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Abstract 

This study analyzes the model of the PV panel and DC-DC converter’s control and their effects on the 
synthetic inertia in a double-stage conversion system (DC-DC boost converter and DC-AC inverter) 

employed for the connection of a PV generator to an isolated microgrid, where primary frequency 

regulation is carried out by rotating machines with low starting time.  

The goal of the analysis is to analyze the interaction between the conversion stages DC-DC and DC-

AC in the event of a power load variation, as well as their effect on synthetic inertia and other desired 

outputs of the system, such as frequency and working point of PV panels.  

The study will be carried out analytically, finding the mathematical differential equations of all the 

components in the microgrid and the corresponding transfer functions, obtained by linearization and 

small signal analysis. Then, using the extracted model, the transfer function of desired outputs, such as 

grid frequency, will be calculated.  

 

 
Key-words: “Synthetic Inertia Control”, ”Double-Stage PV System”, “DC/DC Converter Control”, 

“MPPT”, “Inverter Control”. 
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Abstract in lingua italiana 

Questo studio analizza il modello del pannello fotovoltaico e del controllo del convertitore DC-DC e i 
loro effetti sull'inerzia sintetica in un sistema di conversione a doppio stadio (convertitore booster DC-

DC più inverter DC-AC), utilizzato per il collegamento di un generatore FV a una micro-rete isolata,  

dove la regolazione della frequenza primaria viene effettuata dalle macchine rotanti con tempo di 

avviamento veloce.  

L'obiettivo dell'analisi è valutare l'interazione tra gli stadi di conversione DC-DC e DC-AC in seguito 

ad una variazione della potenza del carico nonché il loro impatto sull’inerzia sintetica e le altre uscite 

del sistema, come la frequenza e il punto di lavoro dei pannelli fotovoltaici.  

Lo studio sarà condotto analiticamente, trovando le equazioni differenziali di tutti i componenti della 

micro-rete e le corrispondenti funzioni di trasferimento, ottenute mediante linearizzazione e analisi di 

piccolo segnale. Successivamente, utilizzando il modello ricavato, verrà calcolata la funzione di 

trasferimento delle uscite desiderate, come la frequenza di rete. 

 

Parole chiave: “Inerzia Sintetica”, ”Sistema Fotovoltaico”, “Controllo Convertitore DC/DC”, 

“MPPT”, “Controllo Inverter”. 
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1. Chapter one 

Introduction 

Wind and solar energy will play a central role in the decarbonization of the European electricity 

generation system as they represent a promising solution to address global warming and hydrocarbon 

fuel scarcity. Considering the observed growth rate, decreasing costs and the political support 

schemes, wind and solar PV will most likely constitute a high share of the power supply system.  

Today’s electricity system is based on a centralized supply in proximity to load centers and the 
different power plant types are designed to follow the hourly load. International transmission of 

electricity and storage only play a minor role. This changes significantly in energy systems with high 

shares of renewable energy and entails major integration challenges for the power system, such as the 

connection of remote sites of high variable renewable energies and their low reliability, occurring 

overproduction, etc. [1]. Furthermore, the inverter-based distributed generations (DGs) such as 

photovoltaic (PV) do not have rotating masses and grid-forming abilities, which make the micro-grid 
become low-inertia, weak and difficult to control, particularly in the stand-alone mode. Inertia stands 

for the sensitivity of frequency to the mismatch between supply and demand, therefore changes in 

generation or load can cause large frequency deviations and possibly leading to system instability. 

Moreover, PV systems are typically operated in maximum power point tracking (MPPT) mode, which 

emphasizes high energy usage efficiency but may cause more serious frequency events when the 

maximum available PV generation is higher than the demand [2].  

Present day grid codes impose technical requirements to DG stations, such as the provision of 

frequency response. Many solutions have been proposed in the literature. Ref. [2] studies a double-
stage PV plant and realizes synthetic inertia control (SIC) by charging/discharging a DC-Bus capacitor 

and adjusting the PV generation when it is feasible and/or necessary. However, instead of using a 

MPPT algorithm, a proportional-integral controller was chosen for the DC/DC boost converter. Ref 

[3] studied the effects on SIC of a PV generator with a double-stage conversion system connected to 

an isolated microgrid where primary frequency regulation is carried out by traditional rotating 

machines. However,  

Virtual synchronous generator control (VSG) is a technique used to allow PV systems to provide 

inertial response of frequency, where the dynamic of a DC-link capacitor is used to mimic the 
dynamic of a SG’s rotor [2]. [3] studied the effects on synthetic inertia response of a PV generator 

with a double-stage conversion system (dc-dc boost plus dc-ac inverter) connected to an isolated 

microgrid where primary frequency regulation is carried out by traditional rotating machines. This 

paper will take a step further from what has been analyzed in [3] by considering a larger PV system 

with faster voltage response and an external grid formed by a number of small-size SGs connected in 

parallel which give rise to a smaller starting time and therefore faster frequency transients.  
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1.1 PV Plant Topology and Control Architecture 
The system is configured in a double-stage topology where the PV array is connected to a DC-DC 

boost converter followed by a DC/AC inverter as shown in Figure 1.1. The single-stage configuration 

with just a DC/AC inverter can be an alternative as it reaches higher energy efficiency rates. However, 
the double-stage configuration is preferred because of the following advantages: higher DC-bus 

voltage stability, lower total harmonic distortion (THD) on the AC side, better MPPT accuracy and 

simpler control scheme [4]. 

Consider the general scheme of Figure 1.1 for a double-stage photovoltaic unit: the external Phase 

Locked Loop (PLL) acquires a set of uncontrolled three-phase voltages in correspondence to the Point 
of Common Connection (PCC) with the external grid. The PLL defines the angle θ used for  the Park 

transform and allows to maintain synchrony between the converter control and the external grid. 

The regulation of the DC voltage and of the injected active and reactive powers is done by linear 
controllers. The DC bus controller generates a reference for the current control which, in turn, 

regulates the power injection. As regards the reactive power, the reference signal can be considered as 

an independent input or can be generated from an external reactive-support algorithm. In this case the 

reference value is zero. 

A Maximum Power Point Tracking (MPPT) algorithm is also included, operating on the duty cycle of  

the DC boost converter. This allows for the introduction of an additional degree of freedom as it 

allows the DC-Bus voltage reference to not be defined by other sub-controls and can be exploited for  

inertia regulation. The following section is dedicated to the description of the MPPT technique used in 

this case study. 

1.2 Incremental Conductance Technique for MPPT 

The V-I characteristic of a PV module is nonlinear Figure 1.2. The power output depends on the 

irradiation, the temperature, and electric loading conditions, namely voltage and current at its 

terminals. 

 

Figure 1.1 – Overall structure of a double-stage photovoltaic unit control system [5]. 
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In general, there is a unique point on the V-I or V-P curve, called the Maximum Power Point (MPP), 
at which the PV system operates with maximum efficiency and produces its maximum output power  

according to the environmental conditions. To follow the inevitable movements of the MPP over time, 

many MPPT techniques have been proposed in the literature; the two most frequently discussed MPPT 

algorithms are the perturb-and-observe (P&O) and the incremental conductance (INC). These methods 

are based on the fact that on the voltage–power characteristic, the variation of the power with respect 
to voltage is positive (dP/dV > 0) on the left-hand side of the MPP, while it is negative (dP/dV < 0) on 

the right-hand side of the MPP. The main advantages of these methods are that they are suitable for 

any PV array, they work reasonably well under most condition and they are simple to implement on a 

digital controller. A detailed literature review today would lead to the conclusion that although the 

INC is slightly more complicated to implement, it provides better performance than P&O under both 
static and dynamic conditions. The two main problems of the P&O that are frequently mentioned in 

the literature are the oscillations around the MPP under steady-state conditions and the poor tracking 

(possibly in the wrong direction, away from MPP) under changing irradiance [6]. The INC method has 

been chosen for this study and will be briefly discussed. 

Assuming 𝑣𝑝𝑣, 𝑖𝑝𝑣 and 𝑝𝑝𝑣 are respectively voltage, current and power of the PV panel at its terminals,  

(1.1) calculates 𝑑𝑝𝑝𝑣 /𝑑𝑣𝑝𝑣: 

 
𝑑𝑝𝑝𝑣

𝑑𝑣𝑝𝑣
=
𝑑(𝑣𝑝𝑣 𝑖𝑝𝑣)

𝑑𝑣𝑝𝑣
= 𝑖𝑝𝑣 +𝑣𝑝𝑣

𝑑𝑖𝑝𝑣

𝑑𝑣𝑝𝑣
 (1.1) 

Rewriting (1.1) at MPP, gives (1.2): 

 
𝑖𝑝𝑣

𝑣𝑝𝑣
+
𝑑𝑖𝑝𝑣

𝑑𝑣𝑝𝑣
= 0 (1.2) 

Where 𝑖𝑝𝑣 𝑣𝑝𝑣⁄  is the instantaneous conductance and 𝑑𝑖𝑝𝑣 𝑑𝑣𝑝𝑣⁄  is the incremental conductance. 

These two quantities are used to determine the reference voltage 𝑉𝑟𝑒𝑓 as shown in the flow chart 

(Figure 1.5) given 𝑣𝑝𝑣, 𝑖𝑝𝑣 as inputs for the MPPT algorithm. When the MPP is achieved 𝑉𝑟𝑒𝑓 must be 

equal to 𝑉𝑚𝑝𝑝 at that instant and once it happens, the operation is maintained at MPP until a change 𝛥𝐼 

occurs. 

 

Figure 1.2 – P-V and I-V curve of a general PV source [6]. 
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Figure 1.3 – P-V and V-I curves of a PV module for different radiation levels at constant cell 

temperature [7] 

 

Figure 1.4 – P-V and V-I curves of a PV module for different cell temperatures at constant radiation 

level [7] 
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Figure 1.5 – Flow chart of Incremental Conductance method [7] 
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2. Chapter two 

Mathematical Model of the System 

This chapter deals with the mathematical modeling of the system using differential equations to derive 

the small signal model around the working point. In the first part, the general topology and the main 

ratings are illustrated; in the second part, the small signal model and the transfer function block 
diagram of the system are deduced, allowing to find the desired outputs through an analytical 

approach. 

2.1 Case Study Definition 
The general system topology together with its related control blocks are shown in Figure 2.1. In the 

presented topology, the PV generation part has the possibility of paralleling more than one string of 
PV panels for the case that the generation power is higher than 100 kW. In that case, each PV panel 

string is connected to the DC-Bus through a DC/DC converter which performs the dedicated MPPT 

control. A DC/AC inverter connects the DC side to the AC side. To represent the general case study,  

the scheme includes a filter stage and a transformer (in case the connected grid is a medium voltage 

grid). Finally, the grid supporting unit (GSU) and the uncontrolled units are implemented in the model 

to emulate the behavior of an external grid. 

In this study, one single PV array is employed consisting of 𝑛𝑠  modules connected in series, forming a 
string, and 𝑛𝑝 strings connected in parallel; 𝑛𝑠 , 𝑛𝑝 are chosen in such a way to obtain the desired 

values of rated power and rated voltage of the PV-Bus. The PV-Bus capacitance 𝐶𝑖𝑛 operate as a filter, 

damping the voltage ripple introduced by the converter. The DC-Bus capacitance 𝐶𝑑𝑐 is put in place as 
an energy buffer for inertia provision during frequency transients as well as for DC-Bus voltage 

stabilization.  

The DC/AC inverter connects the system to the grid and performs the inertia provision during 

frequency transients by reducing/increasing the DC-Bus voltage according to its control scheme.  The 

effects of SIC on a similar system have been studied in [3], however, due to the lower nominal power 

of the system, the PV-Bus voltage transients were governed by a much smaller time constant 
compared to that of the external grid. This implies that the effects of a frequency transient were never 

perceived by the PV-Bus, thus the operating point of the PV generator was never influenced. In this 

case study, given the larger scale of the system, the time constant that governs the PV-Bus voltage 

dynamic is larger, therefore voltage variations caused by MPPT control are slower. Moreover, the 

external grid taken in consideration has a smaller starting time than that studied in [3]. 
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Figure 2.1 – Overall topology of the system [3]. 

Assuming it is formed by a number 𝑛 of parallel-connected synchronous generators with rated power 

𝑃ℎ and starting time 𝑇𝑎ℎ, the equivalent starting time of the GSU 𝑇𝑎−𝑒𝑞 is equal to the weighted 

average of the starting times of all SGs with respect to their rated power [8]: 

 𝑇𝑎−𝑒𝑞 =
∑ 𝑇𝑎ℎℎ ∙ 𝑃ℎ
∑ 𝑃ℎℎ

 (2.1) 

In the case of many synchronous generators of small size (50÷100kVA), this can lead to an external 

GSU with small starting time (50ms) that allows for faster frequency transients. From now on the 

equivalent starting time of the external GSU will be indicated simply as 𝑇𝑎. 

The main ratings of the system are summarized in Table 1. 

Table 1 – Main ratings of the system 

PV Module Static Parameters DC/AC Inverter Ratings 

Rated Power per module, 𝑃𝑝𝑣−𝑚𝑜𝑑  305 W Rated Power, 𝑃𝑑𝑐  500 kW 

MPP Voltage, 𝑉𝑚𝑝𝑝 54.7 V Switching Frequency, 𝑓𝑠𝑤 4 kHz 

Number of modules in series, 𝑛𝑠  11 AC-Side Rated Voltage, 𝑉𝑎𝑐  530 V 

Number of strings in parallel, 𝑛𝑝 149 DC-Bus Rated Voltage, 𝑉𝑑𝑐  √2 𝑉𝑎𝑐 

 

PV-Bus Ratings DC/DC Converter Ratings 

Rated Power, 𝑃𝑝𝑣  500 kW Switching Frequency, 𝑓𝑠𝑤 4 kHz 

Rated Voltage, 𝑉𝑝𝑣 602 V Rated Power, 𝑃𝑏𝑜𝑜𝑠𝑡 500 kW 
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External Grid Grid Supporting Unit 

Rated Voltage, 𝑉𝑛 15 kV Equivalent Starting Time, 𝑇𝑎_𝑒𝑞  50 ms 

Grid Frequency, 𝑓𝑛 50 Hz Time Delay of Primary Regulation, 𝜏 50 ms 

Rated Power, 𝑃𝑏  1 MVA Regulating Energy, 𝐾𝑟𝑒𝑔  40 p.u. 

2.2 PV Source Model 
Typically, for PV array modeling and system analysis, a static single-diode circuit model such as the 

one indicated in Figure 2.2Figure 2.2 is considered. The static PV terminal voltage 𝑉𝑝𝑣 and current 𝐼𝑝𝑣 

are related by the following nonlinear relationship [9]: 

 𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑑 −(
𝑉𝑝𝑣 + 𝐼𝑝𝑣𝑅𝑠

𝑅𝑠ℎ
)  (2.2) 

 
𝐼𝑑 = 𝐼𝑠 [𝑒𝑥𝑝 (

𝑉𝑝𝑣 + 𝐼𝑝𝑣𝑅𝑠

𝜂𝑛𝑐𝑉𝑡
)] 

(2.3) 

Where: 

𝐼𝑝ℎ= photo-generated PV current; 

𝐼𝑑= PV diode’s forward-bias current; 

𝐼𝑠= dark saturation current; 

𝑅𝑠 ,𝑅𝑠ℎ= series and shunt static resistances; 

𝑛𝑐= number of PV cells in series in a module; 

𝑉𝑡= thermal voltage. 

Numerical values are reported in Table 2. 

The static PV model however, is not directly applicable for the dynamic analysis, therefore a linear 

dynamic model is presented in the following section.  

 

Figure 2.2 – Static nonlinear model of the PV source [9]. 
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2.2.1  Dynamic Linear Model 

The physical semiconductor structure of the PV module inherently carries a diffusion capacitance 𝐶𝑑 

due to the forward biased silicon semiconductor junction of the PV cells, and an equivalent series 

inductance 𝐿𝑠 caused by the metalized bus bars interconnecting the 𝑛𝑐 PV cells in series. The 

linearized dynamic model of PV source is illustrated in Figure 2.3. 

The equivalent impedance in the Laplace domain can be written as follows: 

 

𝑍𝑝𝑣−𝑚𝑜𝑑(𝑠) = (𝑅𝑠 +𝐿𝑠) + (𝑟𝑑//𝑅𝑠ℎ//
1

𝑠𝐶𝑑
) = (𝑅𝑠 + 𝑠 𝐿𝑠)+ (

𝑅𝑝

1+ 𝑠𝑅𝑝𝐶𝑑
)

=
(𝑅𝑠 + 𝑠 𝐿𝑠)(1+ 𝑠𝑅𝑝𝐶𝑑)+ 𝑅𝑝

1 + 𝑠𝑅𝑝𝐶𝑑
 

(2.4) 

Where 𝑅𝑝 =
𝑟𝑑𝑅𝑠ℎ

𝑟𝑑+𝑅𝑠ℎ
, and by considering 𝑅𝑝𝑣 = 𝑅𝑠 +𝑅𝑝, equation (2.4) can be rewritten as (2.5): 

 𝑍𝑝𝑣_𝑚𝑜𝑑(𝑠) = 𝑅𝑝𝑣

1+
2𝜉
𝜔𝑧
𝑠 +

𝑠2

𝜔𝑧2

1 +
𝑠
𝜔𝑝

 (2.5) 

The PV impedance has a first order pole 𝜔𝑝 constituted by the parallel RC-network, a second order 

zero 𝜔𝑧 constituted by the interaction of parallel RC-network with the series-RL network, and a 

damping factor 𝜉.  

 

𝜔𝑝 =
1

𝑅𝑝𝐶𝑑

𝜔𝑧 =
1

√𝐿𝑠𝐶𝑑
√1+

𝑅𝑠
𝑅𝑝

𝜉 =
1

2
 
𝐿𝑠 +𝑅𝑝𝑅𝑠𝐶𝑑

√𝑅𝑝𝑅𝑝𝑣𝐿𝑠𝐶𝑑

 (2.6) 

 

Figure 2.3 – Dynamic linear model of the PV source for small-signal analysis [9]. 
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The effect of scaling modules in series/parallel for an array formation is shown in the following 

expressions. Considering equation (2.4), 𝑛𝑠  identical modules connected in series results in (2.7): 

 

𝑍𝑝𝑣−𝑠𝑒𝑟𝑖𝑒𝑠 = 𝑛𝑠𝑅𝑠 (1 +
𝑠𝑛𝑠𝐿𝑠
𝑛𝑠𝑅𝑠

)+
𝑛𝑠𝑅𝑝

1 + 𝑠𝑛𝑠𝑅𝑝 ∙ 𝐶𝑑 𝑛𝑠⁄

= 𝑛𝑠 [𝑅𝑠 (1+
𝑠𝐿𝑠
𝑅𝑠
) +

𝑅𝑝

1 + 𝑠𝑅𝑝𝐶𝑑
] = 𝑛𝑠𝑍𝑝𝑣 . 

(2.7) 

Similarly, for 𝑛𝑝 identical modules connected in parallel it results (2.8): 

 

𝑍𝑝𝑣−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
𝑅𝑠
𝑛𝑝
(1 +

𝑠 𝐿𝑠 𝑛𝑝⁄

𝑅𝑠 𝑛𝑝⁄
)+

𝑅𝑝 𝑛𝑝⁄

1+ 𝑠(𝑅𝑝 𝑛𝑝⁄ )𝑛𝑝𝐶𝑑

=
1

𝑛𝑝
[𝑅𝑠 (1+

𝑠𝐿𝑠
𝑅𝑠
)+

𝑅𝑝

1 + 𝑠𝑅𝑝𝐶𝑑
] =

1

𝑛𝑝
𝑍𝑝𝑣 . 

(2.8) 

Thus, for a generic 𝑛𝑠  by 𝑛𝑝 array: 

 𝑍𝑝𝑣(𝑠) =
𝑛𝑠
𝑛𝑝
𝑍𝑝𝑣_𝑚𝑜𝑑(𝑠) (2.9) 

Under the assumptions of identical PV characteristics and circuit symmetry, series or parallel 

connections of the PV panels is reflected only as a dc shift in the PV impedance characteristics in 

frequency spectrum, without impacting the pole and zero locations. Thus, the dynamic characteristics 

of the PV do not change with series–parallel connections of multiple modules. The dynamic 

parameters are listed in Table 2. For this case study: 𝑛𝑠 = 11, 𝑛𝑝 = 149. 

The Bode diagram of 𝑍𝑝𝑣(𝑠) is shown in Figure 2.4. 𝑍𝑝𝑣(𝑠) is characterized by a first order pole 𝜔𝑝 

and a second order zero 𝜔𝑧 at approximately 104 rad/s and 9∙104 rad/s, respectively. For angular 

frequencies lower than 𝜔𝑝, the behavior of 𝑍𝑝𝑣  can be approximated to that of a resistance: 

 |𝑍𝑝𝑣(𝑗𝜔)| ≅ |𝑅𝑝𝑣 |, 𝑓𝑜𝑟   𝜔 < 𝜔𝑝 (2.10) 

Thus, at low frequencies the dynamic model can be simplified to a linear static model which is 

presented in the next section. 

Table 2 – Dynamic parameters of the PV source 

Dynamic Parameters of the PV Panel Single module Full Array 

Dynamic resistance of the diode, 𝑟𝑑 4.5 Ω 0.33 Ω 

Diffusion capacitance of the diode, 𝐶𝑑 22.2 μF 301 μF 

Shunt resistance, 𝑅𝑠ℎ 270 Ω 20 Ω 

Total series resistance, 𝑅𝑠 370 mΩ 27 mΩ 

Total series inductance, 𝐿𝑠  5.7 μH 0.42 μH 

First order pole, 𝜔𝑝 104  rad/s 

Second order zero, 𝜔𝑧 9 ∙ 104  rad/s 
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Figure 2.4 – Bode diagram of 𝑍𝑝𝑣(𝑠) 

2.2.2  Static Linear Model 

The static linear model of the PV source is obtained by applying the Thevenin equivalent around the 

MPP on the I-V characteristic. Figure 2.5 shows a graphical representation of the linearization, 

highlighting the equivalent parameters. 

The equivalent resistance 𝑅𝑝𝑣_𝑒𝑞 can be calculated by computing the differential of the I-V curve [10]: 

 
𝜕𝑖𝑝𝑣

𝜕𝑣𝑝𝑣
= −

1

𝑅𝑝𝑣_𝑒𝑞
 (2.11) 

 

Figure 2.5 – Linearization around the MPP [3]. 
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Table 3 – Static PV model parameters 

Parameter Value 

𝑅𝑝𝑣_𝑒𝑞  1.56 Ω 

𝑉𝑝𝑣_𝑒𝑞  852 V 

 

Figure 2.6 – Linearization of the I-V curve around the MPP (MatLab) 

 
𝑅𝑝𝑣_𝑒𝑞 = (

𝐼𝑠+ 𝐼𝑑
𝜂𝑛𝑐𝑉𝑡

)
−1

+𝑅𝑠 (2.12) 

Where 𝜂 indicated the diode’s quality factor. 

For this study however, the values of 𝑅𝑝𝑣_𝑒𝑞 and 𝑉𝑝𝑣_𝑒𝑞 have been extrapolated numerically from the I-

V curve of the panel considered (Figure 2.6) and the values obtained are reported in Table 3. 

2.3 Power Converters Model 
In this section the small signal model of the system will be developed. The circuit in Figure 2.7 shows 

the double stage configuration with the static linear model of the PV source, the DC/DC boost 

converter and the DC/AC inverter connected to the external grid. 

The electric circuit contains nonlinear components such as the switch and the diode of the DC/DC 

boost converter. The average operator is used to linearize the differential equations of the system:  the 

switch operates at switching frequency 𝑓𝑠𝑤 = 1 𝑇𝑠𝑤⁄ = 10 𝑘𝐻𝑧, therefore any given variable 𝑥(𝑡) can 

be split into two states (on-state and off-state of the switch): 

 

1

𝑇𝑠𝑤
∫ 𝑥(𝑡)𝑑𝑡
𝑇𝑠𝑤

0
=

1

𝑇𝑠𝑤
[∫ 𝑥(𝑡)𝑑𝑡+∫ 𝑥(𝑡)𝑑𝑡

𝑇𝑠𝑤

𝑑𝑇𝑠𝑤

𝑑𝑇𝑠𝑤

0
] = 𝑑𝑥̅𝑜𝑛+ (1 −𝑑)𝑥̅𝑜𝑓𝑓 (2.13) 

Where 𝑑 = 𝑇𝑜𝑛 𝑇𝑠𝑤⁄  is the duty-cycle of the switch and 𝑥̅𝑜𝑛, 𝑥̅𝑜𝑓𝑓 are the average values of 𝑥(𝑡) 

during the on-state and off-state, respectively. 
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Figure 2.7 – Electric circuit of the power system [3]. 

The scheme of Figure 2.7 is used to write – for the two states of the system – the Kirchhoff’s Current 
Law (KCL) at node A, the Kirchhoff’s Voltage Law (KVL) at loop 1, and the power balance between 

sections aa’ and bb’: 

➢ On-state: 0 ≤ 𝑡 < 𝑑𝑇𝑠𝑤 

KCL: 𝑖𝐿(𝑡)+ 𝐶𝑖𝑛
𝑑𝑣𝑝𝑣(𝑡)

𝑑𝑡
+
𝑣𝑝𝑣(𝑡)− 𝑣𝑝𝑣_𝑒𝑞(𝑡)

𝑅𝑝𝑣
= 0 (2.14) 

KVL: −𝑣𝑝𝑣(𝑡)+ 𝑟𝐿 𝑖𝐿(𝑡) + 𝐿𝑏
𝑑𝑖𝐿(𝑡)

𝑑𝑡
= 0 (2.15) 

aa’-bb’: 0 = 𝑝𝐶_𝑑𝑐(𝑡) + 𝑝𝑖𝑛𝑣(𝑡) (2.16) 

➢ Off-state: 𝑑𝑇𝑠𝑤 ≤ 𝑡 < 𝑇𝑠𝑤 

KCL: 𝑖𝐿(𝑡)+ 𝐶𝑖𝑛
𝑑𝑣𝑝𝑣(𝑡)

𝑑𝑡
+
𝑣𝑝𝑣(𝑡)− 𝑣𝑝𝑣_𝑒𝑞(𝑡)

𝑅𝑝𝑣
= 0 (2.17) 

KVL: −𝑣𝑝𝑣(𝑡)+ 𝑟𝐿 𝑖𝐿(𝑡) + 𝐿𝑏
𝑑𝑖𝐿(𝑡)

𝑑𝑡
+ 𝑣𝑑𝑐(𝑡) = 0 (2.18) 

aa’-bb’ 𝑝𝑑𝑐(𝑡) = 𝑝𝐶_𝑑𝑐(𝑡)+ 𝑝𝑖𝑛𝑣(𝑡) (2.19) 

Bringing the derivative terms to the left-hand side of the KCL and KVL and expanding the terms in 

the power balance, the two sets of equations can be written as follows: 

➢ On-state: 0 ≤ 𝑡 < 𝑑𝑇𝑠𝑤 

 
𝑑𝑣𝑝𝑣(𝑡)

𝑑𝑡
= −

1

𝐶𝑖𝑛
𝑖𝐿(𝑡)−

1

𝑅𝑝𝑣𝐶𝑖𝑛
𝑣𝑝𝑣(𝑡) +

1

𝑅𝑝𝑣𝐶𝑖𝑛
𝑣𝑝𝑣_𝑒𝑞(𝑡) (2.20) 
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𝑑𝑖𝐿(𝑡)

𝑑𝑡
= −

𝑟𝐿
𝐿𝑏
𝑖𝐿(𝑡)+

1

𝐿𝑏
𝑣𝑝𝑣(𝑡) (2.21) 

 0 = 𝑣𝑑𝑐(𝑡) ∙ 𝐶𝑑𝑐
𝑑𝑣𝑑𝑐(𝑡)

𝑑𝑡
+ 𝑣𝑑(𝑡) ∙ 𝑖𝑑(𝑡) (2.22) 

Where in equation (2.22) the quadrature component 𝑣𝑞(𝑡) ∙ 𝑖𝑞(𝑡) of the power 𝑝𝑖𝑛𝑣  delivered to the 

grid has been neglected: assuming a small voltage drop on the filter, the magnitude of the Park voltage 

𝑣̅0 is close to 𝑣̅: |𝑉0| = |𝑉| ≅ 𝑉𝑑 and 𝑣𝑜𝑞 = 𝑣𝑞 = 0. 

➢ Off-state: 𝑑𝑇𝑠𝑤 ≤ 𝑡 < 𝑇𝑠𝑤 

 
𝑑𝑣𝑝𝑣(𝑡)

𝑑𝑡
= −

1

𝐶𝑖𝑛
𝑖𝐿(𝑡)−

1

𝑅𝑝𝑣𝐶𝑖𝑛
𝑣𝑝𝑣(𝑡) +

1

𝑅𝑝𝑣𝐶𝑖𝑛
𝑣𝑝𝑣_𝑒𝑞(𝑡) (2.23) 

 
𝑑𝑖𝐿(𝑡)

𝑑𝑡
= −

𝑟𝐿
𝐿𝑏
𝑖𝐿(𝑡)+

1

𝐿𝑏
𝑣𝑝𝑣(𝑡)−

1

𝐿𝑏
𝑣𝑑𝑐(𝑡) (2.24) 

 𝑣𝑑𝑐(𝑡) ∙ 𝑖𝑑𝑐(𝑡) = 𝑣𝑑𝑐(𝑡) ∙ 𝐶𝑑𝑐
𝑑𝑣𝑑𝑐(𝑡)

𝑑𝑡
+ 𝑣𝑑(𝑡) ∙ 𝑖𝑑(𝑡) (2.25) 

The average operator is now applied to the equations with the assumption that the system operates 

under continuous conduction mode (CCM). Considering that 𝑖̅𝑑𝑐(𝑡) = (1 − 𝑑) ∙ 𝑖̅𝐿(𝑡) the set of 

equations in the Laplace domain is: 

 𝑠𝑣̅𝑝𝑣 = −
1

𝐶𝑖𝑛
𝑖𝐿̅ −

1

𝑅𝑝𝑣𝐶𝑖𝑛
𝑣̅𝑝𝑣 +

1

𝑅𝑝𝑣𝐶𝑖𝑛
𝑣̅𝑝𝑣_𝑒𝑞 (2.26) 

 𝑠𝑖𝐿̅ = −
𝑟𝐿
𝐿𝑏
𝑖̅𝐿 +

1

𝐿𝑏
𝑣̅𝑝𝑣 −

1

𝐿𝑏
(1− 𝑑)𝑣̅𝑑𝑐 (2.27) 

 𝑣̅𝑑𝑐 ∙ 𝑖̅𝐿(1− 𝑑) = 𝐶𝑑𝑐𝑣̅𝑑𝑐 ∙ 𝑠𝑣̅𝑑𝑐 + 𝑣̅𝑑 ∙ 𝑖̅𝑑 (2.28) 

The per-unit values are introduced considering as base values the rated apparent power 𝐴𝑏 and the 

rated DC-bus voltage 𝑉𝑑𝑐𝑏: 

AC side 

{
 
 

 
 𝑉𝑎𝑐𝑏 = 𝑉𝑑𝑐𝑏/√2

𝐼𝑎𝑐𝑏 = 𝐴𝑏/𝑉𝑎𝑐𝑏
𝑍𝑎𝑐𝑏 = 𝑉𝑎𝑐𝑏/𝐼𝑎𝑐𝑏
𝜔𝑎𝑐𝑏 = 𝜔𝑛

 (2.29) 
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DC side 

{
 
 

 
 

𝐼𝑑𝑐𝑏 = 𝐴𝑏/𝑉𝑑𝑐𝑏
𝑍𝑑𝑐𝑏 = 𝑉𝑑𝑐𝑏/𝐼𝑑𝑐𝑏
𝐿𝑑𝑐𝑏 = 𝑍𝑑𝑐𝑏/𝜔𝑑𝑐𝑏

𝐶𝑑𝑐𝑏 = 1/(𝜔𝑑𝑐𝑏𝑍𝑑𝑐𝑏 )

𝜔𝑑𝑐𝑏 = 1 𝑟𝑎𝑑/𝑠

 (2.30) 

Equation (2.26) to (2.28) have been converted in per-unit (from now on, the average symbol is omitted 

to simplify the notation). 

 𝐶̇𝑖𝑛
𝑠

𝜔𝑑𝑐𝑏
𝑣̇𝑝𝑣 = −𝑖𝐿 −

1

𝑅̇𝑝𝑣
𝑣̇𝑝𝑣 +

1

𝑅̇𝑝𝑣
𝑣̇𝑝𝑣_𝑒𝑞 (2.31) 

 𝐿̇𝑏
𝑠

𝜔𝑑𝑐𝑏
𝑖𝐿̇ = −𝑟̇𝐿𝑖𝐿̇ + 𝑣̇𝑝𝑣 − (1−𝑑)𝑣̇𝑑𝑐 (2.32) 

 𝑣̇𝑑𝑐 ∙ 𝑖̇𝐿(1− 𝑑) = 𝐶̇𝑑𝑐𝑣̇𝑑𝑐 ∙
𝑠

𝜔𝑑𝑐𝑏
𝑣̇𝑑𝑐+ 𝑣̇𝑑 ∙ 𝑖𝑑̇  (2.33) 

The small variation approach is now introduced for all the variables except for 𝑣𝑝𝑣_𝑒𝑞 = 𝑉𝑝𝑣_𝑒𝑞  and 

𝑣𝑑 = 𝑉𝑑 that are considered constant: 

 {
𝑣𝑝𝑣 = 𝑉𝑝𝑣 +𝛥𝑣𝑝𝑣
𝑣𝑑𝑐 = 𝑉𝑑𝑐 + 𝛥𝑣𝑑𝑐
𝑑 = 𝐷 +𝛥𝑑

 {
𝑖𝐿 = 𝐼𝐿 +𝛥𝑖𝐿
𝑖𝑑𝑐 = 𝐼𝑑𝑐 +𝛥𝑖𝑑𝑐
𝑖𝑑 = 𝐼𝑑+ 𝛥𝑖𝑑

 (2.34) 

Equations (2.31) to (2.33) can now be split into two sets of steady state and small signal equations 

respectively: 

➢ Steady state equations: 

 −𝐼𝐿 −
𝑉𝑝𝑣

𝑅𝑝𝑣
+
𝑉𝑝𝑣_𝑒𝑞

𝑅𝑝𝑣
= 0 (2.35) 

 −𝑟𝐿𝐼𝐿+ 𝑉𝑝𝑣 − (1 −𝐷)𝑉𝑑𝑐 = 0 (2.36) 

 𝑉𝑑𝑐𝐼𝐿(1− 𝑑) −𝑉𝑑𝐼𝑑 = 0 (2.37) 

➢ Small signal equations: 

 𝐶𝑖𝑛
𝑠

𝜔𝑑𝑐𝑏
𝛥𝑣𝑝𝑣 = −𝛥𝑖𝐿−

1

𝑅𝑝𝑣
𝛥𝑣𝑝𝑣 (2.38) 

 𝐿𝑏
𝑠

𝜔𝑑𝑐𝑏
𝛥𝑖𝐿 = −𝑟𝐿𝛥𝑖𝐿 +𝛥𝑣𝑝𝑣 −𝛥𝑣𝑑𝑐 +𝐷𝛥𝑣𝑑𝑐 +𝛥𝑑𝑉𝑑𝑐 +𝛥𝑑𝛥𝑣𝑑𝑐 (2.39) 
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−𝑉𝑑𝑐𝐼𝐿𝛥𝑑 +𝑉𝑑𝑐𝛥𝑖𝐿(1−𝐷) −𝑉𝑑𝑐𝛥𝑖𝐿𝛥𝑑 + 𝐼𝐿𝛥𝑣𝑑𝑐(1− 𝐷)− 𝐼𝐿𝛥𝑣𝑑𝑐𝛥𝑑+ (1−𝐷)𝛥𝑣𝑑𝑐𝛥𝑑

− 𝑣𝑑𝑐𝛥𝑑
2 = 𝐶𝑑𝑐𝑉𝑑𝑐

𝑠𝛥𝑣𝑑𝑐
𝜔𝑑𝑐𝑏

+𝐶𝑑𝑐𝛥𝑣𝑑𝑐
𝑠𝛥𝑣𝑑𝑐
𝜔𝑑𝑐𝑏

+ 𝑉𝑑𝛥𝑖𝑑 (2.40) 

Finally, by neglecting second order terms (𝛥𝑑𝛥𝑣𝑑𝑐 ≈ 𝛥𝑖𝐿𝛥𝑑 ≈ 𝛥𝑣𝑑𝑐𝛥𝑣𝑑𝑐 ≈ 0) and by rearranging the 

variables, gives: 

 (𝑠 +
𝜔𝑑𝑐𝑏
𝑅𝑝𝑣𝐶𝑖𝑛

)𝛥𝑣𝑝𝑣 = −
𝜔𝑑𝑐𝑏
𝐶𝑖𝑛

𝛥𝑖𝐿 (2.41) 

 (𝑠+
𝜔𝑑𝑐𝑏𝑟𝐿

𝐿𝑏
)𝛥𝑖𝐿 =

𝜔𝑑𝑐𝑏
𝐿𝑏

𝛥𝑣𝑝𝑣 −
𝜔𝑑𝑐𝑏(1− 𝐷)

𝐿𝑏
𝛥𝑣𝑑𝑐 +𝑉𝑑𝑐

𝜔𝑑𝑐𝑏
𝐿𝑏

𝛥𝑑 (2.42) 

 [𝐼𝐿(1− 𝐷)−
𝑠 𝐶𝑑𝑐𝑉𝑑𝑐
𝜔𝑑𝑐𝑏

] 𝛥𝑣𝑑𝑐 = 𝑉𝑑𝑐𝐼𝐿𝛥𝑑 −𝑉𝑑𝑐(1− 𝐷)𝛥𝑖𝐿 +𝑉𝑑𝛥𝑖𝑑 (2.43) 

Equations (2.41) to (2.43) describe the small signal model of the power converters and the PV source 

linearized around the working point (MPP). These equations will be used in section 2.5 to deduce the 

transfer function of the full system. 

2.4 Current-Controlled Synthetic Inertia Control 
Reference [11] and [5] studied a system model consisting of a three-phase converter interfaced to an 

external grid by means of an LC filter and a transformer (Figure 2.8). The external grid is represented 

by an inductive-resistive impedance in series with a sinusoidal voltage source. 

The regulation performed by the grid-supporting units can be analyzed starting from the circuit of 

Figure 2.8. Neglecting parasitic losses, the instantaneous power balance of the network is: 

 𝑝𝑔 +𝑝𝑜𝑢𝑡 +𝑝𝑐𝑜𝑛𝑣 = 0 (2.44) 

Where: 

- 𝑝𝑔 represents the load absorption;  

- 𝑝𝑜𝑢𝑡  is the instantaneous contribution from the grid-supporting units;  

- 𝑝𝑐𝑜𝑛𝑣  is the power injected by the grid-following converter.  

Referring to the differential model, the power balance becomes: 

 ∆𝑝𝑔 +∆𝑝𝑜𝑢𝑡 +∆𝑝𝑐𝑜𝑛𝑣 = 0 (2.45) 
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Figure 2.8 – Structure of the system with conventions adopted for power measurements [5] 

Where: 

- ∆𝑝𝑔  is the variation of load absorption (∆𝑝𝑔 < 0 for active load increase, ∆𝑝𝑔 > 0 for  active 

load decrease); 

- ∆𝑝𝑜𝑢𝑡  is the contribution from physical inertias in the system and from primary regulation; 

- ∆𝑝𝑐𝑜𝑛𝑣  is the contribution from the PQ-converter. 

Assuming that no synthetic inertia is provided from the PQ-converter (∆𝑝𝑐𝑜𝑛𝑣 = 0), a change of the 

local load ∆𝑝𝑔 ≠ 0 causes the system angular frequency 𝜔 to undergo a transient. Moreover, the GSU 

output power variation ∆𝑝𝑜𝑢𝑡  changes according to two effects: 

- The kinetic energy variation from physical inertias in the system; 

- The stabilizing effect provided by the primary frequency regulation. 

 ∆𝑝𝑜𝑢𝑡 = ∆𝑝𝑖𝑛𝑒𝑟𝑡𝑖𝑎 +∆𝑝𝑟𝑒𝑔  (2.46) 

➢ As regards primary regulation, according to national directives the active power injection must 

compensate frequency transients according to a negative proportional law with a droop 

coefficient 𝑚 =
1

𝐾𝑟𝑒𝑔
= 2,4% (Figure 2.9). 

When the frequency variation ∆𝜔 occurs, the power modulation ∆𝑝𝑟𝑒𝑔  happens after a time 

delay 𝜏 associated to the internal dynamics of the plant. Thus, the primary regulation effect 

can be expressed (2.47) by (2.48) and  for time and Laplace domains respectively: 

 ∆𝑝𝑟𝑒𝑔 = −𝐾𝑟𝑒𝑔 ∙ ∆𝜔(𝑡 − 𝜏)  (2.47) 

 ∆𝑝𝑟𝑒𝑔 = −𝐾𝑟𝑒𝑔 ∙ ∆𝜔 ∙ 𝑒
−𝑠𝜏 ≅ −𝐾𝑟𝑒𝑔

1

1 + 𝑠𝜏
∙ ∆𝜔 (2.48) 

 Where the regulating energy is: 
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Figure 2.9 – Regulation of active power injection as a function of the frequency [12]. 

 𝐾𝑟𝑒𝑔 = −
∆𝑝𝑟𝑒𝑔

∆𝜔
= −

0− 1 𝑝.𝑢.

51,5− 50,3 𝐻𝑧
50 𝐻𝑧

=
1

2,4%
≅ 41,7 𝑝.𝑢. (2.49) 

➢ Regarding the effects of physical inertias, they can be considered referring to the swing 

equation which models the linearized behavior associated to the kinetic energy derivative: an 

angular frequency change 𝛥𝜔 on the external system produces a variation of the injected 

power ∆𝑝𝑖𝑛𝑒𝑟𝑡𝑖𝑎 according to: 

 ∆𝑝𝑖𝑛𝑒𝑟𝑡𝑖𝑎 ∙ 𝐴𝑏 = −∆𝑝 [
1

2
𝐽 (
𝜔𝑔𝜔𝑏

𝑛
)
2

] = −
𝐽𝜔𝑏

2

𝑛2
𝜔0𝑝∆𝜔 (2.50) 

Where: 

- 𝑝 =
𝑑

𝑑𝑡
 

- 𝐽 is the total moment of inertia associated to the system.  

- 𝜔 is the per-unit angular frequency in electrical degrees. 

- 𝑛 is the number of pole-pairs of the equivalent machine.  

And it was assumed that before the transient occurrence, the system was operating under 

normal conditions (𝜔0 ≅ 1 𝑝𝑢). 

The negative sign comes from the convention of measuring the delivered power as positive. 

Defining the equivalent starting time as 𝑇𝑎 ≜ 𝐽𝜔𝑏
2 𝑛2𝐴𝑏⁄ , equation (2.50) becomes, in the 

Laplace domain: 

 ∆𝑝𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = −𝑇𝑎 ∙ 𝑠∆𝜔 (2.51) 

The inertia contribution ∆𝑝𝑖𝑛𝑒𝑟𝑡𝑖𝑎 is positive when ∆𝜔 < 0, that is the machine injects power 

into the grid when the angular frequency reduces, as the kinetic energy of the rotating masses 

decreases. 

Substituting (2.48) and (2.51) in (2.46) leads to the dynamical model of Figure 2.10 and expressed by 

the following equation (assuming no synthetic inertia, ∆𝑝𝑐𝑜𝑛𝑣 = 0): 
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Figure 2.10 – Dynamic linear model of the grid used for frequency transients’ analysis.  

 ∆𝑝𝑜𝑢𝑡 = ∆𝑝𝑖𝑛𝑒𝑟𝑡𝑖𝑎 +∆𝑝𝑟𝑒𝑔 = (−𝑠𝑇𝑎 −
𝐾𝑟𝑒𝑔

1 + 𝑠𝜏
) ∙ ∆𝜔  (2.52) 

 ∆𝜔 = −
1 + 𝑠𝜏

𝑠2𝑇𝑎𝜏 + 𝑠𝑇𝑎 + 𝐾𝑟𝑒𝑔
∙ ∆𝑝𝑜𝑢𝑡  (2.53) 

And as ∆𝑝𝑔 +∆𝑝𝑜𝑢𝑡 +∆𝑝𝑐𝑜𝑛𝑣 = 0, with ∆𝑝𝑐𝑜𝑛𝑣 = 0 it results: 

 ∆𝜔 =
1 + 𝑠𝜏

𝑠2𝑇𝑎𝜏 + 𝑠𝑇𝑎 +𝐾𝑟𝑒𝑔
∙ ∆𝑝𝑔  (2.54) 

In case the nominal power is different from the base one, the grid parameters 𝑇𝑎 and 𝐾𝑟𝑒𝑔  shall be 

modified following the typical equivalences: 𝑇𝑎
′ = 𝑇𝑎 ∙

𝐴𝑛1

𝐴𝑏
 and 𝐾𝑟𝑒𝑔

′ = 𝐾𝑟𝑒𝑔 ∙
𝐴𝑛1

𝐴𝑏
. 

The fundamental frequency of the grid considers the primary regulation performed by the supporting 

unit and the equivalent inertia of the system. Typically, the PQ converter acts as a constant power 

source, thus 𝛥𝑝𝑐𝑜𝑛𝑣 = 0. Under these conditions the primary frequency regulation can be modelled 

according to (2.55) and (2.56): 

 𝜔𝑔 = 𝜔𝑔𝑛 +𝐾𝑔(𝑠) ∙ 𝛥𝑝𝑔 (2.55) 

 
𝐾𝑔(𝑠) =

𝛥𝜔𝑔

𝛥𝑝𝑔
=

(1+ 𝑠𝜏)

𝑠2𝑇𝑎𝜏 + 𝑠𝑇𝑎 +𝐾𝑟𝑒𝑔
=

(1 + 𝑠𝜏)

𝑠2
1
𝜔𝑛

2 + 𝑠
2𝜉
𝜔𝑛

+1
 

(2.56) 

where 𝐾𝑔(𝑠) is the equivalent transfer function of the grid, which is characterized by two complex 

conjugate poles with natural frequency 𝜔𝑛 and damping factor ξ: 

 𝜔𝑛 = √
𝐾𝑟𝑒𝑔

𝑇𝑎𝜏
 (2.57) 
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 𝜉 =
1

2
√

𝑇𝑎
𝜏𝐾𝑟𝑒𝑔

 (2.58) 

In the case that 𝜉 < √2/2 (that is 𝜏 > 𝑇𝑎 2𝐾𝑟𝑒𝑔⁄ ), the Bode diagram shows a resonance peak in 

correspondence to the grid natural frequency 𝜔𝑛 ≅ 126 𝑟𝑎𝑑/𝑠. Figure 2.11 shows the Bode diagrams 

for the transfer function of the GSU. 

Figure 2.12 shows the general structure of the control system: as in a traditional PQ scheme, an 

external DC-bus control with a slow pass-band defines the reference for the internal active power 

control; as for the reactive contribution it is assumed an external constant reference 𝑄𝑟𝑒𝑓. A 

frequency-locked loop (FLL) estimates the derivative of the angular frequency 𝜔̃̇𝑔; the inertia control 

behaves as an additional active power reference proportional to the frequency approximate derivative 

𝜔̃̇𝑔. An independent phase-locked loop (PLL) determines the estimated synchronous control frame 

𝑑̃𝑞̃𝑠. 

 

Figure 2.11 – Bode diagram for Kg(s) 
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Figure 2.12 – Structure of the converter [11]. 

A second-order generalized integrator (SOGI) algorithm [5] has been introduced to separate the 

derivative estimation (FLL) from the synchronous frame definition (PLL) to increase the degrees of 

freedom associated to the design of the control system. 

The linear model developed in [11] is reported in Figure 2.13 in which the following assumptions have 

been made: 

• The effect associated to the PLL is negligible: 𝜃𝑠 − 𝜃̃𝑠 ≅ 0; a single 𝑑𝑞 frame with angular 

frequency 𝜔𝑠 is considered. 

• Assuming a small voltage drop on the filter, the magnitude of the Park voltage 𝑣̅0 is close to 

𝑣̅: |𝑉0 | = |𝑉| ≅  𝑉𝑑 and 𝑣𝑜𝑞 = 𝑣𝑞 = 0. 

• Low losses are assumed on the filter: 𝑝𝑖𝑛𝑣 = 𝑅𝑒{𝑣̅𝑑𝑞_𝑠𝑖𝑑̅𝑞_𝑠
∗ } ≅ 𝑝𝑐𝑜𝑛𝑣 = 𝑅𝑒{𝑣̅𝑜 𝑑𝑞_𝑠𝑖𝑜̅ 𝑑𝑞_𝑠

∗ }. 

The design of the selective inertia is performed including the external grid model into the linearized 

system. This model allows to derive the equivalent open-loop function associated to the inertia control 

(Figure 2.14), which is given by: 

 𝐿(𝑠) =
𝑠

1+ 𝑠 𝜔𝐹𝐿𝐿⁄
∙

𝐾𝑖𝑛
1 + 𝑠𝜏𝑖𝑛

∙ 𝐾𝑔(𝑠) ∙ 𝐾𝐼(𝑠) (2.59) 

Neglecting the effect of the internal current control which is generally much faster than the considered 

dynamics (𝐾𝐼(𝑠) ≅ 1), the open loop function associated to the inertia control becomes: 

 𝐿(𝑠)  ≅
𝑠

1+ 𝑠 𝜔𝐹𝐿𝐿⁄
∙

𝐾𝑖𝑛
1 + 𝑠𝜏𝑖𝑛

∙
(1+ 𝑠𝜏)

𝑠2𝑇𝑎𝜏 + 𝑠𝑇𝑎 + 𝐾𝑟𝑒𝑔
 (2.60) 

which, for 𝜔 < 1 𝜏𝑖𝑛⁄ , gives an approximate closed loop function: 

 𝐾′𝑔(𝑠) =
𝛥𝜔𝑔

𝛥𝑝𝑔
=

𝐾𝑔(𝑠)

1+ 𝐿(𝑠)
≅

(1+ 𝑠𝜏)

𝑠2(𝑇𝑎𝜏 +𝐾𝑖𝑛𝜏) + 𝑠(𝑇𝑎 + 𝐾𝑖𝑛)+𝐾𝑟𝑒𝑔
 (2.61) 

 



2. Chapter two 25 

 

 

 

Figure 2.13 – Linearized model for the design of the control system: direct (a) and quadrature (b) axis 

[11]. 

 

Figure 2.14 – Equivalent control loop associated to the inertia regulation [11]. 

The introduction of the synthetic inertia provision moves the poles of the grid to lower frequencies  

𝜔′𝑛 = √𝐾𝑟𝑒𝑔 (𝑇𝑎𝜏⁄ +𝐾𝑖𝑛𝜏) and increases the damping factor 𝜉 = 0.5√(𝑇𝑎+𝐾𝑖𝑛)/𝜏𝐾𝑟𝑒𝑔  

contributing to the slow-down of the corresponding transient and increasing their equivalent damping; 

the magnitude of the resonance peak reduces according to the diagram shown in Figure 2.15. A 

sufficient condition for stability is 𝐿(𝑗𝜔𝑝) < 1, thus: 

 
𝐾𝑖𝑛
𝑇𝑎

< √
𝑇𝑎

𝜏𝐾𝑟𝑒𝑔
 (2.62) 
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2.5 Transfer Function Diagram 
In this section the complete transfer function block diagram will be extracted starting from the small 

signal equations found previously. Rearranging equation (2.41) and (2.43) respectively gives: 

 𝛥𝑖𝐿 = −
𝐶𝑖𝑛
𝜔𝑑𝑐𝑏

(𝑠 +
𝜔𝑑𝑐𝑏
𝑅𝑝𝑣𝐶𝑖𝑛

)𝛥𝑣𝑝𝑣 (2.63) 

 
𝛥𝑣𝑑𝑐 =

𝑉𝑑𝑐𝐼𝐿𝛥𝑑 −𝑉𝑑𝑐(1 −𝐷)𝛥𝑖𝐿+𝑉𝑑𝛥𝑖𝑑

𝐼𝐿(1− 𝐷)−
𝑠 𝐶𝑑𝑐𝑉𝑑𝑐
𝜔𝑑𝑐𝑏

 
(2.64) 

Substituting (2.63) into (2.64) gives Δ𝑣𝑑𝑐 as a function of Δ𝑑, Δ𝑣𝑝𝑣 and Δ𝑖𝑑: 

 𝛥𝑣𝑑𝑐 =

𝑉𝑑𝑐𝐼𝐿𝛥𝑑 +𝑉𝑑𝑐(1 −𝐷)
𝜔𝑑𝑐𝑏
𝐶𝑖𝑛

(𝑠 +
𝜔𝑑𝑐𝑏
𝑅𝑝𝑣𝐶𝑖𝑛

)𝛥𝑣𝑝𝑣 +𝑉𝑑𝛥𝑖𝑑

𝐼𝐿(1− 𝐷)−
𝑠 𝐶𝑑𝑐𝑉𝑑𝑐
𝜔𝑑𝑐𝑏

 (2.65) 

𝛥𝑣𝑝𝑣 is obtained by combining equation (2.41) and (2.42): 

 
𝛥𝑣𝑝𝑣 =

𝜔𝑑𝑐𝑏
2(1−𝐷)
𝐿𝑏𝐶𝑖𝑛

𝛥𝑣𝑑𝑐−
𝜔𝑑𝑐𝑏

2𝑉𝑑𝑐
𝐿𝑏𝐶𝑖𝑛

𝛥𝑑

𝑀1(𝑠)
 

(2.66) 

Where the denominator 𝑀1(𝑠) is equal to: 

 𝑀1(𝑠) = 𝑠
2 + 𝜔𝑑𝑐𝑏 (

𝑟𝐿
𝐿𝑏
+

1

𝑅𝑝𝑣𝐶𝑖𝑛
)𝑠 +

𝜔𝑑𝑐𝑏
2

𝐿𝑏𝐶𝑖𝑛
(
𝑟𝐿
𝑅𝑝𝑣

+1) (2.67) 

Equations (2.63), (2.65) and (2.66) give the concept of physical system with its correlations which in 

addition to control regulators and loops make it possible to illustrate the overall system transfer 

function diagram as shown in Figure 2.16. 

 

Figure 2.15 – (a) Equivalent grid function without synthetic inertia (black dashed line) and with synthetic 

inertia (red dashed-dotted line); (b) open-loop transfer function of the selective inertia loop [11]. 
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Figure 2.16 – Full system transfer function diagram 
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3. Chapter three 

Physical Components and Controllers’ Design 

This chapter is dedicated to the sizing of the physical components of the system and to the design of 

the controllers’ parameters. The first two sections deal with the design of the physical components, 

namely the LCL filter on the AC-side, the DC-Bus and PV-Bus capacitors and the DC-DC converter  
input inductance. Sections 0 to 3.5 deal with the tuning of the regulators for inertia provision, the DC-

Bus voltage control and the MPPT and PV source voltage. 

3.1 LCL Filter Design 
The design choices used for sizing the AC-side passive filter are reported in this section. The structure 

of the LCL filter is reported in Figure 3.1. 

➢ The parameters 𝐿𝑔  and 𝑅𝑔 represent the transformer and the external grid. Considering that the 

power delivered by the system is 500 kVA, it can be assumed that, for a transformer of this 

size, the short circuit voltage drop is equal to 𝑣𝑘𝑛 = 4%. Moreover, the value of the resistance 

𝑅𝑔 is usually very small and can be neglected. Thus the transformer’s reactance can be 

calculated as: 

 𝑋𝐿𝑔 = 𝑣𝑘𝑛 ∙
(√3 𝑉𝑝ℎ−𝑛)

2

𝐴𝑛
= 67.4 𝑚𝛺 (3.1) 

 

 

Figure 3.1 – Structure of the LCL filter 
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Which gives 𝐿𝑔 = 215 𝜇𝐻. Where 𝑉𝑝ℎ−𝑛 = 530 𝑉 is the nominal phase voltage on the 

primary side and 𝐴𝑛 = 500 𝑘𝑉𝐴 is the rated power of the transformer. 

➢ The 3-phase capacitor 𝐶𝑓 is designed assuming that its reactive power equals 5% of the power 

delivered by the inverter: 

 3 𝜔𝑛 𝐶𝑓  𝑉𝑝ℎ−𝑛
2 = 0.05 𝐴𝑛 (3.2) 

Which gives 𝐶𝑓 = 94.5 𝜇𝐹. The resistance 𝑅𝐶𝑓 is estimated as one third of the capacitor’s 

impedance at switching frequency 𝑓𝑠𝑤 = 4 𝑘𝐻𝑧: 

 𝑅𝐶𝑓 =
1 3⁄

2𝜋𝑓𝑠𝑤𝐶𝑓
= 140 𝑚𝛺 (3.3) 

➢ The inductor 𝐿𝑓 is sized in such a way that the total voltage drop considering 𝐿𝑔  and 𝑅𝑔 must 

be less than 5%: 

 (𝑋𝐿𝑓 +𝑋𝐿𝑔)𝐼𝑛 < 0.05 𝑉𝑛 (3.4) 

Where 𝐼𝑛 = 𝐴𝑛 3𝑉𝑝ℎ−𝑛⁄ = 314 𝐴. 

 𝑋𝐿𝑓 <
0.05 𝑉𝑛−𝑋𝐿𝑔𝐼𝑛

𝐼𝑛
= 168 𝑚𝛺 (3.5) 

 Assuming that the quality factor of the inductor is 𝑄 = 𝜔𝑛𝐿𝑓 𝑅𝐿𝑓⁄ = 100, it results: 

 𝐿𝑓 =
𝑋𝐿𝑓

𝜔𝑛
= 53.6 𝜇𝐻 (3.6) 

 𝑅𝐿𝑓 =
𝜔𝑛𝐿𝑓

100
= 0.168 𝑚𝛺 (3.7) 

The numerical values of the LCL filter are reported in Table 4. 

Table 4 – LCL filter parameters 

Parameter Value 

𝐿𝑓 53.6 μH 0.03 p.u. 

𝑅𝐿𝑓 0.168 mΩ 2.99e-4 p.u. 

𝐶𝑓 94.5 μF 0.0167 p.u. 

𝑅𝐶𝑓 0.14 Ω 0.249 p.u. 

𝐿𝑔  215 μH 0.120 p.u. 
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3.2 DC Components Design 
This section presents the criteria used for the design of the following components:  

• the DC-Bus capacitor 𝐶𝑑𝑐; 

• the DC-DC converter input inductance 𝐿𝑏; 

• the PV-Bus capacitor 𝐶𝑖𝑛. 

The steady state values of the variables that have been used for the sizing are reported in Table 5.  

➢ As regards the DC-Bus capacitor 𝐶𝑑𝑐, its main purpose is to act as an energy buffer for inertia 

provision, able to supply 10% of the system’s rated power 𝐴𝑏 during frequency transients. 

When a drop in the grid frequency occurs, the control system lowers the DC-Bus voltage 

allowing 𝐶𝑑𝑐 to deliver power to the grid. The energy balance equation (3.9) allows to 

determine the lower bound for 𝐶𝑑𝑐: 

 
1

2
𝐶𝑑𝑐(𝑉𝑑𝑐

2 −𝑉𝑑𝑐_𝑚𝑖𝑛
2)≥ 0.1 𝐴𝑏∆𝑡

∗  (3.8) 

 𝐶𝑑𝑐 ≥ 2
0.1 𝐴𝑏 ∙ ∆𝑡

∗

(𝑉𝑑𝑐
2 −𝑉𝑑𝑐_𝑚𝑖𝑛

2)
≅ 29.96 𝑚𝐹 → 𝐶𝑑𝑐 = 30 𝑚𝐹 (3.9) 

Where: 

• 𝑉𝑑𝑐_𝑚𝑖𝑛 = 90% 𝑉𝑑𝑐, is the minimum voltage of the DC-Bus. 

• ∆𝑡 ∗ = 4𝜏𝑛 , is the presumed duration of the frequency transient with 𝜏𝑛 = 1 𝜔𝑛⁄  being the 

time constant of the external grid; 

• 𝐴𝑏 = 500 𝑘𝑉𝐴 is the system’s rated power. 

➢ For the sizing of the DC-DC converter input inductance 𝐿𝑏, the maximum current ripple 

criterion is used: 

 ∆𝐼𝑝𝑣 ≤
𝑉𝑝𝑣𝐷

 𝐿𝑏𝑓𝑠𝑤
 (3.10) 

Where ∆𝐼𝑝𝑣 is the PV-Bus current ripple whose maximum value is set to be equal to 1% of the 

nominal current: ∆𝐼𝑝𝑣_𝑚𝑎𝑥 = 2.5% → 𝐼𝑝𝑣 = 20.8 𝐴. From (3.10) the minimum value of 𝐿𝑏 

can be obtained: 

 𝐿𝑏 ≥
𝑉𝑝𝑣𝐷

𝑓𝑠𝑤 ∆𝐼𝑝𝑣_𝑚𝑎𝑥
≅ 1.43 𝑚𝐻 → 𝐿𝑏 = 1.5 𝑚𝐻/831𝐴 (3.11) 

Where the final value 𝐿𝑏 = 1.5 𝑚𝐻 has been rounded up to keep some margin. 
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Table 5 – Steady state values of the system's variables 

Steady State Variables Symbol Values 

PV-Bus voltage and current 𝑉𝑝𝑣, 𝐼𝑝𝑣 602 [V], 831 [A] 

DC-Bus voltage and current 𝑉𝑑𝑐 , 𝐼𝑑𝑐  750 [V], 667 [A] 

Switching frequency 𝑓𝑠𝑤 4 [kHz] 

Duty cycle 𝐷 0.197 

➢ As regards the PV-Bus capacitor 𝐶𝑖𝑛, it is designed to make sure that the current ripple 

∆𝐼𝑝𝑣_𝑚𝑎𝑥  flows mainly through the capacitor instead of the PV panel. The scheme of Figure 

3.2 shows the equivalent circuit of the PV-Bus at switching frequency 𝑓𝑠𝑤 = 4 𝑘𝐻𝑧. The 

impedance of the PV panel has been calculated according to the dynamic model equations 

(2.4) and (2.9): |𝑍𝑝𝑣 | ≅ 0.127 𝛺, at 𝜔 = 2𝜋𝑓𝑠𝑤 and the DC-DC converter is modeled as an 

ideal current source of amplitude equal to the maximum current ripple ∆𝐼𝑝𝑣_𝑚𝑎𝑥 . 

➢ The absolute value of the impedance of 𝐶𝑖𝑛 is set to be at least an order of magnitude smaller  

than |𝑍𝑝𝑣 |: 

 |
1

𝑗2𝜋𝑓𝑠𝑤𝐶𝑖𝑛
| ≤

1

10
|𝑍𝑝𝑣 | (3.12) 

➢ Which gives: 

 𝐶𝑖𝑛 ≥
10

2𝜋𝑓𝑠𝑤|𝑍𝑝𝑣 |
≅ 3.14 𝑚𝐹 

→ 𝐶𝑖𝑛 = 5 𝑚𝐹 

 

(3.13) 

➢ Where the final value 𝐶𝑖𝑛 = 5 𝑚𝐹 has been rounded up to keep some margin. Table 6 reports 

the final values of the components deigned in this section. 

 

Figure 3.2 – Equivalent circuit for the PV-Bus capacitor sizing 
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Figure 3.3 – Current control loop diagram for the DC/AC inverter [11]. 

Table 6 – DC-bus and PV-bus parameters 

Parameter Value 

𝐶𝑑𝑐 30 mF 33.8e-3 p.u. 

𝐿𝑏 1.5 mH 1.3e-3 p.u. 

𝐶𝑖𝑛 5 mF 5.6e-3 p.u. 

3.3 Current Control Loop 
The current loop for the DC/AC inverter is represented in Figure 3.3. Knowing that 𝑇𝑖𝑛𝑣 ≪ 1, the 

transfer function of the inverter can be approximated equal to one. The equivalent load function 𝐺𝑓(𝑠) 

is given by: 

 𝐺𝑓(𝑠) =
𝜔𝑏−𝑎𝑐

𝜔𝑏−𝑎𝑐𝑅𝐿𝑓 + 𝑠𝐿𝑓
 (3.14) 

Where 𝜔𝑏−𝑎𝑐 = 2𝜋 ∙ 50 𝑟𝑎𝑑/𝑠 is the AC-side base angular frequency.  

The load function is characterized by a low frequency pole in 𝜔𝑓 = 𝜔𝑏−𝑎𝑐𝑅𝐿𝑓 𝐿𝑓⁄ ≅ 3.13 𝑟𝑎𝑑/𝑠. 

Therefore, the cut-off frequency of the open loop function 𝐿𝐼(𝑠) = 𝑅𝐼(𝑠) ∙ 𝐺𝑓(𝑠) is set to be 𝜔𝑐𝐼 =

40 𝑟𝑎𝑑/𝑠, where 𝑅𝐼(𝑠) is the PI regulator 𝑅𝐼(𝑠) = 𝑘𝑝𝐼 +𝑘𝑖𝐼 𝑠⁄ .  

Figure 3.4 shows the Bode diagrams associated to the current control loop and  

Table 7 reports the parameters of the regulator. 

Table 7 - Parameters of the current PI regulator 𝑅𝐼(𝑠) 

Parameter Value 

Proportional coefficient, 𝑘𝑝−𝐼 0.00348 p.u. 

Integral coefficient, 𝑘𝑖−𝐼  0.00635 p.u/s 

Cut-off frequency of the open loop, 𝜔𝑐𝐼  40 𝑟𝑎𝑑/𝑠 
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Figure 3.4 - Bode diagram of the current loop functions 𝐺𝑓(𝑠) and 𝐿𝐼(𝑠) 

3.4 DC-Bus Voltage Control Loop 
The DC-Bus control loop is going to be designed with a desired cut off frequency equal to 𝜔𝑐−𝑣𝑑𝑐 =
1 𝑟𝑎𝑑/𝑠. The response of the voltage control is chosen to be slow in order to allow the action of the 

synthetic inertia: if 𝜔𝑐−𝑣𝑑𝑐 were to be chosen high, the voltage across the capacitor 𝐶𝑑𝑐 would change 

too quickly, preventing it from storing/delivering energy during frequency transients.  

The model associated to the DC voltage control is reported in Figure 3.5 in which the internal current  

loop has been approximated as a first order transfer function 𝐾𝐼(𝑠) with cut-off angular frequency 

𝜔𝑐𝐼 = 40 𝑟𝑎𝑑/𝑠 and the control plant is represented by the block 𝐹𝑑𝑐(𝑠): 

 𝐾𝐼(𝑠) =
𝐿𝐼(𝑠)

1 + 𝐿𝐼(𝑠)
≅

𝜔𝑐𝐼
𝑠 +𝜔𝑐𝐼

 (3.15) 

 
𝐹𝑑𝑐(𝑠) =

1

𝐼𝐿(1− 𝐷)−
𝑠 𝐶𝑑𝑐𝑉𝑑𝑐
𝜔𝑏−𝑑𝑐

 
(3.16) 

The following assumptions for the steady state variables have been made: 

- 𝐼𝐿(1−𝐷) = 𝐼𝑑𝑐 ∈ [0;1]𝑝. 𝑢.; 
- 𝑉𝑑𝑐 = 𝑉𝑑𝑐−𝑟𝑒𝑓 = 1 𝑝. 𝑢; 

- 𝜔𝑏−𝑑𝑐 = 1 𝑟𝑎𝑑/𝑠. 
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The equivalent load function 𝐺𝑑𝑐1(𝑠) can be identified from Figure 3.5: it is characterized by the pole 

in 𝜔𝑐𝐼  and by an unstable pole introduced by the linear model of the DC-Bus: 

 𝐺𝑑𝑐1(𝑠) = 𝐾𝐼(𝑠) ∙ 𝐹𝑑𝑐(𝑠) =
𝜔𝑐𝐼

(𝑠 + 𝜔𝑐𝐼)
∙
−

1
𝐶𝑑𝑐𝑉𝑑𝑐

(𝑠−
𝐼𝑑𝑐

𝐶𝑑𝑐𝑉𝑑𝑐
)
 (3.17) 

Moreover, Figure 3.5 shows the presence of a disturbance 𝛥𝑖𝑑𝑐 generated by the variation of the PV 

source current: normally this disturbance is associated to slow dynamics and has a negligible effect.  

Equation (3.17) shows the influence of the PV source current 𝐼𝑑𝑐 on the unstable pole: assuming no 

current is being injected (𝐼𝑑𝑐 = 0), the equivalent load function includes a natural integral associated 

to the capacitor dynamics; on the other hand, for increasing current injections, the magnitude of 

𝐺𝑑𝑐(𝑠) decreases. The Bode diagram of 𝐺𝑑𝑐(𝑠) is shown in Figure 3.6, highlighting the influence of  

the current injection. The most critical case for the control system occurs when the current injection is 

maximum (𝐼𝑑𝑐 = 1 𝑝. 𝑢. ). 

The double-loop architecture has been chosen to overcome the instability of 𝐹𝑑𝑐(𝑠): the inner 

regulator 𝑅𝑑𝑐1(𝑠) is responsible for the stabilization of the loop function; the outer loop regulator 

𝑅𝑑𝑐2(𝑠) will provide the desired cut-off frequency and stability margins. 

The design of the PI controllers 𝑅𝑑𝑐1(𝑠), 𝑅𝑑𝑐2(𝑠)  will be carried out adopting the conservative 

hypothesis of 𝐼𝑑𝑐 = 1 𝑝.𝑢.: 

 𝑅𝑑𝑐1(𝑠) = 𝑘𝑝−𝑑𝑐1 ∙
𝑠 + 𝑧𝑑𝑐1
𝑠 + 𝑝𝑑𝑐1

 (3.18) 

 𝑅𝑑𝑐2(𝑠) = 𝑘𝑝−𝑑𝑐2 +
𝑘𝑖−𝑑𝑐2
𝑠

 (3.19) 

For the design of the stabilizing controller 𝑅𝑑𝑐1(𝑠), let us consider the open loop transfer function 

𝐿𝑑𝑐1(𝑠) and the closed loop function 𝐹1(𝑠): 

 

Figure 3.5 – Double loop model associated to the DC voltage loop control. 
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𝐿𝑑𝑐1(𝑠) = 𝑅𝑑𝑐1(𝑠) ∙ 𝐺𝑑𝑐1(𝑠) = 𝑘𝑝−𝑑𝑐1 ∙
𝑠 + 𝑧𝑑𝑐1
𝑠+ 𝑝𝑑𝑐1

∙
𝜔𝑐𝐼

(𝑠 + 𝜔𝑐𝐼)
∙
−

1
𝐶𝑑𝑐𝑉𝑑𝑐

(𝑠−
𝐼𝑑𝑐

𝐶𝑑𝑐𝑉𝑑𝑐
)

=
𝑠 + 𝑧𝑑𝑐1
𝑠 + 𝑝𝑑𝑐1

∙
𝜌 ∙ 𝑘𝑝−𝑑𝑐1

(𝑠 +𝜔𝑐𝐼) ∙ (𝑠 − 𝑝1)
 

(3.20) 

 𝐹1(𝑠) =
𝐿𝑑𝑐1(𝑠)

1 + 𝐿𝑑𝑐1(𝑠)
 (3.21) 

Where 𝜌 =
−𝜔𝑐𝐼 

𝐶𝑑𝑐𝑉𝑑𝑐
, 𝑝1 =

𝐼𝑑𝑐

𝐶𝑑𝑐𝑉𝑑𝑐
 . 

The regulator 𝑅𝑑𝑐1(𝑠) must be designed so that 𝑑𝑒𝑛[𝐹1(𝑠)] = (𝑠+𝑋𝐴)
2, where 𝑋𝐴 = 1.2 𝑟𝑎𝑑/𝑠 has 

been chosen to account for some margin with respect to the desired cut off frequency 𝜔𝑐−𝑣𝑑𝑐 =
1 𝑟𝑎𝑑/𝑠 (Figure 3.7). By considering 𝑧𝑑𝑐1 = 𝜔𝑐𝐼  it results: 

 𝐿𝑑𝑐1(𝑠) =
𝜌 ∙ 𝑘𝑝−𝑑𝑐1

(𝑠 + 𝑝𝑑𝑐1) ∙ (𝑠 − 𝑝1)
 (3.22) 

 𝑑𝑒𝑛[𝐹1(𝑠)] = 1 + 𝐿𝑑𝑐1 (𝑠) = 𝑠
2 + 𝑠(𝑝𝑑𝑐1 −𝑝1)− 𝑝𝑑𝑐1𝑝1 +𝜌 ∙ 𝑘𝑝−𝑑𝑐1  (3.23) 

The root locus of the feedback loop is shown in Figure 3.7. The position of the unstable pole 𝑝1is 
established by assuming that the system variables can vary within a 10% range around their steady 

state value. The worst case corresponds to the rightmost value of 𝑝1, which can be obtained by:  

 

Figure 3.6 – Equivalent load function 𝐺𝑑𝑐1(𝑠) associated to the DC-Bus voltage control [5]. 
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 𝑝1 ≤ 𝑝1−𝑚𝑎𝑥 =
𝐼𝑑𝑐−𝑚𝑎𝑥

𝐶𝑑𝑐𝑉𝑑𝑐−𝑚𝑖𝑛
= 36.16 𝑟𝑎𝑑/𝑠 (3.24) 

Considering the denominator of 𝐹1(𝑠) (3.23), the value of the pole 𝑝𝑑𝑐1 and 𝑘𝑝−𝑑𝑐1  can be found as 

follows: 

 2 𝑋𝐴 = 𝑝𝑑𝑐1 −𝑝1    →   𝑝𝑑𝑐1 ≥ 𝑝1 +2𝑋𝐴 = 38.56 𝑟𝑎𝑑/𝑠 (3.25) 

 −𝑝𝑑𝑐1 ∙ 𝑝1 +𝜌 ∙ 𝑘𝑝−𝑑𝑐1 = 𝑋𝐴
2 (3.26) 

 𝑘𝑝−𝑑𝑐1 =
𝑋𝐴

2 + 𝑝𝑑𝑐1 ∙ 𝑝1
𝜌

= −1.214 𝑝.𝑢. (3.27) 

As regards the controller 𝑅𝑑𝑐2(𝑠), it is designed with reference to function (3.28) and the values of  its 

parameters have been found with MatLab: 

 𝐹1(𝑠) =
𝑅𝑑𝑐1(𝑠) ∙ 𝐺𝑑𝑐1(𝑠)

1 +𝑅𝑑𝑐1(𝑠) ∙ 𝐺𝑑𝑐1(𝑠)
≅
𝜌 ∙ 𝑘𝑝−𝑑𝑐1
(𝑠 +𝑋𝐴)2

 (3.28) 

 𝐿𝑑𝑐 (𝑠) = 𝑅𝑑𝑐2(𝑠) ∙ 𝐹1(𝑠) (3.29) 

Figure 3.8 shows the Bode diagrams and the step response associated to the DC loop. 

 

Figure 3.7 – Root locus of the DC-Bus feedback loop 
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Table 8 – Values of the DC-Bus voltage loop control parameters 

Parameter Symbol Value 

DC-Bus voltage 𝑉𝑑𝑐  750 V 

DC-Bus capacitance 𝐶𝑑𝑐  30 mF (@750 V) 

Desired cut-off angular frequency 𝜔𝑐−𝑑𝑐  1 rad/s 

𝑅𝑑𝑐1(𝑠)  

𝑘𝑝−𝑑𝑐1  −1.180 p.u. 

𝑧𝑑𝑐1 40.0 rad/s 

𝑝𝑑𝑐1 38.6 rad/s 

𝑅𝑑𝑐2(𝑠) 
𝑘𝑝−𝑑𝑐2  1.331e−3 p.u. 

𝑘𝑖−𝑑𝑐2  1.133e−3 p.u./s 

 

Figure 3.8 – Bode diagrams and step response of the DC voltage control loop. 

3.5 MPPT and PV Voltage Control 
The small-signal model associated to the MPPT and PV-Bus voltage control loops is reported in 

Figure 3.9 with the relative PI regulators. The equivalent load function 𝐺𝑝𝑣(𝑠) is given by: 

 𝐺𝑝𝑣(𝑠) =

−𝜔𝑑𝑐−𝑏
2𝑉𝑑𝑐

𝐿𝑏𝐶𝑖𝑛
𝑀1(𝑠)

 
(3.30) 
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Figure 3.9 – Small-signal model associated to the MPPT and PV-Bus voltage control loops 

Where the denominator 𝑀1(𝑠) is defined as: 

 𝑀1(𝑠) = 𝑠
2 + 𝜔𝑑𝑐−𝑏 (

𝑟𝐿
𝐿𝑏
+

1

𝑅𝑝𝑣𝐶𝑖𝑛
)𝑠+

𝜔𝑑𝑐−𝑏
2

𝐿𝑏𝐶𝑖𝑛
(
𝑟𝐿
𝑅𝑝𝑣

+1) (3.31) 

and it is characterized by two complex conjugate negative-real part poles at 𝜔𝑝 ≅ 370 𝑟𝑎𝑑/𝑠. The 

open-loop transfer function 𝐿𝑝𝑣(𝑠) is obtained from Figure 3.9 

 𝑅𝑣𝑝𝑣(𝑠) = 𝑘𝑝−𝑣𝑝𝑣 +
𝑘𝑖−𝑣𝑝𝑣

𝑠
 (3.32) 

 𝐿𝑝𝑣(𝑠) = 𝑅𝑣𝑝𝑣(𝑠) ∙ 𝐺𝑝𝑣(𝑠) (3.33) 

The numerical Bode diagrams associated to 𝐺𝑝𝑣(𝑠) and 𝐿𝑝𝑣(𝑠) are reported in Figure 3.11 as well as 

the step response of the closed loop. Figure 3.11 shows that the load function is characterized two 

complex conjugate poles at 𝜔𝑀1 = √
1

𝐿𝑏𝐶𝑖𝑛
≅ 365 𝑟𝑎𝑑/𝑠. As a consequence, the cut of frequency of 

the loop needs to be sufficiently smaller to avoid strong oscillations in the step response. 

As regards the MPPT algorithm, the incremental conductance method (INC) has been implemented: 

the input to the MPPT controller is PV voltage and current which is used to generate the reference 

voltage at which the instantaneous power from the PV array is maximum. The operating point can be 

estimated from the incremental conductance: 

 

𝑑𝑝𝑝𝑣

𝑑𝑣𝑝𝑣
=
𝑑(𝑣𝑝𝑣 ∙ 𝑖𝑝𝑣)

𝑑𝑣𝑝𝑣
= 𝑖𝑝𝑣 +𝑣𝑝𝑣

𝑑𝑖𝑝𝑣

𝑑𝑣𝑝𝑣
 

1

𝑣𝑝𝑣
∙
𝑑𝑝𝑝𝑣

𝑑𝑣𝑝𝑣
=
𝑖𝑝𝑣

𝑣𝑝𝑣
+
𝑑𝑖𝑝𝑣

𝑑𝑣𝑝𝑣
 ⟶  𝑒 =

𝑖𝑝𝑣

𝑣𝑝𝑣
+
𝑑𝑖𝑝𝑣

𝑑𝑣𝑝𝑣
 

(3.34) 

Where the quantity 𝑒 is expressed as a sum of the actual conductance 𝑖𝑝𝑣 𝑣𝑝𝑣⁄  and the incremental 

conductance 𝑑𝑖𝑝𝑣 𝑑𝑣𝑝𝑣⁄ . By linearizing (3.34) around the working point the following expression is 

obtained (appendix) [10]: 
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 𝑒 = 𝐾𝑚 ∙ 𝑣𝑝𝑣  where  𝐾𝑚 = −
2

𝑅𝑝𝑣𝑉𝑝𝑣
 (3.35) 

As regards the MPPT loop, the diagram of Figure 3.10 can be considered where the load function 

𝐺𝑚𝑝𝑝𝑡(𝑠) and the open loop function 𝐿𝑚𝑝𝑝𝑡(𝑠) are given by: 

 𝐺𝑚𝑝𝑝𝑡(𝑠) =
𝐿𝑝𝑣(𝑠)

1 + 𝐿𝑝𝑣(𝑠)
; 𝐿𝑚𝑝𝑝𝑡(𝑠) = 𝐾𝑚 ∙ 𝑅𝑣𝑝𝑣(𝑠) ∙ 𝐺𝑚𝑝𝑝𝑡 (𝑠) (3.36) 

The Bode diagram associated to the MPPT loop are reported in Figure 3.11 as well as the step 

response of the closed loop function. 

Table 9 – Parameters of the PI regulator for MPPT and PV-Bus voltage loop 

Parameter Symbol Value 

Desired cut-off angular frequencies 
𝜔𝑐−𝑣𝑝𝑣  
𝜔𝑐−𝑚𝑝𝑝𝑡  

60 rad/s 
10 rad/s 

Phase margin 
𝑃𝑀𝑣𝑝𝑣 
𝑃𝑀𝑚𝑝𝑝𝑡  

60° 
60° 

Proportional coefficients  
𝑘𝑝−𝑣𝑝𝑣 
𝑘𝑝−𝑚𝑝𝑝𝑡  

0 𝑝. 𝑢. 
−58..5 𝑝. 𝑢. 

Integral coefficients 
𝑘𝑖−𝑣𝑝𝑣 
𝑘𝑖−𝑚𝑝𝑝𝑡  

0 𝑝.𝑢./𝑠 
5.62 𝑝.𝑢./𝑠 

 

Figure 3.10 – MPPT loop diagram 
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Figure 3.11 – Numerical Bode diagrams of 𝐺𝑝𝑣(𝑠), 𝐿𝑝𝑣(𝑠) and step response of the PV voltage loop.  

 

Figure 3.12 – Numerical Bode diagram and step response of the full PV voltage loop.
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4. Chapter four 

Mathematical Analysis of System Interactions 

This chapter is dedicated to the calculation of the most significant transfer functions of the model.  In 

the beginning, some useful simplifications are introduced to simplify the full transfer function diagram 

(Figure 4.1) obtained in section 2.5, which allow to better understand the interaction between different 
parts of the system. Later, considering the step change in load power 𝛥𝑝𝑔 as input, the response of  the 

main transfer functions is analyzed. All the results found in this chapter are valid for the small signal 

model developed in Chapter two. 

4.1 Simplification of Transfer Functions 
Considering the numerical values of the parameters found in previous chapters, it is possible to 
introduce some simplifications to the system transfer functions (Figure 4.1) and consequentially to the 

overall system diagram. This allows show the interactions between the different parts of the system in 

a more understandable way.  

➢ Considering 𝜔𝑐−𝑣𝑑𝑐 = 1 𝑟𝑎𝑑/𝑠, the current control loop block 𝐾𝐼(𝑠) behaves as a low-pass 

filter with unitary gain and cut-off frequency 𝜔𝐶𝐼 = 40 𝑟𝑎𝑑/𝑠 and thus can be approximated 

to its gain value for frequencies lower than 𝜔𝐶𝐼 . 

 𝐾𝐼(𝑠) =
1

1 + 𝑠 𝜔𝐶𝐼⁄
≈ 1 𝑝. 𝑢., 𝑓𝑜𝑟 𝜔 < 𝜔𝐶𝐼  (4.1) 

➢ The blocks 𝐺𝑎(𝑠), 𝐺𝑝𝑣(𝑠) determine the PV-Bus voltage variation 𝛥𝑣𝑝𝑣. Considering 𝜎 =

𝜔𝑏−𝑑𝑐
2

𝐿𝑏𝐶𝑖𝑛
⁄ ≅ 1.33∙ 105  𝑟𝑎𝑑2/𝑠2, they can be written as: 

 𝐺𝑎(𝑠) =
𝛥𝑣𝑝𝑣

𝛥𝑣𝑑𝑐
=
𝜎 (1 −𝐷)

𝑀1(𝑠)
 (4.2) 

 𝐺𝑝𝑣(𝑠) =
𝛥𝑣𝑝𝑣

𝛥𝑑
=
−𝜎 𝑉𝑑𝑐
𝑀1(𝑠)

 (4.3) 

Where the denominator 𝑀1(𝑠) is a second order polynomial with double complex-conjugate 

poles, which can be approximated as in (4.4): 

 𝑀1(𝑠) = 𝑠
2 + 𝜔𝑏−𝑑𝑐 (

𝑟𝐿
𝐿𝑏
+

1

𝑅𝑝𝑣𝐶𝑖𝑛
)𝑠+ 𝜎(

𝑟𝐿
𝑟𝑝𝑣

+ 1) ≈ 𝑠2 +
𝜔𝑏−𝑑𝑐
𝑅𝑝𝑣𝐶𝑖𝑛

𝑠 + 𝜎 (4.4) 
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Figure 4.1 – Full system transfer function diagram 

 Where: 
𝑟𝐿
𝐿𝑏
≪

1

𝑟𝑝𝑣𝐶𝑖𝑛
; 

𝑟𝐿
𝑟𝑝𝑣

≪ 1 p.u..  

The natural frequency of 𝑀1(𝑠) is 𝜔𝑀1 = √
1

𝐿𝑏𝐶𝑖𝑛
≅ 365 𝑟𝑎𝑑/𝑠, therefore at low frequencies it 

can be approximated as 𝑀1(𝑠) ≈ 𝜎, for 𝜔 < 𝜔𝑀1. The expressions (4.2) and (4.3) can be 

rewritten as: 

 𝐺𝑎(𝑠) ≈ (1−𝐷) 
for 𝜔 < 𝜔𝑀1 

(4.5) 

 𝐺𝑝𝑣(𝑠) ≈ − 𝑉𝑑𝑐  (4.6) 

➢ Considering the block 𝐺𝑏(𝑠): 

 𝐺𝑏(𝑠) =
𝑉𝑑𝑐𝐶𝑖𝑛 ∙ (1−𝐷)

𝜔𝑏−𝑑𝑐
∙ (𝑠 +

𝜔𝑏−𝑑𝑐
𝑟𝑝𝑣𝐶𝑖𝑛

) (4.7) 

It has a zero in 𝜔𝑧 = |−
1

𝑟𝑝𝑣𝐶𝑖𝑛
| ≅ 128 𝑟𝑎𝑑/𝑠, therefore for 𝜔 < 𝜔𝑧 it can be approximated to 

its gain value: 

 𝐺𝑏(𝑠→ 0) =
𝑉𝑑𝑐(1− 𝐷)

𝑟𝑝𝑣
≅ 0.5786 𝑝.𝑢. (4.8) 

The numerical values used for simplifications are reported in Table 10. 
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Table 10 – Per-unit values of the parameters used for simplifications 

Parameter Value [p.u.] 

𝐿𝑏 1.3 ∙ 10−3 

𝐶𝑖𝑛  5.6 ∙ 10−3 

𝑟𝐿 17.8∙ 10−6 

𝑟𝑝𝑣  1.39 

4.2 Simplification of the Model 
As regards the reference signals, when the system operates at steady-state and the PV source works at 

MPP, the following relations are valid: 

 

𝛥𝑣𝑑𝑐−𝑟𝑒𝑓 = 0

𝛥
𝑑𝑝𝑝𝑣
𝑑𝑣𝑝𝑣

= 0
 (4.9) 

This allows to consider the regulators of 𝑉𝑝𝑣 and 𝑉𝑑𝑐 loop as two single blocks and simplify the full 

block diagram as shown in Figure 4.2. 

 

𝑅𝑑𝑐(𝑠) = −𝑅𝑑𝑐1(𝑠) ∙ [1+ 𝑅𝑑𝑐2(𝑠)] = −𝑘𝑝−𝑑𝑐1 ∙
𝑠 + 𝑧𝑑𝑐1
𝑠 + 𝑝𝑑𝑐1

∙ [
𝑠(1 + 𝑘𝑝−𝑑𝑐2) + 𝑘𝑖−𝑑𝑐2

𝑠
]

= −𝑘𝑝−𝑑𝑐1 [
(𝑠 + 𝑧𝑑𝑐1)(𝑠 + 𝑘𝑖−𝑑𝑐2)

𝑠(𝑠 + 𝑝𝑑𝑐1)
] = −𝑘𝑝−𝑑𝑐1

𝑠2 +𝑧𝑑𝑐1𝑠+ 𝑧𝑑𝑐1𝑘𝑖−𝑑𝑐2
𝑠(𝑠 + 𝑝𝑑𝑐1)

 
(4.10) 

Where: 𝑘𝑝−𝑑𝑐2 ≪ 1; 𝑘𝑖−𝑑𝑐2 ≪ 𝑧𝑑𝑐1 . 

 

𝑅𝑝𝑣(𝑠) = −𝑅𝑣𝑝𝑣(𝑠) ∙ [1 + 𝑘𝑚𝑅𝑚𝑝𝑝(𝑠)] = −(
𝑘𝑖−𝑣𝑝𝑣

𝑠
) ∙ [1+

𝑘𝑚𝑘𝑖−𝑚𝑝𝑝

𝑠
]

= −𝑘𝑖−𝑣𝑝𝑣
𝑠+ 𝑘𝑚𝑘𝑖−𝑚𝑝𝑝

𝑠2
 

(4.11) 

To analyze the interaction between the load power change 𝛥𝑝𝑔 and the DC-Bus voltage change 𝛥𝑣𝑑𝑐 

the following relations can be deduced from the simplified diagram of Figure 4.2: 

 𝛥𝑣𝑝𝑣 = 𝐺𝑎(𝑠) ∙ 𝛥𝑣𝑑𝑐+ 𝐺𝑝𝑣(𝑠) ∙ 𝛥𝑑  (4.12) 

 𝛥𝑑 = 𝑅𝑝𝑣(𝑠) ∙ 𝛥𝑣𝑝𝑣 (4.13) 

Substituting (4.13) into (4.12) and solving for 𝛥𝑣𝑝𝑣 results in (4.15): 

 𝛥𝑣𝑝𝑣 = 𝐺𝑎(𝑠) ∙ 𝛥𝑣𝑑𝑐+ 𝑅𝑝𝑣(𝑠) ∙ 𝐺𝑝𝑣(𝑠) ∙ 𝛥𝑣𝑝𝑣 (4.14) 
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Figure 4.2 – Simplified transfer function diagram. 

 𝛥𝑣𝑝𝑣 =
𝐺𝑎(𝑠)

1− 𝑅𝑝𝑣(𝑠) ∙ 𝐺𝑝𝑣(𝑠)
∙ 𝛥𝑣𝑑𝑐 (4.15) 

From which the block 𝐺𝑐(𝑠) can be defined: 

 𝐺𝑐(𝑠) ≜
𝛥𝑣𝑝𝑣

𝛥𝑣𝑑𝑐
=

𝐺𝑎(𝑠)

1− 𝑅𝑝𝑣(𝑠) ∙ 𝐺𝑝𝑣(𝑠)
 (4.16) 

The simplified block diagram for 𝜔 < 𝜔𝐶𝐼  is reported in Figure 4.3, where the block 𝐺𝑑(𝑠) has been 

introduced:  

 𝐺𝑑(𝑠) ≜ 𝐺𝑏(𝑠) +𝑉𝑑𝑐𝐼𝐿 ∙ 𝑅𝑝𝑣(𝑠) (4.17) 

These simplifications highlight the effects of the DC-Bus voltage variations 𝛥𝑣𝑑𝑐 on the PV-Bus 

voltage 𝛥𝑣𝑝𝑣 through 𝐺𝑐(𝑠). It is also shown how 𝛥𝑣𝑝𝑣 impacts 𝛥𝑣𝑑𝑐 as a disturbance through the 

block 𝐺𝑑(𝑠). 

4.2.1  Analysis of 𝐺𝑐(𝑠) and 𝐺𝑑(𝑠) 

To analyze 𝐺𝑐(𝑠) and 𝐺𝑑(𝑠), it is useful to rewrite 𝑅𝑝𝑣(𝑠) in a more compact form: 

 𝑅𝑝𝑣(𝑠) = 𝜇
(𝑠 + 𝑧𝑝𝑣)

𝑠2
 (4.18) 

Where 𝜇 is the static gain and  𝑧𝑝𝑣 is the zero of 𝑅𝑝𝑣(𝑠): 
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𝑧𝑝𝑣 = −𝑘𝑚𝑘𝑖−𝑚𝑝𝑝 = −10.13 𝑟𝑎𝑑/𝑠 

𝜇 = −𝑘𝑖−𝑣𝑝𝑣 = 58.53 𝑝.𝑢. 
(4.19) 

➢  
𝐺𝑐(𝑠) =

𝐺𝑎(𝑠)

1− 𝑅𝑝𝑣(𝑠) ∙ 𝐺𝑝𝑣(𝑠)
=

𝐺𝑎(𝑠)

1 + 𝜇
(𝑠 + 𝑧𝑝𝑣)

𝑠2

; 𝑤𝑖𝑡ℎ: 𝐺𝑝𝑣(𝑠) = − 𝑉𝑑𝑐
= −1 𝑝. 𝑢. (4.20) 

 𝐺𝑐(𝑠) =
𝑠2(1−𝐷)

𝑠2 +𝜇 𝑠 + 𝜇 𝑧𝑝𝑣
  

𝐺𝑐(𝑠) has two zeros in the origin (𝑧𝐺𝑐1, 𝑧𝐺𝑐2 = 0) and two poles that can be found as: 

 
𝑝𝐺𝑐1 ,𝑝𝐺𝑐2 =

−𝜇 ±√𝜇2 −4 𝜇 𝑧𝑝𝑣

2
 

(4.21) 

 𝑝𝐺𝑐1 = −13.03 𝑟𝑎𝑑/𝑠 

 𝑝𝐺𝑐2 = −45.50 𝑟𝑎𝑑/𝑠 

As regards 𝐺𝑑(𝑠): 

➢  𝐺𝑑(𝑠) ≜ 𝐺𝑏(𝑠) +𝑉𝑑𝑐𝐼𝐿 ∙ 𝑅𝑝𝑣(𝑠) =
(1−𝐷)

𝑟𝑝𝑣
+𝑉𝑑𝑐𝐼𝐿 ∙ 𝜇

(𝑠 + 𝑧𝑝𝑣)

𝑠2
 

(4.22) 

 =
(1− 𝐷)

𝑟𝑝𝑣
[1 + 𝜇′

(𝑠 + 𝑧𝑝𝑣)

𝑠2
];  𝑤ℎ𝑒𝑟𝑒   𝜇′ = 𝜇

𝑉𝑑𝑐𝐼𝐿 𝑟𝑝𝑣
(1 −𝐷)

= 0.5786 𝑝. 𝑢. 

 

Figure 4.3 – Simplified block diagram for 𝜔 < 𝜔𝐶𝐼 . 
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It has two poles in the origin (𝑝𝐺𝑑1 ,𝑝𝐺𝑑2 = 0) and two zeros which can be calculated as: 

 
𝑧𝐺𝑑1 ,𝑧𝐺𝑑2 =

−𝜇′ ±√(𝜇′)2− 4 𝜇′ 𝑧𝑝𝑣

2
 

(4.23) 

 𝑧𝐺𝑑1 = −11.11 𝑟𝑎𝑑/𝑠 

 𝑧𝐺𝑑2 = −115.0 𝑟𝑎𝑑/𝑠 

The asymptotic Bode diagrams and the zero-pole map of 𝐺𝑐(𝑠) and 𝐺𝑑(𝑠) are reported in Figure 4.4 

and Figure 4.5 respectively. 

 

Figure 4.4 – Asymptotic Bode diagram of 𝐺𝑐(𝑠) and zero-pole map 

 

Figure 4.5 – Asymptotic Bode diagram of 𝐺𝑑(𝑠) and zero-pole map 
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Finally, it is useful to analyze the series of 𝐺𝑐(𝑠) and 𝐺𝑑(𝑠) which constitutes a positive feedback loop 

to the block 𝐹𝑑𝑐 (𝑠): 

 𝐺𝑒(𝑠) = 𝐺𝑐(𝑠) ∙ 𝐺𝑑(𝑠) (4.24) 

The low frequency zero of 𝐺𝑑(𝑠) is very close to the low frequency pole of 𝐺𝑐(𝑠) and therefore they 

cancel each other out. Thus, at low frequencies the block 𝐺𝑒(𝑠) can be approximated to its gain value: 

 𝐺𝑒(𝑠) ≈ 0.4642 (4.25) 

To observe the DC-Bus voltage variations it is useful to define the block 𝐸𝑑𝑐(𝑠) as: 

 𝐸𝑑𝑐(𝑠) ≜
𝛥𝑣𝑑𝑐
𝛥𝑝𝑐𝑜𝑛𝑣

=
𝐹𝑑𝑐(𝑠)

1− 𝐺𝑒(𝑠) ∙ 𝐹𝑑𝑐(𝑠)
 (4.26) 

4.3 Analysis of the Results 
This section is dedicated to the analysis of the step response of the system variables for two different 

cases: 

- Case A: 𝛥𝑝𝑔 = −0.25 𝑝.𝑢. 

- Case B: 𝛥𝑝𝑔 = +0.25 𝑝.𝑢. 

According to the conventions used in the transfer function diagram and in Figure 2.8, case A 

represents an increase of load power absorption and case B a decrease. 

4.3.1  Calculation of 𝛥𝑣𝑑𝑐 𝛥𝑝𝑔⁄  

The transfer function of 𝛥𝑣𝑑𝑐 𝛥𝑝𝑔⁄  (4.27) is deduced from the diagram of Figure 4.7. 

 𝑇𝑣𝑑𝑐−𝑝𝑔(𝑠) =
𝛥𝑣𝑑𝑐
𝛥𝑝𝑔

= −
𝐸𝑑𝑐 (𝑠) ∙ 𝑅𝑖𝑛(𝑠) ∙ 𝐾𝑔(𝑠) ∙ 𝐾𝐹𝐿𝐿(𝑠)

1− 𝐸𝑑𝑐(𝑠) ∙ 𝑅𝑑𝑐(𝑠)+ 𝐾𝑔(𝑠) ∙ 𝐾𝐹𝐿𝐿(𝑠) ∙ 𝑅𝑖𝑛(𝑠)
 (4.27) 

 

Figure 4.6 – Simplified block diagram with 𝐸𝑑𝑐(𝑠) 
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The step response of 𝑇𝑣𝑑𝑐−𝑝𝑔(𝑠) is shown in Figure 4.8 for case A: the voltage of the DC-Bus 

decreases quickly to allow the provision of synthetic inertia by partially discharging the capacitor 𝐶𝑑𝑐,  
and slowly settles back to its nominal value. The step response for case B is shown in Figure 4.9: the 

DC bus voltage increases to store more energy in the capacitor 𝐶𝑑𝑐. As it will be shown in the 

following sections, these characteristics help damping the grid frequency transient. 

 

Figure 4.7 - Simplified transfer function diagram for 𝛥𝑣𝑑𝑐 𝛥𝑝𝑔⁄  analysis 

 

 

Figure 4.8 – Step response of 𝛥𝑣𝑑𝑐 𝛥𝑝𝑔⁄  for case A. 
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Figure 4.9 – Step response of 𝛥𝑣𝑑𝑐 𝛥𝑝𝑔⁄  for case B. 

4.3.2  Calculation of 𝛥𝑝𝑐𝑜𝑛𝑣 𝛥𝑝𝑔⁄  and 𝛥𝑝𝑝𝑣 𝛥𝑝𝑔⁄  

To analyze the influence of a power load variation on the total power delivered by the PQ converter ,  

that is the power delivered by the PV source plus the power delivered by the DC-Bus capacitor  (from 

SIC), let us observe the transfer function 𝛥𝑝𝑐𝑜𝑛𝑣 𝛥𝑝𝑔⁄ : 

 

𝑇𝑝𝑐𝑜𝑛𝑣−𝑝𝑔(𝑠) =
𝛥𝑝𝑐𝑜𝑛𝑣
𝛥𝑝𝑔

=
𝑇𝑣𝑑𝑐−𝑝𝑔(𝑠)

𝐸𝑑𝑐(𝑠)

= −
𝑅𝑖𝑛(𝑠) ∙ 𝐾𝑔(𝑠) ∙ 𝐾𝐹𝐿𝐿(𝑠)

1− 𝐸𝑑𝑐(𝑠) ∙ 𝑅𝑑𝑐(𝑠)+ 𝐾𝑔(𝑠) ∙ 𝐾𝐹𝐿𝐿(𝑠) ∙ 𝑅𝑖𝑛(𝑠)
 

(4.28) 

The step response of 𝑇𝑝𝑐𝑜𝑛𝑣−𝑝𝑔(𝑠) is reported in Figure 4.10 for case A and in Figure 4.11 for case B.  

the results show that in both cases the transients follow the trend of 𝛥𝑣𝑑𝑐. 

 

Figure 4.10 – Step response 𝛥𝑝𝑐𝑜𝑛𝑣 𝛥𝑝𝑔⁄  for case A. 
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Figure 4.11 – Step response 𝛥𝑝𝑐𝑜𝑛𝑣 𝛥𝑝𝑔⁄  for case B. 

As regards the PV power variation 𝛥𝑝𝑝𝑣, its expression can be found by starting from the transfer 

function 𝑇𝑣𝑝𝑣−𝑝𝑔(𝑠) = 𝛥𝑣𝑝𝑣 𝛥𝑝𝑔⁄ . Considering equations (4.16) and (4.27), this function allows to 

analyze the variations of the working point of the PV panel due to a change in power load: 

 

𝑇𝑣𝑝𝑣−𝑝𝑔(𝑠) =
𝛥𝑣𝑝𝑣

𝛥𝑝𝑔
= 𝐺𝑐(𝑠) ∙

𝛥𝑣𝑝𝑣

𝛥𝑝𝑔
= 𝐺𝑐(𝑠) ∙ 𝑇𝑣𝑑𝑐−𝑝𝑔(𝑠)

= −
𝐺𝑐(𝑠) ∙ 𝐸𝑑𝑐(𝑠) ∙ 𝑅𝑖𝑛(𝑠) ∙ 𝐾𝑔(𝑠) ∙ 𝐾𝐹𝐿𝐿(𝑠)

1− 𝐸𝑑𝑐(𝑠) ∙ 𝑅𝑑𝑐(𝑠)+ 𝐾𝑔(𝑠) ∙ 𝐾𝐹𝐿𝐿(𝑠) ∙ 𝑅𝑖𝑛(𝑠)
 

(4.29) 

The step response of 𝑇𝑣𝑝𝑣−𝑝𝑔(𝑠) is reported in Figure 4.12 for case A and in Figure 4.13 for case B.  

To obtain the power variation it is necessary to multiply 𝑇𝑣𝑝𝑣−𝑝𝑔(𝑠) by the current delivered the PV 

source according to its static model: 

 𝑇𝑝𝑝𝑣−𝑝𝑔(𝑠) =
𝛥𝑝𝑝𝑣

𝛥𝑝𝑔
= (𝐼𝐿 +

𝑉𝑝𝑣

𝑟𝑝𝑣
) ∙ 𝑇𝑣𝑝𝑣−𝑝𝑔(𝑠) (4.30) 

Note that, before the load power variation occurs, it is assumed that the system operates at steady state 

and under nominal conditions, therefore the PV source is operating at MPP. For this reason, it is 

necessary to impose the condition 𝛥𝑝𝑝𝑣 ≤ 0,∀ 𝛥𝑣𝑝𝑣. 

The step response of 𝑇𝑝𝑝𝑣−𝑝𝑔(𝑠) is reported in Figure 4.14 for case A and in Figure 4.15 for  case B.  

These results show that 𝑣𝑝𝑣 decreases rapidly, similarly to 𝑣𝑑𝑐, but it quickly recovers thanks to the 

faster control. Moreover, any oscillation around the nominal value, results in a decrease of  t he power  

𝑝𝑝𝑣 . 
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Figure 4.12 – Step response of 𝛥𝑣𝑝𝑣 𝛥𝑝𝑔⁄  for case A. 

 

Figure 4.13 – Step response 𝛥𝑣𝑝𝑣 𝛥𝑝𝑔⁄  for case B. 
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Figure 4.14 – Step response of 𝛥𝑝𝑝𝑣 𝛥𝑝𝑔⁄  for case A. 

 

Figure 4.15 – Step response of 𝛥𝑝𝑝𝑣 𝛥𝑝𝑔⁄  for case B. 

4.3.3  Calculation of 𝛥𝜔 𝛥𝑝𝑔⁄  

The transfer function 𝛥𝜔 𝛥𝑝𝑔⁄  can be deduced from the diagram of Figure 4.16. 

  𝑇𝜔−𝑝𝑔(𝑠) =
𝛥𝜔

𝛥𝑝𝑔
=

𝐾𝑔(𝑠) ∙ [1 −𝐸𝑑𝑐(𝑠) ∙ 𝑅𝑑𝑐(𝑠)]

1 −𝐸𝑑𝑐 (𝑠) ∙ 𝑅𝑑𝑐(𝑠) +𝐾𝑔(𝑠) ∙ 𝑅𝑖𝑛(𝑠) ∙ 𝐾𝐹𝐿𝐿(𝑠)
 (4.31) 
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The block 𝑅𝑖𝑛(𝑠) is responsible for the provision of synthetic inertia. To clearly visualize its effect on 

the frequency oscillations, the step response of 𝑇𝜔−𝑝𝑔(𝑠) has been calculated with 𝐾𝑖𝑛 = 5 𝑝.𝑢. for 

the normal case, and 𝐾𝑖𝑛 = 0 to represent the absence of inertia provision.  

Figure 4.17 and Figure 4.18 show the step response of 𝑇𝜔−𝑝𝑔(𝑠). The results show that the synthetic 

inertia provision has a positive effect in reducing the oscillatory response of the transient as well as 

shortening its duration. However, due to the very small starting time of the grid, the system is not able 

to dampen significantly the first overshoot of the response which results to be slightly above 3%. 

 

Figure 4.16 – Simplified bode diagram for the calculation of 𝛥𝜔 𝛥𝑝𝑔⁄ . 

 

Figure 4.17 – Step response of 𝛥𝜔 𝛥𝑝𝑔⁄  for case A. 
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Figure 4.18 – Step response of 𝛥𝜔 𝛥𝑝𝑔⁄  for case B. 

After the transient, the new steady state value of the grid frequency results to be ±0.5% for case A and 

B, respectively. This is expected since the load increase/decrease is permanent, and the PV system 

does not change its power output resulting in a grid imbalance. 
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5. Conclusions 

This study has analyzed the interactions between a double-stage PV system equipped with synthetic 

inertia and a micro-grid characterized by a small starting time in the event of power load variations. 

The goal was to verify if the results found in previous studies still hold in a more critical case for  the  

whole system. 

The mathematical model of the been developed by writing the differential equations and then by 

deriving the small signal model around the working point. Furthermore, the system has been 

simplified to highlight the interactions between the PV source, the conversion system, and the external 

grid. 

It is shown that for this system, the provision of synthetic inertia has positive effects on the frequency 

transients nonetheless, both in terms of the reduction of the overshoot and the shortening of the 

oscillations. 

 





 59 

 

 

Bibliography 

 

[1]  Schaber K., Steinke F., Muhlich P., Hamacher T., “Parametric study of variable renewable 

energy integration in Europe: Advantages and costs of transmission grid extensions”, Energy 

Policy, Vol 42, 2012, pp. 498 – 508.  

[2]  Huang X.; Wang K.; Li.G., “Virtual Inertia Based Control of Two-stage Photovoltaic Inverters 

for Frequency Regulation in Islanded Micro-grid”, IEEE Power & Energy Society General 

Meeting (PESGM), 2018.  

[3]  Moshari V., “Effects of the DC-DC converter's control and MPPT on synthetic inertia for double-

stage PV systems”.  

[4]  YongLi Z., JianGuo Y., Di W., "Comparative study of two stages and single-stage topologies for 

Grid-Tie Photovoltaic Generation by PSCAD/EMTDC", 2011The International Conference on 

Advanced Power System Automation and Protection, pp. 1304-1309, 2011.  

[5]  A. Bolzoni, "Advanced Control Strategies for Power Converters in AC Microgrids".   

[6]  D. Sera, L. Mathe, T. Kerekes, S. V. Spataru and R. Teodorescu, "On the Perturb-and-Observe 

and Incremental Conductance MPPT Methods for PV Systems," in IEEE Journal of 

Photovoltaics, vol. 3, no. 3, pp. 1070-1078, July 2013.  

[7]  Gupta A.K.; Saxena R. “Review on widely-used MPPT techniques for PV applications”, 

International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH), 

India, February 2016, pp. 270–273.  

[8]  Marconato R., Electric Power Systems, Vol. 2.  

[9]  Venkatramanan D., Vinod J., “Dynamic Modeling and Analysis of Buck Converter Based Solar 

PV Charge Controller for Improved MPPT Performance”, IEEE Trans. on Industry Applications, 

Vol. 55, Issue 6, Nov.-Dec. 2019, Vol. 55, pp. 6234 - 6246..  

[10]  Pokharel M., Ghosh A., Ho C. N. M., “Small-Signal Modelling and Design Validation of PV-

Controllers With INC-MPPT Using CHIL”, IEEE Trans. on Energy Conv., Vol. 34, Issue 1, 

March 2019, pp. 361 – 371..  

[11]  Bolzoni A., Terlizzi C., Perini R., “Analytical Design and Modelling of Power Converters 



60 0. Bibliography 

 

 

Equipped with Synthetic Inertia Control”, 2018 20th European Conf. on Power Electronics and 

Applications (EPE'18 ECCE Europe), 2018, pp. 1-9.  

[12]  Terna, Regolazione Tecnica dei Requisiti di Sistema della Generazione Distribuita.   

 



61 

 

 

A. Appendix A 

For the calculation of equation (2.12), referring to [9] the voltage-current relation for the single-diode 

PV model is: 

 𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑑 −(
𝑉𝑝𝑣 + 𝐼𝑝𝑣𝑅𝑠

𝑅𝑠ℎ
) (A.1) 

 𝐼𝑑 = 𝐼𝑠 [𝑒𝑥𝑝 (
𝑉𝑝𝑣 + 𝐼𝑝𝑣𝑅𝑠

𝜂𝑛𝑐𝑉𝑡
)− 1] → 𝐼𝑠𝑒𝑥𝑝 (

𝑉𝑝𝑣 + 𝐼𝑝𝑣𝑅𝑠

𝜂𝑛𝑐𝑉𝑡
) = (𝐼𝑑+ 𝐼𝑠) (A.2) 

𝑅𝑝𝑣_𝑒𝑞 can be found by derivation of (A.1): 

 
𝜕𝑖𝑝𝑣

𝜕𝑣𝑝𝑣
= −

1

𝑅𝑝𝑣_𝑒𝑞
 (A.3) 

Assuming 𝐼𝑝ℎ and 𝐼𝑠 as constants: 

 𝜕𝑖𝑝𝑣

𝜕𝑣𝑝𝑣
=

−𝐼𝑠 (1+ 𝑅𝑠
𝜕𝑖𝑝𝑣
𝜕𝑣𝑝𝑣

) 𝑒𝑥𝑝 (
𝑣𝑝𝑣 + 𝑖𝑝𝑣𝑅𝑠
𝜂𝑛𝑐𝑉𝑡

)

𝜂𝑛𝑐𝑉𝑡
−
1

𝑅𝑠ℎ
−
𝑅𝑠
𝑅𝑠ℎ

𝜕𝑖𝑝𝑣

𝜕𝑣𝑝𝑣
 

(A.4) 

Re-write the equation factoring out 𝜕𝑖𝑝𝑣 𝜕𝑣𝑝𝑣⁄  on the left-hand side: 

 
𝜕𝑖𝑝𝑣

𝜕𝑣𝑝𝑣
(1+

𝑅𝑠
𝑅𝑠ℎ

+
𝑅𝑠𝐼𝑠𝑒𝑥𝑝(

𝑣𝑝𝑣 + 𝑖𝑝𝑣𝑅𝑠
𝜂𝑛𝑐𝑉𝑡

)

𝜂𝑛𝑐𝑉𝑡
)=

−𝐼𝑠𝑒𝑥𝑝(
𝑣𝑝𝑣 + 𝑖𝑝𝑣𝑅𝑠
𝜂𝑛𝑐𝑉𝑡

)

𝜂𝑛𝑐𝑉𝑡
−
1

𝑅𝑠ℎ
 (A.5) 

Isolating 𝜕𝑖𝑝𝑣 𝜕𝑣𝑝𝑣⁄ : 
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 𝜕𝑖𝑝𝑣

𝜕𝑣𝑝𝑣
=

−𝐼𝑠𝑒𝑥𝑝 (
𝑣𝑝𝑣 + 𝑖𝑝𝑣𝑅𝑠
𝜂𝑛𝑐𝑉𝑡

)

𝜂𝑛𝑐𝑉𝑡
−

1
𝑅𝑠ℎ

1 +
𝑅𝑠
𝑅𝑠ℎ

+
𝑅𝑠𝐼𝑠
𝜂𝑛𝑐𝑉𝑡

𝑒𝑥𝑝 (
𝑣𝑝𝑣 + 𝑖𝑝𝑣𝑅𝑠
𝜂𝑛𝑐𝑉𝑡

)
 

(A.6) 

Considering (A.2): 

 
𝜕𝑖𝑝𝑣

𝜕𝑣𝑝𝑣
=

−(𝐼𝑠+ 𝐼𝑑)
𝜂𝑛𝑐𝑉𝑡

−
1
𝑅𝑠ℎ

1 +
𝑅𝑠
𝑅𝑠ℎ

+
𝑅𝑠(𝐼𝑠 + 𝐼𝑑)
𝜂𝑛𝑐𝑉𝑡

=
−[𝑅𝑠ℎ(𝐼𝑠+ 𝐼𝑑)+ 𝜂𝑛𝑐𝑉𝑡 ]

𝑅𝑠𝑅𝑠ℎ(𝐼𝑠 + 𝐼𝑑) + 𝜂𝑛𝑐𝑉𝑡(𝑅𝑠+ 𝑅𝑠ℎ)
 (A.7) 

And finally, considering (A.3): 

 

𝑅𝑝𝑣_𝑒𝑞 =
𝑅𝑠[𝜂𝑛𝑐𝑉𝑡 +𝑅𝑠ℎ(𝐼𝑠 + 𝐼𝑑)]+ 𝑅𝑠ℎ𝜂𝑛𝑐𝑉𝑡

[𝑅𝑠ℎ(𝐼𝑠 + 𝐼𝑑) + 𝜂𝑛𝑐𝑉𝑡]
=

𝑅𝑠ℎ𝜂𝑛𝑐𝑉𝑡
[𝑅𝑠ℎ(𝐼𝑠+ 𝐼𝑑)+ 𝜂𝑛𝑐𝑉𝑡 ]

+ 𝑅𝑠

=
𝜂𝑛𝑐𝑉𝑡
(𝐼𝑠 + 𝐼𝑑)

+ 𝑅𝑠ℎ+ 𝑅𝑠 = (
𝐼𝑠 + 𝐼𝑑
𝜂𝑛𝑐𝑉𝑡

+
1

𝑅𝑠ℎ
)
−1

+𝑅𝑠 
(A.8) 
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B. Appendix B 

This appendix includes the steps to derive the expression of 𝐾𝑚 [10]. Starting from equation (3.34): 

 𝑒 =
1

𝑣𝑝𝑣
∙
𝑑𝑝𝑝𝑣

𝑑𝑣𝑝𝑣
=
𝑖𝑝𝑣

𝑣𝑝𝑣
+
𝑑𝑖𝑝𝑣

𝑑𝑣𝑝𝑣
 (B.1) 

The V-I characteristic of a PV source can be linearized as a straight-line tangent to the MPP of 

coordinates (𝑉𝑚𝑝𝑝, 𝐼𝑚𝑝𝑝) as shown in Figure B.1: 

 (𝑖𝑝𝑣 − 𝐼𝑚𝑝𝑝) = −
1

𝑅𝑚𝑝𝑝
∙ (𝑣𝑝𝑣 −𝑉𝑚𝑝𝑝) (B.2) 

Where 𝑅𝑚𝑝𝑝 is the equivalent resistance of the PV source at MPP 

The expression in (3.35) can be obtained by applying Taylor series expansion to (3.34) around the 

operating point (𝑉𝑚𝑝𝑝, 𝐼𝑚𝑝𝑝) : 

 

𝑒(𝑣𝑝𝑣 , 𝑖𝑝𝑣) = 𝑒(𝑉𝑚𝑝𝑝, 𝐼𝑚𝑝𝑝) +
𝛿𝑒(𝑣𝑝𝑣 , 𝑖𝑝𝑣)

𝛿𝑣𝑝𝑣
|
(𝑉𝑚𝑝𝑝,𝐼𝑚𝑝𝑝 )

∙ (𝑣𝑝𝑣 −𝑉𝑚𝑝𝑝)

+
𝛿𝑒(𝑣𝑝𝑣 , 𝑖𝑝𝑣)

𝛿𝑖𝑝𝑣
|
(𝑉𝑚𝑝𝑝 ,𝐼𝑚𝑝𝑝 )

∙ (𝑖𝑝𝑣 − 𝐼𝑚𝑝𝑝) 
(B.3) 

 𝑒(𝑣𝑝𝑣 , 𝑖𝑝𝑣) = −
𝐼𝑚𝑝𝑝

𝑉𝑚𝑝𝑝
2 ∙ (𝑣𝑝𝑣 − 𝑉𝑚𝑝𝑝) +

1

𝑉𝑚𝑝𝑝
2 ∙ (𝑖𝑝𝑣 − 𝐼𝑚𝑝𝑝) (B.4) 

Substituting the expression from (B.2) into (B.4), it results: 

 𝑒 =
2

𝑅𝑚𝑝𝑝
−

2𝑣𝑝𝑣

𝑅𝑚𝑝𝑝𝑉𝑚𝑝𝑝
 (B.5) 

Introducing small-signal perturbation, (B.5) can be expressed as: 

 𝑒̅ = −
2

𝑅𝑚𝑝𝑝𝑉𝑚𝑝𝑝
𝑣̅𝑝𝑣  (B.6) 
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Figure B.1 – PV source V-I characteristic linearized around the MPP [10]. 
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