. The FVM uses
the integral form of the conservation equations as its starting point. The solution
domain is subdivided into a finite number of contiguous control volumes, and the
conservation integral equations are applied to each Control Volume (CV). At the
centroid of each CV lies a computational node at which the variable values are to be
calculated. Interpolation is used to express variable values at the CV surface in terms
of the nodal (CV-center) values. Surface and volume integrals are approximated using
suitable quadrature formulae. As a result, one obtains an algebraic equation for each
CV, in which a number of neighbour nodal values appear. The Finite Volume (FV)
method can accommodate any type of grid, so it is suitable for complex geometries.
The grid defines only the control volume boundaries and need not to be related to a
coordinate system. The method is conservative by construction, so long as surface
integrals (which represent convective and diffusive fluxes) are the same for the CVs
sharing the boundary. The FV approach is perhaps the simplest to understand and to
program. All terms that need to be approximated have physical meaning which is why
it is popular with engineers. The disadvantage of FV methods compared to Finite
Difference schemes is that methods of order higher than second are more difficult to
develop in 3D. This is due to the fact that the FV approach requires three levels of
approximation: interpolation, differentiation, and integration [54].

3.4.1 Steps of a CFD simulation

Figure 3.5. Ansys CFX modules

The process of performing a single CFD simulation is split into four components
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and is described hereafter making reference to Ansys CFX (Fig. 3.5):

1. Creating the Geometry. In this work coordinate files produced during the 0D
design in Matlab were provided as the input geometry.

2. Grid generation (i.e. divide the computational domain in small sub-regions):

• Define solid and fluid regions;
• Setting properties for the mesh;
• Create surface boundary names;
• Proper mesh generation.

This interactive process is the first pre-processing stage and it is performed with
Ansys TurboGrid. The objective is to produce a mesh for input to the physics
pre-processor, from a closed geometric solid.

3. Defining the Physics of the Model. This interactive process is the second pre-
processing stage and is used to create input required by the Solver. The mesh
files are loaded into the physics pre-processor, CFX-Pre, and user actions are
required:

• Selection of the physical and chemical phenomena that need to be modelled
• Definition of fluid properties
• Specification of appropriate boundary conditions at cells, which coincide

with the domain boundary

4. Solving the CFD Problem. CFX-Solver produces the required results in a
non-interactive process. Every CFD code solves the problem as follows:

(a) The partial differential equations are integrated over all the CVs in the
region of interest. This is equivalent to applying basic conservation laws to
each control volume. When summed the internal surface integrals cancel
out, thus global conservation is built into the method.

(b) These integral equations are converted to a system of algebraic equations by
generating a set of approximations for the terms in the integral equations.

(c) The algebraic equations are solved iteratively. An iterative approach is
required because of the non-linear nature of the equations, and, as the
solution approaches the exact one, it is said to converge. For each iteration,
an error, or residual, is reported as a measure of the overall conservation of
the flow properties. Accuracy and convergence of the solution depend on
a number of factors, including the size and shape of the control volumes
and the size of the final residuals. In general, the larger the number of
cells, the better the solution accuracy. Both the accuracy of a solution and
its cost in terms of necessary computer hardware and calculation time are
dependent on the grid fineness. Optimal meshes are often non-uniform:
finer in areas where large variations occur from point to point and coarser
in regions with relatively little change.
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5. Visualizing results in the Post-processor (CFX-Post). The solver produces a
results file that is then passed to the post-processor and can be visualized and
further elaborate.

3.4.2 Domain discretization
The most important idea behind the computational fluid dynamics is the discretization
of the domain and of the balance equations. There are three distinct streams of
numerical solution techniques: finite difference, Finite Element Method (FEM) and
spectral methods. The finite volume method, a special finite difference formulation, is
central to the most well established CFD codes: Ansys CFX, FLUENT, Open-Foam
and STAR-CD [17]. Ansys CFX uses an element-based finite volume method, which
first involves discretizing the spatial domain using a mesh. The mesh is used to
construct finite volumes, which are used to conserve relevant quantities such as mass,
momentum, and energy. ANSYS CFX uses a co-located (non-staggered) grid layout
such that the control volumes are identical for all transport equations, i.e. all solution
variables and fluid properties are stored at the same nodes (mesh vertices). A control
volume (the shaded area) is constructed around each mesh node using the median
dual (defined by lines joining the centers of the edges and element centers surrounding
the node) [19].

(a) (b)

Figure 3.6. Control Volume Definition

In order to create mesh for turbomachinery analysis, it is possible to use Ansys
TurboGrid. This software is tailored for the specific aim of creating the most appro-
priate grid for turbomachinery simulation through an automated procedure, starting
from CAD geometries or from coordinate files (.crv). The last way is the one used in
this work, since the blade shape have been defined during the mean-line 0D design
(Chapter 2). This software is based on an automated topology and mesh (ATM)
technology, that produces high-quality hexahedral in an automated manner. With
minimal user input, the ATM method adapts the block topology for the given blade
geometry, yielding a smooth mesh with high orthogonality. For this thesis purpose,
two main input parameters have played an important role:
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• Target Passage Mesh Size, which allows the user to specify the number of nodes
present in the full passage to be simulated;

• The Near-wall Element Size Specification parameter, which specifies the bound-
ary layer mesh refinement through the y∗+, evaluated with the selected Reynold
number.

Figure 3.7. TurboGrid blade-to-blade coarse mesh

3.4.3 Integration and Discretization of Governing Equations
The governing equations have to be discretized in time and space to be solved numeri-
cally. To illustrate the element-based finite volume methodology, the conservation
equation (Eq. 3.7) of a scalar quantity will be considered, expressed in Cartesian
coordinates:

∂(ρφ)
∂t

+ ∂(ρujφ)
∂xj

= Sφ + ∂

∂xj

(
Γφ

∂φ

∂xj

)
(3.7)

These equations are integrated over each control volume, and Gauss’ Divergence
Theorem is applied to convert volume integrals involving divergence and gradient
operators to surface integrals. If control volumes do not deform in time (i.e not
deforming mesh), then the time derivatives can be moved outside of the volume

101



Chapter 3. Computation Fluid Dynamic

integrals and the integrated equations become:

∂

∂t

∫
V
ρφdV +

∫
S
ρujφ · dnj =

∫
S

Γφ
∂φ

∂xj
· dnj +

∫
V
SφdV (3.8)

where:

• V denote volume regions of integration; volume integrals represent source
or accumulation terms;

• S denote surface regions of integration; surface integrals represent the
summation of fluxes, which can be advective or diffusive ones;

• dnj are the differential Cartesian components of the outward normal surface
vector.

Volume integrals are discretized within each element sector and accumulated to the
control volume to which the sector belongs, while surface integrals are discretized at
the integration points (ipn) located at the center of each surface segment within an
element and then distributed to the adjacent control volumes. Because the surface
integrals are equal and opposite for control volumes adjacent to the integration points,
the surface integrals are guaranteed to be locally conservative. Again, it must be
noted that last statement is one of the more attractive point for the FVM, when
dealing with partial differential equations with convective-diffusion terms, such as the
Navier-Stokes system. After discretizing the volume and surface integrals, the integral
equations become:

V

∆t

(3
2(ρφ)− 2(ρφ)o + 1

2(ρφ)oo
)

︸ ︷︷ ︸
unsteady term

+
∑
ip

ṁipφip︸ ︷︷ ︸
advective term

=
∑
ip

(
Γφ

∂φ

∂xj
∆nj

)
︸ ︷︷ ︸

diffusion term

+ V Sφ︸ ︷︷ ︸
source term

(3.9)

where:

• V is the control volume;

• ∆t is the time step;

• ∆nj is the discrete outward surface vector;

• ip subscript refers evaluation at an integration point

• o superscript denotes the old time level.

• mip = (ρuj∆nj)ip

For the discretization phase, every integral term in Eq. 3.8 have been substitute with
a discrete approximation by means of different strategies. Ansys CFX shows a smaller
range of choices for the discretization to the users, with respect to other software,
such as OpenFoam or also Ansys Fluent. This is because the algorithm did already
implement the best discretization schemes with the ability to automatically switch
from one to the other, based on the particular simulation and even iteration.
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For the unsteady term, for example, it is possible to chose between a First Or-
der Backward Euler scheme or a Second Order Backward Euler. For transient blade
row simulation in this thesis, the latter have been chosen. Both methods are robust,
implicit, conservative in time and do not have a time step size limitation, but the
first discretization method is bounded and only first-order accurate in time (it will
introduce discretization errors that tend to diffuse steep temporal gradients), while
the second discretization method is second-order accurate but is not bounded and
may create some non-physical solution oscillations. In several schemes for compress-
ible flows, such the ones implemented in Ansys CFX, the solution is achieved by
time-marching the calculation from an initial state, also for steady simulation. Due
to the time-marching nature of the calculation, care must be placed on the time-step
setting. Despite being implicit, the non-linearity can lead to numerical instability at
the beginning of the calculation and in presence of very small cells (such as the ones
in the BL O-grid to get y+ = 1).

For what concern the space discretization of the equation (i.e diffusion and con-
vective term discretization schemes), in CFD dedicated literature [17,54,55] a huge
amount of methods and analysis is present, but here just a brief reference to the
schemes implemented in Ansys CFX will be exposed.
The advection term (3.7) requires the integration point values of φip to be approxi-
mated in terms of the nodal values φi. The advection schemes implemented in ANSYS
CFX can be cast in the form:

φip = φup + β∇φ
∣∣∣
up
·∆~r (3.10)

where:

• φup is the upwind node value

• β (gradient limiter) and ∇φ (3.11) identify the discretization scheme and are
evaluated from the upwind node

• ∆~r the vector from the upwind node to the ip.

The High Resolution Scheme adopt a special non-linear formulation for β at each
node, computed to be as close to one as possible without introducing new extrema.
The advective flux is then evaluated using the values of β and ∇φ from the upwind
node. Gradient limiter β, also known as slope limiter, is used to prevent spurious
oscillations, which would otherwise appear in the solution flow field near shocks,
discontinuities, or near rapid local changes in the flow field. The gradient limiter
attempts to invoke and enforce the monotonicity principle by prohibiting the linearly
reconstructed field variable on the cell faces to exceed the maximum or minimum
values of the neighbouring cells. β formulation is based on boundedness principles
and can be demonstrate to be total variation diminishing in its 1D form. This limiter
is of a non-differentiable type and uses the Minimum Modulus function (Roe, 1985)
to limit and clip the reconstructed solution overshoots and undershoots on the cell
faces. This scheme has been always adopted in this thesis work.
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Peculiarity of the software formulation is its being element-based. Solution fields
and other properties are stored at the mesh nodes, but, for many of the terms, the
solution field or solution gradients must be approximated at integration points. AN-
SYS CFX uses finite-element linear shape functions to perform these approximations
with φ = ∑Nnode

i=1 Niφi (Fig. 3.8). This shape functions formulation, coupled with the
Green-Gauss theorem, led to calculate gradient values at node location as:

∇φ = 1
V

∑
ip

(φ∆~nip) (3.11)

For the diffusion term, again, CFX appeals to the shape function, following the

(a) (b)

Figure 3.8. Hexahedral shape functions

standard finite-element approach. For a derivative in the x direction (diffusion term
in 3.9) at integration point ip:

∂φ

∂x

∣∣∣
ip

=
∑
n

∂Nn

∂x

∣∣∣
ip
φn (3.12)

The summation is over all the element shape functions, whose Cartesian derivatives
can be expressed in terms of their own local derivatives by means of the Jacobian
transformation matrix.

3.4.4 Linear Solver
Whatever is the strategy adopted to deal with every governing equation (see section
3.4.5), once the equations have been discretized on every CV, the problem reduces to
solve a classical linear system [A][φ] = [b] (Fig. 3.9). To do that the direct solvers
(Matrix inversion, Gauss Elimination, LU decomposition) are not convenient, since
they are expensive in storage and CPU time so not suitable for large matrices like the
ones involved in FVM for CFD. The only alternative are the iterative solvers, which
start from a solution guess and, iteration after iteration, converge towards the exact
solution.
ANSYS CFX uses a Algebraic Multigrid (AMG) accelerated Incomplete Lower-Upper
(ILU) factorization technique [19, 56] for solving the discrete system of linearised
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Figure 3.9. Representation of a linear system in matrix form for a scalar variable

equations. Since the matrix solvers are iterative, they will produce a residual as a
measure of the error in the solution. A smaller residual gives a more accurate result.
The residual is defined as:

[r]k = [b]− [A][φ]k (3.13)
where k subscript indicates the k-th iteration. A tolerance for each property has to
be specified to control the accuracy of the linear solver. Specifying a low tolerance
might be time consuming, and it is therefore important to consider an appropriate
compromise between accuracy and the number of iteration loops needed to achieve
convergence. The AMG technique consists in solving the first iterations on the real
mesh (the refined one) and virtually coarsening the mesh for the latest iterations.
These last results are then transferred on the fine mesh. From a numerical point of
view, any iterative solver is good at reducing the error of the same wavelength of the
mesh size and this means that errors with longer wavelength needs a lot of iterations
to disappear. The coarsening of the mesh used by the AMG approach increases mesh
spacing, without need of re-meshing, thus being able do reduce the errors in few
iterations for all the wavelengths. AMG forms a system of discrete equations for a
coarse mesh by summing the fine mesh equations. This results in virtual coarsening
of the mesh spacing during the course of the iterations, and then re-refining the mesh
to obtain an accurate solution. This reduces significantly the number of iterations
required to reach the target residuals. Furthermore, the influence of boundaries and
far-away points are more easily transmitted to interior of coarse mesh with respect to
fine mesh. Convergence of the solution is based on the reduction of equation residual
over successive solutions. The residual (3.13) is normalized to make it independent of
the scale of the analysed problem. Before solving an equation for a particular field,
the initial residual is evaluated on the current values of the field. After each solver
iteration, the residual is re-evaluated. The procedure stops if any of the following
conditions are reached:
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(a) (b)

Figure 3.10. Algebraic Multigrid procedure

• the residual falls below the solver tolerance;

• the ratio of current to initial residuals falls below the solver relative tolerance;

• the number of iterations exceeds a maximum specified by the user.

3.4.5 Solving Procedures
As briefly described in section 3.4.3, CFD codes contain discretization techniques
suitable for the treatment of the key transport phenomena, convection (transport due
to fluid flow) and diffusion (transport due to variations of φ from point to point) as
well as for the source terms (associated with the creation or destruction of φ) and
the rate of change with respect to time. Discretization process results in a system
of linear algebraic equations to be solved iteratively due to the underlying, complex
and non-linear physical phenomena described. The complexity and size of the set of
equations depends on the dimensionality of the problem, the number of grid nodes and
the discretization practice [17]. The solution of the linear equation system provides
the values of the physical quantities at the node in a fixed time step.
The iterative solving procedures reported in literature and implemented in CFD codes
are various and follow different logic. A simplistic categorization of the solution
algorithms can be made on the basis of three main aspects that identify the logic of
the codes themselves:

1. Time resolution techniques: implicit or explicit

2. Pressure-based or Density-based solver formulation

3. Segregated or Coupled equations "arrangement"

Although combination of the previous aspects returns eight solver types, only four of
them are the most common and realizable and are represented in Fig. 3.11.
Ansys CFX is a pressure-based implicit coupled solver, so all the hydrodynamic
equations are solved as a single system, then energy equation and, at the end, turbulent
equations are solved. The coupled solver is faster than the traditional pressure-base
segregated ones and fewer iterations are required to iterations required for convergence
to a steady-state, or to calculate the solution for each time step in a time-dependent
analysis. For this reason the continuity equation does not need to be manipulated
to obtain a Poisson equation for the pressure, as it is done with the pressure-based
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Figure 3.11. Schematization of different solver approaches: 1) pressure-based implicit segre-
gated, 2) pressure-based implicit coupled, 3) density-based implicit coupled, 4)
density-based explicit coupled

segregated solver algorithms (such as SIMPLE, SIMPLER, SIMPLEC, PISO and
PIMPLE [17,56]). In particular, the linear set of equations that arise by applying the
FVM to all elements can be written in the forms:∑

j

aijφj = bi scalar unknowns on the j-th node (3.14)

∑
j

[A]ij ~φj = ~Bi coupled scalar unknowns on the j-th node (3.15)

with φ the unknowns, a the equation coefficients, b the right hand side, i identifies a
“neighbour” CV (or node), allowing the solver to deal with every kind of mesh. When
dealing with transport equation of a scalar quantity, such as energy, TKE, specific
energy dissipation rate and so on, the algebraic system of equation takes the form of
3.14, while with the hydrodynamic quantities the system takes the form of 3.15, with

~φj =


uj
vj
wj
pj

 (3.16)

The advantages of such a coupled treatment over a non-coupled or segregated approach
are several: robustness, efficiency, generality, and simplicity. The principal drawback
is the high storage needed for all the coefficients, twice the space needed for segregated
algorithm. The complete flow diagram of the coupled solver is reported in Appendix
B.
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Chapter 4

Computational Models for
Turbomachinery Flows

Design of a turbomachine is a long and not trivial path, which requires deep knowledges
in various field of engineering, applied physics and numerical analysis. For this reason,
there are a lot of people involved in this task for every single project since the first
steps of the design phase up to the maintenance procedure during the entire machine
life. OEMs deploy teams of engineers for the stage-by-stage design of an advanced
gas turbine HGP and this procedure is rarely started from scratch, also in completely
new products. Complexity of flows in turbomachine is really high and different model
are available in the industrial practice and in literature with different level of accuracy.
All these models are subjected to evolution during years but the core logic remains
almost unchanged. These models are listed below and will be discussed in the next
sections:

1. 0-D mean-line model: preliminary calculation method, object of chapter 2

2. Spanwise models:

• ‘classic’ through-flow methods (channel method and streamline curvature
method)

• CFD axisymmetric model (also known as CFD-based through-flow method)

3. Quasi-3D CFD model: blade-to-blade simulation, object of chapter three.

4. Coupled stator-rotor CFD models for multi-row/multi-stage simulations

5. Fully 3D, time-resolved: high-fidelity methods

4.1 Spanwise model
The complete analysis of the flow through a turbomachine is a complex and three-
dimensional problem, whose full numerical solution, also at present day, is not suitable
for optimization procedure involving relevant amount of flow field simulation. First
step in designing a turbomachine is to perform a 0-D mean-line analysis (point 1 in
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previous list), where the first design choices can be done, assessed and a first parameter
optimization can be performed. Then, a more accurate flow field analysis is needed
and a step forward in this term of accuracy, maintaining a relatively low computational
cost, is to solve the meridional flow, exploiting a spanwise model (point 2 2). The
problem of turbomachinery flow-field evaluation is here reduced to two separate and
more manageable problems known as the hub-to-tip and the blade-to-blade (3). Aim
in the hub-to-tip problem (i.e. spanwise model) is to solve for the flow only on a
meridional surface of the turbomachine.

Figure 4.1. Stream flow surfaces: blade-to-blade surface S1; meridional surface S2; secondary
flow surface S3

The first of these methodologies, the ’classical’ one, is the channel method which
directly deal with the radial equilibrium problem. Both the naive and the rigorous
derivation of generalized radial equilibrium equation (4.1) can be easily found in
literature along with its description and implications, under the assumption of ax-
isymmetric flow.

Va
∂Va
∂r
− Va

∂Vr
∂z

+ Vt
r

∂rVt
∂r

= ∂hT
∂r
− T ∂s

∂r
(4.1)

with Va axial velocity component; Vt tangential component; Vr radial component;
r, θ, z cylindrical coordinate; s entropy, evaluated from empirical correlation losses;
hT total enthalpy, from velocity triangles and Euler work.
The basic idea is to solve the equation considering an adequate amount of stream
tubes (i.e. annular channel in which the annulus is divided), imposing the mass
flow rate at the inlet. Stream tubes vary their own dimension to ensure the mass
conservation and so it’s possible to solve numerically the eq. (4.1). Va(r) and ρ(r) are
obtained and the procedure con be again iterated up to convergence in every stream
tube station (Fig. 4.2).
An improved approach to study the meridional flow field is the so-called Streamline
Curvature Through-Flow method, which calculates the flow on a meridional stream
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Figure 4.2. Meridional surface and quasi-normal traces

surface right across the annulus in duct and bladed regions (Fig. 4.3). The Streamline
Curvature Through-Flow method is capable of obtaining supersonic solutions with
the restriction that meridional Mach number should not exceed unity anywhere in
the turbomachine and this imply that for supersonic turbine, treated in this thesis
work, a further development should be necessary. The difference with the Channel
method relies on the much more features involved: equation written in inherent
stream-wise and normal coordinates; stream-surface orientation in circumferential and
radial directions; viscous losses addressed with a ‘drag’ volume force.

Figure 4.3. Comparison of the meridional flow-field of a mixed flow turbine compared with
a 3D CFD calculation (ANSYS CFX) [18]

A modern approach (2) to the axisymmetric flow solution is the CFD through-flow
model (Fig. 4.4), in which Euler or even URANS equations are projected on the
meridional plane direction and solved by means FV or Finite Element (FE) technique,
both suitable for explicit and implicit temporal integration. This method does not
exhibit a certain number of the Streamline Curvature method shortcomings. Indeed,
with a through-flow model that directly solves the Euler/Navier-Stokes equations,
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the flow-field inside a compressor or a turbine can be computed, whatever the flow
regime is. Shocks can also be captured and choked mass flow predicted naturally.
Furthermore, these codes benefit from the well known CFD techniques for solving
the Euler/Navier-Stokes equations and, if solved by time-marching techniques, the
unsteady capability is naturally included in the method. Also, as it shares the same
numerics as 3D calculation codes, the coupling of both tools is made easier. The
integration of both tools is indeed a desired feature in the design tool chain of a
turbomachine. Finally, if the Navier-Stokes equations are used, the viscous flow
developing on the annulus end-walls is captured and 2-D recirculation flows can be
predicted.

Figure 4.4. From left to right and top to the bottom: CAD turbine geometry reproduction;
Blades replaced by mean surfaces; Mean surfaces projected on the meridional
plane; Results in term of entropy production

4.2 Blade-to-blade simulation
Next step in turbomachinery flow evaluation is to calculate the flow on a blade-to-blade
(S1 in Fig. 4.1) stream surface, given the stream surface shape. The objective is to
design the detailed blade profile. The stream surface is best thought of as a stream
tube (Fig. 4.5) with an associated stream surface thickness and radius which are
obtained from the throughflow calculation. Accurate specification of the radius and
thickness variation is essential as they can have a dominant effect on the blade surface
pressure distribution. This is the reason why the coupling between spanwise model
and blade-to-blade simulation is a powerful tool for the aerodynamic design of a
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turbomachine. Generally, only the blade-to-blade surface relative to a stream tube
located at a mean radius is solved, but, if more accurate evaluations are needed, it’s
possible to solve more blade-to-blade flow-field. The coupling of this method with a
spanwise model can be considered a quasi-3D simulation.

Figure 4.5. Blade-to-blade surface evolution

Alternatively, the blade-to-blade simulations can be performed in order to assess the
performance of an annular or a linear cascade, ignoring the through-flow method
coupling. This is the kind of analysis performed in this thesis work to study the two
dimensional behaviour of the supersonic turbine blade.

4.3 Coupled stator-rotor simulation
With the increasing of computer performances, CFD simulations have been more
extensively exploited and physical models involved are more complex. Nowadays,
three dimensional unsteady simulations, with complete set of URANS equations, are
possible for the full wheels with coupled stages, although still a relevant amount of
time is required. To reduce the computational effort it is possible to simulate just an
equal annular portion of rotor and stator with a finite number of channel (Fig. 4.6).
Unfortunately, this approach, that exploits simple spatial periodicity, is unfeasible
because good practices in turbomachinery design impose a mutually prime number of
blades in two subsequent rows [19]. For this reason only full coupled wheel simulations
are allowed, but, during the design phase, these kind of simulations are not of interest,
since faster tool are required to optimize machine performances in an iterative process
of aerodynamic flow feature improvement.
Different modern CFD techniques have been developed to deal with these requirements
and, most of all, with the problem of unequal pitch at the connecting interface between
two stage domains. Some of them are well established and have been used in this
thesis work. A brief explanation of these methods is reported in the next sections
(4.3.1 and 4.3.2)
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Figure 4.6. Use of ’classical’ spatial periodicity to simulate equal sectors of rotor and stator,
possible only when blade numbers are not mutual prime. [19]

4.3.1 Mixing-plane
Full wheels unsteady simulation can be avoided, thanks to modern computational
techniques, but reducing the accuracy level. Since the unsteady effects (e.g. shock wave
reflection between the stages, fluttering, fluid dynamic periodic disturbances) are not
of interest during the intermediate design steps, the mixing-plane technique is widely
adopted. It is based on a tangential average of the fluid dynamic quantities exiting
from the first domain; this averaged values are used as inlet boundary condition for the
second stage and so on for all the connected domain to be simulated. The mixing-plane
approach is a powerful tool and has been extensively used in this thesis work, also
for thin annular cascade simulation. This averaging is a type of mixing process and
it assumes that the mixing out of the non-uniform flow occurs instantaneously at a
‘mixing plane’ rather than gradually through the downstream blade rows, but there
is no guarantee that the loss generated by instantaneous mixing will be the same
as that generated by the gradual mixing that occurs in practice [20]. Summarizing,
advantages and disadvantages inherent in this method are listed in Table 4.1.

Figure 4.7. three-dimensional mixing problems [20].
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Table 4.1. Pros and Cons of mixing-plane technique

advantages disadvantages

Steady formulation for both the stages Fictional mixing losses introduced
Only periodicity in space is required so
different stator and rotor pitches can be
treated

Not realistic flow pictures if strong cir-
cumferential gradients exist at the in-
let/outlet of a cascades

No information have to specified in-
between the blade rows

Increase of computational time due to
convergence at the interface

4.3.2 Transient Blade Row Models
A further step towards a complete full stage unsteady simulation is done using the
Transient Rotor Stator (Ansys CFX terminology) frame change model. Transient tur-
bomachinery flow calculations are computationally demanding, but faster calculation
can be performed by making use of a reduced model of the turbomachine. This model
reduction can be accomplished if pitch-change methods such as Time Transformation
or Fourier Transformation are used. The reduction in size of computational domain
reduces memory requirements (by a factor of 1/number of passages) and results in
faster solution convergence to a steady-periodic state [19]. In practice it is recom-
mended to simulate al least 5 to 10 periods, monitoring relevant quantities in specific
domain location, to confirm that steady-periodic behaviour has been reached. With
Time Transformation technique, the unequal pitch problem is overcome by applying a
time transformation to the flow equations so that simple periodic boundary conditions
can be used on pitch-wise boundaries. The idea is to reproduce a “phase shifted
periodic boundary conditions”. The basic principle is that the pitch-wise boundaries
R1/R2 and S2/S2 (Fig. 4.8) are periodic to each other at different instances in time.
For example the relative position of R1 and S1 at t0 is reproduced between sides R2
and S2 at an earlier time t0 - ∆T , where ∆T is defined by (PR -PS)/VR. The Time
Transformation method can be used to apply periodic conditions that are phase-shifted
in time, also for boundary disturbance cases (Frozen Gust Analysis).

Figure 4.8. Phase Shifted Periodicity. PR and PS are the rotor and stator pitches, respec-
tively, VR is the rotor velocity [19].
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Chapter 5

Research of optimal solidity
through an automated process

In chapter (4), the most important computational models developed for turboma-
chinery application have been introduced. In this thesis, not every model have been
exploited for the turbine design. This is due mainly because supersonic turbine
cascades are a pioneering technology to be designed from scratch. Nevertheless, the
research activities in this thesis work make extensive use of simulation tools and their
results, which are listed in this chapter and the following one, revealed important
properties for the annular cascades. For sure, much more simulations will be required
in the foreseeable future in this branch of research. Indeed, although the blade profiles
can be well designed by means of the methods described in Chapter 2, the lack of
experimental evidence and semi-empirical formulas for losses, incidence angle and
so on, imply that an extensive campaign of blade-to-blade simulations is needed.
Once useful results have been acquired, other simulation models can be implemented,
starting with through-flow codes and 3D blade shape design. For blade-to-blade
simulations, the parameter listed in Table 5.1 have been adopted:

Table 5.1. Simulation settings for rotor and stator blade CFD simulation

Settings (supersonic flow-
regime option)

STATOR ROTOR

Inlet Mach number 2 1.6088 (relative frame)
Static Pressure [bar] 1.9171 2.5390
Inlet Axial Speed [m/s] 1445.46 1.2387 (relative frame)
Static Temperature [K] 1300 14755
Inlet Turbulence Intensity 5% 5%
Blade Wall Adiabatic and No-slip Adiabatic and No-slip
Hub and Shroud Walls Adiabatic and Free-slip Adiabatic and Free-slip
Reference Diameter [cm] 74.73 74.73
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5.1 Solidity effect on rounded blade profile
During the mean-line design of the turbine stage, the MOC code produced blade
shape with a solidity not exactly related to a loading criteria. Indeed, Goldman
approach was simply related to the supersonic, inviscid and irrotational flow analysis
in Cartesian coordinate; the velocity distribution (see Fig. 2.16) along the blade wall
is indirectly prescribed adopting the "vortex-flow" method, but flow features assumed
to develop this methodology give a not realistic picture of what rounded profiles can
lead to, in term of performance detriment. A more accurate flow-field prediction have
been assured thanks to the application of Moeckel [12] detached bow shock wave
prediction. Better results have been achieved extending that methodology with the
incorporation of an original scheme, conceived during this thesis work and based on
classical gas dynamic theory, that allows to guess position and strength of the first
reflected shock wave. Actually, with the solidity, defined as σ = chord/pitch, given
by the implicit-MOC code and the thickness assumed from published loss model for
supersonic turbine [21], it was expected the presence of several other shock wave
reflection. This is quite intuitive, if basic gas-dynamic notion are considered and,
consequently, an analysis about the solidity effect on turbine performances is required.
The blade to blade simulation campaign, which characterizes the second half of this
thesis, starts with the previous considerations. CFD analysis confirms the shock
pattern (Fig. 5.1) supposed and partially simulated in the mean-line design. Of
particular interest is the presence not only of shock reflections, but also of expansion
waves and their interaction with BL (Fig. 5.2). Although a deeper analysis is required
to fully understand how the supersonic flow-field interacts with transitional behaviour
of boundary layer, some "classical" patterns are present. Where shock waves hit the
blade profile, the BL thickens and the defect velocity region is visibly more extended.
It can be also noticed how strong is the detached bow shock wave in front of the blade.
This is the main source of loss for the turbine and every kind of machine aerodynamic
optimization must face this phenomenon. In this simulation the performances are
worsen by the numerous reflections along the blade channel and, of course, by the
presence of a subsonic wake downstream the trailing edge. The entropy production
∆s is equal to 50.0414 [J kg−1 K−1].

5.2 Loading Criteria
At this point a new value for the solidity is required, but in literature only very few
relations are present to determine this value for axial turbines. These relations are
the loading criteria, which typically limit the product between mass flow rate per
passage times the tangential force on the blade by properly optimize the solidity
value. Indeed, cascade profiles are subjected to at least two opposite requirements:
minimization of wetted surface and minimization of BL separation risk. Fixing the
blade chord value, the first requirement implies to adopt a low number of blades (i.e.
low solidity value), whereas the second one points an opposite request for the blade
numbers. A trade-off must be find and semi-empirical models have been formulated
and experimentally validate for every kind of turbomachine. Nevertheless, axial
turbines are not so sensitive to the necessity of increase the number of the blades
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Figure 5.1. Density gradient contours in arbitrary log scale (i.e. numerical-Schlieren visu-
alization) of supersonic stator blade with solidity imposed by the Method of
Characteristics

Figure 5.2. Mach contours of supersonic stator blade with solidity imposed by the Method
of Characteristics
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in order to avoid separation, since in these applications the pressure gradient is not
adverse.

5.2.1 Zweifel criterium
Two relevant criteria are available in literature (detailed explanations are present
in [57] or in the original reports):

1. Ainley-Mathieson criterium. It looks for the minimum losses based on experi-
mental measurement.

2. Zweifel criterium. Adopted in the mean-line code. It limits the tangential
force on the blade. Zweifel introduced an ideal tangential blade force, which is
based on an ideal pressure distribution shown in Fig. 5.3b. This ideal pressure
distribution has the maximum total pressure over the entire pressure side. On
the suction side, the pressure falls instantaneously to p2 being the lowest pressure
possible without pressure rise. This ideal pressure, which of course cannot be
realized, gives a tangential force per unit of length.

CFt = Ft
1
2bρV

2
1

= 2
σax

cos2 α1

(
V0m

V1m
tanα0 − tanα1

)
(5.1)

where Cft stands for "tangential force coefficient", σax = bx/s is the axial solidity
(i.e. ratio between the axial chord projection and the pitch), α are the flow
angle with Anglo-American convention (Fig. 5.3a) and Vm are the axial speed
components.

(a) Anglo-American convention for
flow angles

(b) Real and ideal pressure distribution around a turbine
blade [58]

The recommended value for the tangential force coefficient CFt found in literature
is 0.8 or in the range of 0.6 ÷ 1.2, if a wider and more modern sample of subsonic
axial turbine is considered. The CFt value obtained with the solidity coming from the
MOC is equal to 0.135 (i.e. 56 blades)for the stator. This discrepancy with respect
to the usual turbomachines is an important signal, which represent how different are
flow-field and forces in case of a supersonic blade passages. The blades, in fact, are
less loaded (so less subject to BL separation) because the aim of the implicit-MOC
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code is only to carefully lead the flow particles into the blade passage with a smooth
change of direction.
The choice to use CFt as driving parameter for the optimization process of row
performances is not mandatory, but reveals to be particularly adequate. Its meaning is
not simply related only to blade solidity but it takes in account also the flow deflection,
through the flow angle in their frame of reference, and with a minor impact to the
change in the axial velocity components. These last two quantities are involved in
almost every step of the mean-line code, including the imposition of a reaction degree,
the Kantrowitz starting limit and the MOC code itself. Moreover, it must be noted
that the original MOC profile is sharp, according to the isentropic expansion theory
(expansion and compression characteristic lines), while the real one have been rounded
according to a suggested parameter from [21] of pitch/th ratio equal to 25 (th stands
for thickness and it is referred to profile thickness at leading and trailing edge).

Figure 5.4. Evolution of the pressure losses with pitch to leading edge thickness from [21].

5.2.2 Upper limit for CFt
Meanwhile the lower limit of CFt value have been identified as equal to the one
indirectly prescribed by the MOC, there is the necessity to select an upper limit,
based on fluid dynamic considerations. During the initial design phase and thanks
to early blade to blade simulations, shock pattern and outlet flow angle variability
have been investigated. It immediately became clear that the turbine blades should
not be too far apart, since the flow at domain exit could present low adherence to
the prescribed outlet angle. In other words, blades are not able to impose the correct
direction to the flow if the solidity is too low (i.e. too high value for CFt). Moreover,
the shock pattern in this situation could produce strong disturbances into the intra-row
gap by directly impinging the downstream rotor blades or affecting the subsonic
wake, an already problematic region to deal with. For this reason, the mean-line
code portion dedicated to the modelling of bow shock and its reflection is not thought
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to face shock waves which exit the blade passage without any intersection with the
profile curves. The upper limit accepted for the stator CFt is 0.3 (i.e. 26 blades)(Fig.
5.5 and 5.6).

Figure 5.5. Mach contours of supersonic stator blade with solidity imposed by the mean-line
code CFt = 0.3; 26 blades

Figure 5.6. Density gradient contours in arbitrary log scale (i.e. numerical-Schlieren visu-
alization) of supersonic stator blade with maximum solidity accepted by the
mean-line code CFt = 0.3; 26 blades

For the sake of completeness, results coming from a simulation with CFt = 0.44 (i.e.
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17 blades) are also reported (Fig. 5.7 and 5.8).

Figure 5.7. Mach contours of supersonic stator blade with solidity imposed by the mean-line
code CFt = 0.44; 17 blades

Figure 5.8. Density gradient contours in arbitrary log scale (i.e. numerical-Schlieren visu-
alization) of supersonic stator blade with maximum solidity accepted by the
mean-line code CFt = 0.44; 17 blades

In both cases shock-BL interactions are relevant. Indeed, the shock reflected on the
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blade pressure side impinges the rear section of the lower blade, where the flow field is
already delicate to manage. In Fig. 5.7, and, to a lesser extent, in Fig. 5.5, is present
a large flow region of undesired over-speed (red zone in Mach contours plot) and,
immediately downstream, there is a flow separation zone caused by shock incidence
and consequent flow-field adjustments in terms of expansion waves and secondary
shocks.

5.3 Golden-section search method
For a given blade geometry with given inlet and exit flow angles, there exist a distinct
pitch/chord ratio at which the profile losses are minimum [58]. Moreover, it can be
assumed that the blade profile performance, evaluated in term of entropy production
across the row or, equivalently, in term of total pressure loss, is a unimodal function
of CFt. A function f(x) is said to be unimodal in a given interval [xa;xb] if, given
a value xm, it is monotonically decreasing for x ≤ xm and monotonically increasing
for x ≥ xm. For function f(x), minimum value is f(xm) and there is no other local
minimum (see Fig. 5.9). With unimodal function any extreme found is guaranteed to
be the global extreme.

Figure 5.9. Examples of unimodal function

Actually, the optimization procedure implemented is related to a parameter and, by
means of that, to a Matlab mean-line code which does not maintain exactly fixed all
the other blade parameter (geometry, flow angles and so on), since all of them are
related to the CFt itself. Anyway, the searching procedure is coherent with all these
aspects, since the efficiency function still remains unimodal.
Among the enormous amount of techniques available in the optimization methods
field, the choice fell on the Golden-section search method. It is a brute-force approach,
in which the design domain is iteratively divided into subdomain in proportion to the
golden ratio φ = 1.618.
As shown in Figure 5.10a, the first point is identified as x1 = xa + 0.618(xb − xa); ,
then the second point x2 = xb − 0.618(xb − xa). The method works as follows:

1. If f(x1) > f(x2), then the minimum is between xa and x1, and the region to
the right of x1 is excluded from the search, as illustrated in Figure 5.10b. We
assign xb = x1 to continue the search

2. If f(x1) < f(x2), then the minimum is between x2 and xb, the region to the
left of x2 is excluded from the search, as illustrated in Figure 5.10c. We assign
xa = x2 to continue the search.
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5.3. Golden-section search method

3. If |f(x2)− f(x1)| < ε, then we found the optimal point at xm = xb or xa.

(a) (b) (c)

Figure 5.10. Illustration of the golden section search method [22].

This method have been implemented into a code written in Python language (flowchart
in Fig. 5.11). The optimization objective is the minimization of entropy production
∆s, calculated as the difference between mass-flow averaged entropy at domain outlet
and at the domain inlet. The function to minimize is unknown and must be evaluated
in every design point selected by the algorithm. To do that, the Python code calls
different software:

1. Matlab: in this environment the mean-line code starts calculation for the blade
definition. Output are the coordinate files (.crv) for the profile and the number of
blades for the following step. The blade profile curves are provided in Cartesian
coordinate, but first it is needed to transform the planar blade passage obtained
with the MOC into an annular passage. This topological transformation is
described in Appendix D.

2. Ansys TurboGrid: it loads the coordinate files and read the number of blades
(i.e. number of passage in a single stator (rotor) row) and create the mesh. Note
that settings for the mesh are fixed in term of BL refinement and number of
node for passage. The output is the mesh

3. Ansys CFX-Pre: it sets the simulation (previously defined thermodynamic pa-
rameter and computational models) and load the mesh with relative information
about boundary conditions

4. Ansys CFX-Solver: it runs the simulation adopting a parallel computing ap-
proach with the available CPU cores.

5. Ansys CFX-Post: it elaborate the simulation results and extracts several infor-
mation for the post processing. The most important are the mass-flow averaged
entropy at domain outlet and the mass-flow averaged entropy at the domain
inlet, computing the difference ∆s between this two quantities. ∆s is the output

Actually, golden-section search method takes a lot of function evaluations to find an
optimal solution. When the number of design variables increases, the computation time
required for performing function evaluations is substantial, making these methods less
desirable [22]. However, this method reveals to be easy to implement and acceptably
time consuming for this thesis purpose, mainly because the searching interval have
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been "artificially" restricted due to the fluid dynamic considerations described in the
previous section (5.2).

Start

Input:
xa, xb, f(xa), f(xb), tollerance ε

x1 = xa + 0.618(xb − xa);
x2 = xb − 0.618(xb − xa)

evaluate f(x1) and f(x2)

|f(x2)− f(x1)| < ε ? Input: x1
Optimum value

f(x1) > f(x2) ?

xb = x1
and

xa = xa

xa = x2
and

xb = xb

Stop

No

Yes

Yes

No

Figure 5.11. Flowchart of the golden-section search method. Note that the function f(x)
corresponds to the entropy production ∆s evaluated by means of CFD simula-
tions as the difference between mass-flow averaged entropy at domain outlet
and the entropy at the inlet.
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5.4 Optimal Solution
Outcomes of the optimization procedure are reported hereafter for stator and rotor
rows. CFt values of interest for the stator are included in the interval [0.135;0.3], and
the optimal solution have been found to be CFt = 0.226 with 33 blades. For the
rotor row the interval is [0.233;0.4] and the optimal solution have been found to be
CFt = 0.245 with 32 blades. The mesh independence analysis and the y+ calculation
is reported in Appendix C.
Luckily, the blade numbers are mutual prime and this is a minimum requirement for
subsequent rows in order to avoid undesirable fluid-structure interaction. This expedi-
ent allows at least to avoid that the blades could vibrate and oscillate synchronously.

5.4.1 Stator Cascade
With the optimum value of CFt for the stator, the entropy variation ∆s is limited to
44.504 [J kg−1 K−1] and the total pressure loss coefficient, if evaluated with respect to

the inlet kinetic energy, is Y = P 0
inlet − P 0

outlet

P 0
inlet − Pinlet

= 15.84%. Bow shock wave is reduced in

extension and number of reflections (see Fig. 5.12), but still retaining a good capability
of impose a deviation to the flow-field, contrasting its inertia. Shocks interact with the
BL in position where the flow is not problematic (see Fig. 5.13). Indeed, separation
bubble are not present and the usual BL thickening in the interaction zone is modest.
Subsonic pockets are present only in the wake region and in front of the leading edge.
In the latter zone, the flow passes throughout a section of the bow shock strong enough
to be considered normal and, consequently, to concentrate an important amount of
total pressure losses.
While deflecting the flow, blades produce an increase of static pressure and static
temperature up to, respectively, 2.634 [bar] and 1491.4 [K] at the outlet. The Mach
number, instead, decreases to 1.69. All these quantities are mass-flow averaged at
the outlet section. Giving this values it is clear that the blades act as a convergent
supersonic diffuser, whereas a subsonic classical turbine can be idealized as a convergent
subsonic nozzle.
By way of comparison, the blade loading chart is reported in Fig. 5.14, considering
the three main simulations analysed in this chapter. Here, it is possible to have a look
to almost every phenomenon described up to now from a different point of view. For
sure, this blade loading chart is very different with respect to the classical turbine
ones, but important dissimilarities are visible also among the three simulations.
In the first part of the profile, all blades are not loaded, as imposed by the 0D
code, but the extension of this zone increases with CFt (i.e. decreasing the number
of blades). Where the profile begins to deflect the flow, the loading progressively
increases. The difference can be explained considering that cascades with high solidity
are characterized by more gradual pressure variation due to the mutual interaction
between pressure-side and suction-side pressure field. In the chart, are clearly visible
also the positions where shocks interact with BL, by looking at the peaks of pressure
curves.
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Figure 5.12. Density gradient contours in arbitrary log scale (i.e. numerical-Schlieren
visualization) of supersonic stator blade with optimum solidity CFt = 0.226,
33 blades

Figure 5.13. Mach number contours of supersonic stator blade with optimum solidity CFt =
0.226, 33 blades
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Figure 5.14. Blade loading chart of supersonic stator blade with various CFt (number of
blades)

5.4.2 Rotor Cascade
With the optimum value of CFt for the rotor, the entropy variation ∆s is limited to
29.634 [J kg−1 K−1]. The total pressure loss coefficient is Y = P 0

inlet − P 0
outlet

P 0
inlet − Pinlet

= 13.35%.
An aspect to note is that, while the optimization code for the stator led to a reduction
of entropy production ∆s compared to the starting MOC-based profile of 25%, the
advantages for the rotor are of minor importance, leading to only a 5% ∆s reduction.
The main reason this happens is to be found in the shock wave lattice (see Fig. 5.15).
The inlet rotor Mach number is lower than the stator one so, the losses associated
with the detached bow shock wave are less relevant if compared to the other loss
sources in the rotor passage. Indeed, the other effect of having a lower inlet Mach
number is that the bow shock is characterized by a higher slope. Whatever is the
number of blades among those evaluated by the Golden-section search method, the
bow shock is continuously reflected much more times than in the stator channel. For
this reason, despite the low total pressure losses caused by the bow shock, there are
no advantages for the overall rotor row performances, because of its reflections, whose
strength and positions play an important role in the entropy production.
In Fig. 5.16, it can be seen that the flow-field is particularly regular, there are
no regions of flow separation or incipient separation and the subsonic wake zone is
confined. Moreover, the outlet mass-flow average Mach number is equal to 1.262
in the stationary frame. This low value allow one more degree of freedom for the
design of the hypothetical following stage: force the flow to become subsonic with a
convergent-divergent nozzle shape or proceed with one more supersonic stage.
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Figure 5.15. Density gradient contours in arbitrary log scale (i.e. numerical-Schlieren
visualization) of supersonic rotor blade with optimum solidity CFt = 0.245, 32
blades. Relative frame of reference

Figure 5.16. Mach number contours of supersonic rotor blade with optimum solidity CFt =
0.245, 32 blades. Relative frame of reference
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5.5 Outlet flow angle analysis
Aim of the optimization procedure was to find the blade number, for both stator
and rotor, that maximizes row performances. Results of CFD simulations in term of
entropy production and total pressure loss have been compared with 0D prediction
model (2.6), with particular interest on the shock pattern prediction capability of
the mean-line code. Another fluid dynamic quantity of considerable importance that
deserves an in-depth analysis is the outlet flow-angle. Whatever is the mean-line
code accuracy and despite the effort to improve its prediction capability, it is still
a reduced order model with respect to the CFD. For this reason, since the relevant
turbomachinery parameters are treated as lumped ones, it is not possible to extract
information about the flow-field non-uniformities from the mean-line code. This is the
case of stator outlet flow angle. The entire machine architecture and, in particular,
the blade profiles are designed to deal with precise flow angle to achieve certain
power, efficiency and torque. If, for some reason, discrepancy and variability of flow
properties are too relevant, the mean-line code loses accuracy and reliability. In case
of outlet flow angle, it can be subjected to excessive variability due to residual shock
and expansion waves and can suffer of discrepancy with respect to 0D value if the
deviation angle (i.e. difference between flow angle and blade metal angle) is too large
(flow not well-oriented and blade too loaded).
In this section a detailed analysis of outlet flow angles at stator domain exit is proposed.

Blades 17 26 33 56

α2 average 20.75 21.82 21.77 18.36
α2 standard deviation 1.8805 1.9442 0.9136 0.3438

α2 peak-to-peak amplitude 6.01 5.92 2.80 0.99
α2 mass-flow average 20.73 21.70 21.80 18.34
α2 0D code prediction 19.97 19.87 19.97

Table 5.2. Comparison of outlet flow angle: CFD simulation vs mean-line code results

In the "56 blades" row (CFt = 0.135), the last one of Table 5.2, the CFD simulation
results show the best value for the outlet flow angle. The mean-line code prediction of
α2 is closer to the value simulated in Ansys CFX, both considering the line-averaged
α2 and the mass-flow weighted average α2 values. This should not be surprising
since 56 blades are exactly the number of blades obtained with the MOC, so in this
situation the flow is better forced through the passage. Unfortunately, as explained in
section 5.1, this configuration is not acceptable in term of entropy production, due
to the numerous shock reflections along the channel. Also the standard deviation
value is coherent with the phenomenology just described; in fact, it is the lowest value
achieved.
For what concern the other three simulations here reported for comparison purpose
(see Fig.5.17 and Fig. 5.18), the "17 blades" (CFt = 0.44) one gives results that are
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the worse in term of standard deviation or, in other words, the flow angle at stator
domain outlet presents a too high irregularity with such a low number of blades.

Figure 5.17. Plot of outlet velocity flow angle. To compare the curves extracted from
four different CFD simulations, the curvilinear (circumferential) coordinate
have been normalized with respect to the pitch dimension for every stator
configuration reported here.

Figure 5.18. Plot of deviation angle. To compare the curves extracted from four differ-
ent CFD simulations, the curvilinear (circumferential) coordinate have been
normalized with respect to the pitch dimension for every stator configuration
reported here.
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The standard deviation value is also too high for the "26 blades" (CFt = 0.3) con-
figuration and it is more than double the value of the "33 blades" (CFt = 0.226)
configuration. The peak-to-peak value reduction with the increasing of the blades
number confirms the conclusions reached so far. In both simulations, the deviation
angle is roughly equal to 2 degree, but the relevant fact is that, implicitly, a good
trade-off between flow outlet angle variability (standard deviation parameter) and
efficiency have been found without using a multi-objective optimization algorithm.
This is, from a fluid dynamic point of view, directly related to the shock pattern and
to the right and left running characteristics position, whose choice implies the amount
of losses and the non-uniformity of outlet flow quantities.
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Chapter 6

2D turbine stage simulation

The computational methods to analyse the flow in cascades presented in Chapter 4
are useful design tools. Blade-to-blade simulation is the first step to achieve a full
understanding of the 3D flow-field behaviour in a turbomachine. In this chapter, the
analysis starts considering the design condition of the supersonic turbine. Stator-rotor
coupling is approached with the mixing-plane technique and then by adopting a “phase
shifted periodic boundary conditions”, which allows to capture unsteady flow behaviour
in the rotor row. The latter methodology is based on the Time Transformation pitch-
change method (theoretical background are exposed in section 4.3.2). In the second
half of the chapter, results from simulations in off-design condition are analysed. In
those sections, the variations of the stator inlet velocity angle and, later, of the inlet
Mach number are considered. In both cases simulations are performed first only on
the stator annular cascade domain and then on the entire stage, with the mixing-plane
technique.

6.1 Full stage simulation in design condition
After the value of CFt have been chosen with the golden-section search method, single
rows have been simulated by imposing as boundary conditions the values coming
from the mean-line code (see Tab. 6.1). The following step to assess the supersonic
turbine performance was to simulate the coupled stages by means of the mixing-plane
technique (theoretical background have been briefly reported in paragraph 4.3.1). The
results coming out from this simulation turned out to be consistent with the mean-line
code performance prediction, with a certain level of approximation. Indeed, the
reported results in Tab. 6.1 and in Tab. 6.2 are promising for the future development
of the supersonic turbine and its integration with a RDE, but some approximations
have been introduced into the simulation procedure. First of all, the blade-to-blade
simulations described in paragraph 5.4.2 and the ones reported hereafter do not take
care of the height increase of the rotor blades. To assess the influence also of this
parameter a full 3D mixing-plane simulation is required. This is the main reason why
some flow-field parameters show deviation with respected to the 0D results. Losses
calculated in this simulation are respectively ∆s = 45.29 [J Kg−1 K−1] for the stator
row and ∆s = 26.97 [J Kg−1 K−1] for the rotor row. It must be noted that the entropy
production value in the stator row, if coupled with the rotor domain, is in line with
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the value evaluated simulating the stator alone. Some small discrepancies are present
in the coupled rotor row, whose quantities of interest are different with respect to the
rotor stand-alone simulations. Losses are lower in the mixing-plane approach since
the Mach number at the rotor inlet, coming from the numerically mixed stator outlet,
is a bit lower with respect to the one predicted by the 0D code, so the shock waves
are less strong (contours are reported in Fig. 6.1, 6.2, 6.3 and 6.4). Anyway, lack of
accuracy is present in both the mean-line code and in the mixing-plane simulation,
since no end-wall effect have been included. To deal with this source of losses is easy
in a 3D CFD simulation, but it could not be the case for the mean-line code. A
full comparison between the 0D code results and the blade-to-blade CFD simulation
outcomes is carried out in section 2.6.
The performance parameters (see Tab. 6.2) of the machine are promising for the
development of this pioneering turbine class, since there are several design parameters
and optimization chance that can lead to a decrease of the entropy production.

Table 6.1. Relevant quantities, mass averaged, at stator inlet and rotor outlet.

Quantity Inlet Outlet Ratio (Out/In)

Static Tempera-
ture

1300 K 1667.95 K 1.283

Total Temperature 2340.1 K 2170.11 K 0.927
Static Pressure 1.91856 [bar] 356720 [bar] 1.859
Total Pressure 15 [bar] 8.97 [bar] 0.598
Static Enthalpy 1006.26 [kJ kg−1] 1375.82 [kJ kg−1] 1.367
Total Enthalpy 2050.94 [kJ kg−1] 1880.2 [kJ kg−1] 0.917

Table 6.2. Results quantities, mass averaged, at stator inlet and rotor outlet. Note that
the 0D code provides a value of ηtt = 56.4 and of 172 [kJ kg−1] for the specific
(Eulerian) work. Discrepancies with respect to CFD simulation are due to the
lack of a deviation angles model.

Results

Torque (single rotor blade) 124.184 [Nm]
Torque (all blades) 3973.89 [Nm]
Specific work 171.5 [kJ kg−1]
Dimensionless mass flow 0.0284926
Power Coefficient 0.00517448
Total-to-total isentropic. efficiency ηtt 54.85%
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Figure 6.1. Mach number contour in design condition. Relative Mach number reported for
the rotor domain

Figure 6.2. Static pressure contour in design condition
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Figure 6.3. Density gradient contours in arbitrary log scale (i.e. numerical-Schlieren visual-
ization) in design condition

Figure 6.4. Static temperature contour in design condition
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6.2 Frozen Gust Analysis
The goal of this approach is to set up a transient blade row calculation to model an
inlet disturbance (frozen gust) using the Ansys CFX Time Transformation model [19].
The basic idea is to consider fluid dynamic values at the outlet stator domain as input
for an unsteady simulation of the rotor, evaluating the fluid-flow at each time step
only in rotor domain. The difference with respect a mixing-plane approach is, first
of all, in the fact that those outlet values are not circumferential averaged, so the
rotor is subjected to non uniform time-dependent inlet boundary conditions. The
simplification inside this procedure consists in this domain reduction that allow a
saving in term of storage and computational resources. When a Frozen Gust Analysis
is performed, the upstream row, the stator one in this case, is not influenced by the
downstream flow-field variations and for this reason can be said to be frozen. From
the rigorous mathematical point of view, this setting is based on a wrong assumption.
Indeed, the URANS system of equations is always parabolic, whatever is the flow
regime, and for this reason small disturbances in the flow-field can travel upstream in
space. Nevertheless, the lower computation effort can make the Frozen Gust approach
feasible for a coarse optimization of the blade, based on the transient phenomena that
can be captured. Moreover, the fluid regime in this application is almost everywhere
supersonic (the only exception is the wake region) and the capability of internal small
disturbances to travel upstream is greatly reduced. It is intuitive that, considering the
unsteadiness in a turbomachine simulation, the results in term of efficiency, entropy
production and total pressure loss are lower if compared with the ones simulated with
steady-state setting. Nevertheless, here the most interesting parameters are those
related to the outlet flow angle average value and its standard deviation (Fig. 6.5).
Understanding the physics beyond and assessing the stage performance in terms of
flow angle quantities is very important for the RDE applications, since the latter
produce a flow that is inherently periodic, unsteady and not uniform. Results of the
flow angle analysis are reported below in Tab. 6.3 and in Fig. 6.5. Monitor points
have been positioned close to the periodic boundary in correspondence of inlet domain
section (subscript in), leading edge (subscript LE), trailing edge (subscript TE) and
outlet domain section (subscript out).

Table 6.3. Relevant quantities, mass averaged, at stator inlet and rotor outlet.

βin [deg] βLE [deg] βTE [deg] βout [deg]

mean value -1.80 -1.50 19.20 18.92
standard deviation 0.06483 0.49133 0.02810 0.01359

peak.to-peak amplitude 0.2605 1.8865 0.1352 0.0458

Considering that the mean-line code designed a value of 0 [deg] for the relative speed
flow angle at the leading edge and of 20.38 [deg] for the relative speed flow angle at
trailing edge, the simulation reports the presence of both a negative incidence angle and
a negative deviation angle. To solve this problem of discrepancy, a better prediction
model for incidence and deviation should be included into the 0D code, based on
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experiments or a more extensive simulation campaign of MOC-based supersonic
blades. Nevertheless, the most important result achieved with this simulation is the
assessment of the row capability to damp inlet oscillations. The standard deviation
values and the peak-to-peak values confirm that this happens not only due to the
mixing phenomenon downstream of the blade, but already in the blade passage due
to the good design of characteristic line positions. This damping capacity can be
observed for every quantity of interest evaluated at inlet and outlet surfaces.

Figure 6.5. Plot of velocity flow angle for rotor inlet and outlet vs time

Figure 6.6. Plot of entropy increase throughout the rotor passage vs time

For what concern the entropy production throughout the blade passage, the oscillatory
behaviour is evident and a small increase of this value is present, as expected, when
compared to the one obtained by means of the mixing-plane technique. The negative
peaks in Fig. 6.6 shows the moment in which the rotor cascade is in the best position
with respect to the stator row (Fig. 6.7), since the flow-field is much similar to the
one for which the blades are designed. In Fig. 6.8, instead, the situation is opposite
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6.2. Frozen Gust Analysis

Figure 6.7. Mach number contours at 3.7e-4 [s]. Arbitrary scale: low limit fixed to 1

Figure 6.8. Mach number contours at 7.8e-4 [s]. Wake, became again supersonic, hits the
rotor leading edge. Arbitrary scale: low limit fixed to 1. Note the presence of
larger subsonic zone behind the shock waves.
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and it is the worst configuration. When the wake, although being again supersonic,
hits the leading edge of the rotor blade, the shock pattern become more problematic.
The wake is, by definition, a region of velocity defect and so a low Mach number flow
is encountered by the rotor blade. Lower Mach numbers are associated with lower
oblique shock angles, but, in this situation, the shock is detached and the effect is
an enlargement of the subsonic zone in front of the leading edge. A problem arises
because, in this zone, the total pressure losses are the higher possible and only the
wake absorption can mitigate these effects. It follows that the inter-row distance is
a very important parameter to be optimized, much more than in classical subsonic
axial turbines.

6.3 Off-design performances
At this point the off-design performances of the stator row and, than, of the full stage
later remains to be investigated. The two fluid dynamic parameters chosen to be
varied are the inlet flow angle and the inlet Mach number. This choice is motivated not
only by the need to understand how a supersonic turbomachine works in a wide range
of different inlet conditions, but also because the RDE, for which the turbine stage
have been designed, present high variability of these parameters. Further investigation
should be performed also for inlet pressure and temperature variations.

6.3.1 Full stage: inlet flow angle variation
For this set of off-design simulation, every inlet boundary conditions have been fixed but
the inlet angle. Since Ansys CFX deals with annular cascade, the information about
inlet angle have been provided to the solver by defining the axial and circumferential
component of velocity. The angle have been varied between -16 [deg] to +16 [deg]
with a spacing of 4 degrees, leading to 8 off-design simulations. The effect of these
settings is a reduction of the mass flow rate (Tab. 6.4) and, consequently, the turbine
unstarting for extreme value of the inlet angle. Actually, only the simulation with inlet
angle equal to -16 [deg] did not converge (i.e. value of residuals too high), because
of the stator blade passage unstarting, despite every effort made to deal with the
presence of a normal shock too close to the mixing-plane interface.

Table 6.4. annular mass flow rate passing through the thin layer which, in Ansys CFX,
describes the blade-to-blade passage

αin [deg] -12 -8 -4 0 4 8 12 16
mass flow rate [kg/s] 0.8273 0.8376 0.8438 0.8458 0.8438 0.8376 0.8273 0.8131

In Fig. 6.9, the values of entropy increase are reported for the full turbine stage and
for only the rotor blades. Looking at those values, what can be noticed is that the
losses curve is not "symmetric" with respect to the on-design condition. It appears that
the supersonic stator blades are able to provide good performances with a positive
incidence angle (further discussion in paragraph 6.3.2). As can be expected at this
point of the discussion, the rotor blade are not so sensitive to the variation of the
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stator inlet flow angle, mainly because the stator itself have been demonstrated to
possess good capability to deviate the flow. For what concern the sensitivity of β2
(i.e rotor outlet relative flow angle) to the stator inlet flow angle variations, good
results have been achieved (Fig. 6.10). Standard deviation values are very low and
this confirms again the low sensitivity of the machine, at least to the flow angle
disturbances. Also the averaged values of β2 are in a small range of deviation from
the reference value at 0 [deg] or from the mean-line code designed value.
By way of example, Mach number contours and numerical-Schlieren visualization are
reported below, resulted from the -12 [deg] simulation (Fig. 6.11 and Fig. 6.12) and
the +12 [deg] simulation (Fig. 6.13 and Fig. 6.14).

Figure 6.9. Plot of entropy increase vs inlet flow angle

Figure 6.10. Outlet flow angle averaged value vs inlet angle (left); Outlet flow angle standard
deviation vs inlet angle (left)
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Figure 6.11. Mach number contours. Inlet incidence angle: -12 [deg]. ηtt = 18.86%. Subsonic
pocket downstream the bow shock, close to the BL, in wake region and at the
rotor inlet. This configuration is close to the unstarting.

Figure 6.12. Density gradient contours in arbitrary log scale (i.e. numerical-Schlieren
visualization). Inlet incidence angle: -12 [deg]. ηtt = 18.86%. The shock lattice
confirms that this configuration is close to the Kantrowitz limit. Note that,
because of BL separation, the useful stator passage section is reduced.
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Figure 6.13. Mach number contours. Inlet incidence angle: +12 [deg]. ηtt = 21.98%

Figure 6.14. Density gradient contours in arbitrary log scale (i.e. numerical-Schlieren
visualization). Inlet incidence angle: +12 [deg]. ηtt = 21.98%
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6.3.2 Stator row: inlet flow angle variation
A deeper analysis of the single supersonic stator blade reveals to be necessary. The
goal was to better understand what is the stator behaviour in a more extended
range of inlet flow angles. Here, the full interval have been simulated, spacing
from -16 deg to +16 deg. Every simulation achieved convergence, also in unstarted
configuration. In Fig. 6.15, the loss curves confirm the trend already captured in the
mixing-plane simulations. It must be noted that losses in stator are crucial for the
stage performances, mainly because of the shock waves lattice, and, for high value of
incidence angle, also for its interaction with the BL. The rotor plays a crucial role
only for the starting of the entire machine, but its contribution in term of entropy
production is always relatively small. The simulation results also suggest further
considerations: a robust optimization of the machine must deal with the fact that
supersonic profiles do not well perform, if subjected to negative incidence flow-field.
This fact suggests that, in a future integration between the turbine and the RDE,
it should be better to design the blade in order to operate not in its "steady-state"
maximum efficiency point, but with a positive incidence angle in order the extend to
operation range also to the negative values of the inlet flow angle.

Figure 6.15. Entropy production (left) and Total pressure ratio (right) for the stator blade
vs inlet flow angle

In Fig. 6.16 are reported values of outlet flow angle and the respective trend for
standard deviation index. The flow-field is characterized by a medium level of
variability at the outlet surface. The on-design condition is the best, considering both
the deviation from the 0D code angle prediction and the standard deviation index.
Meanwhile, in off-design condition the profile progressively loses the capability to
impose the flow direction and the discrepancies with respect to the nominal condition
are equal to 4 [deg] in the worst scenario.
Moreover, it is interesting to observe the Mach contours in the unstarted configuration
with -16[deg] incidence angle (Fig. 6.17). The stator is unstarted: the presence
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Figure 6.16. Mean value of stator outlet flow angles (left) and standard deviation (right) vs
stator inlet flow angle

of a normal shock wave close to the inlet section cause tremendous losses and BL
separation. The subsonic region is more extended on the front part of the suction side
of the blades, while on the correspondent regions on the pressure side, the flow must
accelerate to overcome the leading edge.

Figure 6.17. Mach number contours of the -16 [deg] inlet flow angle configuration. The scale
is limited to a value of 1 for the upper bound to better evidence the supersonic
regions (in red).

For what concerns the BL development, in Fig. 6.18 are reported the value of the
z-component of the shear stress at the blade wall. For the sake of clarity, only values
coming from simulation with +12 [deg], 0[deg] and -12 [deg] are plotted.
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Figure 6.18. Shear Stress axial component vs stream-wise coordinate. Where the value are
positive, there is the presence of boundary layer separation. For the design
condition, these regions are very limited and present only where shock waves
hit the BL; the worst situation is in the -12[deg] configuration, where front
part of the blade pressure side experience extensive reverse flow due to BL
separation, because of the negative incidence.

6.3.3 Full stage: inlet Mach number variation
In this series of simulations, the turbine stage have been exposed to an inlet flow
with different value of the Mach number. Static pressure and static temperature have
been kept fixed. This choice was arbitrary. In future simulation campaign, other
inlet parameters combination can be studied. The closer alternative is to fix the total
quantities and vary the Mach number. The inlet flow angle in all the the following
simulation is the nominal one, i.e. 0 [deg]. The first results obtained are related to the
unstarting of the turbine stage. It can be noted, in the following diagrams, that the
range of inlet Mach number varies from a value of 2 to 2.8. For value lower than 2, the
nominal design condition, the simulations did not converge because of the presence of
a normal shock upstream the rotor blade and too close to the mixing-plane, causing
numerical instabilities. Actually, the mean-line code already faced this problem by
gradually increasing the height of the rotor blade, in order to accelerate the flow field
and, therefore, satisfy the Kantrowitz limit. Unfortunately, simulating the average
stator and rotor profiles, it was not possible to take into account the increase in
channel size and therefore, when simulating the full stage atM < 2, the rotor does not
start as it can be expected from the Kantrowitz condition applied to a constant height
rotor. In Fig. 6.19 are reported the losses in terms of mass weighted averaged entropy.
The latter is reported at every surface of interest: stator inlet (S1in), stator outlet
(S1out), rotor inlet (R1in), rotor outlet (R1out). Stator outlet and Rotor inlet surfaces
are the interface boundary where the numerical mixing takes place by circumferential
averaging the flow-field. It can be noted how the entropy in R1in is always a bit higher
than the one in S1out, because of the mixing process. Overall, the stage losses increase
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almost linearly with the inlet Mach number. Same trend is present for the single rows
of stator and rotor. At higher Mach, greater growth is observed. This is due not only
to the BL and the mixing process, but, most of all, to the reflected oblique shock that
impacts the blade profile in proximity of the trailing edge, so favouring a premature
flow separation.

Figure 6.19. Entropy values throughout the full stage domain

In Fig. 6.20, rotor outlet flow angle in relative frame of reference have been analysed.
The flow regime is supersonic and, increasing the Mach number, the flow inertia
becomes relevant enough to produce important deviations from the blade metal angle.
Moreover, in these conditions, the characteristic lines are not any more in the designed
position and the physical effect is an increase in the outlet flow angle variability,
highlighted by higher values of the flow angle standard deviation. In Fig. 6.21, are

Figure 6.20. Mean value of rotor relative outlet flow angles (left) and standard deviation
(right) vs stator inlet Mach number
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plotted the Mach number contours coming from the M = 2.6 configuration. It is
interesting to note how the off-design condition at the stator inlet have direct effects
on the rotor inlet not only in terms of Mach number distribution or shock waves
position (Fig. 6.22), but in terms of incidence angle. The inlet Mach number increase
is correlated to the deviation angle at the stator blade; the resulting effect is that the
rotor is subjected to a flow coming with a positive incidence angle.

Figure 6.21. Mach number contours. Inlet M = 2.6

Figure 6.22. Density gradient contours in arbitrary log scale (i.e. numerical-Schlieren
visualization). Inlet M = 2.6
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6.3.4 Stator row: inlet Mach number variation
The last part of this set of simulations is focused on the fluid dynamic phenomena
occurring in the stator channel without the influence of the downstream blade. A
more extensive analysis was deemed appropriate to understand the rangeability of the
stator, exploring also the Mach value lower than the designed one. Meanwhile the full
turbine was unstarted for M < 2 at inlet, this is not the case of the stator blade. The
mass flow rate through the passage varies linearly (see Tab. 6.5) with the inlet Mach
number, since the inlet static conditions are still fixed. The range explored with these
simulation is between 1.6 and 2.8 inlet Mach number. The following features con be
noted:

• the outlet flow angle is reduced by a few degrees when the speeds are lower than
the design condition, while there is a low over-speed sensitivity (Fig. 6.23);

• the condition of uniformity of the outgoing flow is reduced as the speed increases;

• the losses have a fairly linear trend around the design condition (M = 2) (Fig.
6.24); at higher Mach, the trend is more than linear since the reflected oblique
shock affects the trailing edge region, favouring a premature flow separation;

Figure 6.23. Mean value of stator outlet flow angles (left) and standard deviation (right) vs
stator inlet Mach number

Table 6.5. annular mass flow rate passing through the thin layer which, in Ansys CFX,
describes the blade-to-blade passage. Fixing the static conditions, the mass flow
rate varies linearly with the inlet Mach number. No presence of chocking.

Inlet Mach number 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.6 2.8
Mass flow rate [kg/s] 0.34 0.36 0.38 0.4 0.42 0.44 0.47 0.49 0.51 0.55 0.59
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Figure 6.24. Stator entropy increase [J kg−1 K−1] vs inlet Mach number.

By way of example, hereafter are reported the blade loading chart (Fig. 6.25), the
resulting Mach contours and numerical-Schlieren visualizations from some of the stator
simulations in off-design condition: Fig. 6.26 and Fig. 6.27 for inlet Mach number
equal to 1.6, Fig. 6.28 and Fig. 6.29 for inlet Mach number equal to 2.4, Fig. 6.30
and Fig. 6.31 for inlet Mach number equal to 2.8.

Figure 6.25. Blade loading chart for different inlet mach number conditions.
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Figure 6.26. Mach number contours. Inlet M = 1.6

Figure 6.27. Density gradient contours in arbitrary log scale (i.e. numerical-Schlieren
visualization). Inlet M = 1.6. Note that the shock lattice is tighter than the
one resulting from simulation in nominal condition (Fig. 5.12)
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Figure 6.28. Mach number contours. Inlet M = 2.4

Figure 6.29. Density gradient contours in arbitrary log scale (i.e. numerical-Schlieren
visualization). Inlet M = 2.4. Note that the shock lattice is more stretched
than the one resulting from simulation in nominal condition (Fig. 5.12). This
is the effect of the higher inlet Mach number, resulting in stronger and more
oblique bow shock.
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Figure 6.30. Mach number contours. Inlet M = 2.8

Figure 6.31. Density gradient contours in arbitrary log scale (i.e. numerical-Schlieren
visualization). Inlet M = 2.8

155





Conclusions

In this thesis work, a supersonic turbine have been designed and a first preliminary
optimization have been performed. The research field of interest is the development
of Rotating Detonation Engine, a novel technology able to increase the gas turbine
performance adopting a detonation combustion mode.
The reason why supersonic turbines are required for this application is that the flow
field leaving the RDE is unsteady and supersonic and must be accelerated through a
divergent nozzle. The latter has also the task to make the flow-field more uniform
in space. The outgoing flow is then forced through the turbine to extract work with
the maximum efficiency possible. Classical turbine stages are not able to withstand a
supersonic field without excessive losses, so novel turbines are needed. To do that,
the approach followed in this thesis work started by implementing an implicit version
of the MOC to design the profile. Actually, this methodology considers expansion
and compression characteristic lines in an irrotational, inviscid, adiabatic, steady, two
dimensional supersonic flow-field. Because of all these assumptions, the outcomes of
the procedures are supersonic blades with sharp leading and trailing edge. Of course,
these profiles are not feasible and must be thickened and rounded.
By doing these operations, in the real flow-field appears a complex shock pattern. To
deal with that, a methodology to forecast strength and position of the main shock
waves have been implemented and, later, validated. The shock losses were quantified
by means of these calculations and, considering also the profile losses, a mean-line
code have been written for the design of the full turbine stage. In this code, the
assessment of the starting limit for the supersonic passage is essential: the blade have
to be able to ingest the normal shock wave initially formed in front of the row. For
this reason, the rotor blades are designed with a variable height: the outlet annular
section is bigger than the inlet one. Afterwards, several parametrical analysis have
been performed to optimize various turbine parameters, such as the chord length, the
rotation speed, the blade thickness, the degree of reaction and so on.
In the second half of the work, an optimization procedure have been implemented to
chose the best value for the coefficient of tangential force and consequently for solidity
and number of blade of both stator and rotor. The optimization procedure is based on
the Golden-section search algorithm, coded in Python environment, which iteratively
evaluate the performance function by running the mean-line code, written in Matlab,
importing the output profile curve in Ansys TurboGrid, creating an adequate mesh
and, in the end, running the CFD simulation for the blade-to-blade section with
Ansys CFX. This approach was needed because of a loading criterium, empirical or
semi-empirical, for these pioneering turbines still does not exist.
After doing that, the mean-line code have been validate through CFD simulations and
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then an extensive blade-to-blade simulation campaign have been performed. These
simulations allow a better understanding of the complex phenomena involved and
give the possibility to assess the turbine performance in off-design condition of both
the full stage turbine with the mixing-plane technique and the stator blade alone.
The parameters of interest in both the off-design and the nominal conditions were the
entropy production, and other equivalent loss indicators, the incidence and deviation
angles and the flow-field variability at the outlet domain section. Unsteady simulation
of the rotor blades have been performed by means of the Frozen Gust technique.
Many future developments, regarding the design of supersonic turbines and their
coupling with RDE, are possible. All of them are required to make the detonation
engines available for improving the gas turbine performances. Starting from this thesis
work, a list of hypothetical following steps in this research field is presented below:

• The profile shape obtained with the method of characteristics should be opti-
mized through an evolutionary shape-optimization code, based on a geometrical
parametrization technique (B-Splines or Bézier curves), a high-fidelity and
experimentally validated CFD solver and a surrogate-based genetic algorithm.

• The blade-to-blade simulation campaign must be extended to understand the
effect of other inlet condition variations and find out useful correlations for
incidence and deviation angles.

• The mean-line code must be implemented with deviation angle estimation model.
This will allow the code to be more accurate in term of velocity triangles design
and efficiency prediction.

• The following stages of the supersonic turbine have to be designed

• The mean-line code should be adapted to include a spanwise model.

• The 3D row have to be simulated so that can be provided a better estimation
not only of the machine efficiency, but also of the effect of rotor height variation
and the importance of end-wall losses, clearance losses and secondary flow losses
in a supersonic environment.

• A 3D optimization of the stator and rotor rows can be done, evaluating the
possibility to design swept and leaned blade.

• An internal cooling system must be designed. This is an important problem
for this novel turbine, if coupled with RDE. Indeed, the bleed air coming from
the last compressor stage is at a pressure level lower than the burned gas in
the turbine, so an external cooling is unfeasible. Alternatively an external
compressor will be required.

• The blades integrity must be assured with a thermo-mechanical analysis, starting
from scratch in term of material designation.

• 3D conjugate heat transfer simulations, adopting more realistic model for vis-
cosity, heat conduction and internal cooling flows can be performed.
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• Unsteady CFD simulation with time-dependent inlet condition, extrapolated
from a RDE simulation, have to be performed.

• A robust optimization of the turbine stage should be done, considering the
possibility of imposing the rotor to work with a small positive incidence angle
in standard operation, in order to extend the rangeability of the machine.

In summary, it is clear that we are far from unlocking the potential of detonative
combustion and a lot of work have to be done before that a gas turbine equipped
with a RDE can be made available for the free market. Nevertheless, the interest for
this technology is increasing across the globe and optimistic results from experiments
and, most of all, from numerical simulations are already available, both for supersonic
turbines, discussed in this thesis work, combustion regulation and thermodynamic
cycle optimization.
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k-omega SST equations
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Table A.1. Default Coefficient Values in SST model

α1 = 5/9 α2 = 0.44 α3 = F1α1 + (1− F1)α2

β1 = 0.075 β2 = 0.0828 β3 = F1β1 + (1− F1)β2

σk1 = 1.176 σk2 = 1 σk3 = F1σk1 + (1− F1)σk2

σω1 = 2 σω2 = 1/0.856 σω3 = F1σω1 + (1− F1)σω2
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Coupled Solver Flow Diagram

Figure B.1. Flow diagram of CFX coupled solver
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Appendix C

Mesh Independence Analysis

Discretization error is quantified by systematic refinement of the space and time
meshes. In high-quality CFD work, aim is to demonstrate monotonic reduction of
the discretization error for target quantities of interest and the flow field as a whole
on two or three successive levels of mesh refinement [17]. This process is called Mesh
Independence Analysis. Sometimes it is possible to accept a coarse assessment of
the decrease of a quantity of interest, simply evaluating the reduction in relative
error through the mesh refinement process, but in this thesis work a more rigorous
methodology have been implemented: the Grid Convergence Index Method, described
in [59]. It must be specified also that it should not be taken for granted that the
actual truncation error in a numerical solution will decay exactly in accordance with
the formal order p of accuracy of the basic numerical scheme, since the mesh are not
uniform and orthogonal. For this reason, it must be considered an "observed" order of
truncation, whose derivation is available [59]. The parameter chosen to monitor the
grid convergence is the outlet mass-flow averaged static entropy.
For the stator blade, the mesh analysed are with 21600 (coarse), 34814, 63746, 104486,
188176 (fine) cells. The mesh adopted in this thesis work is the one with 104486 cells
(Fig. C.1), which presents a Grid Convergence Index (GCI) equal to 2% and a relative
error of 1.4%. The observed order of truncation p̃ is equal to 3.1.

Figure C.1. Stator mesh adopted

165



Appendix C. Mesh Independence Analysis

For the rotor blade, the mesh analysed are with 30368 (coarse), 53210, 106590, 177906
(fine) cells. The mesh adopted in this thesis work is the one with 106590 cells (Fig.
C.2), which presents a GCI equal to 3.67% and a relative error of 2%. The observed
order of truncation p̃ is equal to 2.2.

Figure C.2. Rotor mesh adopted

In Fig. C.3 and C.4, it is reported the trend of entropy production parameter for both
stator and rotor blades. Monotonic decreasing behaviour of these curves is evident.

Figure C.3. Trend of monitored parameter for stator

C.1 Mesh refinement in Boundary Layer
Every CFD simulation present in this thesis work, have been carried on, controlling
the BL resolution. Indeed, when using the k− ω SST turbulence model, it is required
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Figure C.4. Trend of monitored parameter for rotor

not to overcome a certain limit of the y+ parameter. Although low values of y+
lead to mesh elements characterized by an high value of aspect ratio, detrimental for
numerics of the CFD code, it is needed to assure at least an average value of y+ less
than 3. The theoretical background is treated in classical CFD books and in section
3.3. In the following charts, it is reported the value of y+ at the blade wall for both
stator (Fig. C.6a) and rotor (Fig. C.6b).

Figure C.5. y plus at blade wall vs stream-wise coordinate for (a) stator and (b) rotor.

(a) y+ mean value equal to 0.668 (b) y+ mean value equal to 1.092
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Coordinate conversion

The blade profile is created in a planar surface by means of the MOC and then
thickened. This is due to the fact that the MOC itself is intrinsically developed for two
dimensional flow and its applications exploit the Cartesian coordinate. Conversely,
Ansys TurboGrid is built to deal with annular geometries so the blade to blade planar
channel must be transformed into an annular channel with Eq. D.1. In Fig. D.1 it
can be appreciate the topological transformation. Actually, the reference radius in
these simulations is big enough and the circumferential blade extension small enough
to make the difference between the cylindrical and planar profile not relevant.

R = max(y)

rθ = R arctan
(
x

y

)
z = z

(D.1)


x = R sin θ
y = R cos θ
z = z

(D.2)

Figure D.1. Stator blade in Cartesian coordinate (red curve) and in cylindrical one (blue
curve)
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Acronyms

RDE Rotating Detonation Engine

RDC Rotating Detonation Combustor

PDE Pulse Detonation Engine

PGC Pressure Gain Combustion

GTCC Gas Turbine Combined Cycle

TIT Turbine Inlet Temperature

HGP Hot Gas Path

TBC Thermal Barrier Coatings

CMC Ceramic Matrix Composite

CJ Chapman–Jouguet

FJ Fickett–Jacobs

CFD Computational Fluid Dynamic

URANS Unsteady Reynolds Averaged Navier–Stokes

RANS Reynolds Averaged Navier–Stokes

MOC Method of Characteristics

ZND Zel’dovich - von Neumann - Döring

BL Bounday Layer

OEM Original Equipment Manufacturer

FV Finite Volume

FE Finite Element

FVM Finite Volume Method

FEM Finite Element Method

DNS Direct Numerical Simulation

171



Appendix D. Coordinate conversion

LES Large Eddy Simulation

DES Detached Eddy Simulation

SAS Scale-Adaptive Simulation

TKE Turbulent Kinetic Energy

SST Shear Stress Transport

RSM Reynolds Stress Models

EARSM Explicit Algebraic Reynolds Stress Model

SBES Stress Blended Eddy Simulation

BSL Baseline

RNG renormalisation group

CV Control Volume

AMG Algebraic Multigrid

ILU Incomplete Lower-Upper

GCI Grid Convergence Index
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