
Forcing latent space Disentangle-
ment for enhanced model
Explainability

Tesi di Laurea Magistrale in
Computer Science Engineering

Author: Federico Romeo

Student ID: 969644
Advisor: Prof. Giacomo Boracchi
Co-advisors: Loris Giulivi
Academic Year: 2022-23

i

Abstract

Despite the widespread use of deep neural networks, their intricate nature and extensive
parameterization makes them essentially black boxes, posing challenges to interpretabil-
ity. Recent deep learning trends aim at developing more interpretable models by working
on the implicit intermediate representations formed during training. To this end, enabling
a direct link between the data semantic factors of variation (FoVs) and the latent rep-
resentation could be beneficial to interpretability. This is the case of disentanglement, a
property of latent representations in which a change in one latent dimension corresponds
to a change in one single FoV, while being relatively invariant to changes in others. In
a disentangled representation, individual latent dimensions correspond to distinct and
interpretable FoVs, allowing for a clearer control over the latent space, and accordingly
over the output. Yet, achieving substantial disentanglement is a complex task, especially
in unsupervised fashions where careful design choices and training strategies are required.
With the increase of data complexity, models struggle to grasp the factors variability and
to isolate them in dedicated latent dimensions. Past attempts at unsupervised learning
of disentangled representations are mostly confined to biased toy datasets, missing real-
world potential. For these reasons, when focusing on explainability of real-world datasets,
unsupervised frameworks results being too weak, claiming the need of a driven supervi-
sion. In this work, we propose a supervised framework able to enhance the latent space
attribute-level disentanglement of a model in real-world datasets. It requires a supervision
made of paired images that share all but one FoV; in this way the image pairs differ in
a single aspect, or FoV, whose difference is forced to be encoded in a dedicated dimen-
sion through a custom loss function. To evaluate the effectiveness of our method also on
real-world datasets, our contribution includes also the generation of the required paired
supervision, with a focus on facial images. To this end we introduce a novel Semantic
Facial Attribute Editing method able to perform fine-grained facial edits to create our
proposed dataset of image pairs differing in a single facial attribute. Experiments on both
datasets reached convincing results in term of attributes disentanglement.

Keywords: Deep Learning, Disentanglement, Beta Variational Autoencoders, Semantic
Facial Attribute Editing.

Abstract in lingua italiana

Nonostante la diffusione delle reti neurali, la loro natura intricata e l’ampia parametriz-
zazione le rende essenzialmente delle black boxes, ponendo problemi di interpretabilità. Le
recenti tendenze del deep learning mirano a sviluppare modelli più interpretabili lavorando
sulle rappresentazioni implicite formate durante l’addestramento. A tal fine, la possibilità
di creare un collegamento diretto tra i fattori semantici di variazione dei dati (FdV) e le
rappresentazioni latenti potrebbe essere vantaggiosa per l’interpretabilità. Questo è il caso
del disentanglement, una proprietà delle rappresentazioni latenti in cui un cambiamento
in una dimensione latente corrisponde ad un cambiamento in un singolo FdV, rimanendo
relativamente invariante agli altri. In una rappresentazione disentangled, le singole di-
mensioni latenti corrispondono a FdV distinti e interpretabili, consentendo un controllo
più chiaro dello spazio latente e quindi dell’output. Tuttavia, raggiungere un disentan-
glement significativo è un compito complesso, soprattutto nei modelli non supervisionati,
dove sono necessarie strategie di addestramento accurate per districare efficacemente i
FdV. Con l’aumento della complessità dei dati, i modelli faticano a cogliere e districare la
variabilità dei FdV. I precedenti tentativi di apprendimento non supervisionato di rappre-
sentazioni disentangled sono per lo più confinati a dataset giocattolo. Per questi motivi,
quando ci si concentra sull’explainability di dataset reali è richiesta una supervisione gui-
data. In questa tesi, proponiamo un framework supervisionato in grado di migliorare il
disentanglement a livello di attributi dello spazio latente. Esso richiede una supervisione
costituita da coppie di immagini che condividono tutti i FdV tranne uno; in questo modo
le coppie di immagini differiscono in un singolo aspetto, o FdV, la cui differenza è forzata
ad essere codificata in una dimensione dedicata attraverso una loss personalizzata. Per
valutare l’efficacia del nostro metodo anche su dataset reali, proponiamo anche un nuovo
metodo di Modifica Semantica di Attributi Facciali in grado di eseguire modifiche facciali
specifiche, per creare un dataset di coppie di immagini che differiscono per un singolo at-
tributo facciale, trattati come FdV dei dati. Gli esperimenti condotti su entrambi i dataset
hanno raggiunto risultati convincenti in termini di disentanglement degli attributi.

Parole chiave: Deep Learning, Disentanglement, Autoencoders Variazionali, Modifica
Semantica di Attributi Facciali

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
Outline of the Thesis . 3

2 Background & Related Works 5
2.1 Explainable AI . 5
2.2 Disentanglement . 6
2.3 Unsupervised Disentangled Representation Learning 8

2.3.1 Autoencoders . 8
2.3.2 Variational Autoencoders . 9
2.3.3 Beta Variational Autoencoders . 10
2.3.4 ELBO Surgery . 11
2.3.5 Factor Variational Autoencoder . 12

2.4 Supervised Disentangled Representation Learning 13
2.4.1 Multi Level VAE . 13
2.4.2 Group VAE . 14

2.5 Generative Adversarial Networks . 14
2.5.1 StyleGAN . 15
2.5.2 Adaptive Instance Normalization 16

2.6 Semantic Facial Attribute Editing . 18
2.6.1 Encoder-Decoder methods . 20
2.6.2 Image to Image methods . 20
2.6.3 Photo-Guided methods . 21

3 Methods 23
3.1 Problem Formulation . 23
3.2 Supervised VAE . 24

3.2.1 Settings . 24
3.2.2 Architecture . 25
3.2.3 Method . 26

3.3 E2Editor . 28
3.3.1 Architecture . 28
3.3.2 Method . 30
3.3.3 Loss Function . 32
3.3.4 Discussion . 34
3.3.5 Considerations . 37

4 Experiments & Results 39
4.1 Experimental Setup . 39
4.2 Datasets . 40

4.2.1 DSprites . 40
4.2.2 CelebA . 41

4.3 Datasets generation for Disentanglement enhancement 43
4.3.1 SDSprites . 43
4.3.2 DFaces . 45

4.4 Metrics . 50
4.5 Experiments . 52

4.5.1 DSprites . 52
4.5.2 SDSprites . 55
4.5.3 DFaces . 57

5 Conclusions & Future Works 59

Bibliography 61

List of Figures 65

List of Tables 67

Ringraziamenti 69

1

1| Introduction

Deep learning models have established their dominance in the computer vision field,
being employed for a variety of tasks, including representation learning. Despite their
widespread use, their intricate nature and extensive parameterization are making deep
neural networks essentially black boxes, posing challenges when it comes to interpreting
their outputs. Recent deep learning trends aim at developing more interpretable models
by working on the implicit intermediate latent representations formed during training.

To this end, enabling a direct link between the data semantic factors of variation (FoV)
and the latent representation could be beneficial to interpretability. This is the case of
disentanglement, a property of latent representations in which a change in one latent
dimension corresponds to a change in one single FoV, while being relatively invariant
to changes in others [2]. In a disentangled representation, individual latent dimensions
correspond to distinct and interpretable FoVs, allowing for a clearer control over the latent
space, and accordingly over the output. So, disentangled representation learning refers
to the process of isolating (or untangling) different FoVs into semantically meaningful
independent variables, crafting an efficient non-redundant latent representation. As an
example, suppose to have a simple dataset of white dots: to fully explain it we just
require the dot’s x and y coordinates, since no other variabilities exist. We denote them
as the factors of variation (FoV) of the data; thus we only need two independent and
interpretable latent dimensions.

Yet, achieving substantial disentanglement is a complex task, especially in unsupervised
fashions where careful design choices and training strategies are required to effectively dis-
entangle the data FoVs. Moreover, with the increase of data complexity, models struggle
to capture the totality of variability factors and to untangle them in independent dimen-
sions. Past attempts at unsupervised learning of disentangled representations have shown
promising results, but are mostly confined to biased toy datasets, missing out on fully
unleashing its potential capabilities. Indeed, the exploitation of those inductive biases is
exactly the reason behind that successful disentanglement. No factor disentanglement can

2 1| Introduction

happen on a real-world dataset in absence of inductive biases or explicit supervision, due
to the overwhelming volume of information it contains which cannot feasibly be managed
through unsupervised methods. For these reasons, when focusing on explainability of
real-world datasets, unsupervised frameworks results being too weak, claiming the need
of a driven supervision [22].

In literature, many other works [24] [23] [18] [11] [10] claimed the convenience of disen-
tangled representations; nevertheless we assert that restricting their application to toy
datasets clearly limits its practical usefulness. To promote disentanglement, some meth-
ods have been proposed in the literature: incorporating labeled data during training [6],
or introducing an adversarial network to discriminate between different dimensions of the
latent space [25], or finally providing image pairs during training to encourage the model
to disentangle factors that are consistent across the group, while allowing variations within
the group [13] [3] [31].

We propose SVAE, a supervised framework able to enhance the attribute-level disentan-
glement of a Beta Variational Autoencoder (βVAE) [10], to develop interpretable models
in which different semantic FoVs are encoded in separate latent dimensions. Its appli-
cability extends also on real-world datasets, i.e. where the data generative process isn’t
trivially aligned to the data FoVs as in DSprites [26]. It requires a supervision made of
paired images that share all but one FoV; in this way the image pairs differ in a single
aspect, or FoV, whose difference is forced to be encoded in a dedicated dimension through
a custom loss function. To evaluate the effectiveness our our method also on real-world
datasets, our contribution includes also the generation of the required supervision with
a focus on facial images. To this end we also introduce E2Editor, a novel Semantic Fa-
cial Attribute Editing (SFAE) method able to perform fine-grained edits to modify single
facial attributes, to generate our proposed dataset DFaces of image pairs with a single
non-shared FoV (for example changing only the hair color).

Experiments on both datasets reached convincing results in term of attributes disentan-
glement.

1| Introduction 3

Outline of the Thesis

Briefly, the thesis is structured as follows:

• In Chapter 2, we discuss the literature on disentangled representation learning, both
in the unsupervised and supervised case, we present an overview of VAE techniques,
in particular β-VAE [10] and its modifications, to lay the necessary technical foun-
dation for understanding the solution proposed in this thesis.

• In Chapter 3, we present our approach, which we refer to as SVAE, describing the
rationale behind the adopted framework to favor the disentanglement of the fac-
tors of variation. We also describe E2Editor, our novel Semantic Facial Attribute
Method used to craft the "facially disentangled" image pairs dataset DFaces, that
reachs state-of-the-art results.

• In Chapter 4, we analyse the performance of SVAE in our experimental setting,
evaluating its soundness on a tailored variation of DSprites dataset, SDSprites, and
demonstrating its effectiveness and applicability on the generated DFaces.

• In Chapter 5 we summarise the work done, draw our conclusions and discuss future
works.

5

2| Background & Related Works

This chapter provides an overview of the key concepts in the field of representation learn-
ing; in particular disentanglement will be of crucial importance in this work. Then we will
see how in the literature it has been promoted by some neural networks in the field of gener-
ative artificial intelligence, and how could it be a important dowel in model explainability.
So we will first start by describing Variational Autoencoders, and various developments
that have taken place over the years, describing their limitations and strengths towards
disentangled representation learning. Finally, we will discuss a taxonomy of methods to
perform Semantic Facial Attribute Editing, and we will explain how could it be useful
to provide an explicit supervision to enhance disentanglement. To this end, we will first
digress about Generative Adversarial Networks, and then focus on an useful variant used
in this work, StyleGAN.

2.1. Explainable AI

Nowadays, a popular tendency in the Deep Learning field is known as "overparameteriza-
tion": this concept is well described in the scaling hypothesis, that suggests that increasing
the number of parameters of a neural network, the dataset size and the training epochs
can potentially lead to better generalization performances. This whole process comes at
the cost of explainability, agreed to be the biggest weakness of Deep Learning.

Explainability refers to the process of retaining an intellectual oversight over an al-
gorithm and to the ability of understanding its decision-making process. Being deep
neural networks successions of many layers, the output’s explainability gets inevitably
lost through these intricate connections. One could just take the output of the model as
it is, and trust the mechanism behind. However the trust has to be built up from ex-
plainable patterns to be fully accepted. If we want AIs to gain more trust and to become
mainstream, we must definitely work on their explainability. Also, if the model has to be
corrected due to some issues or bugs, the troubleshoot would result way worse in a black
box model. Thus, explainability techniques could definitely support the troubleshooting.

6 2| Background & Related Works

So, Explainable AI (XAI) aims to make the decision-making process of AI models more
understandable and transparent to humans.

2.2. Disentanglement

In machine learning, representation learning is a key area of research in which algorithms
learn to meaningfully encode and interpret data. The ultimate aim of representation
learning is to develop generalizable models that start from meaningful embeddings and
can be applied to any kind of task. Disentanglement is a one of the most desirable property
for representations.

It has seen many definitions over the years. One of the most used and agreed definition is
from [2], and claims that in a disentangled representation a change in one latent dimension
corresponds to a change in a single generative factor while being relatively invariant to
changes in the others. According to [10], disentanglement refers to the property of a
learned representation where different latent dimensions capture independent factors of
variation in the data. In [11] the authors tried to give a more formal and mathematical
definition, connecting the concepts from groups theory.

Borrowing from basic set theory mathematics, we propose a formal yet intuitive intuition
of disentanglemed representation. If we denote as Fovs = {FoV1, FoV2, ..., FoVi, ..., FoVn}
the real factors of variation of an input image x, and with Z = {z1, z2, ..., zi, ..., zn} the la-
tent dimensions of a latent space Z, a perfectly disentangled representation can be though
of a bijective function f : Z → FoV , being it both:

• injective: ∀zi ̸= zj =⇒ f(zi) ̸= f(zj)

• surjective: ∀FoV ∈ FoVs∃zi ∈ Z : f(zi) = FoVi

Figure 2.1: Formal connection between a disentangled representation and a bijective func-
tion. The source set Z is the set of the latent dimensions of the latent space, whereas the
destination set represents the data FoVs.

2| Background & Related Works 7

Thus, a not perfectly disentangled representation is not injective, meaning that many
latent dimensions are encoding the same FoV, and is not surjective, meaning that there
are some FoV not captured by any latent dimensions. Instead, in an ideal disentangled
representation there is a one-to-one mapping between each zi with each FoVi; this exactly
defines a bijective function.

This parallelism with the bijectiveness of a function is essentially captured by the rationale
behind the DCI disentanglement metric [7], described in detail in section 4.4, explained
by figure 4.12. Briefly, we anticipate that DCI measures three terms separately; among
them:

• disentanglement : measures the degree to which a representation factorises or dis-
entangles the underlying factors of variation, with each variable (or dimension)
capturing at most one generative factor.

• completeness : measures the degree to which each underlying factor is captured by
a single code variable

Summing up, we can conclude that in a disentangled representation the underlying factors
of variation are encoded in separate yet independent latent variables. This indicates that
each aspect, such as object identity, shape, or color of the input data is depicted in a
dedicated semantically-meaninfgul dimension. This property could allow for a clearer
control over the latent space, and more importantly to a transparent understanding and
partitioning of independent latent variables.

Disentanglement is a crucial property for latent spaces because it permits an easier com-
prehension of the underlying structure of data and gives one a foundation for analyzing
its behavior. Disentanglement facilitates data manipulation and interpretation, improving
the understanding of the underlying mechanisms and facilitating the discovery of causal
relationships among variables. Disentangled representations also make it easier to trans-
fer knowledge between tasks and can improve generalization abilities. Disentanglement
is therefore a crucial and favorable characteristic of representations, which can enhance
overall performance and encourage the creation of more sophisticated machine learning
algorithms.

Although, as we will see, the learning of disentangled representation is a complicated task.
The reference models that foster such learning are built up from Variational Autoencoders,
and will be discussed in the next section.

8 2| Background & Related Works

2.3. Unsupervised Disentangled Representation Learn-

ing

In this chapter we will discuss the main deep neural networks adopted for disentangled
representation learning. In this section we will focus only on the basic unsupervised
methods. In the next section 2.4 we will showcase the main limitations of these methods,
and discuss the main solutions adopted.

Figure 2.2: Intuitive visualization of the disentangled representation learning process. In
this trivial example, each color represents a FoV of the input data, that after an encoding
process should be maintained in separate latent dimensions.

2.3.1. Autoencoders

Autoencoders (AE) are neural networks mainly used used for data compression, feature
extraction, and dimensionality reduction. The basic idea behind autoencoders is to learn
a compressed representation of the input data by training the network to reconstruct its
original input. They are composed of an Encoder network E and a Decoder network
D. The encoder’s goal is to embed the input x in a lower dimensional representation
z = E(x) which should extract its most relevant features. The decoder’s goal is the
opposite, reconstructing the original higher dimensional input x starting from the latent
representation z: y = D(z) = D(E(x)). The latent space of a linear Autoencoder is
quite similar to the eigenspace obtained from the principal component analysis (PCA) of
the data. By utilizing non-linear activation functions, Autoencoders may learn relatively
potent representations of the input data in lower dimensions with far less information loss.
Therefore, the overall goal is to tradeoff the reconstruction quality with the embedding
bottleneck to reach the optimal reconstruction. To do so, the loss function to be minimized

2| Background & Related Works 9

is merely an L2 pixel wise reconstruction loss:

lossae = ∥x− x̂∥2 = ∥x−D(z)∥2 = ∥x−D(E(x))∥2, (2.1)

Being trained in this way, by just trying to reconstruct the input at output, no assumptions
can be made on the latent space distribution of Autoencoders. Not every sampled point
of the latent space will result in a meaningful output, because there could exist regions
of the latent space that don’t correspond to any input data point. We refer to this as the
latent space not being regularized, as can bee seen in Figure 2.4a. Therefore, since the
generating capability does not hold over the full latent space, vanilla Autoencoders don’t
achieve consistent results as generative models.

2.3.2. Variational Autoencoders

Variational Autoencoders (VAE) [19] have been proposed to cope with the issue of non
regularized latent space. Its encoder E, parametrized by a neural network qϕ(z|x) , instead
of outputting a latent vector, outputs the parameters of a Gaussian distribution, namely
the mean µ and the standard deviation σ, for every latent variable zi. After sampling
the latent vector z ∼ N (µ, σ2), the decoder D, parametrized by another neural network
qϕ(x|z) is fed with it in order to reconstruct the input. The architecture can be seen in
Figure 2.3.

Figure 2.3: Variaitonal Autoencoder architecture, from Wikimedia Commons

The objective function is modified to force this latent distribution to be close to a normal
one. This goal is achieved by adding a second term in the loss function, which is the KL
Divergence term between the latent distribution and a normal Gaussian, with zero mean
and unit variance. This term contributes to the loss by keeping the space regularized
exactly by forcing each latent variable to be close to a zero-centered Gaussian. In this

https://upload.wikimedia.org/wikipedia/commons/1/11/Reparameterized_Variational_Autoencoder.png

10 2| Background & Related Works

way, we make sure that the latent space is evenly spread out and no significant gaps
between clusters exist, as one can notice in Figure 2.4a.

Since the parameters of the latent distribution are sampled in the latent vector, back-
propagation couldn’t be performed through the full network in an end-to-end manner
since we can’t trace back errors due to this random sampling. To solve this issue a simple
reparametrization trick is adopted:

z = µx + ϵ · σx, ϵ ∼ N (0, I), (2.2)

With this simple idea, the randomness of sampling is confined to the ϵ multiplicative
term, and the propagation of the error can happen through the whole network. Here is
the final loss function to be minimized:

Lvae = Eqϕ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction loss

−DKL(qϕ(z|x)||p(z))︸ ︷︷ ︸
KL Divergence

(2.3)

where p(z) is chosen to be N (0, I)

A nice property to note is that when data are sampled from a region with overlapping
clusters, we get morphed data between the clusters of interest, and the resulting transition
is smooth when passing from one another.

2.3.3. Beta Variational Autoencoders

Beta Variational Autoencoders (β-VAE) are a modification of Variational Autoencoders
that put more emphasis on the regularization term. The β hyperparameter controls the
balance between the reconstruction error and the capacity of the latent representation to
capture independent and informative features. β-VAEs simply add a constant multiplica-
tive term, β, to the Kullback-Leibler divergence loss to achieve this. The aim of β-VAEs
is to maximize the probability of generating real data while also ensuring that the latent
distribution term is close to a uniform one.

By doing this, we are actually enhancing the disentanglement property of our latent space.
With β>1 we are strengthening the KL term, thus we aim to make our latent data distri-
bution closer to an Isotropic Gaussian whose covariance matrix is unit. An unit covariance
matrix is indeed forcing the latent distribution to be factorized in independent compo-
nents, forcing covariance between dimension to be zero, thus enhancing disentanglement.
So an higher β encourages the representation to be more efficient and supports disentan-
glement even further. By penalizing the model for encoding multiple factors of variation

2| Background & Related Works 11

in the same latent variable, β-VAEs promote disentanglement and encourage the model
to assign different dimensions to different features. However, setting a high value of β
might require a trade-off between the degree of disentanglement and the quality of the
reconstruction. The resulting loss function to be minimized is then trivial:

Lβvae = Eqϕ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction loss

−β ·DKL(qϕ(z|x)||p(z))︸ ︷︷ ︸
KL Divergence

(2.4)

Note that when β=1, we reduce to the VAE case.

As we can notice in Figure 2.4c, the constraint on the regularization term of a β-VAE
pushes the latent space to be even more uniformly distributed. In the AE latent space
the clusters are defined but there are significant gaps among them, while in the VAE is
clearly more uniform and the unit sphere is basically completely covered. The β-VAE
does the same thing but going stronger in the regularization, as we can deduct from the
more rounded shape. It’s important to notice that the VAE and beta-VAE latent space
is zero centered with an almost unit variance

(a) AE’s latent space. (b) VAE’s latent space. (c) β-VAE’s latent space.

Figure 2.4: Visualizations of the latent spaces of different autoencoders, respectively of
an AE (fig.A), of a VAE with β=1 (fig.B) and a β-VAE with β=4 (fig.C) when trained
with the digit MNIST dataset. We can notice that the KL-loss increasingly regularizes
the space by keeping it closer to an uniform distribution.

2.3.4. ELBO Surgery

Studies on disentanglement have continued to develop and flourish over the years. In
particular, the VAE objective function received a lot of interests. In the ELBO Surgery
[12] the authors argued that the KL divergence term could be further factorized in two

12 2| Background & Related Works

independent objectives:

Epdata(x)[DKL(q(z|x)∥p(z))] = I(x; z)︸ ︷︷ ︸
Mutual Information

+DKL(q(z)∥p(z))︸ ︷︷ ︸
Actual KL divergence

(2.5)

where I(x; z) is the mutual information between x and z under the joint distribution
pdata(x)q(z∥x). while the other term is the actual KL divergence term with respect to the
prior p(z).

In this work the authors claimed that in βVAE [10], by making β>1, the original KL term
along with favoring disentanglement was also deteriorating the reconstruction capabilities
of the network, by penalising I(x; z), thus reducing the amount of information about
x stored in z. In this new formulation, penalizing DKL(q(z)∥p(z)) pushes p(z) towards
q(z), forcing independence among z dimensions. In this way we are separating the Mutual
Information between x and z that we aim to maximize.

2.3.5. Factor Variational Autoencoder

One development that followed the ELBO Surgery [12] decomposition was the Factor
Variational Autoencoder (FactorVAE) [18]. In this work, the authors modified to standard
VAE loss function (Section 2.3) dividing the KL Divergence in two separated terms, finally
adjusting them with dedicated parameters:

Lfactorvae = Eqϕ(z|xi)[log pθ(xi|z)]︸ ︷︷ ︸
reconstruction loss

−λ ·DKL(qϕ(z|xi)||p(z))︸ ︷︷ ︸
Mutual Information

−γ ·DKL(qϕ(z)||q(z))︸ ︷︷ ︸
actual KL divergence

(2.6)

In this way the terms are independent from one another and the trade-off between the
reconstruction loss and the KL Divergence with respect to the prior become more man-
ageable.

2| Background & Related Works 13

2.4. Supervised Disentangled Representation Learn-

ing

All the methods mentioned in section 2.3 are totally unsupervised. This means that no
additional information other than the images themselves is shown to the model during
training. The achieved disentanglement in those methods only comes from the statistical
properties that the losses carry. However, the only dataset over which those methods eval-
uated disentanglement are toy datasets, principally DSprites [26] and some modifications
of it, treated in section 4.2.1.

The achievement of effective disentanglement in these models has to be attributed mainly
to the exploitation of the inherent biases of the toy datasets they’ve been trained on. This
is because the generative model of the dataset is precisely aligned with the underlying data
FoVs, thus making the framework not generalizable. So as Locatello et al. argue in [22],
it is essentially impossible for disentangled representation learning to capture the desired
properties without exploiting inductive biases or adding an explicit supervision. In fact,
relying solely on unsupervised approaches falls short of providing a meaningful isolation
of semantic generative factors, especially on real-world dataset. Below we showcase some
of the works that introduced some kind of supervision to enhance the disentanglement
level.

2.4.1. Multi Level VAE

Bouchacourt et al. proposed Multi-Level Variational Autoencoder (ML-VAE) [3], a non-
adversarial approach to disentangle factors of variation based on group-level supervision.
ML-VAE is a novel probabilistic model designed to learn a disentangled representation
from grouped observations. It works on both group and observation levels, separating
latent representations into meaningful components such as style and content. This dis-
entanglement process is facilitated through a grouping operation where samples within
the same group share the same content but can differ in style. During encoding, style
variations are naturally captured in one part of the latent code while content, shared
within groups, is represented in a different part. The grouping operation also enhances
content certainty when multiple samples are present within a group. Notably, the group-
ing operation doesn’t require prior knowledge of the groupings’ meaning; it only relies on
the organization of data into groups. This enables the ML-VAE to achieve semantically
meaningful disentanglement.

14 2| Background & Related Works

2.4.2. Group VAE

The GroupVAE [13] method introduces a framework that utilizes supervision to learn
representations that are disentangled by groups. It works with paired observations that
have k=1 shared underlying factors of variation. While ML-VAE [3] uses a product of the
posteriors, GroupVAE employs an empirical average of the parameters of the approximate
target posteriors to disentangle the FoVs. As in ML-VAE, the framework consist in
showing at each iteration pairwise observations that shares one factor to the model. After
having obtained the encoded latent representation of both images within the pair, the
two latents z1 and z2 are modified with an aggregate function a:

q̃ϕ(ẑi|x1) = a(qϕ(ẑi∥x1), qϕ(ẑi∥x2)) ∀i ∈ FoV s

q̃ϕ(ẑi|x1) = qϕ(ẑi∥x1) otherwise
(2.7)

where a in this case in a plain average.

In this way it is forcing the target dimension to encode the shared FoV within the pair.

2.5. Generative Adversarial Networks

Generative Adversarial Networks [8] (GAN) are deep neural networks that have repre-
sented the state of the art in image generation for many years. The architecture is
summarized in Figure 2.5.

Figure 2.5: GAN architecture, from googledevs.

https://developers.google.com/machine-learning/gan/gan_structure?hl=it

2| Background & Related Works 15

They consist of two separate networks, the generator G and the discriminator D. The
generator represents a differentiable function G(z, θg), where θg are the parameters of the
generator network, which takes a randomly sampled latent vector z from an initial data
distribution pz(z) and transforms it into an image belonging to a certain distribution
pG. The discriminator instead represents a differentiable function D(I, θD) that takes
an input image I and outputs the probability of it coming from the training probability
distribution pdata.

The goal of the Discriminator is to distinguish images generated by G from real images
coming from the training data set. Thus, its objective function is to maximise the prob-
ability of correctly classifying samples from the training data, from the generated ones.
Instead, the goal of the Generator is to mimic the real distribution of the input data and
to generate increasingly realistic images. These two networks are jointly trained compet-
itively in a zero-sum game whose ultimate goal is to obtain a good estimator of pdata.
We can think of the objective function in a game theory fashion, where players D and G

compete in a min-max game. Finally, the objective function for the two players:

minGmaxDEx∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z))], (2.8)

In other words, the goal of the generator is to fool the discriminator by generating realistic
images so that it cannot distinguish the source. In fact, the global optimum is found when
pG becomes equal to the original input training distribution pdata. When this is achieved,
the Discriminator is fooled, and it can be discarded, while the Generator can be kept and
used to create unseen realistic images coming from a distribution similar to the training
one.

2.5.1. StyleGAN

In recent years, GANs has seen many developments along with huge quality improvements
on the generated data. One of the most important twists in the GAN field has been carried
out by NVIDIA’s StyleGAN [17] architecture, which borrows from the Style Transfer
[14] literature. In fact, the major intuition that made them the state-of-the-art in the
generative AI field for years has been the introduction of the AdaIN layer, described in
detail in Section 2.5.2.

StyleGAN’s training method is builded on top of Progressive GAN’s [16] one. The gen-
erator and the discriminator start from low resolution images, in this case 4x4, and once
stable, they are upsampled to double its height and width, thus quadrupling the total
area. In other words, it gradually generates feature maps of higher resolution as they

16 2| Background & Related Works

get upsampled by successive layers. This is said to enhance network stability and in-
creasingly add details at different levels of resolution of the image. Another StyleGAN’s
peculiarity is the multiplicity of the initial latent spaces with which feed the generator.
In the original GANs, a vector is randomly sampled from an uniform distribution Z and
passed directly into the generator G. Instead in StyleGAN the z vector passes first into a
Mapping Network M , composed of 8 fully connected layers, giving rise to another latent
space W . The resulting vector w is claimed to be more disentangled since it emulates
better the final data distribution, stepping away from the initial uniform Z uninformative
one. Once obtained the w vector, it is passed to the Synthesis Network S, which is the
actual generator responsible for the upsampling part.

Figure 2.6: Visualization of the StyleGAN framework and of the identified latent spaces,
from [27]

Some [34] claim that there exists another intermediate space S even more disentangled,
which can be extracted after the affine transformations A that retrieves the style of the
image.

2.5.2. Adaptive Instance Normalization

In the literature, normalizations have always been seen as training regularizers; the style
transfer literature transformed its use into a style-content separator. In fact, talking about
style, StyleGAN’s major innovative contribution comes from the addition of the Adaptive
Instance Normalization (AdaIN) [14] layer before the Upsampling one. Let’s have a look
at the most famous normalization techniques/layers used in deep learning frameworks, all
the way to AdaIN.

Batch Normalization [15] takes as input a batch of images x and it normalizes the mean
and standard deviation for each individual feature channel.

BN(x) = γ

(
x− µ(x)

σ(x)

)
+ β (2.9)

2| Background & Related Works 17

Instance Normalization [33] normalizes each element x of the batch independently. It
performs a form of style normalization by normalizing feature statistics, namely the mean
and variance.

IN(x) = γ

(
x− µ(x)

σ(x)

)
+ β (2.10)

So, where BN computes one mean and standard deviation, thus making the distribution
of the whole layer Gaussian, IN computes n of them, making each individual image
distribution look Gaussian, but not jointly.

As we can notice from both equations, the output is then rescaled by γ and shifted by
β, two fixed parameters representing the mean and the standard deviation of the target
style. Therefore, we may alter the output’s style by adjusting γ and β in the normalization
layer. The fact that in each normalization layer there is only one set of the variables limits
its ability to learn more than one style.

Adaptive Instance Normalization [14] enables the network to learn diverse styles. It re-
ceives a content input x and a style input y, and it simply aligns the channel-wise mean
and variance of x to match those of y. Here, γ and β are trainable vectors. AdaIN adap-
tively computes affine parameters from the style input y, discarding the fixed parameters
γ and β with which output is scaled and shifted.

AdaIN(x, y) = σ(y)

(
x− µ(x)

σ(x)

)
+ µ(y) (2.11)

AdaIN allows for generation of realistic and varied images by controlling the its style
and content in a separated way. By adjusting the mean and standard deviation of the
feature maps, the AdaIN layer can transfer the statistical characteristics of one image
onto another, creating unique variations of the same input image.

18 2| Background & Related Works

2.6. Semantic Facial Attribute Editing

Generating random realistic images has seen an impressive and continuously higher in-
terest over the past few years. The main reason behind its success is the growth of Deep
Convolutional Neural Network based methods. Facial images is one of the most promi-
nent subjects targeted by these generative models. Along with facial image generation, in
Semantic Facial Attribute Editing (SFAE) various applications has seen a great potential.
We refer as SFAE the process of editing a single (or a few) facial attributes such as the
Nose, Mouth.., while keeping the others unchanged. See Figure 2.7 for an example.

Figure 2.7: Example of Semantic Facial Attribute Editing on the attribute Bangs.

Various real-world applications could benefit from SFAE: enhancing the effectiveness of
automatic Face Recognition systems, Face Data Augmentation in facial image processing,
adding effects to filters in social media platforms, Video Editing, producing and animating
faces in the gaming and animation industries etc.

As Nickabadi et al. [28] pointed out, many challenges are be faced when editing facial
attributes:

• Attributes Entanglement: an edit in a single attribute could cause an unwanted
but sometimes almost inevitable modification of another attribute. These two at-
tributes are said to be entangled. An example could be the attributes Young and
Grey Hair.

• Low data resources: almost all the method used to perform facial editing employs
data-hungry deep neural networks. The whole knowledge about facial features comes
from the training data, which are scarce and do not cover the whole human facial
diversity. Therefore obviously bad results could come up from these exacts biases
in the data. This limitation is one of the caused of the next one.

2| Background & Related Works 19

• Uncommon face conditions: when the face to be edited comes in an extreme
pose or lightning condition, the edit will result more difficult. In general, many
methods could be applied only on images similar to the ones in training set.

• Evaluation metrics: facial editing is a very challenging problem to be evaluated
through objective metrics. Humans in the loop are always a viable yet limited and
biased solution, while no quantitative special-purpose metric exists. We will address
in detail this issue in section 4.4.

Nickabadi et al. [28] provided an insightful overview of the literature methods presented
to perform Semantic Facial Attribute Editing, that can be summarized with the scheme
in Figure 2.8.

Figure 2.8: Taxonomy of the literature’s methods for Semantic Facial Attribute Editing,
from [28]

Below is presented a detailed outline of the first diramation level.

20 2| Background & Related Works

2.6.1. Encoder-Decoder methods

The most common and broadly adopted architecture for Semantic Facial Attribute Editing
is the one that employs an encoder-decoder like framework. Generally, in this method an
image I is passed through an encoder E, whose output is a latent vector z containing the
most relevant features of the image I. The decoder’s job is to remap the latent vector
back into the image space. Here, the editing comes at the latent level; different techniques
are adopted to find a direction to which modify the latent vector to obtain an edited code:

ẑ = a+∆direction. (2.12)

where the target attribute vector a could be z itself or a different point in the latent space
as well, depending on the method.

This latent vector is then fed again through the decoder D to obtain the edited final
image. The whole innovation and differentiation in this category of methods comes in
finding the direction of editing of the latent vector. Studies of the latent spaces of the
various models, generally GAN’s generators, lead to the different approaches. Nitzan
et al. [29] have proposed a facial attribute editing model which takes two images Iid

and Iattr as input and produces a face image whose identity is taken from Iid and its all
other attributes such as pose, expression and illumination are coming from Iattr. This
approach’s limitation comes from the fact that in this case the editing direction is given
by the second input image. In general it could be challenging to edit the image in the
needed single direction with this method.

The state of the art for what concerns Semantic Facial Attribute Editing is represented by
InterFaceGAN [32]. Their technique employs the labelled dataset CelebA [21], which
has 40 binary labels for each data point, indicating the presence or absence of a facial
attribute. In particular, separately for each attribute, they divided the whole dataset into
the positive subset and the negative one, and trained a linear Support Vector Machine
(SVM) to predict the best boundary that separates the two classes. Once finished training,
the normal hyperplane to the decision boundary represents the direction of change of that
single attribute on which the two subset have been divided into. Following this hyperplane,
one can add or remove the target attribute.

2.6.2. Image to Image methods

Another set of methods to perform Semantic Facial Attribute Editing is Image to Image
translation. The source and target domains correspond to sets of face image with two

2| Background & Related Works 21

different values of a specific attribute. For instance, a collection of images with Eye-
glasses and a collection of images without Eyeglasses are gathered. Here the condition
(attribute) vector a is no longer required as input of the generator, as it is trained to
perform the same edit on all input images. In this method, models are classified into
two main categories: bi-modal models and multi-modal models. Bi-modal models are
designed to perform a specific edit on individual attributes, while multi-modal models are
capable of manipulating multiple attributes simultaneously.

2.6.3. Photo-Guided methods

The fundamental component in these model architectures involves employing a mask to
instruct the generator G to concentrate solely on the sections of the input image that
might be impacted by the editing request, while leaving the rest unchanged. To achieve
this, two generators, namely Gcolor and Gattention, are simultaneously trained. Gcolor ’s role
is to modify the input image in accordance with the intended attributes, producing the
corresponding color image Ic. On the other hand, Gattention predicts an attention mask A,
which determines the contributions of both the edited and original images in generating
each pixel of the output image. Ultimately, an alpha blending operation is executed on
the input and edited images, guided by the attention mask, to generate the target image
as follows:

target = α · Ic + (1− α) · I (2.13)

This approach eliminates the need for the generator to recreate static parts of the input
image, allowing it to focus specifically on the attribute-specific regions, resulting in more
realistic changes.

23

3| Methods

3.1. Problem Formulation

As we discussed, explainability could be benefit from disentangled representation. In this
thesis, we tackle the problem of generating an interpretable model by leveraging on the
disentanglement property of its latent space.

The reference model for disentangled representation learning is the Beta Variational Au-
toencoder [10] described in Section 2.3.3. It is composed of:

• an encoder qϕ(z|x), that maps the input x to a latent gaussian distribution with
mean and variance {µ, σ} = {[µ1, σ1], ..., [µn, σn]};

• a decoder pϕ(x|z) that reconstruct the input in x̃ after sampling the actual latent
vector z ∼ N (µ, σ) = {z1, ..., zn};

being n the dimension of the latent space.

If we denote as F = {f1, ..., fn} the data factors of variations, z is said to be perfectly
disentangled when there exists a one-to-one mapping between F and the latent vector z,
i.e. where a change in each latent dimension zi affects only a factor fi.

Reaching a satisfactory level of disentanglement is essentially impossible without any su-
pervision of inductive bias in non-toy datasets [22]. In particular, when dealing with
non-toy datasets, its FoVs are usually unknown a priori, since the data generation process
is unavailable or too complicated to deal with. Since with the increase of data com-
plexity unsupervised methods struggle to build efficient latent representation that are
non-redundant and disentangled, our goal is to guide the latent representation providing
a supervision to enhance the model’s disentanglement, by guiding it in encoding each
semantic data FoV fi in a dedicated dimension zi of the latent space z.

In the following, we discuss at first a proposed method E2Editor to generate the required
supervision in a selected real-world dataset, and then our SVAE framework to enhance

24 3| Methods

the latent space disentanglement.

3.2. Supervised VAE

We here present SVAE, our framework to provide a supervision to the Beta Variational
Autoencoder [10] in order to enhance its latent space disentanglement.

3.2.1. Settings

Our method exploits the supervision given from paired observation to force the disentan-
glement in the latent space of a Beta Variational Autoencoder. By forcing disentangle-
ment, we are actually guiding the SVAE to encode different factors of variation (FoV) in
separate latent dimensions. Our framework requires paired observations of the form:

{x1, x1}f (3.1)

such that each x2 differs from each x1 in a single FoV f .

In the paired images below we showcase examples of the non-shared FoVs and of the
relative pairs:

Figure 3.1: Paired observation sample from Dfaces and SDSprites, described in sections
4.3.2 and 4.3.1. The first couple’s non-shared FoV is Smiling, while for the second is
Shape

From the image above it should be clear what we mean by "we treated the facial attributes
as FoV" of our facial dataset. They are the factors that best defines the images, and over
which we decided to put the variability.

From the difference of the two images we help the model the understand the variation in
the image, in order to confine it to a dedicated latent dimension.

3| Methods 25

3.2.2. Architecture

Below we showcase the architecture of our SVAE model.

Figure 3.2: SVAE architecture.

The architecture of both Encoder and Decoder follow the traditional architectures of
Convolutional Neural Networks. The usual convolutional block is adopted, formed of a
Convolutional Layer, Batch Normalization Layer and finally an Activation.

After the dowsampling phase performed by the Encoder, a Flatten layer is used. Since
we are in a variational framework, two fully connected layers connects the mean and the
variance of the latent representation. Then a sampling is applied to generate the inter-
mediate latent vector, and the reparametrization trick [19] is used to make the network
trainable.

The Decoder part mirrors the Encoding, using Transposed Convolutions instead of Con-
volutions, to reconstruct the original image.

As last activation function has been chosen a Sigmoid, since it maps values in the range
[0,1], which resembles probability values.

26 3| Methods

3.2.3. Method

Our method’s goal is to force disentanglement, by encoding in separate latent dimensions
different factors of variation.

Figure 3.3: Our SVAE framework to enhance the latent space disentanglement with paired
observations. Input images x1 and x2 have one non-shared factor f (Blonde Hair here),
whose latent dimensions z1i and z2i have to be pushed apart, forcing in that dimension
the encoding of factor f .

As we can see from Figure 3.3, S-VAE accepts paired observations (x1, x2) that differs
in a single FoV, it encodes them into mean and variances components, respectively µx1 ,
σx1 and µx2 , σx2 , and with the reparametrization trick z1 and z2 are sampled to form the
reconstructed x̂1 and x̂2:

It works like a normal Variational Autoencoder, but the paired observations play a role
when computing our custom loss function. We modified the plain βVAE’s loss function
2.4 adding to the reconstruction loss and the KL divergence a new term, namely the pair
loss (or disentanglement loss). It’s composed of two sub-losses:

• target loss: this loss is responsible for pushing away the target FoV, i.e. the non
shared factor of variation between x1 and x2. After identifying the dimension that
should encode that target FoV (more on this choice later), a mean squared error
loss is employed to distance the two latent variables. Since we aim to maximize this
distance, we put a minus term in front.

• non-target loss: this loss mirrors the target one, since it forces a small distance

3| Methods 27

among the others non-target dimensions. For this reason, a plus sign in front is
needed to minimize this term.

As an example, we take the paired observations of Figure 3.1: in this cases the losstarget

should force respectively the difference in the Smiling/Shape FoV, while the lossnon_target

should keep the others FoVs similar, for example the orientation, size, positionX and
positionY in the second pair.

The resulting loss:

losssvae = ∥x1 − x̂1∥2 + ∥x2 − x̂2∥2︸ ︷︷ ︸
reconstruction loss

+ β ·DKL(N (µx1 , σx1)∥N (0, I))β ·DKL(N (µx2 , σx2)∥N (0, I))︸ ︷︷ ︸
KL divergence

− γ · (z1target − z2target)
2︸ ︷︷ ︸target loss

+ η · 1

N − 1

N∑
k ̸=target

(z1k − z2k)
2

︸ ︷︷ ︸non target loss︸ ︷︷ ︸
pair loss

(3.2)

in which x1, x2 are the input pair data, µx1 , σx1 and µx2 , σx2 are respectively their mean
and variances components, while target is the dimension of the latent vector in which we
aim to encode the FoV that isn’t shared between the paired observations. In the pair loss
term, z1 and z2 are their derived latent vectors obtained with the reparametrization trick:

{
z1 = qϕ(z1|x1) = µ1 + ϵ · σ1

z2 = qϕ(z2|x2) = µ2 + ϵ · σ2

(3.3)

(3.4)

Both sub-losses are weighted by hyperparameters γ andη.

The heuristic for selecting the latent dimension responsible for the encoding of the tg FoV
is to choose the one with the highest KL divergence:

argmax
(
σ1

σ2

+
(µ2 − µ1)

2

σ2

− 1 + (log σ2 − log σ1)

)
(3.5)

With this ulterior loss, we expect the model to grasp the difference between each given
pair and to be able to generalize and confine the span of variation of the given non-shared
factor to a single latent dimension. Once trained the model, the desiderata is visualizing
that the latent traversals over each dimension target moves ideally only the correspondent
semantic FoV.

28 3| Methods

3.3. E2Editor

Since our focus wants to be real-world datasets, we below present our contributed method
to perform Semantic Facial Attribute Editing, in order to generate a facially disentangled
dataset to be used as a supervision for our SVAE of Section 3.2.

Figure 3.4: E2Editor’s architecture to perform Semantic Facial Attribute Editing.

3.3.1. Architecture

As we can notice in figure 3.4, the full pipeline is built from two main principal compo-
nents: a pretrained StyleGAN and an Attribute Classifier.

A StyleGAN Generator G pretrained on CelebA dataset [21] is employed as backbone
Generator. Being a StyleGAN, it can be divided into two separate components, namely a
Mapping Network M and a Synthesis Network S. M is an 8-layer fully connected neural
network that takes as input z, a latent vector randomly sampled from a normal Gaussian
distribution, and outputs another vector w of the same dimensionality (512 in this case).
This two vectors z and w respectively identify the two latent spaces Z and W . Space
Z is conceptually simpler and easier to sample from, since it follows a simple Gaussian
distribution, but it doesn’t exhibit a high degree of disentanglement, which is a desirable
property when operating a facial edit with an encoder-decoder method (See section 2.6.1).
Instead, W is designed to be disentangled to a higher extent compared to space Z. One of
the key promoter is the orthogonality regularizer: M encourages the dimensions of space
W to be orthogonal or uncorrelated. The model is thus incentivized to assign separate
semantics to each dimension by reducing the inner product between different dimensions,
thus promoting disentangled representation learning. For this reasons, the space Z is
only used to sample the first vector that is going to give the initial base image I to be
edited. Instead, the correspondent vector w is the one over which the modification will

3| Methods 29

be iteratively performed. Once edited the vector w, it is passed through the Synthesis
Network S to be mapped into the image space. Therefore by controlling the vector w we
can obtain different images I, once passed through S. In this work has been used Anycost
GAN’s implementation [20]. It’s worth a mention the fact that the StyleGAN network’s
weights have been kept freezed during the whole editing process.

For the E2Editor method, an Attribute Classifier is needed to compute the edit in
the target attribute direction for the w vector mentioned above. The attributes con-
sidered for this task are the 40 attributes on which the CelebA [21] dataset’s images
have been labeled on; namely: 5_o_Clock_Shadow, Arched_Eyebrows, Attractive,
Bags_Under_Eyes, Bald, Bangs, Big_Lips, Big_Nose, Black_Hair, Blond_Hair,
Blurry, Brown_Hair, Bushy_Eyebrows, Chubby, Double_Chin, Eyeglasses, Goatee,
Gray_Hair, Heavy_Makeup, High_Cheekbones, Male, Mouth_Slightly_Open, Mustache,
Narrow_Eyes, No_Beard, Oval_Face, Pale_Skin, Pointy_Nose, Receding_Hairline,
Rosy_Cheeks, Sideburns, Smiling, Straight_Hair, Wavy_Hair, Wearing_Earrings,
Wearing_Hat, Wearing_Lipstick, Wearing_Necklace, Wearing_Necktie, Y oung.
Some trials have been carried out to train solid binary classifiers, one for each of the above
attribute, indicating its presence or absence. An initial network composed of 8 stacked
traditional convolutional blocks (Conv + ReLU + Pooling + BatchNorm) followed by a
Sigmoid activation has been trained from scratch over the CelebA-HQ dataset. Other
tries has been done with transfer learning: using some Resnet50-like architecture [9] pre-
trained on Imagenet [5] or VggFaces [4]. Both have been trained by freezing the weights
of the feature extractor part, while activating the remaining classification layers’ weights.
Both these methods reached over 90% accuracy both in training and validation mode over
CelebA-HQ dataset. Even an holdout testing set has been kept apart, on which both mod-
els scored over 90%. However, the issue with these models was that they didn’t manage to
generalize well on other facial images other than CelebA samples. In particular, our goal
was to perform facial edits on StyleGAN’s generated images, therefore robust classifiers
with high accuracy were requested when testing on those images. Plenty of works [30],
[20], [1] recurred to GAN inversion to train an encoder that maps images directly into
StyleGAN’s latent space. In this way the edits could start from a chosen image, maybe
exhibiting a needed attribute presence knowing its annotations. This could be beneficial
to the overall edit, but it also clearly affects the reconstruction quality due to the encoder
bottleneck. Because of the scarcity of massively annotated datasets consisting of deep
generated images, our generalization capability couldn’t be improved signifincantly, even
recurring to data augmentation or hyperparameters adjustments. In the end, a single
pretrained massive Attribute Classifier has been employed in this work, from [20]. It has

30 3| Methods

been trained on CelebA-HQ and predicts 80 logits labels, each indicating the presence
and absence of every of the 40 attributes

3.3.2. Method

E2Editor is an end-to-end Semantic Facial Attribute Editing method whose goal is to
modify a/some facial attribute(s) while keeping the others unchanged. An example of
edit can be found in Figure 3.5.

Figure 3.5: Steps of an edit example on the attribute Beard

The main two components needed for this method are an Attribute Classifier (C), and a
StyleGAN generator (G), composed in turn of a Mapping Network (M) and a Synthesis
Network (S). Let’s start with defining the overall pipeline.

Figure 3.6: E2Editor’s pipeline to perform an edit

First we need to generate a random image: a sampling from a Gaussian distribution is
performed to extract a vector z. It is then mapped through M into a w vector, which is
claimed to exhibit more disentanglement. From now on, the network will work on this
base w vector. Passing w through S, the base facial image I is then created.

At this point the editing loop begins: it terminates when the classification score s of the
needed attribute a (sa) meets the chosen condition. The condition is met when the sa

is below or above the threshold, as explained hereafter. If the sampled image’s (Iinitial)
classification score is below 0.5, then the goal becomes the maximization of the attribute

3| Methods 31

presence and consequently the threshold is set to 0.9. Otherwise if sa is above 0.5, we
assume the attribute being present in the Iinitial; accordingly we need to minimize its
presence, thus the threshold is set to 0.1. Here is a formalization of the threshold t:

t =

0.9, if sa ≤ 0.5

0.1, otherwise
(3.6)

At each iteration, an inplace modification of the vector w is performed; precisely:

wi = wi−1 ± lr · ∇w
∥∇w∥

(3.7)

Here ∇w represents the gradient of w, which provides the real direction along which
modify the vector w to maximize the presence/absence of attribute a in the correspondent
Iedited. The gradient gets populated because of the interdependence among w, Iedited =

S(w) and c = C(Iedited) after computing the classification score of the newly edited w.

Figure 3.7: Examples of gradient’s normalizations

Moreover, different normaliza-
tion of the gradient vector has
been experimented. In figure 3.7
we showcase two different types
against the unnormalized version
(the green). First of all, being
w and ∇w (512x18)-dimensional
vectors, the flattened version
are showed for visualization pur-
poses. In blue we can see a stan-
dardized version of ∇w obtained

by removing the mean and scaling to unit variance, so that the vector will have mean value
0 and standard deviation of 1. Instead in red we can see the gradient vector divided by
its norm, thus obtaining an unit norm gradient vector. Empirically we noticed that using
different normalizations yields no difference in the editing mechanism, even not using any
of them is fine. The unit norm gradient has been chosen so that each edit has the same
magnitude; in this way the number of iterations used to perform an edit that reachs the
desired threshold can be used as metric when comparing results coming from different λ

values, as we will see later.

Moreover, in the formula 3.7 lr stands for learning rate, which is a tunable parameter that
specifies the magnitude of the step in the direction pointed by the gradient. Experiments

32 3| Methods

have been carried out to define a learning rate scheduler, but none of them proved to be
qualitatively better than the others; a constant lr has been finally opted for. The sign
indicates the objective function goal, whether we have to maximize or minimize it due to
the initial sa, as discussed in 3.6. It’s also the motivation of the block dir in figure 3.2.

The pseudo code of the E2Editor method is illustrated in Algorithm section 3.3.2:

Algorithm 3.1 e2edit
1: Input: stylegan generator G, attribute classifier C, attribute a, loss’ weighting factor

λ, threshold t, learning rate lr

2: Sample z ∼ N (0, I)
3: w, Iinitial ←− G(z)

4: s←− C(Iinitial, a)

5: if s ≤ 0.5 then direction = 1 else direction = −1
6: while s doesn’t reach t do
7: losstarget = bce(ytarget, t)

8: lossothers = bce(yothers, p)

9: losse2editor = λ · losstarget + (1− λ) · lossothers
10: loss.backward()

11: w ←− w + direction · lr · w.grad
12: Iedited ←− G(w)

13: s←− C(Iedited, a)

14: end while
15: Output: Iinitial,Iedited

3.3.3. Loss Function

The backpropagation step happens after this custom loss function is calculated:

losse2editor = λ · losstarget + (1− λ) · lossothers (3.8)

where

losstarget = bce(ytarget, p) = −ytarget log(p)− (1− ytarget) log(1− p)

lossothers = bce(yothers, p) = −yothers log(p)− (1− yothers) log(1− p)

(3.9)

(3.10)

where bce stands for binary_cross_entropy, ytarget is 1 or 0 indicating the classification

3| Methods 33

score we aim to reach for the current input data point, yothers is the initial classification
score of the others (non targets) attributes for the current input data point, and p is the
softmax probability for the current input data point.

The losstarget term is the loss responsible for bringing the edit in the direction of changing
the target attribute a. Instead losstarget term is the loss responsible for keeping the others
non-target attributes unchanged, by maintaining them at the same classification score of
the Iinitial.

In the overall loss losse2editor, the λ weighting factor plays a crucial role: it manages the
trade-off between the disentanglement quality of the edit and the number of iterations
taken, i.e. the quickness. Its value can span in the range (0, 1]; the value 0 is not considered
since no learning in the target attribute direction would happen. Let’s look at the extreme
cases:

• low λ: with an λ value equal to 1, the losse2editor would be reduced to the losstarget.
In this way the edit will end up not caring about the maintenance of the non-
target attributes, but only pushing towards the target attribute edit. The edit
will result fast, taking few iterations, but in general it could result not particularly
disentangled due to the entanglement of the attributes with respect to the target
one. In other words, all the non-target attributes are free to change proportionally
to their entanglement degree with respect to the target one, without the extra
regularizer loss.

• high λ: with a low λ value equal for example to 0.1, an higher importance is given
to the lossothers, which will result in a more precise but slower edit. The gradient
steps would be shorter, but significantly more accurate in not trying to perform
unwanted modifications to non-target attributes.

With intermediate λ values, both the losstarget and the lossothers contribute to the overall
losse2editor. As explained above, the trade-off could be managed by tuning this λ param-
eter. Experiment showed λ=0.5 being a good fit, guaranteeing a relatively fast and nice
quality edit.

Figure 3.8 is a clear example of the lambda trade-off.

34 3| Methods

(a) Base sampled image. (b) Edit on Blonde (λ=1) (c) Edit on Blonde (λ=0.1)

Figure 3.8: The λ trade-off explained: the edit (3.8b) with λ=1 unwantedly modifies also
Beard, whereas the edit (3.8c) with λ=0.1 keeps the Beard desirably unchanged.

It’s clear to see the crucial role player by the losstarget that doesn’t let the non-target
attributes vary. In this case the Beard attribute is the one that undergoes an undesirable
variation when λ=1, while λ=0.1 manages to maintain it at its original value.

3.3.4. Discussion

Being a deep generative model, we expect StyleGAN’s latent space W to be well regular-
ized. Close latent space’s regions should exhibit similar facial characteristics, resulting in
visually smooth morphs when traversed. No meaningful edits would occur if this condi-
tion was not met. In general we also expect the space to be clustered by attributes, so
that within each cluster reside facial images having the same attribute. It’s then inter-
esting to inspect the edit behaviour when "entering/exiting a cluster", i.e. respectively
adding or removing an attribute. As discussed before, E2Editor is a two-way Semantic
Facial Attribute Editing: it works both in case of adding a target attribute, in case its
classification score is initially low, but also in removing it in the complementary case.

Our intuition is that gradient flow would behave differently in the two cases, following
logarithmic magnitude steps. Empirical results met our intuitions which are explained
below, along with examples.

• Attribute addition: in this case we aim to enter the target cluster. So we expect
the first gradient steps to be bigger (and in the low λ case, orthogonal to the non-
target attributes) to approach the cluster and the followings to be littler adjustments
within the cluster.

3| Methods 35

(a) Base image (b) Blonde edit (λ=0.1) (c) Blonde edit (λ=1)

(d) Gradient steps 2D visualization with λ=0.1 (e) Gradient steps 2D visualization with λ=1

Figure 3.9: Attribute Blonde_Hair addition example. In the first row we have a randomly
sampled image, along with both edits with λ=0.1 and with λ=1. Notice the smaller and
preciser steps that lead to Figure 3.9b versus the longer yet impreciser steps that lead
to the "blondier" Figure 3.9c. In the second row the connected arrows represent the
subsequent gradient steps. We performed TSNE dimensionality reduction to be able to
visualize the high dimensional vectors. In this example unnormalized gradients have been
used.

• Attribute removal: in this case we aim to exit the target cluster. So we expect
the first gradient steps to be smaller be accurately guided out from the cluster and
the followings to be bigger once exited.

(a) Base image (b) Goatee edit (λ=0.1) (c) Goatee edit (λ=1)

36 3| Methods

(d) Gradient steps 2D visualization with λ=0.1 (e) Gradient steps 2D visualization with λ=1

Figure 3.10: Attribute Goatee removal example. In the first row we have a randomly
sampled image, along with both edits with λ=0.1 and with λ=1. Notice the smaller steps
that exits from the cluster and lead to Figure 3.10b versus the longer step that lead to the
Figure 3.10c. In the second row the connected arrows represent the subsequent gradient
steps. We performed TSNE dimensionality reduction to be able to visualize the high
dimensional vectors. In this example unnormalized gradients have been used.

Empirically it has been noticed that when removing an attribute, an higher value of λ
usually perform equally, if not better, that a lower one. An example can be seen in Figure
3.10c. We have confidence in saying that the reasons could reside in the above discussion.
It’s easier to remove an attribute since we need less precision when exiting the cluster.
Moreover it could happen that we already are placed at the margin of the cluster, making
the edit simpler..

Another E2Editor’s characteristic not yet discussed is multi-modality: it supports the
joint manipulation of several attributes. For example, in a single edit pass we can edit
not just one, but many target attributes together. For simplicity, until now the only case
taken into account is the single-modal one. With the described method, the derivation to a
multi-modal setting is pretty straightforward. We just need to take into account multiple
indexes, corresponding to the target attributes, when computing losstarget in Equation 3.9.
Clearly each multiple-attributes edit is more difficult than a single-attribute one, but the
principle of following the classification gradient doesn’t change at all. One unavoidable
factor is attribute entanglement: we could not perform an edit on attributes entangled
by definition such as Beard and Goatee.

Figure 3.11 showcases a multiple-attributes editing, in particular on Blonde_Hair and
Smiling.

3| Methods 37

(a) Base image (b) Edit obtained increasing
Blonde and decreasing Smiling,
with λ=0.1

Figure 3.11: An example of an edit towards multiple attributes. One the left, the original
image; on the right, the image edited towards both the attributes Blonde_Hair and
Smiling. Since the base image has originally not blonde hair, this attribute is increased,
while the opposite holds for the smile.

3.3.5. Considerations

To conclude this section about E2Editor’s method, we below highlight its pros and cons:

Pros:

• Target and Non-Target Aware: unlike many other methods whose objective
function only considers the edit in the target attribute direction, which could result
in an undesired entangled edit, ours also provides a way to control the variation
of the non-target ones with the analytical help of an Attribute Classifier. See an
example in figure 3.12.

• Instance Aware: this method doesn’t provide a general editing direction for the
target attribute like Instance Agnostic methods, which could bee too general and
imprecise for specific cases, but a custom tailored direction for each single sample.

• Multi modal: it can handle multiple-attributes editing at the same time.

• Two-Way: both removing and adding attribute(s) is supported.

Cons:

• Attribute Classifier need: a solid unbiased classifier is crucial for the edits’
outcome. The more robust it is, the more robust will the edits be, exactly because
of the fact that the latent space edit depends on the classification score.

38 3| Methods

• Time: edits can be time-consuming in some settings, especially when a low λ value
is chosen. Nonetheless, the time lost is gained in the edit disentanglement quality
as discussed in Section 3.3.3.

Figure 3.12: An example of edit on Bangs, where on the x-axis we record the iterations
to reach the final image, while on the y-axis are recorded the scores of all the attributes
at each step. We can see how the target attribute in the red line in the only one that
undergoes a substancial variation, while the others stays almost invariate.

We believe that given this outline of E2Editor’s strengths and weaknesses, this method
can definitely be competitive. In the next Section we will discuss more about quantitative
results and comparisons with other literature methods.

39

4| Experiments & Results

The final goal of this work is to train an explainable model which correctly disentangles
non-trivial factors of variation (FoVs).

In general, the unsupervised learning of disentangled representation is proved to work only
on biased toy datasets [10] [18]. It does work exactly because they exploit the dataset
bias, but Locatello et al. [22] clearly stated that achieving disentanglement on real dataset
without providing any explicit supervision is essentially impossible. For this reasons we
designed a new learning framework, described in section 3.2.2, whose aim is to provide the
supervision to encourage the model to correctly disentangle the known factors of variation,
also on real non-toy datasets.

Following, we will describe the experimental setup, the basic and custom dataset used
in the experiments, and discuss the metrics adopted; finally, we will have a look at the
results obtained.

4.1. Experimental Setup

The categories of experiments that will follow are divided into two learning settings:

• Unsupervised setting: in these experiments we will test the limited unsuper-
vised learning case. As baseline model we will use a β-VAE [10], with β=4, whose
architecture is detailed in section 3.2.2.

• Supervised setting: in these experiments we will add the supervision described
in our method in section 3.2 to bridge the gaps left by the unsupervised methods.

The above methodologies will be tested on two types of datasets:

• Toy Dataset: DSprites will be used to show the deficits of the unsupervised meth-
ods to correctly disentangle the latent FoVs. We will then present SDSprites, which
is just a selection of DSprites couples of images in which only a FoV varies within
the couple. Therefore, we will use it in our unsupervised method to demonstrate
its soundness and improvements in disentanglement capabilites with respect to the

40 4| Experiments & Results

base case.

• Non-Toy Dataset: Celeba [21] is the focus of our work. We will provide the
supervision to SVAE with the DFaces image couples, a novel custom dataset created
with our E2Editor method, described in Section 3.3.

In Figure 3.1 we showcase paired examples for both the datasets.

Below we list all the others common parameters, hyperparameters, devices used and
assumptions made throughout the whole process, for replicability purposes:

• The GPU used for all the experiment was a NVIDIA RTX A5000.

• All the datasets’ images dimension has been kept at 64x64.

• The latent dimension of the bottleneck layer has been kept at 5 for DSprites, equal
to the number of FoVs; it should be a wide enough bottleneck to allow for a valid
reconstruction, given the triviality of the dataset and 128 for Celeba. Those values
were found empirically, looking at the models’ reconstruction capabilities.

• The batch size has been chosen at 34 for DFaces, since the number of facial FoVs
was chosen at 17; in this way at each iteration the model sees one couple of images
for each FoV. For all other datasets it has been chosen at 32.

• The β hyperparameter of the SVAE was fixed at the value 4 for all the experiments
[10].

4.2. Datasets

We below present the two main dataset on which we focused our experiments.

4.2.1. DSprites

DSprites 1 is a dataset of 2D shapes procedurally generated from 6 ground truth indepen-
dent latent factors. These factors are color, shape, scale, rotation, x and y positions of
a sprite. All possible combinations of these latents are present exactly once, generating
737280 total images; an example of images is shown below.

1https://github.com/deepmind/dsprites-dataset

https://github.com/deepmind/dsprites-dataset

4| Experiments & Results 41

Figure 4.1: Random samples taken from DSprites dataset.

The latent factor values are precisely:

• Color: white

• Shape: square, ellipse, heart

• Scale: 6 values linearly spaced in [0.5, 1]

• Orientation: 40 values in [0, 2 pi]

• Position X: 32 values in [0, 1]

• Position Y: 32 values in [0, 1]

The aim of this dataset is testing the disentanglement properties of unsupervised models.
It can be used to determine how well models recover the ground truth latents presented
above.

4.2.2. CelebA

CelebFaces Attributes Dataset (CelebA) 2 [21] is a large-scale face attributes dataset with
more than 200K celebrity images, each with 40 attribute annotations. The images in this
dataset cover large pose variations and background clutter. CelebA has large diversities,
large quantities, and rich annotations, including:

• 10,177 number of identities,

• 202,599 number of face images,

• 5 landmark locations, 40 binary attributes annotations per image.
2https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

42 4| Experiments & Results

In this preliminary phase, we perform an overall exploration of the dataset.

Being a real face dataset labelled by humans, this dataset represents one of the best
reflection of the real human faces data distribution available. Therefore, with the fol-
lowing analysis we aim to find principally which of the attributes are more prone to be
positive/negative, and which ones should be correlated/entangled with each other.

Figure 4.2: Quantities of positively and negatively labelled data points for CelebA [21],
for each attribute.

From Figure 4.2, we observe that almost half the attributes are relatively below 20% of
positivity rate. Only 3 attributes (No_Beard, Young and Attractive) are above 50%. This
in turn influenced the generalization failure of the Attribute Classifier training described
in Section 3.3.1.

Later, an attribute correlation analysis has been performed to see which of the attributes
are "entangled" with some others. Using the PearsonR correlation coefficient on each
couple of attributes, a kind of normalized measurement of the covariance, the resulting
heatmap is depicted below. The results came out as expected: some attributes are highly
positively correlated, such as Heavy_Makeup and Wearing_Lipstick, or Chubby and Dou-
ble_Chin, and some others are highly negatively correlated like Goatee and No_Beard or
Male and Wearing_Lipstick. This measurements has been useful to extract only 17 out
of the 40 attributes to train our VAE, as we will see later in Section 3.2.

4| Experiments & Results 43

Figure 4.3: Correlation Heatmap between each attribute couple of CelebA. Red symbolizes
an high correlation, blue a low one. Both, however, imply entanglement.

4.3. Datasets generation for Disentanglement enhance-

ment

To add the required supervision needed to promote the latent space disentanglement to
the β-VAE, we required some custom datasets. We below present them.

4.3.1. SDSprites

Given the poor results obtained by traversing the unsupervised β-VAE case described in
4.5.1, we decided to extract couples of images varying in a single generative factors in
order to apply our method SVAeE described in section 3.2 also to DSprites. To generate

44 4| Experiments & Results

this dataset, which we named SDSprites, we applied the following mechanism:

• we fixed one generative factor

• for each DSprites image we selected another image in the dataset such that the only
FoV that changes is the fixed one;

• these two images constitute a pair, with the additional information of the varying
FoV.

Example: given the order of the FoV being [shape, size, orientation, posX, posY] and
being the first image [square,0.5,0,1,0], the second image of the pair, given the fixed FoV
orientation could be [square,0.5,π,1,0].

We below showcase some image couples, ready to be provided to our SVAE.

(a) Examples of dsprites’ image couples that differs only in shape.

(b) Examples of dsprites’ image couples that differs only in size.

(c) Examples of dsprites’ image couples that differs only in orientation.

(d) Examples of dsprites’ image couples that differs only in positionX.

(e) Examples of dsprites’ image couples that differs only in positionY.

Figure 4.4: SDSprites image couples with one single varying FoV.

4| Experiments & Results 45

4.3.2. DFaces

With the E2Editor method described in Section 3.3, we managed to create a new visually
facial attributes-wise disentangled dataset, called DFaces.

Figure 4.5: Paired samples from DFaces dataset; side by side images have one non-shared
attribute like, respectively from top-down left-right, Blonde_Hair, Goatee, Rosy_Cheek.

It’s composed of 200022 human facial images:

• 100011 couples of images, where each couple (Ibase, Iedited,a) is composed of a base
image Ibase and an edited one Iedited,a on the attribute a.

• 5883 couples of images for each one of the 17 chosen attributes, namely Bald,
Bangs, Big_Lips, Big_Nose, Black_Hair, Blond_Hair, Bushy_Eyebrows, Chubby,
Double_Chin, Eyeglasses, Goatee, Gray_Hair, Heavy_Makeup, Male, Mustache,
No_Beard, Pointy_Nose, Rosy_Cheeks, Sideburns, Smiling, Wearing_Lipstick, Young.

To assess the results of the SFAE’s edits, Nickabadi et al. in [28] provide a rundown of
the various evaluation metrics, that could be:

• Qualitative: this kind of evaluation needs humans in the loop, mostly through
surveys.

• Quantitative: this type is divided in many subtypes, regarding which aspect we
aim to evaluate:

◦ Image aspect: metrics like FID Score, Sim, Mssim can be used. Those
metrics establish the general image quality and it’s commonly used to assess
the quality of the image generated by GANs.

◦ Edit quality: these metrics assess the quality of the single edit on an attribute,
which could be differenciated in:

46 4| Experiments & Results

◦ Target modification: with the use of attribute classifiers, this metric
analyzes the change in the predictions score on the target attribute between
the base and the edited image.

◦ Non-Target preservation: a common approach to this goal is to perform
face verification between the input and the modified face images. To do
so, the distance between the feature vectors of the initial and manipulated
face images, extracted by pretrained face recognition models, are measured
using a Euclidean or cosine distance and compared with a predetermined
threshold to verify if the two images belong to the same person or not

Quantitative experiments have been performed to assess analytically the resulting edits
with different α configurations (for details visit section 3.3). The chosen configurations
were the extreme opposites, namely α=1 and α=0.1. The metric kept into account is
the sum of the MSE value of all the non-target attributes predictions between 1000 base
images and the correspondent edit, obtained when editing on the target attribute. Its
aim is to monitor how much an edit of a target attribute influences the other attributes
predictions. Obviously, the lower the better.

For each attribute atarget, the considered metric is formally defined as:

vatarget =
1

N

N∑
i

A∑
a̸=atarget

|s̃a − sa|2︸ ︷︷ ︸
MSE editing on atarget

(4.1)

where s̃a and sa are respectively the classifier C score of attribute a for the edited image
on atarget and the base image.

Figure 4.6: Sum of MSE of the non-target attributes between the prediction of 1000 base
images versus their edit on an attribute (the lower the better).

4| Experiments & Results 47

In each column of Figure 4.6, we show the metric 4.1 attribute by attribute. Only a
subset of 17/40 attributes has been used in this entire work. We can see that the config-
uration α=0.1 most of the times performs better than the configurations with α=1. As
we discussed in Section 3.3.4, sometimes α=1 could be preferable.

Here is the tabular version of the results:

E2Editor (α=1) E2Editor (α=0.1)

Bald 0.03518942 0.00271607

Bangs 0.01077762 0.00078402

Big_Lips 0.00344190 0.00052207

Black_Hair 0.01483328 0.00091163

Blond_Hair 0.00095059 0.00047568

Bushy_Eyebrows 0.00215917 0.00209541

Double_Chin 0.00587940 0.00112743

Eyeglasses 0.00485284 0.00480959

Goatee 0.00511453 0.00781297

Gray_Hair 0.01387716 0.00655545

Male 0.00685158 0.00882778

No_Beard 0.01028384 0.01022305

Pointy_Nose 0.00102964 0.00060121

Rosy_Cheeks 0.00046284 0.00086657

Smiling 3.61024006 3.52134591

Wearing_Lipstick 0.00026791 0.00353027

Young 0.00414855 0.00575577

Table 4.1: Sum of MSE of the non-target attributes between the prediction of 1000 base
images versus their edit on a target attribute (the lower the better).

Thus, to have a final cumulative metric, we averaged each one of the attribute-wise MSE
by method:

vA =
1

A

A∑
a

va (4.2)

In this case, we also added the InterFaceGAN [32] method to perform Semantic Facial
Attribute Editing, to have a comparison with the state-of-the-art method. As we can see
from this figure below, E2editor(α = 0.1) in average performs better.

48 4| Experiments & Results

Figure 4.7: Plot comparition of the sum of the MSE over each attribute.

Avg Sum of MSE

E2Editor (α=1) 0.120156

InterFaceGAN 0.074868

E2Editor (α=0.1) 0.057652

Table 4.2: SFAE methods quality comparison.

Last, to have deeper insights about the distributions divided by attribute, instead of a
simple MSE, below we showcase the Box Plot and the Violin Plot of the MSE distribution
by attributes in Figure 4.8.

4| Experiments & Results 49

(a) Box Plot (b) Violin Plot

Figure 4.8: Box Plot and Violin plot of the MSE distributions by attribute.

When comparing our results with InterFaceGAN’s ones, we notice some peculiar im-
provements. In particular, we noticed that when editing on attribute Big_Lips with their
method, the edit actually ended up changing the skin color. This is probably due to a bias
in the CelebA dataset on which InterFaceGAN has been trained on; this bias incorporates
the correlation between big lips and dark skin color. Our method instead, as shown in
the figure below, is able to overcome the bias and identify the right gradient direction for
the edit in question.

(a) Base Image example
1

(b) E2Editor edit (c) InterFaceGAN edit

(d) Base Image example
2

(e) E2Editor edit (f) InterFaceGAN edit

Figure 4.9: Examples of the edit bias on the attribute Big_Lips

50 4| Experiments & Results

4.4. Metrics

To evaluate the disentanglement level of our results, many metrics have been proposed
[35]. Three of the most famous ones have been adopted in this work, namely:

• Z-diff : often known as the βVAE metric, chooses pairs of instances to group to-
gether into batches. A factor vi in a batch is randomly selected. Then, samples
v1 and v2 are paired together if their values for the selected factor are the same
(vi

1 = vi
2). The absolute difference between the samples’ codes is used to describe

pairs (p = |z1−z2|) of data. The fixed factor’s related code dimensions are supposed
to have the same value, which entails a smaller difference than those of the other
code dimensions. A point in the final training set is created by taking the mean
of all pairwise differences in the subset. To create a substantial training set, the
technique is done several times. The data set is then used to train a linear classifier
to determine which factor was fixed. The Z-diff score represents the classifier’s ac-
curacy. The accuracy of a random classifier of 1

M
, where M is the number of factors,

can be used to scale the output closer to the [0, 1] range.

Figure 4.10: Z-diff disentanglement metric calculation process, proposed in [10]

• z-min variance: often known as FactorVAE metric, this metric was proposed to
address some of the shortcomings of Z-diff metric. The logic is the same as for Z-diff:
if the factor value is the same, then the code dimensions encoding the factor should
also be similar. All codes are first normalized using their standard deviation, which
is calculated over the whole collection of data. A factor is chosen at random and

4| Experiments & Results 51

fixed at a random value for the subset. The subset consists of sampled occurrences
for which the chosen factor is set to the chosen value. Over the normalized codes
in the subset, variance is calculated. The fixed factor is connected to the code
dimension with the lowest variation. The factor-code relationships are employed as
data points in a majority vote classifier, and many subsets are produced. Z-min
The classifier’s mean accuracy is measured by the variance score. Similar to Z-diff,
scaling the output closer to the [0, 1] range may be accomplished by using a random
classifier accuracy of 1

M
.

Figure 4.11: Z-min var disentanglement metric calculation process, proposed in [18]

• DCI: The authors in [7] presented a comprehensive framework for assessing disen-
tangled representations, replacing a single metric with a multifaceted evaluation.
They introduce distinct measures for Modularity, compactness, and explicitness,
denoted as Disentanglement, Completeness, and Informativeness, respectively. To
evaluate these aspects, they employ regressors trained to predict factors from codes.
For Modularity and compactness estimation, they utilize importance weights, de-
noted as Rij, derived from the regressor’s internal parameters, which relate to each
factor and code dimension pair. Linear Lasso regressors or random forests are em-
ployed for non-linear mappings. The lasso regressor’s importance weights are the
magnitudes of its learned weights, while Gini importance is used with random forests
to evaluate code dimensions.

Compactness for a specific factor vi is calculated using Ci = 1 +
∑d

j=1 pij logd(pij),
where pij represents the probability that code dimension zj is essential for predicting
vi. These probabilities are obtained by dividing each importance weight by the
sum of all importance weights related to that factor: pij =

Rij∑d
k=1 Rik

. The overall
compactness of the representation is the average compactness across all factors.

Similarly, Modularity for code dimension zj is computed as Dj = 1+
∑M

i=1 pij logM(pij),
where pij signifies the probability that zj is critical only for predicting vi. The im-
portance weights here are normalized with respect to codes: pij =

Rij∑M
i=1 Rkj

. The
representation’s Modularity score is a weighted average of individual code dimen-

52 4| Experiments & Results

sion Modularity scores, weighted by ρj to account for less important codes. The
weight ρj is calculated as the total importance for zj normalized by the sum of all
importance weights: ρj =

∑M
i=1 Rij∑d

k=1

∑M
i=1 Rik

.

Explicitness of the representation is assessed using the prediction error of the re-
gressor. Normalized inputs and outputs enable the computation of the estimation
error, which is then normalized between 0 and 1. An explicit representation is
one where the mean squared error (MSE) of the predictor is lower than the ex-
pected MSE between two uniformly distributed random variables (X and Y), where
MSE = E[(X − Y)2] = 1

6
. Therefore, explicitness is quantified as 1 − 6 ∗MSE.

Values below 0 are reported as 0 in their implementation.

Figure 4.12: Visualization of Disentanglement and Completeness, from [7]

4.5. Experiments

Below are listed all the experiments performed for the different types of datasets along
with the correspondent settings, described in section 4.1.

4.5.1. DSprites

As analyzed in section 4.2.1, DSprites is a toy dataset purposefully built for testing the
disentanglement capabilities of a model. It has six known generative factors that fully
defines the images.

Although its FoVs are so easy to be disentangled, plain β-VAE can only perform well in
the simplified case where the factors to be disentangled are only the posX and posY of the
white dot. So, for this experiment we simply fixed values for the other FoVs (namely shape
as circle, orientation and size) so that the only factors to vary were the dot coordinates.
In this way, the only latent traversals that would show any meaningful variations would
be the latent variables encoding the posX and posY FoVs, as can be seen in the full
figure 4.15, while others latent traversals show that non encoded factor resides in others
dimensions. Below we highlighted in detail the only two meaningful traversals, in figure
4.13 and 4.14.

4| Experiments & Results 53

Figure 4.13: Latent Traversal on the dimension that encodes the FoV posX.

Figure 4.14: Latent Traversal on the dimension that encodes the FoV posY.

The results on disentanglement when adding other generative factors are unclear: we can
see that the traversals are not clean, so several generative factors are mixed into one
(e.g. position X and orientation), so by definition they are not well disentangled by the
model. We can infer that the model cannot keep up with the increasing complexity of the
generative factors, ergo the need for a supervision.

54 4| Experiments & Results

Figure 4.15: Latent traversal of a plain β-VAE with a 16-dimensional latent space, with
FoVs posX and posY. We can notice how it correctly disentangles the factor posX in the
14th dimension and posY in the 12th, leaving the others unchanged as they shouldn’t
(and don’t) ancode any FoV.

4| Experiments & Results 55

4.5.2. SDSprites

By providing SDSprites supervision, the model correctly grasps the FoV to be encoded
in each dimension, as can be seen in Figure 4.16 showing the latent traversal. Given
the same sampled image of the first column, each row displays a traversal on a different
dimension, semantically represented by the FoV on the left. In particular:

• Shape: in the first dimension is encoded the shape FoV. It’s the most difficult
to notice since the training epochs used were very little, and the reconstruction
capabilitiy of the network didn’t reach great results, since they were trading-off
with the kl-loss and the pair loss.

• Scale: the second dimension is clearly encoding the scale factor, as the dot is getting
bigger.

• Orientation: the third dimension encodes the orientation factor, as the dot is varying
direction.

• Position X : the fourth dimension is encoding the x coordinate factor, as the dot
moving from left to right.

• Position Y : the fifth dimension is encoding the y coordinate factor, as the dot
moving up.

Figure 4.16: Latent Traversal of SVAE trained on SDSprites. Given the same sampled
image of the first column, each row displays a traversal on a different dimension, that
semantically encodes the FoV on the left.

56 4| Experiments & Results

Comparing SVAE (trained for 3k epochs) with the state-of-the-art methods (each trained
for 300k epochs in Google’s Official Disentanglement Library) [22], we show competitive
results given the significantly shorter training duration, highlighting the efficiency and
practicality of our approach for disentanglement representation learning. Results are
shown in Table 4.3. In this table, we compare we major methods described in 2.3 and 2.4
on the metrics described in 4.4 on DSprites dataset.

z-diff z-min DCI

βVAE 0.823 0.660 0.186

FactorVAE 0.853 0.750 0.256

MLVAE 0.896 0.701 0.294

GVAE 0.923 0.847 0.479

SVAE 0.652 0.711 0.313

Table 4.3: Disentanglement score comparisons with state-of-the-art methods.

We believe that with equal training epochs, or adjustments in the losses trade-off, our
method can achieve more competitive results.

https://github.com/google-research/disentanglement_lib/

4| Experiments & Results 57

4.5.3. DFaces

Since we are dealing with a non-toy real-world dataset, the data generation process doesn’t
define clear FoVs. Thus we decided to treat some facial attributes as factors of variation.
The attributes chosen are the 17 out of 40 of the most representative labels over which
CelebA dataset [21] has been labelled, namely: Bald, Bangs, Big_Lips, Black_Hair,
Blond_Hair, Bushy_Eyebrows, Double_Chin, Eyeglasses, Goatee, Gray_Hair, Male, No_Beard,
Pointy_Nose, Rosy_Cheeks, Smiling, Wearing_Lipstick, Young. Here the latent dimen-
sion has been set to 128, but only the forced 17 dimensions carry an interpretable semantic
FoV.

Figure 4.17: Latent traversals oh the SVAE latent space. The first row contains the
sampled images, and each row traverses a single FoV, defined on the left. Only the
clearest results are shown..

We can see how traversing a single dimension, it changes the image aspect on the leading
FoV written on the right. Clearly the reconstructions are a bit blurry; longer trainings
should fix this issue.

Given the obtained results, we managed to train an explainable encoder, paired with its
decoder, on which we know how to perform edits in its latent space thanks to the forced
disentanglement property, showed in its latent representation by this latent traversals.
This could be employed in various scenarios, for example to explain the outcomes of task
like face recognition.

58 4| Experiments & Results

Figure 4.18: Full Traversal on all the semantically meaningful latent dimensions of SVAE
trained in DFaces.

59

5| Conclusions & Future Works

In summary, we addressed the problem of generating explainable models by leveraging
on the forced latent space disentanglement. The proposed solution consists of a novel
Variational framework in which paired observations differing in a single factor of variation
induce the model into encoding that non-shared attribute in a dedicated latent dimension.
To test our method’s effectiveness on real-world scenarios, we developed a novel Semantic
Facial Attribute Method to generate a tailored dataset. However, the aim of this work
was to prove that disentanglement could be forced and then exploited also in real-world
scenarios. The aim of our test on facial images was just to verify its effectiveness, and
demonstrate its applicability in whichever real-world scenario. The gathered results show
the viability of the suggested strategy and its competitiveness compared to the main
solutions in the literature.

Future works should:

• carry out more intensive trainings on both the tested datasets;

• improve the reconstruction quality, essential for a valid evaluation of the disentan-
glement outcomes especially in the latent traversals.

• test out the SVAE method on other datasets, such as the variations of the DSprites
dataset existing in the literature;

61

Bibliography

[1] R. Abdal, Y. Qin, and P. Wonka. Image2stylegan: How to embed images into the
stylegan latent space?, 2019.

[2] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35
(8):1798–1828, 2013. doi: 10.1109/TPAMI.2013.50.

[3] D. Bouchacourt, R. Tomioka, and S. Nowozin. Mlvae: Multi-level variational au-
toencoder: Learning disentangled representations from grouped observations, 2017.

[4] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. Vggface2: A dataset for
recognising faces across pose and age, 2018.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

[6] E. Dupont. Learning disentangled joint continuous and discrete representations, 2018.

[7] C. Eastwood and C. K. I. Williams. A framework for the quantitative evaluation of
disentangled representations. In International Conference on Learning Representa-
tions, 2018. URL https://openreview.net/forum?id=By-7dz-AZ.

[8] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial networks, 2014.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition,
2015.

[10] I. Higgins, L. Matthey, A. Pal, C. P. Burgess, X. Glorot, M. M. Botvinick, S. Mo-
hamed, and A. Lerchner. beta-vae: Learning basic visual concepts with a constrained
variational framework. In International Conference on Learning Representations,
2016.

https://openreview.net/forum?id=By-7dz-AZ

62 | Bibliography

[11] I. Higgins, D. Amos, D. Pfau, S. Racaniere, L. Matthey, D. Rezende, and A. Lerchner.
Towards a definition of disentangled representations, 2018.

[12] M. D. Hoffman and M. J. Johnson. Elbo surgery: yet another way to carve up the
variational evidence lower bound. In Workshop in Advances in Approximate Bayesian
Inference, NIPS, volume 1, 2016.

[13] H. Hosoya. Gvae: Group-based learning of disentangled representations with gener-
alizability for novel contents, 2021.

[14] X. Huang and S. Belongie. Arbitrary style transfer in real-time with adaptive instance
normalization, 2017.

[15] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift, 2015.

[16] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation, 2018.

[17] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative
adversarial networks, 2019.

[18] H. Kim and A. Mnih. Disentangling by factorising, 2019.

[19] D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2022.

[20] J. Lin, R. Zhang, F. Ganz, S. Han, and J.-Y. Zhu. Anycost gans for interactive image
synthesis and editing, 2021.

[21] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December
2015.

[22] F. Locatello, S. Bauer, M. Lucic, G. Rätsch, S. Gelly, B. Schölkopf, and O. Bachem.
Challenging common assumptions in the unsupervised learning of disentangled rep-
resentations, 2019.

[23] F. Locatello, B. Poole, G. Raetsch, B. Schölkopf, O. Bachem, and M. Tschannen.
Weakly-supervised disentanglement without compromises. In H. D. III and A. Singh,
editors, Proceedings of the 37th International Conference on Machine Learning, vol-
ume 119 of Proceedings of Machine Learning Research, pages 6348–6359. PMLR, 13–
18 Jul 2020. URL https://proceedings.mlr.press/v119/locatello20a.html.

[24] F. Locatello, M. Tschannen, S. Bauer, G. Rätsch, B. Schölkopf, and O. Bachem.
Disentangling factors of variation using few labels, 2020.

https://proceedings.mlr.press/v119/locatello20a.html

5| BIBLIOGRAPHY 63

[25] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey. Adversarial autoen-
coders, 2016.

[26] L. Matthey, I. Higgins, D. Hassabis, and A. Lerchner. dsprites: Disentanglement
testing sprites dataset. https://github.com/deepmind/dsprites-dataset/, 2017.

[27] A. Melnik, M. Miasayedzenkau, D. Makarovets, D. Pirshtuk, E. Akbulut, D. Holz-
mann, T. Renusch, G. Reichert, and H. Ritter. Face generation and editing with
stylegan: A survey, 2023.

[28] A. Nickabadi, M. S. Fard, N. M. Farid, and N. Mohammadbagheri. A comprehensive
survey on semantic facial attribute editing using generative adversarial networks,
2022.

[29] Y. Nitzan, A. Bermano, Y. Li, and D. Cohen-Or. Face identity disentanglement via
latent space mapping, 2020.

[30] E. Richardson, Y. Alaluf, O. Patashnik, Y. Nitzan, Y. Azar, S. Shapiro, and
D. Cohen-Or. Encoding in style: a stylegan encoder for image-to-image translation.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2021.

[31] L. Schott, J. von Kügelgen, F. Träuble, P. Gehler, C. Russell, M. Bethge,
B. Schölkopf, F. Locatello, and W. Brendel. Visual representation learning does
not generalize strongly within the same domain, 2022.

[32] Y. Shen, J. Gu, X. Tang, and B. Zhou. Interpreting the latent space of gans for
semantic face editing, 2020.

[33] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normalization: The missing
ingredient for fast stylization, 2017.

[34] Z. Wu, D. Lischinski, and E. Shechtman. Stylespace analysis: Disentangled controls
for stylegan image generation, 2020.

[35] J. Zaidi, J. Boilard, G. Gagnon, and M. Carbonneau. Measuring disentanglement:
A review of metrics. CoRR, abs/2012.09276, 2020. URL https://arxiv.org/abs/

2012.09276.

https://arxiv.org/abs/2012.09276
https://arxiv.org/abs/2012.09276

65

List of Figures

2.1 Formal connection between a disentangled representation and a bijective
function. The source set Z is the set of the latent dimensions of the latent
space, whereas the destination set represents the data FoVs. 6

2.2 Intuitive visualization of the disentangled representation learning process.
In this trivial example, each color represents a FoV of the input data, that
after an encoding process should be maintained in separate latent dimensions. 8

2.3 Variaitonal Autoencoder architecture, from Wikimedia Commons 9
2.5 GAN architecture, from googledevs. 14
2.6 Visualization of the StyleGAN framework and of the identified latent spaces,

from [27] . 16
2.7 Example of Semantic Facial Attribute Editing on the attribute Bangs. . . . 18
2.8 Taxonomy of the literature’s methods for Semantic Facial Attribute Edit-

ing, from [28] . 19

3.1 Paired observation sample from Dfaces and SDSprites, described in sections
4.3.2 and 4.3.1. The first couple’s non-shared FoV is Smiling, while for the
second is Shape . 24

3.5 Steps of an edit example on the attribute Beard 30
3.7 Examples of gradient’s normalizations . 31
3.10 Attribute Goatee removal example. In the first row we have a randomly

sampled image, along with both edits with λ=0.1 and with λ=1. Notice
the smaller steps that exits from the cluster and lead to Figure 3.10b ver-
sus the longer step that lead to the Figure 3.10c. In the second row the
connected arrows represent the subsequent gradient steps. We performed
TSNE dimensionality reduction to be able to visualize the high dimensional
vectors. In this example unnormalized gradients have been used. 36

https://upload.wikimedia.org/wikipedia/commons/1/11/Reparameterized_Variational_Autoencoder.png
https://developers.google.com/machine-learning/gan/gan_structure?hl=it

66 | List of Figures

3.12 An example of edit on Bangs, where on the x-axis we record the iterations
to reach the final image, while on the y-axis are recorded the scores of all
the attributes at each step. We can see how the target attribute in the
red line in the only one that undergoes a substancial variation, while the
others stays almost invariate. 38

4.5 Paired samples from DFaces dataset; side by side images have one non-
shared attribute like, respectively from top-down left-right, Blonde_Hair,
Goatee, Rosy_Cheek. 45

4.7 Plot comparition of the sum of the MSE over each attribute. 48
4.9 Examples of the edit bias on the attribute Big_Lips 49
4.10 Z-diff disentanglement metric calculation process, proposed in [10] 50
4.11 Z-min var disentanglement metric calculation process, proposed in [18] . . 51
4.12 Visualization of Disentanglement and Completeness, from [7] 52
4.13 Latent Traversal on the dimension that encodes the FoV posX. 53
4.14 Latent Traversal on the dimension that encodes the FoV posY. 53
4.15 Latent traversal of a plain β-VAE with a 16-dimensional latent space, with

FoVs posX and posY. We can notice how it correctly disentangles the fac-
tor posX in the 14th dimension and posY in the 12th, leaving the others
unchanged as they shouldn’t (and don’t) ancode any FoV. 54

4.16 Latent Traversal of SVAE trained on SDSprites. Given the same sampled
image of the first column, each row displays a traversal on a different di-
mension, that semantically encodes the FoV on the left. 55

4.17 Latent traversals oh the SVAE latent space. The first row contains the
sampled images, and each row traverses a single FoV, defined on the left.
Only the clearest results are shown.. 57

4.18 Full Traversal on all the semantically meaningful latent dimensions of SVAE
trained in DFaces. 58

67

List of Tables

4.1 Sum of MSE of the non-target attributes between the prediction of 1000
base images versus their edit on a target attribute (the lower the better). . 47

4.2 SFAE methods quality comparison. 48
4.3 Disentanglement score comparisons with state-of-the-art methods. 56

69

Ringraziamenti

Se sono arrivato fino a qui è doveroso fare dei ringraziamenti.

In primis devo ringraziare il professor Giacomo Boracchi, per avermi permesso di lavorare
nel suo team di ricerca e di intraprendere questo percorso di crescita personale. Voglio
ringraziare anche il mio advisor Loris Giulivi per il costante ed essenziale supporto dato
nel corso dei lunghi mesi di brainstorming, studio, implementazione e scrittura. Un grosso
grazie anche al professor Francesco Locatello, per il prezioso e non scontato aiuto ricevuto.

Devo ringraziare la mia famiglia, che più di tutti mi ha supportato nel corso di questi
cinque anni; a mio padre Fabio, per essere sempre il mio punto di riferimento ed il mio
esempio da seguire; a mia mamma Paola, per essere la persona amorevole che sempre ha
creduto in me e che mi ha sempre messo al primo posto; senza voi due non sarei niente.
A mio fratello Fra, per essere la roccia su cui posso sempre poggiarmi, da tutta la vita; a
mia sorella Gaia, per essere la mia piccola complice.

Ai miei nonni; al nonno Franco e alla nonna Vittoria, che piu di tutti avrebbero voluto
vedermi tagliare questo traguardo, siate sempre fieri di me; alla nonna Olga e al nonno
Cesare, per la serenità che avete sempre trasmesso e per essere sempre stati i nostri secondi
genitori.

A Giulia, per essere la spalla su cui posso sempre contare, per essere la persona con cui
voglio condividere la vita, e per essere la persona che amo.

Ai miei amici, quelli di sempre, che ci sono sempre stati: a Tinor, GhiGho, Jek, Ale,
Guazzo, Ste, Lori, Sofi, Alessia, Sonia, Marti, Sara, Giada, Dado, Galbio, Rubi, Fabio.

Ai miei amici di uni, per avermi accompagnato, aiutato e aver condiviso momenti che
non torneranno mai, ma che ricorderemo sempre; a Fra, Filop, Paolo, Fede, Serena, Simo,
Richi.

Grazie.
So che ogni cosa la devo alle palle quadre di mio padre e al suo sudore, al sorriso di mia madre e al viso di ogni nonno che proietta amore,
mio fratello piccolo ora più alto di me, nonna mi protegge sulla stella piu bella che c’è, ai miei amici esauriti.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Outline of the Thesis

	Background & Related Works
	Explainable AI
	Disentanglement
	Unsupervised Disentangled Representation Learning
	Autoencoders
	Variational Autoencoders
	Beta Variational Autoencoders
	ELBO Surgery
	Factor Variational Autoencoder

	Supervised Disentangled Representation Learning
	Multi Level VAE
	Group VAE

	Generative Adversarial Networks
	StyleGAN
	Adaptive Instance Normalization

	Semantic Facial Attribute Editing
	Encoder-Decoder methods
	Image to Image methods
	Photo-Guided methods

	Methods
	Problem Formulation
	Supervised VAE
	Settings
	Architecture
	Method

	E2Editor
	Architecture
	Method
	Loss Function
	Discussion
	Considerations

	Experiments & Results
	Experimental Setup
	Datasets
	DSprites
	CelebA

	Datasets generation for Disentanglement enhancement
	SDSprites
	DFaces

	Metrics
	Experiments
	DSprites
	SDSprites
	DFaces

	Conclusions & Future Works
	Bibliography
	List of Figures
	List of Tables
	Ringraziamenti

