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Abstract

According to the ESA’s Space Environment Report dated May 19,2022 the increasing
number of launches and permanence of spaces debris leads to a significant conjunction
risk in the most populated orbit. To reduce this risk different techniques to mitigate
the generation of debris or to enable their removal have been studied, but all of them are
based on feedback with an on-ground station. The focus of this work is to adopt a machine
learning model for instance segmentation that grants better accuracy and robustness than
the state-of-the-art-model previously used, Mask R-CNN. Models were compared using
different datasets that represent different possible scenarios during a real inspection mis-
sion. The simplicity in generating all the datasets is due to the new version of the JINS
software that not only allows the user to obtain scenes very close to the reality through
few choices to be made in the implemented GUI, but also to be able to describe the atti-
tude of the chaser and target, an option that was not available in the previous version of
the software. A fundamental aspect of the datasets used is that they not only contain the
greatest variety of possible scenarios but that data augmentation techniques were used to
increase the number of images the algorithm is trained on. After testing the models with
various combinations of datasets and learning rates, their performance were evaluated on
real images from the Intelsat 901 satellite.





Abstract in lingua italiana

Secondo il report del ESA sullo Space Environment del 19 Maggio 2022, l’aumento del
numero di lanci e di debris che continuano a rimanere in orbita sta portando a un aumento
del rischio di collisioni nelle orbite più popolate. Per ridurre il rischio diverse tecniche
per mitigare la generazione di debris o per la loro rimozione sono state studiate, ma tutte
quante sono basate su un feedback con una stazione a terra. Scopo di questo lavoro è quello
di adottare un modello di machine learning per instance segmentation che permette di
ottenere una migliore accuratezza e robustezza rispetto al modello stato dell’arte, Mask R-
CNN. I modelli vengono confrontati utilizzando diversi dataset che rappresentano diversi
scenari che possono verificarsi durante una missione di ispezione reale. La facilità nel
generare tutti i dataset si deve alla nuova verisone del software JINS che non solo permette
all’utente di ottenere scene molto simili alla realtà attraverso poche opzioni da scegliere
nell’interfaccia grafica implementata, ma è anche possibile descrivere l’attitude di chaser
e target, funzione che non era disponibile nella versione precedente del software. Aspetto
fondamentale dei dataset utilizzati ò che non solo contengono una grande varietà di scenari
possibili ma che tecniche di data augmentation sono state utilizzate per aumentare il
numero di immagini utilizzate nell’addestramento. Dopo diversi test eseguiti sui modelli
con diverse combinazioni di dataset e di learning rate, le loro performances sono state
valutate su immagini reali del satellite Intelsat 901.
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1| Introduction

1.1. Space situational awareness

Since the 4th of October 1957, with the Sputnik1’s launch, Earth orbit is exponentially
getting cluttered with human-made objects also known as Resident Space Objects (RSOs).
The space race resulted in an impressive number of launches, especially when it comes to
military reconnaissance and telecommunication satellite. Today, commercial and scientific
application dominate in space flights. All activities in spaces have left traces behind like
intermediate stages of launchers, fragmented and decommissioned satellites. To have
an overview of the global debris situation, the European Space Agency (ESA) has been
publishing a Space Enviroment Report since 2017. According to ESA’s latest update,
dated May 19, 2022 [9] the number of objects in orbit exceeds 32000 and the majority of
these are placed in Low Earth Orbit (LEO) and Geosynchronous Equatorial Orbit (GEO)
orbits.

Figure 1.1: Evolution of number of objects in different orbit classes.

On average, over the last 20 years, 11.7 non-deliberates fragmentations occur every year.
The increasing number of launches and in-orbit permanence of space debris leads to a
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significant conjunction risk in the most congested orbital regimes. Until the end of 2021,
there have been 636 confirmed on-orbit fragmentation events. If no arrangements are
made for the disposal of RSO, the number of collision will rise. Long term, this could lead
to "Kessler Syndorme" [6], situation where the number of RSO in space is so high that
collision between satellite and debris create a cascade effect, increasing the likelihood of
further collision. The cloud of debris resulting from the uncontrollable chain of collision
could have dramatic effects, such as making some classes of orbits inhospitable. The
current situation pushes space agencies and companies to develop all kinds of solutions
to remove debris or mitigate their generation.

Figure 1.2: Number of cumulative collisions in LEO in the simulated scenarios of long-
term evolution of the environment [10].

1.2. State of the art

To forestall such an accumulation buildup, space agencies have begun taking steps to mit-
igate the problem. Since 1979, NASA’s orbital debris program has been trying to reduce
the amount of orbital debris and designing equipment to track and remove debris already
in space. Initially, techniques to avoid debris formation consisted of simply burning up all
the fuel in a rocket stage to avoid explosions in orbit, or taking into account the orbital
evolution of debris already present to perform avoidance manoeuvres. With the passing
of time in addition to improved techniques for debris generation, several techniques for
debris disposal have been developed and depends on the type of object.
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Recently launched rocket bodies are either burned up using a "controlled re-entry" or
placed on orbits that naturally decay within 25 years. In case of satellites that are close
to the end of their operational life and still have control capabilities, their disposal occurs
on a graveyard orbit. Problems arises when dealing with non-cooperative objects, and
two major options have been studied to overcome this issue: track and propagate the tra-
jectory of each object [35] or design mission for the active removal or disposal of the space
debris [23]. The latter, recently, has gained a lot of attention from the space community.
Some of the latest techniques use satellites equipped with harpoons [8] or robotic arms to
capture debris techniques, lasers to change the shape of the orbit of the debris [37] or use
expanding foam increasing the debris’s surface to augment the drag [21]. Recently, debris
recycling missions have been devised, such as ESA’s OMAR mission. An overview on the
active debris removal (ADR) techniques developed during the years is shown in Fig. 1.3.

Figure 1.3: Recent trends on ADR methods.

Despite the high efficiency of the proposed techniques, almost none of them has been im-
plemented or proven effective in the operational environment. Some require high power
consumption or complex architecture, while others cannot yet be implemented due to
technological limitations. All these different techniques have one common point, the
knowledge of the attitude of the debris. This means that before the active removal an
inspection operation of the target has to be performed. To this aim, many inspection tra-
jectories have been studied [20] and their effectiveness has been confirmed. The selection
of the inspection orbit is not a trivial task, due to the non-cooperative and uncontrolled
nature of the debris, continuous changes in the trajectory are required to have a detailed
description of the scene.
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1.3. Proposed approach

Common techniques based on ground communication can not grant real-time decision
making which is a fundamental aspect for the inspection, thus, in order to improve the
performance of this kind of missions, performing on-board decision could lead to an opti-
mal solution. Since the aim of the inspection mission is a visual inspection, the satellite
is equipped with more cameras in order to better catch the scene.
In the proposed approach, the images taken from the cameras are fed inside an on-board
computer that uses algorithms and machine learning models (ML) to perform features
recognition or pose estimation of the target. An example of on-board control has been
tested on the International Space Station (ISS) by means of two Astrobees. Scenes from
the simulated experiment are shown in Fig. 1.4.

Figure 1.4: Scenes from a simulation of an inspection mission [7].

Computer vision algorithms not only perform analysis on the object but also give a score
on how much the results are reliable. The information obtained from the images could be
used to modify the inspection orbit to have better points of view of the observed RSO,
moreover this could be employed to achieve autonomous navigation as demonstrated in
[36]. The key point for this approach of autonomous guidance and navigation is the pre-
cision and accuracy of the feature detection algorithm. This topic was initially addressed
by [24] and the current thesis is a continuation of the previous work.
Computer vision models require large datasets of labeled images in order for the algo-
rithms to be able to efficiently detect the main features of the scene. Unfortunately, real
satellite images currently available are not enough to generate an effective dataset, more-
over, they all require manual labeling which is time-consuming. To overcome this problem
an improved version of the software JINS[24] has been used. The initial version of JINS
allows the scene of a possible inspection mission to be reproduced through the use of 3D
CAD models. A .json file containing the annotations is generated along with the image
of the scene seen from the chaser’s point of view. The software has been improved in
several aspects :
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• User interface

• Scenes more faithfully reflect reality

• Possibility to implement attitude of the target and chaser

The new version of JINS will be illustrated and described in detail later on. The ML model
is trained on the generated dataset, and it is then tested on an additional set of images,
also known as validation dataset, to evaluate its performance. Before proceeding to the
training phase, several ML models were selected and analyzed to see if their characteristics
could fit in an inspection mission scenario. Among those selected, PointRend was used
because it not only allows instance segmentation like the state-of-the-art model Mask R-
CNN but also ensures higher accuracy values. The effectiveness of the trained models has
been tested not only on synthetic images generated by JINS, but also on images coming
from a real mission, specifically the ones taken during the first docking operation of the
Mission Extension Vehicle-1 (MEV-1) to the Intelsat 901 (IS-901) spacecraft.

1.4. Structure of the thesis

This work is structured as follows. A general introduction to CNNs and their uses, along
with the various models considered and the architecture chosen is explained in Chapter 2,
while Chapter 3 provides an overview of how to describe relative motion between objects
in a simplified way and some of the most commonly used inspection maneuvers. Chapter 4
shows how JINS reconstructs the inspection scene, generates the datasets, and the changes
made to the software with respect to the previous version. The study of the performance
of the chosen model and the comparison with Mask R-CNN are exposed in Chapter 5,
analyzing its capabilities on both synthetically generated and real images. To conclude,
Chapter 6 sets out conclusions and some ideas for the future development of the work.
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for image processing

2.1. Introduction to Convolutional Neural Network

" I propose to consider the question: ’Can machines think?’ "

More than 70 years have passed since Alan Turing asked this question [1]. Since then.
there has been an exponential increase in computational capabilities and consequently
considerable advances in research fields, particularly in Machine Learning (ML). In 1959
Arthur Samuel, pioneer of artificial intelligence, defined the ML as “the field of study that
gives computers the ability to learn without explicitly being programmed ” [34]. The
traditional way of programming needs to create codes with lots of detailed instructions,
this is time-consuming and sometimes impossible, as for example in the case of recognizing
different objects. While humans can do this tasks easily, it is hard to translate it for a
computer. ML lets the computer learn to program itself through experience, and to do this
it requires a lot of labelled data. The use of ML covers different fields in modern society,
from banking security to advertisements and robotics. One of the main application that
in the last decade has gained lot of attention is the computer vision. Computer vision
is spreading all over the society from healthcare industry to agriculture and security. Its
goal is to give computers the ability to extract high level information from digital images
or videos, like objects or patterns, and to use this information for further analysis or
decision making. Like any other ML model also computer vision’s algorithms need to be
trained on lots of data in order to be able to analyze and process images or video.

2.1.1. Convolutional Neural Network

Computer vision is a field of ML that enables computers to derive meaningful information
from digital images or videos in the same way that humans do. Two technologies are re-
quired for computer vision algorithms to works: deep learning and Convolutional Neural
Network. Deep learning is a subfield of ML where the model structure is composed by
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three or more layers. Differently from the standard machine learning, where important
features of the scene are extracted manually to build a model used for object classifica-
tion, with deep learning the features are extracted automatically, as shown in Fig. 2.1. In
addition, deep learning performs "end-to-end learning," in which a model automatically
learns how to process raw data and perform a task, such as classification.

Figure 2.1: Comparison between a machine learning approach (left) and deep learning
(right).

Convolutional Neural Network (CNN) is a specific architecture of Artificial Neural Net-
work(ANN) proposed by Yann LeCun [19] and is primarily used in the field of pattern
recognition within images. ANNs are composed of a high number of interconnected com-
putational nodes, called neurons, in turn organized into independent layers that can be
mainly divided into: input layer, hidden layer and output layer. All the work is done by
the hidden layers which make decision based on the information coming from the previous
layer. One of the largest limitations of traditional forms of ANN is that each neuron in
a particular layer is fully connected to all the neurons in its adjoining layers, this means
that a lot of computational effort is required. This problem is overcome by CNNs which
use parameter sharing. All neurons in a particular layer share weights which makes the
whole system less computationally intense. Goal of CNN is to transform the image in
a way that it would be easier to process without losing features, leading to an accurate
prediction.
There are four main components in a CNN :

• Convolution layers : locally extract features from the input image, so that smaller
images are extracted from the original one. On the input image N filters, called
kernels, are applied, producing N filtered images, known as feature map. Each filter
is meant to highlight certain features of the image. The feature map shrinks every
time a convolutional operation is performed. Pixels at the corners and edges are
used much less than those in the middle so information coming from the edges is
not preserved as the one from the middle. To avoid this problem, padding [16] is
performed by adding layers of zeros at the border.
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• Rectified Linear Unit (ReLU) Activation Function: the images are by their nature
full of nonlinearities, the role of the ReLU layer is to introduce non-linearity in
the neural model obtained by convolution. This layer is very useful in case there
are multiple objects on the image, because boundaries between those objects might
not be linear in nature. Without the presence of the ReLU the model becomes a
traditional linear classifier so it could not be able to perform image classification
or object detection. The ReLU acivation function is a simple piece-wise function
represented as :

f(x) =

0 x < 0

x x ≥ 0

There are lots of other activation functions such as the sigmoid function or the
hyperbolic tangent function.

• Pooling layer : pooling operations use a 2D moving filter whose purpose is to de-
crease the size of feature maps while retaining only the most important information.
Reducing the dimension of the feature map also reduces the trainable parameters
leading to a faster training of the network. Different types of pooling exist and their
use depends on what information have to be preserved. An example of pooling is
the max-pooling, shown in Fig. 2.2, that selects the maximum element within the
window of the feature map covered by the filter.

Figure 2.2: Max pooling example.

Other types of pooling are min-pooling or average-pooling. Pooling thus allows
the original image to be represented in a smaller size, enabling a reduction in the
computing power required and the risk of overfitting.

• Fully Connected Layers (FCL): after convolutions and pooling, the initial image,
provided in matrix form, is transformed into a vector. As a final step, this vector
is passed through a Multi-Layer Percetron (MLP) to obtain the output. MLP, or
FCL, are those layers where all the neurons from one layer are connected to all the
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neurons of the next one. Along with Convolution layers, it is the second most time
consuming layer.

Figure 2.3: CNN architecture.

In order for the CNN to make predictions it needs to be trained. The techniques for train-
ing a network depend on the task it will have to perform. The main training methods
are the supervised and the unsupervised approach. The main difference between the two
methods is that the supervised requires labeled input and output, while the unsupervised
works on unlabeled data. Supervised learning emphasizes the relationships between input
and output through labels, which is why it is mainly used in computer vision. Unsuper-
vised allows the recognition of patterns or trends within a sequence of data, which is why
these kinds of models are mostly used for data analysis or stock predictions. The training
process of a CNN can be divided into four steps:

• Forward phase: for the first iteration the network weights are initialized with random
values such that the prediction on all classes has the same value.

• Loss function: it reduces all positive and negative aspects of the model to a single
scalar value. To do this, it is necessary to select a loss function,L ,that will faithfully
represent the model we want to obtain[15].

• Backward phase: the output is back-propagated through the network to evaluate
the difference between the target and the computed output[14].

• Weight update: is estimated how much a given weight, wi, contributed to the cost
function, L, by evaluating dL

dwi
. The weights are updated using a simple relation:

wi,new = wi,old − η
dL

dwi,old

(2.1)

where η is the learning rate and is one of the most important hyperparameter.
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2.2. State of the art of computer vision model

Before describing the different algorithms considered in this paper, it is appropriate to
introduce the most common tasks for which computer vision algorithms are used. They
are listed below and depicted in Fig. 2.4:

• Image classification: uses algorithms to identify which categories of objects are
present within an image, among those that the network has been trained to recog-
nize.

• Object detection: enables the identification of objects of certain defined classes.
Object detection models receive an image as input and return bounding boxes, and
their respective labels, on the detected objects.

• Semantic segmentation: allows each pixel in the image to be associated with a
label. Semantic segmentation, also know as panoptic segmentation, can be seen as
a classification of the image at the pixel level but it is not capable of distinguishing
between two objects of the same class.

• Instance segmentation: enables the detection, segmentation, and classification of
every individual object in an image. Can be thought as the combination of object
detection and semantic segmentation.

Figure 2.4: Tasks performed by computer vision algorithms.

Although image classification may seem like a trivial and less useful task when compared
the other methods, it is the most important as it is the basis for all the other algorithms.
Given an image, it is necessary to identify all objects, a difficult task since the number of
objects in the scene is not known in advance. For this reason, a standard CNN cannot be
used to solve this problem because the length of the output layer is variable. An ingenuous
approach to solve this problem would be to take several regions of interest from the image
and use a CNN to classify the presence of the object within that region. The issue with
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this kind of approach is that the objects might have different spatial locations within the
scene and different aspect ratios. This leads to having to select a huge number of regions
and would require a lot of computational power, for this reason ad hoc methods have been
devised.

2.2.1. R-CNN, Fast R-CNN and Faster R-CNN

To overcome the problem of selecting a large number of region, in 2014, Ross Girshick et
al. [32] proposed a fundamental concept for all modern object detection models: combine
region proposals with CNNs. This method is called Region with CNN feature (R-CNN)
and it is based on three main steps :

• The regions in the image where the objects can be found are determined with
selective search algorithm

• Once the regions are determined, each one is given as input to a CNN model that
acts as a features extractor

• Extracted features are fed into an Support Vector Machine (SVM)[33] to classify
the presence of the object within the proposed candidate region.

Despite the advantages introduced by the R-CNN architecture, shown in Fig. 2.5, over a
standard CNN, it has several disadvantages. The main disadvantage lies in the fact that
it takes about 47 seconds to perform the inference of a single image, this does not allow
real-time application. Main reason of this high inference time is the search algorithm
which is an algorithm that is not trained so it may select proposed areas that are not
perfectly suitable. Also it must be considered that in the training phase a huge amount
of memory is needed since for each image about 2000 regions are generated.

Figure 2.5: R-CNN architecture.

The same Girshick, realizing the large amount of time and memory required by R-CNN,
tried to modify its architecture to achieve better performance. He thought that the reason
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behind the high inference time was that 2000 regions were generated for image and then
each region was fed to a CNN. So he came up with the idea to use the CNN only once on
the initial image and then apply the zone search algorithm. This new architecture, shown
in Fig. 2.6, has been called Fast R-CNN [11], and is based on three steps :

• Proposed regions are generated by the selective search algorithm and, together with
the input image, are fed into the CNN that generates convolutional feature map

• A Region of Interest (RoI) pooling layer is applied to each region that reshape them
into a fixed size so that they can be fed into a fully connected layer

• The RoI feature vector is then passed into a Softmax classifier and a Bbox regression
for classification of region proposal and determine the bounding box of the object
detected

Figure 2.6: Fast R-CNN architecture

By changing the type of architecture, the inference time has been made much faster, from
47 s to 2 s. But still, it cannot be exploited for real-time applications. To reduce the
inference time still further, the part devoted to selecting regions of interest needs to be
modified. In 2015, Ross Girshick himself along with other colleagues found the solution
to this problem by going on to develop Faster R-CNN[31]. Instead of using external
selective search another algorithm that lets the network learn region proposals is used,
called Region Proposal Network (RPN). Faster R-CNN consists of two networks, RPN
and R-CNN, each of which is an independent network and can be trained either jointly
or separately. It works with the following operational flow :

• The image is passed through CNN to generate the feature maps

• Feature maps are passed inside RPN which produces anchor boxes

• Since the anchor boxes have different shapes and sizes a pooling layer is applied to
reshape them to a fixed size

• The reshaped proposed region are fed through a fully connected layer which has a
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Softmax layer and a linear regression layer. Classification and representation of the
bounding boxes is output.

Thanks to the described architecture, shown in Fig. 2.7, inference times reach 0.2 seconds
allowing Faster R-CNN to be used for real-time applications. A disadvantage of Faster
R-CNN is that the RPN is trained by extracting all anchors from a single image. Because
all the boxes in a single image can be correlated (i.e., similar features), the network can
take time to reach convergence.

Figure 2.7: Faster R-CNN architecture.

2.2.2. You Only Look Once (YOLO)

Until 2014, R-CNN models were the most popular for object detection. Although the R-
CNN family models were accurate, they were relatively slow because it was a multi-step
process. In 2015 Joseph Redmon et al. came up with a new model called ’You Only Look
Once’ (YOLO)[30]. Unlike R-CNN methods, YOLO is able to perform object detection
in only one step thus decreasing the inference time. The image is divided into a N × N
grid of cells, each grid cell predicts a ceratain number of bounding boxes as well as C
class probabilities. Each object in the image has a cell that is responsible for predicting
that object. Nearby high value probability grids are grouped together and considered
as a single object. Low value predictions are rejected using a technique called Non Max
Suppression (NMS). The very simple architecture, shown in Fig. 2.8, allows the model to
process frames at the rate of 45 fps to 150 fps depending on the dimension of the CNN.

Despite its speed of inference YOLO has the problem of not being able to distinguish group
of small objects because for each grid cell only one object can be detected. To increase
accuracy a new version, YOLO v2 [28], has been developed. Several improvements have
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Figure 2.8: YOLOv1 architecture.

been made on the architecture but the most significant are the introduction of a batch
normalization at each convolution layer, high resolution training of the classifier and also
the problem where each grid cell could only be assigned one object is solved by using
anchor boxes. These changes made YOLOv2 competitive in terms of accuracy with the
models present at that time. As time went on, many algorithms were developed achieving
higher and higher performances, among them YOLO also achieved improvements that led
it to become YOLOv3 [29]. The architecture is inspired by other popular architectures
such as ResNet and Feature Pyramid Network (FPN) allowing for higher accuracy values
but working at slightly lower speeds than preceding versions. After the release of YOLOv3,
Joseph Redmon took a break from computer vision research but that did not stop new
versions of YOLO from being developed. The goal of all new versions is to increase
the accuracy and to reduce the computational and memory cost required. In July 2022
YOLOv7 [38] was released, despite the more complex architecture than the first version
it manages to achieve significantly higher accuracy.

2.2.3. Mask R-CNN

Faster R-CNN and YOLO are able to detect objects from the input image with such low
inference times that they can be used for real-time applications. However, there is one
task that cannot be performed by these models, which is to obtain information about the
shape of the object. This feature is essential in the case of On-Orbit Services and can
be achieved through instance segmentation models. In 2017 He et al., from the Facebook
AI Research (FAIR) group, developed Mask R-CNN[13] which has become the state of
the art model for instance segmentation and also the one used by Faraco et al. [24].
In Mask R-CNN a fully convolutional network is added on the top of the CNN features
of a Faster R-CNN to generate a mask segmentation output. This is in parallel with
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the classification and the bounding box regressor network of the Faster R-CNN model.
The mask generated is a binary mask in form of a matrix containing 1 when the pixel is
part of the mask and 0 elsewhere. The architecture of Mask R-CNN, shown in Fig. 2.9,
is composed by a backbone, a Region Proposal Network (RPN), a Region of Interest
alignment layer (RoIAlign), a bounding-box object detection head and a mask generation
head.

Figure 2.9: Mask R-CNN architecture.

The image is passed through a first CNN which is the main features extractor of the
model. Common choices for backbone are ResNet with or without Feature Pyramid
Networks (FPN). Once the feature map are obtained they are fed into the RPN that
contains both classifier and regressor. The classifier has dimension 1×1×9×2, 9 due to
the number of the anchor boxes used while 2 because is a binary classifier (1 is the object
is present 0 otherwise). The regressor is responsible for the generation of the bounding
box. Two are the inputs to the ROI layer, the regions of interest generated by the RPN
and the feature maps from the first CNN. The main problem is that the input features
have different scales and aspect ratio, this can be solved by applying a ROI pooling layer.
In normal pooling there can be a mismatch between the input and output dimensions, for
example considering a 5x7 feature that needs to be tuned into a 3x3 , an equal division of
the map is not possible. For this reason a new version of ROI, called ROI align, has been
introduced. After obtaining a map of the individual RoI features, the object category and
a bounding-box are predicted. This part is a fully connected layer that maps the feature
vectors to the final n classes and 4n coordinates of the bounding box. Simultaneously,
the feature vector is fed into the mask branch, which consists of two convolution layers,
to generate the mask for each ROI.
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RoI Align

RoI Pooling, the technique used in Faster R-CNN, is prone to data loss and that is
not allowed since, in order to perform instance segmentation,it is necessary to have as
much information as possible. This happens when pooling is applied on the region of
interest, especially max-pooling. In this method the stride is quantized. Pooling is used
for downsampling a feature and to introduce minor distortion such as rotation, such that
even if the object fed into the model is rotated it is still capable of recognizing it, i.e.
pooling enables a model to become invariant to such distortion. As an example, consider
a region of interest of dimension N×N that needs to be mapped to a space M×M where
M<N. The required stride S is obtained as M/N. Assuming that C is not an integer
number, RoI pooling quantize this value approximating it to the nearest integer. This
approximation leads to loss of information and misalignment due to the fact that the stride
can not cover entirely the input map. To address this problem RoI Align is used, where
no quantization take place. Considering the previous case, with RoI Align, the stride used
is C without approximation however this value is meaningless. Each cell is divided into
a 2×2 bin, and each of these sub-cells is pulled through bi-linear interpolation leading
to four values for cell and the final cell value is computed by either an average or the
maximum over the four sub-values. By addressing the loss and misalignment problems of
RoI Pooling, the new RoI Align leads to improved results, allowing us to preserve spatial
pixel to pixel alignment for every region of interest and no information is lost as there is
no quantization.

2.3. PointRend

Currently, convolutional neural network are the main techniques for image segmentation.
CNNs operate with regular grid of features and therefore the computation is allocated
uniformly across different spatial positions. Output resolution of a CNNs is a trade off
between computational cost and the amount of detail it can capture. Different examples
of resolution are shown in Fig. 2.10.

A 7×7 output is very efficient to compute but the mask has almost no details, on the
other hand a high resolution output captures fine details. However the computational and
memory costs might be too high and modern methods balance computation and quality
by selecting some resolution in between. Most of the state-of-the-art instant segmentation
techniques, such as Mask R-CNN, select 28×28 output resolution. Sometimes different
areas of the output mask might require different levels of detail. A regular grid will
unnecessarily oversample smooth areas while undersample object boundaries.
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Figure 2.10: Mask resolution.

The result is overcomputation in the smooth regions and blurred contours. In other
fields like 3D recognition and computer graphics more efficient representation than regular
grids are commonly used. Inspired by them in 2020 the Facebook AI Research proposed
PointRend[17]. The main idea is to view image segmentation as a rendering problem and
to adapt classical ideas from computer graphics to efficiently obtain high quality label
map. It is based on an implicit function approach, a technique used for rendering in
computer graphics to predict a set of sample points at which to compute the label. The
PointRend approach starts with a coarse prediction which can be computed efficiently,
then it gradually upsamples it using bilinear interpolation, thus refining the prediction
only for a subset of points. In few steps a high quality mask can be obtained by refining it
only for a small set of points. The overall PointRend architecture and functioning, shown
in Fig. 2.11, can be described in :

1. A CNN backbone produces a grid feature representation from an input image

2. For each bounding box detection a small efficient head makes a course prediction

3. Using coarse prediction, a set of points can be sampled, these will need to be refined
later. For these points, corresponding features are extracted from the backbones
and coarse prediction using bilinear interpolation.

4. For each sampled point an MLP is independently applied to make a refined predic-
tion.



2| Convolutional Neural Network for image processing 19

Figure 2.11: PointRend architecture.

2.3.1. Point selection

The core of PointRend is the selection of points in the image in a flexible and adaptive
manner. Intuitively, these points should be denser near high-frequency region, such as
object boundaries, analogous to the anti-aliasing problem in ray tracing. The way points
are selected differs depending on whether one is in the inference or training phase.

Inference phase

The strategy adopted for selecting points during the inference is inspired by the adaptive
subdivision, a technique used in computer graphics. The method allows to render high
resolutions images efficiently by computing only at locations where there is a high chance
that the value is significantly different from its neighbors, leading to a good detection
of the edges. For each region of interest, the output mask is iteratively generated in a
coarse-to-fine fashion. The low resolution level prediction is done using a standard seg-
mentation head. In each iteration, PointRend performs an upsample of its previously
predicted segmentation using bilinear interpolation, then the first N points, between the
most uncertain ones, are selected on the low resolution grid. Then the point-wise feature
representation, constructed combining the fine-grained and coarse prediction features, is
computed for each point and their labels are predicted.
In order to obtain a fine segmentation rendering, a feature vector is extracted at each
sampled point from CNN feature maps. A point is a real-value 2D coordinate, so bilinear
interpolation is performed on the feature maps to compute the feature vector. Features
can be extracted from a single feature map or from multiple feature maps and concate-
nated by a technique called Hypercolumn method [12]. The fine-grained features allow to
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obtain better details but have two drawbacks. First, they do not contain region-specific
information. Therefore, during instance segmentation, in the case where a point falls
inside two different bounding boxes, additional information on the regions is needed for
a good detection of objects’ boundaries. Second, accordingly to the feature maps used
for the high-resolution features, they may contain low-level information so feature sources
with more information can be helpful. By design, the coarse resolution features provide
more globalized information. Knowing these drawbacks, the low-resolution feature type is
a coarse segmentation prediction from the network like the outputs made by the already
existing architectures, 7×7 resolution mask head in case of Mask R-CNN.
Once the point-wise feature representations at each selected point are obtained, PointRend
uses a MLP to perform point-wise segmentation predictions. From a computational point
of view, if an output resolution of M×M pixels wants to be obtained starting from a
resolution of M0×M0 the prediction point required are no more than N = log2(

M
M0

), and
this is much smaller than considering all the points in the grid, allowing PointRend to
obtain high-resolution with less computational effort.

Training phase

During inference, the points are selected with a subdivision strategy. If the same technique
were used for the training phase, sequential steps would be introduced, which during the
backpropagation phase would cause problems such as vanishing or exploding gradient.
Therefore a non-iterative method based on random sampling is adopted for the training
phase. This method selects N points on the map used for training by focusing on regions
with greater uncertainty, but still maintaining uniform coverage. The selection is based
on three principles :

• Over-generation: instead of considering only N points, kN points (with k>1) are
taken from a uniform distribution.

• Importance sampling : more attention is given to the points on the low resolution
map that have uncertainties, kN point are interpolated and an estimate of the
uncertainty is performed. Between the kN point, the most uncertain βN points are
selected (β ∈ [0, 1]).

• Coverage: from a uniform distribution the remaining (1-β)N points are taken.

An example of the points selection with different values of the parameters k and β is shown
in Fig. 2.12. The new architecture proposed by PointRend outperforms the standard Mask
R-CNN with comparable computational cost. While Mask R-CNN outputs mask with
resolution 28×28, PointRend with the same of memory and computational effort predicts
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Figure 2.12: Point selection training phase.

mask of resolution 224×224. This increase in resolution allows to efficiently segment the
contour of the objects and also sharp boundaries between objects, as it can be noticed
in Fig. 2.13. In addition, PointRend can be applied as a plug-and-play on top of any
CNN-based image segmentation method.

Figure 2.13: Point selection training phase.

An example of Pointrend’s improvement over Mask R-CNN is shown in Fig. 2.14.

Figure 2.14: Comparison between Mask R-CNN with standard head (left) and Mask
R-CNN with PointRend as head (right). Image credit

https://www.zhuanzhi.ai/document/315794dc9c129c6489750954042b51e3
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satellite inspection

On January 21, 2022, United Launch Alliance (ULA) carried out an Atlas V launch of
Geosynchronous Space Situational Awareness Program (GSSAP) satellites for a mission
that injected the satellites into a near-geostationary orbit. GSSAP is a U.S. Space Force
project whose purpose is to inspect spacecraft operating in geostationary orbit using
small satellites. In order for the satellite, called chaser, to inspect the RSO, the target,
there must be relative motion between the two. The relative motion between two objects
is described by complex equations that, in general, do not have closed-form solutions.
In the case of a real mission, not only the relative motion between the two objects is
necessary, but the chaser must also keep the target in its field of view (FOV) through a
correct attitude control. As a first analysis in this work only chaser-target relative motion
will be considered, assuming that the target is always in the center of the chaser’s FOV.
A simple illustration of the scene both inertial, or Earth Centered Inertial (ECI), and
relative frame is shown in Fig. 3.1 .

Figure 3.1: Representation of the reference frames considered.
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3.1. Clohessy-Wiltshire equations

The reference frame used to describe the scene is the Local Vertical Local Horizontal
(LVLH) coordinate frame. It is described by three versors {êx, êy, êz} centered on the
target. The êz vector is directed along the radial direction from the Earth to the target.
This axis can be linked to the difference in altitude between the chaser and the target,
it is referred as the altitude component. The êy axis is orthogonal to the target’s orbital
plane, it describes an out-of-plane motion and is known as cross-track component. The êz

is the one that completes the reference frame following the right hand rule, it represents
how far the chaser is from the target and is therefore why is called downrange component.
Each axis can be derived mathematically just by knowing the position and velocity vector
of the target in inertial reference frame [5].

Altitude êz =
rtarget
|rtarget|

Cross-Track êy =
ωtarget

|ωtarget|

Downrange êx = êy × êz

(3.1a)

(3.1b)

(3.1c)

where ωtarget is the target’s angular velocity and can be computed as :

ωtarget =
rtarget × vtarget

|rtarget|2
(3.2)

The position vector of the chaser in the LVLH frame can be expressed as :

R = xêx + yêy + zêz (3.3)

The advantage in using the LVLH frame to describe relative chaser-target motion is that
the dimensions of the relative orbit are easily represented and is more meaningful than
its representation in inertial frame. The inertial position of the chaser in the inertial
frame can be evaluated from the inertial position of the target and the relative position
chaser-target :

rchaser = rtarget +R = (rtarget + z)êz + yêy + xêx (3.4)

By making two simplifying assumptions on target and chaser, their relative motion can be
described by a simplified set of equations. The first assumption is to consider the target
on a circular orbit, this means that the angular rate is constant and depending on the
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radial distance. Second, the chaser and the target are close to each other such that :

|R| ≪ |rtarget| (3.5)

Applying these two conditions a set of simplified equations, called the Clohessy-Wiltshire
equations, can be used for describing the relative motion [3].

Downrange : ax = ẍ+ 2ωż

Cross-Track : ay = ÿ + ω2y

Altitude : az = z̈ − 2ωẋ− 3ω2z

(3.6a)

(3.6b)

(3.6c)

The terms ax, ay, az represent the external accelerations. Assuming spherical Earth, cir-
cular target orbit and neglect the disturbances a closed form solution can be determined
:

x(t) =

(
6z0 +

4ẋ0

ω

)
sin (ωt) +

2ż0
ω

cos (ωt)− (6ωz0 + 3ẋ0)t+

(
x0 −

2ż0
ω

)
y(t) = y0 cos (ωt) +

ẏ0
ω

sin (ωt)

z(t) =
ż0
ω

sin (ωt)−
(
3z0 +

2ẋ0

ω

)
cos (ωt) +

(
4z0 +

2ẋ0

ω

) (3.7)

The assumption of neglecting external disturbances may be acceptable for a first approx-
imation, but in the later stages of design they must be considered.

3.2. Repeating inspection orbit

The number of inspection orbits that can be achieved is infinite, one of the key parameters
for choosing the orbit is the fuel consumption that is desired to be reduced as much as
possible. A desirable situation would be the one where the relative motion between chaser
and target is repeated over time and bounded. This type of orbit can be achieved without
fuel consumption by observing the nature of Eq. (3.7), particularly out-of-plane, y(t),
and radial motion, z(t). This is not valid for the cross-track component which includes a
component that increases linearly over time:

(6ωz0 + 3ẋ0) t (3.8)

The condition of repetitive relative motion can be obtained naturally when both chaser
and target have the same orbital period. Having the same period means that after an
orbit they will return to the starting point while maintaining the relative position. From
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the definition of orbital period it can be observed that it is a function of the semi-major
axis, a, of the orbit :

T = 2π

√
a3

µ
(3.9)

The semi-major axis also defined the specific orbital energy:

ϵ = − µ

2a
=

v2

2
− µ

r
(3.10)

Therefore several inspection orbits can be generated from an initial situation where chaser
and target are on the same orbit, but to maintain periodicity the maneuvers must not
change the orbital energy of the chaser. Considering the scenario where both chaser and
target are on the same orbit as in Fig. 3.2, performing a manoeuvre that changes only the
direction of the velocity but not its magnitude causes the chaser to enter into a periodic
relative motion with respect to the target.

Figure 3.2: Repeating relative motion manoeuvre.

A∆v that only has components along the radial or the cross-track direction, so perpen-
dicular to the velocity vector, rotates the latter without changing its magnitude. If the
manoeuvre presents a component along the downrange direction the velocity magnitude
changes, hence a variation in the orbital energy is caused, so the chaser enters in a non-
repeating inspection orbit.

Football orbits

Consider the initial scenario described in Fig. 3.2 where the chaser and the target are
on the same initial circular orbit. If a ∆v with only a radial component is applied,
as a first approximation it can be said that only its direction has changed but not its
magnitude. This causes the chaser to enter a relative periodic orbit with respect to the
target. The approximation considered regarding the maneuver is acceptable because the
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impulse intensity required by an inspection mission is about three orders of magnitude
less than the speed at which a satellite travels. This maneuver causes the chaser to move
to an orbit with the same energy level but a different shape. The relative motion that is
generated goes to describe an ellipse, which is why this type of inspection orbit is called
a football orbit. Assuming the chaser ahead the target and the ∆v directed along the
positive direction of êz, the circular orbit become slightly elliptic, as shown in Fig. 3.3

Figure 3.3: Football orbit in ECI and LVLH coordinate frame.

According to the vis-viva equation [5], an increase in the distance causes a decrease in the
velocity.

v2 = µ

(
2

r
− 1

a

)
(3.11)

The effect is to have an alternate upward and drift-back movement. As the chaser ap-
proaches the apogee it gradually slows down. Then, its radial distance starts decreasing
causing the chaser to accelerate. Since the velocity change due to the impulse doesn’t
modify the semi-major axis of the chaser, its orbital period remains the same causing it
to return to the same initial condition after a revolution. Considering the Eq. (3.7) a
relationship between the semi-major axis and the ∆v applied to enter the relative motion
can be derived. Assume that the chaser is in front of the target of a certain distance x0

in the downrange direction, it implies that the initial relative altitude is z0 = 0. To enter
into a football relative orbit the ∆v must be only along the radial direction, which means
that no downward component should be present, ẋ0 = 0. Referring to the downrange
component, x(t), from Eq. (3.7) and imposing the previous condition:

x(t) =
2ż0
ω

[cos(ωt)− 1] + x0 (3.12)
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The chaser after a quarter of the orbital period reaches the maximum value of the relative
altitude. Recalling that ω = 2π

T
, the previous expression evaluated at t = T

4
becomes:

x

(
T

4

)
= −2ż0

ω
+ x0 = 0 (3.13)

Since the pulse is purely in the radial direction ∆v = ż0 the semi-major axis can be simply
evaluated :

aFootball = 2
∆v

ω
(3.14)

Repeating the same procedure on the altitude component, the semi-minor axis of the
football orbit can be determined:

bFootball =
∆v

ω
(3.15)

It can be easily noticed that the football orbit has a 2:1 ratio of the semi-major axis to
the semi-minor axis.

Oscillating orbits

Consider again the initial scene illustrated in Fig. 3.2, but this time the ∆v is applied
only along the cross-track direction. A pulse in that direction will cause the chaser to
change its inclination instead the eccentricity as before. This variation of inclination lets
the chaser experience a bounded up and down relative motion with respect to the target,
that is why this type of orbit is called oscillating orbit. An example is shown in Fig. 3.4.

Figure 3.4: Oscillating orbit in ECI and LVLH coordinate frame.

It can be noticed that the equation that describes the cross-track component is decoupled
from the other components , therefore only that component is considered from Eq. (3.7).
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Initially both chaser and target are on the same orbit so y0 = 0, and since the impulse
is only on the cross-track direction ∆v = ẏ0 the equation that describes the cross-track
motion becomes:

y(t) =
ẏ0
ω
sin(ωt) (3.16)

From Eq. (3.16) can be derived the amount of fuel required to travel ∆y meters out-of-
plane with respect to the target :

∆v = ω∆y (3.17)

Inclined Football orbits

A combination of the two orbits described above allows the generation of an additional
periodic inspection orbit called inclined football orbit, shown in Fig. 3.5 . This can be
easily achieved by applying an impulse with both radial and cross-track components.
Unlike the derivation for the football orbit, the initial velocity component along the cross-
track direction, ẏ0, is nonzero. Starting from Eq. (3.7) they can be simplified in:

x(t) = x0 +
2ż0
ω

[cos(ωt)− 1]

y(t) =
ẏ0
ω
sin(ωt)

z(t) =
ż0
ω
sin(ωt)

(3.18)

Figure 3.5: Inclined Football orbit in LVLH coordinate frame.
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Rotating Football orbits

The methods previously described allow the target to be observed by having the chaser
move only in one plane. Some missions may require observing the target from different
points of view to obtain a greater amount of information. The football orbit is the most
interesting repeating relative orbit for an inspection mission. By performing a plane
change maneuver, it is possible to rotate the orbit, obtaining new views and thus greater
knowledge of the target as illustrated in Fig. 3.6.

Figure 3.6: Rotating football orbit in LVLH coordinate frame.

This kind of approach allows the chaser to cover all the possible sides of the target, with
a relatively simple manoeuvre. This condition occurs when the cross-track maneuver is
performed at either the top or bottom of the football orbit. It can be noticed that the
football orbit rotates around the altitude direction. Rotation can also occur around the
downrange axis, but the passive collision avoidance capability is jeopardized[39]. For this
type of inspection two types of impulses need to be performed: an entrance ∆v that
allows the chaser to enter into a football orbit and an out-of-plane maneuver to rotate the
football.
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generator

As mentioned in chapter 2, Machine Learning models need data to be trained. Given the
complexity of the task of recognizing objects, the dataset must not only contain as many
examples as possible, but must also be robust to different conditions of the analyzed scene.
An image classification model must be invariant to the presence of different variations;
some of them defined by [2] are shown in Fig. 4.1:

• Viewpoint variation: an object can be oriented in many ways with respect to the
camera.

• Scale variation: the same class presents objects with different scales from each other.

• Deformation: many objects of interest are not rigid bodies and can be deformed in
extreme ways.

• Occlusion: the displayed scene may have occlusions making only certain areas of
the object of interest visible.

• Illumination conditions : different lighting levels can make some parts of the scene
difficult to be distinguished.

• Background clutter : the object of interest may have physical characteristics that
make it difficult to identify.

• Intra-class variation: all objects in a class are not always associated with a single
shape, as in our case the solar panels or the main body of the satellite

The number of images a dataset should contain is a topic that has always divided people in
the computer vision field. Some people say that 100 images per class are sufficient, while
others argue that the minimum number of images should exceed 1000 images per class.
Indeed, the greater the number of images used during training, the higher the accuracy of
the predictions will be, but this involves significant effort in generating the dataset as each
image must be manually annotated. To avoid this time-consuming task several datasets
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Figure 4.1: Different example of image variations. Image credit.

have been made public, they contain from 1200 to 24k annotated images. These types of
datasets have scenes of objects that are used in everyday life (COCO, PASCAL VOC) or
street scenes to train autonomous driving algorithms (Cityscape). In our case, there are
no already annotated datasets for RSOs, so it needs to be generated from scratch. The
only dataset concerning satellite components is the one proposed by Zhao et al. [42], it
contains images taken from the web (both realistic and fictitious scenes) on which only
the solar panels have been labeled.
Using this type of approach to construct the dataset, in addition of being time-consuming,
does not allow to fulfill the points described above. To overcome these types of problems,
Jins Is Not a Simulator (JINS) software was developed [24]. Purpose of the software is
to automatically generate annotated images by using a computer graphics software. The
process of generating data through programming is called Synthetic Data Generation, it
allows to faithfully represent a variety of scenes and increasing the accuracy of the model
since the annotations are more precise than the manual ones. The 3D elements required
to reconstruct accurately an inspection scenario are: the target satellite model, the one
of the Earth, a camera that captures the scene and a light to simulate the Sun.
The scene is built using special 3D modeling software called Blender1. Blender is a free
open-source program provided by the Blender Foundation, it is embedded with many
features that allow it to be on the same level as other paid programs used in computer
graphic. It is mainly used for modeling and animation of 3D objects, but it is also used for
special effects, video games, or realistic scene generation. Among all the functions offered
the most interesting one is the capability to automate the scene generation through python
scripting. To generate the scene, Blender’s Scritping environment, shown in Fig. 4.2, can
be used directly to run Python’s code that allows to place each model at the desired
location and assign property to the scenario like the light intensity, type, direction and

1Official website : https://www.blender.org/

https://cs231n.github.io/assets/challenges.jpeg
https://www.blender.org/
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to add constraints to the objects. The possibility to employ Blender’s API for Python
scripting not only enables the automatization of the image generation but also to code
specialized tools or functions not present in Blender. A factor to take into account is the
quality of the rendered image, which is greatly influenced by the rendering mode used.
Blender provides two main rendering engines : Eevee and Cycles. Eevee is a real-time
rendering engine, so the render is basically instantaneous and it is often used as a preview
engine to check the lights and the materials in the scene while still modeling. Since it is
a real-time rendering the quality is not that high. Cycles is a physically based rendering
engine that tries to reproduce as faithfully as possible reflections and shadows by means
of a ray-tracing model. For this work, a cycle-render engine was used as it is necessary to
have images as close as possible to reality to validate the model in case of a real scenario.
To get rendering speeds comparable to Eevee, it is possible to take advantage of the
Graphical Processing Units (GPU) since their architecture is better suited for this kind of
tasks. Another reason to use Cycles is that it is the only rendering engine that supports
the Compositor mode needed for mask generations.

Figure 4.2: Example of Blender’s GUI.

Blender allows the user to insert his own CAD model of the satellite into a scene, a
possibility that was leveraged in this work. The models used were not designed from
scratch as that is not the purpose of this paper, but models made available on the web
are employed. Their number is limited to 6, to have a fair comparison with [24], and are
showed in Fig. 4.3:
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Model 1 Model 2

Model 3 Model 4

Model 5 Model 6

Figure 4.3: Spacecraft models used in the work.
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The initial CAD model consists of many parts, but thanks to the Join tool provided by
Blender it is possible to merge all the components into 3 macro-categories that are of
most interest for an inspection mission. The class of the components can be assigned by
creating a custom property identified by the word ’label ’ and with the value set as a string
of the corresponding class. The categories used for the study of RSOs are body, antenna
and solar panel. An additional category, the thrusters, could have been considered, but
does not appear to be of particular interest for an inspection mission. Label assignment
can be done either manually or through a special plug-in2, in our case few models and few
classes are used so they were assigned by hand. As mentioned before, the advantage of
using JINS is being able to make realistic images already annotated. Several parameters
are set before proceeding to the generation of the images:

• Resolution in pixel of the images, 700× 700

• Render engine : "Cycles"

• Label names : [ antenna , body , solarPanel ]

• Focal length of the camera and other Blender’s parameters like the minimum and
maximum distance captured by the camera.

4.1. JINSv2

In the initial version of JINS, image generation was based on random lights and cameras
generation, the presence of the Earth on the background was decided by the user, and
the satellite’s attitude was not considered. Also, to generate the scene using a different
satellite model, one had to explicitly select it in the command line when the software
was executed. Several features have been implemented in JINSv2 aimed at making the
software user-friendly and capable of generating more realistic scenes.

4.1.1. User Interface

The first choice to make the software usable by others was to generate a simple but effective
interface that would allow the user to be able to select which of JINSv2’s functions to
perform. Since the software is completely written in the Python3 programming language,
it was possible to use several libraries compatible with the Windows command line. An
example of the initial user interface is shown in Fig. 4.4.

2Such as the one available at https://github.com/csun/syntrain/tree/master/blender_scripts
3Official website: https://www.python.org/

https://github.com/csun/syntrain/tree/master/blender_scripts
https://www.python.org/
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Figure 4.4: JINS: User Interface.

The user is led to choose between two main functions:

• Propagate relative motion: this option requires to provide to the software the
Keplerian parameters of the target for its orbital propagation and the initial condi-
tions of relative chaser-target motion. The two propagated orbits are used for the
scene modeling in Blender. The window for data entry is shown in Fig. 4.5 :

Figure 4.5: JINS : Option 1.

No guidelines are provided for data entry because the user is assumed to have pre-
vious knowledge regarding Orbital Mechanics and the Clohessy-Wiltshire equations.

• Load motion from file .txt : the user provides a .txt file containing a N×6 matrix,
where N are the samples taken on both orbits at the same instant of time. The
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second dimension is 6 because 3 are the coordinates to describe the Earth-target
vector in ECI frame and the other 3 for the target-chaser vector in LVLH frame.

• Exit: this option closes the software without performing any operation.

Once the coordinates of the target orbit and relative orbit are obtained, it is necessary
to choose the satellite model to be represented in the scene. Unlike the previous version
in which the model was chosen by selecting the .blend file on which to apply the image
generation scripts, now the choice is made by the user through a selection menu, as in
Fig. 4.6:

Figure 4.6: JINS : model selection.

Along with the model, the number of images to be rendered must be selected. The choice
of the number of images to be generated may be important in cases where the sampling
along the orbit is too dense and only a few images are needed, or in cases where the orbit
is available but only a certain time interval is of interest.

4.1.2. Scene generation

One of the most obvious changes in JINSv2 from its previous version is scene generation.
In JINS there was no real scene construction: the satellite model was placed in the
center of the Blender scene, the cameras were randomly generated, and the Earth in
the background was generated by overlaying the satellite scene with one containing only
the Earth. The scene containing the Earth is generated from external Blender file. In
order for the rendered scene to be as faithful as possible to an inspection mission a single
Blender scene containing the target, the chaser and the Earth has been used. One of the
most difficult aspects of generating a scene containing these objects is the difference in
order of magnitude between the Earth and satellite model dimensions. The Units section
of Blender allows the user to set some scene parameters to help in solving this type of
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problem. Since the values of the coordinates are much larger than the size of the satellite,
it was decided to set the Length scale of the Blender scene equal to 1000 in order to
contain the size of the scene. To faithfully represent the scenario of an inspection mission,
the scene was composed as illustrated in Fig. 4.7.

Figure 4.7: JINS: scheme scene.

A scene setup of this type requires knowledge of the rotation matrices between the various
reference systems ’Blender frame - ECI frame’ and ’ECI frame - LVLH frame’ which can
be easily determined. A problem with this configuration is the presence of small meshes,
the satellite, far from the scene origin. Placing objects far from the origin causes precision
errors in floating point numbers leading to warping and disruption of the meshes. This
is due to the graphics capabilities of Blender very dependent on the GPU used to render
the scene. An example of mesh problem is shown in Fig. 4.8.

Figure 4.8: JINS: warping mesh problem.
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To overcome this problem, the scene was constructed by placing the satellite model in
the origin of the scene and using the LVLH coordinate frame. For simplicity it has been
assumed that the Blender reference system matches the one of the Clohessy-Wiltshire
equations thus avoiding the determination of the rotation matrix between the two refer-
ence frames, by doing so the Earth model is always located on the Altitude axis. The
scheme of the new structure of scene is illustrated in Fig. 4.9.

Figure 4.9: JINS: new scheme scene.

Rchaser has the same value as the coordinates obtained through the propagation of the
Clohessy-Wiltshire equations, while REarth has only Altitude component equal to the
norm of Rtarget in ECI coordinate frame. Once the scene settings, satellite model, and
number of images to be rendered have been defined, it is possible to create a set of images
that can be used to generate the final dataset. Images alone cannot be used by Machine
Learning algorithms for training because they are not annotated.
Before proceeding to annotate the images, it is necessary to generate the masks, known
as ground truth, of each component. Ground truths can be considered the exact solution
of the Machine Learning model, in the case of computer vision they correspond to the
segmentation that the model should achieve. Thanks to Blender’s compositing mode, it
is possible to generate masks for each element in the image. This mode, through the use
of nodes, allows to do post-processing on the rendered scene such as overlaying different
scenes, displaying only certain elements or applying filters. Similar to image generation,
the creation of the masks can also be done either manually or automatically through
scripting. Also in this case, Pyhton was used for mask generation in order to make the
procedure automatable, since the number of nodes to be generated is dependent on the
number of labeled elements contained in the scene. The compositing scene generated by
JINSv2 is depicted in Fig. 4.10.
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Figure 4.10: JINS: example of Compositing scene.

As it can be seen from the image, mask generation is based on the ID Mask node which
allows to produce an alpha mask per object. The number of these nodes depends on the
amount of mesh-type components in the scene that have the label equal to one among
those given as input to JINSv2. The mask generated is white where the object is located
and black where it is not. In case some parts of the object are transparent the mask
assign to them grey values. To obtain masks as accurate as possible, the Anti-Aliasing
filter was used to generate smooth edges. An example of rendered image with its masks
is provided in Fig. 4.11.

Figure 4.11: JINS: example of generated masks.
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To summarize how JINSv2 works its pipeline is reported in Fig. 4.12.

Run JINS software

Which option has
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Orbits propagation

User
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+ 
 CW intial
conditions

Load external data

1

2

Model
satellite

Number of the model

Loading
Blender's
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Images and
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Generation of
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Number of images

Exit JINS

3

Wrong
input

Figure 4.12: General flowchart of JINSv2 operation.

Some considerations should be made about the general flowchart of JINSv2. The Load
external data block has no direct output from the user since the path from which to load
data was assigned directly in the script. If it is desired to change the path it is necessary to
edit the script directly. This aspect can be kept in mind for later versions of the software
by allowing the user to directly select the file of his choice. In the Model satellite block,
the user is forced to choose from the six models proposed by the software, and in the
case of wrong input JINSv2 closes. Also in this case, JINS can be refined by allowing the
use of a custom model, in addition to the six available satellites. In order for the custom
model to be used, it must meet certain specifications necessary for the software to work
properly. The selected file must contain only the satellite model in Mesh format, the
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central part of the model must have "Body" as its name, and the component labels must
be the same as those used by the functions for generating masks. For completeness, a
schematic representation of the image and mask generation process is shown in Fig. 4.13.

Generation
images/masks

Update satellite's 
attitude

Load external
data

Update camera's
and Earth's position

Update Sun's
position

Load external
data

Generate
compositor nodes

Generate masks

Render image

Last image? 

Generation of
annotations

No

Yes

Number of
images

Figure 4.13: Images and masks flowchart of JINSv2.

Two points that have not been covered previously are present in the diagram, Satellite’s
attitude and Sun’s position. To describe the satellite’s attitude, it is possible to load an
external file by editing the relevant variables in the script, since loading via a UI has not
yet been implemented.
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Blender allows to define rotation in three different ways:

• Euler modes : used to perform rotation using a particular set of three axes, which
have a hierarchical relationship between them.

• Axis-angle mode: let define and axis of the Blender coordinate frame and a rotation
angle around that axis.

• Quaternion mode: the rotation is defined by four values; X,Y and Z define an axis
and W an angle. The relation between them is important.

In this work it was decided to use axis-angle mode and assign random values to each of the
three rotation axes. The choice is dictated by the fact that in the generation of a training
dataset it is necessary to include the greatest amount of casualties, in this case viewpoint
variation. Being able to implement the attitude may be useful for the creation of a dataset
to verify the performance of the model in the case of a mission where the evolution of the
debris is known. The same kind of observation is made for light generation in the scene.
To generate light objects on Blender, it is possible to choose from several models that
differ in how they propagate lights. To faithfully represent reality, an Sun-type model was
chosen, which illuminates the scene with rays parallel to a certain direction.In particular,
a constraint has been imposed which forces the lighting direction to be parallel to the Sun-
Earth direction. The position of the Sun is generated by an external script by entering
the date of the inspection in MJD2000 format. As in the case of the satellite’s attitude,
randomly generated dates were used to have different directions of illumination.

4.2. COCO format annotation file

Once the images and masks are generated it is possible to start creating the annotation
file. There are several ways to annotate a dataset, the one adopted in this work is the
COCO format, which stands for Common Object in Context. It is one of the most popular
format of annotation for object detection, segmentation and captioning. The function that
allows to generate annotations in COCO format is called satellitetoCOCO.py, and it is
an external function not implemented within JINSv2. It needs the API4 from COCO to
work. The script cycles through all the files containing the rendered scenes, and based
on their names the corresponding scene masks are associated. The output of the script
is a .json file containing information about the different classes of components, for each
image. The generated file is structured as shown in Fig. 4.14.

4COCO API is not directly available for Windows, a fork could be used to install it: https://github.
com/philferriere/cocoapi. The Matlab and Python APIs are complete, the Lua API provides only
basic functionality.

https://github.com/philferriere/cocoapi
https://github.com/philferriere/cocoapi
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Figure 4.14: Structure of the .json annotation file.

The info section contains high level information such as the dataset name, date of creation,
and its version. The categories section lists all the classes contained within the dataset
by associating each of them with an id and the supercategory to which it belongs. The
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images section contains informations of all the images such as name, dimensions, data
and url in case it was taken from the web. The most important section, as well as the
part needed by the algorithm for training, is the annotations section, that contains:

• id : each annotation has its own id.

• image_id : denotes to which image the annotation corresponds.

• category_id : denotes to which category the annotation corresponds.

• iscrowd : its value is 0 if the segmentation is for a single object or 1 in case of group
of objects.

• area: area occupied by the segmentation measured in pixel.

• bbox : it gives information about the bounding box in the format [ top left x position,
top left y position, width, height ].

• segmentation: is the most important part of the dataset and contains the list of
coordinates (x,y) that define the contour of the object.

• width: width of the image in pixel.

• height : height of the image in pixel.

The segmentation is done using the function approximate_polygon of the package scikit-
image5, library specific for image processing in Python. It approximates the binary mask
generated by JINSv2 using the Douglas-Peucker algorithm [27]. The approximated poly-
gon depends on the value of tolerance passed to the function, it indicates the maximum
distance from the original points of the polygon to approximated polygonal chain. If tol-
erance is 0 the original polygon coordinates are returned. Another parameter that has to
be set before proceeding with the creation of annotations is the area threshold, meaning
that if the segmented area is less than a certain value for a certain component, that in-
stance is not considered. To verify that the generated annotation exactly represents the
indicated component, it is possible to use BBox.py. The function reads the information
written in the .json annotation file and draws bounding boxes and segmentations of each
component over the image, as shown in Fig. 4.15.

5API : https://scikit-image.org/docs/stable/api/skimage.measure.html
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Figure 4.15: Rendered scene (top) and same scene with overlaid bounding boxes and
segmentations (bottom).
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The previous chapters discussed the architecture and pipeline of the JINSv2 software and
the several Machine Learning models used in the field of computer vision. This chapter
discusses the training of the model chosen in Chapter 2 and the various tests performed
on it to assess its performance.
Before moving on to the actual results part some information about PointRend and the
operating environment are given. Only one implementation of PointRend[17] is available
online, which is that of Detectron2 1[41] provided by the Facebook AI Research (FAIR)
group. Other than instance segmentation, PointRend can be applied also for semantic
segmentation tasks by building on top of existing state-of-the-art models. Using Detec-
tron2 not only is provided the head to generate the masks but also the model of Faster
R-CNN for object detection. The only available base model provided by Detectron2
Model Zoo[40] is the R50-FPN-3x. It uses a ResNet backbone architecture with 50 layers,
a Feature Pyramid Network (FPB) for the box prediction and trained with a 3x schedule.
One of the parameters to be taken into account before the training of the model is the
size of the image contained in the dataset. It is recommended to use images between 600
and 800 pixels to obtain good results, so a square images of size 700px have been used.
Detectron2 can be built on different platforms, both local and online. The important
thing is that they are equipped with GPUs for the training phase.
In this work Google Colaboratory has been used, it is a free Jupiter notebook2 environ-
ment equipped with several GPUs. Using the free plan enables the use of standard GPUs
for a limited daily period of time. If one wants to use higher-performance GPUs for a
longer period of time, it is possible to take advantage of a premium subscription. To
assess the performance of the model different types of training and testing were carried
out. Since the training process is highly dependent on the GPU used, an attempt was
made to use the same one in order to obtain trainings comparable to each other, of all
those available, the TESLA T4 16 GB was used. Not only the same GPUs have been

1Detectron2 is Facebook AI Research’s next generation library that provides state-of-the-art detection
and segmentation algorithms. It supports a number of computer vision research projects and production
applications in Facebook.Website : https://github.com/facebookresearch/detectron2

2Official website : https://jupyter.org/

https://github.com/facebookresearch/detectron2
https://jupyter.org/
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used, but also different parameters that greatly affect the duration and accuracy of the
training process. The parameters adjusted for training are the learning rate, the number
of iteration, the number of workers and the images per batch. As explained in Chapter 2
the learning rate is the hyperparameter that controls the change of the weights in the
model. During the training phase it was set to 0.003, while the number of iteration to
3000. The remaining two are parameters that manage the flow of data within the network.
The number of workers, which is set to 2, tells to the dataloader how many subprocesses
to use for data loading, while 2 images per batch are considered. The latter in particular
is very important for the environment in which it is working, since very large images per
batch can cause out of memory errors, it is always recommended to increase the number
of iterations instead of batch size.
Before describing the various tests performed on the model, it is necessary to give an ex-
planation of the metrics used to evaluate the results. Several evaluation methods exist in
machine learning, the most common and the ones used in this work are the Average Pre-
cision (AP) and the mean Average Precision (mAP). To evaluate the AP, it is necessary
to define some variables [26]:

Precision : p =
TP

TP + FP

Recall : r =
TP

TP + FN

(5.1a)

(5.1b)

where TP are the true positives which are the object correctly detected, FP are the false
positives, i.e. the object is detected correcly but not its class, and the FN are the false
negative which are the number of object not detected. The precision is an index of how
accurate the prediction is, while the recall measures how well all the positives are found.
From the above definitions it is possible to determine the AP :

AP =

∫ 1

0

p(r)dr (5.2)

The AP is calculated for each class and then averaged to obtain the mAP, sometimes
they are considered the same thing as in the case of the COCO challenge evaluation. The
definition of AP does not depend only on these two parameters; sometimes it may depend
on a third parameter called Intersection Of Union (IoU), depending on the assessment
mode. This parameter is used to evaluate how well the predicted box overlaps the one of
the ground truth. Considering the example shown in Fig. 5.1, the IoU can be calculated
as:

IoU =
Area of intersection of the boxes

Area of union
(5.3)
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Figure 5.1: Example of box predicted.

The definition of IoU is very important because it allows to define which prediction is a
true positive or a false positive. In most of the dataset if the IoU is ≥ 0.5 the detection
is considered a true positive while if IoU < 0.5 then is a false positive. Since the dataset
generated by JINSv2 is in COCO format, the COCO evaluation metrics [4] has been used.
It consists in 12 metrics for characterize the performance of the object detector, only the
ones relative to the average precision are considered:

• AP : AP at IoU = .50:.05:.95 (primary challenge metric)

• AP IoU=.50 : AP at IoU=.50 (PASCAL VOC metric)

• AP IoU=.75 : AP at IoU=.75 (strict metric)

• AP small : AP for small objects : area<322

• APmedium : AP for medium object : 322<area<962

• AP large : AP for big objects : area>962

5.1. Training and testing on a single model

The first test performed on PointRend was to train and test it on a dataset containing
only one satellite model. The dataset used contains 360 images of satellite model 1, and
the labels considered are antenna, body and solarPanel. To include a greater variety
of images, scenes with Earth completely in the background, with Earth partially in the
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background, and without Earth in the background were considered, as reported in Fig. 5.2

Figure 5.2: Example of images contained in the first dataset.

The time required for the training is about 40 minutes. The results are shown from
Tables 5.1 to 5.4 which indicate the overall AP and the APs for each class for both object
detection and segmentation.

AP AP50 AP75 APs APm APl

86.212 97.910 95.515 79.273 90.984 92.329

Table 5.1: Evaluation results for bounding box

AP antenna AP body AP solarPanel

81.485 89.134 88.017

Table 5.2: Per-category bounding box AP

AP AP50 AP75 APs APm APl

76.496 93.815 87.270 55.510 87.293 100

Table 5.3: Evaluation results for segmentation

AP antenna AP body AP solarPanel

72.213 78.854 78.420

Table 5.4: Per-category segmentation AP
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An example of the inference is shown in Fig. 5.3.

Figure 5.3: Inference of the model trained on only one satellite.

After inference, the image was converted to grayscale to make the performed segmentation
more evident. Looking closely it is possible to see that the left solar panel has been
identified correctly but its mask does not cover it entirely. Looking at the tables, it can
be seen that the AP of segmentation for large objects is high. It was thought to improve
the segmentation accuracy of small objects by going to consider large objects in the
background as well. In the case under observation, if the model achieves high accuracy in
identifying and segmenting the Earth in the background then the accuracy in recognizing
small objects may increase. A new training was carried out, without changing neither
the parameters nor the dataset but only a class "Earth" to be identified was added. The
results of the new training are reported in Table 5.5 and an example is shown in Fig. 5.4.

AP APantenna APbody APsolarPanel APEarth

PointRend
Bbox 86.580 78.632 83.106 84.952 99.630
Segm 80.260 69.600 75.860 75.747 99.831

Table 5.5: Training considering the Earth class

As expected, the accuracy of small component segmentation has increased. The left solar
panel that was previously not fully segmented is now identified correctly and continuously.
This type of test is not only used to verify the performance of the trained model but could
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Figure 5.4: Inference of the model trained on only one satellite considering Earth class.

be useful in the case where during an inspection mission the RSO geometry is known and
can be used to train the algorithm. Purpose of the work is not only to find a new model
for instance segmentation but also to achieve better performance than the state-of-the-art
Mask R-CNN model. For this reason, in parallel to PointRend , Mask R-CNN was trained
using the same configurations and dataset. The results for Mask R-CNN are reported in
Table 5.6.

AP APantenna APbody APsolarPanel APEarth

Mask R-CNN
Bbox 78.311 62.184 72.639 78.796 99.625
Segm 72.000 59.040 62.963 68.407 97.591

Table 5.6: Training considering the Earth class

The improvement using PointRend is significant, an increase of about 10 AP points for
both the object detection and segmentation tasks. This increase might seem small in the
eyes of a non-expert, but even a 2 point AP increase makes a new algorithm model state
of the art.
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5.2. Testing on out-of-dataset satellite

Once the performance of PointRend has been verified on one model, it is necessary to
perform further tests to see whether the model performs properly under different condi-
tions. The next step is to test the model on a satellite not contained in the dataset. This
condition very much reflects reality since the geometry of the RSO to be observed is not
always available. A dataset containing 5 models was used as a training dataset, while the
remaining satellite model (Model 5) was used to generate a testing dataset. Specifically
4 types of datasets were generated for training of the model:

• No Earth in background

• Earth in background

• Earth in background in grayscale

• Earth in background with Poisson noise

All of these combinations of datasets are used to cover as many scenarios as possible and
to test the robustness of the selected model.

5.2.1. Dataset with no Earth in background

The model was trained on scenes containing no Earth in the background. This was done to
verify the performance of the model in the case where no disturbance element is present in
the scene. The dataset used for the training contains 750 images of all the five models, the
training require about 40 minutes for both PointRend and Mask R-CNN. After training,
the model was tested on a testing dataset containing the same scene type as the training
dataset but with satellite model number 5. The results are reported in Table 5.7.

AP APantenna APbody APsolarPanel APEarth

PointRend

Bbox 69.372 68.703 59.170 80.243 nan
Segm 64.602 55.652 67.880 70.270 nan

Mask R-CNN

Bbox 66.091 64.893 53.911 79.468 nan
Segm 62.141 54.110 66.044 68.268 nan

Table 5.7: Train no Earth in the background - test no Earth
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This type of test is not sufficient to test the performance of the model in case of an
inspection mission. During a real inspection the chaser will have periods when the Earth
is present in the background, so further testing was performed using a testing dataset
that contains images of satellite 5 with the Earth in the background. This type of test is
to see how the model behaves when it encounters a satellite it has never seen in a new
scenario. The results for both PointRend and Mask R-CNN are reported in Table 5.8.

AP APantenna APbody APsolarPanel APEarth

PointRend

Bbox 27.586 25.753 30.519 54.072 0
Segm 23.231 20.100 23.522 49.3020 0

Mask R-CNN

Bbox 29.006 26.947 37.071 52.005 0
Segm 24.196 16.021 29.571 51.193 0

Table 5.8: Train no Earth in the background - test with Earth

As expected the AP values obtained by testing the model with scenes containing the
Earth are significantly lower than those of the model tested with scenes without Earth
in the background. This difference in AP is due to the fact that the model was trained
on a dataset containing no scene with the Earth in the background, so the presence of a
scenario never seen during the training phase dramatically decreases the accuracy of the
prediction. Unexpectedly, higher AP values have been obtained with Mask R-CNN using
the testing dataset with the Earth in the background. This result may be caused by the
intrinsic nature of PointRend, where more attention is paid to the edges of the object.
The accuracy of the models trained without Earth in the background decreases when
they perform the inference on a scene where the Earth is present. This is caused by the
significant increase of details in the scene, which leads the models to show uncertainties
along the boundaries of the objects and thus to perform incorrect predictions.

5.2.2. Dataset with Earth in background

Training PointRend without considering the Earth in the background makes the model
sensitive to the details in the scene by decreasing its performance in comparison with
the standard Mask R-CNN. A new dataset containing new scenes with the Earth in
the background was generated to see if using a different scene topology improved model
performance. The training dataset used contains 750 images of the same satellite models
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used in the previous test. To obtain a fair comparison between the two training the
hyperparameters of the enviroment were not modified. In this case the training took
about 53 minutes in contrast to the 40 minutes required for the previous test. This may
be because the scenes are more complex than the previous ones and the model must also
be able to identify the Earth class. The AP values for both PointRend and Mask R-CNN
are reported in Table 5.9.

AP APantenna APbody APsolarPanel APEarth

PointRend
No Earth in background

Bbox 68.675 69.219 54.059 82.747 nan
Segm 63.336 57.337 63.209 69.463 nan

Mask R-CNN
No Earth in background

Bbox 64.503 64.955 50.458 78.097 nan
Segm 60.107 51.423 63.607 66.290 nan

PointRend
Earth in background

Bbox 64.615 47.117 46.463 73.793 91.089
Segm 63.234 37.811 50.321 66.911 97.896

Mask R-CNN
Earth in background

Bbox 63.026 49.114 47.128 70.724 85.136
Segm 60.209 37.040 47.876 67.070 97.851

Table 5.9: AP values on models trained with Earth in the background

With this training PointRend shows higher AP values than Mask R-CNN in both test
datasets. This may be due to the fact that since the model is trained on images full of
details in the case of scenes with Earth in the background there are no more accuracy
problems as in the previous case. In the case where the Earth is not present in the
background there are less details than those encountered during the training phase so in
this case the model has no problems during the inference.
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Data augmentation

It is seen that by including images with a lot of details in the dataset, the model will
not encounter problems during prediction. To faithfully represent an inspection mission a
new dataset was generated by merging the two previously used datasets. As mentioned in
previous chapters, machine learning models need a large number of images for training to
achieve optimal results. To increase the number of images in the dataset the same images
were taken using a second camera in Blender placed at a variable distance of ±10 meters
from the actual position of the chaser, this is used to include the scale variation discussed
in Chapter 4. To further increase the number of images in the dataset without resorting
to generating additional images, data augmentation techniques were implemented. Data
augmentation is a set of techniques used to artificially increase the number of images
inside the dataset by adding slightly modified copies of an original image. There are
endless ways to increase the number of data, the most used ones are shown in Fig. 5.5

Figure 5.5: Example of data augmentation. Image credit

Among the several techniques shown above two in particular have been implemented,
rotation and flip. A dedicated function called Rotation.py was written. It takes all the
images in the dataset and performs three operations: flip and rotation of ±90◦. Since these
new images must also be annotated, the masks must also undergo these transformations
in order to create the dataset correctly. The new dataset with the additional images
obtained with data augmentation contains 9000 scenes. This large amount of images is

https://towardsdatascience.com/complete-guide-to-data-augmentation-for-computer-vision-1abe4063ad07
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very useful to the model during training but one thing has to be taken into account:
when using Colab’s free enviroment the time of GPU usage is limited, so one has to take
into consideration that the more the images contained in the dataset the longer the time
required for training with the same number of iterations. Always using 3000 iterations and
the same hyperparameters, the training time increases significantly to 1 hour 43 minutes
for PointRend while Mask R-CNN requires 1 hour and 30 minutes. Now the two methods
require different training times differently from the previous trainings. This may be due
to the slightly more complex architecture of PointRend, which requires more time due to
all the images used for training. The trained model was tested as in the previous cases on
both the dataset containing scenes without the Earth in the background and the dataset
with the Earth in the background. The result of the inference are reported in Table 5.10
shown below.

AP APantenna APbody APsolarPanel APEarth

PointRend
No Earth in background

Bbox 70.335 71.533 56.359 83.113 nan
Segm 65.121 58.887 65.207 71.582 nan

Mask R-CNN
No Earth in background

Bbox 66.092 65.462 51.831 80.897 nan
Segm 59.897 52.542 59.929 67.220 nan

PointRend
Earth in background

Bbox 77.284 69.907 57.872 85.898 100
Segm 71.284 56.531 67.201 71.112 100

Mask R-CNN
Earth in background

Bbox 65.393 49.951 45.100 75.898 100
Segm 64.284 40.515 53.907 69.720 98.847

Table 5.10: AP values on models trained with Earth in the background using data aug-
mentation

As expected, due to the use of data augmentation and thus more images used in training
the AP values for both PointRend and Mask R-CNN have increased. In the case of
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segmentation the difference in accuracy between the two methods was between 2 and
3 AP points, while now the difference has almost doubled to 6 AP points. The only
unexpected result is to have obtained from Mask R-CNN a lower value of AP when data
augmentation was used. The difference between the two trainings is about 1 AP, this
leads to think that the problem is due to the training since it itself is an algorithm that
uses a set of more or less randomly selected variables. One must take this random aspect
of training into consideration when designing a real mission. It is recommended, whenever
possible, to always carry out several trainings and choose the most accurate one. To show
the difference in accuracy between the two methods, the inference was performed on a
particular configuration where both solar panels are placed in profile, thus barely visible.
The inference of both models are illustrated in Fig. 5.6.

Figure 5.6: PointRend inference (top) and Mask R-CNN inference (bottom).
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As confirmed by theory PointRend outputs masks with higher resolution than those pro-
vided by Mask R-CNN, increasing accuracy especially along object’s edges. This increase
in accuracy is very important for real missions because if the Machine Learning model
recognizes the presence of an object but its mask is very discontinuous, the software that
is going to use this data can interpret that result as an error in the prediction and thus
neglects that area. To provide more clarity on how PointRend selects the points, a pattern
of how the sampling points are arranged as the resolution of the mask increases is shown
in Fig. 5.7.

Figure 5.7: PointRend point selection example.

Results obtained from the trainings confirm that PointRend can also be used as a validated
substitute for mask R-CNN for instance segmentation tasks by achieving higher accuracy
in both object detection and segmentation.

5.2.3. Training with noisy images

So far the models have been trained with images generated directly from Blender without
any processing done on them, these allows for sharp and high-resolution images. During
a real mission, The images taken by the camera equipped on the chaser will never have
the same level of resolution as those used so far for training and testing because there
are disturbs such electrical noise and optical aberrations. To test the performance of the
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models in a scenario even closer to reality, noise was considered within the testing dataset.
There are different types image noise but the most famous in the field of computer vision
are Gaussian noise and Poisson noise. Gaussian noise is a noise of statistical nature
that follows a Gaussian distribution. It is generated separately and independently and
then added to the original image. The Poisson noise is a type of electronic noise that
occurs when the energy carried by a finite number of particles , such as in our case
the photons in the detector of the chaser optical device, is small enough to give rise
to statistical variations detectable in a measurement. This means that Poisson noise is
correlated with the intensity of each pixel while the Gaussian noise is independent from
the original intensities of the pixels in the image. As described in [18] if the number
of photons impacting the detector is very large, Poisson noise can be approximated to
Gaussian noise. Assuming that the chaser does not take measurements when the Sun is
near the field of view of the chamber to prevent the device from being damaged , the
Poisson noise model is acceptable. An example of applying Poisson noise to an image
generated by JINSv2 is shown in Fig. 5.8.

Figure 5.8: Original image (top) and image processed with Poisson noise (bottom).
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The dataset containing the noise does not need to be generated all over again since the
ground truth masks are not affected by it, so the annotations remain unchanged. Through
a specially implemented function, Noise.py, it was possible to consider some Poisson noise
on all the images already held. Training times are not affected by the presence of noise,
remaining as in the previous case 1 hour 43 minutes for PointRend while 1 hour and 30
minutes fort Mask R-CNN. The results of the training are reported in Table 5.11

AP APantenna APbody APsolarPanel APEarth

Bounding Box

PointRend 69.393 37.951 48.100 71.898 98.625
Mask R-CNN 57.589 29.888 37.370 63.680 99.418

Segmentation

PointRend 59.284 24.516 35.907 56.720 99.994
Mask R-CNN 50.306 22.679 33.064 47.557 97.925

Table 5.11: AP values on models tested on dataset with noise

As confirmed earlier PointRend achieves higher accuracy than Mask R-CNN even when
tested on scenes containing noise. The overall AP decreased compared to training without
noise, and simultaneously the difference in the segmentation AP between the two methods
increased. Now the AP difference between the two methods reaches about 9 AP points
while in previous cases it was between 6 and 7 AP points. This behavior is due to
the inherent nature of the two methods. Mask R-CNN always returns an output with
low resolution, so when noise is present in the image the generated mask will be more
approximate since some corrupted pixels of the noise may be mistaken as the outline of
the object to be identified. PointRend returns high-resolution masks, and in addition,
due to its architecture, randomly chosen sampling points make the model less sensitive
to noise so that object contour identification occurs more accurately than Mask R-CNN.
An example of inference of both models on a scene when Poisson noise is considered is
illustrated in Fig. 5.9.

At first glance, the two inferences appear to be similar despite the fact that the AP values
obtained in Table 5.11 are very different from each other. However, if an enlargement is
made, the differences between the two outputs can be seen. As described above Mask
R-CNN returns a more approximate mask of the identified object. This can be seen in
the body where the whole contour is approximated by going to consider only its central
part. On the other hand PointRend by returning masks with a higher level of resolution
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Figure 5.9: Inference on noisy images of models trained on dataset without noise.

succeeds in better describing the contour of the object. In fact in addition to distinguishing
well the contours of the main part of the body it is also able to detect and segment the
thruster on the bottom. Another evidence of the greater accuracy of PointRend is the
segmentation of the Earth. Mask R-CNN succeeds in segmenting the Earth’s contour
well in areas far from the satellite, while in the vicinity of the satellite the accuracy drops
dramatically by passing the mask contour inside the satellite and neglecting a part of the
Earth between different parts of the satellite. PointRend succeeds in perfectly segmenting
the contour of the Earth in areas far from the satellite while near the latter the contour
of the segmentation mask follows its entire perimeter by going to consider all areas where
even a part of the Earth is present.
As mentioned earlier the images that the chaser acquires are affected by noise. It was
thought that training the model directly on images with noise could increase performance
during a real mission. The use of noise within the dataset is sometimes seen as a form
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of data augmentation, but in this case the entire dataset contains images with noise.
The training hyperparameters are identical to those used earlier while the dataset is
composed of the same images as the previous ones to which Poisson noise is applied. The
performances of the models were tested on all three types of datasets used in previous
trainings, and the results are reported in Table 5.12 and Table 5.13.

PointRend AP APantenna APbody APsolarPanel APEarth

No Earth in background
Bbox 68.131 66.906 55.058 82.431 nan
Segm 63.890 57.180 63.478 71.013 nan

Earth in background
Bbox 69.078 48.425 50.628 77.258 100
Segm 66.852 40.608 55.765 71.036 100

Earth + noise
Bbox 70.997 47.241 56.289 80.458 100
Segm 65.385 38.409 52.015 71.114 100

Table 5.12: PointRend trained on noisy dataset

Mask R-CNN AP APantenna APbody APsolarPanel APEarth

No Earth in background
Bbox 66.157 67.608 52.058 78.805 nan
Segm 59.660 54.062 59.543 65.375 nan

Earth in background
Bbox 66.909 45.953 49.565 72.119 100
Segm 65.653 39.359 50.829 72.770 99.654

Earth + noise
Bbox 67.711 42.126 50.989 77.832 99.896
Segm 62.477 33.829 47.044 70.791 98.246

Table 5.13: Mask R-CNN trained on noisy dataset

Both models tested on dataset without noise return lower AP values than when trained
and tested on dataset without noise, as expected. A noticeable improvement occurs on
the testing dataset with noise: AP values increase by almost 10 points. An example of
inference on a scene with noise is shown in Fig. 5.10.

As already found in the previous test Mask R-CNN has problems in segmenting the
Earth contour when overlapped with the satellite while PointRend does not suffer from
this problem. Unexpected is the fact that despite higher AP levels in the object detection
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Figure 5.10: Inference on noisy images of models trained on dataset with noise.

task, Mask R-CNN fails to recognize the antenna that in the previous test was successfully
identified. This may be due to the sensitivity of the model to noise or to the aleatory
nature of the inference, as different tests on the same image can produce sometimes
very different results. The segmentation precision of PointRend is increased, all edges are
detected and segmented faithfully, and even the boundaries between different components
have higher accuracy. This type of test demonstrated the utility of using images with
noise in the training phase; the performance of the model during a real mission increased
compared with when noiseless images were used in training. Using only images with
noise during a training would mean assuming that the chaser camera always has that
intensity of noise, in case it is different there could be a drop in accuracy. The best



5| Results 65

strategy to make the model more robust is to use the dataset without noise as the base
dataset and then apply Poisson and Gaussian noise with different intensities as a form of
data augmentation. This makes the model more generic and usable with cameras having
different specifications and therefore return the scene with different accuracies.

5.2.4. Dataset in grayscale

Many of the camera-equipped satellites acquire grayscale images, one of the main reasons
is because they require little memory to save and therefore are easier to process or send
to a ground station. As in the case with noise, it was not necessary to regenerate all the
images from scratch but only to convert them since the masks are independent of the
color scale used. A dedicated function has been implemented, Grayscale.py, which allows
to create a copy of a dataset and convert it to grayscale through the use of the Python
package cv2. An example of the output returned by the function is shown in Fig. 5.11.

Figure 5.11: Example of grayscale conversion.

Using grayscale images the training time was slightly decreased to 1 hour 28 minutes for
PointRend and 1 hour 12 minutes for Mask R-CNN. This is due to the nature of the
images, since they have only one channel fewer operations are required to be performed
on them. The results of the trainings are reported in Table 5.14 and Table 5.15.

Despite being trained with grayscale images PointRend has even higher accuracy values
than Mask RCNN. This occurs since scenes without Earth in the background do not have
a large amount of details to be recognized and therefore the format of the images used
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PointRend AP APantenna APbody APsolarPanel APEarth

No Earth in background
Bbox 71.279 72.279 59.228 82.174 nan
Segm 64.132 58.925 64.760 68.711 nan

Earth in background
Bbox 70.477 56.551 50.196 76.892 98.269
Segm 67.811 44.236 56.092 72.535 98.380

Earth + noise
Bbox 58.017 31.068 42.134 72.821 86.046
Segm 50.148 19.621 36.379 62.665 81.927

Table 5.14: PointRend trained on grayscale dataset

Mask R-CNN AP APantenna APbody APsolarPanel APEarth

No Earth in background
Bbox 66.802 69.095 50.588 80.725 nan
Segm 59.685 55.201 58.980 64.873 nan

Earth in background
Bbox 67.716 49.909 46.854 74.576 99.526
Segm 66.004 41.720 52.587 72.795 98.013

Earth + noise
Bbox 61.059 30.870 42.561 71.960 98.847
Segm 56.076 24.205 37.507 65.132 97.459

Table 5.15: Mask R-CNN trained on grayscale dataset

in training does not affect the accuracy of the inference on colored images used as tests.
Unexpected are the results obtained in the tests presenting the Earth in the background
with and without noise. In the first case the two models have very similar accuracy values
except for the Body and Antenna classes where PointRend has higher precision. On the
other hand in the noise case the performance of PointRend is lower than that of Mask R-
CNN unlike the previous case where the models were trained on colored datasets. These
results confirm PointRend’s greater sensitivity to scene details. Although many CNNs
automatically convert RGB images to grayscale after a few layers, several models also use
information from colors to recognize objects. Since both models are designed to take RGB
or RGBA images as input [22], the lack of colors in the training dataset leads to reduced
performance when tested on colored images. To evaluate the performance of PointRend
one more test was performed. More specifically, both the model trained on color images
and the grayscale model were tested on grayscale images without noise, to see if indeed
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training with color images produces better results. The results of the testing are shown
in Table 5.16.

AP APantenna APbody APsolarPanel APEarth

Trained RGB
Segm 66.798 42.212 54.973 70.201 100

Trained Grayscale
Segm 68.493 43.858 58.402 72.964 98.749

Table 5.16: PointRend models tested on grayscale dataset

Comparing the results obtained with those in Table 5.10 and Table 5.14, it can be seen
that no obvious improvement is obtained by training in grayscale. The only test where
higher values are obtained is when the model is trained and tested on grayscale images.
Despite this, the improvement is about a 1 point AP and this does not motivate one to
transform the whole dataset since using the color dataset gives higher accuracy for all
other case studies. As confirmed by [25], RGB images produce improved results than
grayscale images, returning clearer and noise-free images for better human or software
interpretation. The use of grayscale images can be used as a form of data augmentation
to train the model that will be used in the real inspection mission, or to generate a dataset
if it is certain that the chaser only acquires images in grayscale.

5.3. Performances change due to variation of learning

rate

So far the Machine Learning models have been trained by only changing the type of dataset
and showing that PointRend produces more accurate segmentations than Mask R-CNN
in most of the tests performed. A machine learning model in addition to making use of
the training dataset employs two types of variables that make the trained model unique,
model parameter and model hyperparameter. Model parameters are variables internal to
the model and are determined from the data during training. An example are the weights
that are updated at each iteration. Hyperparameters are parameters whose values control
the learning process and determine the values of model parameters,and they are assigned
externally by the user. There are many types of hyperparameters that can be assigned be-
fore the training phase, the most important are the learning rate, optimization algorithm,
number iterations, batch size and the drop-out rate. Often the optimal values of the
hyperparameters that guarantee the optimal solution are not known. To obtain the best
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combination of parameters, there are ad hoc techniques to determine these values. This
hyperparameter selection procedure is known as Hyperparameter Tuning. The optimal
hyperparameters are not unique but depend on the model and also on the dataset that is
used for training. The main methods for hyperparameter selection are three, namely:

• Manual search: hyperparameters are selected based on experience, so it requires
user supervision, and the performance of the model are verified. This process is
repeated with another set of values until the optimal accuracy is achieved or the
model has reached the desired error.

• Random search: Instead of performing multiple rounds of manual search, it would
be better to provide the model with multiple values of the hyperparameters at once
and let the model decide which one is the best. The model randomly creates its
own combinations and tries to fit the dataset and check the accuracy.

• Grid search: it is based on the same principle as random search except here all
combinations are tried and not chosen by the model. This is the most efficient
method, as the chance of missing the optimal solution is very low.

The last two methods for choosing hyperparameters are quite expensive both computa-
tionally and in terms of time. Since Colab’s free plan allows training for a very limited
daily time, a manual approach was used for choosing hyperparameters. As mentioned
earlier one of the most important parameters for training is the learning rate. In all
previous trainings it has been kept fixed with a value of 0.003. It is intended to see
how the accuracy of PointRend changes as the value of the learning rate varies. The
selected values are: [0.0025, 0.004, 0.025, 0.0001]. The first two were chosen to see how
the model behaves using a learning rate close to the initial one, and the last two values
in the case where the learning rate was varied by one order of magnitude. The dataset
used for training is the one containing colored scenes with and without the Earth in the
background, on which data augmentation was performed. This is because, as mentioned
above, it covers a greater variety of case histories and allows for higher accuracy values
than the other datasets used. Using different values of learning rate also changed the
training times required. Higher learning rates require shorter training times while for low
values of learning rate the training times increase. Considering J(θ) the loss function
describing the performances of the model and θ the set of weights used in an iteration it
is possible to observe the importance of the learning rate, as shown in Fig. 5.12.

To maintain consistency with previous trainings all other parameters were kept constant
as well as the GPU model used. The training times required by PointRend vary between
1 hour and 20 minutes for the learning rate of 0.004 and 1 hour and 35 minutes for that
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Figure 5.12: How learning rate affects training. Image credit

of 0.0001. The results are reported from Tables 5.17 to 5.19.

AP AP antenna AP body AP solarPanel AP Earth

Lr = 0.004
Bbox 68.418 69.320 55.186 80.749 nan
Segm 64.534 57.534 65.167 70.913 nan

Lr = 0.0025
Bbox 69.356 66.089 60.460 81.520 nan
Segm 62.875 55.810 63.700 69.115 nan

Lr = 0.0001
Bbox 66.745 67.210 51.803 81.222 nan
Segm 57.095 52.374 56.371 62.432 nan

Table 5.17: PointRend tested without Earth in background

AP AP antenna AP body AP solarPanel AP Earth

Lr = 0.004
Bbox 69.511 54.406 49.258 74.379 100
Segm 67.417 47.318 52.690 69.661 100

Lr = 0.0025
Bbox 69.019 51.391 49.306 75.716 99.662
Segm 67.081 44.350 56.433 67.543 100

Lr = 0.0001
Bbox 68.210 53.320 45.213 74.306 100
Segm 61.070 37.443 43.318 63.521 100

Table 5.18: PointRend tested with Earth in background

https://medium.com/octavian-ai/how-to-use-the-learning-rate-finder-in-tensorflow-126210de9489
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AP AP antenna AP body AP solarPanel AP Earth

Lr = 0.004
Bbox 51.924 23.154 32.596 60.330 91.618
Segm 45.774 16.646 28.127 41.175 97.147

Lr = 0.0025
Bbox 50.119 23.755 28.277 54.457 93.986
Segm 42.661 14.433 25.132 36.160 94.918

Lr = 0.0001
Bbox 60.114 30.391 41.257 71.141 97.668
Segm 49.370 18.896 30.099 52.351 96.133

Table 5.19: PointRend tested with Earth in background and noise

The tables are missing AP values related to training with Lr = 0.025. Such a high value
leads the model to diverge as described in Fig. 5.12. In fact after a hundred iterations the
model returns an error warning : "FloatingPointError: Predicted boxes or scores contain
Inf/NaN. Training has diverged.". This value could be used as an upper bound for future
hyperparameter tuning of the model. Looking at the accuracy values described in the
table, it is possible to confirm that the learning rate is a very important parameter for
model training purposes. In the first two tests carried out it can be observed that the
highest accuracy values are obtained for higher learning rate values, this may be due to
the fact that since the scenes on which the inference is carried out are similar to those used
for training a higher learning rate succeeds in apprehending the general features of the
scene faster than a lower learning rate which learns slower by focusing more on details.
In contrast, in the test in which noisy images were considered, the highest accuracy
values were obtained from the lowest learning rate. This can be explained by the fact
that, since the scenes used in the inference are not contained in the training dataset, the
lowest learning rate will be less sensitive to noise and to scenes that has never seen as
it has focused much more on details than on the generic feature. This aspect should be
taken into account for training the model in the case of a real mission. A more widely
used approach in training by the latest developed machine learning models is to adopt
a variable learning rate. Initially the value used is higher so that the model can better
detect generic features, while toward the later iterations the value of the learning rate is
decreased so that details are better recognized. A further remark should be made on AP
values obtained, particularly for those concerning solar panels. It can be seen that the
AP value of the solar panels for both detection and segmentation is always higher than
the one of the other components of the RSO. This is because all the solar panels in the
models used by JINS to create the datasets have the same shape, so there is no much
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difference between those used during training and those during inference. To increase the
robustness of the model it would be necessary to use in the training phase not only variety
of scenes but also variety of component shapes. An example of inference for each learning
rate value is shown in Fig. 5.13.

Figure 5.13: Inference models trained with different learning rate.
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5.4. Inference on real images

As a last test, models should be tested on real images. This is to test whether models
trained on synthetically generated images can be used in real missions. Similarly to [24],
images captured from an inspection mission were picked. More specifically, the mission
that began in 2019 aimed to extend the service life of the satellite Intelsat 901 (IS-901)
by means of another satellite, the Mission Extension Vehicle-1 (MEV-1). In 2020 before
MEV-1 performed the docking, some shots were taken. These will be used by PointRend
and Mask R-CNN to test the validity of the models.
The images of the Instelsat 901 satellite used for the inference are shown in Fig. 5.14.

Figure 5.14: Intelsat 901 images.

As can be seen from the figure, the images that will be used are in grayscale and with
a much lower resolution than the ones generated by JINS since they come from a real
scene. Also an important factor is that they are taken from the web so they will have
a lower quality than the original ones. The models used for inference are those trained
previously on colored datasets with Earth in the background, datasets with noise, and
grayscale datasets. In [24] the images are fed through a function that performs a threshold
on the image to eliminate background noise, in this work it was decided not to preprocess
the images because it is intended to verify the performance of the models even in the
presence of noise. The inference of the models are given below, Fig. 5.15 for PointRend
and Fig. 5.16 for Mask R-CNN, respectively.
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Figure 5.15: Intelsat 901 inferences from PointRend.

Figure 5.16: Intelsat 901 inferences from Mask R-CNN.
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As can be seen from the above images, the models manage to recognize the satellite com-
ponents quite well despite having a completely different structure from those contained
in the training dataset. Not only the satellite model but also the scene type is entirely
new to the trained models since within the training datasets the Earth in the background
is never seen in its complete entirety. Depending on the type of dataset used to train the
models very different results are obtained. Some observations can be made by looking at
the inference results. When trained on color datasets, excellent results are obtained as all
components are recognized. The greater accuracy of PointRend can be seen in the greater
amount of details and components recognized. It can be noted that sometimes satellite
antennas are mistaken for body. This is due to the fact that in the training dataset the
antennas have never been seen in similar position and shape. Consequently, they are mis-
taken for other components. Very important is the fact that PointRend is able to identify
the Earth in the background with the correct label, unlike Mask R-CNN, which assigns to
the Earth the antenna label. This aspect is critical in the case of a real mission because
if the chaser were to perform operations on the antenna and the algorithm identified the
antenna in an incorrect position problems would arise.
Unexpected are the results obtained with the models trained on grayscale datasets. The
performances of the models are clearly lower than the previous test despite the fact that
the images on which inferences are made are in grayscale. Also it can be noticed from the
inaccurate antenna and body masks that both models are more sensitive to background
noise. PointRend being very sensitive to details the noise does not allow the identification
of low-illuminated solar panels that were previously identified correctly. Instead, the ex-
pected result is the increased robustness of models trained on noisy images to background
noise. This can be easily noticed by comparing the segmentations of the Earth made by
PointRend. Despite the fact that the model trained on the dataset with noise should have
higher accuracy on real images, the presence of few details in the scene and the fact that
it is in grayscale makes it perform worse than the model trained on noise-free colored
dataset. So the scene can be approximated to a simple RGB scene without Earth in the
background given its scale. This assumption validates the fact that the model trained
on colored scenes performs better than the model trained on noisy images, and that is
confirmed by the values in Table 5.10 and Table 5.12.
The result of Mask RCNN to which attention should be paid is the one obtained from the
model trained on a noisy dataset. This time the Earth in the background is not identified,
and it is not possible to know from one photo whether the model is unable to recognize
it all the time or it failed to recognize it only on this occasion due to its location or the
randomness of the inference. The first hypothesis does not cause negative consequences on
the model since the position of the Earth is not of primary importance for an inspection
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mission, while in case the second hypothesis is true it would be necessary to monitor the
returned output so that as in previous trainings the model does not identify the Earth as
an antenna and lead to arising of problems. An additional test was carried out by using
the trained models with different learning rates. The results of the infernces are reported
in Fig. 5.17.

Figure 5.17: Intelsat 901 inference of models trained with different learning rate.

As expected when looking at the results of the same type of test performed on synthet-
ically generated images, the results differ visibly depending on the learning rate value
used. The highest learning rate value, 0.004, succeeds in identifying all components of
the satellite but is not very accurate. This can be seen from the fact that it recognizes
the body and the left solar panels as body and from the low accuracy of the Earth mask.
On the other hand decreasing the learning rate the accuracy of the mask along the edges
increases. In the case where the learning rate is 0.0001 all the identified components are
segmented perfectly. Fundamental difference between the inference with high learning
rate and that with a low value is the correct identification of the lower solar panel. The
high learning rate succeeds in correctly identifying the solar panel. This is because by
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learning better the generic features it does not need much detail to identify a class. While
the higher learning rate fails to identify it because being the solar panel low illuminated it
does not have much details, a fundamental factor for the proper functioning of the model
trained with low learning rate.
An aspect that stands out immediately after this training is the difference between the re-
sults obtained by performing inference on synthetically generated images and real images.
In tests performed on images generated by JINS, the models always succeed in identifying
the objects contained in the scene, and their segmentation accuracy varied depending on
the training performed. In this last test with real images the models also begin to fail
in detection, this could be due to the fact that the Intelsat 901 satellite does not have a
similar structure to those contained in the training dataset, and the same is true for the
type of scene ever seen in training phase. To test whether the problem of failed detections
was actually related to the model of the satellite or to the quality of the image used, it was
planned to synthetically generate scenes similar to those of the real images using satellite
model 5, the one not contained in the training dataset. The results of both PointRend
and Mask R-CNN are illustrated in Fig. 5.18 and Fig. 5.19, respectively.

Figure 5.18: Reproduction of the Intelsat 901 scene analyzed by PointRend

As seen in previous tests, the model trained on the color dataset without noise provides
higher accuracy than the other trainings. PointRend continues to return a more accurate
mask than Mask R-CNN, but there is one issue that is common to almost all inferences,
the missed detection of the antenna. This problem may be due to the fact that the antenna
is almost completely in shadow and only a small portion is visible. The same situation
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Figure 5.19: Reproduction of the Intelsat 901 scene analyzed by Mask R-CNN

occurs for IS-901 images where the lower solar panel is completely in shadow and it is
only recognized by PointRend with the model trained on dataset without noise. All these
tests performed to compare PointRend and Mask R-CNN served to show that, for the
same hyperparameter and training dataset PointRend turns out to be a more robust and
accurate model than the standard Mask R-CNN. Its perfromance makes it ideal for use
during an inspection mission by ensuring higher accuracies. In addition, the new version
of JINS software makes it easier to generate consistently real and accurate images.
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The use of neural networks to perform detection and segmentation tasks during an inspec-
tion mission around a non-cooperative RSO has already been demonstrated in previous
work [24] leading to the choice of Mask R-CNN as the state-of-the-art model. The aim of
this work was to identify a better machine learning model that uses a different architec-
ture to perform mask generation and compare its performance with the state-of-the-art
model, Mask R-CNN.
To simulate various conditions that may be encountered during a real mission, different
types of tests were performed on the two models to check their performances. Despite
the fact that Mask R-CNN manages to obtain good results when tested under standard
conditions, PointRend provides much greater accuracy along component edges and not
only under nominal conditions but also when tested on noisy or grayscale images. The
results obtained show that PointRend is an excellent candidate for object detection and
segmentation tasks, providing higher performance than the state-of-the-art model with
the same inference speed and required computational power. Since the model has high
accuracy, the data provided by the inference are very reliable and can be used to identify
the attitude of the target RSO, which is fundamental in the case of docking, or used by
algorithms for autonomous navigation in the proximity of other satellites. As seen in
Chapter 5 a crucial part for obtaining good results is the choice of the training dataset
and the setting of the hyperparameters. Using different types of scenes within the training
dataset caused the accuracy of the model to increase. Nevertheless the major contribution
came from the data augmentation techniques used to expand the dataset. This allowed,
at the expense of a small increase in the training times, the models to be more robust to
new types of scenes and also more accurate.
The ease with which it was possible to generate so many datasets for training is thanks
to the new version of the JINS software. The software now has several functions such
as propagating the relative orbit that one wants to represent, the satellite model can be
directly chosen by the user via a menu and no longer by running several scripts, and
most importantly it is possible to implement both chaser and target attitude. This last
function is very important if one wants to represent even more realistically the inspection
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mission considered. In this way it is possible to generate a video on which one can run the
inference to assess the performance of the model during the mission. To test the models
not only on JINS-generated scenes, real images of the Intelsat 901 satellite were used.
Unlike previous work where these images were preprocessed to eliminate the background
noise, now they are provided to the models without eliminating the noise to compare the
performance of the models with noisy images. It was shown that PointRend has higher
accuracy even on real images. Moreover eliminating the preprocessing step resulted in
reducing the number of operations required to obtain information from the scene.
The branch of computer vision is a new and constantly evolving environment. As the
use of machine learning in orbit receives more and more attention, such dynamic envi-
ronments make it possible to formulate several ideas for future development of this work.
Among them:

• Implement on a Raspberry Pi board to verify the low computational cost and the
performances on real images knowing the parameters of the camera.

• Verify if the data obtained from the instance segmentation of the scene can be used
for avoidance manoeuvres.

• Use the instance segmentation model as a base to estimate the pose of the satellite.

• Replace the standard backbone of the model with a vision transformer specifically
the SWIN transformer developed by Microsoft. The use of the vision transformer
is an approach to replace convolutions entirely with a transformer model.

• Implement additional data augmentation techniques and embed them directly within
the JINS software.

• Perform hyperparameter tuning to see the maximum performances of the model and
compare with the ones obtained using a variable learning rate.

• Implement models based on the YOLO family of methods, such as YOLACT, which
not only enables very high inference rates but also instance segmentation. This
allows to have greater temporal consistency between segmentations in the case where
the inspection mission takes place around a satellite rotating at high speed.
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