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Sommario

La calibrazione delle domande, ovvero la stima della loro difficoltà, è una componente
molto importante dell’educazione. Infatti, il livello di conoscenza degli studenti può
essere stimato dalla correttezza delle loro risposte alle domande dell’esame e dalla
loro difficoltà. Una stima accurata della difficoltà delle domande può anche essere
sfruttata per fornire agli studenti esercizi adatti al loro livello di abilità. Gli approcci
tradizionali alla calibrazione delle domande sono la calibrazione manuale e il pre-test.
Nella calibrazione manuale, uno o più esperti assegnano a ciascuna domanda un
valore numerico che ne rappresenta la difficoltà, e questo è intrinsecamente soggettivo.
Nel pre-test, le domande vengono somministrate agli studenti in un vero esame e
successivamente la difficoltà è stimata a partire dalla correttezza delle loro risposte. Il
pre-test introduce un lungo ritardo tra il momento della generazione della domanda
e il momento in cui può essere utilizzata per valutare gli studenti. Ricerche recenti
hanno cercato di risolvere questo problema stimando la difficoltà delle domande
usando solo le loro informazioni testuali, sfruttando tecniche di Natural Language
Processing (NLP) come modelli neurali o bag of words. L’idea alla base di ciò è
ridurre (o eliminare) la necessità di calibrazione manuale e di pre-test, stimando
la difficoltà delle domande dal loro testo, che è immediatamente disponibile dopo
la creazione della domanda. I modelli linguistici pre-addestrati, in particolare i
Transformers, hanno portato a notevoli miglioramenti in diverse aree del NLP, ma
finora nessuno studio ha esplorato il loro utilizzo per la calibrazione delle domande.
In questo lavoro, eseguiamo uno studio su come i modelli Transformers (in particolare,
BERT e DistilBERT) si confrontano con lo stato dell’arte attuale nella stima della
difficoltà dal testo e proponiamo un modello che è in grado di migliorare il precedente
stato dell’arte. Il nostro modello è addestrato utilizzando il testo e la difficoltà delle
domande, ma può opzionalmente sfruttare un corpus aggiuntivo di documenti per
migliorare le prestazioni. Test effettuati su due diversi set di dati, uno pubblico e
uno privato, mostrano che il nostro modello riduce la radice del valore quadratico
medio (in inglese Root Mean Square Error, RMSE) degli studi precedenti fino al 6,5%
e conferma la nostra intuizione sull’efficacia dei modelli basati su Transformers per
stimare la difficoltà dal testo delle domande. Inoltre, analizziamo quali caratteristiche
delle domande possono influire sull’errore di predizione del modello.
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Abstract

Question Difficulty Estimation (QDE), a process which is also referred to as question
calibration, is a very important task in education. Indeed, the knowledge level of
students, also called skill, can be estimated from the correctness of their answers
to exam questions and their difficulty. An accurate estimation of question difficulty
can also be leveraged to provide students with exercises suitable for their skill level.
Conventional approaches to question calibration are manual calibration and pretesting.
In manual calibration, one or more domain experts assign to each question a numerical
value representing the difficulty, and this is intrinsically subjective. In pretesting,
questions are administered to students in a real test scenario, and then the difficulty
is estimated from the correctness of their answers. Pretesting introduces a long
delay between the time of question generation and when the question can be used
to score students. Recent research tried to overcome this issue by estimating the
difficulty of questions using only their textual information, exploiting Natural Language
Processing (NLP) techniques such as neural models or bag of words. The idea behind
this is to reduce (or eliminate) the need for manual calibration and pretesting by
estimating the difficulty of questions from their text, which is immediately available at
the moment of question creation. Pre-trained language models, especially Transformers,
have led to impressive gains on several NLP tasks, but no previous work has explored
their use for question calibration. In this work, we perform a study of how Transformer
models (specifically, BERT and DistilBERT) compare with the current state of the art
in the task of QDE from text, and propose a model which is capable of outperforming
previous research. Our model is trained on the text of questions and their difficulty,
but can optionally take advantage of an additional corpus of domain-related documents
to improve performance. Tests on two different real-world datasets, one public and
one private, show that our model reduces the Root Mean Square Error (RMSE) of
previous baselines by up to 6.5% and confirms our intuition about the effectiveness of
Transformer-based models for QDE from text. Furthermore, we carry out an analysis
on which characteristics of the questions (such as length of the text and presence of
numbers) can influence the prediction error.
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Chapter 1

Introduction

The task of modeling student knowledge over time is defined as Knowledge Tracing
(KT). An accurate estimation of students’ skill levels can be leveraged by teachers to
provide tailored content and understand if there are students struggling and, therefore,
in need of further support. Also, it can be leveraged to perform personalized exercise
recommendations. The growth of online education platforms has led to the availability
of a large number of exercises. Rather than wasting their time on exercises that are
too easy or too hard, students could practice more with exercises appropriate to their
skill level. Student’s skill is usually estimated using the correctness of their answers
and the difficulty of each question they answered to. Questions, also called items, need
to be calibrated before being used in a real exam. Calibration consists in estimating
some latent (i.e., non-observable) characteristics of questions, such as their difficulty.
Question Difficulty Estimation (QDE) is essential to give students questions that are
not too difficult or too easy so that they can accurately identify the student’s skill
level. All examinees would answer wrongly to an item that is too difficult, giving no
information about their knowledge. The same happens with too easy items, which
would be answered correctly by everyone regardless of their skill level.

The standard methodologies used to estimate the difficulty of newly created
questions are manual calibration and pre-testing with real students. In manual
calibration, it is necessary the intervention of an expert who manually selects numerical
values representing the difficulty of the questions; thus, the evaluation may be biased
and is intrinsically subjective [31]. Also, it is time-consuming and non-scalable. In
pre-testing, questions are administered to a group of students in a real test scenario.
The difficulty of the questions under pre-testing is then estimated from the correctness
of students’ answers. Questions under pre-testing are not used for scoring, and they
should be indistinguishable from the others. This method leads to an accurate and
reliable estimation but introduces a long delay before the newly generated questions
can be used in a real exam.

In the literature, there is a recent interest in developing a model able to automat-
ically perform QDE from text. The growth of this interest is due to the fact that
such a model might eliminate or at least reduce the need for pre-testing and manual
labeling. Automatic difficulty assessment can support the creation of new questions,
especially with the increasing availability of algorithms for automatic question genera-
tion, helping in real-time to discard too easy or too difficult ones. Recent models for
QDE from text explored the use of Natural Language Processing (NLP) techniques
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Chapter 1. Introduction

such as TF-IDF [6] or ELMo embeddings [72], but none of them makes use of the
latest NLP approaches (e.g., Transformer models). Moreover, most previous models
are trained on questions’ text, but some models also require additional resources (such
as lecture notes) to extract other useful information. This limits the utilization in
those contexts where such additional resources are not available.

We explored the extent to which using Transformers language models can be
beneficial for QDE from text and propose a model that outperforms previous studies.
Our research focuses on two pre-trained models: BERT and DistilBERT. We fine-
tuned the two models on the task of difficulty estimation from text, using only
the text of the questions, but also experimented with the possibility of leveraging
an additional corpus of domain-specific texts to improve their performance. We
experimented on two different datasets, one private from Cloud Academy1 and one
public from ASSISTments2. Results show that the proposed model outperforms all
previous baselines. Our model reduces the Root Mean Square Error (RMSE) by up to
4.7% with respect to previous approaches when trained only on questions’ text. The
improvement is even more significant, up to 6.5%, if our model is further pre-trained on
an additional corpus of text related to the same domain of the questions. Furthermore,
we propose an analysis of which characteristics of the question may influence the
model performance. The code is publicly available for future research3.

The rest of this document is organized as follows:

• Chapter 2 Background, it provides fundamental theoretical notions.

• Chapter 3 Related Works, it collects various research works present in the
literature related to our work.

• Chapter 4 Models, it describes our approach to perform Question Difficulty
Estimation (QDE), giving an high-level view of the model architecture and
training.

• Chapter 5 Experimental Datasets, it presents the datasets and the pre-
processing.

• Chapter 6 Experimental Setup, it provides information about the setup used
to perform the various experiments.

• Chapter 7 Results, it shows and analyses the results of the experiments
performed on the datasets.

• Chapter 8 Conclusion, it gives the final considerations about the experiments
and proposes a direction for future works.

1https://cloudacademy.com/
2https://new.assistments.org/
3https://github.com/aradelli/transformers-for-qde
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Chapter 2

Background

This chapter has the purpose of establishing some common ground by introducing the
theoretical foundations used for the development of the proposed model. Section 2.1
introduces the concept of difficulty of a question, presenting two popular psychometry
frameworks. Then, Section 2.2 introduces a classic approach to text mining and
Section 2.3 presents the most modern NLP techniques based on Transformers models.

2.1 Questions Calibration

2.1.1 Classical Test Theory

Classical Test Theory (CTT) is a theory that predicts outcomes of psychological
testing, such as the difficulty of items or the ability of test-takers. The goal of CTT,
also called “true score theory”, is to improve the reliability and validity of tests. The
term “classical” refers to the time when this framework was developed, and it is also
in contrast with modern psychometric theories such as Item Response Theory. CTT
has been the most used in the last century and has the advantage of being simple to
compute and understand compared to Item Response Theory (IRT).

Classical Test Theory assumes that each individual has associated a true score
T , which would be possible to observe if there was no error in the estimate. For a
person taking a test, his true score is the expected value of the observed scores over
an infinitely long run of repeated independent administrations of the same test [7].
Doing an infinite number of observations is impossible; therefore, the observed score
X is used. The observed score X is made up of the sum of the true score T and an
Error E; errors are assumed to be normally distributed with mean equal to zero. The
(linear) model describing CTT is the following:

X = T + E (2.1)

Where T and E are two unobservable (or latent) variables.
The major assumptions [24] underline the CTT are:

3



Chapter 2. Background

• T , E are not correlated.

• E is normally distributed with zero mean.

• The errors of different tests are not correlated.

A reliability coefficient can provide an estimate of the level of concordance between
observed and true scores. The reliability of test scores ρ2XT is defined as follows:

ρ2XT =
σ2
T

σ2
X

=
σ2
T

σ2
T + σ2

E

(2.2)

Where σ2
T is the true score variance, σ2

X is the observed score variance, and σ2
E is

the error variance.
The reliability is zero when all variation in the observed scores is due to measure-

ment error. The maximum value (i.e., ρ2XT = 1) is when there is no measurement
error. However, the true scores of test-takers are not observable, thus the reliability
is estimated indirectly using parallel-tests. Two tests are considered parallel if they
have the same observed variance in the population of examinees, and each student
has the same true score on both tests.

The concept of difficulty of an item in CTT is expressed by the p-value. The p refers
to probability and is the fraction of correct responses in the considered population.
Usually, the p-value is typically referred to as item difficulty or correctness. It should
be noted that the higher the p-value, the easier the item is. In the same way, we can
also define the wrongness as 1−p-value.

The property of an item to discriminate between high ability examinees and low
ability examinees is called discrimination. If an item is dichotomously scored (i.e., the
score is 0 or 1), the discrimination estimate is computed as a point-biserial correlation.

CTT has several shortcomings that have led to the development of other models.
The major limitation of CTT can be summarized as a circular dependency: (a) the
person statistic is (item) sample dependent, and (b) the item statistics are (examinee)
sample dependent [18]. On the other hand, CTT has weak theoretical assumptions,
which make it easy to apply in many testing situations.

2.1.2 Item Response Theory

Item Response Theory (IRT)—also named latent traits theory—is a family of models
used to perform abilities assessments. Important educational tests, such as the
Graduate Management Admission Test (GMAT), use IRT to improve measurement
accuracy and reliability [51]. However, IRT is not used only in the educational context:
the latent trait can be a behavioral characteristic, such as customer satisfaction or
others. This theory was developed around the mid-1900s but was not widely used
until the end of the century. A property that has made IRT widely used is the
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2.1. Questions Calibration

invariance property: items’ latent traits do not depend on the ability distribution of
test-takers [25].

In IRT, each student is supposed to have associated one or more latent traits, also
called skills or abilities. The same is true for questions (also called items) that have
one or more latent traits associated with them.

IRT models can be unidimensional or multidimensional (MIRT): in the first case,
each student is modeled as having only one skill, while the second one introduces
multiple skills referring to different topics (e.g., mathematics and science) and multiple
difficulties for each question.

IRT models can be grouped in three main categories depending in the number of
questions’ parameters which are defined:

• One-Parameter Logistic (1PL), also known as Rasch Model [50], which defines
a difficulty for each item.

• Two-Parameter Logistic (2PL), which defines a difficulty and a discrimination
for each item.

• Three-Parameter Logistic (3PL), which defines a difficulty, a discrimination,
and a guess factor for each item.

Different IRT models can be classified based on the score that can be assigned to
students’ answers. In the case the score of an item is only correct or wrong, i.e. item
dichotomous, we have Dichotomous IRT. These models are very common since they
can model Multiple Choice Questions (MCQ) or true-false questions.

Given a question i with difficulty bi, discrimination ai and a guess factor ci,
IRT defines the Item Response Function (IRF) (also know as Item Characteristic
Curve (ICC)), which represents the probability that a student with a skill level theta
(θ) correctly answers the question. The formula of the item response function is as
follows:

Pi(θ) = ci + (1− ci)
1

1 + eai(θ−bi)
(2.3)

The difficulty parameter affects the location of the logistic curve along the horizontal
axis: as the difficulty increases, a student with a given skill level is less likely to answer
the question correctly. Figure 2.1 shows three items with different difficulty.
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Figure 2.1. Effects of the difficulty on the Item Response Function (IRF).

The discrimination affects the slope of the logistic curve: as the discrimination
increases, the steepness increases. Figure 2.2 shows three items with different discrim-
ination. The question with discrimination a3 = 3, manages to discriminate with good
precision a student with an ability level (θ) lower than −1 or greater than 1, while
the question with discrimination a1 = 0.5 does not provide much information because
students with different skill levels have a similar probability of correctly answering
the question. A question with a large discrimination value can differentiate better
between different skills level of students, and this is the reason why the discrimination
can be considered as a proxy of the “quality” of a question.
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Figure 2.2. Effects of the discrimination on the Item Response Function (IRF).
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2.2. Traditional approaches to Natural Language Processing

The guess factor takes into consideration the fact that an examinee could pick
the correct answer by chance, even without having the required knowledge level. An
example where this may happen is in Multiple Choice Questions (MCQ).

Parameter estimation methods

In the literature, we can find four techniques for the estimation of item response models:
joint maximum likelihood, conditional maximum likelihood, marginal maximum
likelihood, and Bayesian estimation with Markov chain Monte Carlo. All of them
rely heavily on the assumption that individuals are independent from each other
and that the item responses of a given individual are independent, given that an
individual’s skill level [33]. The applicability of the aforementioned methods depends
on the number of parameters to fit and whether we need to estimate both students’
and items’ latent traits or only one of the two.

It is important to point out that the quality of the estimated parameters, regardless
of the method, is influenced by two factors [52]: i) test length (i.e., how many items
are in the test); ii) sample size (i.e., how many different interactions for each item).

2.2 Traditional approaches to Natural Language Pro-
cessing

Natural Language Processing (NLP) is a field of artificial intelligence that deals
with the interaction between computers and humans using natural language. It is
an interdisciplinary field that began around 1950, combining linguistic, computer
science, and artificial intelligence. With the advent of big data, we have seen an
exponential increase of data in the form of text and the need of processing them in
an automated way. Dealing with language is very tricky: it is inherently ambiguous,
words can assume various meanings depending on the context, and they can acquire
new meanings over time; these and many other things make it a challenging task.
Tasks in NLP frequently involve speech recognition, natural language understanding,
and natural language generation.

2.2.1 Text Preprocessing

Text preprocessing is traditionally a necessary step for NLP tasks. It changes text into
a more digestible form, below are some of the most common steps of this phase [62].

Tokenization

Tokenization consists in splitting a text into words, phrases, or other meaningful parts,
namely “tokens”. Tokens can be either words, characters, or subwords. Typically, the
segmentation is carried out considering only alphabetic or alphanumeric characters
that are delimited by non-alphanumeric characters (e.g., punctuations, whitespace).

As a simple example of word-level tokenization, we can consider the sentence:
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This is an example of tokenization

The result is a list of tokens, where each token is a word:

[This, is, an, example, of, tokenization]

While it is the most straightforward way to separate texts in smaller chunks, it can
cause problems when you have a vast corpus: it usually yields a huge vocabulary (the
set of all unique tokens used), especially in morphologically rich languages. Another
issue in tokenization is also how to deal with unknown words; usually, a special token
is reserved for these words.

A better way to perform tokenization is Byte Pair Encoding (BPE) [55]. The
sentence of before tokenized using BPE:

[This, is, an, example, of, token, ization ]

WordPiece [54] is another subword tokenization algorithm very similar to BPE.

Stop word removal

Stop words are common words (e.g., prepositions, articles) that do not contribute
much from a semantic perspective to the content or meaning of a document; for this
reason, they should be eliminated from a text. Moreover, removing stop words reduces
the dimensionality of the input space. The most frequent words in text documents are
articles, prepositions, and pronouns that do not give the meaning of the documents.
Very frequent words in the considered corpus, called corpus specific words, can be
eliminated. These words are not necessarily very common in the language under
consideration.

Stemming

This method is used to identify the root of a word. The purpose of this method is to
remove various suffixes, to reduce the number of words, to have accurately matching
stems, to save time and memory space. It is used as an approximate way for grouping
words with a similar basic meaning together. For example, the words correlate,
correlated, correlating, correlations, all can be stemmed to the stem “correlate”. An
algorithm that performs this step is called stemmer. One common implementation is
the Porter stemmer [66].

8
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Others

Other steps that can be done are converting all letters to lower cases, converting
numbers into words or removing them, removing punctuations, removing white
spaces, and expanding abbreviations. All this is done to prepare the text in a better
manageable format for the machine, also reducing the dimensionality.

2.2.2 Encoding Text

Once the text has been tokenized, the tokens obtained must, however, be transformed
into numbers to be feed as input to machine learning models. A naive way to do this
is to assign a different number for each token. For example, using this approach on
the sentence “encoding text is a serious thing”, the encoding would be:

[encoding, text, is, a, serious, thing ] => [5, 2, 3, 1, 6]

Another very similar approach is to use a one-hot encoded representation for all
the words in our vocabulary.

encoding => [1, 0, 0, 0, 0, 0]
text => [0, 1, 0, 0, 0, 0]
is => [0, 0, 1, 0, 0, 0]
a => [0, 0, 0, 1, 0, 0]
serious => [0, 0, 0, 0, 1, 0]
thing => [0, 0, 0, 0, 0, 1]

As we can observe, this representation is sparse since most of the elements are
zero. The two techniques presented before are not good encoders for several reasons:
they do not capture meaning, semantic relationships, similarities between words, and
do not take into consideration the context in which a word appears.

Word embedding is the common name for a set of language modeling and feature
learning techniques in NLP where words or phrases from the vocabulary are mapped
to vectors of real numbers. Embedding refers to any technique mapping a word (or
phrase) from its original high-dimensional input space (the body of all words) to a
lower-dimensional numerical vector space. The approaches used for mapping can be
divided into two groups:

1. Frequency-based Embedding;

2. Prediction-based Embedding.
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In the first category, there are techniques that exploit the frequency of a word’s
occurrence to extract embeddings. One of these is called TF-IDF, which will be
covered in more detail later.

The second includes various techniques, for the most part, probabilistic models
and neural-based models. They learn embeddings by predicting a word based on
the words present in the context. One of the most relevant neural-based embedding
technique is Word2Vec, developed by a team of researchers at Google [42] in 2013 and
has become the de-facto standard for developing pre-trained word embedding.

2.2.3 Term Frequency–Inverse Document Frequency (TF-IDF)

TF-IDF is a statistical measure that is meant to indicate how relevant a word is to
a document in a collection or corpus. It is used as a weighting factor in searches
of information retrieval and text mining applications. The TF-IDF value increases
proportionally to the number of times a word appears in the document and is
counterbalanced by the number of documents in the corpus that contain the considered
word, which helps to compensate for the fact that some words appear more frequently
in general (such as stop words). TF-IDF is calculated with the following formula:

TF − IDF (t, d,D) = tf(t, d)× idf(t,D) (2.4)

Where t indicates the terms, d indicates each document, and D indicates the
collection of documents.

The first term of the formula 2.4, tf(t,d), is called term frequency and represents
the number of times each word appears in each document. The second part idf(t,D)
is called inverse document frequency and represents how frequent or unfrequent a
word is in the entire document set: The closer it is to zero, the more common a word
is. It is calculated as indicated below:

idf(t,D) = log
| D |

1 + | {d ∈ D : t ∈ d} |
(2.5)

Using TF-IDF, we can extract features from text and use them for a task as
classification or regression. However, the dimensionality (size of the feature set) in
TF-IDF for textual data is the size of the vocabulary across the entire dataset, leading
to a huge computation on weighting all these terms [78]. Usually, not all the features
are used, but it is built a vocabulary that only considers the top features ordered by
term frequency across the corpus.
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2.2.4 Machine Learning Models

Once the text has been transformed into vectors, these can be used for statistical
analysis or as input to machine learning models. Machine learning is used in NLP in
both unsupervised and supervised ways. An example of an unsupervised application
is Latent Dirichlet Allocation (LDA) topic modeling, whose goal is to identify topics
in a set of documents. Supervised learning is widely applied in several tasks, such
as document classification and regression, using different models, including neural
network, random forest, and Support-Vector Machines (SVM). Random forest is a
supervised learning algorithm that can perform both classification and regression. It
was proposed in 1995 [29], and in the following years, it has been improved in several
ways. It is composed of an ensemble of decision trees. The prediction of a decision
tree follows several branches of “if-then” decision splits similar to the branches of a
tree. The endpoint is called a leaf, and it represents the final result: a predicted class
(classification) or a value (regression). At each branch, the feature threshold that
best split the samples locally is found. A single decision tree usually tends to overfit
as its depth increases; random forests reduce the variance and bias by combining
various decision tree models. Random forests train several decision trees on various
subsamples of the dataset and various subsamples of the available features.

The principal hyperparameters in random forests are:

• The number of decision trees in the forest usually called estimators.

• The max depth of a tree: as the longest path between the root node and the
leaf node.

• The minimum number of samples required to split each node.

• The minimum number of samples required for each leaf.

• The number of features to consider when looking for the best split.

2.3 Deep Learning in Natural Language Processing
The classical machine learning pipeline is typically done using a set of hand-crafted
features that are then fed to a trainable model. A priori knowledge of the data is
required to decide how and which features to extract. One of this approach’s issues is
that the selection of the features may require the need for an expert or may be difficult
to perform and hence suboptimal. Moreover, these extracted features are usually
applicable only to one specific problem and not transferable. Deep Learning is a
category of machine learning algorithms in which the feature extractor is trained too, to
learn the best representation of the data so that the features are tailored to the specific
problem it is required to solve. It uses multiple hidden layers of neurons to extract
low, mid, and high-level features. Deep Learning assumes that it is possible to learn a
hierarchy of descriptors with increasing abstraction. Neural-based models, especially
deep learning ones, have achieved superior results on various language-related tasks
as compared to traditional machine learning models.
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2.3.1 Feed Forward Neural Networks

Artificial neural networks are systems inspired by the biological neurons which allow
humans to learn. The brain’s computational model is distributed among simple
units called neurons; it is intrinsically parallel and redundant and thus fault-tolerant.
The neuron has a main connection with the rest of the network, called the axon,
and other minor connections called dendrites. Neurons are connected through the
synapses, which are the terminations of the dendrites, and neurons exchange charge
through them. The impact on the receiver is different between synapses, so they have
different weights. A neuron cumulates charges, and when it exceeds a threshold level
for the membrane potential, it gets released through the axon (firing). Hence, the
computation is a highly nonlinear phenomenon because the neuron is almost inactive
until it suddenly spikes.

The basic component of an artificial neural network, called perceptron, was created
in 1958 by Frank Rosenblatt. The perceptron is a binary linear classifier which
applies a threshold function on the linear combination of the input features. Figure
2.3 describes the components of a perceptron: inputs Xn = [x1, x2, ..., xn], weights
Wn = [w1, w2, ..., wn], the bias b (the threshold) and the activation function f .

x2 w2 Σ f y

x1 w1

x3 w3

b

Figure 2.3. Perceptron.

The function describing the percepetron is the following:

y = f(
n∑
i=1

wixi − b) = f(
n∑
i=0

wixi) (2.6)

This formula describes the output of the perceptron; the bias b can be inglobed
into the summation, also becoming a parameter to be learned.

The training process of a single perceptron occurs through hebbian learning,
introduced by Donald Hebb in his 1949 book The Organization of Behavior [28].
Hebbian learning is summarized in the following rules:
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wk+1
i = wki + ∆wi (2.7)

∆wki = ηtkxki (2.8)

Where:

• η: learning rate

• xi: ith input at time k

• tk: desidered output at time k

It is easily demonstrated that a single perceptron cannot learn a nonlinear separable
space; for example, it cannot learn a XOR function. Hence the idea of combining
several perceptrons together.

The combination of perceptrons in connected layers resulted in a Multi Layer
Perceptron (MLP), which belongs to the class of Feed Forward Neural Network
(FFNN). In FFNN, the flow of information moves only forward from the input
nodes to the output nodes. There are no cycles or loops in the network. A general
architecture consists of at least three layers of parallel neurons: an input layer, a
hidden layer with a nonlinear activation function at each neuron, and an output layer.
The dimensionality of the input and output layer depends on the problem, while the
shape of the hidden layer, in terms of the number of neurons per hidden layer and the
number of hidden layers, is a design parameter.

Input
layer

Hidden
layer

Output
layer

x1

x2

x3

x4

x5

Ouput

Figure 2.4. A FFNN with 5 neurons in the input layer, 3 neurons in the hidden layer and 1
neuron in the output layer.
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Hebbian learning is not applicable to train this kind of network since we have more
than one neuron. The most commonly used algorithm for FFNN training is called
backpropagation. It computes the gradient of the loss function with respect to the
network’s weights for a sample or a group of samples (batch). Then, it updates the
weights to minimize loss using gradient descent or other variants such as stochastic
gradient descent.

2.3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are derived from feedforward neural networks
and, differently from FFNN, are able to handle dynamic data, using an internal state
as a memory to process variable-length sequences of inputs. The reason why RNN are
called recurrent neural networks is that the previous outputs are used as inputs for the
current sequence; in this way, computation takes into account historical information.
RNN models are commonly used in the fields of natural language processing and
speech recognition.

Context
layer

Output

Figure 2.5. Elman neural network architecture.

In Figure 2.5 is represented the structure of an Elman network, a category of RNN.
The main difference over the FFNN is the context layer, which receives input from,
and returns values to, the hidden layer: the output produced at time t affects the
parameter available at time t+ 1.
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The training of these kinds of networks is done using an algorithm called back-
propagation through time, which is an extension of the standard backpropagation
algorithm. It performs: i) Unfolding of the RNN for U time steps, obtaining a FFNN;
ii) backpropagation is applied to the new network.

Vanishing gradient

The vanishing and exploding gradient phenomena, where the backpropagated error
decreases or increases exponentially, are often encountered in the context of RNNs.
The reason why it happens is the multiplicative gradient that can be exponentially
decreasing/increasing to the number of layers. This problem is relevant, especially
in RNN, because they have a large number of layers after the unfolding: the more
the learning process goes into the past, the more the gradient will be close to zero,
independently of the error (vanishing gradient). This is caused by some activation
functions, such as sigmoid or hyperbolic tangent, which have a derivative smaller than
1. By repeatedly multiplying them during the training process, the gradient will go to
zero.

One possible solution to solve the vanishing problem is to use an activation function
called ReLU defined as follows:

f(x) = ReLU(x) = max(0, x) (2.9)

It has a derivative equal to 1 for x > 0 and equal to 0 for x < 0. In the former
case, the gradient is backpropagated as it is, while in the latter, no gradient is
backpropagated from that point backward.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0
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f(x
)

ReLU
leaky-ReLU

Figure 2.6. Differences between ReLU and leaky-ReLU.
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The use of ReLU has a disadvantage: if the weights learned are such that the x
is negative for the entire domain of inputs, the neuron never learns. This is known
as the dying ReLU problem. The dying ReLU problem can be tackled by using a
modified version of the activation function, called leaky ReLU defined as follows:

f(x) = max(0.01x, x) (2.10)

LSTM

Another solution to deal with vanishing gradient is to use Long short-term memory
(LSTM) networks [30]: particular types of RNN that can learn very long sequences.
They have a cell state ct−1, which allows the information to go through it unchanged.
The LSTM can remove or add information to the cell state if needed through structures
called gates. Gates allow to let information through if needed and are composed of a
sigmoid neural net layer and a pointwise multiplication operation. There are three
different gates: the Forget gate decides what information should be thrown away or
kept from the previous step; the Input gate decides what information is relevant to
add from the current step; the Output gate determines what the next hidden state
should be.

The same problem that usually happens to RNN happens with LSTM as well,
that is when sentences are too long LSTM do not work well. The reason is that the
probability of keeping the context from a word that is distant from the current word
being processed decreases exponentially with the distance from it. Another issue with
RNN, and LSTM, is that it is difficult to parallelize the processing of sequences since
you have to process word by word.

σ σ Tanh σ

× +

× ×

Tanh

ct−1

Cell

ht−1

Hidden

xtInput

ct

Next cell

ht

Next hidden

htOutput

Figure 2.7. LSTM structure.
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2.3.3 Preventing Neural Networks from overfitting

The training of neural network models is based on a finite set of training data. During
the training, the model’s objective is to perform well in predicting the training set’s
observations. In general, however, a machine learning scheme’s goal is to produce a
model that generalizes, that is, that predicts previously unseen samples. Overfitting
occurs when a model fits the training data well while having low performance on
the testing data. Some of the most used techniques to reduce overfitting in neural
networks, also referred to as regularization techniques, are described below.

Dropout

Dropout is based on a simple idea. During training, some neurons are randomly
switched off or “dropped out” with a certain probability preventing neurons from
co-adapting too much. Co-adaptation is when some connections have more predictive
capability than the others. While training, dropout trains different subnetworks,
similar to an ensemble. Dropout can be applied to any hidden layers in the network,
as well to the input layer, but it is not used on the output layer. The dropout is then
not used during the testing (or inference).

Early stopping

The model tries to minimize the loss function on the training data by tuning the
parameters. Overfitting networks show a monotone training error trend, but at some
point, they loose generalization. At each epoch, the loss is calculated on a different
data split, called validation set. When the loss of the validation set stops decreasing,
the training is stopped. However, when the validation loss starts to rise, the training
is not stopped immediately but continues for a number (the “patience”) of epochs to
avoid local minima. This simple strategy of stopping early based on the validation set
loss is called Early Stopping.

L1 & L2 regularization

A way to avoid overfitting is to regularize the cost function of the neural network. A
complex model is prone to overfitting, so to penalize complexity is possible to add to
the loss function another term known as the regularization term.

L1 regularization, also known as Lasso Regularization is defined as follows:

λ
N∑
n=1

|wi| (2.11)

Where λ is a hyperparameter that determines the regularization’s importance
compared to the loss, and w are the weights. L1 regularization pushes weights to be
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zero, producing sparse models, i.e., models where unnecessary features don’t contribute
to predictions.

L2 regularization, also known as Lasso Regularization is defined as follows:

λ

N∑
n=1

w2
i (2.12)

L2 doesn’t push the values to be exactly zero, but only close to zero.

2.3.4 Encoder-Decoder architecture

The encoder-decoder architecture is a very general design. The encoder is a neural
network that maps an input space, for example, a sentence, to a latent space. The
decoder is the complementary function that creates a map from the (encoder’s) latent
space to another target space. A task like machine translation is done by mapping
the input space (e.g., a sequence of tokens in English) to another output space (e.g.,
a sequence of tokens in French) and linking them through a shared latent space.

An autoencoder is a particular case of an encoder-decoder where the target is equal
to the input. The encoder and the decoder are trained together. The loss function
is based on computing the delta between the actual and reconstructed input. The
optimizer will try to train both encoder and decoder to lower this reconstruction loss.
This process is completely unsupervised, and no label is needed. Once trained, we
can keep only the encoder part and extract meaningful information from the input.

The encoder-decoder approach was successfully used in machine-translation, and it
is called Sequence to Sequence Learning (seq2seq) [59]. Originally based on multiple
layers of LSTM to map the input sequence to a fixed vector, and then others LSTM
layers to decode the target sequence from the latent vector. However, a single fixed-size
hidden state becomes an information bottleneck, resulting in performance degradation
when dealing with long sentences. The idea to solve this problem is to introduce a
mechanism called attention, which allows using all the encoder’s hidden states as a
source of information.

18



2.3. Deep Learning in Natural Language Processing

Figure 2.8. seq2seq training process.1

2.3.5 Attention

Attention is a concept that refers to how we, as humans, actively process certain
information in the environment. An example is when we focus on different regions of an
image or when we correlate words in a sentence. Researchers have tried to reproduce
this mechanism to better memorize long source sentences in neural machine translation
(NMT), and have become a fundamental part of sequence modeling, allowing modeling
of dependencies without concern about their distance in the input or output sequences.
It is usually presented combined with seq2seq models to explain how it works. This is
because attention has initially been introduced as a solution to address the problem
of capturing long dependence in seq2seq models. Attention is successfully applied in
NLP, but also in computer vision: a visual attention mechanism was proposed in 2015
by Xu et al. [68].

Different models of attention exist, and can be grouped into three main categories:

• Self-Attention (also called intra-attention).

• Global/Local attention.

• Hard/Soft attention.

Self-attention relates to different positions of a single sequence to compute a
representation of the same sequence.

Xu et al. [68] have proposed the concept of Hard and soft attention; they present
an attention-based model that automatically learns to describe the content of images
based on this attention. In hard attention, some part of the image is selectively
ignored, while in soft attention, all the image is used, but in an aggregated and
reweighted form.

1https://medium.com/@Aj.Cheng/seq2seq-18a0730d1d77
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Global and local attention were introduced in [40]. It is a concept very similar to
hard and soft attention; the global one always attends to all sources of information,
and local uses only a subset at a time. An improvement is that local attention is
differentiable everywhere, while this is not true in hard attention.

In the beginning, the attention mechanism was applied to RNN, but this does not
allow for processing inputs in parallel.

2.3.6 Transformers

The Transformer is a deep learning model introduced the first time in 2017 in the
paper Attention is all you need [61] and mostly used in NLP tasks. Transformers
are created to handle sequential data, such as natural language, without requiring
the sequential data to be processed in a given order, unlike RNNs. This fact allows
parallelization, reducing training time compared to RNNs, making easier the training
on a large corpus of data. Moreover, Transformers models easily manage long-range
dependencies, thanks to the attention mechanism.

The Transformer is based on an encoder-decoder architecture, as shows Figure
2.9 where the encoder is the block on the left and the decoder on the right. There
are multiple identical encoder-decoder blocks stacked on top of each other. Both the
encoder stack and the decoder stack have the same number of units. The Transformer
is composed of:

• Scaled Dot-Product Attention.

• Multi-Head Attention.

• Position-wise Feed-Forward Networks.

• Embeddings and Softmax.

• Positional Encoding.

The Transformer relies on self-attention mechanism, more precisely on Scaled
Dot-Product Attention. The encoded representation of the input is a set of key-value
pairs, (K,V ), both of dimension n (the input sequence length), where the keys and
values are the encoder hidden states. In the decoder, the previous output is compressed
into a query (Q of dimension m) and the next output is produced by mapping this
query and the set of keys and values. The output is a weighted sum of the values,
where the weight assigned to each value is calculated as the dot-product of the query
with all the keys:

Attention(Q,K, V ) = softmax(
QKT

√
n

)V (2.13)

The attention is calculated multiple times, therefore referred to as Multi-head
attention: “Multi-head attention allows the model to jointly attend to information from
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different representation subspaces at different positions” [61]. Then each Multi-head
attention layer is followed by a fully connected layer.

Figure 2.9. The Transformer - model architecture [61].

Another aspect to clarify is how to give information about the order of tokens in
the input sequence since it different compared to RNNs. A position-dependent vector
is added to each word-embedding, called positional encoding, that in the original
paper uses sinusoidal functions.

2.3.7 Pre-trained Models & Transfer Learning

Transfer learning refers to a technique that allows the storing of knowledge obtained
while solving a task and utilizing it for a different but related task. In some domain,
it is challenging to construct a large-scale well-annotated dataset, or to train a model
on a large amount of data could be very expensive. Transfer learning relaxes the
hypothesis that training data must be independent and identically distributed with
the test data [60]. It addresses the problem of lack of training data in a new domain,
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transferring knowledge from a pre-existing data pool, and prevents the training of the
model from scratch.

Transfer learning is common in the real world: learning to ride a motorbike might
help to ride a car, or learning a new language might help you learn another. In deep
learning, common transfer learning cases are in image vision and NLP fields.

An example of a pre-trained deep neural network in computer vision is the
ResNet [27]. It is trained to classify more than a million images. One common source
used to do the pre-training is the ImageNet dataset [14], a large dataset consisting of
1.4M images and 1000 classes. Next, it is possible to exploit the model to do a more
specific task.

Transfer learning is also being widely used in the field of NLP, in the form of
pre-trained language models. These models are, in most cases, trained on a large
corpus of text in an unsupervised manner.

Bidirectional Encoder Representations from Transformers (BERT)

BERT is a deep learning model, developed by Google in 2018, that has given state-
of-the-art results on eleven NLP tasks such as GLUE [63] and Stanford Q/A dataset
(SQuAD) [49].

BERT is a multi-layer bidirectional Transformer. Two versions are presented in
the paper [15]; their size is summarized in the following table.

Model name # parameters
(millions) # layers hidden size attention heads

BERT-large 180 24 1024 16

BERT-base 110 12 768 12

Table 2.1. BERT models comparison.

BERT is pre-trained on two tasks:

1. MLM: 15% of the words in each input sequence is replaced with a [MASK] token.
The goal is to train the model to predict the original value of the masked words,
given the context provided by the other, non-masked, words in the sequence. Of
these 15% tokens: 80% are replaced with a [MASK] token, 10% with a random
word, and 10% use the original word.

2. Next Sentence Prediction (NSP): The goal here is to teach the model to
understand the relationship between two sentences. The model receives pairs
of sentences as input and learns to predict if the second sentence in the pair
is the following sentence or not in the original document. 50% of the inputs
are a pair in which the second sentence is the following sentence in the original
document, while in the other 50%, a random sentence from the corpus is chosen
as the second sentence.
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There are two steps in BERT: pre-training and fine-tuning. During the pre-training
part, the model is trained in an unsupervised way on a large corpus. In fine-tuning,
the pre-trained parameters are used as initialization, and all of the parameters are
fine-tuned using labeled data from the downstream tasks.

The pre-training of the model is based on a large corpus constituted of the
BooksCorpus (800M words) and English Wikipedia (2,500M words). The tokenizer
used is WordPiece with a 30,000 token vocabulary. BERT relies on randomly masking
and predicting tokens. The original BERT implementation performed masking once
during data preprocessing, also called static masking.

For a given token, its input representation is constructed by three embeddings.
The token embeddings are the vocabulary IDs for each of the tokens, the segment
embeddings is a binary class to distinguish between sentence A and B (0 or 1), and
position embeddings represents the position of each token in the sequence.

The special tokens present are:

• [CLS]: the first token of the sequence, it is used when doing sequence classification
since it provides a representation of all the sentence.

• [SEP]: the separator token, which is used when building a sequence from multiple
sequences.

• [PAD]: the token used for padding, in the case of sequences of different lengths.

• [MASK]: the token used when training this model on the task of masked language
modeling.

BERT model has an excellent performance in all natural language understanding
tasks, but it lacks in language generation. Another limitation is the maximum sequence
length is limited to 512. To deal with longer sequences, a model called Transformer-XL
has been developed [13].

DistilBERT

DistilBERT is a pre-trained model based on BERT [53], developed by Hugginface2. As
claimed by the authors, it has 40% fewer parameters than BERT-base-uncased, runs
60% faster while preserving over 95% of BERT’s performances as measured on the
GLUE benchmark. The technique used to obtain this lighter model is called distillation.
Knowledge distillation or teacher-student learning is a compression technique in which
a small model is trained to replicate a larger model’s behavior.

The number of layers is reduced by taking one layer out of two, leveraging the
common hidden size between student and teacher. Compared to the original BERT,
in DistilBERT have been removed the token-type embeddings and the pooler (used
for the next sentence classification task) since the next sentence prediction objective
is eliminated. Unlike what was done in the implementation of BERT, A dynamic
masking has been used: each time a sequence is fed to the Transformer will have
different [MASK] tokens.

2https://huggingface.co/
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Model name
# parameters
(millions)

inference time
(seconds)

ELMo 180 895

BERT-base 110 668

distilBERT 66 410

Table 2.2. Inference time of a full pass of GLUE task STS-B (sentimental analysis) on CPU
with a batch size of 1 [53].

As we can see from Table 2.2, a lighter model like DistilBERT is cheaper to
pre-train while keeping good capabilities, being useful for on-device computations in
a proof-of-concept experiment.
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Related Works

This chapter provides an overview of the literature relevant to this work. Section
3.1 introduces research about Knowledge Tracing (KT), to motivate the choice of
Item Response Theory (IRT) as the technique to model students’ skills. Section 3.2
describes works focusing on questions difficulty estimation from text. Lastly, Section
3.3 illustrates various domain-specific pre-trained models, since our approach is also
based on a pre-traning on Masked Language Modeling (MLM).

3.1 Knowledge Tracing (KT)
KT is the task of modeling students’ knowledge over time, allowing us to predict
whether students will give correct answers to questions. Estimating students’ knowl-
edge allows teachers to understand better their students’ attainment levels, which
can help improve the quality of learning material and provide personalized support.
Recent surveys report [2, 45] that KT is most commonly performed using logistic
models [8, 9, 65] (e.g., dynamic IRT) or neural networks. The primary information
used for learner modeling is the history of the scores (i.e., correctness) of students’
answers. Still, there are other potentially useful sources of information, such as the
history of attempts, response times, question topics, and the use of hints.

Bayesian Knowledge Tracing (BKT)—introduced for the first time in [12]—models
a learner’s latent knowledge state as a set of binary variables (known/unknown),
each of which represents understanding or non-understanding of a single concept (i.e.,
topic). The process of learning is modeled by a discrete transition from an unknown
to a known state. Many assumptions adopted by the BKT model, as the binary
knowledge state, are considered too simplistic. The skill mastery process is complex,
and a simple binary variable might not be enough to model it.

Recent works tried to build KT models using neural networks, introduced for the
first time in [47]. These models, often referred to as Deep Knowledge Tracing (DKT),
seem to outperform logistic models in predicting the correctness of unobserved students’
answers [1, 11,76,77], but not all works agree on this point [16,41,67,75]. However,
the quality of KT is not merely based on the prediction of students’ performance. As
it is often the case with neural models, DKT models lack explainability; some works
have been done to give a better understanding of the model [37,74]. The first work
introduces a concept of probabilistic skill similarity, while the latter leverages a hybrid
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system composed of neural network and IRT. However, they do not reach the same
intuitiveness as logistic models.

The comparison of different models for the KT is of relevance to our work. In
fact, through these models, we estimate the difficulty of the questions, that is our
ground truth. Logistics models are still used in both literature and industry; plus,
they are easy to interpret. For this reason, we decided to use a 1PL IRT model, which
associates a skill level for each student and a difficulty level to each question.

3.2 NLP for Difficulty Prediction
In the literature, there are works [17,21,73] related to the prediction of the readability
of questions alone. Difficulty and readability are not the same concepts; however, the
latter can be used as a feature for estimating the difficulty.

Huang et al. [31] propose a technique to predict the difficulty in Standard Tests
such as TOELF or SAT, called Test-aware Attention-based Convolutional Neural
Network. Text encoding is done through Word2Vec; then, there is a CNN layer,
an attention layer, and finally, a prediction layer. In reading tests, the answers to
questions can be inferred from the given passages. The task in these cases is different
because the answer can be deduced from the text of the question, as the goal is to
measure how difficult it is to infer the response from the passage.

Some works have been done to assess the difficulty of automatically generated
questions, using bag of words and measuring the degree of similarity between the key
(correct choices) and the distractors (incorrect choices) [3, 35,72].

The estimate of the difficulty of a question also involved the area of Community
Question Answering (CQA). Research in this area was carried out by Liu et al.,
which propose in [38] a competition-based model for estimating question difficulty by
leveraging pairwise comparisons between questions and users. Their dataset comes
from Stack Overflow1 and includes questions with different topics (programming,
mathematics, and English). The model proposed significantly outperforms the previous
PageRank-based approach. Although their model does not use text as an input feature,
they demonstrate that different words or tags in the question descriptions indicate
question difficulty levels, opening the possibility of predicting question difficulty from
text.

Online Judge (OJ) systems are designed for self-directed learning without interven-
tions of teachers. These systems are widespread in the programming domain, offering a
real-time automatic assessment of users’ solutions. Platforms such as Codeforces2 offer
different programming problems divided by difficulty levels. Categorizing problems
based on difficulty is crucial to help a novice user to approach programming and
providing them recommendations. Research has been carried out in this field, both
for topic modeling [32, 79] and prediction of difficulty [32], but the latter does not use
text as a feature.

In the next lines, we describe models for question calibration in education. In
order to compare our model with others present in the literature, we first need to

1https://stackoverflow.com/
2https://codeforces.com/
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analyze the concept of difficulty, i.e., the ground truth, used in various works. Three
types can be identified:

1. CTT difficulty [48,70,71];

2. IRT difficulty [6, 48];

3. Category-based difficulty [19].

In most of the papers, the difficulty of a question is estimated using CTT; therefore,
the correctness (i.e., p-value) or the wrongness is used. Using the p-value as difficulty,
while simple to calculate, is less accurate than IRT, as it assumes that all students
have the same skill level. The difficulty is not the only latent traits that have been
tried to predict; indeed, Benedetto et al. [6] proposed a model for the prediction
of both difficulty and discrimination. In order to estimate the discrimination, it is
necessary to fit a 2PL model, which requires more interactions than a 1PL model.
However, requiring a large number of interactions per question leads to a reduction
in the dataset for QDE from text, as questions with few interactions are discarded.
A large dataset of questions usually allows for obtaining better performance and
reliability.

Figure 3.1. Structure of R2DE, from the input question to the estimated latent traits.
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Benedetto et al. proposed R2DE [6], a regressor model that estimates IRT difficulty
and discrimination of MCQ by looking at the text of the item and the text of the
possible choices. It is trained and validated on a large scale dataset coming from an
e-learning platform. As Figure 3.1 shows, the model uses TF-IDF to extract features
from the text, a simple method but supported by the fact that keywords can indicate
the difficulty of a question. The best model reported uses random forests as regressor
and shows how the input question plus correct choice(s) and question plus all choices
lead to comparable results, while the question stem alone leads to lower performance.
The model was improved in a follow-up work [5], introducing new readability and
linguistic features.

In the literature, there is a particular interest in difficulty prediction in the medical
field. Qiu et al. in Question Difficulty Prediction for Multiple Choice Problems in
Medical Exams [48] propose a “Document enhanced Attention based neural Network
(DAN)” framework to predict the difficulty of multiple-choice problems in medical
exams. The results are compared using two difficulties: one defined as in IRT and one
described as the proportion of incorrect answers, i.e. the wrongness (1−p-value). One
note is that they considered questions with at least ten interactions. This number of
interactions might not be sufficient to obtain a valid ground of truth, especially for a
1PL model. The encoding is done using Bi-LSTM, and then there are three major
steps:

1. the question stem and possible choices are enriched using relevant medical
documents;

2. the question difficulty is divided into two components: the hardness for recalling
the knowledge assessed by the question and the confusion degree to exclude
distractors; for each part, there is an attention layer;

3. the two components are combined to predict the total difficulty.

The model shows excellent performance compared to the baselines used. Still,
this solution relies on a large quantity of unstructured medical materials: around two
million published papers and 500 textbooks. The additional corpus is used to enrich
questions and to recall the knowledge assessed by the question.

Yaneva et al. in Predicting the Difficulty of Multiple Choice Questions in a
High-stakes Medical Exam [71] propose a model to perform QDE from text in the
medical field. They used a real-world dataset from a high-stakes medical licensing
exam United States Medical Licensing Examination, utilizing p-value as ground truth
difficulty. Different classes of features were developed: linguistic features (e.g., lexical,
syntactic, semantic), Information Retrieval (IR) features, and two embeddings (ELMo
and Word2Vec). These embeddings were obtained using around 20 million medical
abstracts. Best results were achieved when combining all these features, showing a
statistically significant improvement over the majority baseline.

Using a dataset of the same domain, Xue et al. [70] use transfer learning to predict
the difficulty. In particular, an ELMo network was trained firstly for the prediction of
response time, then used for difficulty prediction, and vice versa. They utilized three
different ELMo configurations (small, middle, and original) and various combinations
of inputs: stem only, options only, or a combination of both. The results indicate
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that transfer learning can be applied to improve the prediction of questions difficulty
when response time is used as pretraining but not vice-versa. Also, difficulty was
best predicted using only the item stem, and the only baseline used is the majority
baseline.

Fang et al. [19] propose a novel Bayesian inference-based Exercise Difficulty
Prediction (BEDP) framework to predict the difficulty of visual-textual exercises. The
representation of images is obtained from a Residual Network (ResNet), while texts are
embedded using BERT. Then a Bayesian inference-based Softmax Regression classifier
to predict the difficulty of the exercise. Two datasets were used, one containing
mathematics exercises and the other medicine exercises. The medical dataset was
manually labeled. In both cases, the difficulty is not a continuous value but is
represented in categories.

The models used in the literature are validated using private datasets. Questions
used in real tests are not publishable for obvious reasons, except when no longer
used. Private datasets and the fact that the concept of difficulty is not unique makes
it challenging to compare results between models. From this point of view, CQA
provides a large pool of public questions. The interest of recent years in Question
Answering has also increased the availability of MCQ datasets, such as the datasets
offered by AI23. These, however, do not have a label that represents the difficulty,
but they could be used for a transfer learning or unsupervised training approach.

The model proposed in this thesis investigates the use of Transformers models
to perform Question Difficulty Estimation (QDE) from text, using IRT as ground
truth difficulty. Transformers-based models have achieved brilliant performances in
many NLP tasks. For this reason, we decided to apply them for the estimation of
the difficulty since the previous models use less modern techniques, such as TF-IDF
or ELMo. Furthermore, we propose a solution that does not depend on additional
textual material but can leverage it if available. Indeed we explored two different
approaches: the first uses only the text of the questions, the second also uses external
textual information to improve the performance. Our model is evaluated on two
datasets coming from different sources, one public and one private.

3.3 Domain-specific Pre-training
Pre-trained models, such as BERT, are trained on a general domain corpus and can
be then fine-tuned on different downstream tasks. However, if the downstream task
concerns a different domain with a different vocabulary, the results might not be
optimal. Two solutions to overcome this problem are: i) pre-training from scratch
the Transformer model with a new vocabulary; ii) pre-training starting from the
weights of the original model using the same vocabulary (referred to as continual
pre-training [23]).

The scientific community is moving to share models pre-trained in different domains
since these are costly to train. The following examples show domain-specific pre-trained
models. SCIBERT [4], is pre-trained on a large multi-domain corpus of scientific
publications (3.17B tokens) to improve performance on downstream scientific tasks.
They did two experiments: i) training BERT starting from its original vocabulary and

3https://allenai.org/data

29

https://allenai.org/data


Chapter 3. Related Works

weights; ii) training BERT from scratch with a new vocabulary built on the new corpus.
Both the models performed better than the original BERT, showing that while an
in-domain vocabulary is helpful, their model benefits most from the scientific corpus
pre-training. BioBERT [36] is another BERT-base model pre-trained on large-scale
biomedical corpora. They show that pre-training BERT on biomedical corpora helps
it to understand biomedical texts. Even if they used a huge corpus (18B words), they
adopted the original vocabulary of BERT-base for two reasons: (i) compatibility of
BioBERT with BERT; (ii) with the WordPiece tokenization, any new biomedical
words can still be represented by subwords that are in the vocabulary of the original
BERT. A novel work [23] from Microsoft research team shows that domain-specific
pre-training from scratch can significantly outperform continual pre-training models
like BioBERT. Sun et al. [58]. report that Within-task pre-training, i.e., when the
pre-training corpus is the target task’s training data, improves the performance on
the tasked task.

Our additional corpus is 100 times less than the one used in BERT and DistilBERT.
For this reason, we could not train the model from scratch. However, using a new
vocabulary is not essential to have an increase in performance over the original.
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Models

This chapter describes how the two pre-trained Transformers models, BERT and
DistilBERT, are trained with two different approaches. Section 4.1 illustrates the
differences between the two pre-trained language models, Section 4.2 describes the
additional pre-training on Masked Language Modeling (MLM), and Section 4.3 the
fine-tuning on Question Difficulty Estimation (QDE) from text.

QDE consists in predicting the difficulty of a question from text. The task
performed is a regression: the input is a sequence of words representing the question,
and the target is a real number representing the difficulty. We apply pre-trained
language models to this regression task by adding a linear regressor layer. Then, we
fine-tune the parameters of the Transformers model and the regressor layer jointly.

In addition to that, we experiment with the possibility of further pre-training the
pre-trained Language models on a corpus specific to the fine-tuning task domain. The
pre-trained weights are then used to perform the fine-tuning on the regression task.
Figure 4.1 shows our general approach; the dotted line is the solution that does not
leverage the further pre-training, while the continuous line is the one that requires it.

PRE-TRAINED MODEL

FINE-TUNING (REGRESSION)

FURTHER
PRE-TRAINING (MLM)

Figure 4.1. The two different approaches: the dotted line represents the approach which
performs only fine-tuning for QDE from text, the continuous line is the approach
with the additional pre-training on MLM.
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4.1 BERT and distilBERT
BERT and DistilBERT are two very similar pre-trained models; in fact, DistilBERT
is a Transformer model trained by distilling BERT-base, with which it shares almost
all the architecture. Table 4.1 shows the size of the two models. DistilBERT has
fewer parameters, which makes it lighter and faster to train. As we can see, the
difference lies in the number of layers, which leads to a smaller number of parameters
for DistilBERT.

Model name # parameters
(millions) # layers hidden size attention heads

BERT-base 110 12 768 12

distilBERT 66 6 768 12

Table 4.1. BERT and distilBERT size comparison.

BERT and distilBERT are pre-trained on a general corpus of 3,300 million words:
the Toronto BooksCorpus (800M words) and English Wikipedia (2,500M words).
The Wikipedia texts are pre-processed to ignore lists, tables, and headers. Both the
models address the problem of out-of-vocabulary words using a variant of Byte Pair
Encoding (BPE) [55] named WordPiece [54]. The vocabulary of the two pre-trained
models is identical and has the same pre-specified size of 30,522 tokens. Moreover,
both models use the same special tokens ([PAD], [MASK], [CLS], [SEP]). We consider
the uncased version.

The maximum sequence length supported by the models is 512. For our experi-
ments, we set it to 128 or to 256, depending on the input. Only the first 128 or 256 are
considered for longer sequences, while shorter ones are padded with the special token
[PAD]. This design choice is based on the analysis of our datasets, as the questions
are short.

4.2 Further pre-training on MLM
The original BERT is trained on two objectives: Masked Language Modeling (MLM)
and Next Sentence Prediction (NSP), while DistilBERT only on the first. We decide to
pre-train both models only on MLM, for consistency and also because NSP improves
only slightly downstream task performance [39].
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Pre-trained	Transformer	model
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Figure 4.2. Additional pre-training on Masked Language Modeling (MLM).

In MLM pre-training, one of the input words is substituted by the special token
[MASK], and the model is asked to predict (using the contextual embedding of the
surrounding tokens) the word that was masked. Figure 4.2 shows a high-level view of
masked training. The [MASK] token is predicted by feeding the embedding output (the
final hidden vectors corresponding to the mask tokens) into a fully connected layer.
The number of output neurons is equal to the number of tokens in the vocabulary;
each token’s probability is calculated with softmax.

Our corpus is 100 times smaller than the one used in BERT. For this reason, we
cannot train the model from scratch. We use the original weights as initialization
for MLM pre-training and the same original vocabulary as BERT. Creating a new
vocabulary based on our corpus would require training from scratch. Before training,
we mask each sequence as in the original BERT implementation: 15% of the sequence’s
tokens are masked; of those, 80% is masked with [MASK], 10% is set to a random
token, and 10% is just left as it is. The special tokens are never masked nor used as
random tokens.

The following shows an example of masking:

Input = [CLS] this is an [MASK] of masking [SEP]

Label = example

After passing through the dense layer, the final hidden vectors corresponding to
the [MASK] tokens are fed into an output softmax over the vocabulary. The MLM
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objective is a cross-entropy loss on predicting the masked tokens. The cross-entropy
loss is defined as follows:

loss =
K∑
k=1

(yklog(ŷk)) (4.1)

Where ŷ is the predicted probability for the class k, y binary indicator (0 or 1) if
class label k is the correct classification. The number of classes is equal to the size of
the vocabulary.

4.3 Fine-tuning on Question Difficulty Estimation
The fine-tuning of BERT and DistilBERT is straightforward since the self-attention
mechanism in the Transformer allows modeling many downstream tasks. Figure 4.3
shows a high-level view of the fine-tuning process of a Transformer model.

Pre-trained	Transformer	model

Regression	layer

[CLS] find the radius in cm [SEP]

-	1.2 Predicted	value

Figure 4.3. Fine-tuning.

It is done as follows. We obtain a fixed-dimensional representation of the input
sequence using the final hidden state (i.e., the output of the Transformer) of the [CLS]
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token, denoted as C ∈ IRH , that represent the sequence. Then we add a linear layer,
whose parameters matrix has dimension ∈ IRK×H , where K is the number of output
neurons (K = 1, for us). Finally, the prediction is the output O = linear(CW T ). In
our case, since we are performing regression, the activation function is linear.

The pre-trained model and the linear layer are linked as described in the BERT
paper: “The first token of every sequence is always a special classification token
([CLS]). The final hidden state corresponding to this token is used as the aggregate
sequence representation for classification tasks.” [15]. The [CLS] token is the best
representation when we fine-tune all the parameters of the model, like in this case.
If we wanted to use BERT as a feature-based extractor (i.e., when the Transformer
model is frozen), this would not be valid anymore. In fact, the authors show that
the best choice is to concatenate the token representations from the top four hidden
layers. The same observations are valid for DistilBERT.

[CLS] this is the input [SEP]

LAYER	1

LAYER	12

H	=	768

L	=	12

SEQUENCE	LENGTH	=	128

LAYER	2

LAYER	11

...

Output

...

Figure 4.4. Fine-tuning model architecture of BERT in detail.

Figure 4.4 shows more in detail the fine-tuning of our model, specifically the BERT
version. As we can see, the embedding of the last hidden layer of [CLS] is fed to
a linear regressor layer. The only difference in the DistilBERT version is that the
number of Transformer blocks (L) is 6 instead of 12.

For fine-tuning, we use Mean Squared Error (MSE) as loss function. MSE is a
widely used loss in regression cases, and it is differentiable. The choice of MSE as loss
function is justifiable from a probabilistic point of view as a Maximum Likelihood
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Estimation (MLE) procedure (under the assumption data are sampled from a normal
distribution) [22].

It is calculated as the average of the squared differences between the predicted ŷ
and observed y values:

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (4.2)
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Experimental Datasets

This chapter introduces the two data collections used for the experiments as well all pre-
processing done to create the final dataset. Section 5.1 presents the publicly available
data collection provided by ASSISTments1, while Section 5.2 the CloudAcademy2

data collection.
Both data collections are composed of two datasets: i) the Interactions (I) dataset

and ii) the Questions (Q) dataset. The Interactions dataset stores students’ answers
to questions. Each row provides (at least): the user id, the question id, the correctness
of the answer, and the interaction’s timestamp. The Interactions dataset is used to
estimate (with IRT) the difficulty of each question, which will be used as ground
truth while training the model that performs difficulty estimation from text. The
Questions dataset contains the textual information about the items. For each question,
it provides the question id, the text, and, for CloudAcademy data, the text of the
possible choices.

An additional dataset referred to as Lectures, is provided by Cloud Academy. It
contains transcripts of the IT technologies lectures related to the questions and can
be leveraged by our model to estimate the difficulty of questions more accurately.

5.1 ASSISTments Dataset
ASSISTments is an online intelligent tutoring system, developed by the Worcester
Polytechnic Institute, that assists students and teachers. The platform provides
teachers and administrators with contents from open educational resources but also the
possibility to build and share their own questions. Students can complete assignments
using the ASSISTments web-platform, receiving instant feedback. Teachers also
receive reports on students’ progress and class performance. This platform is a generic
system that can be applied to any subject, although it offers mostly math content.

5.1.1 Interactions data

The Interactions dataset was published in [20] and contains data related to the school
year 2012-2013. This dataset has been used in several works, such as [56, 64, 69],

1https://new.assistments.org/
2https://cloudacademy.com/
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mostly about KT.
This dataset contains 6,123,270 interactions between users and questions. Each

interaction has 35 attributes; the most relevant to our work are described below:

• problem_id : indicates the id of the problem.

• user_id : indicates the unique identifier of the student.

• start_time: is a timestamp when a student start a problem.

• start_time: is a timestamp when a student submits the answer to a problem.

• problem_type: identifies the typology of the problem.

• original : identifies if a problem is the main problem or a scaffolding.

• correct : correctness of the answer.

• template_id : identifies a template; questions from the same template are very
similar.

• skill : indicates the skill associated with the problem.

correct The correct attribute indicates the correctness of the student’s answer. It
is equal to 1 if the student answers correctly on the first attempt, otherwise, it is
0. Decimal values are calculated as a partial credit based on the number of hints
and attempts needed to solve. Table 5.1 shows the distribution of correct values; the
overall correctness is 67.64%, and there are few partial scores.

Correct Count Percentage

1 4,141,564 67.64%

0 1,976,383 32.28%

Decimal values 5,323 0.08%

Total 6,123,270 100%

Table 5.1. Distribution of scores.

problem_type As Table 5.2 shows, there are six different types of problems:

• algebra: math evaluated string (text box);

• choose_1 : MCQ with one correct choice (radio buttons);

• fill_in: simple string-compared answer (text box);
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• open_response: open response question (text box);

• choose_n: MCQ with multiple correct choices (radio buttons);

• rank : rank multiple objects.

99% of the interactions are originated by the first three categories.

Problem Type Count Percentage

algebra 3,500,688 57.17%

choose_1 1,847,657 30.17%

fill_in_1 742,960 12.13%

open_response 17,642 0.29%

choose_n 11,597 0.19%

rank 2,726 0.05%

Total 6,123,270 100%

Table 5.2. Types of problems.

original Some problems can be broken down into simpler subproblems called
“scaffolding”. When a student cannot solve the main problem, he can decide to solve
the scaffoldings. The original attribute identifies a main problem (original = 1) from
a scaffolding (original = 0). If a problem has no scaffolding, it is marked as a main
problem. The main problem and its associated scaffolding have a different problem_id,
but same template_id. As Figure 5.3 shows the interactions are mostly with main
problems; looking at the number of problems: 84% of the problems are main, while
16% are scaffolding.

Original Count Percentage

main problem 5,819,737 95%

scaffolding problem 303,533 5%

Total 6,123,270 100%

Table 5.3. Main and scaffolding problems.
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start_time and end_time Each student-problem interaction has two associated
timestamps: start_time indicates the beginning, end_time indicates the end. The first
interaction of the dataset is dated 2012-09-01, while the last one is dated 2013-08-31.
The days passed from the first to the last interaction of each student were computed.
The average is 73 days with a standard deviation of 99 days. Figure 5.1 shows the
distribution of the days passed on the platform; as we can notice, there is a peak of
students who have been on the platform only a few days.
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Figure 5.1. Distribution of days between the first and last interaction on ASSISTments.

skill The attribute skill refers to the skill of a problem, but in 72% of the cases, its
value is null. In total, there are 179 different skills.

template_id Each problem_id has associated only one template_id. A template_id,
on the other hand, can have several problems associated with it, which are very similar
to each other. In order to create a large number of problems, it is common for content
creators to make a few templates and substitute different numbers and keywords in
the problems and answers. An example of two different problems generated from the
same template is the following:

If a new jacket sells for $34, find the total cost if you were charged 5% sales tax.

If a new shirt sells for $36, find the total cost if you were charged 6% sales tax.

A note should be made about scaffolding problems: although they have the same
template as the main problem, they are different. The choice of the identifier to
use to distinguish the problems, template_id or problem_id, is important. Problems
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generated by the same template_id have very similar text and are created to have
the same level of difficulty.

We wanted to check if the difficulty between problems generated by the same
template is similar, and we verified it by comparing the correctness as an approximation
of the difficulty. First, we calculated the correctness of original problems with at
least 50 interactions to get a more accurate estimate. Then we calculate the standard
deviation of correctness for each template with at least 10 problems. Finally, we
computed the mean of all the standard deviations resulting in 0.078, which represents
how the correctness varies for problems of the same template. This result is small,
considering a range of correctness that is between 0 and 1. Besides, we also compared
it with the standard deviation between different templates. First, we kept original
problems with at least 50 interactions. Then we calculated the correctness per template
and then the standard deviation of correctness between different template, that is
0.194. As we can see, the standard deviation for problems of the same template is very
small compared to the standard deviation between different templates. Supported by
these reasons, it was decided to use the template_id as item identifier.

Pre-processing We used the Interactions dataset to obtain each item difficulty
using IRT, which is the ground truth. It must be suitably pre-processed to get an
accurate estimate, and we proceeded as follows. For each student-item pair, we
considered only the first answer in chronological order (i.e., the first attempt) because
if a student has already seen a question, he will be more advantaged to answer correctly,
influencing the IRT estimate. We kept only items with at least 50 interactions. The
more interactions an item has, the more accurate is the estimate of difficulty. However,
considering a minimum threshold of interactions reduces the number of items. A low
number of items means a small dataset that is used to train and test our model. This
has some disadvantages, such as increased overfitting. Therefore, we tried to find a
fair trade-off between the goodness of the estimate and the number of items.

The correct label also allows partial credits, which is why it has been converted,
as suggested by ASSISTments, to a binary variable using the formula: 1 = correct,
< 1 = incorrect. Table 5.4 compares the dimensionality of the dataset before and
after pre-processing.

Raw dataset After pre-processing

# interactions 6,123,270 2,820,051

# users 46,674 43,868

# problems 179,999 55,178

# templates 96,403 18,659

Table 5.4. Interactions dataset dimensionality.
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# interactions i Percentage of items

50 <= i <= 100 68.03%

100 < i <= 200 19.54%

200 < i <= 500 8.15%

i > 500 4.29%

Total 100%

Table 5.5. Interactions per item after pre-processing.

Table 5.5 shows the distribution of the number of interactions per question. On
average, each question has 151 interactions (i.e., student responses) with a standard
deviation of 303. On average, each student answered 64 different questions with a
standard deviation of 113.

Figure 5.2 and 5.3 show the distribution of items and students per correctness after
the pre-processing. In the first case, the distribution follows a log-normal shape with
a negative skew. In the second case, the distribution follows a gaussian shape; there
are peaks for values 0 and 1, which can be caused by students with few interactions.
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Figure 5.2. ASSISTments, distribution of items per correctness.
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Figure 5.3. ASSISTments, distribution of students per correctness.

5.1.2 Questions data

The Questions dataset of ASSISTments contains the textual information of questions
(also referred to as problems). Some research works [43, 44, 57] have used this dataset
to predict the skill associated with each question. The attributes relevant to our work
are:

• problem_id : indicates the id of the problem.

• body : contains the textual information of the problem.

The dataset is composed of 179,950 problem_id. Several texts are duplicates: 138,084
body over 179,950 are unique. Other information, such as the attributes of the
Interaction data, can be obtained merging this dataset with the Interaction dataset
on problem_id. Question texts do not always provide complete information about
the request. In fact, they sometimes refer to images, tables, or graphics that are not
present in the text: 9.2% of the items in the raw dataset refers to an external image.
Furthermore, in the case of MCQ problem typology, only the stem is present and not
the choices.

First of all, the texts of problems that are not in the Interactions dataset are
excluded (i.e., all those with an insufficient number of interactions are excluded). Then
we performed a specific data pre-processing divided into two steps: i) text cleaning, ii)
text elimination. In the first step, the texts were only transformed and not completely
removed. HTML tags, URLs, newlines have been removed. There are texts with
references to the exercise number or external books (e.g., “Page 2”, “Question #2”).
Because they are not textual information and might increase the risk of overfitting,
we tried to remove them. The following is an example of text before and after the
cleaning step:

Raw string:
<p>Convert <span style="color: #45818e;">0.2</span> into a <strong id="p:w5"><span
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style="color: #674ea7;">fraction</span></strong>.&nbsp; You must simplify your
answer to lowest terms.<br id="yct810" /></p>
n<p>&nbsp;</p>

Pre-processed string:
Convert 0.2 into a fraction. You must simplify your answer to lowest terms.

Subsequently, we manually searched unsuitable problem patterns. We identified
three categories of these problems: i) system messages (e.g., info on whether the
question is correct or not, how many attempts are available); ii) problems referring
to external books; iii) problems where all the text of the questions is in the image.
Table 5.6 shows some examples of unusable problems.

Text Problem type

“Sorry, that is incorrect. Let’s go to the next question!” choose_1

“Submit your answer from the textbook.” algebra

“Earth Science QUESTION 10” choose_1

“Problem 6” fill_in_1
Table 5.6. Examples of unusable problems.

We removed problems with less than two words and also problems with the
same text but with a different template since most of the times are unusable. Each
template_id has several very similar problem texts associated with it, as described
above. We decided to keep a text for each template_id. This is done to increase
generalization; the presence of very similar texts in training and in the test would
falsify the results since the same template problems have a similar difficulty. Another
option is to split test and train with different template_id. However, some template_id
have several dozen texts associated, while others are one. This would have created
problems during the training and evaluation of the results. Patikorn et al. in [44]
used a dataset from the same platform ASSISTments, and they showed that keeping
problems from the same template is the cause of overfitting in the skill-tagging problem.
Their solution was to keep one problem per template_id.

Raw Merged Cleaned Final

# unique texts 138,084 58,320 52,156 11,393

# template_id 125,264 18,883 12,993 11,393

# problem_id 179,950 47,898 41,254 11,393

Table 5.7. Questions dataset dimensionality through pre-processing steps.
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Table 5.7 shows the dimensionality of the dataset through the various steps: i)
raw: the raw dataset; ii) merged: after keeping items with at least 50 interactions;
iii)cleaned: after the text pre-processing; iv) final: after keeping only one text per
template. The final dataset used for the prediction of difficulty from text is composed
of 11,393 items.

Length (# words) Percentage of items After pre-processing

len < 2 5.31% 0%

2 < len <= 10 44.54% 10.66%

10 < len <= 50 37.15% 74.38%

50 < len <= 100 9.67% 13.97%

len > 100 3.33% 0.99%

Total 100% 100%

Table 5.8. Distribution of problems per length.

Table 5.8 shows the distribution of Questions dataset before and after pre-
processing.

5.2 Cloud Academy Dataset
Cloud Academy is an e-learning provider offering online courses about IT technologies.
The dataset used in our experiments is a sub-sample of their data collection, containing
only questions about cloud technologies (e.g., AWS3 , GCP4, Azure5). Differently
from ASSISTments, there is no concept of “template”—thus, all the questions are
unique—and all the questions are MCQ. In addition to the text of the questions, the
text of the possible choices is available as well, information that is not available in
the ASSISTments dataset.

5.2.1 Interactions data

The Interactions dataset contains 7,323,502 interactions between users and questions,
involving 24,696 users and 13,603 questions. Each interaction is characterized by a
user id, an item id, a correct label, and a timestamp. Table 5.9 shows the distribution
of correct values, the overall correctness in the raw dataset is 66.51%.

3https://aws.amazon.com/
4https://cloud.google.com/
5https://azure.microsoft.com/
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Correct Count Percentage

1 4,870,727 66.51%

0 2,452,775 33.49%

Total 7,323,502 100%

Table 5.9. Distribution of scores.

As done with the ASSISTments dataset, for each student-item pair, only the first
answer in chronological order is considered (i.e., the first attempt), and only items
with at least 50 interactions are considered.

# interactions i Percentage of items

50 <= i <= 100 36.75%

100 < i <= 200 20.99%

200 < i <= 500 23.60%

i > 500 18.66%

Total 100%

Table 5.10. Interactions per item after pre-processing.

Table 5.10 shows the distribution of the number of interactions per question. On
average, each question has 304 interactions (i.e., student responses) with a standard
deviation of 365. On average, each student answered 114 different questions with a
standard deviation of 161.

Figure 5.4 and 5.5 show the distribution of items and students per correctness
after pre-processing. In both cases, the distribution follows a gaussian shape, but
in the case of students, there are peaks for values 0 and 1 which can be caused by
students with few interactions.
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Figure 5.4. Cloud Academy, distribution of questions per correctness.
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Figure 5.5. Cloud Academy, distribution of students per correctness.

5.2.2 Questions data

The question dataset required less pre-processing than that of ASSISTments. Questions
texts with less than 50 interactions have been removed. Subsequently, the HTML
tags were removed.
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Length (# words) Percentage of items

2 < len <= 10 10.66%

10 < len <= 50 74.38%

50 < len <= 100 13.97%

len > 100 0.99%

Total 100%

Table 5.11. Distribution of questions per length.

It is essential to analyze the number of words in the question stem and the possible
choices. This is useful for sizing the model input. Table 5.11 shows the distribution
of the number of words in the questions, where only the stem of the question is
considered.

# of choices Percentage of items

4 83.24%

5 13.00%

6 3.42%

> 6 0.34%

Total 100%

Table 5.12. Distribution of questions per number of possible choices.

All the questions in the dataset are of type MCQ; the number of possible choices is
shown in Table 5.12. The texts of the possible answers are also available; on average,
a choice contains 6.8 words.

5.2.3 Lectures data

Additionally, we also consider an additional dataset—referred to as Lectures—provided
by Cloud Academy, which contains the transcripts of some of the online lectures about
cloud technologies. Pre-trained models, such as BERT, are usually trained in a general
domain. However, to give the model a better understanding of a specific domain, it is
possible to do an additional pre-training. This pre-training is done in an unsupervised
manner and allows to improve performance, as shown in [58]. The paper refers to
“within-task pre-training” when BERT is further pre-trained on the same data used for
the downstream task training, and to “in-domain pre-training” when the pre-training
data is obtained from the same domain of the target task.
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The lecture dataset is composed of 2,826,126 words. This dataset is merged with
the Question dataset (containing all the questions, except those used for model testing)
that is composed of 401,912 words. The total corpus has 3,228,038 words. Then
the corpus is divided into sentences, based on punctuation (full stop, question mark,
exclamation mark) for a total of 159,563 sequences, with an average of 20 words per
sequence. Table 5.13 shows the distribution of sentences per length.

Length (# words) Percentage of items

len <= 10 23.24%

10 < len <= 50 72.79%

50 < len <= 100 3.70%

len > 100 0.27%

Total 100%

Table 5.13. Distribution of sentences per length.
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Chapter 6

Experimental Setup

This chapter introduces the experimental setup. Section 6.1 describes how we estimate
our target variable (i.e., the difficulty of the questions). Section 6.2 describes the
setup for the pre-training on Masked Language Modeling (MLM) and Section 6.3
illustrates the setup related to the fine-tuning on Question Difficulty Estimation.

As shown in Figure 6.1, training is performed in two steps: i) a 1PL IRT model is
fitted to estimate the difficulty of each question; ii) the IRT estimated difficulty is
used as target label to train the Transformers-based model, which gets the text as
input.

USER	ID ITEM	ID CORRECT TIMESTAMP

ID TEXT CHOICES TARGET

IRT	ESTIMATION
MODULE

GROUND	TRUTH
IRT	DIFFICULTY

MODEL	FOR
DIFFICULTY
ESTIMATION
FROM	TEXTQTRAIN

QTEST

ESTIMATED
DIFFICULTY

Interactions	Dataset	(I)

Questions	Dataset	(Q)

Lectures	Dataset	(L)

Figure 6.1. Experimental setup.

The first step involves the estimation with IRT of difficulty, starting from the
Interactions dataset. Then the IRT difficulties, which are considered as ground truth,
are associated with the Question dataset. It is split into two sets with a proportion
80:20 for training (QTRAIN) and testing (QTEST) our Transformers-based model. A
portion of the training set (10%), called validation set, is reserved for doing the

51



Chapter 6. Experimental Setup

hyperparameters tuning. Furthermore, the proposed model can optionally exploit an
additional text dataset (i.e., the Lectures dataset) to further pre-train the pre-trained
language models on the task of MLM and improve performance.

The final objective of our model is to estimate the difficulty of a question without
using the Interaction dataset, but only the textual information. This allows calibrating
questions without having any interactions. Additionally, the code is publicly available1.

6.1 IRT Estimation
The estimation of ground truth difficulties is made using a 1PL IRT model. To do so, we
use a python library called pyirt2. It implements the EM (Expectation-Maximization)
algorithm for computing the maximum likelihood estimates of parameters in IRT
models, that is described in [26]. The inputs it uses are a unique student identifier, a
unique item identifier, a timestamp of the interaction, and a binary score value. The
range of difficulty is set as [−5; 5], while discrimination is fixed to 1.

The choice to use a one-parameter model is dictated by the fact that more complex
models would have required many interactions. We set a minimum number of samples
per question equal to 50. We are aware that a more accurate estimate would require
over 50 interactions per item, but raising this threshold would reduce the number of
questions at our disposal too much. However, we remind that the average number of
interactions per item is much higher than the minimum threshold.

For each dataset, we assess the overall quality of the Interactions dataset in two
ways: i) using the loss of pyirt ; ii) comparing the estimated difficulty from different
subsets of interactions. The pyirt library has an internal loss, based on likelihood,
that indicates the goodness of fitting (the smaller, the better); we evaluate how that
loss varies as the number of interactions increases for a group of items.
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(a) ASSISTments dataset.
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(b) Cloud Academy dataset.

Figure 6.2. Fitting loss per number of interactions.

1https://github.com/aradelli/transformers-for-qde
2https://github.com/17zuoye/pyirt
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6.1. IRT Estimation

Figure 6.2 shows the trend of the loss as the number of interactions increases. We
select items with 200 interactions and then calculate the difficulty using the first 20,
30, ..., 200 to see how the estimate improves. The behavior of the curves on both
graphs is similar. As we can see, with more than 50 interactions, the steepness of the
curves begins to decrease.

We also assess the stability of the difficulty of different samples of interactions.
For each question, we create two sub-sets consisting of 50 different interactions. After
estimating the difficulty using IRT with both subsets, we compare, on average, how
much the estimated difficulty for each question has varied.

The ASSISTments Interactions dataset has an average number of interactions per
item of 151, with a minimum of 50. Students interacted with 64 different items on
average. The final loss that measures the goodness of fit of the model to our data,
calculated by pyirt is 0.62. On average, the difficulty varied by 6.46% between the
two different subsets.

The Cloud Academy Interactions dataset has an average number of interactions
per item of 304, with a minimum of 50. Students interacted with 115 different items
on average. The final loss that measures the goodness of fit of the model to our
data, calculated by pyirt is 0.58. The difficulty varied by 5.29% between two different
subsets.
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(a) ASSISTments dataset.
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(b) Cloud Academy dataset.

Figure 6.3. Distribution of items per IRT difficulty.

Figure 6.3 shows the distributions of the estimated difficulty for the ASSISTments
and Cloud Academy datasets. We can observe in both cases a Gaussian distribution,
with an average of zero. In the ASSISTments distribution, we notice outliers, i.e.,
items with difficulty equal to 5 or -5. Such outliers are due to questions which are
always answered correctly or wrongly by the students; we believe that there might be
two reasons for that: i) some questions are probably too difficult or too easy for the
students taking the exams, and ii) the dataset most likely contains some unusable
problems (e.g., system logs), even after the data-cleaning we performed.
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6.2 Pre-training on MLM
Pre-training is done in an unsupervised manner on Masked Language Modeling (MLM).
As a starting point we use the weights and vocabulary of bert-base-uncased and
distilbert-base-uncased models that are available in the transformers library from
Hugging Face3. For both models, the experimental setup in this phase is the same.
This pre-training requires an additional corpus, i.e., the Lectures dataset described
in chapter 5, which is available only for Cloud Academy. All data is used to train
the model. Each sequence is statically masked before the training, as described in
Chapter 4

We implement our model using Python. We use in particular these libraries:
i) Transformers by Hugging Face4 for the availability of DistilBERT and BERT
architectures, weights, and tokenizers; ii) TensorFlow 5 and Keras6 are used to wrap
the model provided by Hugging Face and train it for our task. As concerning the
hardware, the training is done on the Google Cloud Colab7 platform using a Tensor
Processing Unit (TPU). TPU is an accelerator, developed by Google, specialized in
training deep neural networks.

We train several models with a different number of epochs: 4, 12, 24, 36. The
original BERT has been trained from scratch, with a number of epochs equal to 40.
In our case, we are not starting from scratch, but we use for the initialization the
weights of the pre-trained models, thus we assume an ideal number of epochs lower
than 40. As optimizer, we use Adam [34]: an adaptive learning rate optimization
algorithm designed for training deep neural networks.

We experiment with the following hyperparameters:

• Sequence length = 128;

• Batch size = 256;

• Adam learning rate = 1e-5;

• Number of epochs = 4, 12, 24, 36;

• Dropout = 0.1.

6.3 Fine-tuning on Question Difficulty Estimation
The fine-tuning task receives as input the texts of the questions and targets the
difficulty estimated by IRT. For both datasets, we use the original configuration of
bert-base-uncased and distilbert-base-uncased. Also, in some of the experiments, we
use the pre-trained weights on MLM described in the previous section for the Cloud
Academy dataset.

3https://huggingface.co/transformers/pretrained_models.html
4https://huggingface.co/transformers/
5https://www.tensorflow.org/
6https://keras.io/
7https://colab.research.google.com
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6.3. Fine-tuning on Question Difficulty Estimation

The ASSISTments dataset provides only the stem of MCQ. The Cloud Academy
dataset provides both the stem and the possible answers allowing us to test several
input combinations:

• question only : stem;

• question + correct : stem [SEP] correct choice;

• question + all : stem [SEP] choice_1 [SEP] ... [SEP] choice_n.

Both datasets are split in the following way: 80% training and 20% testing. Then,
the training set is further divided into 90% training and 10% validation. The validation
set is used for the choice of hyperparameters and for early stopping. Table 6.1 shows
the dimension of the splits of the datasets used for fine-tuning on QDE.

Dataset # train # validation # test

ASSISTments 8109 901 2253

Cloud Academy 4530 504 1259

Table 6.1. Datasets size.

The training is done on the Google Cloud Colab platform using a NVIDIAR© TeslaR©

V100 with 16GB of memory.
To reduce overfitting, we use dropout and early stopping. The dropout is applied

to the regressor layer that we add on top of the Transformer. Moreover, the dropout
is applied inside the Transformer for all fully connected layers in the embeddings and
encoder. With early stopping, the loss on the validation set is used to determine when
overfitting begins and to select the best epoch. The optimizer is Adam, to which we
only tune the learning rate.

We experiment with the following hyperparameters:

• Sequence length = 128, 256;

• Batch size = 16, 32, 64;

• Learning rate = 1e-5, 2e-5, 3-5;

• Patience early stopping = 10 epochs;

• Dropout regressor layer = 0.1, 0.2, 0.3, 0.4, 0.5;

• Dropout internal = 0.1, 0.2, 0.3, 0.4, 0.5.
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Chapter 7

Results

This chapter presents the results of the experiments on Question Difficulty Estimation
(QDE) from text on the two experimental datasets. Section 7.1 introduces the metrics
that have been used. Section 7.2 briefly presents the literature models used as baselines.
Lastly, Section 7.3 presents a quantitative and qualitative analysis of the results on
the ASSISTments dataset (in Section 7.3.1) and on the Cloud Academy dataset (in
Section 7.3.2).

7.1 Metrics
The QDE task consists in estimating a continuous numerical value that, in our case,
is between −5 and +5. Being a regression task, we evaluate the models using two
standard regression metrics: the Mean Absolute Error (MAE) and the Root Mean
Square Error (RMSE).

The MAE is the average over the samples of the absolute values of the differences
between the predictions b̂i and the corresponding observations bi (in our case, the
difficulties predicted by the model and the IRT difficulties). The MAE is a linear
score metric, which means that all the single differences are weighted equally in the
average. It is defined as follows:

MAE =
1

n

n∑
i=1

(|bi − b̂i|) (7.1)

The RMSE is a quadratic scoring metric that measures the average magnitude of
the error. It is defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(bi − b̂i)2 (7.2)
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The errors are squared before being averaged; consequently, the RMSE gives a
relatively high weight to large errors (e.g., an error of 10 is 100 times worse than an
error of 1). The RMSE is always larger than or equal to the MAE; the greater the
difference between the two metrics, the greater the variance in the sample’s errors. If
the RMSE is equal to the MAE, it means that all the errors are of the same magnitude.
Both metrics are always non-negative, and smaller values indicate better performance.

7.2 Baselines
This section introduces the models used as baseline while experimenting with the
Transformer models: the majority baseline (Section 7.2.1), R2DE (Section 7.2.2),
and ELMo (Section 7.2.3). We choose R2DE and ELMo because i) they are the
only models that do not necessarily require an additional dataset of domain-related
documents (in addition to the texts of the questions) and ii) they are the only two
models for which we had access to the code.

7.2.1 Majority

It is important to start by comparing the results with a very simple model. We use the
majority baseline, which predicts the same difficulty for each test question, regardless
of its text. The difficulty is obtained as the average difficulty of the training questions.

7.2.2 R2DE

R2DE, which stands for Regressor for Difficulty and Discrimination Estimation, is a
model proposed in [6], and the code is available1. The model can estimate both the
difficulty and the discrimination of questions from text. Since we do not focus on
discrimination estimation in this work, we consider only the part of the model that
performs difficulty estimation. This does not affect the performance of the model, as
it is made of two parallel components that are trained separately for difficulty and
discrimination.

The first steps of text preprocessing are the following: i) stop words removal, ii)
punctuation removal, and iii) stemming. The features are then extracted from the
input text of each item using TF-IDF, a frequency-based technique. Only the top N
features are considered; this is done by sorting the features according to their number
of occurrences in the corpus and keeping only the N most frequent ones. The number
of features N is a hyperparameter. The features are fed into random forests regressor.
The best hyperparameters are chosen with five-fold cross-validation to find the best
configuration. A grid-search is performed on the following hyperparameters:

• Random forests n_estimators = [50, 100, 150, 200, 250, 300]
1https://github.com/lucabenedetto/r2de-nlp-to-estimating-irt-parameters
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• Random forests max_depth = [15, 25, 50, 75, 100]

• TF-IDF max_features = [1000, 1200, ..., 4000]

7.2.3 ELMo

Xue et al. [70] proposed an ELMo based model to predict the difficulty and the
response time of MCQ. The text is preprocessed with tokenization, lemmatization,
and stopwords removal. The model is based on ELMo [46], pre-trained on the One
Billion Word Benchmark [10]. An encoding layer is added to learn the sequential
information from the ELMo embedding output. The encoding layer is made of a
Bidirectional LSTM network. This layer allows the extraction of encoding features,
which captures more abstract information than the embeddings alone. A dense layer
then follows the encoding layer to convert the feature vectors to the targets through a
non-linear combination of the feature vectors’ elements. Figure 7.1 shows the general
structure of the model.

Figure 7.1. Structure of the ELMo-based model presented in [70].

We reproduce the best configuration for predicting the difficulty only, referred to
as “Method 1”; that is, we use the encoding feature and ELMo original. The model
is originally meant to estimate the p-value of the questions, but, in our case, we use
it to estimate the difficulty defined as in IRT. This does not affect the accuracy of
the model since the p-value is a floating-point number (as the IRT difficulty we are
estimating).
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7.3 Evaluation
The models are all trained on the same dataset (QTRAIN) and compared using the
same test set (QTEST). We do three different runs for each model, using three different
random seeds. Then, we calculate the average and the standard deviation (SD) of
the results. We also calculate the performance of the models for questions that are
very easy or very hard (i.e., with difficulty b greater than 2 or less than -2) referred
to as “extreme” questions. This is done to see how the models perform on different
types of questions and understand whether the accuracy of the estimate depends on
the difficulty of the question. We use the different input configurations presented in
Chapter 6: i) question only (Q only); ii) question and correct choice(s)(Q + correct);
iii) question and all choices (Q + all). Furthermore, the Transformers models are
evaluated with and without the additional pre-training on MLM, as explained in
Chapter 4.

7.3.1 ASSISTments

The ASSISTments QTEST is made up of 2253 questions. For MCQ, only the stem is
available, so the only input configuration that can be tested is Q only. Also, since we
do not have any domain-related documents, such as the Lectures dataset, pre-training
on MLM cannot be performed.

Comparison with the state of the art

Table 7.1 shows the results of the experiments on the ASSISTments dataset. It
indicates (in this order): the model name, the input configuration, if pre-training on
MLM is performed, the MAE and RMSE for all the questions, and the same metrics
for “extreme” questions.

Model Input MLM MAE MAE, |b|>2

Majority - - 1.066 ± 0.000 2.882 ± 0.000

R2DE [6] Q only - 0.966 ± 0.001 2.408 ± 0.005

ELMo [70] Q only - 0.933 ± 0.013 2.025 ± 0.052

DistilBERT Q only N 0.919 ± 0.009 1.864 ± 0.059

BERT Q only N 0.911 ± 0.003 1.849 ± 0.074

RMSE RMSE, |b|>2

Majority - - 1.423 ± 0.000 3.033 ± 0.000

R2DE [6] Q only - 1.304 ± 0.001 2.700 ± 0.003

ELMo [70] Q only - 1.255 ± 0.017 2.375 ± 0.036

DistilBERT Q only N 1.239 ± 0.010 2.259 ± 0.037

BERT Q only N 1.228 ± 0.003 2.243 ± 0.038

Table 7.1. ASSISTments results.
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The BERT-based model has the best performance on all the metrics, reducing
RMSE by 13.76% and MAE by 14.53% compared to the majority baseline. Moreover, it
reduces the MAE by 2.33% and the RMSE by 2.17% compared to the best performing
baseline that is ELMo. This difference between BERT and ELMo appears even more
evident if we consider extreme questions (i.e., with |b|>2): the BERT model reduces
by 8.7% the MAE and 5.9% the RMSE. We observe a large standard deviation on
“extreme” questions. We think it is due to the fact that these questions are only 13%
of the total and to an instability of the models.

The DistilBERT authors claim to maintain 97% of BERT’s performance, which
in our case is confirmed. Indeed, the performance of BERT and DistilBERT is very
similar, the difference is less than 1%. The best configuration of the hyperparameters
for both BERT and DistilBERT is the following:

• Sequence length = 128;

• Batch size = 64;

• Learning rate = 1e-5;

• Patience early stopping = 10 epochs;

• Dropout regressor layer = 0.5;

• Dropout internal = 0.25.

Analysis of the best performing model

We perform an analysis of the best performing model, BERT, and compare it with the
other models. First, we look at the difference between the train and test performance.
Then, we analyze the distribution of the predicted difficulties. Lastly, we look at what
characteristics of the question text may have influenced the model error.

To better understand the models, it is important to compare the performances
on the test set and those on the training set. Table 7.2 shows the performance of
the various models, indicating the difference between the metrics in training and in
the test (averaged over three runs). R2DE has a similar error on training and test
set. However, this also leads to poor results on the test set compared to BERT. This,
and the fact that R2DE then tends to predict always difficulties around 0 (as we
will show later on), may suggest an underfitting phenomenon. We can see that the
Transformer models, BERT and DistilBERT, have a much lower error on the training
set than the test set. This occurs even though we use higher dropout values (0.5) than
those usually used for BERT fine-tuning (0.1) and early-stopping to try to reduce
overfitting.
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Train Test

Model MAE MAE ∆ MAE

R2DE [6] 0.916 ± 0.001 0.966 ± 0.001 0.050

ELMo [70] 0.805 ± 0.008 0.933 ± 0.013 0.128

DistilBERT 0.683 ± 0.062 0.919 ± 0.009 0.236

BERT 0.608 ± 0.100 0.911 ± 0.003 0.303

RMSE RMSE ∆ RMSE

R2DE [6] 1.216 ± 0.001 1.304 ± 0.001 0.088

ELMo [70] 1.061 ± 0.007 1.255 ± 0.017 0.194

DistilBERT 0.897 ± 0.087 1.239 ± 0.010 0.342

BERT 0.798 ± 0.124 1.228 ± 0.003 0.439

Table 7.2. ASSISTments, train and test errors.

Figure 7.2 plots the loss on the training and the validation sets over training
epochs. We can see how the two curves decrease up to the 16th epoch, after which the
error on the validation starts to rise (i.e., the model begins to lose generalization). The
16th epoch is chosen by early stopping as it has the smallest error on the validation
set; the training goes on for 10 more epochs (patience).
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Figure 7.2. ASSISTments, model loss over training epochs.

Figure 7.3 shows the distribution of test difficulties predicted by R2DE, ELMo,
DistilBERT, and BERT (the target difficulty of the test set is shown in Figure 7.4).
We can immediately notice how R2DE tends to predict difficulties around 0 (note
that the plot of R2DE has a different scale on the y-axis). The other models, on the
other hand, have a Gaussian distribution. BERT, compared to other models, has a
lower density around 0.
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(b) ELMo.

5.0 2.5 0.0 2.5 5.0
Predicted difficulty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ns

ity

items

(c) DistilBERT.
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(d) BERT.

Figure 7.3. Test set, distribution of predicted difficulties.

Figure 7.4 shows the distribution of target difficulties and the ones predicted by
BERT across all splits of the dataset. We see that the target difficulties in the various
splits are distributed similarly. We also note that BERT maintains the Gaussian
distribution of the target but tends to predict difficulties closer to 0 compared to the
target.
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(a) Train target
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(b) Train prediction
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(c) Validation target
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(d) Validation prediction
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(e) Test target
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(f) Test prediction

Figure 7.4. Distribution of the target difficulties and BERT predictions.
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(a) R2DE.
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(b) ELMo.
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(c) DistilBERT.
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(d) BERT.

Figure 7.5. ASSISTments, error depending on the input length and true difficulty.

Figure 7.5 shows the dependence between true difficulty, the prediction error, and
length of the question (in terms of the number of words) in the test set. We considered
questions with less than 90 words for better visualization, representing 97.5% of the
test set’s questions, and we calculate the error of a single point as |b - b̂|, where b is
the true difficulty and b̂ is the predicted difficulty. We can note that regardless of the
length of the question, R2DE always tends to predict difficulties around the average,
i.e., equal to 0. All the other models show different behavior from R2DE. Even in
BERT, the best performing model, the error increases when the true difficulty is far
from the average, but not as much as in R2DE. There is no clear relationship between
question length and prediction error.
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(a) R2DE.
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(b) ELMo.
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(c) DistilBERT.
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(d) BERT.

Figure 7.6. ASSISTments, error depending on percentage of digits in the input text and true
difficulty.

Many of the ASSISTments questions are related to mathematics; therefore, some
questions contain numbers. To see the influence of the presence of numbers, we
calculated the percentage of digits as the number of digits divided by the total number
of characters in the question. Figure 7.6 shows us the dependence between true
difficulty, the prediction error, and the percentage of digits in the test set. We see
that digits in the questions are quite relevant; indeed, about 20% of the test questions
have a percentage of digits greater than 0.1. Again, we can note that regardless of
the percentage of digits, R2DE always tends to take difficulties around the average.
In the other models for true difficulties around 0, the error seems to decrease as the
digits’ percentage increases. The presence of numbers does not seem to have caused
problems for the models.
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BERT R2DE DistilBERT ELMo

Digits % Avg. b MAE MAE MAE MAE

Y 80% -0.314 0.869 0.926 0.871 0.889

N 20% -0.442 1.067 1.122 1.058 1.063

RMSE RMSE RMSE RMSE

Y 80% -0.314 1.171 1.238 1.175 1.189

N 20% -0.442 1.433 1.547 1.425 1.453

Table 7.3. Models performance per question with and without digits.

Continuing the previous analysis, Table 7.3 shows the models performance for
questions with or without digits. As we can see, all models follow the same pattern,
i.e., they perform better with questions containing digits. A possible explanation is
that the questions with no digits are only 20%, and therefore the model did not have
enough examples to learn. Furthermore, questions containing numbers can be related
to the same domain, mathematics. In contrast, questions that do not contain numbers
could have completely different domains and, therefore, might be more difficult to
learn due to the lack of training samples.

BERT R2DE DistilBERT ELMo

Type % Avg. b MAE MAE MAE MAE

algebra 46% -0.182 0.852 0.902 0.853 0.872

choose_1 38% -0.687 0.965 1.012 0.952 0.979

fill_in_1 14% 0.007 0.876 0.967 0.877 0.860

RMSE RMSE RMSE RMSE

algebra 46% -0.182 1.156 1.205 1.156 1.148

choose_1 38% -0.687 1.275 1.377 1.265 1.328

fill_in_1 14% 0.007 1.211 1.276 1.215 1.170

Table 7.4. Models performance per question type.

Unlike the Cloud Academy dataset, the ASSISTments dataset contains different
types of questions, as described in Chapter 5 (e.g, algebra, choose_1 and fill_in_1 ).
Table 7.4 shows the performance of the models per question type. As we can notice,
in all models, the performance on choose_1 is lower than the others. This can be
motivated by the fact that these problems are MCQ, of which we do not have complete
textual information; indeed, the texts of the answers are not provided. Also, these
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questions have a difficulty average b far from 0. R2DE tends to be “lazy” and makes
predictions around 0 (i.e., the average of the difficulty), explaining why the error is
more significant. We can see how ELMo performs slightly better for fill_in_1 than
for algebra. While for the other models, the opposite happens. This fact could be due
to ELMo’s different text pre-processing.

BERT R2DE DistilBERT ELMo

Type % Avg. b MAE MAE MAE MAE

With “?” 43% -0.312 0.894 0.937 0.911 0.926

Without “?” 57% -0.359 0.918 0.986 0.906 0.921

RMSE RMSE RMSE RMSE

With “?” 43% -0.312 1.182 1.234 1.194 1.242

Without “?” 57% -0.359 1.260 1.356 1.253 1.249

Table 7.5. Models performance per question with and without “?”.

Another feature that distinguishes the various items is the presence or absence
of the question mark “?”. Table 7.5 shows us the performance of question patterns
with and without “?”. BERT and R2DE predict more easily the difficulty of questions
with “?”, while DistilBERT and ELMo have almost the same performance regardless
of the type. We also notice how R2DE performs much worse for questions without “?”,
even if they have similar average difficulty. A possible explanation for the problematic
difficulty prediction with questions without “?” may derive from the fact that this
type of question often refers to external images.

7.3.2 Cloud Academy

The Cloud Academy QTEST is made up of 1259 questions. All the questions are
MCQ, and, differently from ASSISTments, the text of the possible choices is available.
Thus, we can test the three input configurations described in Chapter 6. We also
experiment with pre-training the Transformers-based models on MLM using the
additional Lectures dataset.

Analysis of different configurations

Table 7.6 shows the results of DistilBERT and BERT with different configurations. The
results with pre-training on MLM reported refer to the training of Transformer-based
model for 24 epochs on the additional Lectures dataset.
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Model Input MLM MAE RMSE

DistilBERT Q only N 0.805 ± 0.005 1.017 ± 0.005

DistilBERT Q + cor. N 0.799 ± 0.010 1.019± 0.017

DistilBERT Q + all N 0.794 ± 0.005 1.013 ± 0.007

BERT Q only N 0.807 ± 0.015 1.022 ± 0.020

BERT Q + cor. N 0.789 ± 0.010 0.999 ± 0.017

BERT Q + all N 0.811 ± 0.011 1.027 ± 0.013

DistilBERT Q only Y 0.802 ± 0.002 1.016 ± 0.002

DistilBERT Q + cor. Y 0.786 ± 0.006 0.994 ± 0.009

DistilBERT Q + all Y 0.794 ± 0.004 1.009 ± 0.005

BERT Q only Y 0.808 ± 0.010 1.020 ± 0.015

BERT Q + cor. Y 0.773 ± 0.010 0.978 ± 0.011

BERT Q + all Y 0.801 ± 0.015 1.014 ± 0.015

Table 7.6. Cloud Academy, results of BERT and DistilBERT.

The best performing model is BERT pre-trained on MLM using as input the
question stem plus the text of the correct choice(s) (i.e., the Q + cor. configuration).
The results show that the input configuration leading to better performance is Q
+ correct for all models except DistilBERT without pre-training, where Q + all
leads to better performance. In general, we can say that the possible choices provide
useful information that leads to an increase in performance. We can notice that the
pre-training on MLM, under the same input configuration, increases the performance
by up to 2% on the MAE and up to 1.9% on the RMSE.

The best configuration of the hyperparameters for both BERT and DistilBERT is
the following:

• Sequence length = 256 for Q + all, 128 for others;

• Batch size = 16;

• Learning rate = 2e-5;

• Patience early stopping = 10 epochs;

• Dropout regressor layer = 0.5;

• Dropout internal = 0.5.

Comparison with the state of the art

Table 7.7 shows the results of the best configurations of the proposed Transformers-
based models compared to the baselines. We can observe how the Transformers-based
models perform better than the baselines, even without the additional pre-training
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on MLM. Our best model—BERT with pre-training on MLM and Q + correct as
input—reduces the MAE by 4.9% and the RMSE by 5.4% with respect to the best
baseline, i.e., R2DE. We can see how all models have lower performance if only the
question’s stem is used. R2DE, unlike BERT and ELMo, performs better using the
question and all the possible choices.

Model Input MLM MAE MAE, |b|>2

Majority - - 0.845 ± 0.000 2.527 ± 0.000

R2DE [6] Q only - 0.826 ± 0.001 2.397 ± 0.004

R2DE [6] Q + cor. - 0.819 ± 0.001 2.320 ± 0.005

R2DE [6] Q + all - 0.813 ± 0.001 2.331 ± 0.008

ELMo [70] Q only - 0.833 ± 0.002 2.286 ± 0.032

ELMo [70] Q + cor. - 0.831 ± 0.008 2.184 ± 0.033

ELMo [70] Q + all - 0.839 ± 0.004 2.213 ± 0.025

DistilBERT Q + all N 0.794 ± 0.005 2.203 ± 0.044

BERT Q + cor. N 0.789 ± 0.010 2.118 ± 0.130

DistilBERT Q + cor. Y 0.785 ± 0.007 2.078 ± 0.065

BERT Q + cor. Y 0.773 ± 0.010 2.044 ± 0.143

RMSE RMSE, |b|>2

Majority - - 1.069 ± 0.000 2.568 ± 0.000

R2DE [6] Q only - 1.051 ± 0.001 2.468 ± 0.005

R2DE [6] Q + cor. - 1.033 ± 0.002 2.391 ± 0.005

R2DE [6] Q + all - 1.034 ± 0.001 2.405 ± 0.008

ELMo [70] Q only - 1.053 ± 0.002 2.373 ± 0.025

ELMo [70] Q + cor. - 1.048 ± 0.010 2.276 ± 0.018

ELMo [70] Q + all - 1.057 ± 0.007 2.308 ± 0.015

DistilBERT Q + all N 1.013 ± 0.007 2.309 ± 0.036

BERT Q + cor. N 0.999 ± 0.017 2.222 ± 0.110

DistilBERT Q + cor. Y 0.994 ± 0.009 2.192 ± 0.058

BERT Q + cor. Y 0.978 ± 0.011 2.139 ± 0.121

Table 7.7. Cloud Academy results.

Analysis of the best performing model

We perform an analysis of the best performing model, BERT with pre-training on
MLM, and compare it with the other models. First, we look at the difference between

70



7.3. Evaluation

the train and test performance. Then, we analyze the distribution of the predicted
difficulties. Lastly, we look at what characteristics of the question text may have
influenced the model error.
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(a) Without further pre-training.
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(b) With further pre-training.

Figure 7.7. Cloud Academy, model loss over training epochs.

Figure 7.7 plots the loss on the training and validation sets over training epochs
of the BERT model and the BERT model with further pre-training respectively. As
we can observe, the model with further pre-training shows a more stable validation
loss, and also the training loss goes down faster. In these two training runs , the
epoch with the lowest validation error is the same (but it’s not guaranteed to always
happen).

Train Test

Model MAE MAE ∆ MAE

R2DE [6] 0.366 ± 0.002 0.813 ± 0.001 0.366

ELMo [70] 0.727 ± 0.013 0.831 ± 0.008 0.104

DistilBERT 0.643 ± 0.062 0.785 ± 0.007 0.142

BERT 0.364 ± 0.249 0.773 ± 0.010 0.409

RMSE RMSE ∆ RMSE

R2DE [6] 0.448 ± 0.002 1.034 ± 0.001 0.586

ELMo [70] 1.061 ± 0.007 1.048 ± 0.010 0.013

DistilBERT 0.897 ± 0.087 0.994 ± 0.009 0.097

BERT 0.547 ± 0.311 0.978 ± 0.011 0.521

Table 7.8. Train and test errors.

As we have already done for the ASSISTments dataset, we compare the models
performance on the test set and on the training set (averaged over three runs). Table
7.8 shows the performance of the various models, indicating the difference between
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the metrics on the training set and test set. We can see that BERT and R2DE have a
much lower error on the training set than the test set. Furthermore, we can see a large
standard deviation of BERT on the training set, as the early stopping has stopped
the training at different epochs. This, however, led to similar results on the test set.

Figure 7.8 shows the distribution of test difficulties predicted by R2DE, ELMo,
DistilBERT, and BERT (the target difficulty of the test set is shown in the Figure
7.9). All the predictions have a Gaussian distribution; however, we can notice how
the distributions of R2DE, ELMo, and DistilBERT have a lower variance than that of
BERT.
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(a) R2DE.
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(b) ELMo.
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(c) DistilBERT.
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(d) BERT.

Figure 7.8. Test set, distribution of predicted difficulties.

Figure 7.9 shows the distribution of the target difficulties and the ones predicted by
BERT across all splits of the dataset. We see that the target difficulties in the various
splits are distributed similarly. We also note that BERT maintains the Gaussian
distribution of the target but tends to predict difficulties closer to 0 compared to the
target in the validation and test sets.
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(a) Train target
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(b) Train prediction

5.0 2.5 0.0 2.5 5.0
Predicted difficulty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity

items

(c) Validation target
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(d) Validation prediction
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(e) Test target
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(f) Test prediction

Figure 7.9. Distribution of the target difficulties and BERT predictions.
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(a) R2DE.
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(b) ELMo.
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(c) DistilBERT.
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(d) BERT.

Figure 7.10. Cloud Academy, error depending on the input length and true difficulty.

Figure 7.10 shows the dependence between true difficulty, the prediction error, and
length of the questions (in terms of the number of words) in the test set. We consider
questions with less than 100 words and target difficulty between -3 and 3 for better
visualization (1067 samples over 1259 in the test set). For calculating the number of
words, we use the best input configuration for each model: Q + all for R2DE and Q
+ correct for the others. For all models, the error increases as the target difficulty
moves away from zero, showing how models tend to make predictions around zero.
The models have at their disposal many examples of questions with difficulty around
zero, and few for extreme difficulties. The graphs do not show an influence of the text
length on the prediction error.
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BERT R2DE DistilBERT ELMo

Cloze % Avg. b MAE MAE MAE MAE

Y 18% -0.144 0.809 0.892 0.836 0.891

N 82% 0.166 0.756 0.795 0.772 0.819

RMSE RMSE RMSE RMSE

Y 18% -0.144 1.034 1.149 1.076 1.142

N 82% 0.166 0.958 1.007 0.976 1.019

Table 7.9. Models performance per question type.

In the Cloud Academy dataset, we have two types of questions: i) cloze questions,
where the correct choice goes in place of an underscore in the stem of the question,
ii) questions with a question mark at the end. The difficulty of cloze questions on
average is lower than those with a question mark. 18% of the questions in the test
set are cloze questions. Table 7.9 shows the performance of the models by type of
question (cloze, or not cloze). It can be seen that all models show a more significant
error on cloze-type questions. This can be due to several factors, including the lower
number of samples. Another explanation could be the fact that these items are not
close to the concept of “question” in natural language.

BERT R2DE DistilBERT ELMo

Digits % Avg. b MAE MAE MAE MAE

Y 50% 0.191 0.758 0.796 0.783 0.830

N 50% 0.032 0.770 0.828 0.784 0.834

RMSE RMSE RMSE RMSE

Y 50% 0.191 0.976 1.027 1.004 1.051

N 50% 0.032 0.967 1.040 0.986 1.033

Table 7.10. Models performance per digits.

Table 7.10 shows the performance of the models based on the presence or absence
of digits in the question text. Unlike the ASSISTments dataset, about half of the
questions do not contain any numbers (for this reason, we report only the binary table
and not the scatter plot with the percentage of digits per question). There is no clear
pattern if the presence of numbers affects the prediction error.
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BERT R2DE DistilBERT ELMo

# correct % Avg. b MAE MAE MAE MAE

1 88% 0.099 0.773 0.823 0.788 0.836

> 1 12% 0.200 0.705 0.739 0.751 0.801

RMSE RMSE RMSE RMSE

1 88% 0.099 0.984 1.049 1.003 1.051

> 1 12% 0.200 0.879 0.920 0.927 0.980

Table 7.11. Models performance per number of correct choices.

The Cloud Academy dataset consists of MCQ with one or more correct choices.
Table 7.11 shows us the performance of the models on the test set based on the
number of correct choices to the question, only one or more than one. We can see
that the models more easily predict questions with more than one choice. BERT and
DistilBERT have good performance with questions with multiple choices, suggesting
that the encoding used is not wrong. The encoding of the possible choices certainly
deserves further attention. For instance, to better understand why R2DE obtains
better performance by exploiting all possible choices.
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Chapter 8

Conclusion

In this work, we have conducted a study about how pre-trained Transformers models,
specifically BERT and DistilBERT, perform in the task of Question Difficulty Esti-
mation (QDE) from text, and we have proposed a model that outperforms previous
approaches by up to 6.5% on RMSE. We evaluated the models on two real-world
datasets (one public and one private), using as ground truth Item Response The-
ory (IRT) difficulties. Transformers have become the de facto standard in several
Natural Language Processing (NLP) tasks and confirmed their effectiveness in QDE.

We explored two approaches to train our model: with and without an additional
pre-training on Masked Language Modeling (MLM). This further pre-training can
increase the performance of the model by utilizing an additional dataset (e.g., books
or lecture notes) related to the task domain. Previous approaches are either totally
dependent on additional documents (i.e., they cannot work with the text of the
questions only) or cannot leverage such information. Differently from them, our
approach can work with or without a supplementary corpus of documents. The
proposed model can outperform the state of the art approaches being trained only
on the questions text and can be further improved if such an additional dataset is
available. Specifically, we experimented with two pre-trained language models: BERT
and DistilBERT. Both models proved to be better than the baselines, and the best
performing model turned out to be the one based on BERT.

As an outcome of our study, we can say that: i) if an additional dataset if available,
the pre-training on MLM improves the performance of Transformers model; ii) if the
only available data is the text of the questions, DistilBERT might also be a good
option, as it retains almost the same performance of BERT but at a fraction of the
computational cost; iii) the possible choices help to estimate the difficulties as all the
models show a larger error using only the stem of the questions.

We have analyzed which characteristics of the questions affect the prediction error
of the models in our experiments. We have noticed that the error naturally increases
as the magnitude of the difficulty increases and that R2DE, in particular, tends to
predict more frequently difficulty close to zero. This is also due to the Gaussian
distribution with zero mean of the training data as the models cannot see many
questions that are very easy or very difficult. The length of the question does not
seem to affect the prediction error of BERT and the other models. It has also been
noticed that BERT has worse performance on cloze questions. One reason could be
that this type of question is further away from natural language. Plus, we had fewer
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samples available for these questions than those ending with a question mark.
Our contribution opens up several directions of research that can be explored in

the future. A possible idea might be to improve the performance of BERT on cloze
questions by using a different encoding. In fact, during the MLM training, what BERT
tries to do is to predict the hidden word, which is the same objective of the cloze
questions. The [MASK] token has the same function as the underscore. Therefore, the
token could be reused in the fine-tuning on QDE instead of the underscore.

The model interpretability is very important to provide support to question
creators. Unlike other models, Transformers are based on the Attention mechanism,
which might explain which part of the question affects the difficulty. However, we are
aware that Transformers models interpretation is not immediate, and there is ongoing
research on it.

Another future experiment could involve using Question Answering as an auxiliary
task: a first fine-tuning of BERT to answer the questions and then a second to perform
QDE. In the literature, an attempt has been made to use response time prediction
as an auxiliary task [70], but no one has used Question Answering. This approach
requires no additional data apart from the question and the correct choice and could
lead to increased performance.

In our case, we used an additional dataset—containing the transcripts of lessons
related to the questions—to further pre-train the model on MLM. This further pre-
training has led to an increase in performance, but it would be interesting to examine
if it really is the best way to exploit such a dataset. Other approaches might use the
additional dataset to see how many times the topic required by the question appears
in the corpus in order to extract useful Information Retrieval (IR) features. We could
compare which method between the two is the most effective way to leverage this
additional information.
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Acronyms

CTT Classical Test Theory

IRT Item Response Theory

1PL One-Parameter Logistic

2PL Two-Parameter Logistic

3PL Three-Parameter Logistic

GMAT Graduate Management Admission Test

ICC Item Characteristic Curve

NLP Natural Language Processing

TF-IDF Term Frequency–Inverse Document Frequency

MLE Maximum Likelihood Estimation

FFNN Feed Forward Neural Network

MLP Multi Layer Perceptron

RNN Recurrent Neural Network

seq2seq Sequence to Sequence Learning

LSTM Long short-term memory

ReLU Rectified Linear Unit

BPE Byte Pair Encoding

SVM Support-Vector Machines

BERT Bidirectional Encoder Representations from Transformers

GLUE General Language Understanding Evaluation

SQuAD Stanford Q/A dataset

SVM Support-Vector Machines

CQA Community Question Answering

IR Information Retrieval

MCQ Multiple Choice Questions

LDA Latent Dirichlet Allocation

OJ Online Judge

KT Knowledge Tracing
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BKT Bayesian Knowledge Tracing

NSP Next Sentence Prediction

MLM Masked Language Modeling

MSE Mean Squared Error

RMSE Root Mean Square Error

MAE Mean Absolute Error

IRF Item Response Function

TPU Tensor Processing Unit

QDE Question Difficulty Estimation
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