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1. Introduction
Nowadays, worldwide spending in digital adver-
tising is skyrocketing, and this growth is pri-
marily driven by ad auctions. These account
for almost all market share, since they are at
the core of popular advertising platforms, such
as, e.g., those by Google, Amazon, and Face-
book. In a standard ad auction, the advertis-
ers (also called bidders) compete for displaying
their ads on a limited number of slots, and each
bidder has their own private valuation represent-
ing how much they value a click on their ad. In
this work, we study Bayesian ad auctions, which
are characterized by the fact that bidders’ val-
uations depend on a random, unknown state of
nature. The auction mechanism has complete
knowledge of the actual state of nature, and it
can send signals to bidders so as to disclose infor-
mation about the state and increase revenue. In
particular, the auction mechanism commits to a
signaling scheme, which is defined as a random-
ized mapping from states of nature to signals
being sent to the bidders. Our model fits many
real-world applications that are not captured by
classical ad auctions. For instance, a state of
nature may collectively encode some features of
the user visualizing the ads—such as, e.g., age,
gender, or geographical region—that are known

to the mechanism only, since the latter has ac-
cess to data sources inaccessible to the bidders.

1.1. Original Contributions
We start with a negative result, showing that,
in general, the problem does not admit a PTAS
unless P = NP, even when bidders’ valuations
are known to the mechanism. The rest of the
thesis is devoted to settings in which such nega-
tive result can be circumvented. First, we prove
that, with known valuations, the problem can
indeed be solved in polynomial time when ei-
ther the number of states d or the number of
slots m is fixed. Moreover, in the same setting,
we provide an FPTAS for the case in which bid-
ders are single minded, but d and m can be ar-
bitrary. Then, we switch to the random valua-
tions setting, in which these are randomly drawn
according to some probability distribution. In
this case, we show that the problem admits an
FPTAS, a PTAS, and a QPTAS, when, respec-
tively, d is fixed, m is fixed, and bidders’ valua-
tions are bounded away from zero.

1.2. Related Works
The algorithmic study of signaling in auctions is
mainly focused on second-price auction, which
can be seen as a special ad auction with a sin-
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gle slot. Emek et al. [2014] study second-price
auctions in the known valuations setting. They
provide an LP to compute an optimal public
signaling scheme. Moreover, they show that
it is NP-hard to compute an optimal signaling
scheme in the random valuations setting. Cheng
et al. [2015] complement the hardness result of
Emek et al. [2014] by providing a PTAS for
the random valuations setting. Finally, Badani-
diyuru et al. [2018] study algorithms whose run-
ning time does not depend on the number of
states of nature and initiate the study of private
signaling schemes.

2. Model Formulation
In a standard ad auction, there is a set N := [n]
of advertisers (or bidders) who compete for dis-
playing their ads on a set M := [m] of slots,
with m ≤ n. Each bidder i ∈ N is charac-
terized by a private valuation vi ∈ [0, 1], which
represents how much they value a click on their
ad. Moreover, each slot j ∈ M is associated
with a click through rate parameter λj ∈ [0, 1],
which is the probability with which the slot is
clicked by a user. W.l.o.g., we assume that
the slots are ordered so that λ1 ≥ . . . ≥ λm.
The auction goes on as follows: first, each bid-
der i ∈ N separately reports a bid bi ∈ [0, 1]
to the auction mechanism; then, based on the
bids, the latter allocates an ad to each slot and
defines how much each bidder has to pay the
mechanism for a click on their ad. We focus
on truthful mechanisms, and the VCG mecha-
nism in particular. In truthful mechanisms, al-
location and payments are defined so that it is
a dominant strategy for each bidder to report
their true valuation to the mechanism, namely
bi = vi for every i ∈ N . Moreover, the allo-
cation implemented by the VCG mechanism or-
derly assigns the first m bidders in decreasing
value of bi to the first m slots (those with the
highest click through rates). At the same time,
assuming w.l.o.g. that bidder i is assigned to
slot i, the mechanism defines an expected pay-
ment pi :=

∑m+1
j=i+1 bj(λj−1−λj) for each bidder

i ∈ [m], where, for the ease of notation, we let
λm+1 = 0. The payment is zero for all the other
bidders. We study Bayesian ad auctions, which
are characterized by a set Θ := {θ1, . . . , θd} of
d states of nature. Each bidder i ∈ N has a
valuation vector vi ∈ [0, 1]d, with vi(θ) being

bidder i’s valuation in state θ ∈ Θ, and all such
vectors are arranged in a matrix of bidders’ val-
uations V ∈ [0, 1]n×d, whose entries are defined
as V (i, θ) := vi(θ) for all i ∈ N and θ ∈ Θ.
We model signaling by means of the Bayesian
persuasion framework. We consider the case in
which the auction mechanism knows the state
of nature and acts as a sender by issuing signals
to the bidders (the receivers), so as to partially
disclose information about the state and increase
revenue. As customary in the literature, we as-
sume that the state is drawn from a common
prior distribution µ ∈ ∆Θ, with µθ denoting the
probability of state θ ∈ Θ.1 The mechanism
publicly commits to a signaling scheme ϕ, which
is a randomized mapping from states of nature
to signals for the bidders. We focus on the case
of public signaling in which all the bidders re-
ceive the same signal from the auction mecha-
nism. Formally, a signaling scheme is a function
ϕ : Θ → ∆S , where S is a set of available sig-
nals. For the ease of notation, we let ϕθ(s) be
the probability of sending signal s ∈ S when the
state is θ ∈ Θ. A Bayesian ad auction goes on as
follows: (i) the auction mechanism commits to a
signaling scheme ϕ, and the bidders observe it;
(ii) the mechanism gets to know the state of na-
ture θ ∼ µ and draws signal s ∼ ϕ(θ); and (iv)
the bidders observe the signal s and rationally
update their prior belief over states according to
Bayes rule. After observing signal s ∈ S, all the
bidders infer a posterior distribution ξs ∈ ∆Θ

over states (also called posterior for short) such
that the posterior probability of state θ ∈ Θ is

ξs(θ) :=
µθϕθ(s)∑

θ′∈Θ µθ′ϕθ′(s)
. (1)

Finally, each bidder i ∈ N truthfully re-
ports to the mechanism their expected valuation
given the posterior ξs ∈ ∆Θ, namely ξ⊤s vi =∑

θ∈Θ vi(θ) ξs(θ), and the mechanism allocates
slots and defines payments as in a standard ad
auction. Moreover, it is oftentimes useful to
represent signaling schemes as convex combina-
tions of the posteriors they can induce. For-
mally, a signaling scheme ϕ : Θ → ∆S induces a
probability distribution γ over posteriors in ∆Θ,
with γ(ξ) denoting the probability of posterior

1Given a finite set X, we denote with ∆X the simplex
defined over the elements of X.
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ξ ∈ ∆Θ, defined as follow:

γ(ξ) :=
∑

s∈S:ξs=ξ

∑
θ∈Θ

µθϕθ(s).

Indeed, we can directly reason about distribu-
tions γ over ∆Θ rather than about signaling
schemes, provided that they are consistent with
the prior as follows:∑

ξ∈supp(γ)

γ(ξ) ξ(θ) = µθ ∀θ ∈ Θ. (2)

From now on we will use the term signaling
scheme to refer to a consistent distribution γ
over ∆Θ. We focus on the problem of comput-
ing an optimal signaling scheme, i.e., one maxi-
mizing the revenue of the mechanism. We study
two settings: the known valuations (KV) set-
ting in which the matrix of bidders’ valuations
V is known to the mechanism and the random
valuations (RV) setting in which the matrix
of bidders’ valuations V is unknown, but ran-
domly drawn according to a probability distri-
bution V. We denote by Rev(V, ξ) the expected
revenue of the mechanism when the bidders’ val-
uations are given by V and the posterior induced
by the mechanism is ξ ∈ ∆Θ. Formally, given
that bidders truthfully report their expected val-
uations and assuming w.l.o.g. that bidder i is
assigned by the mechanism to slot i, we can
write Rev(V, ξ) :=

∑m
j=1 j ξ

⊤vj+1(λj − λj+1).
Then, given a signaling scheme γ, the expected
revenue of the mechanism is Eξ∼γ [Rev(V, ξ)].
When the valuations are unknown, we let
Rev(V, ξ) := EV∼V [Eξ∼γ [Rev(V, ξ)]] and de-
fine the expected revenue analogously. Notice
that, given a distribution of valuations V (or, in
the KV setting, a matrix of bidders’ valuations
V ) and a finite set Ξ ⊆ ∆Θ of posteriors, it is
possible to formulate the problem of computing
an optimal signaling scheme as an LP, as follows:

max
γ∈∆Ξ

∑
ξ∈Ξ

γ(ξ)Rev(V, ξ) s.t.

∑
ξ∈Ξ

γ(ξ) ξ(θ) = µθ ∀θ ∈ Θ.

(3a)

(3b)

Note that LP 3 is written for the RV setting, its
analogous for the KV setting can be obtained by
substituting Rev(V, ξ) with Rev(V, ξ). In the
following, we let OPTΞ be the optimal value of
LP 3, while we denote with OPT the optimal
expected revenue of the mechanism over all the
possible signaling schemes γ.

3. A General Inapproximability
Result

We start our analysis with the following negative
result:
Theorem 3.1. The problem of computing an
optimal signaling scheme does not admit a
PTAS unless P = NP, even when it is restricted
to the KV setting.
Theorem 3.1 is proved by a reduction from the
VERTEX COVER problem in cubic graphs.

4. KV Setting: Parametrized
Complexity

In this section, we study the parametrized com-
plexity of the problem of computing an optimal
revenue-maximizing signaling scheme, showing
that it admits a polynomial-time algorithm
when either the number of slots m or the number
of states of nature d is fixed. In the following,
we let Πl ⊆ 2N be the set of all the the possible
permutations of l ≤ n bidders taken from N ,
with π = (i1, ..., il) ∈ Πl denoting a tuple made
by bidders i1, . . . , il ∈ N , in that order. We also
let Ξπ ⊆ ∆Θ be the (possibly empty) polytope
of posteriors in which the expected valuations of
bidders in π ∈ Πl are ordered (from the highest
to the lowest) according to π; formally, it holds
Ξπ :=

{
ξ ∈ ∆Θ | ξ⊤vi1 ≥ ξ⊤vi2 ≥ . . . ≥ ξ⊤vil

}
.

Notice that, for any fixed π ∈ Πl with l ≥ m+1,
the term Rev(V, ξ) is linear in ξ over Ξπ.

4.1. Fixing the Number of Slots
In this case, the problem can be solved in poly-
nomial time by formulating it as an LP, thanks
to the following lemma:
Lemma 4.1. There always exists an optimal
signaling scheme γ such that |Ξπ ∩ supp(γ)| ≤ 1
for every π ∈ Πm+1.
By Lemma 4.1, we can re-write the problem
of computing a revenue maximizing signaling
scheme as max

∑
π∈Πm+1

γ(ξπ)Rev(V, ξπ) sub-
ject to constraints ensuring that each ξπ belongs
to Ξπ and that γ is a consistent probability dis-
tribution over such posteriors (see Equation 3b).
This problem can be formulated as an LP by
introducing a variable for each π ∈ Πm+1 and
θ ∈ Θ, encoding the products γ(ξπ)ξπ(θ) that
define the expected revenue. Overall, the result-
ing LP has a number of variables and constraints
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that is O(nm), which, after fixing m, is polyno-
mial in the size of the input. Thus, we conclude
that:
Theorem 4.1. In the KV setting, if the num-
ber of slots m is fixed, then an optimal signaling
scheme can be computed in polynomial time.

4.2. Fixing the Number of States
Our polynomial-time algorithm exploits the fact
that an optimal signaling scheme can be com-
puted by restricting the attention to distribu-
tions supported on a finite set of posteriors
whose cardinality is polynomial in all the param-
eters, except from d. In particular, it is sufficient
to focus on the set Ξ∗ :=

⋃
π∈Πn

V (Ξπ), where
V (·) denotes the set of vertices of the polytope
given as input. Formally:
Lemma 4.2. It holds that OPTΞ∗ = OPT.
Moreover, since it is possible to show that |Ξ∗| =
O((n2+d)d−1), an optimal signaling scheme can
be computed by means of LP 3 instantiated for
the set Ξ∗, which has a number of variables and
constraints that is polynomial once d is fixed.
This proves the following:
Theorem 4.2. In the KV setting, if the number
of states d is fixed, then an optimal signaling
scheme can be computed in polynomial time.

5. KV Setting: Single-Minded
Bidders

In this section, we focus on particular Bayesian
ad auctions where the bidders are single minded.
Intuitively, in our setting, by single mindedness
we mean that each bidder is interested in dis-
playing their ad only when the realized state of
nature is a specific (single) state, and that all the
bidders interested in the same state value a click
on their ad for the same amount. We introduce
the following formal definition:
Definition 5.1 (Single-minded bidders). In a
Bayesian ad auction, we say that bidders are sin-
gle minded if there exist Nθ ⊆ N and δθ ∈ [0, 1]
for all θ ∈ Θ such that:
(i) N =

⋃
θ∈ΘNθ and Nθ ∩ Nθ′ = ∅ for all

θ ̸= θ′ ∈ Θ;
(ii) for every θ ∈ Θ and i ∈ Nθ, it holds vi(θ) =

δθ and vi(θ
′) = 0 for all θ′ ∈ Θ : θ′ ̸= θ.

Note that, since bidders truthfully report their
expected valuations, the mechanism will always

receive at most d different bids, one per set Nθ.
In the following, we let Π ⊆ 2Θ be the set of
all the permutations of the sates of nature Θ =
{θi}di=1, while we let π = (θk1 , . . . , θkd) ∈ Π be
an ordered tuple made by states θk1 , . . . , θkd ∈
Θ, where k1, . . . , kd ∈ [d]. Moreover we define:
Ξπ :=

{
ξ ∈ ∆Θ | δθk1 ξ(θk1) ≥ . . . ≥ δθkd ξ(θkd)

}
as the polytope of posteriors in which the ex-
pected valuations are ordered according to π.
The first preliminary result that we need in or-
der to derive our approximation algorithm is a
characterization of the vertices of the sets Ξπ for
π ∈ Π, as follows.
Lemma 5.1. Given π ∈ Π and ξ ∈ Ξπ, it holds
that ξ ∈ V (Ξπ) if and only if there exists ℓ ∈ [d]
such that:
(i) δθk1 ξ(θk1) = . . . = δθkℓ ξ(θkℓ) > 0; and
(ii) δθkℓ+1

ξ(θkℓ+1
) = . . . = δθkd ξ(θkd) = 0.

By letting Ξ∗ =
⋃

π∈Π V (Ξπ), since the term
Rev(V, ξ) is linear in ξ over Ξπ for every permu-
tation π ∈ Π, we can conclude that OPTΞ∗ =
OPT. Thus, Lemma 5.1 allows us to find an op-
timal signaling scheme by solving LP 3 for the
set Ξ∗ and the matrix of bidders’ valuations V .
However, notice that, since the size of Ξ∗ is expo-
nential in d, the resulting LP has exponentially-
many variables. Nevertheless, since the LP
has polynomially-many constraints, we can still
solve it in polynomial time by applying the el-
lipsoid algorithm to its dual, provided that a
polynomial-time separation oracle is available.
In order to design a polynomial-time separation
oracle, we apply the procedure described above
to a relaxed version of LP 3, whose optimal value
is sufficiently “close” to that of the original LP. In
order to do that we have to design a polynomial-
time separation oracle which reads as follow:
Definition 5.2 (Separation problem). Given
values for the dual variables yθ ∈ [−β, 0] for all
θ ∈ Θ, compute:

max
ξ∈Ξ∗

Rev(V, ξ)−
∑
θ∈Θ

yθ ξ(θ). (4)

The following Lemma 5.2 shows that Problem 4
can be solved optimally up to any given additive
loss λ > 0, by means of a dynamic programming
algorithm that runs in time polynomial in the
size of the input, in 1

λ , and in β. Formally:
Lemma 5.2. Given λ > 0, there exists an algo-
rithm that finds an additive λ-approximation to
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Problem 4, in time polynomial in the size of the
input, in 1

λ , and in β.
Since the algorithm in Lemma 5.2 only returns
an approximate solution to Problem 4, we need
to carefully apply the ellipsoid algorithm to solve
a relaxed version of the dual of LP 3, so that it
correctly works even with an approximated or-
acle. Some non-trivial duality arguments allow
us to prove that, indeed, this can be achieved
by only incurring in a small additive loss on
the quality of the returned solution, and with-
out degrading the running time of the algorithm.
Overall, this allows us to conclude that:
Theorem 5.1. In the KV setting, if the bidders
are single minded, then the problem of comput-
ing an optimal signaling scheme admits an (ad-
ditive) FPTAS.

6. RV Setting
In this setting, as stated in Section 2, we as-
sume that the auction mechanism has access to
the distribution of bidders’ valuations V only
through a black-box sampling oracle. In the fol-
lowing, given s ∈ N>0 i.i.d samples of matri-
ces of bidders’ valuations, namely V1, . . . , Vs ∈
[0, 1]n×d, we let Vs be their empirical distribu-
tion, which is such that:

PrV∼Vs

{
V = V̂

}
:=

∑s
t=1 1{Vt = V̂ }

s

for all V̂ ∈ [0, 1]n×d. In this section, we first
study the parametrized complexity of the prob-
lem of computing an optimal signaling scheme
in general auctions (Section 6.1), and, then, we
address special auction settings in which the bid-
ders’ valuations are bounded away from zero,
namely vi(θ) > δ for all i ∈ N and θ ∈ Θ,
for some threshold δ > 0. In the latter case, we
show that the problem admits a QPTAS and the
result is tight (Section 6.2). Before stating our
main results (Theorems 6.1, 6.2, 6.3, and 6.4),
we introduce some preliminary useful lemmas.
The first one (Lemma 6.1) works under the true
distribution of bidders’ valuations V, and it es-
tablishes a connection between the optimal ex-
pected revenue (OPT) and the optimal value of
LP 3 for suitably-defined finite sets Ξ ⊆ ∆Θ of
posteriors (OPTΞ). In particular, we look at
sets Ξ ⊆ ∆Θ for which the function Rev(V, ·) is
“stable” according to the following definition:
Definition 6.1 ((α, ε)-stability). Given α, ε ≥
0 and a finite set Ξ ⊆ ∆Θ, we say that Rev(V, ·)

is (α, ε)-stable for Ξ if, for every ξ ∈ ∆Θ, there
exists a distribution γξ ∈ ∆Ξ such that:

Eγξ [Rev(V, ξ′)] ≥ (1− α)Rev(V, ξ)− ε. (5)

For any finite set Ξ ⊆ ∆Θ such that Rev(V, ·)
is (α, ε)-stable for Ξ, starting from an optimal
signaling scheme γ one can recover an optimal
solution to LP 3, only incurring in “small” mul-
tiplicative and additive losses in the expected
revenue, respectively of 1−α and ε, formally we
have:
Lemma 6.1. Given α, ε ≥ 0 and Ξ ⊆ ∆Θ such
that Rev(V, ·) is (α, ε)-stable for Ξ, it holds
OPTΞ ≥ (1− α)OPT − ε.
The second lemma (Lemma 6.2) deals with the
approximation error introduced by using an em-
pirical distribution of bidders’ valuations Vs,
rather than the actual distribution V. Given a
finite set Ξ ⊆ ∆Θ of posteriors, let γVs ∈ ∆Ξ

be an optimal solution to LP 3 for distribu-
tion Vs and set Ξ. Moreover, let OPTΞ,s :=

E
[∑

ξ∈Ξ γVs(ξ)Rev(V, ξ)
]

be the average ex-
pected revenue of signaling schemes γVs under
the true distribution of valuations V, where the
expectation is with respect to the sampling pro-
cedure that determines Vs. Then, a concentra-
tion argument proves the following:
Lemma 6.2. Given ρ, τ > 0, let Ξ ⊆ ∆Θ

be finite and s :=
⌈
2(λ1m)2

τ2
log 2

ρ

⌉
, OPTΞ,s ≥

(1− ρ|Ξ|)OPTΞ − τ .
Finally, the last lemma (Lemma 6.3) exploits
Lemma 6.1 to provide two useful bounds on the
value of OPTΞq , where Ξq ⊆ ∆Θ (for a given
q ∈ N>0) is the finite set of all the q-uniform
posteriors, according to the following definition:

Definition 6.2 (q-uniform posterior). Given
q ∈ N>0, a posterior ξ ∈ ∆Θ is q-uniform if
each ξ(θ) is a multiple of 1

q .
We first observe that the set Ξq has size |Ξq| =(
q+d−1
d−1

)
≤ min{dq, qd}. The two points in the

following lemma are readily proved by applying
Lemma 6.1, after noticing that the sets Ξq in the
statement are such that the function Rev(V, ·)
is (α, ε)-stable for them, with suitable values of
α ≥ 0 and ε ≥ 0. Formally:

Lemma 6.3. Given q :=
⌈

1
2η2

log m+1
η

⌉
, η > 0

it holds:
(i) OPTΞq ≥ OPT − 2ηm;
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(ii) if, for some δ > 0, it is the case that vi(θ) >
δ for all i ∈ N and θ ∈ Θ, then OPTΞq ≥
(1− η

δ )
2 OPT.

6.1. Parametrized Complexity
First, we study the computational complexity of
the problem of computing an optimal signaling
scheme when the number of states d is fixed. We
provide an (additive) FPTAS that works by per-
forming the following two steps: (i) it collects a
suitable number s ∈ N>0 of matrices of bidders’
valuations, by invoking the sampling oracle; and
(ii) it solves LP 3 for the resulting empirical
distribution Vs and a suitably-defined set of q-
uniform posteriors. In particular, given a de-
sired (additive) error λ > 0, the algorithm works
on the set Ξq for q = ⌈md

λ ⌉ and its approxima-
tion guarantees rely on the following Lemma 6.4,
proved again by means of Lemma 6.1.
Lemma 6.4. Given λ > 0 and q = ⌈md

λ ⌉, then
OPTΞq≥OPT − λ.
Thanks to Lemmas 6.2 and 6.4 (the former ap-
plied for suitable values ρ, τ > 0), we can prove
that the procedure described in steps (i) and (ii)
above gives a signaling scheme achieving an ex-
pected revenue at most a function of λ lower
than OPT, provided that the number of samples
s is defined as in Lemma 6.4. Moreover, let us
notice that, since |Ξq| = O(qd) = O(( 1λmd)d), if
d is fixed, then the overall procedure runs in time
polynomial in the input size and in 1

λ . Thus, we
can conclude that:
Theorem 6.1. In the RV setting, if the num-
ber of states d is fixed, then the problem of com-
puting an optimal signaling scheme admits and
(additive) FPTAS.
Next, we switch the attention to the case in
which the number of slots m is fixed. We provide
an (additive) PTAS that works as the FPTAS
in Theorem 6.1, but whose approximation guar-
antees follow from Lemma 6.2 and point (i) in
Lemma 6.3 (rather than Lemma 6.4). Thus, the
only difference with respect to the previous case
is that the algorithm works on the set Ξq of q-
uniform posteriors for q defined as in Lemma 6.3.
As a result, since |Ξq| = O(dq) and q depends on
a parameter η > 0 that is related to the quality
of the obtained approximation, the algorithm is
only a PTAS rather than an FPTAS. Formally,
we can prove the following:
Theorem 6.2. In the RV setting, if the number

of slots m is fixed, then the problem of computing
an optimal signaling scheme admits and (addi-
tive) PTAS.

6.2. Valuations Bounded Away From
Zero

We conclude the section by studying the case in
which the bidders’ valuations are bounded away
from zero. This case is dealt with an algorithm
identical to the one in Theorem 6.2, but car-
rying on the approximation analysis by using
Lemma 6.2 and point (ii) in Lemma 6.3 (rater
than point (i)). Thus, since the value of q in
Lemma 6.3 is related to the quality of the ap-
proximation thorough a parameter η > 0 and
also depends logarithmically on the number of
slots m, we obtain:
Theorem 6.3. In the RV setting, if vi(θ) ≥ δ
for all i ∈ N and θ ∈ Θ for some δ > 0, then
the problem of computing an optimal signaling
scheme admits a (multiplicative) QPTAS.
The following theorem shows that the result is
tight.
Theorem 6.4. Assuming the ETH, there exists
a constant ω > 0 such that finding a signaling
scheme that provides an expected revenue at least
of (1−ω)OPT requires IΩ̃(log I) time, where I is
the size of the problem instance. This holds even
when vi(θ) >

1
3 for all i ∈ N and θ ∈ Θ.2
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