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Abstract: The problem of source localization in noisy and reverberating envi-
ronments is still an open and challenging problem in the signal processing field.
Typically, the identification of the so-called direction of arrival (DOA) concerns
the estimation of the position of acoustic sources from a multichannel recording.
The localization of a sound source can be fundamental in various applications, such
as speech and speaker recognition, audio surveillance, and virtual and augmented
reality. Recent model-based approaches try to overcome this problem using a spher-
ical harmonics domain (SHD) source feature named relative harmonics coefficients
(RHC). Other solutions, use deep learning techniques to address DOA estimation
by learning features through artificial networks. In this work, we propose a new
method for DOA classification exploring the convolutional recurrent neural net-
work (CRNN) with RHC as input features. In order to classify simultaneously the
azimuth and the elevation, the final section of the proposed CRNN is composed
of two independent fully connected (FC) networks. Then, we present a siamese
neural network trained with the technique known as triplet loss. The main ad-
vantage of the proposed training technique is that the network learns a structured
feature representation that organizes samples from the same class closer to each
other while keeping samples from different classes apart. We demonstrated that
the use of triplet loss training to obtain feature embeddings results in a good DOA
estimation performance on simulations at various signal-to-noise (SNR) ratios and
reverberation time RT60. For the evaluation of the proposed method, we considered
the gross error (GE), the localization error (LR), and the mean absolute estimated
error (MAEE/°). Experiments confirm that the triplet loss approach produces a
more structured and meaningful features embedding, implying superior features
space interpretability. Finally, the DOA estimation performance of the proposed
approach is compared with conventional subspace methods, demonstrating a more
robust performance in noisy and reverberant acoustic scenarios, and higher local-
ization accuracy.
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1. Introduction

Nowadays the number of applications that are based on complex audio systems is increasingly spreading and the
capacity to provide high audio quality is more and more significant. The interaction with a device with internal
computing capabilities, such as computers or smart devices, is moving towards higher quality. In this context,
the ability to extract the direction of arrival (DOA) from multi-channel recordings can be useful information
for enhancing the user experience and improving the performance of audio tools [10, 32, 54].
For example, in recent years smart speakers and voice assistants like Amazon Alexa and Google Home have
become increasingly popular. These applications exploit natural language processing to recognize spoken com-
mands, allowing the users to interact with the device through their voice. In this scenario, the DOA estimation
can be useful to enable the system to identify the direction from which a user is speaking to the device. This
information can be used to improve the accuracy of automatic speech recognition [12, 84], improving the ability
of the assistant to interpret the commands.
As smart working and virtual meetings continue to gain popularity, teleconferencing systems have become a
vital aspect of both personal and professional communication, particularly in the realm of audio technology. In
this field, the ability of the system to reproduce audio and video with good quality is crucial for communication.
In the aforementioned fields, a microphone array can easily be employed to capture the voice of the user. Then,
the system typically exploits the recorded data to recognize the spatial location of a speaker and use this infor-
mation to improve speech enhancement [30, 80] and speech separation [16, 28] techniques. Moreover, the DOA
information can be exploited to facilitate efficient noise reduction techniques [73], aimed at improving the clarity
of voice and audio quality. These techniques improve the performance of the algorithms, resulting in efficient
communication between the user and the system. Furthermore, the detection of the DOA of a signal source can
be crucial also in surveillance systems for identifying the location of a target [15] and tracking their movement,
exploiting the multi-channel audio signal. The extraction of the location from audio signals can be performed
also on targets that are out of sight, which is a major advantage with respect to image-based techniques [35, 55].

The DOA estimation is a fundamental problem in acoustic signal processing and although it is a long-standing
and widely researched topic, it remains a challenging problem to solve. Conventional approaches rely on signal
processing techniques making assumptions about the statistics of the signal. Early localization methods, such
as the generalized cross-correlation phase transform (GCC-PHAT) [51], rely on determining the time difference
of arrival (TDOA) between pairs of sensors. The time delay can then be used to calculate the difference in
the distance between the sound source and each microphone and extract the location of the sound source. An-
other class of popular approaches for source localization are the beamformer-like techniques, such as the steered
response power (SRP) [82], and its variant SRP-phase transformed (SRP-PHAT) [20, 23], where the output
power of a beamformer is scanned in all possible directions to find out when it reaches the maximum, which
corresponds to the source location. One of the most popular solutions due to their simple implementation
and reasonable performance are subspace methods [48, 69], whose most popular approach is multiple signal
classification (MUSIC) [67, 69, 75].
In recent years, the availability of different array geometries with a high number of microphones raised the
adoption of different signal transformations [57, 79]. Spherical harmonics decomposition [63] is one of the most
popular sound field representations. As a matter of fact, signals transformed into the spherical harmonics
domain (SHD) have been applied to source localization techniques, such as SHD-MUSIC [5]. However, these
techniques are susceptible to degraded performance in scenarios with low signal-to-noise (SNR) ratios and re-
verberation. In [41], the relative harmonic coefficients (RHC) were proposed, which are based on the idea of
the relative transfer function (RTF) to provide DOA information that is not influenced by the source signal and
can effectively handle noise interference. Inspired by the MUSIC algorithm, the authors of [39] introduced RHC
in subspace methods (SHD-RMUSIC) showing improved performance with respect to traditional methods.
Over the past decade, researches have increasingly turned to machine learning to solve a wide range of practical
problems [22, 25, 36], including DOA estimation [13, 26, 61]. Data-driven approaches have the advantage of
being able to be trained over different acoustic environments and source distributions. In [70], Takeda et al.
employed the eigenvectors of a MUSIC inspired spatial correlation matrix to train a deep neural network for lo-
calizing acoustic sources. A method based on the convolutional recurrent neural network (CRNN) was proposed
in [8]. The authors exploit both the magnitude and phase information of the STFT coefficients to train the
model and perform joint sound event detection and localization. In [29], Fahim et al. proposed a convolutional
neural network (CNN) based algorithm which learns the modal coherence patterns from measured spherical
harmonics coefficients (SHC). The development of deep learning (DL) techniques to address the source localiza-
tion problem has followed the broader trend in the DL and signal processing communities towards increasingly
complex architectures and novel efficient models [38, 77].

In this work, we propose a DL framework based on the RHC feature, which has demonstrated to be effec-
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tive for DOA estimation [41, 42, 44]. To train the models, we employ features based on measured SHC. The
input features are composed by SHC in the STFT domain and the estimated RHC, represented by their real
and imaginary part. Regarding the DL model, we propose a CRNN-based framework to estimate the DOAs of
sound sources in different acoustic scenarios. The convolutional layer provides improved classification by better
pattern recognition, while the recurrent layer learns long-temporal information in the input audio signal. This
motivated to use the CRNN structure, which combines the advantages of CNN and recurrent neural network
(RNN) for efficient DOA estimation. For azimuth and elevation classification, two independent fully connected
(FC) networks compose the last part of the proposed architecture. Then, we employ a CNN-based siamese
network trained with triplet loss. The siamese network consists of three identical CNNs that take three different
input signals and generate a feature vector for each input. Triplet loss is a technique commonly used in com-
puter vision [76] to improve the accuracy of image recognition tasks [17, 68] by optimizing the distance between
images in a learned features space. More recently, this approach has also been applied to audio processing tasks
[46, 74]. In the context of DOA estimation, the use of triplet loss can be advantageous because it encourages
the neural network to learn a structured feature representation where samples of different DOAs are separated
and instances of similar DOAs are close, being beneficial for DOA estimation and feature embedding coherence
with the spatial domain.
We designed the algorithm to perform DOA estimation while being trained on a fixed room and tested on
rooms with different reverberation times and dimensions. We show that the proposed framework is able to
generalize the information contained in the input features. Consequently, the network can estimate the source
DOA correctly in unseen rooms with different acoustic characteristics. Furthermore, we proved that with few
samples for each class, the siamese network can design an embedding where DOA classes are clustered and more
separated compared to the other models, demonstrating a beneficial effect on the intelligibility of the features
space. Finally, we employ the trained CNN structure of the siamese framework as the pre-trained model in the
CRNN-based joint estimation showing that from the embeddings designed with triplet loss, we still obtain good
performance in DOA estimation. Therefore, the proposed method consists of three main steps: (1) training of
the proposed CRNN architecture with free embeddings design; (2) siamese network training with triplet loss;
(3) the transfer learning from the framework trained in step (2) is performed.
For the evaluation of the triplet loss effectiveness, we conducted a comparative analysis of features embedding
generated by a free design embedding network, a siamese network trained with triplet loss, and a triplet loss
pre-trained network. The analysis of the learned features embedding revealed that the triplet loss training
produces a features space that is more easily interpretable, without compromising the DOA estimation perfor-
mance. Then, we compared the performance of the proposed method with the conventional subspace methods,
namely MUSIC and SHD-MUSIC. Results show a more robust performance in high reverberation and low SNR
environments, outperforming MUSIC and SHD-MUSIC.

The thesis is organized as follows. In Sec. 2 we provide an overview of the literature for DOA estimation
techniques, presenting separately model-based methods and data-driven techniques. Moreover, we include a
more detailed description of subspace methods MUSIC, RMUSIC, SHD-MUSIC, and SHD-RMUSIC. Instead,
for data-driven methods we provide an exhaustive explanation of the CRNN architecture, which is the main
framework of this work, and triplet loss. Furthermore, we provide a comprehensive description of the work
proposed by Fahim et al. in [29]. In Sec. 3 we present the main methods employed in this work. We start by
presenting the RHC estimator proposed in [42]. We continue presenting the proposed architecture exploited
for the training of the free embedding design network and the pre-trained model. Furthermore, the siamese
network architecture is described together with the triplet loss training procedure. In Sec. 4 we provide the
implementation details of the proposed method. We present the details of the simulated dataset generated for
this work. Then, we provide an overview of the training configuration and of the metrics employed in order to
evaluate the performance of the frameworks. We comment on the results that corroborate the proposed method.
Our evaluation of the results supports the effectiveness of the proposed method, with a specific emphasis on
features embedding. Our study demonstrates that the triplet loss is effective in clustering data within the same
class and separating it from data in other classes. Additionally, we analyzed the features embedding created by
the three proposed models. Later, we discuss the localization performance of the employed frameworks. The
last section of this work is devoted to the conclusions and future works.
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2. State Of the Art and Background

In this chapter, in Sec. 2.1 we will first provide a review of the current state-of-the-art of model-based methods,
focusing on subspace methods in Sec. 2.1.1. Then in Sec. 2.2 we will present also a brief review of data-driven
methods. Afterwards, in Sec. 2.3 we will present the concept of deep learning, which is the main framework
of this thesis. For the same reason, we present the CRNN architecture in Sec. 2.3.1. Finally, in Sec. 2.3.2 we
will define the siamese network architecture to introduce triplet loss, which are the main paradigms we used for
training.

2.1. Model-based methods

Popular approaches for determining the DOA of a microphone array are TDOA based methods, which exploit
the differences in the arrival delays of a signal at different sensors in a microphone array. The basic idea behind
TDOA-based methods is that the time delay between the arrival of a signal at two different sensors can be
related to the angle of the arrival of the signal with respect to the array. One of the most used techniques
to estimate the TDOA is the generalized cross-correlation phase transform (GCC-PHAT) [51]. The TDOA
estimate is obtained by finding the time delay between the microphone signals that maximizes the GCC-PHAT
function.
Another class of solutions are the steered response power (SRP) [82] based strategies, which are based on point-
ing beamformers towards each direction in a two-dimensional map and measuring the energy that comes from
these directions. The PHAT version (SRP-PHAT) is the most popular of these beamformer-based techniques,
which has been shown to be very robust under difficult acoustic conditions [20, 23]. In SRP-PHAT, the power
coming from each position of the power-map can be derived as the average of the GCC-PHAT between each
microphone pair of the array. However, the direction of arrival estimation for SRP algorithms becomes more
challenging when multiple sound sources are present in the acoustic scene.
A different kind of strategies are subspace methods [11, 48, 69], which use covariance or correlation matrix of
the signal acquisitions to compute the so-called pseudo-spectrum matrix. The pseudo-spectrum matrix shows
peaks in a two-dimensional grid where each point correspond to a DOA and each peak coincides with a sound
source. Subspace methods are applied on raw signals, as in multiple signal classification (MUSIC) [67, 75].
Subspace methods can be applied to different types of microphone arrays, such as higher-order microphone
(HOA) arrays. The availability of HOA arrays made possible new sound field representations [57, 79], such
as spherical harmonics (SH) decomposition. SH are a set of orthogonal basis functions [79], which highlight
the frequency-dependent and direction-dependent components of the acoustic field. The spherical harmonics
domain decomposition has been applied to MUSIC (SHD-MUSIC) in [5, 50], which employ the spherical har-
monics coefficients for the computation of the covariance matrix. However, these subspace approaches only
consider a free-field propagation. As a result, their localization accuracy degrades in reverberant environments
as the acquired signals are contaminated by multi-path acoustic reverberations. Localizing multiple speakers
simultaneously active in reverberant environments remains a challenging task. To address this challenge, in [39]
the authors employed the relative sound pressure, which is inspired by the relative transfer function (RTF) that
contains DOA information while being independent from the source signal and robust to noise. Relative sound
pressure applied MUSIC (RMUSIC) and its counterpart in SHD domain (SHD-RMUSIC) showed improved
performance in complex environments. Recent researches [42–44] exploit the properties of the SHD derived fea-
ture of relative harmonics coefficients. RHCs contain relevant DOA information while being independent from
the source signal. For this reason, RHC-based methods demonstrated an improved robustness to reverberant
and noisy environments. Different approaches exploiting RHC were published in recent years, such as [40, 44],
where Y. Hu et al. employed a pre-defined feature set, which is composed by the theoretical values of the RHC.
Then, exploiting the property of RHC of being independent from the time-varying source signal, the estimated
RHC from microphones array signals are compared to the analytical set in order to recover the source’s DOA.
This approach requires an exhaustive search over the pre-computed set using a distance-based metric [40].

2.1.1 Subspace Methods

Subspace methods are state-of-art signal processing-based techniques for DOA estimation. Subspace methods
rely on a mathematical approach that from the received signals extracts the covariance matrix, whose columns
are the vectors of the noise and signal subspace. Then, the subspace decomposition is exploited to compute
the pseudo-spectrum, which shows maxima for each active sound source in the estimated DOA. One of the key
advantages of subspace methods is that they are robust in the presence of noise and can estimate the DOA
of multiple sources simultaneously [67]. This approach can be applied to different microphone array setups.
Therefore, subspace methods can be adapted to sound field representations derivative of HOA [5, 39].
In this section, we will revise the subspace methods: MUSIC, SHD-MUSIC, RMUSIC, and SHD-RMUSIC. In
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Figure 1: Higher-order microphone array (spherical) setup

Alg. 1- 4, we present the general steps of the aforementioned methods.

MUSIC

We consider the situation where L source signals are impinging on a microphone array of M sensors. As shown in
Fig. 1, we consider microphones disposed on the surface of a sphere, whose polar coordinates are xj = (r, θj , ϕj),
j = 1, . . . ,M , with respect to the array origin O, where r is the radius of the sphere, θj is the elevation and ϕj

is the azimuth of the j-th microphone. Assume far-field conditions and L simultaneously active sound sources
located at angles Ψl = (θl, ϕl), l = 1, . . . , L, from the array origin, with elevation θl and azimuth ϕl. The
received sound pressure at the multichannel array for each time frame is usually modeled as in [39]:

P(k) = V(k)s(k) + e(k), (1)

where k = 2πf/c is the wave number, f is the temporal frequency and c is the speed of sound. Furthermore,
P(k) = [P (x1, k), P (x2, k), . . . , P (xM , k)]T ∈ C

M×1 where P (xj , k) corresponds to the sound pressure at
microphone in position xj . e(k) = [e(x1, k), e(x2, k), . . . , e(xM , k)]T ∈ CM×1 is the noise vector where e(xj , k)

denotes the additive noise signal at the j-th microphone and s(k) = [s1(k), s2(k), . . . , sL(k)]
T ∈ CL×1 is the

source signal vector where sl(k) denotes the l-th source signal as observed at the origin. In (1), we omitted the
time frame index for brevity. The matrix V(k) in (1) denotes the steering matrix,

V(k) = [v1(k),v2(k), . . . ,vM (k)]T ∈ CM×L, (2)

where vj(k) = [eik
T
1 xj , eik

T
2 xj , . . . , eik

T
Lxj ]T represents the steering vector for the j-th microphone, and kl =

[kcosϕlsinθl, ksinϕlsinθl, kcosθl]T is the wavenumber vector.
The MUSIC approach [67, 69, 75] exploits the M ×M covariance matrix of the observation. Under the basic
assumption that the incident signals and the noise are uncorrelated, the covariance matrix is defined as:

RP (k)
∆
= E{P(k)PH(k)} = V(k)Rs(k)V

H(k) +Re(k), (3)

where [·]H denotes the hermitian operation and E is the expectation operator.

Rs(k) = E{s(k)sH(k)}, (4)

Re(k) = E{e(k)eH(k)}. (5)

The covariance matrix consists into M eigenvectors. The eigenvectors can be divided into L vectors related to
sound sources and M −L noise eigenvectors. Describing Ue as the M × (M −L) matrix whose columns are the
M − L noise eigenvectors, we can compute the pseudo spectrum as in [67]:

ΓMUSIC(k, ys) =
1

a(k, ys)UeU∗
ea

∗(k, ys)
, (6)

where [·]∗ is the conjugate operation and a(k, ys) is the steering vector for wavenumber k and direction ys =
(θs, ϕs). The steering vectors a(k, ys) are orthogonal to the noise subspace for the directions ys that point to
the sources’ DOA. Therefore, the denominator of the pseudo-spectrum has minima around the DOA of the L
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Algorithm 1 MUSIC
Data: Time-domain recordings
1: Transfer the recordings into STFT domain
2: for k = 1, 2, . . . ,K do
3: Calculate covariance matrix RP (k) (3)
4: Calculate the subspace Ue

5: Calculate the pseudo spectrum ΓMUSIC(k, ys) (6)
6: end for
7: Average the spectrum over a wide band ΓMUSIC(ys) (7)
8: Search for L peaks

Algorithm 2 SHD-MUSIC
Data: Time-domain recordings
1: Transfer the recordings into STFT domain
2: Calculate the spherical harmonics coefficients α(k) (8)
3: for k = 1, 2, . . . ,K do
4: Calculate the covariance matrix Rα (13)
5: end for
6: Calculate the smoothed covariance matrix R̃α (14)
7: Calculate the subspace Ue

8: Calculate the pseudo spectrum ΓMUSIC(Ψ) (15)
9: Search for L peaks

sources, which corresponds to L peaks in the pseudo-spectrum. To obtain a single direction of arrival (DOA)
estimation for each time frame, the space pseudo-spectrum described in equation (6) is averaged across a broad
frequency range,

ΓMUSIC(ys) =
1

K

K∑
k=1

ΓMUSIC(k, ys) . (7)

SHD-MUSIC

The MUSIC approach can be applied also in the SHD. The so-called SHD-MUSIC exploits the transformation
in SH of the acoustic pressure. As in [50], the expression for the spherical harmonics decomposition of the sound
pressure is:

P (k) = B(k)YH(Ψl)s(k) + e(k), (8)

matrix B(k) is defined as B = diag(b0, b1, b1, b1, . . . , bN ), where bn(·) is the n-th order spherical Bessel function
of the first kind. Furthermore, Y(Ψ) is the spherical harmonics’ matrix of order n = 0, . . . , N and degree
m = −n, . . . , n, where N is the array order of N ≥ kr. Therefore, Y(Ψl) is composed of L row vectors of length
(N + 1)2. The elements of the vector in the l-th row are:

yl = [Y00(Ψl), Y1−1(Ψl), Y10(Ψl), Y11(Ψl), . . . , YNN (Ψl)], (9)

where

Ynm(θl, ϕl) =

√
(2n+ 1)

4π

(n−m)!

(n+m)!
Pnm(cosθl)e

imϕl , (10)

denotes the spherical harmonics function, and Pnm(·) is the associated Legendre function. In order to estimate
the spherical harmonics coefficients, it is assumed that the configuration of the spherical array is known. Con-
sidering all the orders up to the N -th order and multiplying (8) from the left by B−1, we can write the matrix
form of the spherical harmonics coefficient as:

α(k) = YH(Ψ)s(k) + ē(k), (11)

where
ē(k) = B−1(k)e(k). (12)
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Similarly to (3), we can derive the modal cross-spectrum as:

Rα(k) = E{α(k)αH(k)} = YH(Ψ)Rs(k)Y(Ψ) +Rē(k). (13)

As in [50], the signal covariance matrix Rs(k) and noise covariance matrix Rē(k) are averaged over the frequency-
domain to obtain a single covariance matrix for each time frame.

R̃α =
1

K

K∑
k=1

Rα(k) . (14)

Finally, if we consider Ue as the noise subspace of Rα and yl as steering vector, the MUSIC pseudo-spectrum
derived in (6) is equivalent to:

ΓMUSIC(Ψ) =
1

yl(Ψ)UeU∗
ey

∗
l (Ψ)

. (15)

RMUSIC

Relative sound pressure has been proposed in [39], defined as the ratio between the pressure captured by the
j-th microphone and the pressure at the origin of the array. Therefore, the relative sound pressure definition is

Q(xj , k) =
P (xj , k)

P (x0, k)
=

P (xj , k)P
∗(xj , k)

|P (x0, k)|2
, j = 1, . . . ,M , (16)

where x0 = (0, 0, 0) is the origin of the array. However, certain structured arrays, such as the spherical arrays,
only have microphones on the array surface. In that case, the pressure at the origin is approximated as the
average of the ones on the surface of the array. Assuming the source signal is stationary over a short time
period, the relative sound pressure is represented as

Q(xj , k) =
Spjp0

(k)

Sp0p0
(k)

, (17)

where Sp0p0
(k) and Spjp0

(k) denote the power spectral density (PSD) of P (x0, k) and the cross-PSD (CPSD)
between P (xj , k) and P (x0, k), respectively. In noisy environments, the PSD of the sound pressure at the origin
contains also a noise component. Assuming the source signal is stationary over a short period and the source
signal and the noise signal are uncorrelated, the noisy relative sound pressure follows,

Q̄(xj , k) =
Spjp0

(k)

Sp0p0
(k) + Sn0n0

(k)
, (18)

where Sn0n0
(k) is PSD of the noisy component. Dividing (19) by (17), the relation between the noisy and

noiseless sound pressure can be derived as:

Q̄(xj , k) = Q(xj , k)ρ(k), (19)

where

ρ(k) =
T (x0, k)

T (x0, k) + 1
, (20)

only depends on the signal-to-noise ratio (SNR) at the origin of the array. i.e., T (x0, k) = Sp0p0
(k)/Se0e0(k).

The relative sound pressure represented using the PSD between two microphones, is also robust to the noise.
The M ×M covariance matrix of the noisy relative sound pressure can be calculated as:

SQ̄(k) = E{Q̄(k)Q̄H(k)} = V(k)RS(k)V
H(k), (21)

where V(k) is the steering vector defined in (1), and

RS(k) = {s̄(k)ρ(k)s̄H(k)ρ∗(k)}, (22)

where s̄(k) is the vector of the noisy signal captured at the microphones. From the covariance matrix, we
can derive the matrices Ūs(k) and Ūe(k), which are the subspaces corresponding to the source and noise
eigenvectors. The pseudo-spectrum over space can be calculated as:

ΓMUSIC(k, ys) =
1

||ŪH
e (k)a(k, ys)||2

. (23)

Finally, to obtain a single estimate of the direction of arrival (DOA) for each time frame, the pseudo-spectrum
is obtained as in (7).
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Algorithm 3 RMUSIC
Data: Time-domain recordings
1: Transfer the recordings into STFT domain
2: Calculate the relative sound pressure Q̄(xj , k) (18)
3: for k = 1, 2, . . . ,K do
4: Calculate covariance matrix SQ̄(k) (21)
5: Calculate the subspace Ue

6: Calculate the pseudo spectrum ΓMUSIC(k, ys) (23)
7: end for
8: Average the spectrum over a wide band ΓMUSIC(ys) (7)
9: Search for L peaks

Algorithm 4 SHD-RMUSIC
Data: Time-domain recordings
1: Transfer the recordings into STFT domain
2: Calculate the relative sound pressure Q̄(xj , k) (18)
3: Calculate its spherical harmonics coefficients β̄(k) (25)
4: for k = 1, 2, . . . ,K do
5: Calculate the covariance matrix Sβ̄(k) (26)
6: end for
7: Calculate the smoothed covariance matrix S̃β̄(k) (27)
8: Calculate the subspace Ue

9: Calculate the pseudo spectrum ΓMUSIC(Ψ) (15)
10: Search for L peaks

SHD-RMUSIC

SHD-RMUSIC applies the proposed RMUSIC approach to the spherical harmonics domain. The relative sound
pressure measured over the microphone array can be decomposed into the spherical harmonics domain. The
spherical harmonic decomposition of the measured relative sound pressure in (19) can be expressed as

β̄nm(k) =
1

bn(kr)

M∑
j=1

ajQ̄(xj , k)Y
∗
nm(θj , ϕj) , (24)

where aj denotes the weights of each microphone to ensure the orthogonality of the spherical functions Ynm(·)
defined in (10) and Q̄(xj , k) is the noisy relative sound pressure defined in (19). Traditional spherical harmonics
decomposition suffers from the "Bessel zero problem" [63], due to the zero crossing of the Bessel function. For
this reason, the noise component in the measured spherical harmonic coefficients is amplified. This issue is
contrasted by the relative sound pressure that is less sensitive to noise, as demonstrated in [39]. From (19),
assuming plane wave modeling we can rewrite the spherical harmonics coefficients for the noisy relative sound
pressure in (24) as:

β̄(k) = YH(k)s̄(k)ρ(k), (25)

where Y(k) is the (N+1)2×L steering matrix in the SHD. The correlation matrix of β̄(k) over the time-varying
source signal is:

Sβ̄(k) = E{β̄(k)β̄H(k)}
= YH(k)RS(k)Y(k).

(26)

In [39], the noise subspace Ue is computed from the frequency-smoothed covariance matrix, which is imple-
mented as the average of the covariance matrices at different frequency bins [50],

S̃β̄(k) =
1

K

K∑
k=1

Sβ̄(k) = YH(k)R̃S(k)Y(k) , (27)

where

R̃S(k) =
1

k

K∑
k=1

RS(k) , (28)
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where K frequency bins are exploited. Finally, the noise subspace extracted from the smoothed covariance
matrix is exploited for the pseudo-spectrum as defined in (23).

2.2. Data-driven methods

To address the challenging task of localizing a sound source active in reverberant environments a large number of
algorithms have been developed. In recent years, the research interest has focused on deep learning techniques.
As a result, an increasing number of methods based on deep neural networks (DNNs) have been proposed, ex-
hibiting improved accuracy in complex environments. Most of the reported works have indicated the superiority
of DNN-based methods over conventional model-based methods. In [61], the authors were able to address the
multiple source localization problem using first-order Ambisonics (FOA) signals with a convolutional recurrent
neural network (CRNN). Adavanne et al. [9] improved DOA and the number of sources estimation accuracy by
exploiting the spectrograms’ magnitudes and phases of multichannel audio signals. The phases and the magni-
tudes of the spectrograms are sequentially mapped using a CRNN with two different output branches. The first
output, the spatial pseudo-spectrum (SPS) is generated as a regression task, followed by the DOA estimates as
a classification task. More recently, DL-based methods have been proposed for joint sound event localization
and detection (SELD) [8], which is a combination of sound event detection (SED) and sound source localization
SSL. In particular, the majority of the works are presented in challenges, such as DCASE Challenge Task 3
[1] and L3DAS Challenge [2]. DL-based algorithms for localizing single or multiple sources typically employ a
classification process to categorize the DOA. In addition, some algorithms employ regression networks that are
better suited for continuous position localization. A comprehensive survey of DL methods can be found in [32].

2.3. Deep Learning Background

Deep learning is a subfield of machine learning that typically processes input data through a series of layers.
Each layer applies a mathematical operation on the received data and sends its output to the next layer. A
sequence of layers is called neural network, also known as deep neural network (DNN). DNNs enable machines
to learn from large volumes of complex data, including images, sound signals, and text. DL is built around the
concept of layers of interconnected nodes, known as artificial neurons or perceptrons. These layers allow the
model to extract increasingly abstract and complex features. Research on DL-based techniques is constantly
proposing new architectures and methods that provide better results in a wide range of applications, as shown
in [24].
In the next sections, we will provide an overview of the CRNN model, which is the reference model for this
work. Finally, we will define the siamese network structure in order to review the triplet loss function, which is
the framework used in this work in order to improve localization performance.

2.3.1 Convolutional Recurrent Neural Network (CRNN)

In recent years, Convolutional Neural Networks (CNNs) [26, 53] and Recurrent Neural Networks (RNNs) [58]
have made significant contributions to various fields [14, 31, 59]. However, these types of neural networks have
different strengths and limitations. CNNs are excellent at capturing spatial features, while RNNs can model
sequences and capture temporal information. The CRNN model is a hybrid neural network architecture that
combines CNNs and RNNs, in order to exploit their strengths. For this reason, CRNN has been applied in
different applications that involve temporal data, such as speech enhancement [71], text classification [78], music
classification [19] and video classification [85].
As shown in Fig. 2, the CRNN model is a sequential composition of the aforementioned types of networks. The
input data are fed to the CNN which retrieves important spatial information. Then, the output of the CNN is
used as input for the RNN, which extract information on temporal patterns from data. Afterwards, the output
of the recurrent block is flattened to represent the data as a one-dimensional vector. In the end, the flattened
data are fed to the FC network, which produces the final output vector. Finally, the output vector is usually
transformed by applying an activation function, which type can vary depending on the application.

CNN A CNN is usually composed of the concatenation of convolutional layers and pooling layers. The
convolutional layer applies the convolution operation to the input and passes the result to the next layer. It
is made of a set of filters (kernels). The number of kernels in a convolutional layer is known as the depth of
the layer. Each kernel is characterized by its filter size and stride, which defines the dimensions of the mask
that is convolved with the input feature. The stride indicates how much the filter is shifted along the spatial
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dimensions. Therefore, the convolutional layer applies a set of convolutional filters to the input features to
extract a new set of features, which contain relevant spatial information.
Typically, a pooling layer is inserted between consecutive convolutional layers in deep learning architectures.
This layer performs non-linear subsampling, effectively reducing the dimensionality of the data and decreasing
computational complexity. As in the case of the convolutional layer, the pooling layer is also defined by two
parameters: the filter size and the stride. This layer operates independently on every slice of the input, dividing
it into smaller patches with filter size. Then, it outputs a value for each patch depending on a specific function,
as a result, the input is resized. The function utilized defines the pooling layer. One of the most common forms
is max pooling, which outputs the maximum values contained in each patch. Another of the historically most
used pooling layers is average pooling, which extracts the average of the patch.

RNN RNNs sequentially process the features and capture the temporal information. Recurrent layers have
memory cells that allow them to store and use information from previous time steps. Recurrent layers can be
implemented using various types of layers, such as long short-term memory (LSTM) [37] or gated recurrent
units (GRU) [18]. Each of these types of layers has a slightly different mechanism for storing and updating the
memory cell but they all share the same basic idea to use past information to compute the current predictions.
The LSTM layer is a type of layer that can maintain memory over time. A LSTM layer is composed of a memory
cell and three multiplicative units, the input, output, and forget gates. The input gate controls the flow of input
data, the output gate limits which elements of the memory cell are propagated through the recurrent updates,
and forget gate decides to store or reset the information from previous states. Instead, GRU layers have only
two gates: the update and reset gates. The reset gate determines how much of the previous information consider
in the new state and the update gate controls the balance between the previous state and the new one. By
incorporating information from previous steps, recurrent layers can capture complex patterns and dependencies
in sequential data that would be difficult for traditional models to capture.

Fully Connected Network Fully connected (FC) layers are a type of layer in deep learning where every
neuron in a given layer is connected to every neuron in the following layer. For this reason, FC layers are also
called dense layers. In a dense layer, each neuron in the previous layer is connected to each neuron in the current
layer with a weight. These weights are learned during the training process and determine the strength of the
connection between the neurons. For the input to be processed by a dense layer, it is typically necessary to
flatten or reshape it into a one-dimensional vector representation. The input data are transformed by applying
a set of weights and adding a bias. The generated output of a dense layer is also a one-dimensional vector,
which can then be passed to subsequent layers.

input features

Convolutional
Neural Network

Recurrent Neu-
ral Network

Fully Connected

output

Figure 2: A generic CRNN
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Figure 3: A generic siamese model. A siamese network is often shown as multiple different encoding
network that share weights.

Figure 4: The basic idea behind triplet loss is to train a neural network to produce embeddings, where
the anchor sample and the positive sample are closer together than the anchor sample and the negative
sample.

2.3.2 Siamese Network

Siamese networks were first introduced in the early 1990s by Bromley and LeCun to solve signature verification
as an image-matching problem [45]. Siamese networks are a class of neural networks in deep learning that are
designed to compare inputs and determine their similarity. Therefore, two or more identical neural networks
are employed to process the same input.
A siamese network is often shown as multiple encoding networks with the same architecture and configuration,
as shown in Fig. 3, and they are usually employed in classification tasks [52, 64, 68]. The output of siamese
networks is the measure of the loss, which depends on the similarity of the output vectors. The typical loss
functions used to train siamese networks are triplet loss [68] and contrastive loss [34].
Triplet loss is a function that compares the output vectors of an anchor, a positive, and a negative input, eval-
uating their similarity. Therefore, three siamese subnets are employed with triplet loss, one for each element of
the triplet. Triplet loss will be explained in detail in this section. Instead, the contrastive loss is a distance-based
loss, and it is exploited to learn embeddings in which similar features have a low distance and two dissimilar
instances have a large distance.

Triplet Loss
The training process of a siamese network involves minimizing a loss function that measures the dissimilarity
between the inputs. The basic idea behind triplet loss is to train a neural network to produce embeddings,
which are low-dimensional representations of input data. As illustrated in Figure 4, the embeddings are trained
to position features that belong to the same class closer together in the embedding space, while arranging
samples that belong to different classes further apart. The triplet loss is based on the generation of triplets
of input data: an anchor, a positive, and a negative. The anchor is the sample for which we want to learn
the representation. The positive sample is extracted from the same class of the anchor. Instead, the negative

11



sample comes from a different class. The aim is to learn embeddings where the distance between the anchor
and the positive is smaller than the distance between the anchor and the negative. In other words, we want
to maximize the similarity between the anchor and the positive, while minimizing the similarity between the
anchor and the negative. The hard margin version of triplet loss encourages the similarity between the anchor
and a positive sample to be larger than the similarity between the same anchor and the negative instances as
below:

Ltriplet = [δ + S(σa,σ
−)− S(σa,σ

+)]+ , (29)

where δ is the hard margin and σa,σ+, and σ− denote an anchor sample, a positive sample, and a negative
sample. S represents a generic similarity function and the [·]+ operator is the hinge function max(·, 0). The
soft margin variant of triplet loss has been demonstrated to be more effective than the hard margin version
in applications such as face recognition [68] and person re-identification [49]. The soft margin version replaces
the hinge function with the softplus function, which decays exponentially instead of having a hard cut-off. Soft
margin triplet loss is defined as:

Ltriplet = log(1 + exp (S(σa,σ
−)− S(σa,σ

+))) . (30)

In conclusion, triplet loss is a powerful loss function for learning embeddings. For this reason, it has been widely
used in computer vision applications and has been shown to be effective for various tasks, for example, face
recognition [68] and acoustic scene classification [62].

2.4. Deep Learning Methods

In this section, we will describe the work proposed by Fahim et al. in [29]. In this work, A DOA estimation
technique is proposed using a convolutional neural network algorithm that learns modal coherence patterns of
an incident sound field through measured spherical harmonic coefficients. We will describe a few concepts in
the SHD that define the modal framework for the proposed DOA estimation technique. Then we will present
the deep learning model employed for estimating simultaneously active multiple sound sources on a 3D space
using a single-source training scheme.

2.4.1 Multi-Source DOA Estimation through Pattern Recognition of the Modal Coher-
ence of Reverberant Soundfield

In this work [29], Fahim et al. propose a multi-source DOA estimation technique based on a convolutional
neural network, which learns the modal coherence patterns employing SHD-based input features. This method
is capable of estimating simultaneously active multiple sound sources using a single-source training scheme. The
training is conducted on a single-source case and the same model is tested in various acoustic environments
with multiple active sources. The method is evaluated in various simulated and practical noisy and reverberant
environments.
Similarly to the methods described in Sec. 2.1.1, this method considers L sound sources concurrently emitting
sound. The sound pressure observed by an omnidirectional microphone placed at a coordinate x′

j ≡ (r′j , θ
′
j , ϕ

′
j)

inside the room, is modeled as

p(x′
j , t) =

L∑
l=1

hl(x
′
j) ∗ sl(t), (31)

where hl(x
′
j) is the room impulse response (RIR) between the l-th source position and x′

j and ∗ denotes the
convolution operation. The corresponding frequency domain representation of (31) in the STFT domain can
be obtained using the multiplicative model of convolution and is formulated as

P (x′
j , k) =

L∑
l=1

Sl(k)Hl(x
′
j , k), (32)

where {P, S,H} represent the corresponding signals of {p, s, h} in the STFT domain. In (32), the timeframe
index is omitted for brevity.
The method intends to estimate the individual DOAs x̂l ≡ (θ̂l, ϕ̂l), l = 1, . . . , L of the multiple concurrent sound
sources, given a set of measured sound pressure p(x′

j , t), j = 1, . . . ,M .
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Modal Framework The sound field captured on a sphere can be decomposed using the spherical harmonic
basis functions as [79]

Px′
j
(k) =

N∑
n=0

n∑
m=−n

αnm(k)bn(kr)Ynm(θ′j , ϕ
′
j), (33)

we remind that αnm are the spherical harmonics coefficients, bm(·), and Y (·) are the n-th order spherical
Bessel function of the first kind and the spherical harmonics matrix, respectively. On the assumption that a
spherical microphone array is employed to capture the sound pressure, the spherical harmonics coefficients can
be calculated from (33) as [7]

αnm(k) ≈ 1

bn(kr)

M∑
j=1

wjP (xj , k)Y
∗
nm(θ′j , ϕ

′
j), (34)

where r is the array radius and wj are suitable microphone weights that ensure the validity of the orthonormal
property of the spherical harmonics with a limited number of sampling points. Alternative array geometries
and formulations can be exploited to achieve the same spherical harmonic decomposition [6, 7, 66].
In reverberant environments, the room transfer function can be decomposed into

Hl(x
′
j , k) = Hdir

l (x′
j , k) +Hrev

l (x′
j , k), (35)

where Hdir
l (x′

j , k) and Hrev
l (x′

j , k) are the corresponding direct and reverberant components of the room transfer
function. The room transfer function components can be modeled in the spatial domain. Therefore, we can
obtain the spatial domain equivalent of (32) as

P (x′
j , k) =

L∑
l=1

Sl(k)
(
Gdir

l (k)eikx̂l·x′
j +

∫
S2

Grev
l (k, x̂)eikx̂·x

′
jdx̂

)
, (36)

where x̂ denotes an arbitrary direction on the spherical shell S2 Gdir
l (k) represents the direct path gain between

the origin and the l -th source and Grev
l (k, x̂) is the reflection gain at the origin along the direction of x̂ for

the l -th source. From (36) we can infer that the sound pressure at the j -th microphone is a combination of
the direct signal and the reverberation version of the signal from different directions. Under the assumption of
free-field conditions, the spherical harmonic expansion of Green’s function is given by [21]

eikx̂l·x′
j =

N∑
n=0

n∑
m=−n

4πinY ∗
nm(x̂l)bn(kr)Ynm(x̂′

j), (37)

where we consider the unit vector x̂′
j ≡ (θ′j , ϕ

′
j). Substituting (37) into (36) and then comparing it with (33),

we obtain an analytical expression for αnm in a reverberant room as [28]

αnm(k) = 4πin
L∑

l=1

Sl(k)
(
Gdir

l (k)Y ∗
nm(x̂l) +

∫
S2

Grev
l (k, x̂)Y ∗

nm(x̂)dx̂
)
. (38)

The modal coherence in the spherical harmonic domain can be interpreted as the degree of similarity between
the modal coefficients of two or more signals decomposed in their respective SHC. High model coherence suggests
that the signals have similar spatial structures and are likely to be related, while low modal coherence indicates
that the signals have different spatial patterns and are unlikely to be related. Therefore, modal coherence is
defined as

E

{
αnm(k)α∗

n′m′(k)
}
. (39)

Considering the independent behaviour of the reflective surfaces in a room, meaning that the reflection gains
from the reflective surfaces are independent, and under the assumption of uncorrelated sources, in [28] has been
established a closed form expression for the modal coherence. Furthermore, for temporal processing, a common
method in temporal processing for estimating the expected value involves applying the exponential moving
average technique on the instantaneous measurements. Hence, the modal coherence is estimated as

E

{
αnm(k, t)α∗

n′m′(k, t)
}
= (1− µ) αnm(k, t)× α∗

n′m′(k, t) + µ E
{
αnm(k, t− 1)α∗

n′m′(k, t− 1)
}
, (40)

where µ ∈ [0, 1] is the smoothing factor.
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Algorithm 5 Algorithm for DOA estimation - training stage

1: Compute spatial coherence E
{
αnm(k)α∗

n′m′
}

in each time-frequency bin using (40)
2: Calculate F̂mc ∀θ, ∀ϕ using (41)
3: Apply energy-based pre-selection to filter out low energy time-frequency bins
4: Use pre-selected features to train the model

Algorithm 6 Algorithm for DOA estimation - evaluation stage
Data: αnm ∀nm
1: Compute spatial coherence E

{
αnm(k)α∗

n′m′
}

in each time-frequency bin using (40)
2: Get F̂mc using (41)
3: Apply energy-based pre-selection to filter out low energy time-frequency bins
4: Calculate the probability of each class for the time-frequency bins using the trained model
5: Select time-frequency bins where the prediction has a prominent probability
6: Apply (42) to form the multiset X
7: if L == 1 then
8: Select larger peak in X
9: else

10: Using a suitable clustering algorithm, divide X into L clusters
11: Select larger peak from each cluster
12: end if

CNN-based DOA estimation In the proposed CNN-based DOA estimator, the authors of [29] pose
the DOA estimation problem as an image-classification problem where the input image represents the modal
coherence of the sound field. The sound field αn,m can be thought as beamformers in the modal domain due to
the inherent properties of the spherical harmonic functions. Hence, the energy distribution of the SHC among
different modes can be used as a clue for understanding the source directionality. For this method, the modal
coherence model is exploited to construct the input features. For a multi-source scenario, it is common to
assume W-disjoint orthogonality [83] in the STFT domain, i.e., only a single sound source remains active in
each TF bin of the STFT spectrum. The DOA estimation problem is posed as an image-classification problem
for CNN, where the feature snapshot is defined as the modal coherence. Hence, for each time-frequency bin of
the STFT spectrum, the features are defined as

F̂mc(k) =

{
E

{
αnm(k)α∗

n′m′(k)
}
: n ∈ [0, N ],m ∈ [−n, n], n′ ∈ [0, N ],m′ ∈ [−n′, n′]

}
, (41)

where F̂mc is considered as an image of [N ×N ] complex-valued pixels with N = (N + 1)2. In order to enable
the model to capture the frequency variations of the feature for a specific source position, the F̂mc feature is
collected from various frequency bands.
Speech signals are typically sparse in both time and frequency domains. Therefore, a significant number of
time-frequency bins tend to have lower energy, which can mislead the CNN. In the time domain, the problem
can be addressed with a voice activity detector. In order to deal with the sparsity of the speech signals in the
frequency domain, an energy-based pre-selection of time-frequency bins is applied, which consists in dropping
all the bins with average energy below a given threshold.
Source DOA estimation is performed on the proposed input features by a CNN. As described in Sec. 2.3.1, a
CNN is composed of multiple convolution layers followed by a FC network. For this method, a multi-output
multi-class classification is performed. Similar the work proposed in this thesis, the convolution layer structure
is shared to predict both azimuth and elevation using separate fully connected heads at the last stage. Each
fully connected head is responsible for predicting either azimuth or elevation. Ideally, due to the W-disjoint
orthogonality assumption, each time-frequency bin is designated with a single DOA. However, in the realistic
case is possible to find time-frequency bins whose energy is the sum of the contribution from multiple sound
sources. Hence, the authors employed cross entropy loss in order to independently predict the probability of
each class in every TF bin. Then, the predictions are only considered when the CNN model predicts a single
DOA with a high confidence level, i.e when the predicted probability is greater than a certain threshold.
In multi-source environments, the simplest way of multi-source DOA estimation is to pick L largest peaks from
the joint prediction of azimuth and elevation for each time-frequency bin to create the prediction multiset X

X =
{

argmax(θ){f : θ 7→ Pκ(θ)}, argmax(ϕ){f : ϕ 7→ Pκ(ϕ)}
}
, (42)
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where Pκ(·) is the probability in the κ-th bin between the pre-selected bins. However, this technique can cause
errors in a multi-source environment with noisy predictions. In order to apply a more robust technique, Fahim
et al. employed a suitable clustering algorithm to divide X into L clusters and pick the prominent peak in each
cluster. The steps of the algorithm are outlined in Alg. 5 and 6.
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3. Method and Model

In this chapter, we provide a brief description of the RHC feature and estimator. Then, the CRNN baseline is
presented. Furthermore, we will describe the triplet loss application to the baseline network.

3.1. Feature Extraction

In this section, we provide some background information on RHC, illustrating their theoretical expression in free
and reverberant environments. Subsequently, we detail the framework for RHC estimation from multi-channel
microphone array signals in noisy environments. Finally, we illustrate how the input features of the models are
composed.

3.1.1 Relative Harmonic Coefficients (RHC)

As shown in Fig. 1, let us assume a single sound source propagating from an unknown position, denoted as
x = (rs, θs, ϕs), where rs is the radial distance and (θs, ϕs) is the elevation and azimuth direction of the source
with respect to the origin of the microphone array. We consider a higher-order microphone (HOM) array having
M microphones positioned at xj = (r, θj , ϕj). As in (33), we remind the reader that the sound pressure captured
by the HOM can be decomposed into the spherical harmonics domain [79] as

Pxj
(t, k) =

N∑
n=0

n∑
m=−n

αnm(t, k)bn(kr)Ynm(θj , ϕj) . (43)

Assuming a far-field scenario, the spherical harmonic coefficients for the direct sound source in equation (43)
can be derived as in (34)

αnm(k) =
1

bn(kr)

M∑
j=1

wjP (xj , k)Y
∗
nm(θj , ϕj . (44)

Preliminary research in [41, 42, 44] define the RHC as the ratio between the spherical harmonic coefficient
αnm(t, k) and α00(t, k). This definition allows us to express RHC representation in terms of the order n and
mode m as:

βnm(t, k) =
αnm(t, k)

α00(t, k)
, (45)

The coefficient β00, from definition (45), has a value of 1, which means that it is not dependent on DOA, for
this reason, we can discard β00 and consider only [β1−1 ,β10 ,β11] for DOA estimation.

3.1.2 Free-Field Scenario

Under the assumption of free field (anechoic) conditions, we consider the source x. The spherical harmonic
coefficients due to the incoming direct-path recordings are given by [72]:

αdir
nm(t, k) = Sx(t, k)ikhn(krs)Y

∗
nm(θs, ϕs), (46)

where Sx(t, k) is the source signal at time-frame t and hn(·) is the n-th order spherical Hankel function of the
first kind. Following the definition in (45), we can obtain the RHC of order n and mode m as:

βdir
nm(t, k) =

2
√
πhn(krs)Y

∗
nm(θs, ϕs)

h0(krs)
, (47)

which only depends on the source position (rs, θs, ϕs).

3.1.3 Reverberant-Field Scenario

Assuming the case of a reverberant soundfield generated by the sound source x, we can express its spherical
harmonic as follows

αrev
nm(t, k) = αdir

nm(t, k) +

N∑
v=0

v∑
u=−v

α̂vu
nm(k)Sx(t, k)ikbv(krs)Y

∗
vu(θs, ϕs)︸ ︷︷ ︸

Reverberant-path

, (48)
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where α̂vu
nm(k) is the coupling coefficient that is independent of the time-varying source signal [65]. Note that

differently from (46), in (48) we have an additive component due to the reverberant sound field. The reverberant-
path component makes the SHC diverge from the theoretical value. From the RHC definition definition (45),
we derive the formulation in a reverberant environment as

βrev
nm(t, k) =

hn(krs)Y
∗
nm(θs, ϕs) + ΣN

v=0Σ
v
u=−vα̂

vu
nm(k)bv(krs)Y

∗
vu(θs, ϕs)

h0(krs)Y ∗
00(θs, ϕs) + ΣN

v=0Σ
v
u=−vα̂

vu
00 (k)bv(krs)Y

∗
vu(θs, ϕs)

, (49)

which also only depends on the position of the source x in a static acoustic environment, i.e., it is assumed
that the environment parameters, the configuration of the microphone array, and the source position remains
constant during the acquisition.

3.1.4 RHC Estimation

In this work, we consider acoustic environments where reverberation is present. In the RHC estimation, since we
want to evaluate as realistic as possible scenarios, we take into account also the noise influence on the recorded
signals. Therefore, for decomposition in RHC of the multichannel sound pressure, we adopt the biased estimator
of RHC used in [42, 44, 81], which exploits the power spectral density (PSD) and cross PSD (CPSD) of the
measured signals to alleviate the negative effects caused by the noise. The RHC estimator is defined as follows:

β̃nm(t, k) ≈ Sαnmα00(t, k)

Sα00α00
(t, k)

, (50)

Sαnmα00
(t, k) =

1

Test

t+t0∑
t1=t−t0

{αnm(t1, k)α
∗
00(t1, k)},

Sα00α00
(t, k) =

1

Test

t+t0∑
t1=t−t0

{α00(t1, k)α
∗
00(t1, k)},

(51)

where Test=2t0+1 refers to the number of time-varying frames, approximating a statistical expectation over
[t − t0,t + t0] time frames at the k -th frequency bin. Essentially, we assume speech stationarity over Test con-
secutive time frames, similarly to [40].

3.2. Proposed Model

The proposed work employs a CRNN-based model for DOA estimation. As stated in Sec. 2.3.1, the convolutional
network is able to extract a data representation at a higher level. The extracted data representation contain
spatial information, thus providing an improved classification of the features. The recurrent layer processes
datasets in a sequential manner and learns from present and previous time steps. Hence, we can extract impor-
tant information from temporal relations that can be useful to detect the signal source. For the aforementioned
characteristics, the combination of both networks is widely exploited in recent works [9, 27] and used as the
baseline for major challenges [1, 2].
The convolutional network and the recurrent network employed in the baseline are inspired by [8]. The network
is fed with the spatial and spectro-temporal features extracted by the output of the feature extraction process.
The dimension of the input feature is Tf × F × C, where Tf is the temporal dimension of the input feature, F
is the number of mel bins, and C is the number of channels. In the proposed architecture, the spatial patterns
are learned using multiple layers of 2D CNN, as we can see in Fig. 5 . Each convolutional layer has B filters of
3× 3 dimensional receptive fields that operate along the time-frequency axis with a rectified linear unit (ReLU)
activation. The time and frequency dimensions of the kernel allow the network to acquire intra-channel features
suitable for DOA estimation. After each convolutional layer, the output activations are normalized using a
2D batch normalization layer, and the dimensionality is reduced using max-pooling along both the time and
frequency axis. Time pooling is applied in order to have T samples equal to Tlab label time samples at the
output of the network. Therefore, the output after the final layer of the CNN with B filters is of dimension
T ×2×B, where the reduced frequency dimension of 2 is the result of max-pooling across frequency dimension.
The output from CNN is further reshaped to a T frame sequence of length 2B and fed to a bidirectional RNN,
which is employed to learn temporal information from the CNN output features. The bidirectional RNN consists
of GRU with I nodes each and tanh activation.
The RNN produces an output that is fed to the input of two separated FC networks, one for azimuth and one
for elevation predictions. The number of output nodes in the final layer corresponds to the total number of
azimuth and elevation classes, respectively.
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Conv (3×3, 64), ReLU

Batch Normalization

Max Pooling (5 × 4)

Conv (3×3, 64), ReLU
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Batch Normalization

Max Pooling (1 × 2)

GRU, bi-directional
2 layers, 128 units

FC, Linear FC, Linear

ϕ̂ θ̂

Figure 5: Block diagram of the proposed model architecture

3.3. Proposed Siamese Network

For triplet loss, we employ a siamese network composed of three identical networks, one for each element of the
triplet. We employed the same CNN structure present in the model proposed in Sec. 3.2, which corresponds to
the first three blocks in Fig. 5. As mentioned in Sec. 3.2, the input feature of the CNN has size Tf ×F ×C and
output of size T×2B as a result of the time and frequency pooling. Then, the three output vectors are employed
to compute triplet loss. In this case, we employed the hard margin triplet loss defined in (29) with margin δ = 2
and cosine similarity. Then, the loss is back-propagated to the siamese network. Since the subnets share the
weights we propagate the loss to one subnet and in the next iteration we will use that subnet to compute the
output vectors. For greater understanding, in Fig. 6 we provide the architecture scheme of the siamese network
employed in triplet loss training.

anchor

positive

negative

CNN

CNN

CNN

triplet loss

Figure 6: The siamese architecture employed in triplet loss training, where anchor, positive and negative
features has size Tf ×F ×C and the output features of the CNNs has size T ×2B. The output features
are utilized to evaluate triplet loss.
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4. Performance Evaluation

4.1. Implementation Details

4.1.1 Dataset

In order to evaluate the model on different acoustic environments, we created a synthetic dataset. The dataset
contains approximately 165 hours time-domain spherical harmonics up to the 4-th order. We generated the
data by convolving simulated room impulse responses obtained from SMIR generator1 [47] with speech signals.
Speech signals have been taken randomly from a Librispeech [60] subset generated in the L3DAS23 dataset
for Task 1 [33]. The considered dataset subset is composed of clean speech signals with a duration up to 12 s.
The considered subset of Librispeech is divided into approximately 53% male and 47% female speech. We
considered rooms with size randomly selected in the range [4, 8] × [5, 10] × [3, 5]m with uniform distribution.
For room impulse response generation, we employed a simulated Eigenmike with 32 microphones and 4.2 cm
radius. The microphone is positioned at the center of the room at height 1.3m, which is the average ear
height of a seated person. In order to simulate a realistic scenario, the SNR ranges from 5 to 60 dB randomly
selected with a uniform distribution. Several sources are randomly positioned around the spherical array in
order to obtain around 500 locations for each room. The DOA of the locations is in the range ϕ ∈ [0◦, 360◦]
and θ ∈ [60◦, 130◦], with distance from the center of the microphone randomly chosen in the interval [1.5, 3.5]m
with uniform distribution. As far as the reverberation time (RT60) is concerned, we considered 16 values in the
interval [0.25, 1.0]s with a step of 0.05 s. For spherical harmonic decomposition we used the tool [4] from the
STFT of the simulated data. The STFTs of the simulated signals are obtained using a Hamming window of
length 512 samples with 16 kHz of sampling frequency. For the training process, we selected samples from one
of the simulated rooms. As shown in Fig. 7, the selected room has size 5.1× 6.8× 3.3m and RT60 = 0.5 s. The
simulated dataset parameters are summarized in Tab. 1.
In order to compute the input features, we apply a preprocessing stage to the generated signals. We consider
the first 4 channels of the generated signals, which correspond to FOA signals. Therefore, the order of the RHC
is limited to N = 1. The window length of the STFT is set so that as a result, the linear spectrum has one
sample every 0.02 seconds. Then, similarly to [8, 9], we apply a log-mel transformation to the linear spectrum,
considering 64 mel frequency bins.For the time average required by the RHC estimator (50), we consider a
time window Test = 0.1 s. Afterwards, we convert the RHC frequency axis into mel frequency bins, in order
to have the same frequency dimensions as the log mel-spectrograms. Since a neural network is best suited to
work with real data, we convert the 4-channel complex-valued RHC into an 8-channel real-valued feature. The
log mel-spectrograms and the RHC features have the same frequency dimension. Hence, we can combine the
extracted features by concatenating them, producing the input feature that is exploited during the training
process. This data has a shape of C × T × F , with C=10 channels, 4 for log mel-spectrograms and 6 for RHC
(3 relative harmonic coefficients represented through their real and imaginary part), T frames and F=64 mel
bins.

1http://github.com/ehabets/SMIR-Generator

Simulated dataset
Input Speech Audio up to 12 s duration
Azimuth(ϕ) [0◦, 360◦]

(randomly chosen)
Elevation(θ) [60◦, 130◦]

(randomly chosen)
Size of room [4, 8]× [5, 10]× [3, 5]

(randomly chosen)
Distance of source from [1.5, 3.5]

microphone (randomly chosen)
RT60 [0.25, 1.0]

(randomly chosen)
SNR [5, 60]dB

(randomly chosen)

Table 1: Simulating data parameters
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(a) 3D source positions. (b) Source distribution on xy plane.

Figure 7: (a) Distribution of the source positions in the space. In blue the sound source positions, in
red the spherical array position. (b) Top view of the spherical array position (red dot) and the sound
source positions (blue dots).

Since the magnitude of the features is sensible to the source signals, it may cause different orders of variance
between the different types of extracted features and this may prevent the model from convergence. Therefore,
after the feature extraction, we applied standardization in order to remove the mean and scale them to unit
variance.
Since we do not have frame-by-frame annotations on the source activity, we extracted the labels exploited for
the training process. In this work, we only considered speech sources. Therefore, to identify the source activity,
we employ a voice activity detector (VAD) [3], which operates with a sampling time of 0.1 s. The VAD algorithm
detects whether a speech signal is present or not during each time interval. For this task, we computed the clean
mono version of each sample of the dataset to facilitate voice detection. Moreover, for each time interval where
the voice activity is detected, we label the corresponding frame with the cartesian coordinates of the sound
source related to the spherical array. These labels are then employed during the training phase to supervise the
learning process of the model.

4.1.2 Training

Here, we introduce the configurations of the architectures employed in our experiments. For the 10 channel input
features, we set the time sequence length Tf = 10 samples, considering 64 mel frequency bins. For the training
of the baseline model, the batch size is set to 256. Therefore, one batch of data has size 256× 50× 64× 10. The
main framework of this work is the CRNN explained in Sec. 3.2. For our experiments, the configuration of the
CRNN is similar to [9]. In detail, we added a dropout layer with a dropout rate of 0.2 to each convolutional
layer of the CNN to prevent overfitting. In order to reduce the size of the features, we employ pooling layers
after the convolutional layer. The kernel size in the temporal dimension of the pooling layers is [5, 1, 1]. As
described in Sec. 4.1.1, the input features and the labels have different time resolutions: input features have a
time hop length of 0.02 s and 0.1 s for labels. Here, with hop length, we refer to the time step between each
time frame. Therefore, as shown in Fig. 5, a filter size of 5 is employed in the first pooling layer to ensure
consistency in the time dimension between output features and labels. Instead, the size of the kernels in the
frequency domain is [4, 2, 2], respectively. The number of the filters of the CNN is set to 64. Therefore, the
output vector of the CNN has size 256× 10× 2× 64 and after the squeezing operation applied at the end of the
CNN, the vector fed to the RNN has size 256×10×128. The RNN consists of 2 layers with 128 nodes each and
tanh activation, obtaining an output vector of 256× 10× 256. In order to have more compact data, we reduce
the last dimension of the vector from 256 to 128. Then, the feature vector is flattened to feed the FC networks.
The source positions are separated in DOA bins with a sampling interval of 5◦ for both azimuth and elevation.
The size of the output of the FC is equal to the number of classes considered. Furthermore, we consider the
silence class, which comprehends all the frames where the speech signal is not active. Therefore, the output of
the network is classified into 73 azimuth classes (72 for azimuth and 1 for silence) and 16 elevation classes (15
for elevation and 1 for silence). Since we are dealing with multi-class classification, we exploit cross entropy loss
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for the training of network parameters, defined as

−
C∑

c=1

Ωc log(P(Ω̂c)) , (52)

where C is the number of classes, Ωc and P(Ω̂c) represent the label and the predicted probability for class c. In
(52), log(·) is the natural log operator.
We train the network for 300 epochs with early stop at 100 epochs. We adopt Adam optimizer with a momentum
of 0.9. The learning rate value LR = 5×10−4 is halved if the validation loss does not improve within 25 epochs.
For the triplet loss training, we employ the first part of the network that corresponds to the CNN of the
aforementioned baseline. As for [17], in triplet loss learning, each batch has ζ × η = 8 × 16 time sequences. ζ
and η denote the number of different DOAs (classes) and the number of sequences per DOA, respectively. The
anchor sample and the positive samples are randomly extracted from the same DOA class. Instead, we choose
the negative instance from a random class. All the hyperparameters remain the same as in the CRNN training.
Finally, we train again the proposed CRNN architecture. The CNN used in the CRNN and in the triplet
loss training share the same dimensions and setup. Therefore, we use the CNN network employed in triplet
loss training as the pre-trained model for the CNN of the last CRNN in order to start the training from the
embeddings learned by the triplet loss.

4.1.3 Metrics

Metrics are measures employed to evaluate the effectiveness of a particular system. Metrics are important
in providing insight and understanding the behavior of a method and can be exploited to identify areas of
improvement. In deep learning, metrics are used to evaluate the effectiveness of the models in predicting
outcomes. In this work, we are dealing with DOA classification. Therefore, we employed metrics that measure
how the model is able to localize the source position. Hence, we considered the location recall, the gross error,
and the mean absolute estimated error between the estimated and true DOAs.

Localization Recall Localization recall is a metric used to evaluate the performance of the DOA estimation
models. The LR is calculated by comparing the ground truth DOA with the estimated DOA by the model. In
this work, we consider true positive (TP) when for a frame t, the source signal is active, i.e. the ground truth
class is not the silence class, and the estimated DOA is not silence. Furthermore, we refer to false negative
(FN) as the estimations when the source signal is active, similar to the TP definition, but the silence class is
the estimated class. In this context, we define LR as follows

LR =
TP

TP + FN
. (53)

Therefore, the LR measures the ability of the model to recognize when the source is active. A low LR denotes
that the model is not capable to detect when the signal source is active. On the contrary, a high LR represents
the high proficiency of the model in discerning the instances where the source is active.

Gross Error In DOA estimation, the gross error metric is a measure of the performance of the DOA
estimator in detecting the DOA correctly. In practical scenarios, the signal may be affected by noise and
reflections, which can result in erroneous DOA estimates. Therefore, the GE measure is employed to evaluate
the robustness of the proposed method to outliers. Similarly to [26] it is calculated as:

GEϕ,θ =
1

Zϕ,θ

Zϕ,θ∑
z=1

∆((|ϕz − ϕ̂z|, |θz − θ̂z|)− λ), (54)

where the variables Zϕ and Zθ represent the number of estimated azimuth and elevation values, respectively.
Furthermore, ϕz, θz are the ground truth locations and ϕ̂z, θ̂z are the predicted locations, as shown in Fig. 5.
∆(z) is the indicator function which takes the values of 0 when the argument z is less than 0, and 1 when z
is greater equal to 0. λ = 10◦ is the threshold which is considered based on classification of angles, similarly
to [26]. Hence, for GE the (ϕ̂, θ̂) estimations that fall outside of the threshold λ are discarded. The GE is
computed separately for azimuth and elevation. We average GEϕ and GEθ in order to obtain a single metric
value, which we can interpret as the percentage of correct DOA estimations that fall inside the range λ from
the ground truth DOA. A smaller GE represents a high location effectiveness of the model, while larger GE
shows the inability of the model to determine the correct DOA.
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Mean Absolute Estimation Error In the context of DOA estimation, MAEE is employed to evaluate
the performance of an estimator by measuring the average absolute difference between the estimated DOAs and
the true DOAs. As in [40], the MAEE is defined as the mean of all the absolute differences between estimated
values and reference values:

MAEE =
1

Z

Z∑
z=1

|ϕz − ϕ̂z|+ |θz − θ̂z|, (55)

where Z is the total number of joint DOA estimations. Similarly to GE, MAEE measures the performance of
the proposed method in estimating the correct DOA. In this case, the MAEE allows us to have a measure of
the localization performance expressed in degrees. For this reason, we employed the MAEE in order to have a
direct measurement of the localization performance, which can be easily interpreted. Similarly to GE, a smaller
MAEE value represents a high location effectiveness of the model because the estimated DOAs are close to the
real DOAs.

4.2. Visualization of learned embeddings

In this section, we discuss and compare the learned embeddings of the models proposed in this work: the free
design embedding CRNN, the siamese network trained with triplet loss, and the pre-trained CRNN. For the
evaluation, we randomly selected rooms from the simulated dataset without considering the room employed
during the training stage. The motivation behind this decision was to demonstrate that the models can ab-
stract the information from data of a single room. Furthermore, we apply T-SNE [56] method to visualize 2D
projections of feature embeddings of test data learned from the training of the models. Then, we focus on
the effectiveness of the siamese network training with triplet loss, comparing its feature embedding with the
free-designed and pre-trained embedding. We expect that the feature embedding learned with triplet loss will
result in an effective representation of the input data, where features belonging to the same class will be in the
same cluster in the features space, and features of different classes will be more clearly separated.
Based on T-SNE visualization method, we can observe the learned feature embedding in Fig. 8. We represented
5 different DOA classes with different distances in the spatial domain. We can observe that all three considered
models can separate the different DOA classes creating clusters. As expected, the free design embedding and the
pre-trained embedding are comparable to each other. However, as we can see in Fig. 8c the feature embedding
created exploiting triplet loss training results in a more separated feature embedding since the samples of each
class are closer to the centroid of the class cluster. Therefore, as we expected, the triplet loss embedding has a
better interpretability compared to the other embeddings. Indeed, we can observe that the features embedding
of the free design and the pre-trained models are more sparse, creating sub-clusters for the same class. However,
the pre-trained model can achieve similar performance as the freely trained network, while obtaining a less sparse
features space. In this way, through pre-training with triplet loss, we can have a good DOA classification, while
having a more interpretable embedding. It is worth noting that classes that are spatially close to each other in
terms of DOA tend to remain close in the feature embedding space. This property of the learned representation
can be leveraged to facilitate the classification and spatial interpretation of the features space.
In Fig. 9, we represented the entire test set where the samples have been divided into macro classes based on the
azimuth values. As expected, the separation between the samples is more pronounced in the triplet loss feature
embedding space. The division between the classes is clear for all three methods. However, the pre-trained
appears to have a more homogeneous distribution in the features space thanks to the triplet loss pre-training.
Interestingly, we notice that in Fig. 9c-d, the azimuth classes divide the feature embedding space into equal
parts. The pre-trained network exhibits a clear division between the classes comparable to the DOA division in
the spatial domain, i.e., indicating a stronger correlation between the features space and the spatial dimension.
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(a) free design. (b) pre-trained.

(c) triplet loss.

Figure 8: The T-SNE 2D visualization of the learned embeddings for 5 different DOA classes. The free
design embedding and the pre-trained embedding are comparable. However, the free design embedding
shows separated clusters that are closer to each other with respect to the other methods. Instead, the
triplet loss model displays well-separated clusters, while the pre-trained model maintains the cluster
separation given by the triplet loss model.
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(a) free design. (b) free design.

(c) pre-trained. (d) pre-trained.

(e) triplet loss. (f) triplet loss.

Figure 9: 2D T-SNE projection visualization of all the samples in the test set. (a,c,e) The samples
has been divided in two macro classes based on the azimuth values: those with azimuth between 0◦

and 179◦ (blue) and those with azimuth between 180◦ to 359◦ (red). (b,d,f) The samples has been
divided in four macro classes based on the azimuth values: [0◦, 90◦] (blue), [90◦, 180◦] (red), [180◦, 270◦]
(green), [270◦, 360◦] (yellow).
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GE LR MAEE
free design 0.36 0.97 6.83
pre-trained 0.37 0.95 6.86

Table 2: The comparison of the three models presented in this work performance on unseen data

4.3. DOA Estimation Results

As shown in Tab. 2, the free design embeddings method and the triplet loss pre-trained methods have similar
performance on the test set. Therefore, we selected the pre-trained model to compare the performance of the
proposed approach, referenced in this section as PT-CRNN. The performance is evaluated in terms of GE
and MAEE, and compared with the conventional method MUSIC [67, 75], RMUSIC [39], SHD-MUSIC [5, 50],
and SHD-RMUSIC [39]. To perform a complete evaluation of the performance, we calculate both the azimuth
GE GEϕ and the elevation GE GEθ. By computing both of these metrics, we can obtain a comprehensive
understanding of the performance of the method in both horizontal and vertical planes. The results are obtained
for various azimuth and elevation angles. In the case of the GE metrics, the values were calculated by summing
all the DOA estimation frames in the test set. For MAEE, instead, the average of all the observations is plotted.
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Figure 10: GE values against RT60 for (a) azimuth, (b) elevation and (c) combined axis. In (d), it
is represented the MAEE performance against RT60. The test samples has been selected for various
azimuth and elevation, considering only samples with SNR>40 dB at different distances from the
microphone array.
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In Fig. 10, we illustrated GEϕ, GEθ, GE, and MAEE by considering different rooms with different RT60 values.
From the graphs in Fig. 10, it can be observed that the performance of PT-CRNN is superior to the performance
of the subspace methods in terms of the GE metrics. Additionally, it can be seen that the proposed method
exhibits a lower GEϕ than the GEθ, indicating higher performance in the localization of the sound sources in the
horizontal plane than in the vertical plane. In terms of MAEE, it can be observed that the technique proposed
in this work has higher performance with respect to the other methods, suggesting that it is able to estimate
the DOA more precisely than the considered methods. PT-CRNN, however, is the technique showing a more
robust behaviour. We observe that the baseline methods present an important performance drop, while the
performance of the proposed method is constant.
Then, we evaluated GEϕ, GEθ, GE, and MAEE with varying SNR, selecting the rooms with RT60 from 0.45 s to
0.55 s. The results showed in Fig. 11 demonstrate that the PT-CRNN method performance is better to subspace
methods in terms of both GE metrics and MAEE. As observed in the varying RT60 case, PT-CRNN presents
lower azimuth GE than elevation GE, suggesting better localization in the azimuth plane than the elevation
plane. In terms of MAEE, the proposed model outperforms the baselines, demonstrating the effectiveness of
the system in DOA estimation under various SNR conditions. In this case, as well, the PT-CRNN method
demonstrates a more robust behaviour, indicating a lower sensitivity to noise than the other methods.
Finally, in Fig. 12, we represented the considered localization metrics against the distance between the sound
source and the center of the microphone array. The results demonstrate similar behaviour to previous tests,
where the PT-CRNN method exhibits a more robust behaviour compared to the conventional methods consid-
ered in the evaluation. PT-CRNN outperforms subspace methods at every considered distance. The performance
of the baseline methods degrade at higher source distance, where PT-CRNN shows a higher capacity to estimate
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Figure 11: GE and MAEE values against SNR. The test samples has been selected for various azimuth
and elevation, considering only rooms with RT60 between 0.45 s and 0.55 s.
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the source DOA correctly.
In general, PT-CRNN has shown higher performance compared to the other methods for all the considered
metrics. In the end, the model proposed in this work outperforms the the baseline approaches in non-ideal
conditions of the acoustic scenario, i.e., low SNR and high reverberation, indicating more robust performance
than the conventional methods.
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Figure 12: GE and MAEE values against the distance between the sound source and the microphone
array. The test samples has been selected for various azimuth and elevation, considering only rooms
with RT60 between 0.45 s and 0.55 s.
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5. Conclusions and Future Works

In this thesis, we have developed a deep-learning based method for the sound source DOA estimation from
SHD-based signals. SHD-domain based features can be extracted from microphone arrays with different geome-
tries, making the proposed approach suitable for different microphone setups. We adopted a recently introduced
feature representation known as RHC which provides meaningful spatial information about the sound field. In
this context, we presented a siamese network architecture for the triplet loss training. Triplet loss promotes a
structured and meaningful feature space with improved clustering of similar samples and better discrimination
of dissimilar samples.
In order to tackle the DOA estimation problem, we divided the possible DOAs into azimuth and elevation
classes. Then, inspired by recent works in the DOA estimation field [8, 26, 27], we proposed a CRNN-based
architecture for the joint estimation of azimuth and elevation of the sound source location. The proposed model
has been trained in a single room and tested in different rooms, thus, unseen during the training phase, demon-
strating that the network is able to generalize the information from input features. As a result, the network
showed improved performance in DOA estimation with respect to baseline methods in complex scenarios with
low SNR and high RT60.
Then, our solution involved the implementation of a CNN-based siamese neural network. The purpose of this
neural network architecture was to employ triplet loss, in order to generate a structured features embedding.
With the triplet loss, the network was able to learn a structured feature space where similar samples are close
and dissimilar samples are separated. The structured embedding preserved a good correspondence with the
spatial domain, i.e., data from two different DOA classes that are close in the spatial domain correspond to
two different clusters close to each other in the feature embedding. We demonstrated that this property of the
features space results in improved intelligibility.
Next, we trained the proposed CRNN architecture initializing the state of the CNN that composes the CRNN
architecture with the weights learned during the triplet loss training. The simulations on the synthetic dataset
showed that the pre-trained network is able to estimate the source position with similar performance with
respect to the proposed CRNN network with free-designed embedding. The feature space of the pre-trained
network demonstrates the beneficial effect of the network initialization with the triplet loss-trained network.
The analysis of the features embeddings showed that the feature space of the pre-trained network has a struc-
tured correspondence with the spatial domain, indicating higher interpretability.
Finally, we presented the localization results by performing tests on rooms with different dimensions and re-
verberation times with respect to the room on which the model is trained. Regarding the metrics of both GE
and MAEE, the proposed approach exhibited the capacity of the pre-trained network to generalize well when
confronted with new, unseen data. In the comparison with subspace methods, the network showed a more
robust performance, with minimal degradation of the performance in different acoustic scenarios.
We believe this works represents an exploratory step towards the possibilities of the triplet loss in the DOA
estimation problem. The proposed method can be easily extended to the multi-source localization case and we
intend to propose it in the near future. We expect that a more structured feature embedding can be exploited
for multitask problems, such as sound event detection and localization, and speech enhancement. Furthermore,
we suppose that a structured space could be useful for domain adaptation cases, for instance, when transitioning
from simulated data to real-world recordings.
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Abstract in lingua italiana

La localizzazione di sorgenti sonore in ambienti rumorosi e riverberanti è ancora una questione aperta nel campo
dell’elaborazione dei segnali. Tipicamente, l’identificazione della direzione di arrivo di un suono viene eseguita
a partire da una registrazione multicanale. L’informazione della posizione di una sorgente sonora può essere
fondamentale in diverse applicazioni, come il riconscimento di una voce o di un altoparlante, sorveglianza audio,
realtà virtuale e aumentata. Recenti approcci al problema sono basati su modelli che sfruttano una particolare
trasformazione dei segnali nel dominio delle armoniche sferiche, chiamati coefficienti armonici relativi. Altri
recenti approcci propongono tecniche di deep learning per affrontare la stima della posizione della sorgente
sonora, apprendendo le sue caratteristiche da reti neurali. In questo elaborato, proponiamo un nuovo metodo
per la classificazione della direzione di arrivo esplorando la rete neurale convoluzionale ricorrente attraverso
l’impiego dei coefficienti armonici relativi. In modo da classificare simultaneamente orientamento e ed elevazione
della sorgente sonora, la parte finale della rete convoluzionale ricorrente è composta da due reti fully connected
indipendenti. Successivamente, presentiamo una rete neurale siamese allenata con la tecnica nota come triplet
loss. L’allenamento con la triplet loss permette alla rete di apprendere una rappresentazione strutturata dei
dati, organnizzando i campioni della stessa classe vicini tra loro e allo stesso tempo separando i campioni
di classi diverse. A tal proposito, abbiamo dimostrato che impiegando la triplet loss nell’allenamento della
rete neurale, la rete è capace di localizzare la sorgente acustica in modo efficace anche in simulazioni con un
basso rapporto segnale-rumore e un alto tempo di riverberazione. Gli esperimenti effettuati confermano che
l’approccio proposto in questo elaborato producono una rappresentazione dei dati meno sparsa, implicandone
una superiore interpretabilità. Infine, le prestazioni del metodo proposto sono confrontati con i risultati di
metodi convenzionali, esibendo una maggiore robustezza in presenza di riverbero e rumore, e una maggiore
accuratezza nella localizzazione della sorgente sonora.

Parole chiave: localizzazione, deep learning, coefficienti armonici relativi, triplet loss
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