
Politecnico di Milano

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL’INFORMAZIONE

Corso di Laurea Magistrale in Automation and Control Engineering

Tesi di Laurea Magistrale

Design of Internal Model Control Systems
with Recurrent Neural Networks

Relatore

Prof. Riccardo Scattolini

Correlatore

Dott. Fabio Bonassi

Candidato

Luca Depari
Matricola 914792

Anno Accademico 2019–2020





Sommario

Negli ultimi anni l’utilizzo delle reti neurali (NN) ha avuto un forte incremento, fino a
diventare parte integrante delle nostre vite (si pensi per esempio al sistema di sblocco
di uno smartphone tramite riconoscimento facciale, piuttosto che l’elaborazione di
immagini o il riconoscimento vocale). Di fatto, le reti neurali sono in grado di risolvere
(con una precisione più o meno elevata) molti compiti che da un punto di vista
computazionale richiederebbero altrimenti un costo estremamente elevato. Tuttavia,
questo tipo di reti risulta trovare poca applicazione pratica in quello che è il mondo
del controllo di sistemi reali, soprattutto per l’elevata quantità di dati necessari al
loro corretto addestramento, i quali non sempre sono disponibili. Ciò nonostante, le
grandi potenzialità delle reti neurali, quali la capacità di imitare il comportamento di
un impianto (piuttosto che quello di un controllore) e la loro elevata versatilità, ci
suggeriscono che il loro impiego all’interno di schemi di controllo potrebbe portare a
risultati molto positivi.

É bene precisare che al giorno d’oggi esistono diversi tipi di reti neurali, ognuna
caratterizzata da pro e contro. Le due principali categorie sono le reti neurali
feedforward (FFNN) e le reti neurali ricorrenti (RNN): le prime hanno applicazioni
in diversi settori, uno dei quali è quello della classificazione (per esempio image
classification), mentre le reti neurali ricorrenti sono maggiormente adatte per effettuare
operazioni di analisi predittiva tramite l’analisi di dati, ad esempio operazioni come il
riconoscimento di lettere scritte a mano o il riconoscimento vocale.

Lo scopo di questa Tesi è quindi quello di fornire prima di tutto un’introduzione
al mondo delle reti neurali (sia FFNN che RNN), discutendone la struttura e il
funzionamento, sottolineando soprattutto come viene effettuato l’addestramento
(algoritmi utilizzati e preparazione dei dati necessari). Dopodiché, ci si concentrerà sulle
prestazioni che le reti neurali ricorrenti sono in grado di fornire nella modellizzazione di
un sistema fisico reale, mettendo in evidenza le differenze legate all’utilizzo di diverse
strutture. Come precedentemente anticipato, le reti neurali possono essere utilizzate
all’interno di schemi di controllo per garantire il tracking di segnali di riferimento
imposti ad un dato sistema (nel nostro caso un sistema MIMO non lineare): per
questo motivo, la loro applicazione in uno schema di controllo di tipo Internal Model
Control (IMC) verrà presa in esame, considerando due reti neurali ricorrenti, una per
il modello e una per il controllore (per cui sarà proposta una linea guida inerente al
suo training).

Le reti neurali perciò possono avere un ruolo sia come modello del sistema con cui
ci si interfaccia, sia come controllore di quest’ultimo, andando a garantire buone (ma
non ideali, se non considerando ipotesi stringenti) prestazioni in termini di accuratezza
di tracking dei segnali di riferimento.
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Abstract

In the last years the usage of Neural Networks (NNs) had a strong increase, assuming
a central role in our nowadays life (just think about the unlock system of a smartphone
through face recognition, or image processing and voice recognition). Indeed, NNs are
able to solve many different tasks with a certain accuracy that, from a computational
point of view, require a high cost if performed in other ways without neural networks.
However, NNs find a limited practical usage in the control system world, especially for
the high number of data required for the network training, that is not always available
(the accuracy of a NN is strongly related to its training, i.e. to the used dataset).
Nevertheless the high potentialities of neural networks, such as their capability to
mimic a plant behaviour (or acting as a controller) and their versatility, suggest us
that their usage for the design of control schemes may lead to interesting and positive
results.

Let us notice that nowadays there exist different kinds of neural networks, each
one characterised by pros and cons. The two main classes of NNs are the FeedForward
NNs (FFNNs) and the Recurrent NNs (RNNs): the former is used for different
operations, such as classification tasks (e.g. image classification), while the latter is
adopted for predictive analysis through the examination of (time-series) data (e.g. for
hand-written digits recognition and voice recognition).

The aim of this Thesis is to provide first of all a general overview on the neural
networks world (focusing in particular on RNNs and FFNNs), discussing their structure
and their working behaviour, highlighting more specifically how the training operation
is performed (adopted algorithms and data collection). Then, we will deal with
the performances that RNNs are able to provide in terms of real system modelling,
pointing out the differences due to NN structure changes (as the type of cell, the
number of units and layers and so on). As previously mentioned, neural networks
can be used inside control schemes (for example as model or controller) in order
to ensure the tracking of reference signals imposed to a given plant (in our case, a
nonlinear MIMO system): this is why an Internal Model Control (IMC) scheme will be
considered, characterised by two RNNs, one for the model and one for the controller
(for the latter, a guideline for its training will be proposed).

Hence, neural networks can have a role as model of the system we deal with, and as
controller of this one, ensuring good (but not ideal, if not under specific assumptions)
performances in terms of tracking task accuracy.
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Chapter 1

Neural networks basics

In this chapter, the basics of the neural network theory will be analysed, starting
from the definition of a neuron and how a neural network works, considering first
the standard Feed Forward Neural Networks (FFNNs) [2]. Then, the training of such
networks will be discussed, focusing on the methods adopted (gradient descent and
its variations for parameters update, together with the backpropagation method) and
the main problems that may arise, e.g. vanishing and exploding gradient.

Afterwards, Recursive Neural Networks (RNNs) will be discussed, highlighting the
main differences among these structures and the common FFNNs. The dissimilarities
of the training algorithms will be pointed out too, introducing the so-called Back-
propagation Through Time (BPTT) and its truncated variation. Hence, the two main
types of gated cells, called LSTM and GRU cells respectively, used to build a RNN
will be presented and analysed, focusing on their features and equations.

1.1 What is a neural network?
First of all, we shall explain what it is meant by the words Neural Network (NN).
Every time we talk about a neural network, we are talking about a particular kind
of systems that are, in some sense, capable of "learning" to perform tasks (like the
recognition of specific items, persons, or the classification of data) starting from a set
of examples. The idea, in other words, is that providing a sufficiently high number of
examples to the network, it will be able to learn the patterns beyond data in order
to correctly execute a specific task (e.g. image classification) even with previously
unseen data.

A good example is provided by Michael A. Nielsen in [3], where the problem of
hand-written digits recognition is discussed. Let us consider for example a string
of five hand-written numbers: for a human being, the recognition of the letters is
quite easy, but translating this concept into a computer program is not easy at all.
However, if we train a NN with a dataset consisting of hand-written digit images
(associating to each image the corresponding represented number), it will be able to
recognize hand-written digits never seen before with a certain accuracy, performing a
classification operation.

Nowadays neural networks are used for multiple operations: face recognition (e.g.
to unlock our smartphones), predictions of vehicle trajectories, to filter e-mail spam.
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Chapter 1. Neural networks basics

1.1.1 Structure of a neural network
In order to correctly understand how a neural network works, let us focus on its
structure: the basic unit of a NN is the so-called artificial neuron (also named neuron
for simplicity, Figure 1.1), which takes in input one or more quantities ui, does some
operations with them and provides a single output y.

Figure 1.1. Scheme of an artificial neuron with 3 inputs.

In particular, to each input ui is assigned a specific weight ωi such that ui be-
comes ui ← ui · ωi. At this point, all the weighted inputs are summed, and a bias b is
added, i.e.: ( n∑

i=1
ui · ωi

)
+ b

where n is the number of inputs of the neuron. Then, the result is passed through a
specific activation function f , getting the final output y of the artificial neuron:

y = f
( ( n∑

i=1
ui · ωi

)
+ b

)
(1.1)

1.1.2 Activation functions
Focusing on the activation function f of Eq. (1.1), there are different possibilities that
can be considered:

• binary step function, which consists in a simple step where the output can be
either 0 or 1, on the basis of the value the quantity (∑n

i=1 xi ωi + b) assumes. In
particular, it is considered a threshold for which the following relationship holds:

y =
0, if (∑n

i=1 ui · ωi) + b ≤ threshold

1, if (∑n
i=1 ui · ωi) + b > threshold

When a neuron is characterised by a binary step function, it is called perceptron
(discussed by Frank Rosenblatt in [4]): tuning the threshold value, the weights
ωi and the bias b, different decisions taken by the model could be obtained. It
means that, by a good tuning, the network could take the decisions we desire.
Taking as reference Figure 1.2, the binary step is a non linear and non continuous
function. The main drawback of a perceptron neuron is that its output can
be just 0 or 1: it implies that, if a small change of the weights and/or of the
threshold occurs (maybe in order to try to impose the desired behaviour to the
network), the final output of the NN could be completely different.

2



1.1. What is a neural network?

Figure 1.2. Plot of the binary step function from -5 to +5.

• Sigmoid function, σg, which allows any value in the range [0, 1] (take as reference
Fig. 1.3). The mathematical relationship of such function is given by:

σg(x) = 1
1 + e−x

= ex

1 + ex
(1.2)

It can be noticed that, by replacing inside the sigmoid function the terms related
to the neural network, Eq. (1.2) becomes:

1
1 + e(−

∑
i
ui· ωi−b)

Figure 1.3. Plot of the sigmoid function σg(x) between -5 and +5.

As noticeable from Fig. 1.3 the function is non linear, continuous and derivable.
Let us notice that different sigmoidal functions can be used, with different
expressions with respect to Equation (1.2), which is just a possibility.

3



Chapter 1. Neural networks basics

• Hyperbolic tangent function (tanh(x), also indicated as σc(x)). As noticeable
from Figure 1.4 the activation function value in this case can change between -1
and 1, instead of 0 and 1 as seen for σg(x) in Figure 1.3. Also, it is clearly a
continuous, derivable function. Considering Equation (1.2), it can be proved
that tanh(x) = σc(x) = 2σg(2x)− 1.

Figure 1.4. Plot of the hyperbolic tangent function tanh(x) (σc(x)) between -5 and
+5.

• ReLU function (Rectified Linear Unit, Fig. 1.5) [5], that can be described by:

f(x) =
0, if x < 0
x, otherwise

= max (0, x)

Figure 1.5. Plot of the ReLU activation function between -2 and +2.

Notice that it provides 0 as output for all x ≤ 0, but for positive values it
never saturates. From a mathematical point of view, it is a piecewise linear
function and its derivative is the slope (for negative values it is 0 while for

4



1.1. What is a neural network?

positive ones it is 1). However, let us notice that, since it is a piecewise linear
function, the derivative cannot be computed in zero (non-differentiable at x = 0),
so for simplicity it is assumed that the derivative in that point is equal to 0.
In [6] it has been shown how ReLU, even though it is usually avoided in RNNs,
can be used as the output activation in LSTMs (a particular type of RNNs
discussed in Section 1.3.6), under the assumption that a careful initialization of
the network weights is provided. An improved version of the ReLU function is
the leaky ReLU, defined as:

f(x) = max(αx, x)
where the hyperparameter α defines the slope of the function for negative values
of x (usually α = 0.01).

• Softmax function, mainly used for classification problems. Its mathematical
formulation is the following one:

f(x) = exi∑K
j=1 e

xj
, for i = 1, .., K

What we do is to apply the exponential function to each element xi of the
input vector x and normalize these values by dividing by the sum of all these
exponentials.

1.1.3 Neural Networks
By connecting one with each other multiple neurons, what we get is a neural network,
where different layers can be included. For example, the NN of Figure 1.6 has an
input layer (the first one), two hidden layers (by hidden layer we mean each layer
enclosed between the first and the last ones) and an output layer (i.e. the last one).
Clearly, multiple layers can be introduced, each one with 1 or more neurons. This
kind of structure is often called also Artificial Neural Network (ANN). Let us point
out that the number of hidden layers is not fixed, we may have one or hundreds of
hidden layers; clearly, the overall number of layers of the network is strongly related
to what we want to obtain and to the difficulty of the problem, and there is not
a rule to establish it. However, some methods have been proposed in the years, as in [7].

Figure 1.6. Scheme of an artificial neural network with four layers.
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Chapter 1. Neural networks basics

Let us point out that the input layer does not do any operation with the inputs
ui, but it just provides them to the next layer’s neurons (in this case to the first
hidden layer ones), which will follow Eq. (1.1) for each received ui. For example, the
first neuron of the first hidden layer receives both u1 and u2, multiplies them by the
corresponding weights w(1)

1i summing the corresponding bias, and in the end it passes
the result through the activation function in order to compute the output.

In a single NN, the neurons may have different activation functions f one from
each other (as it happens with GRU and LSTM, explained in Sections 1.3.7 and 1.3.6
respectively).

If an ANN has more than one hidden layer, it is called Deep Neural Network
(DNN), as the example shown in Figure 1.6.

1.1.4 Feed-forward passage
In the networks that have been considered up to now, the outputs provided by a layer
are used as the inputs of the next layer: it means that the network is not characterized
by loops in its structure. Hence, it is possible to generalize the computation of the
outputs of a NN of this type starting from its inputs in an easy way.

Let us consider the example treated in [8] where a network characterized by three
inputs ui, an hidden layer with three neurons and an output layer with a single
neuron is considered (notice the input layer is not considered since it consists only
of the inputs ui as already explained). For simplicity, we assume that each layer is
fully-connected, i.e. each neuron of each layer receives as inputs all the outputs of
the previous layer; for the first hidden layer, the inputs are all the ui of the NN. We
denote with y(t)

j the output of neuron j of layer t, with ω(t)
ji the weight associated to

the input i of the neuron j of layer t and with b(t)
j the bias associated to the neuron j

of layer t. Hence, recalling the Eq. (1.1) and the notation previously adopted, we get:

y
(2)
1 = f

( 3∑
i=1

ui · ω(1)
1i + b

(1)
1

)

y
(2)
2 = f

( 3∑
i=1

ui · ω(1)
2i + b

(1)
2

)

y
(2)
3 = f

( 3∑
i=1

ui · ω(1)
3i + b

(1)
3

)

The final output of the NN, indicated as yout (or y(3)
1 ), will be:

yout = y
(3)
1 = f

( 3∑
i=1

y
(2)
i · ω

(2)
1i + b

(2)
1

)
(1.3)

It can be noticed that, as expected, the input of each neuron is multiplied by the
corresponding weight ωji, then all the weighted inputs are summed together with
the bias bj. This sum is (eventually) passed through the activation function f . The
procedure is performed for all the layers of the network, until the last layer is reached.
Clearly, the overall computation could be extended to a generic number of layers and
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of neurons; considering n layers, with m neurons on the last one, the result is given
by:

y
(n)
1 = f

(∑
i=1

y
(n−1)
i · ω(n−1)

1i + b
(n−1)
1

)
...

y(n)
m = f

(∑
i=1

y
(n−1)
i · ω(n−1)

mi + b(n−1)
m

)
Notice the sums goes from i = 1 up to the number of the inputs the corresponding
neuron j of layer n receives.

Summarizing, we can conclude that the feed-forward passage is used to compute
the final output of a (feed-forward) NN, starting from its inputs ui and passing through
all the intermediate outputs of each layer (and correspondingly, of each neuron).

1.2 Training of a neural network
At this point, the main structure of a neural network is known, hence we are ready to
discuss its training. First of all, in this section the gradient descent method will be
treated, together with its main improved version (the stochastic gradient descent).
Then the backpropagation method will be explained. Notice that in the following
sections only the main ideas of the methodologies are reported. For more details, the
interested reader is referred to [9].

1.2.1 Gradient descent
Since the outputs of a NN are strongly dependent from the weights and biases of
each neuron (together with the input of the network itself), a good way to proceed
is to implement an algorithm that allows us to find the optimal values of ωi and
bi. The basic idea is to find the ideal set of parameters that minimises a given cost
function (like for example the Mean Square Error, MSE). This is a non linear, non
convex problem (with high computational complexity) that can be solved with the
gradient descent method [10]: it is an iterative method in which, at every iteration, the
direction along which the gradient of the cost function to be minimised is identified,
and the algorithm takes a "step" along such direction.

Indicating with θ the parameter vector, it is usually initialized with random values,
and, at every step, we try to improve it proceeding as previously said, looking for the
optimal value of θ, i.e. θ̂. Since at every iteration we make a (usually small) step in
order to improve θ, the size of such step (indicated with η, and called learning rate)
represents a key aspect for the gradient descent method: taking a too small value for
η leads to a very slow learning phase (i.e. in order to find the minimum of the cost
function a lot of iterations are needed), while taking a too high value for the learning
rate may prevent from reaching the minimum.

According to the discussion in [11], in order to properly implement the gradient
descent method, it is needed to compute the gradient of the cost function (indicated
from now on with J(θ)) with respect to each parameter θj, which means we want to
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Chapter 1. Neural networks basics

observe how much the variation of θj affects the value of J . Let us consider an easier
case assuming we are dealing with a linear regression model such that:

ŷ =
m∑
i=1

(θi · vi) + b = θT · v

where vi is the i-th feature value and b the bias term (included into θ vector). Hence,
applying the gradient descent approach we have:

J(θ) = 1
m

m∑
i=1

(ŷi − yi)2

∂J(θ)
∂θj

= 2
m

m∑
i=1

(ŷi − yi) vj

where yi is the i-th desired output. By simply collecting all the partial derivatives of
J into a vector, the gradient vector of the cost function ∇θJ(θ) is obtained. Once the
gradient is known, for a parameter variation ∆θ the resulting variation of the cost
function will be such that:

∆J(θ) ' ∇θJ(θ) ·∆θ
At this point, the learning rate η mentioned before comes into account, indeed by

taking:
∆θ = −η · ∇θJ(θ)

we get the iterative rule:
θ ← θ − η · ∇θJ(θ) (1.4)

As previously said, the size of η is a key point for the algorithm: taking a too high
value for η may lead to a huge change of parameter values, so the minimum may not
be reached or, in the worst case, the algorithm may diverge. On the other hand, a
too low value of the learning rate leads to a very small change ∆θ, i.e. the algorithm
works very slowly since the parameters go through a small update procedure.

Since it is an iterative method, the general idea is to stop the iterations when the
norm of the gradient vector becomes lower than a fixed tolerance. Supposing we are
dealing with a generic cost function J(θ), it may happen that it has multiple minima:
in order to guarantee the best result possible, we would like the algorithm to stuck on
the global minimum of J , and not on a local minimum. This is a common problem in
the gradient descent methods, related also to the random initialization of θ vector.

1.2.2 Stochastic gradient descent
An improved version of the gradient descent is the so-called Stochastic Gradient
Descent (SGD) [12]: it can be observed that the main drawback of the previously
described method is that it takes usage of the whole training set (i.e. the set of
data used to train the NN) to compute the gradient at every step. This means
that, if we are dealing with a huge training set, the computational effort may be
unacceptably high. The stochastic gradient descent addresses this issue, selecting a
random subset from the training set and computing the gradient based just on those
extrapolated elements, and then using this gradient to update the weights and biases.
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1.2. Training of a neural network

The procedure is repeated for all the remaining elements contained in the training
set. Let us notice that it is not mandatory to extrapolate a single instance (where by
instance we mean single observation or record of data) from the training set, we can
simply take n random elements from it.

The steps previously described refers to just one epoch, where one epoch ends
when all the instances in the training set are used to train the NN parameters. In
order to properly train the network, it should be taken into account more than one
epoch (there is not a fixed number, it strongly depends on the benchmark and on the
network structure considered).

Clearly, the lower the size of the set on which the gradient is computed, the better
the overall performance of the method in terms of convergence time. On the other
hand, this kind of method will not be as "smooth" as the plain gradient descent, since
the cost function will not likely be constantly decreasing, but it may grow and then
decrease at every step. However, by taking its average over the steps, the cost function
should show a decreasing trend, until it is close to the minimum. An important
drawback is that, once the method is close to the minimum, it is not able to reach
it but it starts to bounce around that value. A possibility to partially solve this
problem is to adapt the learning rate η at every step, starting from a high value and
progressively reducing it.

Due to the random picking of the sample set for the computation of the gradient,
in the same epoch it may happen that some instances are used more than once for the
training, and others very few times. That is why an alternative proposed is to shuffle
the training set, use every instance for the training in an epoch, and then re-shuffle it
again and repeat the procedure.

Recalling the problem related to the presence of possible local minima in the cost
function discussed for gradient descent, since with SGD the cost function will bounce
around the (local or global) minimum, it may help to escape from a local minimum
we are stuck in.

1.2.3 Backpropagation
Up to now, we discussed the structure of a NN and the algorithm typically used to
learn its parameters (i.e. weights ωi and biases bi), called gradient descent. Taking
into account a generic FFNN (which is characterised by the absence of loops in its
structures, i.e. the flow of signals is unidirectional from input layer to output layer,
see Fig. 1.6), in order to train this kind of networks a new method (that, as we will
see, takes usage of a forward phase and a backward phase, plus for example the
gradient method for the parameters optimization), called backpropagation method [9],
is presented. Briefly, the idea is to compute the loss function contribution of each
connection of the NN, aiming to reduce such value applying the gradient descent (or
SGD) for parameters update.

First of all, the backpropagation algorithm computes a prediction using the already
seen forward phase (Section 1.1.4), taking as input a training instance: hence, the
output of every neuron is computed. At this point, the value of the loss function
(that could be considered for simplicity as the difference in absolute value between the
current output and the desired one, however any kind of cost function can be used
without problems, like for example the MSE) is computed, and then the backward
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phase starts: the algorithm aims to compute the partial derivatives of the cost function
with respect to each weight (and bias) of the NN, starting from the connections of
the last hidden layer with the output one, checking how much these connections
contributed to the overall error (cost function value), extending then this computation
for all the previous hidden layers until the input one is reached. Thus, it allows us
to properly compute the loss function contribution (i.e. the loss function gradient)
of each connection. Once the gradient is known, it is easy to use it for the gradient
descent step on all the connection weights of the NN in order to minimize the loss
function. In other words, the algorithm computes the loss function contribution of
each connection of the network, and then it changes the values of the connection
weights in order to reduce the achieved value for the loss.

It is important to highlight that this algorithm does not work with all the activation
functions presented in Section 1.1.2: indeed, if for example the binary step function
is considered (Fig. 1.2), the backpropagation algorithm does not work since there
is not a gradient to work with. Therefore, the other activation functions need to
be considered, e.g. the sigmoid or the hyperbolic tangent function, since they are
continuous, derivable functions.

In conclusion, the backward-pass aims to compute the loss function gradients used
for the parameters optimization (performed through for example gradient descent
algorithm) in order to reduce an error or to improve a performance index, obtaining a
trained NN.

1.3 Recurrent Neural Networks
In the previous sections only FFNNs have been described. However, for the purposes
of this Thesis, the so-called Recurrent Neural Networks (RNNs) need to be introduced:
as discussed by Goodfellow et al. in [9], RNNs are mainly used to process sequences of
data (even with variable length), including time series data. An interesting property
of RNNs is that once they are correctly trained (which requires enough data to be
collected), they are able to forecast future outputs with certain accuracy using current
(and previous) analysed data, since RNNs are characterised by a memory that allows
them to memorise useful patterns observed in the already examined datasets.

Indeed, the main reason to consider RNNs instead of FFNNs is that the latter
outputs are computed on the basis only of the current inputs, since they are not
characterised by any dynamics. On the other hand, the RNNs are able to store
informations from all the inputs received from the initial time instant, considering
also them for the computation of the outputs.

Let us keep in mind that the training of a RNN is done in a very similar way to
what has been said up to now, that is by the minimization of a given cost function
that evaluates the difference between the computed output ŷ(t) and the real one y(t),
however introducing some differences due to the change of the network structure.

1.3.1 Structure of a recurrent neural network
Basically, the difference between a RNN and a FFNN is how the neurons are connected
one to each other: in RNN the flow of the input is not along a unique direction due
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to the presence of connections that link the outputs of the neurons with their inputs.

Figure 1.7. Schematic representation of the structure of a recurrent NN (left) and of an
unrolled RNN (right).

As shown in Fig. 1.7, it is possible to observe the self-loop that characterises RNNs;
also, through the so-called unfolding operation, we can transform the network into
a common FFNN since all the loops are removed from its structure. Let us notice
that the output y is obtained multiplying the state x by the weights Wy. Also, notice
that the input of the generic neuron i is given by the weighted sum of both u(t) and
x(t− 1): indeed, the last state x(t− 1) is used as input for the neuron at the next
time instant t, multiplied by Wx. Let us point out that the set of weights of neuron
i associated to these two quantities (respectively called Wi and Wx) are generally
different one from the other, i.e. Wi 6= Wx.

Indicating with f the generic activation function and with u its input, the hidden
state x and the output y at time instant t (neglecting the bias terms) are equal to:

x(t) = f
(
W T
i · u(t) +W T

x · x(t− 1)
)

y(t) = W T
o · x(t)

It is straightforward that, since the output of a recursive neuron y(t) is dependent
from x(t) (which is dependent from u(t) and x(t− 1)), and since x(t− 1) is dependent
from u(t−1) and x(t−2) (and so on), then y(t) is dependent from u(t), u(t−1), .., u(0):
this allows us to show that a recurrent neuron (and consequently, a RNN) has a sort of
memory due to the correlation among the current output and all the previous inputs
from instant 0 up to the current one.

Analysing a bit more in detail the structure of a RNN observed in Figure 1.7, and
considering the description proposed by Bianchi et al. in [13], these networks are
characterised by three types of layers: the input layer, the hidden layer and the output
layer. Also, a loop on the hidden unit is observable. As described, it is possible to
unfold the loop in order to transform the RNN into a sort of FFNN, where the same
structure is repeated multiple times, pointing out how the previous state x(t− 1) is
used as input to its successor x(t).

Considering Figure 1.8, and indicating with Wi, Wx, Wo the weight matrices
respectively for input u, state x and output y, it is clear how these matrices are always
the same throughout the whole RNN: it means that the weights for input u(i) and
the weights for input u(i+ 1) are identical. The same reasoning is followed for the
output weights and for the weights associated to the connections between the states
of the previous neurons used as inputs for the next ones. In other words, Wi, Wx and
Wo never change on the basis of the considered time instant.
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Figure 1.8. Representation of the structure of an unrolled RNN. Notice how Wi, Wx and
Wo are always the same even if time instant t changes.

1.3.2 Backpropagation through time
The procedure to train a FFNN has been already described in previous sections,
in particular the concept of backpropagation has been introduced in Section 1.2.3.
Dealing with a RNN necessarily leads to a change of the tools used to train the
network, and of course of the backpropagation method, since we are dealing with a
structure where the flow of signals is not unidirectional (the graph of a RNN is cyclic).
That is why the so-called BackPropagation Through Time (BPTT) is introduced [14]:
it consists in unrolling the RNN through time (see Fig. 1.8), and then applying the
backpropagation procedure described in Section 1.2.3; let us recall that unrolling a
RNN leads to a structure that is essentially a FFNN, with the only difference that
the weights matrices Wi, Wx and Wo are replicated across the layers.

Basically, once the unfolding of the RNN is performed, the training behaves
almost identically to what has been shown for a FFNN: shortly, a feedforward passage
is applied to compute predictions and, consequently, the loss function (indicated
with J). Then, its partial derivatives with respect to the weights are computed
and backpropagated through the unrolled network: eventually, the gradient descent
(Section 1.2.1) is applied to change the parameters of the network.

However, the situation in this case is a bit different from the mathematical point of
view: the total loss for a given sequence of inputs (paired with a sequence of outputs
of the same length) is given by the sum of the losses through all the time steps, i.e.
the overall loss Jtot is such that Jtot = ∑

t Jt, where Jt is the loss evaluated only on
the time instant t.

Therefore, as the loss is summed up to compute the total one, the gradients need
to be summed up as well. Let us recall the current state x(i) (indicated also as
xi) depends from its input but also from the previous states x(i− 1), x(i− 2) (i.e.
xi−1, xi−2) and so on, hence the gradient of the error with respect to the weights Wx

at time instant t does not depend only from the input but also from the gradients of
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the previous states at all previous time instants.
For example, let us indicate with J3 the loss at time-step 3, then the following

relationships hold:
∂J3

∂Wo

= ∂J3

∂y3

∂y3

∂Wo

(1.5)

∂J3

∂Wx

= ∂J3

∂y3

∂y3

∂x3

∂x3

∂Wx

+ ∂J3

∂y3

∂y3

∂x3

∂x3

∂x2

∂x2

∂Wx

+ ∂J3

∂y3

∂y3

∂x3

∂x3

∂x2

∂x2

∂x1

∂x1

∂Wx

(1.6)

Notice we assumed that the first time-step is 1 and not 0. The Eq. (1.6) can be
generalized by changing J3 with Jt and extending the partial derivatives up to time
instant t.

1.3.3 Truncated backpropagation through time
Using BPTT algorithm may lead to the same problems that affect FFNNs, e.g.
vanishing and exploding gradient (Section 1.3.5), especially if the unrolled network
is a deep network, which in other words means the input sequence is particularly
long (keep in mind that applying BPTT approach, Section 1.3.2, to train a RNN
means unfolding it a number of times equal to the number of time-steps present in
the input sequence). This is the main reason why a variation of BPTT is introduced,
called Truncated BackPropagation Through Time (TBPTT), that relies on the usage
of shorter input sequences through which we feed the network. For example, let us
imagine the original input sequence is formed by 10000 data samples: the training
could be extremely time consuming and computationally tough since the network has
to be unrolled 10000 times. However, by dividing such sequence into 50 subsequences
of 200 samples each, we can reduce consistently the training complexity and the depth
of the unrolled network. Hence, in this way the network will be unfolded for a much
lower number of time-steps than the ones with the full sequence.

As a direct consequence, TBPTT may prevent the NN from learning long-term
patterns [15] exceeding the length of the subsequence, denoted by lbatch. For example,
if there exists a specific pattern that could be observed every 2000 data, dividing the
original dataset into subsequences smaller than lbatch = 2000 may prevent the network
to capture that peculiarity. However, this problem could be partially limited imposing
an overlap between consecutive subsequences. This aspect will be better analysed in
Section 4.3.

Summarizing in a formal way, the TBPTT can be seen as a variation of BPTT
where the structure of the network, instead of being unrolled an infinite number of
times (as could be done in theory with BPTT), is replicated a finite number of times,
limiting the probability of vanishing gradient problem and the depth of the network
itself [13]. More specifically, two parameters can be introduced, as in [16]:

• k1, which is the number of time-steps every which the BPTT is performed
(processing the sequence one time-step at a time). Notice that k1 ≤ Tinp, where
Tinp is the time length of the original input sequence;

• k2, which is the number of time-steps for which BPTT is performed. It means
that, if t is the starting time instant (with t multiple of k1 due to its previous
assumption), BPTT is performed from t to (t− k2).
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Starting from this notation, the TBPTT(k1, k2) can assume different meanings
based on the values of its two parameters, for example TBPTT(Tinp, Tinp) (i.e.
k1 = k2 = Tinp) is the classical BPTT approach since the whole sequence is analysed
before running the algorithm and the updates are performed considering all time-steps
in the sequence itself.

In Tensorflow, the implementation of TBPTT can be easily done dividing the input
sequence into more subsequences, considering each of them as a separate training
batch for the network.

1.3.4 Optimizer
As previously mentioned, the aim of the training is to minimize the loss function
J , which means to minimize the mismatch between predicted outputs and real ones.
To do that, as discussed in Section 1.2.1, the gradient descent (and its variations)
can be used. However, when a deep NN is faced, this method is very slow and not
optimal at all. That is why in our code it will be replaced by the so-called RMSProp
optimizer, that takes usage of momentum optimization, introduced by Polyak in [17]:
the momentum optimization relies not only on the last computed gradient, but also on
a momentum, based on the gradients computed in the previous iterations. Therefore,
the equations (taking into account the discussion in [11]) are:

m← β ·m+ η · ∇θJ(θ)
θ ← θ −m

(1.7)

where m is the update term (also called momentum vector) while β is a friction term
that ranges from 0 to 1, and it is used to prevent that the moment grows too much.
It can be noticed how the m term is used to accumulate the past gradients, since
the momentum vector at time instant t (indicates as mt) is dependent from mt−1
(therefore from ∇θJ(θt−1)), which is dependent from mt−2 and so on. Thus:

mt = β2η∇θJ(θt−3) + βη∇θJ(θt−2) + η∇θJ(θt−1) + ... = η
t−1∑
τ=1

βt−τ−1∇θJ(θτ )

Let us highlight that momentum optimization is based on the usage of a learning
rate η that is kept always the same throughout the whole procedure. Therefore, an
alternative method called AdaGrad optimizer (introduced in [18]) that adapts the
learning rate with respect to the parameters is introduced. From a mathematical
point of view, we get:

s← s+∇θJ(θ) ◦ ∇θJ(θ)
θ ← θ − η · ∇θJ(θ)�

√
s+ ε

(1.8)

where � is the element-wise division, ε a small constant for numerical stability (used
to avoid a division by zero) and η the learning rate.

The first step of Eq. (1.8) aims to store the square of the gradients into the vector
s, and then we use it for the parameters update. It is straightforward to notice that
the method, starting from an initial standard value for the learning rate, decays it at
every iteration due to the element-wise division by

√
s+ ε. In particular, it means
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that each parameter uses a different learning rate at every time instant, achieving
smallest η for the steepest directions (high values of si), while bigger learning rates
are used for the other ones (where we record low values of si). Thus, this method
eliminates the manually tuning of η.

The main drawback of AdaGrad optimization is that the vector s (which stores
the square of the gradients) gets higher and higher at every iteration (since all the
summed elements are greater or equal to zero), leading to a decrease of η, which could
become even very close to zero (not useful for the training of deep NNs).

Let us notice by a quick comparison between Eq. (1.4) and Eq. (1.7) that gradient
descent completely ignores all the already computed gradients, but it updates the
parameters θ just on the basis of the current gradient. Starting from this approach,
and considering Eq. (1.8) where all the gradients are taken into account from initial
to current time instants, the RMSProp optimizer (Tieleman et al. [19]) is obtained: it
implements a variation on which past gradients are considered, storing only the ones
of the most recent iterations (and not all the gradients computed up to now). From a
mathematical point of view, let us consider Eq. (1.9) where β is the decay rate.

s← β · s+ (1− β)∇θJ(θ) ◦ ∇θJ(θ)
θ ← θ − η · ∇θJ(θ)�

√
s+ ε

(1.9)

For the sake of knowledge, a direct alternative to RMSProp optimizer is the
so-called Adam optimizer (Adaptive Moment Estimation), discussed in [20]. More
specifically, it can be seen as a blend of RMSProp and momentum methods, as
noticeable from Eq. (1.10) where k indicates the number of the iteration (starting
from 1), β1 and β2 indicate respectively the momentum decay hyperparameter and
the scaling decay hyperparameter.

m← β1 ·m+ (1− β1)∇θJ(θ)
s← β2 · s+ (1− β2)∇θJ(θ) ◦ ∇θJ(θ)

m← m

1− βk1
s← s

1− βk2
θ ← θ − η ·m�

√
s+ ε

(1.10)

Clearly, even Adam optimizer does not require a manual tuning of the learning
rate.

1.3.5 Vanishing and exploding gradient problems
Two common problems only mentioned up to now that affect the training of the
deeper layers of the networks are the so-called vanishing and exploding gradients, that
will be here briefly discussed, and treated by Aurélien Géron in [11]. Let us recall in
few words that backpropagation algorithm works propagating from output layer to
input one the error gradient and, subsequently, computing the gradients of the cost
function with respect to each parameter of the network and using these gradients to
update the weights of the network itself. However, sometimes it may happen that
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such gradients become smaller and smaller across layers and, once the deeper layers
(which are the first layers of the network, since backpropagation algorithm works
backwards) are reached, their values are almost zero, which means the weights in that
part of the networks are not updated at all (i.e. it is like that portion of the network
is never trained): this phenomenon is called vanishing gradient.

On the other hand, the opposite case may be observed: the gradients become
larger and larger at every layer, hence the deeper layers go through an insanely large
weights update. This problem is known as exploding gradient.

In [21], some explanations of these two phenomena have been proposed. In partic-
ular, a correlation between the choice of the activation function and the initialization
procedure for network weights has been shown by the authors, describing how the
variance of the output of the layer increases at each layer if the initialization and the
activation functions are not selected carefully.

Different solutions have been proposed in [21], such that the usage of a new
initialization like the Xavier initialization (considering as activation function f the
sigmoid σg, Fig. 1.3) in order to avoid the neuron activation functions start in saturated
regions (i.e. with values of the weights that are too small or too high). In particular,
it initializes the weights of the network by drawing them from a normal distribution
with zero mean and a variance function of nin and nout, which are respectively the
number of input (fan-in) and output (fan-out) connections of the layer. The results
indicated that, considering Xavier initialization, the network maintained near identical
variances of its weight gradients across the layers.

An additional solution could be to take the activation function neither as the
sigmoid nor the hyperbolic tangent, but as the ReLU function, introduced in Section
1.1.2. With such choice, a new initialization proposed in [22], called He initialization,
could be considered: it is almost equal to Xavier initialization, with the only difference
that the variance is multiplied by a factor two, i.e. V arHe = 2 · V arXavier.

However, one of the main tools to avoid vanishing and exploding gradients are the
usage of gated units for the network, e.g. LSTM and GRU cells that will be discussed
in the Sections 1.3.6 and 1.3.7 respectively.

1.3.6 Long Short-Term Memory cell
A common problem in RNNs is that they may lose gradually stored informations
about the first inputs they went through if the training (or even the input sequence)
is too long. That is why long memory cells have been proposed during the years,
starting from the so-called Long Short-Term Memory cell (LSTM cell), introduced
by Hochreiter and Schmidhuber in [23]. The basic behaviour of a LSTM cell is to
recognize if the received input is important or not, store the important informations
contained in it for a long-term period until they are not required anymore, and retrieve
such contents when needed.

From a deeper point of view, considering [11], [24] and [25], a LSTM cell has its
state split into two different ones: ξ(t) (the short-term state) and x(t) (the long-term
state). Going through the LSTM cell, x(t) undergoes three gates called respectively
input gate, output gate and forget gate, each one with a specific role in terms of
providing the next long-term state x(t + 1) and short-term one ξ(t + 1), which is
likely equal to the cell output y(t+ 1) (notice a linear transformation might be placed
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in between). Going into details of the fundamental quantities of a LSTM cell, we
analyse:

• f(t), called also forget gate, defined as the output of a sigmoid layer that takes
as inputs both ξ(t− 1) and u(t), and defines which contents of x(t− 1) need to
be kept or discarded (totally or only partially since the sigmoid function varies
from 0 up to 1);

• g(t), called also candidate cell state, defined as the output of a tanh (σc) layer
that takes as inputs both ξ(t− 1) and u(t);

• i(t), called also input gate, defined as the output of a sigmoid layer that takes
as inputs both ξ(t− 1) and u(t). Together with g(t), they will define which part
of the new input will be stored in the cell state;

• o(t), called also output gate, defined as the output of a sigmoid layer that takes
as inputs both ξ(t− 1) and u(t). It will be useful to define, as it will be shown,
ξ(t) and consequently y(t).

Therefore, the equations associated to the three gates plus the g(t) quantity we have
just defined are:

Forget gate : f(t) = σg(Wf · u(t) + Uf · ξ(t− 1) + bf )
Input gate : i(t) = σg(Wi · u(t) + Ui · ξ(t− 1) + bi)

Output gate : o(t) = σg(Wo · u(t) + Uo · ξ(t− 1) + bo)
Candidate cell state : g(t) = σc(Wc · u(t) + Uc · ξ(t− 1) + bc)

(1.11)

and the resulting equations for a LSTM cell, considering (1.11), can be described by:
x(t) = f(t) ◦ x(t− 1) + i(t) ◦ g(t)
ξ(t) = o(t) ◦ σc(x(t))
y(t) = Uo · ξ(t) + bo

(1.12)

where u ∈ Rnu is the input, y ∈ Rny is the output, x ∈ Rnx is the hidden state,
ξ ∈ Rnx is the output state, σg is the sigmoid function (Fig. 1.3), σc is the tanh
function (Fig. 1.4), ◦ is the element-wise multiplication (Hadamard product), while
the terms Wf , Wi, Wo, Wc ∈ Rnx×nu , Uf , Ui, Uo, Uc ∈ Rnx×nx , Uo ∈ Rny×nx are
the weighting matrices and bf , bi, bo, bc ∈ Rnx , bo ∈ Rny are the biasing vectors.

Figure 1.9. Schematic representation of a LSTM cell.
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At this point, we are able to have an intuitive idea on how a LSTM cell works,
and in particular let us focus on the path that x(t− 1) goes through along the cell
(see Fig. 1.9):

• the first thing is to remove the useless informations from the vector through the
forget state, so a multiplication between x(t− 1) and f(t) is performed;

• then, the new informations need to be added to the hidden state, so they are
summed to the product (element-wise multiplication) between i(t) and the
quantity g(t) previously described;

• at this point, the new hidden state x(t) is obtained, however the output state
ξ(t) is still unknown, therefore x(t) goes through the σc function and then it is
multiplied by o(t) (element-wise multiplication);

• the output y(t) can be either equal to ξ(t) or going through a linear transforma-
tion as indicated in Eq. (1.12). Notice in Fig. 1.9 the linear transformation has
been neglected for simplicity.

Extending Eq. (1.12) for a multi-layer LSTM network, the result is:
x(i)+ = f (i) ◦ x(i) + i(i) ◦ σc(W (i)

c · x(i−1)+ + U (i)
c · ξ(i) + b(i)

c ) (1.13)
where the superscript (i) and + denote the layer i and the quantity value at the next
time instant respectively.

In conclusion, the LSTM cell is capable of memorizing relevant features and
informations passed as input for long time thanks to the long-term state recalling
them every time it is needed, discarding the useless ones.

1.3.7 Gated Recurrent Unit
A direct alternative to LSTM cell is the so-called Gated Recurrent Unit cell (GRU
cell), proposed by Kyunghyun Cho et al. [26].

GRU can be seen as an exemplification of LSTM since the single cell takes usage
of just two gates instead of three as viewed before. In fact, in this case we deal with
update gate and reset gate only, while the output gate is removed, and a single state
vector is considered instead of the two of LSTM cells.

Figure 1.10. Schematic representation of a GRU cell.
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Notice the absence of an output gate means that once the state vector is computed,
it is used as output too: indeed the output vector is identical to the state one (see
Fig. 1.10). However, in some cases a linear output transformation could be applied to
x(t) in order to obtain y(t).

Dealing with equations, and being concordant with the notation used in Section
1.3.6, the GRU cell can be described by:

z(t) = σg(Wz · u(t) + Uz · x(t) + bz)
f(t) = σg(Wf · u(t) + Uf · x(t) + bf )
r̃(t) = σc(Wr · u(t) + Ur · (f(t) ◦ x(t)) + br)
x(t) = z(t− 1) ◦ x(t− 1) + (1− z(t− 1)) ◦ r̃(t− 1)

(1.14)

where u ∈ Rnu is the input, x ∈ Rnx is the state, z(t) is the update gate, f(t) is
the reset gate, r̃(t) the candidate hidden state, σg is the sigmoid function (Fig. 1.3),
σc is the tanh function (Fig. 1.4), ◦ is the element-wise multiplication (Hadamard
product), while the terms Wz, Wf , Wr ∈ Rnx×nu , Uz, Uf , Ur ∈ Rnx×nx are the
weighting matrices and bz, bf , br ∈ Rnx are the biasing vectors. Considering a linear
transformation on the output, we would get:

y(t) = Uo · x(t) + bo

where y ∈ Rny , Uo ∈ Rny×nx and bo ∈ Rny .
Extending Eq. (1.14) for a multi-layer GRU network, the result is:

z(i) = σg(Wz · x(i−1)+ + Uz · x(i) + bz)
f (i) = σg(Wf · x(i−1)+ + Uf · x(i) + bf )
r̃(i) = σc(W (i)

r · x(i−1)+ + U (i)
r · (f (i) ◦ x(i)) + b(i)

r )
x(i)+ = z(i) ◦ x(i) + (1− z(i)) ◦ r̃(i)

(1.15)

where the superscript (i) denotes the layer i and the superscript + denotes the value
at the next time instant. Notice that the input of the i-th layer is provided by the
state of the (i− 1)th layer, where x(1) = u (i.e. the input of the network).

Let us highlight that, when the update gate is close to 1, the new state x(t) is
simply the old one (i.e. x(t − 1)) retrieved, hence the input u(t) is almost ignored.
On the other hand, if z(t) ' 0, the new state x(t) will be quite similar to r̃(t).

In [28] the discussion of Input-to-State Stability (ISS) for nonlinear discrete-time
system is treated. In particular, in [27] sufficient conditions for ISS of a GRU network
(both for single layer and multi-layer discrete-time networks) are provided. First of all,
the ISS property guarantees that the effects of initial conditions progressively vanish,
together with the boundedness of the state trajectories (i.e. of the network’s state)
generated by bounded inputs or bounded disturbances. This allows us to avoid to
affect the performances of NNs due to (possible) wrong initialization of the network’s
parameters.

More formally, let us define with K the set of functions γ such that they are
continuous, strictly increasing and with γ(0) = 0, with K∞ the set of unbounded
γ ∈ K and with β ∈ KL a function such that β(·, t) ∈ K for all t ≥ 0 and β(s, ·)
continuous and strictly decreasing for all s > 0. Then, considering the generic single
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layer GRU network indicated in (1.14), its ISS definition is provided in Definition
1.3.1 (as explained in [27]).

Definition 1.3.1 (ISS) System (1.14) is input-to-state stable if there exist func-
tions β(‖x̄‖∞, t) ∈ KL, γu(‖u‖∞) ∈ K∞, γb(‖br‖∞) ∈ K∞ such that the following
relationship holds

‖x(t, x̄, u, br)‖∞ ≤ β(‖x̄‖∞, t) + γu(‖u‖∞) + γb(‖br‖∞) (1.16)

for any t ≥ 0, any input u, any initial condition x̄ and any value of br.

The sufficient condition for the ISS of a single layer GRU network is provided by
the following constraint:

‖Ur‖∞ σg
(
‖Wf Uf bf‖∞

)
< 1 (1.17)

Also, it has been proved that GRU are such that, for any initial state x̄ ∈ Rnx ,
there exists a finite k̄ ≥ 0 at which x(k) ∈ X ∀ k ≥ k̄, where X = [−1, 1]nx is an
invariant set of the system. It means that, whatever the initialization of the network
state is, and for any input u : u ∈ [−1, 1]nu , the state will be in [−1, 1] from a certain
time instant onward. For further details and the proofs of these statements, the
interested readers are addressed to [27], where the explanation is extended also to
multi-layer GRU networks.

1.4 Conclusions
In Chapter 1 the concept of neural network has been discussed, focusing on the basic
element, i.e. the neuron (together with the main types of activation functions f), and
analysing both FFNNs and RNNs. Also, the training for both these networks has
been described, highlighting the main useful tools, like gradient descent algorithm,
backpropagation, BPTT and TBPTT.

The two main problems of RNN training, i.e. vanishing and exploding gradients,
were proposed and briefly discussed. At this purpose, we went into details about the
gated units introduced to solve such problems, that are the LSTM and GRU cells,
focusing on their main mathematical relationships and properties.
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Chapter 2

Benchmark: the four-tanks system

In this chapter, it will be introduced the benchmark considered in the Thesis, describing
it in terms of physical characteristics and mathematical properties.

In particular, the system is the four-tanks plant proposed by Johansson in [1],
and discussed by Alvarado et al. [29]. The physical constraints will be highlighted,
describing the values of the system parameters in the real world. More specifically,
the mathematical model (together with its linearisation) will be presented, then the
steady-state conditions for the nonlinear system, the analysis of the zeros of the
transfer matrix and the step (and frequency) responses of the linear system will be
studied. It will be also treated the implementation of the plant in Simulink using a
MATLAB function.

2.1 Mathematical model of the plant
The system consists in four interconnected water tanks with two input pumps that
allow the water to reach all of them. It can be noticed from Figure 2.1 as the
input flows to the tanks are regulated by two valves that control the outflow of the
corresponding pumps. Another element that can be noticed is that the pumps take
the water from a storage tank below the plant, that in our case is considered to have
an infinite capacity. In addition, the two upper tanks (whose levels are called for
simplicity h3 and h4) outlet the water directly in the two tanks below (with levels h1
and h2 respectively).

Since it is needed to introduce a mathematical model for the plant, a name is
assigned to each variable:

• υi: voltage used to control the input pump i, for i ∈ {1, 2};

• yi: output of the tank i, for i ∈ {1, 2};

• hi: level of the tank i, for i ∈ {1, 2, 3, 4};

• γi: opening position of the valve i, for i ∈ {1, 2}, γi ∈ [0, 1];

• S: cross-section of the outlet hole of tank (the same for each tank by assumption);

• qi: flow of the pump i, for i ∈ {a, b};
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• ai: discharge constant of the tank i, for i ∈ {1, 2, 3, 4}.

Figure 2.1. Model of the four-tank system proposed by Johansson in [1].

As indicated in [29], the mathematical system that properly describes the evolu-
tion of the state variables hi is the following one:

dh1

dt
= −a1

S

√
2gh1 + a3

S

√
2gh3 + γ1

S
qa

dh2

dt
= −a2

S

√
2gh2 + a4

S

√
2gh4 + γ2

S
qb

dh3

dt
= −a3

S

√
2gh3 + (1− γ2)

S
qb

dh4

dt
= −a4

S

√
2gh4 + (1− γ1)

S
qa

(2.1)

Clearly, the model is just an exemplification of the real system, since some aspects
(like for example the turbulences inside the tanks) are ignored. In particular, it can
be observed that the obtained model is nonlinear due to the presence of square roots
in the expressions of all the ḣi.

Because of this non linearity, to analyse the relevant mathematical properties it
should be provided a linearised version of the model. To do that, it is required first of
all to define a set of nominal values, in addition to the constraints defined by the real
plant (e.g. the maximum levels of the tanks, the maximum flows of the input pumps
and so on).

Table 2.1 includes the values that will be taken into account for the linearisation
and also for the implementation of the model in Simulink. Notice that, for simplicity,
the four tanks are directly indicated by their corresponding levels hi.
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Name of the variable Value Unit
a1 1.31e-4 m2

a2 1.51e-4 m2

a3 9.27e-5 m2

a4 8.82e-5 m2

hmin 0 m
h1,max 1.36 m
h2,max 1.36 m
h3,max 1.3 m
h4,max 1.3 m
S 0.06 m2

γ1 0.3
γ2 0.4
h0

1 0.65 m
h0

2 0.66 m
h0

3 0.65 m
h0

4 0.66 m
q0
a 1.63 m3/h
q0
b 2.00 m3/h

qa,max 3.26 m3/h
qb,max 4 m3/h
qmin 0 m3/h
g 9.81 m/s2

Table 2.1. Table that summarize the values of the parameters used for the plant and for the
linearisation.

By defining the linearisation variables xi (i = 1, 2, 3, 4) and uj (j = 1, 2) as it
follows:

xi = hi − h0
i

uk = qk − q0
k, k ∈ {a, b}

(2.2)

it is obtained the linearised model in the form:ẋ = dx

dt
= Ax+Bu

y = Cx
(2.3)

where x = [x1, x2, x3, x4]T , y = [x1, x2]T and u = [u1, u2]T . The matrices A, B and
C have the following forms:
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A =



− 1
T1

0 1
T3

0

0 − 1
T2

0 1
T4

0 0 − 1
T3

0

0 0 0 − 1
T4



B =



γ1

S
0

0 γ2

S

0 1− γ2

S1− γ1

S
0


C =

[
1 0 0 0
0 1 0 0

]

where Ti = S

ai

√
2h0

i
g

(for i = 1, 2, 3, 4) is the time constant of the tank i. As observable

in matrix C, the outputs y considered are only the levels of the lower tanks h1 and h2.
Taking into account the values in Table 2.1 and from the structure of the matrix

A, it is clear that the model has four stable real poles (i.e. − 1
Ti
, i = 1, .., 4). The

transfer functions computed by the matrices are:

G(s) =


γ1c1

1 + sT1

(1− γ2)c1

(1 + sT1)(1 + sT3)
(1− γ1)c2

(1 + sT4)(1 + sT1)
γ2c2

1 + sT2

 (2.4)

with c1 = T1/S, c2 = T2/S.

2.1.1 Steady-state conditions of the nonlinear system
Taking into account the nonlinear model proposed in System (2.1), and a stationary
operating point (h0

1, h
0
2, q

0
a, q

0
b ), at the steady-state the last two equations become:

a3

S

√
2gh0

3 = (1− γ2)
S

q0
b

a4

S

√
2gh0

4 = (1− γ1)
S

q0
a

(2.5)

Therefore, replacing Eq. (2.5) in System (2.1), the first two equations become:

a1

S

√
2gh0

1 = a3

S

√
2gh0

3 + γ1

S
q0
a = (1− γ2)

S
q0
b + γ1

S
q0
a

a2

S

√
2gh0

2 = a4

S

√
2gh0

4 + γ2

S
q0
b = (1− γ1)

S
q0
a + γ2

S
q0
b

(2.6)
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It follows that there always exists an unique input (q0
a, q

0
b ) giving the stationary point

(h0
1, h

0
2) if and only if the matrix[

γ1 (1− γ2)
(1− γ1) γ2

]

is non-singular. It means that:

γ1γ2 − (1− γ2)(1− γ1) = γ1 + γ2 − 1 6= 0 ⇒ γ1 + γ2 6= 1.

Assuming the singularity is provided, i.e. γ1 + γ2 = 1, it can be noticed that the
flows through tank 1 and tank 2 are respectively given by:

flowtank 1 = (1− γ2)qb + γ1qa = γ1(qa + qb) (2.7)
flowtank 2 = (1− γ1)qa + γ2qb = (1− γ1)(qa + qb) (2.8)

Analysing Equations (2.7) and (2.8), it is clear how the two flows are dependent,
therefore even the corresponding levels h1, h2 must be.

2.1.2 Multivariable (invariant) zeros of the linearised system
Let us notice that the positions of the three-way valves determine the location of a
multivariable zero of the linearised model [1]. Taking into account the transfer matrix
(2.4) previously obtained, the zeros of G(s) are given by the roots of the numerator of
its determinant, i.e.:

det(G(s)) = c1c2

γ1γ2
∏4
i=1(1 + sTi)

[
(1 + sT3)(1 + sT4)− (1− γ1)(1− γ2)

γ1γ2

]
(2.9)

In particular, the zeros (indicated as z1, z2) are given by:

(1 + sT3)(1 + sT4)− (1− γ1)(1− γ2)
γ1γ2

= s2T3T4 + s(T3 + T4) +
(

1− (1− γ1)(1− γ2)
γ1γ2

)
= 0

= as2 + bs+ c = 0

⇒ z1,2 =
−(T3 + T4)±

√
(T3 + T4)2 − 4 · T3T4

(
1− (1− γ1)(1− γ2)

γ1γ2

)
2 · T3T4

(2.10)

It is straightforward to notice that G(s) has two finite zeros related to the two
parameters γ1, γ2, which are both limited in the range [0, 1]: one zero is always placed
in the left half-plane, while the other one can be either in the left or in the right
half-plane, based on the values of γ1, γ2.

More specifically, the position of the second zero is strictly related to the sign that
η = 1− (1−γ1)(1−γ2)

γ1γ2
assumes: if η < 0 it will be in the right half-plane, while for η > 0

it will be in the left half-plane. Therefore, if γ1 + γ2 = 1 the system will have a zero
in the origin, if 0 < γ1 + γ2 ≤ 1 it will be non-minimum phase (i.e. G(s) is causal
and stable while its inverse G(s)−1 is unstable), if 1 < γ1 + γ2 ≤ 2 it will be minimum
phase (i.e. both G(s) and G(s)−1 are stable). In Figure 2.2 a graphical representation
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of the situation is provided.

Figure 2.2. Graphical representation of minimum and non-minimum phase behaviours of
the system as function of γ1, γ2.

Taking into account the two operating points P−, P+ taken from [1] (summarised
in Table 2.2), and using Eq. (2.10), the obtained zero values are written in Table 2.3.

Variable P− P+ Unit
(h0

1, h
0
2) (12.4, 12.7) (12.6, 13.0) cm

(h0
3, h

0
4) (1.8, 1.4) (4.8, 4.9) cm

(v0
1, v

0
2) (3, 3) (3.15, 3.15) V

(k1, k2) (3.33, 3.35) (3.14, 3.29) cm3/Vs
(γ1, γ2) (0.7, 0.6) (0.43, 0.34)
(T1, T2) (62, 90) (63, 91)
(T3, T4) (23, 30) (39, 56)

Table 2.2. Summary of the values of the two operating points P−, P+.

Variable P− P+

(z1, z2) (-0.018, -0.06) (0.013, -0.057)

Table 2.3. Table containing the values of the two zeros z1, z2 considering the operating
points P−, P+.

Let us notice that, as expected, the operating point P+ is characterised by a zero
in the right half-plane (indeed, γ+

1 +γ+
2 = 0.77 < 1). On the other hand, the operating

point P− has both the zeros in the left half-plane (γ−1 +γ−2 = 1.3 > 1). Notice also the
position of the poles are given by the Ti terms, therefore if we ensure that Ti > 0 ∀ i,
all the poles are located in the left half-plane.

2.1.3 Step responses and Bode diagrams
Dealing with the linearised system at the equilibrium point (h0

1 = 0.65 m, h0
2 = 0.66 m)

introduced in Table 2.1 together with the other parameters, we can study its frequency

26



2.1. Mathematical model of the plant

characteristics and step responses. From Fig. 2.3, it can be observed that the step
responses of h1, h2 are almost identical for qa step and qb step, with a difference only
on the final stationary value (let us point out we consider two unitary steps), while
the settling period is very similar. Considering for simplicity only the qa step response,
the settling time of the linearised system is around 0.4 · 104 s for h1 and almost the
double for h2. Notice that neither overshoots nor undershoots are observed.

The frequency responses of the elements of the transfer matrix G(s) are reported
in Fig. 2.4.

(a) (b)

(c) (d)

Figure 2.3. (a) Linearised system response of h1 with respect to qa step; (b) Linearised
system response of h1 with respect to qb step; (c) Linearised system response of
h2 with respect to qa step; (d) Linearised system response of h2 with respect to
qb step.

(a) (b)
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(c) (d)

Figure 2.4. (a) Bode diagram of G11(s); (b) Bode diagram of G12(s); (c) Bode diagram of
G21(s); (d) Bode diagram of G22(s).

2.2 Implementation of the plant in Simulink
At this point, the model is ready to be implemented in MATLAB and Simulink, in
order to simulate it. Notice the implementation has been done taking into account
always the parameters defined in Table 2.1 and Eq. (2.1). Let us point out that
some quantities previously defined have a measurement unit that must be changed in
order to avoid numerical problems: in particular, all the flows of the two pumps (e.g.
qa,max, qb,max and so on) were defined in the Section 2.1 in m3/h. Hence, they need
to be changed in m3/s dividing their values by 3600.

In order to perform the implementation, it has been considered the following
MATLAB function:

dx = fourtankfun(u, a1, a2, a3, a4, S, γa, γb) (2.11)

where dx = [ḣ1, ḣ2, ḣ3, ḣ4]T and u = [h1, h2, h3, h4, qa, qb]T .

Figure 2.5. Simulink block of the Function 2.11 introduced before.

Notice from Fig. 2.5 that the elements hi are obtained through the integration of the
outputs of the function ḣi. Input ports 1 and 2 indicate respectively qa and qb. The
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integral actions are all initialized at the corresponding level h0
i , including a saturation

such that hi ∈ [0, hi,max] for i = 1, 2, 3, 4.
In this function, once the MATLAB code containing all the values in Table 2.1

has been run, the only two things that need to be specified are the inputs qa and qb:
the characteristics of these two signals will be discussed in Chapter 3.

2.3 Conclusions
In Chapter 2, the benchmark adopted in the Thesis has been introduced and described:
firstly, an overview of the four-tanks system was proposed, then the main mathematical
relationships was discussed, highlighting the non-linearity of the model.

Then, its linearisation was introduced, together with a series of properties like
the steady-state conditions of the nonlinear system and the position of the zeros as
function of γ1, γ2. Also the step and frequency responses of the linearised system
have been shown.

The real system parameters (expressed in Table 2.1) were presented, noticing how
some physical constraints characterise the system, e.g. the maximum levels of the
tanks. Also, the implementation of the system in Simulink using a MATLAB function
has been discussed.
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Chapter 3

Neural network modeling of the
four-tanks system and design of
experiments

In this chapter, the main elements adopted for the construction of the neural network
model of the four-tanks system will be presented and described, highlighting the
choices for the number of units and layers of the NN, together with the different types
of cells used.

A key part of the training is represented by the cost function adopted, therefore
its description will be presented, together with the choice of the optimizer and the
discussion of the initialization procedure of the parameters.

Also, the choice of the design of experiments will be discussed (starting from the
system function in Figure 2.11 and the model presented in Section 2.1), specifying
the main features of the input signals qa and qb (such as the presence of noise, the
sampling of the signals, etc.), how the normalization is performed and how the batches
for training and validation are collected.

3.1 Structure of the neural network
The first thing we have to describe is the structure of the network, focusing on the
choice of the cost function for the training, the optimizer adopted, the number of
layers (and units) used, the type of basic cell (GRU, LSTM) and so on. Notice that
some alternatives are proposed, especially related to the NN topologies. The aspect
of the variable initialization has to be treated as well, since it is a critical point as
anticipated in Chapter 1.

In the next chapter, all these elements will be fundamental in order to perform
the training experiments.

Let us point out that the structure of a NN is not easy to be selected, especially
from the point of view of the number of units and layers required for a proper
training (there are no precise rules for their exact number computations), therefore the
structures proposed in this Thesis are just some possibilities that could be adopted.
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3.1.1 Basic elements of the structure
Let us start to discuss about the characteristics that our NN will have in terms of
type of cell, number of layers and units. Basically, the approach that will be followed
is characterised by the two types of cells introduced in Sections 1.3.7 (GRU cell) and
1.3.6 (LSTM cell), focusing more on the first one. The GRU cells defined in our
environment allows the user to add a final linear transformation for the output. Let
us recall that in that case the expression is:

y(t) = Uo · x(t) + bo (3.1)

Notice that the Eq. (3.1) is used when the GRU cells are composing the output layer
of the network, i.e. in the case of multiple layers the output transformation is enabled
only in the last one (unless particular requirements on intermediate layers’ outputs).
It means that, recalling Eq. (1.15) for multi-layer GRU networks, and considering m
layers for our NN, the output is provided by:

y(t) = Uo · x(m)(t) + bo (3.2)

where x(m)(t) is the state of layer m.
By assumption, in a single NN only one type of cell is considered, so no mix of

GRU and LSTM cells is taken into account in the same structures.
Focusing on the number of units per layer, the assumption of keeping it the same

value through all the layers of the same network is taken. In particular, for our
training experiments this number will vary from a minimum of 5 up to a maximum of
30. Notice that the number of units is strictly related to the training of the network
since a too high value may lead to a difficulty in the procedure (let us highlight that
every time a unit is added, additional parameters to be tuned are introduced in the
network, increasing its complexity), while a too low value may lead to the impossibility
to correctly train the network (the available parameters are not enough to mimic the
system behaviour).

A similar approach is followed for the number of layers, where just two cases are
considered: one layer and two layers. An interesting test that will be performed will
compare two different NNs with an equal overall number of units, but divided in
different layers (for example, the performances of a NN with 30 units and 1 layer are
compared with the ones of a NN with 15 units and 2 layers).

3.1.2 Cost function and optimizer choices
In Section 1.2 the basics of the training of a generic FFNN have been discussed. Since
we are dealing with a RNN (due to the presence of GRU and LSTM cells), let us
keep in mind what has been said in Section 1.3.2. In particular, let us recall that the
training procedure consists in an iterative adjustment of networks’ weights so as to
minimize a loss function, which still needs to be defined.

For all the trainings, the loss function adopted is a variation of the mean squared
error, indicated with the name MSE washout (or J∗) because it computes the MSE
on two sliced tensors, i.e. y (which represents the value of the real outputs) and ŷ
(which represents the outputs of the NN), where the first washout (also indicated as
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Tw) elements are removed from both of them. This is done because the first temporal
elements of the outputs might be subject to settling periods, so not relevant for
performances evaluation.

However, the size of Tw is kept the same for all the cases and equal to 15, i.e. the
first 15 temporal elements of y and ŷ are removed before the MSE is evaluated (hence
Tw = 15).

In Eq. (3.3) the procedure of MSE washout is summarized:

J∗(y, ŷ) =

n∑
i=Tw

(
yi − ŷi

)2

n− Tw
(3.3)

where n is the number of the elements of the two original vectors, and ŷi, yi indicates
the values of the two quantities at time i.

Also, a penalizing term to J∗ expression is added when dealing with GRU networks.
It means that the cost function used to perform the minimization during the training
is:

J = J∗ + µ

µ = ‖Ur‖2 · 10−4 (3.4)

The regularization term µ is introduced in order to reduce as much as possible
the oscillations of the MSE value over the epochs. Using this additional term is not
mandatory and removing it does not lead to problems in training or worse performances
of the NN, however it helps containing the (normal) oscillations of the cost function
value. The choice of using the 2-norm of Ur instead of the ones of other weight
matrices is related to the fact that Ur is directly involved in the sufficient condition
for GRU input-to-state stability (see Eq. (1.17)). Let us notice that a regularization
term is added for every layer of the network: if, for example, a network with 3 layers
is considered, the resulting cost function is given by:

J = J∗ + µ(1) + µ(2) + µ(3)

µ(i) = ‖U (i)
r ‖2 · 10−4 , i = 1, 2, 3

where µ(i) indicates the regularization term for layer i.
Focusing on the choice of the optimizer, the discussion of possible alternatives to

gradient descent algorithm when deep NNs are faced was treated in Section 1.3.4. In
particular, for our network structure the RMSProp optimizer presented in Section 1.3.4
has been chosen (recall Eq. (1.9)), and the corresponding values of the parameters are
β = 0.9, momentum = 0.15, η = 0.002 and ε = 10−7. These parameters are fixed for
all the training operations that will be performed in Chapter 4.

3.1.3 Initialization of the variables
The last thing that has to be discussed is how the variables of the network (weights
and biases) are initialized. This represents an important point since initializing the
quantities in a too wide range may lead to vanishing and/or exploding gradient
problems (Section 1.3.5). In fact, since we are dealing with a training algorithm that
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is iterative, the starting point (imposed by the initialization) affects the convergence
or divergence of the algorithm itself (as discussed by Goodfellow et al. in [9]).

Also, let us notice that initializing the weights with too high values may lead
to activation function saturation, corresponding to a loss of gradients through such
saturated units.

In our case, the variance scaling initializer is considered: it draws the samples from
a truncated normal distribution with zero mean and standard deviation σ =

√
scale
n

,
where scale is a positive parameter tuned by the user that indicates the scaling factor
(in our case equal to 0.5) and n is the number of input elements in the weight tensor.
It can be noticed that such initializer is able to adapt the standard deviation of
the normal distribution to the size of the weight tensor it has to initialize; about
scale parameter, its only constraint is to ensure that it is a positive quantity, and
as noticeable from the expression of σ, it acts as a scaling factor on the standard
deviation increasing or decreasing it (for example we could take scale equal to 1 or 2).

Let us recall that other types of initialization procedures (e.g. Xavier and He
initializations) were proposed in Section 1.3.5.

3.2 Design of experiments
In this section, the design of experiments is faced, more specifically the collection
of the inputs: it is a fundamental part to ensure that the training of the NN is
well-performed, since a poor (i.e. non informative) dataset structure may lead to a
(partially or totally) wrong learning of the network. In particular, the discussion will
be mainly based on the features of qa and qb, starting from a bunch of hypothesis
and assumptions. Afterwards, the outputs h1, h2, h3, h4 will be collected and the
obtained dataset will be normalized.

Starting from the normalized dataset, the batches (single sets of data) will be
defined to allow the effective training and validation phases.

3.2.1 Preliminary assumptions and starting point
A key part of the training of a NN is the design of experiment and pre-processing of
the measured data. It has been discussed in the previous chapter the model of our
four-tanks system through which, with a proper set of inputs, it is possible to obtain
the desired outputs (i.e. the levels of the four tanks). Starting from this idea, the first
thing to be explained is the generation of the inputs qa and qb: the approach is to
mimic the behaviour of an experiment performed in the real world, where the input
flows are continuously changed and characterized by disturbances (noise).

Therefore, the definition of qa and qb consists in the generation of two signals
viewed as the composition of multiple steps in series, such that each of them has
a random time length, a random amplitude and a random starting time instant.
However, the signals cannot be generated in a completely random fashion as some
constraints need to be accounted:

• all the steps have a minimum length of 1000 seconds: this ensures that their
effects are significant on the levels of the tanks, but these ones do not reach the
stationary condition every time;
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• the length of the overall experiment has to be fixed: in our case a time length of
37500 seconds is considered, in order to ensure a number of data equal to 1500
per experiment (for each quantity), as it will be discussed later considering the
sampling time. Clearly, different values for the length of the experiment could
be selected, in order to increase or decrease the number of samples;

• the starting time instants of the steps are randomly selected in the range
[1, 37500], still guaranteeing the minimum length of each one;

• the first step is set at the first time instant to avoid a zero start of the signals
that may lead to a drop of the tanks’ levels (if the first step is too far from the
beginning);

• the amplitudes of the steps are limited at the ± 40% of their nominal values q0
a,

q0
b . This will guarantee that the signals will vary in a sufficiently large interval
avoiding as much as possible that the tanks’ levels reach their saturation limits
(this specific case will be treated separately in Chapter 4).

Considering these assumptions, an example of the signals qa and qb is shown in Figures
3.1a and 3.1b respectively.

(a) (b)

Figure 3.1. (a) qa input before sampling without noise; (b) qb input before sampling without
noise.

3.2.2 Noise, signals sampling and thresholds check
In real world, it is almost impossible to have a perfect input signal (especially a flow
rate like in our case) without any disturbance acting on the system: here the idea is
to try to add a replicated White Noise (WN) to the inputs to mimic the disturbances
present in the real world. At this purpose, let us try to simplify a bit the problem,
still guaranteeing the randomness of the noise: the approach consists in placing the
noise all over the time length of each step, for its whole duration. It is expected that
our NN reacts to such disturbances, still guaranteeing a good tracking of the reference
signals.

About the amplitude of the replicated WN, the choice has to be properly selected
since a too wide range for such value may lead to a distortion of the inputs, that is not
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what we are interested in. Therefore, a good way to proceed is to take, for every time
instant of the signals previously defined, a random value from the standard normal
distribution (notice we may have also negative values) and multiply it by the 1% of
q0
a or q0

b , on the basis of the input considered. The resulting quantity is then summed
to the current value of the input at the same instant of time.

By adding the noise to the two signals indicated in Fig. 3.1a and Fig. 3.1b, they
will change as in Figures 3.2a and 3.2b. As it can be noticed, the signals are not
distorted by the WN if compared to the original ones in Figures 3.1a, 3.1b.

(a) (b)

Figure 3.2. (a) qa input signal with WN before sampling; (b) qb input signal with WN before
sampling.

Up to now, the generated inputs are noisy signals with a time length of 37500
seconds, but it is necessary to sample them using a specific value for the sampling
time Tc. In our case, and from now on, Tc will be always equal to 25 seconds, however
different possibilities could be adopted, e.g. 30 s, 20 s and so on. It can be observed
that, retrieving the step responses of the linearised system in Figure 2.3, the faster
settling time observed is around 4000 s (for the step response of h1 to qa step),
therefore the associated time constant is τ = 4000

5 = 800 s, which corresponds to
ω = 1

800 = 0.00125 rad. On the other hand, taking into account the sampling time
Tc = 25 s, the associated frequency is ωn = π

Tc
= 0.1256 rad, so an attenuation of

almost 40 dB (i.e. two decades) is observed.
Therefore, by sampling both inputs qa and qb at every 25 time instants, the two

resulting signals are characterized by 37500
25 = 1500 samples, and, correspondingly, all

the outputs of the system (i.e. h1, h2, h3 and h4) have the same size. Recalling the
physical constraints of the system and the specific values introduced in Table 2.1, it is
mandatory to guarantee that qa ∈ [qmin, qa,max] and qb ∈ [qmin, qb,max], that is why
once the two signals are generated a final check must be performed in order to ensure
the boundaries fulfilment.

After the sampling is performed, the resulting input signals, from Fig. 3.2a and
Fig. 3.2b, are indicated in Figures 3.3a and 3.3b respectively.
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(a) (b)

Figure 3.3. (a) qa input signal with WN after sampling; (b) qb input signal with WN after
sampling.

3.2.3 Output data collection
Once qa and qb have been defined, we need to use them as inputs to the system in
order to generate h1, h2, h3 and h4. In order to do that, the Simulink block in Figure
3.4 is taken into account.

Figure 3.4. Simulink block used for the outputs generation.

From the scheme it can be noticed that the function defined in Section 2.2 is run,
fed by qa and qb. Also, in a similar way to what has been done for the inputs, even
the outputs need to fulfil physical constraints: in fact hi needs to be greater or equal
to zero for i = 1, 2, 3, 4 (negative values for tank level have no meaning); however, it
has to be guaranteed each tank does not exceed its corresponding maximum value.
These two conditions can be wrapped up as:

hi ∈ [0, hi,max] ∀ i ∈ [1, 4]

At this point, all the inputs and outputs of the system are available, all with the
same number of samples (1500 as anticipated) and the overall experiment size has to
be discussed: to train well the NN, a quite huge variety of inputs and outputs needs
to be collected, so just one experiment with 1500 samples per variable is not enough.
The idea, for the moment, is to execute a set of 20 experiments, from which the
training and validation datasets are extracted, as it will be shown later on. It means
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we will deal with 20 vectors for qa and for qb, that are associated correspondingly
to 20 output vectors h1, h2, h3, h4 with 1500 samples each. In Figures 3.5a, 3.5b,
3.5c and 3.5d the levels of the tanks are shown, taking as inputs the two signals in
Fig. 3.3a and 3.3b.

(a) (b)

(c) (d)

Figure 3.5. (a) h1 signal; (b) h2 signal; (c) h3 signal; (d) h4 signal.

It is easy to notice that the presence of the WN in qa and qb perturbs the tanks
levels, in fact in the previous four figures it can be observed very small fast variations
of the levels (e.g. for Fig. 3.5c around the sample 500).

3.2.4 Data normalization
The data obtained up to now is not ready to be used yet. The reason is that the
signals are not normalized: in fact, neural networks work better with normalized
datasets. The approach that will be followed is a sort of standardization (or Z-score
normalization), i.e. indicating with Z the set of observations considered, with Zmean
its mean values and with Zmax the maximum value of |Z − Zmean|, the normalized
observation Znorm will be:

Znorm = Z − Zmean
Zmax

(3.5)

Notice that the main difference between our normalization of Eq. (3.5) and common
standardization scaling is that the latter provides a new set of observations Znorm
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such that Znorm ∈ [0, 1] (using as denominator the standard deviation σ of Z), while
in our case we get Znorm ∈ [−1, 1].

It is important to point out that, since we are dealing with a set of 20 experiments,
the normalization of the dataset (in terms of both inputs and outputs) cannot be
performed one experiment at a time. In other words, if we normalize all the data
associated to a single experiment independently from all the others, the resulting
dataset will not be useful for the training of the network. The procedure can be
summarized as it follows:

1. select a variable in the set {qa, qb, h1, h2, h3, h4} and let us call it Φ;

2. put all the observations over the 20 experiments of Φ into a single vector, called
ψ (which will have a size of 20 · 1500 = 30000 samples);

3. compute the mean value of ψ (indicated as ψmean) and subtract it from the
vector ψ itself, obtaining ψ̃ = ψ − ψmean;

4. compute the maximum of the absolute value of ψ̃, i.e. ψmax = max |ψ̃|;

5. normalize the values of Φ as it follows (element-wise):

Φi
norm = Φi − ψmean

ψmax
∀ i = 1, ..., 20

where the superscript i indicates the value of the quantity of the i-th experiment.
Therefore, this procedure is done for all the values of Φ over all the experiments
performed;

6. repeat the procedure from point 1 by selecting a different variable until all of
them are normalized.

Keep in mind that all the variables {qa, qb, h1, h2, h3, h4} have a size of
(1500, 20), so the batches for the training and validation are not formed yet.

Taking as references for simplicity only the signals of Figures 3.3a, 3.3b, 3.5a, 3.5b,
3.5c and 3.5d, after the normalization, the new signals will be in the range [-1, 1].
From a graphical point of view, the corresponding results are shown in Figures 3.6a,
3.6b, 3.6c, 3.6d, 3.6e, 3.6f.

(a) (b)
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(c) (d)

(e) (f)

Figure 3.6. (a) qa signal; (b) qb signal; (c) h1 signal; (d) h2 signal; (e) h3 signal; (f) h4 signal.

3.2.5 Batches creation for training and validation
At this point, all the inputs and outputs of the system are known and available,
however the training and validation datasets have to be defined. The first one is
needed to perform the training of the NN, while the second one for the performance
evaluation.

As previously said, we will consider 20 experiments (each one characterised by two
qa, qb signals and the corresponding four tanks’ levels hi), where a single experiment
corresponds to a single batch of the dataset: more specifically, the choice will be to
take the first 19 batches for training dataset and the 20th one for validation dataset.
Indeed, since the validation dataset is used in order to check the performances of our
NN, it has to consider a completely new set of data never seen during the training.
By observing if the associated validation MSE (indicated as J∗ as in Eq. (3.3), and
computed as the washout mean squared error between the predictions of our RNN and
the real values of the outputs of validation dataset) is low or high, the performances
of the network are verified. It is clear that, if we enclose even the 20th batch in the
training set, the validation MSE at the end of each epoch would be meaningless since
we may get overfitting on such data. It is important to notice that the validation
dataset is such that the corresponding inputs qa, qb are noise-free: this guarantees
that the value of the validation MSE is not influenced in any way by the presence of
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the WN acting on the signals, but it is strictly related to the network performances
only.

Now the datasets are ready to be used, noticing that for each epoch all the nineteen
batches will be used, passing them once at a time; let us highlight that the order of
batches through which they are passed to the NN is re-shuffled at every epoch to
avoid overfitting.

3.3 Conclusions
In Chapter 3, the main elements of the NN structure have been introduced, treating
the design of experiments too. In particular, we started from the basic elements like
the number of units and layers. Then, the choice of the cost function for the training
has been discussed, focusing on the importance of the optimizer to speed up the
procedure and on the initialization of the parameters.

In the second part of the chapter the main characteristics of the inputs qa, qb
were proposed, discussing the presence of noise, the sampling of the signals and a set
of assumptions. Then, the corresponding recording of the outputs was introduced,
together with the normalization of the variables within the interval [−1, 1], ending
with the batches creation procedure for training and validation operations.
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Training of the neural network
model

In this chapter the training of the network is performed: different NN structures will
be considered and the results will be presented and compared in terms of how much
the predictions provided by the model are accurate and of the computational cost
required (average time to complete the training).

In order to validate the obtained results, the tests for each set-up will be executed
three times each, due to the (small) variability that characterises the training of a NN.
This also guarantees that, even if all the tests are executed on the same PC under the
same conditions, the time required for the training operations (extremely related to
the computer hardware, state of the battery, etc.) is more reliable; let us notice that
the initialization of the parameters is different for every test.

More specifically, this chapter will be characterised by a first section where the
common BPTT approach is adopted for system with h1, h3 as outputs, a second
section where the dataset (described in Section 3.2) is subject to some changes in
order to study the saturation of the tanks’ levels, a third section where the TBPTT
approach is implemented and a fourth one for the training of the system with h1 and
h2 as outputs.

In all these cases, the assumptions about the NN structure and the design of
experiments discussed in Chapter 3 will be valid unless explicitly specified.

Two different types of system will be taken into account:
• MIMO system considering both the input pumps and only two of the four levels
hi (MIMO 2x2), dealing with three alternatives:

– only the left-hand side tanks h1 and h3 are taken into account, together
with qa and qb (Figure 4.1a);

– only the right-hand side tanks h2 and h4 are taken into account, together
with qa and qb (Figure 4.1b);

– only the lower tanks h1, h2 are taken into account, together with qa and qb
(Figure 4.1c). Notice this represents the system that is controlled in the
real world;

• MIMO 2x4 system considering all the input pumps and all the tanks’ levels hi,
for i = 1, 2, 3, 4 (Figure 4.1d).
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Let us notice that the left-hand side and right-hand side systems are identical from
the point of view of the training operation, so only one the left-hand side case will be
analysed.

(a) (b)

(c) (d)

Figure 4.1. (a) Scheme of h1, h3 system; (b) Scheme of h2, h4 system; (c) Scheme of h1, h2
system; (d) Scheme of h1, h2, h3, h4 system.

4.1 Training experiments with BPTT approach
For the first training operations, the common BPTT approach will be used (Section
1.3.2). Let us specify that all of them are performed over 300 epochs (a sufficiently
high number to guarantee a good training). As it will be discussed in the chapter,
different trials will be made, every time changing a bit the network structure.

The following NN topologies will be considered:

• GRU with 5 units and 1 layer (for both two-tanks and four-tanks systems);

• GRU with 30 units and 1 layer (for both two-tanks and four-tanks systems);

• GRU with 15 units per layer, and 2 layers (for two-tanks system);

• LSTM with 5 units and 1 layer (for two-tanks system);

• LSTM with 30 units and 1 layer (for two-tanks system).
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Let us recall that, as explained in Chapter 3, the training dataset is composed by
20 batches (i.e. experiments) with 1500 samples each (for every considered quantity),
where the first 19 batches are used for the training and the last one for the validation.

4.1.1 GRU with 1 layer and 5 units
The first training performed takes into account a NN with GRU cells, 5 units and a
single layer. The system treated is the two-tanks system described in Fig. 4.1a (i.e.
only h1 and h3 are studied). As previously said, the test is repeated three times, and
the results are given by the mean values of the three trials; more specifically, the
Eq. (4.1) is used as reference for the computations:

J∗avg = J∗1 + J∗2 + J∗3
3 = 4.2 · 10−5

tavg = t1 + t2 + t3
3 ' 25 min

(4.1)

where J∗i indicates the value of the loss function without any regularization term of the
test i (see Eq. (3.3)), and ti the time occurred to complete the training operation of
test i. From now on, only the two quantities J∗avg and tavg will be taken into account.

(a) (b)

Figure 4.2. (a) h1 predicted by the NN (5 units, 1 layer) versus validation signal; (b) h3
predicted by the NN (5 units, 1 layer) versus validation signal.

Notice from Figures 4.2a, 4.2b the predicted outputs of the NN are very close to
the real ones (as expected from J∗avg value), so the network approximates the real
plant very well.

Now let us try to analyse if the NN structure described before is sufficient and
able to train the four-tanks system (Figure 4.1d). Hence, we still consider a GRU
network with 5 units and only one layer, obtaining the following results:

J∗avg = 9.7 · 10−5

tavg ' 35 min

Clearly, the value of the error increases due to the presence of four quantities to be
estimated instead of two as before, however such value is still very low and satisfactory.
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For the same reason, even tavg increases too. Analysing Figures 4.3a, 4.3b, 4.3c, 4.3d
all the four levels hi are well predicted, therefore the structure with only 5 units still
guarantees a good training.

(a) (b)

(c) (d)

Figure 4.3. (a) h1 predicted by the NN (5 units, 1 layer) versus validation signal; (b) h2
predicted by the NN (5 units, 1 layer) versus validation signal; (c) h3 predicted
by the NN (5 units, 1 layer) versus validation signal; (d) h4 predicted by the
NN (5 units, 1 layer) versus validation signal.

4.1.2 GRU with 1 layer and 30 units
Now the number of units of the single layer is increased to 30, checking if such an
increase leads to a better training (lower value of J∗avg), keeping the required time as
low as possible; let us recall that adding units means dealing with a higher number of
parameters to be tuned by the network, however it does not necessarily imply neither
a slower training nor a worse/better performance.

Considering Equation (4.1) and the two-tanks system with only h1, h3 as levels,
the quantities obtained are:

J∗avg = 2.9 · 10−5

tavg ' 30 min
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(a) (b)

Figure 4.4. (a) h1 predicted by the NN (30 units, 1 layer) versus validation signal; (b) h3
predicted by the NN (30 units, 1 layer) versus validation signal.

By a quick comparison between Figures 4.2 and 4.4 (and the associated values too),
the results in terms of accuracy of predictions are both satisfactory, with a sightly
better performance of the configuration with 30 units: probably this is due to the
higher number of parameters that can be tuned by the network. However, the best
configuration can be identified in the one with 5 units since, even if it has a slightly
higher J∗avg, it has a lower number of units (and consequently of network parameters)
so the risk of overfitting is reduced. About tavg, the increase of units leads to a (small)
increase of the average training time, but not so relevant to be considered a problem.

Now, as discussed for the previous case with only 5 units, we apply the same NN
structure to the four-tanks system, expecting a lower value of J∗avg as for the two-tanks
system than the one achieved with the previous topology. Therefore we obtain:

J∗avg = 4.8 · 10−5

tavg ' 40 min

As expected, the average validation MSE decreases of almost one half if compared
to the NN with only five units, guaranteeing a better accuracy of the predictions ŷ.
Considering the mean training time, the increasing is limited as for the two-tanks
system. In Figures 4.5a, 4.5b, 4.5c and 4.5d the corresponding results are shown.

(a) (b)
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(c) (d)

Figure 4.5. (a) h1 predicted by the NN (30 units, 1 layer) versus validation signal; (b) h2
predicted by the NN (30 units, 1 layer) versus validation signal; (c) h3 predicted
by the NN (30 units, 1 layer) versus validation signal; (d) h4 predicted by the
NN (30 units, 1 layer) versus validation signal.

4.1.3 GRU with 2 layers and 15 units
Let us check if keeping the same number of units, but dividing them over more than
one layer leads to a better performance of the training. At this purpose, we consider
a GRU network with 2 layers and 15 units per layer: this means we will have an
equivalent number of 30 units in the NN, so a comparison with previous experiment
of Section 4.1.2 can be done. Also, the two-tanks system in Figure 4.1a is used.

After the three tests, the obtained results are:
J∗avg = 1.5 · 10−4

tavg ' 50 min

(a) (b)

Figure 4.6. (a) h1 predicted by the NN (2 layers, 15 units each) versus validation signal; (b)
h3 predicted by the NN (2 layers, 15 units each) versus validation signal.

As expected, considering the required time, this configuration leads to a worse
performance, since training a network with more layers requires a higher computational
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cost than in the case of a NN with an unique layer. In addition, even if from Figures
4.6a, 4.6b it is difficult to notice the difference with the configuration with 1 layer and
30 units, the accuracy of predictions is lower: checking the J∗avg of both cases, there
is almost an order of magnitude of difference. Therefore, considering the two-tanks
system with h1, h3, the NN configuration with 30 units and a single layer ensures
better performances than splitting the units over two layers as done before.

4.1.4 LSTM with 1 layer and 5 units
Considering the previous three training operations with GRU cells, the best network
structure obtained is the one with single layer and 5 units. Starting from this, let us
check if, under the same conditions, the LSTM cells work better than the GRU ones.
At this purpose, we consider a LSTM network with one layer and 5 cells, obtaining:

J∗avg = 9.2 · 10−5

tavg ' 30 min

Analysing the differences between this training and the one of Section 4.1.2 with
GRU cells and same architecture, for the considered system and for the collected data
the proposed GRU cells are associated to a lower J∗avg than LSTMs. It means that
GRUs work better, guaranteeing a higher accuracy. We conjecture that this is due to
the higher complexity of LSTMs: as explained in Section 1.10, GRU cells can be seen
as an exemplification of LSTMs, therefore in our specific environment they mimic
better the considered system and are easier to be trained.

In Figures 4.7a, 4.7b the results with LSTM cells are shown: they are still accurate,
however the differences among predictions and real values can be noticed in some
points, especially at the peaks of h1 and h3.

Let us highlight that, even if in this specific case GRU cells work better than
LSTMs, this is not a general rule for every plant: for other types of benchmarks, it is
likely that the latters have better performances.

(a) (b)

Figure 4.7. (a) h1 predicted by the NN (5 LSTM units, 1 layer) versus validation signal; (b)
h3 predicted by the NN (5 LSTM units, 1 layer) versus validation signal.
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4.1.5 LSTM with 1 layer and 30 units
Observing what has been achieved with 5 units in Section 4.1.4, let us try to increase
the number of units up to 30 checking the corresponding results, expecting a higher
precision.

Considering Eq. (4.1), the obtained values are:
J∗avg = 4.8 · 10−5

tavg ' 40 min
As already observed for GRU cells, even in this case with LSTMs the increase of the
number of units corresponds to a lower J∗avg, i.e. a higher accuracy of the predictions.
Indeed, comparing Figures 4.7a, 4.7b and Figures 4.8a, 4.8b it can be observed how
the mismatches between predicted and real values are considerably reduced. About
the time required for training operations, they are quite similar showing that the
increase of units does not affect tavg in a relevant way as for GRUs.

(a) (b)

Figure 4.8. (a) h1 predicted by the NN (30 LSTM units, 1 layer) versus validation signal;
(b) h3 predicted by the NN (30 LSTM units, 1 layer) versus validation signal.

In Table 4.1, the summary of all the trainings performed up to now is proposed.

Considered tanks Type of cell n. of layers n. of units J∗avg tavg

h1, h3 GRU 1 5 4.2e-05 25 min
h1, h2, h3, h4 GRU 1 5 9.7e-05 35 min

h1, h3 GRU 1 30 2.9e-05 30 min
h1, h2, h3, h4 GRU 1 30 4.8e-05 40 min

h1, h3 GRU 2 15 1.5e-04 50 min
h1, h3 LSTM 1 5 9.2e-05 30 min
h1, h3 LSTM 1 30 4.8e-05 40 min

Table 4.1. Table that summarizes the training experiments performed in Section 4.1, consid-
ering the treated tanks, the value of J∗avg, the approximated tavg of the training
and the network architecture. Notice that J∗avg and tavg are obtained respectively
as the mean value of the J∗ of the 3 tests and as the mean value of the time
length of the 3 tests.
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4.2 Training experiments with saturated dataset
In the previous training sessions we considered a pretty standard dataset that allowed
us to check if the network performs well or not. Since the obtained results are good,
some additional trials can be done, introducing interesting variations to the input
dataset described in Section 3.2. More specifically, the amplitudes of the qa, qb
signals are increased up to ±90% of their nominal values q0

a,b in order to highlight
the effect of the tanks’ levels saturations (instead of the ±40% variations considered
up to now). This test allows us to check if the NN is able to mimic the behaviour
of the tank when it has to match the saturation. Let us notice that we still ensure
0 ≤ qa ≤ qa,max, 0 ≤ qb ≤ qb,max.

In Figure 4.9, the behaviour of h3 tank is shown as an example, highlighting how
the tank’s level reaches the corresponding maximum value h3,max in different points.

Notice that, even if this variation of the dataset is implemented, the BPTT
principle will be still followed. Also, this change will be tested on the two-tanks
system considering h1, h3 due to a better visibility of the results (only two outputs),
with a network structure characterised by GRU cells, 5 units and a single layer (the
procedure could be easily tested on four-tanks MIMO system and/or with different
architectures too). All the assumptions made for NN definition (such as the optimizer,
loss function etc.) presented in Section 3.1 are still valid.

At this point, let us proceed with the training, doing it for the same number of
epochs as in previous cases, i.e. 300. The results in Figures 4.10a, 4.10b show the low
capability of the NN to follow the imposed constraints: it is clear how the predictions
fail to match the saturation levels of the tank (especially for h3), while for all the
other parts the match is acceptable (but not particularly good). The corresponding
value of the average J∗ is:

J∗avg = 3.4 · 10−4

Comparing such value with the one achieved with the same structure and non-
saturated training set (i.e. J∗avg = 4.2 · 10−5 from Tab. 4.1), a huge decrease of
prediction accuracy is recorded due to both the saturation of the tanks’ levels and the
higher range of values spaced by the input signals (let us recall they are now inside
the range [−0.9 · q0

a,b, +0.9 · q0
a,b]).

Figure 4.9. Example of h3 level when it reaches its maximum value h3,max (the upper limit
is highlighted in red).
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(a) (b)

Figure 4.10. (a) h1 predicted by the NN (5 units, 1 layer) versus validation signal; (b) h3
predicted by the NN (5 units, 1 layer) versus validation signal.

Considering now the same saturated dataset with a GRU NN characterised by
only one layer and 30 units, we are expecting a higher precision in terms of accuracy,
according to the trainings performed with the common non-saturated dataset in
Section 4.1. In terms of values, the corresponding J∗avg is equal to:

J∗avg = 1.8 · 10−4

Comparing the two values of the average cost function, it decreased of almost one
half with respect to the one recorded with the previous structure (one layer and 5
units only), thanks to the increase of units in the same layer. In Figure 4.11b the
predictions look more accurate than the ones of Figure 4.10b in the saturated areas,
showing once again how the presence of more units leads to more accurate results for
this kind of system. However, let us point out how the matching of the dataset is not
perfect and still shows some problems at saturation.

(a) (b)

Figure 4.11. (a) h1 predicted by the NN (30 units, 1 layer) versus validation signal; (b) h3
predicted by the NN (30 units, 1 layer) versus validation signal.

In Table 4.2, the results of the trainings performed with the saturated dataset are
summarised.
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Considered tanks Type of cell n. of layers n. of units J∗avg

h1, h3 GRU 1 5 3.4e-04
h1, h3 GRU 1 30 1.8e-04

Table 4.2. Table that summarize the training experiments performed in Section 4.2 con-
sidering only the two-tanks system with h1, h3, the corresponding network
architecture and the value of J∗avg.

4.3 Training experiments with TBPTT
Let us recall that up to now the dataset (described in Section 3.2) used for all the
training operations, independently from how the input signals are built in terms of
noise, amplitude etc., consists in a set of 20 experiments with 1500 samples each
for every quantity taken into account. Reasoning from a practical point of view,
performing such a high number of experiments and collecting all these samples is
difficult, therefore a more suitable approach is the TBPTT introduced in Section 1.3.3.
Summarizing the idea, a single long experiment is performed, from which (shorter)
batches for training and validation are extracted. In addition to ease the collection
of data, this approach also guarantees a faster training of the network, since the
unfolding procedure is performed for a limited number of time-steps, on the basis of
the length of each subsequence.

Thus, a change of the dataset has to be introduced: we collect 12000 samples for
each variable once the sampling of the original signals is done, hence the time length
of each signal is 12000 · Tc = 12000 · 25 = 300000 s. Notice that, since it is required
to generate a training set and a validation set, and the latter is characterised by no
noise for our choice (in this way we avoid that the value of the performance index is
influenced by the WN), the idea adopted is to collect 10000 (noisy) samples for the
training and 2000 (noise-free) samples for the validation process. Therefore, starting
from the training set, the batches for training are created as follows:

1. the length of the batches lbatch is decided (in our case, it will be equal to 400
time-steps, and the same for all the batches), together with the overlap term,
indicated as lover. The latter indicates the number of common samples in two
consecutive batches, and it will be the 10% of the batch length, i.e. lover = 40.
Notice this helps to prevent that the NN does not learn data patterns longer
than the established batch size since we do not consider just new data, but also
a part of the one contained in the previous batch;

2. the batches are extracted sequentially from the dataset, imposing that the last
lover elements of the batch i are equal to the first lover elements of the batch
(i+ 1). Hence, the first lbatch elements of the dataset form the first batch, then
the elements from (lbatch− lover) to (2 · lbatch− lover) of the dataset form the second
one, and so on. In our case, the number of batches created for the training will

be 27, given by nbatch =
⌊

10000− lbatch
lbatch − lover

⌋
+ 1 ;

3. the last 1500 elements out of the 2000 samples of noise-free dataset are used for
validation, so the performances of the NN are still evaluated on the basis of 1500
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data like in Sections 4.1 and 4.2, even if the training is done with subsequences
of 400 samples.

From the point of view of input signals, the features described in Section 3.2
are still ensured (with the changes previously mentioned), and the structure of the
network presented in Section 3.1 is still valid. An example of the generic inputs qa and
qb (for training and validation) are respectively indicated in Figures 4.12a and 4.12b.

(a)

(b)

Figure 4.12. (a) Example of normalized qa input used for TBPTT approach; (b) Example
of normalized qb input used for TBPTT approach.
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As previously said, it is clear from these two images that the 2000 samples of
the validation signals are noise-free. Notice that the noise length of each step in the
training signals is equal to the whole time length of the step itself, in order to be able
to make a comparison with the results of Section 4.1. At this point, the trainings are
ready to be executed, focusing on:

• GRU with 5 units and 1 layer (for both two-tanks and four-tanks systems);

• GRU with 30 units and 1 layer (for both two-tanks and four-tanks systems);

• GRU with 15 units per layer and 2 layers (for two-tanks system).
Even in this case, each training is repeated three times, and the quantities J∗avg, tavg

are obtained with Eq. (4.1). At every epoch the batches order is reshuffled in order
to avoid overfitting. Also, notice that the number of samples for the training passed
from 1500 · 19 = 28500 to 10000 for each variable, so lower values for average training
times are expected not only for the choice of the truncated approach.

4.3.1 GRU with 1 layer and 5 units
Let us start focusing on the best architecture selected with the training experiments in
Section 4.1, i.e. a NN with GRU cells, one layer and 5 units, considering the two-tanks
system with h1, h3 as outputs.

Recalling what was previously said during the introduction to TBPTT approach,
this method should guarantee a huge improvement of training in terms of time required,
since the unfolding of the RNN is limited. Checking the obtained results, we have:

J∗avg = 5.3 · 10−5

tavg ' 15 min
It is clear that the time required for training is reduced by almost a factor two (15
minutes versus 25 minutes), as expected: it can be for sure associated to truncated
BPTT that speeds up a lot the training procedure, but also partially to the reduction
of the samples used for training. On the other hand, the accuracy of predictions
decreases a bit.

(a) (b)

Figure 4.13. (a) h1 predicted by the NN (5 units, 1 layer) versus validation signal; (b) h3
predicted by the NN (5 units, 1 layer) versus validation signal.
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Dealing with the four-tanks MIMO system (all the four outputs are considered),
and keeping the same NN structure, a similar behaviour is obtained:

J∗avg = 1.4 · 10−4

tavg ' 15 min

The time shows no increase, while J∗avg increases consistently due to the presence of
four tanks’ levels to be estimated; however, its value is still very low and considered
acceptable, therefore the network structure can be left the same (no changes are
required neither in the units nor in the number of layers). Considering now the
comparison with the BPTT approach and same architecture, the tavg term shows a
clear improvement in terms of required time, while J∗avg increases a bit, passing from
J∗avg = 9.7 · 10−5 to J∗avg = 1.4 · 10−4. In Figures 4.13 and 4.14 the results of the two
trainings are shown. We can compare Figures 4.13b and 4.14c that refer to the h3
level, noticing how in the first case with the two-tanks system the accuracy of ŷ is
much higher: this denotes once again how the ease of training with a reduced number
of tanks is higher than the one of the four-tanks system. About h1, the two neural
networks behave in a similar way, with a slightly better performance of the first one.

(a) (b)

(c) (d)

Figure 4.14. (a) h1 predicted by the NN (5 units, 1 layer) versus validation signal; (b) h2
predicted by the NN (5 units, 1 layer) versus validation signal; (c) h3 predicted
by the NN (5 units, 1 layer) versus validation signal; (d) h4 predicted by the
NN (5 units, 1 layer) versus validation signal.
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4.3.2 GRU with 1 layer and 30 units
Since with common BPTT the average J∗ obtained with 30 units and a single layer
was lower than the one with only 5 units, let us try to check if it holds even with
TBPTT. The final results are:

J∗avg = 4.5 · 10−5

tavg ' 16 min

As expected, the J∗avg decreases due to the higher number of units, leading to better
performances of the NN, but not so remarkably as with the BPTT approach. Con-
sidering Figures 4.15a, 4.15b it can be noticed how the reduction of the average cost
function corresponds to a visible improvement of the performances if compared to
Figures 4.13a, 4.13b, especially for h1 where almost no mismatches are observable
anymore.

Also, tavg shows a very limited increase: indeed, due to the action of TBPTT the
average training time has been affected in a very limited way.

(a) (b)

Figure 4.15. (a) h1 predicted by the NN (30 units, 1 layer) versus validation signal; (b) h3
predicted by the NN (30 units, 1 layer) versus validation signal.

For the sake of knowledge, let us consider all the four tanks as outputs, dealing
with the same RNN structure. In Section 4.3.1, where a RNN with 5 units only has
been treated, the switching from two-tanks system to four-tanks system led to higher
value of both J∗avg and tavg. In this case, the corresponding results considering 30
units are:

J∗avg = 6.0 · 10−5

tavg ' 20 min

As expected, the same behaviour is observed: the average cost function switched from
4.5 · 10−5 to 6.0 · 10−5, with an increase of the required training time too. However,
let us notice that the increase of J∗avg, if compared to the one recorded for 5 units NN
case in Section 4.3.1, is much more limited and acceptable. In Figures 4.16a, 4.16b,
4.16c and 4.16d the results of the NN performances are shown.
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(a) (b)

(c) (d)

Figure 4.16. (a) h1 predicted by the NN (30 units, 1 layer) versus validation signal; (b) h2
predicted by the NN (30 units, 1 layer) versus validation signal; (c) h3 predicted
by the NN (30 units, 1 layer) versus validation signal; (d) h4 predicted by the
NN (30 units, 1 layer) versus validation signal.

4.3.3 GRU with 2 layers and 15 units each
From Section 4.1, it is known how adding layers to the network structure (keeping
the same number of overall units) leads to worse performances in our specific case,
and it is not so convenient from this point of view: let us try to check if it holds true
even with the truncated BPTT approach.

Let us consider the two-tanks system with h1, h3 in Figure 4.1a and a RNN
characterised by GRU cells and 2 layers with 15 units each. Then, the obtained results
are:

J∗avg = 1.4 · 10−4

tavg ' 30 min

The expected behaviour is shown: compared to the case of GRU with one layer
and 30 units, the average training time increases (almost doubled) and the same for
J∗avg, indicating worse results in terms of accuracy. In Figures 4.17a and 4.17b the
corresponding h1, h3 levels predicted by the RNN are compared to the validation
ones.
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(a) (b)

Figure 4.17. (a) h1 predicted by the NN (2 layers, 15 units each) versus validation signal;
(b) h3 predicted by the NN (2 layers, 15 units each) versus validation signal.

In Table 4.3, the results of the training operations with TBPTT are summarized.
Analysing its contents, the best compromise between the average J∗ value and the
time required for training is once again the network configuration with 5 units and an
unique layer for the two-tanks system with h1, h3, while for the four-tanks one the
configuration with 30 units and a single layer is preferable.

Considered tanks Type of cell n. of layers n. of units J∗avg tavg

h1, h3 GRU 1 5 5.3e-05 15 min
h1, h2, h3, h4 GRU 1 5 1.4e-04 15 min

h1, h3 GRU 1 30 4.5e-05 16 min
h1, h2, h3, h4 GRU 1 30 6.0e-05 20 min

h1, h3 GRU 2 15 1.4e-04 30 min

Table 4.3. Table that summarize the training operations performed in Section 4.3 considering
TBPTT approach and the treated tanks, the corresponding network architecture,
the value of J∗avg, the approximated time length of the training. Notice that J∗avg
and tavg are obtained respectively as the mean value of J∗ of the 3 tests and as
the mean value of the time length of the 3 tests, as indicated in Eq. (4.1).

4.4 Training of two-tanks system with h1, h2

In all the training cases analysed up to now, we have never considered the two-tanks
MIMO system with h1, h2 as outputs (Figure 4.1c). Indeed, recalling the expressions
of the benchmark in Eq. (2.3), the only two outputs are the levels of the lower tanks.
This represents a challenge for the NN, since we are completely disregarding any
information about the levels h3, h4 which influence the lower ones as explained in
Chapter 2.

In order to mimic as much as possible the behaviour of the real system, we will
consider for the tests a training set with fully noisy qa, qb and with amplitudes such
that the saturations of the tanks are reached, considering the same dataset as in
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Section 4.2, hence 20 experiments where a single experiment is formed by 1500 samples
for each quantity (with qa,b ∈ [−0.9 · q0

a,b, +0.9 · q0
a,b]). Let us notice that BPTT

approach will be used, with a number of epochs equal to 300.
For the RNN structure, two alternatives are considered:

• GRU with 1 layer and 5 units, since it has been shown to be the best found
structure for two-tanks system at the moment;

• GRU with 2 layers and 15 units each, in order to check if an increase of units
and layers corresponds to better performances.

4.4.1 GRU with 1 layer and 5 units
Considering the first structure, i.e. a RNN with GRU cells, one layer and 5 units, the
results using Eq. (4.1) are:

J∗avg = 8.4 · 10−4

tavg ' 30 min

As expected, the higher complexity of the training task results in a lower accuracy
compared to values in Tab. 4.2, providing a not so good value for J∗avg; more specifically,
it almost doubled showing how the lack of prediction accuracy is not only related to
the saturated dataset, but also due to the training complexity. Notice also that the
average training time increases a bit with respect to the one required for two-tanks
system with h1, h3 and the same structure.

We cannot compare the obtained J∗avg and the one achieved for the h1, h3 system
with the same NN structure in Tab. 4.1, since they are referring to two different
datasets (the latter has been trained with a non-saturated dataset, so the accuracy
of ŷ is higher for sure). However, the poor value of the validation MSE suggests us
that five units are not sufficient to compensate the missing informations about upper
tanks levels, therefore other RNN structures have to be considered.

In Figures 4.18a, 4.18b the comparison between predicted and validation signals is
shown, highlighting how the mismatches are distributed all over the lengths of h1, h3.

(a) (b)

Figure 4.18. (a) h1 predicted by the NN (5 units, 1 layer) versus validation signal; (b) h2
predicted by the NN (5 units, 1 layer) versus validation signal.
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4.4.2 GRU with 2 layers and 15 units
Let us try to increase both the layers and units up to 2 and 15 per layer respectively,
in order to check if the complexity of the training is partially compensated by a higher
number of parameters, spread over more layers. Considering Eq. (4.1), we get:

J∗avg = 4.9 · 10−4

tavg ' 50 min

Making a comparison with the previous case of one layer with 5 units in Section
4.4.1, adding parameters to the network increases the training accuracy of almost a
factor two. As consequence, the training time doubles (mainly due to the usage of a
multi-layer NN). However, since we are interested in the most accurate model possible
in order to replicate the system, this latter solution is preferred over the first one,
disregarding the cons about the training time, and it will be used as NN model for
the control scheme. To this purpose, increasing the number of epochs of the training
surely leads to better result since the validation MSE depicts a decreasing trend over
the epochs.

In Figures 4.19a, 4.19b the signals comparisons are shown: more accurate predic-
tions are observable than the ones in Figures 4.18a, 4.18b.

The summary of the results about the training operations of Section 4.4 is indicated
in Table 4.4.

(a) (b)

Figure 4.19. (a) h1 predicted by the NN (2 layers, 15 units each) versus validation signal;
(b) h2 predicted by the NN (2 layers, 15 units each) versus validation signal.

Considered tanks Type of cell n. of layers n. of units J∗avg tavg

h1, h2 GRU 1 5 8.4e-04 30 min
h1, h2 GRU 2 15 4.9e-04 50 min

Table 4.4. Table that summarize the training experiments performed in Section 4.4 consid-
ering the two-tanks system with h1, h2, the corresponding network architecture,
the value of J∗avg and the average time length of the training. Notice that J∗avg
and tavg are obtained respectively as the mean value of J∗ values of the 3 tests
and as the mean value of the time length of the 3 tests, as indicated in Eq. (4.1).
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4.5 Final remarks
Focusing on the training operations performed in Section 4.1, and taking as reference
Table 4.1, it is clear how the network defined considering GRU cells is such that it
provides good results for almost all the configurations considered: in particular, the
J∗avg was always around 10−5 for most of them. However, even with LSTM cells the
results were interesting, but worse than the ones considering GRUs under the same
conditions: recalling what has been discussed in Section 1.3.7, GRU cells are a sort of
exemplification of LSTM ones, so the lower the number of parameters to be tuned
the higher the training ease. That is why GRUs are preferable in our case.

As discussed along the chapter, the best configuration discovered for the two-
tanks plant with h1, h3 is the one with GRU cells, 5 units and a single layer. It
provides a J∗avg that is not the best one (its value with 30 units configuration is a
bit lower), however having a lower number of parameters helps to avoid overfitting
more likely, together with a (slightly) lower tavg. It has been noticed also that such
configuration works very well even with the four-tanks system, treating all the four
levels hi. Moreover, it has been observed how the same number of units spread over
multiple levels affects the performances of the network if the systems in Figures 4.1a,
4.1b or 4.1d are considered. In fact comparing the behaviour of a single layer with
30 units and the one of two layers each one with 15 units a worse performance (in
terms of both accuracy and time required) from the latter with these specific plants is
recorded.

Concerning the trainings performed in Section 4.2, the aim was to check if, using
a saturated training dataset (where the inputs and tanks’ levels reach their maximum
values), the NN is able to predict that behaviour matching the saturation zones. It
has been observed that the predictions ŷ fail to match perfectly the saturations of
reference signals: more specifically, the NN with only 5 units (Figures 4.10a, 4.10b)
showed worse performances than the ones of 30 units network (Figures 4.11a. 4.11b),
both graphically and numerically (higher value of J∗avg, as reported in Tab. 4.2).
Therefore, increasing the number of units led to higher accuracy, as observed even
with a non-saturated dataset, still showing limited mismatches in the maximum value
areas.

Taking into account the training experiments performed using the TBPTT ap-
proach (Section 4.3), it has been shown how the average training time tavg values
decreased relevantly (TBPTT ensured a huge advantage in terms of velocity, scoring
a training time significantly lower than the one of BPTT), while the validation MSE
values indicated a slightly increasing trend: the first phenomenon is associated to the
truncation of RNN unfolding to a lower number of time-steps. The second aspect
may have two causes: the decrease of training samples with respect to Section 4.1
(which affects also the training time), and the impossibility of the network to learn
patterns higher than subsequence length (in our case 400 samples). The overlapping
between consecutive sequences helps in such problem (together with making smoother
transitions between consecutive subsequences), but it does not represent a final solu-
tion: better results in terms of prediction accuracy could be achieved by increasing
the length of the sequences, or increasing their number, which is equivalent to require
a higher number of training samples.

However, with TBPTT similar conclusions to Section 4.1 are obtained comparing
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the different network structures (taking as reference the values in Table 4.3): keeping
GRU cells, and passing from 5 units to 30 units, allowed us to achieve more accurate
predictions of the NN, but the required time increased too. Comparing Figures 4.13a,
4.13b with Figures 4.15a and 4.15b, the difference between the ŷ precision is observable:
the matching of the 30 units NN signals is almost perfect, especially if we compare the
h1 levels. On the other hand, considering the 5 units RNN the predictions are close to
real values too, so there is not the necessity to increase the network parameters. The
comparison of the network’s behaviours with the same number of units, but different
layers, indicated exactly what was already observed, i.e. an increase of the training
time and a lower prediction accuracy. Hence, implementing truncated BPTT did not
lead to benefits in spreading the same number of units over multiple layers with the
considered systems.

Considering Section 4.4 where the training of the two-tanks system with outputs
h1 and h2 has been performed, the results highlight how the complexity of the training
requires an higher number of units (and layers). In contrast to what has been shown
up to now, the best selected architecture for this kind of system is characterised by
GRU cells, two layers and 15 units each; more specifically, this architecture led (as
expected) to slower training (i.e. higher tavg), but a much better performance in terms
of accuracy (the J∗avg was almost a half smaller than the case with only one layer and
five units), showing how a reduced number of units does not allow us to mimic the
behaviour of this specific plant with high precision.

4.6 Conclusions
In Chapter 4, the training of the plant with different configurations has been treated
(let us notice that the main elements of the network, e.g. the cost function adopted,
the initialization procedure, the optimizer and so on, were kept always the same for
all the training operations). We started applying the BPTT approach, focusing on
the performances in terms of accuracy and average training time considering different
NN structures, all with good results.

Then, additional training experiments were performed dealing with a saturated
dataset, showing how the RNNs depict a lack of accuracy for saturated areas (especially
the ones with a low number of units).

Afterwards, TBPTT was applied considering a non-saturated dataset, pointing
out the gains in terms of training time, with J∗avg values close to the ones recorded
with BPTT.

Finally, the two-tanks system with h1 and h2 as outputs was trained with the
same saturated dataset used for the additional training experiments, privileging the
multi-layer RNN structure due to the high complexity of the training.

For final comments about the obtained results, take as reference Section 4.5.
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Chapter 5

Internal Model Control

In this chapter, the Internal Model Control (IMC) design strategy is presented, together
with its properties, starting from its application to a SISO, linear plant. Then, its
extension to MIMO and nonlinear systems will be introduced, pointing out the main
changes with respect to the SISO case.

The proposed scheme, where RNNs are used both as system model and as IMC
regulator, is detailed, focusing on how the controller training is performed. A final
variation of the "classical" scheme is described, adding an integral action (with and
without anti wind-up scheme on the controller input) in order to guarantee zero
steady-state errors for the tracking of constant reference signals.

At the end of the chapter, the control scheme will be tested for the four-tanks
system considering first h1, h3 as outputs and then h1, h2, dealing with four different
setpoints (two for each considered system).

5.1 IMC scheme
The IMC scheme was developed for the first time by Morari et al. in [30] and is a
model based control technique, where the controller contains (implicitly or explicitly)
a model of the plant. Let us assume we are dealing with a SISO, linear system (for the
general discussion of IMC, continuous-time domain is considered). Take into account
Figure 5.1 that depicts the feedback scheme with IMC: Gc(s) is the transfer function
of the controller, Gp(s) the one of the plant, Gm(s) the one of the model and d is the
disturbance acting on the output y. It can be observed how the feedback signal is not
simply the output of the real system as usual: indeed, the model error eIM used as
feedback is given by y − ŷ, where ŷ is the output of our model.

Figure 5.1. Block scheme of IMC; let us notice how the feedback signal is given by y − ŷ.
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Starting from this scheme, a common feedback structure of IMC can be obtained
(Figure 5.2), placing the controller and the model into a single transfer function. It
follows:

G̃c(s) = Gc(s)
1−Gc(s)Gm(s) (5.1)

Figure 5.2. Common feedback control scheme with output disturbance.

The main advantage of the block scheme in Fig. 5.1 is that the controller is easier
to be tuned if compared to the one in Eq. (5.1). Also, from a mathematical point of
view it can be shown that the system from d(s) to the model error is:

eIM(s) = d(s)
1 +Gc(s)(Gp(s)−Gm(s)) (5.2)

Assuming that the model Gm(s) is identical to the plant (Gp(s) = Gm(s)), the feedback
error would be only d(s).

In order to highlight the main properties of IMC, let us write some of the transfer
functions obtained from Fig. 5.1. More specifically:

open− loop TF : L(s) = Gc(s)
(
Gp(s)−Gm(s)

)
(5.3)

u(s) = Gc(s)
1 + L(s)

(
y0(s)− d(s)

)
(5.4)

y(s) = Gc(s)Gp(s)
1 + L(s)

(
y0(s)− d(s)

)
+ d(s) (5.5)

Considering these equations, the following three properties can be stated (for the proofs
and further details, the interested readers are addressed to [30], where discrete-time
domain is considered).

Property 5.1.1 (Dual stability) Let us assume that Gp(s) = Gm(s), i.e. the model
is perfect. Then if the process Gp(s) and the controller Gc(s) are (input-output) stable,
the closed-loop system is stable.

Property 5.1.2 (Perfect control) Let us assume that Gc(s) = G−1
m (s), i.e. the

controller is equal to the inverse of the model, and that the closed-loop system is stable.
Then, if there are no disturbances, the perfect control is achieved (y = y0).

Property 5.1.3 (Offset-free) Let us assume that the steady-state gain of the con-
troller is equal to the one of the inverse of the model (Gc(0) = G−1

m (0)), and
that the closed-loop system is stable. Then for asymptotically constant setpoints
(limt→∞ y

0(t) = ȳ0) and asymptotically output disturbances (limt→∞ d(t) = d̄) the
output of the control scheme is offset free (limt→∞ y(t) = ȳ0).
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The resulting closed-loop transfer function T (s) from y0 to y is given by:

T (s) = Gc(s)Gp(s)
1 + L(s) = Gc(s)Gp(s)

1 +Gc(s)(Gp(s)−Gm(s)) (5.6)

Focusing on Property 5.1.1 and on Eq. (5.3), the reason why Gp(s) and Gc(s) need to
be input-output stable with Gp(s) = Gm(s) is straightforward: more specifically, from
Equations (5.3), (5.4) and (5.5) necessary and sufficient conditions for asymptotic
stability of IMC scheme is that the roots of (5.6) must have Re(·) < 0. In the
case of ideal modelling (i.e. Gp(s) = Gm(s)), it turns out that Gp and Gm must be
asymptotically stable.

It is important to notice that, if we suppose to consider an open-loop unstable
plant Gp(s), the IMC scheme is not able to stabilize it: the only way to proceed
should be to cancel out with the controller the unstable dynamics of the plant, which
is infeasible.

Considering Property 5.1.2, it can be noticed how the ideal controller leads to
ideal performances of the IMC scheme. On the other hand, Property 5.1.3 describes
how the control scheme guarantees (under suitable conditions) no offset for the output
with constant inputs, even in the absence of an additional explicit integral action.

Clearly, in general it is not possible to adopt a perfect controller in real cases, due
to multiple reasons, such as a strictly proper model, an unstable zero or time delays
in the model or plant [32]. Therefore, the design of the controller is performed in two
steps:

1. the model is factorized, i.e. Gm(s) = Gm(s)−Gm(s)+, where Gm(s)+ contains
all the unstable zeros and time delays;

2. a Low-Pass Filter, LPF, F (s) is introduced in order to make the controller
feasible and equal to

Gc(s) =
(
Gm(s)−

)−1
F (s) (5.7)

The introduction of a properly selected LPF can guarantee that Gc(s) is proper and
can provide some robustness (see [30]). Notice that the filter must be characterised
by unitary gain, i.e. F (0) = 1, to maintain Property 5.1.3. For further details about
its design, the readers are addressed to [32].

Introducing the LPF, the block scheme is changed from Fig. 5.1 to Fig. 5.3. Placing
F (s) in the feedback path of the control scheme, the new closed-loop transfer function
becomes:

T̃ (s) = Gc(s)Gp(s)
1 +Gc(s)F (s)(Gp(s)−Gm(s)) (5.8)

Thus the characterstics equation to be studied to ensure the stability is:

1
Gc(s)

+ F (s)
(
Gp(s)−Gm(s)

)
= 0 (5.9)

It can be observed that the strong advantage to introduce the LPF is that F (s) can
be selected in order to ensure that all the roots of Eq. (5.9) have Re(·) < 0.
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Figure 5.3. IMC scheme with a low-pass filter on the feedback branch.

5.1.1 IMC of MIMO systems
As treated in [33], the IMC scheme (Section 5.1) can be extended to MIMO systems.
Clearly, a change of notations is required, more specifically in this case we talk about
transfer matrices and not about transfer functions. Equations (5.4) and (5.5) become
respectively:

u(s) =
(
1 + L(s)

)−1
Gc(s)(y0(s)− d(s)) (5.10)

y(s) =
(
1 + L(s)

)−1
Gc(s)Gp(s)

(
y0(s)− d(s)

)
+ d(s) (5.11)

where Gc(s), Gp(s) are the controller and plant transfer matrices, L(s) is the open-
loop transfer matrix and u(s), y0(s), d(s), y(s) are the vectors containing the inputs,
the setpoints, the disturbances and the outputs respectively.

As explained by Morari et al. in [32], the properties of the IMC scheme for SISO
system (Properties 5.1.1, 5.1.2 and 5.1.3) are still valid in the MIMO case, adapting
them to transfer matrices.

Also, recalling what has been said in Section 5.1 about the possibility to obtain
from the IMC scheme a common feedback scheme, let us notice that this reasoning
can be applied even with MIMO plants: in Equation (5.12) the new controller for the
equivalent scheme in Figure 5.2 is provided.

G̃c(s) =
(
I−Gc(s)Gm(s)

)−1
Gc(s) (5.12)

The resulting closed-loop transfer matrix is:

T(s) =
(
I + L(s)

)−1
L(s) (5.13)

with L(s) = G̃c(s)Gp(s). Analysing Eq. (5.13) it can be observed that in the case of
the equivalent feedback scheme, in order to ensure the stability of the control scheme
Eq. (5.14) has to be studied, even with G̃c(s), Gp(s) stable.

det
(
I + Gp(s)Gc(s)

)
= 0 (5.14)
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More specifically, the roots of Eq. (5.14) need to have all real parts lower than zero.
On the other hand, the advantage of the classic IMC scheme is that, ensuring the
conditions of Property 5.1.1, the stability issue is immediately solved.

About the design of the controller, the procedure is equal to the one presented in
Section 5.1, with the factorization of Gm(s) into G+

m(s), G−m(s) and the introduction
of a low-pass filter F(s) [33]. Implementing the LPF, the new IMC scheme is repre-
sented in Figure 5.4.

Figure 5.4. IMC scheme with low-pass filter and MIMO plant.

By a comparison between Figures 5.3 and 5.4, it can be noticed how the LPF
in the MIMO case is placed immediately before the controller, instead on the feedback
branch. Let us recall that F(s) allows us to provide robustness to the control scheme
with respect to modelling errors and mismatches, filtering possible instantaneous
variations of the reference signal too.

5.1.2 IMC with nonlinear systems
Up to now, the considered SISO and MIMO plants were both linear. The extension
of the internal model control technique to nonlinear plants, treated in [34], needs to
be considered since we deal with a nonlinear model of the benchmark (Chapter 2).

Starting from the control scheme, in Figure 5.5 the IMC scheme for nonlinear
systems is introduced, where C, P, M are respectively the controller, the plant and
the model (notice the double lines for the blocks means that they are nonlinear).

Focusing on the three properties observed for the SISO IMC, in this case some
changes are introduced.

Figure 5.5. IMC scheme in the nonlinear plant case.
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Property 5.1.4 (Stability) Let us assume that C and P are (input-output) stable
and M = P , i.e. the model is identical to the plant. Then, the closed-loop scheme is
(input-output) stable.

Property 5.1.5 (Perfect control) Let us assume that the right inverse of the model,
called M r, exists such that C = M r and that the closed-loop system is (input-output)
stable. Then, the perfect control is achieved (y = y0).

Property 5.1.6 (Offset-free) Let us assume that the right inverse of the steady-
state model, called M r

∞, exists such that C = M r
∞ and that the closed-loop system is

(input-output) stable. Then, for asymptotically constant setpoints (limt→∞ y
0(t) = ȳ0)

the output of the control scheme is offset free (limt→∞ y(t) = ȳ0).

In order to correctly understand Properties 5.1.5 and 5.1.6, some quantities need
to be defined, in particular the definitions of right and left inverses together with the
explanation of steady-state operator are discussed.

• Let us consider a generic operator M , a generic u(t) (that belongs to the domain
of M) and a generic y(t) (that belongs to the range of M). Then, the right and
left inverses of M , called respectively M r and M l, are defined such that:

M lMu = u

MM ry = y

• Let us consider a generic operator M which is input-output stable. Taking a
signal u(t) in the domain ofM such that limt→∞ u(t) = u∞ <∞ and considering
y∞ = limt→∞Mu(t) <∞, the steady-state operator M∞ is such that:

y∞ = M∞u∞

Even with nonlinear systems, a low-pass filter could be introduced in order to
face modelling errors and to introduce robustness against them; at this purpose, take
as reference Fig. 5.4 with the filter placed in series with the controller. Clearly in
this case the LPF may be nonlinear. An additional advantage of a filter in the IMC
scheme is that it helps to reduce the effects of instantaneous variation of the setpoints,
together with the reduction of noisy signals consequences.

5.2 IMC with neural networks
Up to now, the discussion of internal model control has been focused on general linear
and nonlinear frameworks, not specifically for NNs. In this section, we will treat the
application of IMC scheme with neural networks as model of both the plant and the
controller.

Considering Figure 5.6, it can be observed how the controller and the model are
replaced by two recurrent neural network structures. It means that two different
trainings need to be performed: one for the model (already described in Section 4.4)
and one for the controller. Notice also the presence of the LPF with unitary gain.
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5.2. IMC with neural networks

Figure 5.6. IMC scheme with neural networks as controller and model.

Starting from the discussion in [35], where a nonlinear IMC using NNs (in particular
FFNNs) in discrete-time domain is treated, we can apply the procedure for RNNs,
still dealing with the discrete-time domain.

The usage of a RNN controller allows us to avoid all the controller design procedure
observed in the previous IMC cases, where the model was factorized and the LPF was
designed to ensure the controller feasibility. Indeed, the only task to be faced is the
training of such RNN (together with the one of the model, already deeply discussed),
dealing with its training dataset and the main features.

Let us recall that performing the training allows us to change the parameters
θ of the RNN in order to make the model as close as possible to the plant, while
the controller training aims to guarantee its closeness to the plant inverse. At this
purpose, the goal of the controller is to provide the signal u in Fig. 5.6 to be fed to
both the plant and the model.

It is important to notice that Properties 5.1.1, 5.1.2 and 5.1.3 are still valid under
the corresponding assumptions.

5.2.1 Training of the recurrent neural network controller
Going back to our benchmark and starting from the assumption that the RNN model
has been already trained, let us proceed with the training of the controller. Based
on the principle of IMC, it is expected to implement a controller that consists in the
inverse of the NN model of the four-tanks as previously mentioned. Since it is a tricky
operation to be performed mathematically, let us proceed in the following way: from
a practical point of view, we are interested in a NN such that, receiving as input the
setpoint y0 (that contains the desired levels h0

1, h
0
2 or h0

1, h
0
3), returns as output the

signals qa, qb that allow the plant to reach y0. A schematic summary for h1, h2 levels
as controlled variables is indicated in Figure 5.7.

Figure 5.7. Summary of how the neural network controller in the IMC scheme works.

Analysing the procedure in [35], the training of the controller is performed consid-
ering the cascade of two NNs: the first one is a new NN (representing the controller),
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while the latter is the NN model. The key point is that the model is fixed throughout
the training, i.e. its parameters (weights, biases) cannot be changed during the
controller training. On the other hand, the weights of the first RNN are changed in
order to minimize (with respect to θ) the cost function:

J(θ) = J∗(ŷ, ỹ0
tr) (5.15)

where ỹ0
tr is the filtered training batch. Let us recall that J∗ was defined in Section

3.1.2.
The cost function takes into account the training batch and the output of the

model, instead of the output of the controller u and the expected control variable u∗.
This choice is related to the fact that a small difference between qa,b and the expected
q∗a,b might lead to different levels on the tanks since the plant is nonlinear. Also, let us
point out that different inputs might lead to the same levels. The training procedure
of the controller is depicted schematically in Fig. 5.8.

Figure 5.8. Scheme of neural network controller training for IMC; let us notice the updating
signal for the controller’s parameters is provided by the MSE washout of (ŷ, ỹ0

tr).

From a practical point of view, let us notice that in our case the operation of
training is performed considering a single RNN structure: it means that, instead of
taking into account two separated networks, we train only one RNN blending the
layers of the model NN (with fixed parameters already estimated) and the layers of
the controller NN. More specifically, we consider a single NN where the first nc layers
represent the controller, and the others nm layers are the ones of the already trained
and fixed model (with nt = nc + nm indicating the total number of layers of this new
network). Therefore, only the first nc layers’ parameters are updated through the
training procedure minimizing (5.15) as described before, where ŷ is the output of
the last layer nt.

In Figure 5.9 the schematic representation of the unfolded RNN (with GRU units)
previously described and used for the controller training operation is introduced: it
can be noticed how the states of the layer nc (i.e. the last one associated to the
controller) are directly used as inputs to the layer (nc + 1) (i.e. the first one of the
model structure). Let us specify that the superscript indicates the number of the
layer and the subscript indicates the reference time instant, while the unfolding is
limited for simplicity only from (t− 1) to (t+ 1) time instants.

72



5.2. IMC with neural networks

Figure 5.9. Scheme of the unfolded GRU neural network used for controller training.

Let us consider the following example to better understand what we have just
explained, supposing we deal with a pre-trained model consisting of 2 layers (nm = 2)
and 15 units each; we could consider for the controller 3 layers (nm = 3) and 10 units
each. Therefore, the final RNN used for the training operation of the controller will
be characterised by a total of 5 layers (nt = 5).

From the point of view of the implementation of the controller in the IMC scheme,
even if the training just described provides us a single trained RNN consisting of
both the controller and the model together, they will be implemented separately
(as indicated in Fig. 5.6): the RNN model is already available since it was trained
independently, while the first nc layers of the RNN previously discussed (indicated in
Fig. 5.9) are extracted to form a separate NN, i.e. the RNN controller.

Focusing in particular on the training of the controller-model NN, the assumptions
made in Section 3.1 are valid. So, a key point is represented by the training data of
the RNN controller: while for the model the datasets are collected directly from the
plant, avoiding any problem of feasibility, in this case this procedure is not possible
(we are assuming to have available a limited quantity of data from the real world),
therefore the training set has to be completely generated from scratch. The procedure
followed is quite similar to the one observed for the generation of qa, qb in Section 3.2,
with a relevant difference: generating random steps of the reference signals h0

1, h
0
2 in

terms of amplitude may lead to couples (h1, h2) that are infeasible for the real system,
i.e. they cannot be reached by h1, h2 whatever inputs qa, qb it receives (the same
may happen for h1, h3). Therefore, pointing out that the equations associated to the
RNN model are known since it consists in a multi-layer GRU network (see Section
1.3.7 and Eq. (1.15)), a check of the generated data is performed feeding each couple
of reference signals to the System (5.16) (where a four-layers GRU network has been
considered since a RNN of this type will be adopted later on, with i = 2, 3, 4):
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z̄1 = σg(W (1)
z · u+ U (1)

z · x̄1 + b(1)
z )

f̄1 = σg(W (1)
f · u+ U

(1)
f · x̄1 + b

(1)
f )

˜̄r1 = σc(W (1)
r · u+ U (1)

r · (f̄1 ◦ x̄1) + b(1)
r )

x̄1 = z̄1 ◦ x̄1 + (1− z̄1) ◦ ˜̄r1

−−−−−−−−−−−−−−−−−−
z̄i = σg(W (i)

z · x̄i−1 + U (i)
z · x̄i + b(i)

z )
f̄i = σg(W (i)

f · x̄i−1 + U
(i)
f · x̄i + b

(i)
f )

˜̄ri = σc(W (i)
r · x̄i−1 + U (i)

r · (f̄i ◦ x̄i) + b(i)
r )

x̄i = z̄i ◦ x̄i + (1− z̄i) ◦ ˜̄ri

(5.16)

More specifically, we analyse if there exists a solution to (5.16): if not, it means that
the couple of values considered is not feasible for the plant, requiring a change in
the defined signals. Let us point out that System (5.16) describes the steady-states
equations of the considered RNN, where the first two layers are associated to the
controller, and the last two to the pre-trained fixed model.

Ensuring the feasibility of the data (i.e. the feasibility of each couple of the two
signals h0

i defined), the training set is generated, consisting of 30 experiments with
1500 samples each (for each defined h0

i ). More specifically, a single reference signal is
characterised by a series of steps (as done for qa, qb in Section 3.2) which are filtered
by a LPF in order to remove instantaneous variations of the signals, as it will be
described later.

Once the training set is generated, it has to be normalized in the range [-1,1]
as explained in Section 3.2.4. Let us point out that the mean and max values used
for the normalization of the controller training dataset are the same used for the
normalization of the NN model training dataset, with a small change: for qa and qb,
the corresponding mean and max values are such that they are all equal to qa,max/2
or qb,max/2, on the basis of the signal considered (for both the training set of the
model and of the controller). In order to correctly understand this choice, let us notice
that the output of the controller u (which contains the values qa,b computed by the
controller in the range [-1,1]) before it can be fed to the plant has to be denormalized
in the range [0, qa,b max]. Fixing the normalization constants to qa,b max/2 allows us to
guarantee that the variable u, after the denormalization, is able to reach both the
minimum and maximum values (i.e. 0 and qa,b max respectively).

Let us consider the following example, focusing on the qa signal only for simplic-
ity: we assume that our maximum normalization constant is such that ψqa

my,max =
ψqa
my,mean = qa,max/2. When the controller output is u = 1 (i.e. the maximum admissi-

ble value, which is qa,max), once the signal is denormalized to be fed to the plant, its
value for qa will be equal to:

udenorm = (u · ψqa
my,max) + ψqa

my,mean = ψqa
my,max + ψqa

my,mean = qa,max

In the same way, for u = −1 (i.e. the minimum admissible value) the result is:

udenorm = (u · ψqa
my,max) + ψqa

my,mean = −ψqa
my,max + ψqa

my,mean = 0
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(a) (b)

Figure 5.10. (a) Plant feasibility for h1, h3 couples; (b) Plant feasibility for h1, h2 couples.

To give an idea about how the levels of the tanks can be selected in order to
guarantee their feasibility, in Figures 5.10a and 5.10b the feasible couples for h1, h3
and h1, h2 respectively are indicated in green, while in red all the points that the plant
cannot reach; let us highlight that these two images are obtained solving directly the
equations of the plant in (2.1), and not the ones of the NN model in order to neglect
a (possible) mismatch between them due to the not perfect training. In particular,
the green points describe the feasible steady-states for the plant: indeed, considering
h1, h2 case, the couple (h1,max, h2,max) is not feasible even if the plant can reach it
without problems with suitable inputs since it is not an equilibrium point. Hence, it
is expected that all the steady-states (i.e. couples) of the training set used for the
controller are inside the green area, together with the ones of the setpoints for IMC.

The final IMC scheme is depicted in Figure 5.11, where it can be noticed how
the setpoint y0 is filtered before it is passed to the controller to filter its possible
instantaneous variations, as already mentioned. Let us specify that the LPF is the
same used for the filtering of the training set for the NN controller.

Figure 5.11. Final IMC scheme adopted for the control of the plant; let us notice that two
blocks (i.e. RNNs) are used for the implementation of the controller and of the
model.
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5.2.2 Additional remarks
It is important to point out that, from the beginning of the discussion about NNs,
the sample time Tc has been used: indeed, in the simulation of the control scheme we
have to ensure that the RNN controller and the RNN model are triggered every Tc
(equal to 25) seconds.

Also, as previously mentioned, the output of the controller u is in the range
[-1,1], and since the plant accepts only inputs such that u ∈ [0, qa,b max], we need to
denormalize it (using the constants retrieved from the model training set as explained
earlier) before the signal can be passed to the plant. In the same way, the plant output
y (which is in the range [0, hi,max]) has to be normalized in the range [-1,1] before it
can be used to compute the feedback error eIM .

5.2.3 Performances with h1, h3

Let us consider the case with h0
1, h

0
3 as reference levels, and the control scheme in

Figure 5.11. We take into account a RNN structure for the model with 2 layers with
15 units each, while for the controller 2 layers are used, the first one with 15 units
and the latter with only 2 units (in order to guarantee the compatibility with the
dimensions of u without adding a linear transformation on the output of the last
controller layer).

Figure 5.12. Steady-states couples for h1, h3 in controller training and validation datasets.

In Figure 5.12, the steady-state couples of the training set used for the controller
training are indicated. Performing a comparison with Fig. 5.10a, it is clear how all
the points are feasible since they are within the green area. Therefore, the training
performances of the model and of the controller are:

Model : J∗avg = 1.5 · 10−4

Controller : J∗avg = 1.6 · 10−4

To check the behaviour of the control scheme, two setpoints A and B are respectively
introduced in Figures 5.13a and 5.13b.

76



5.2. IMC with neural networks

(a) (b)

Figure 5.13. (a) Setpoint A; (b) Setpoint B.

Let us describe the results with these two trajectories:

• starting from setpoint A, the corresponding outputs of the control scheme
previously introduced are provided in Figures 5.14a and 5.14b. It can be noticed
that for both h1, h3 the plant outputs show steady-state offsets for most of
the step couples. This is due to the absence of an integral action and a wrong
estimate of the (local) gain, and once again it highlights how a perfect training
of the model-controller system is not feasible in real world. On the other hand,
the tracking of the setpoints is quite good, since the plant outputs follow the
reference signals correctly without showing undesired behaviours.

(a) (b)

Figure 5.14. (a) Setpoint A vs output h1 of the plant; (b) Setpoint A vs output h3 of the
plant.

• Let us now consider setpoint B (Figure 5.13b). Once again, the outputs of the
control scheme, introduced in Figures 5.15a and 5.15b, depict the presence of
steady-state mismatches between reference trajectories and current outputs of
the real system. Even in this case, the tracking performances are good, showing
that the trained model and controller are well-behaving as for the previous
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setpoint, i.e. no undesired behaviours are observed, with a very high accuracy
of the plant outputs.

(a) (b)

Figure 5.15. (a) Setpoint B vs output h1 of the plant; (b) Setpoint B vs output h3 of the
plant.

Notice that increasing the training data in both the number of data and feasible
steady-states couples (h1, h3) might lead to better tracking, reducing the offsets in
amplitude and number too.

5.2.4 Performances with h1, h2

Let us consider now the system with outputs h1 and h2. As discussed before for
h1, h3, the model is characterised by 2 layers and 15 units each, while the controller
is provided by 2 layers, the first one with 15 units and the latter with 2 units. The
training performances of the model and of the controller are:

Model : J∗avg = 2.1 · 10−4

Controller : J∗avg = 1.4 · 10−3

Introducing in Figure 5.16 the steady-states of the dataset used for the controller
training, it is clear how all the points are in the admissible range of values (see
Fig. 5.10b). Let us notice that the blue circles denote the couples of the signals used
for training, while the red crosses indicate the steady-states in the validation set.
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Figure 5.16. Steady-states couples for h1, h2 in controller training and validation datasets.

Even in this case, in order to check if the control scheme well-performs, two
setpoints C and D are introduced respectively in Figures 5.17a and 5.17b.

(a) (b)

Figure 5.17. (a) Setpoint C; (b) Setpoint D.

• Let us consider trajectory C in Figure 5.17a. Considering Figures 5.18a and
5.18b where the responses of the plant h1, h2 are shown, the behaviour is
almost the same of the one observed for the h1, h3 system: steady-state offsets
throughout the whole signals are visible, despite a good tracking of the trajectory
in terms of shapes of the signals. Due to the worse precision of the controller
training than the system with h1, h3 the mismatches, especially for h1, are more
relevant.
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(a) (b)

Figure 5.18. (a) Setpoint C vs output h1 of the plant; (b) Setpoint C vs output h2 of the
plant.

• Switching to trajectory D, the results are expected to be almost identical to the
case of setpoint C. Hence, analysing Figures 5.19a, 5.19b the mismatches are
once again present in the plant outputs, highlighting the not so perfect training
of the NNs. Also, in the h2 case, an overshoot can be observed at t = 3.5 · 104 s.

(a) (b)

Figure 5.19. (a) Setpoint D vs output h1 of the plant; (b) Setpoint D vs output h2 of the
plant.

In this case, the main reason of the relevant mismatches for trajectories C and D
is the low training performances of the controller: it can be observed how, between
the J∗avg values for the controllers of the two systems analysed, there is an order of
magnitude of difference.

80



5.3. IMC with recurrent neural networks and integral action

5.3 IMC with recurrent neural networks and inte-
gral action

Analysing the performances of the control scheme in Sections 5.2.3 and 5.2.4, it can
be noticed how the results show in some cases steady-state mismatches between ỹ0

and y. This is due to the fact that perfect training of the model, i.e. finding a model
which exactly matches the plant, is not achievable in practice, and the same for the
ideal controller, which cannot be trained in order to retrieve the ideal (exact) values
of qa, qb necessary to reach ỹ0.

Also, the absence of a controller able to fix model-plant mismatches, e.g. a PID,
suggests us to introduce an integral action acting on the tracking error in the scheme
indicated in Figure 5.6. The resulting control scheme is introduced in Figure 5.20,
where the disturbance d can represent a real disturbance or the effect of a model
mismatch.

Let us try to explain why the introduction of an integral action is required in the
IMC scheme in Figure 5.20 (under suitable assumptions), assuming for simplicity that
we are in the continuous-time domain, and all the transfer functions are SISO (as we
will observe, the analysis could be extended to MIMO case too). Let us indicate with
I(s) the integral action (I(s) = µ

s
), with F (s) the LPF (F (s) = 1

τs+1), with P the
plant, with C the RNN controller and with M the RNN model.

Let us assume that P = M and C = k · P−1, with k ∈ [k, k], k ≤ 1, k ≥ 1. So,
we are considering that the controller is almost equal to the inverse of the plant with
a small gain error (e.g. k ∈ [0.9, 1.1]). Starting from the scheme in Figure 5.21, the
presence of a mismatch k between the controller and the plant inverse leads to a static
gain in the control scheme (as in Fig. 5.22).

Figure 5.20. IMC scheme with RNN controller and model, and integral action.
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Figure 5.21. IMC scheme with integral action and perfect modelling (i.e. plant=model);
notice no output disturbance is considered.

Figure 5.22. IMC scheme with integral action, perfect modelling and non-ideal controller;
notice that the controller is equal to the model times a constant k.

Therefore, the resulting output signal y(s) is equal to:

y(s) =
(
ỹ0(s) +

(
ỹ0(s)− y(s)

)
I(s)

)
CP

y(s)
(
1 + kI(s)

)
=
(
ỹ0(s) + ỹ0(s)I(s)

)
k

Thus we get:

y(s) =
k
(
1 + I(s)

)
1 + kI(s) ỹ0(s) = S1(s)ỹ0(s) (5.17)

S1(s) = k
1 + µ

s

1 + kµ

s

ỹ0(s) = k
s+ µ

s+ kµ
ỹ0(s) =

s

µ
+ 1

s

kµ
+ 1

ỹ0(s) (5.18)

From Eq. (5.18) we can observe how the DC gain of the transfer function is unitary
(i.e. S1(0) = 1), which means that perfect tracking is achieved for t → ∞: at
the steady-state the signal y is such that y(s) = ỹ0(s). Therefore, in this case the
presence of an integral action allows us to remove the steady-state error due to the
non-ideal controller design. Let us point out that, in the absence of I(s), we would
get y(s) = kỹ0(s) for all values of s.

Notice once again that all the achieved results are strictly related to the (strong)
assumptions introduced, like the presence of a perfect model.

At this point, let us go back to the control scheme in Fig. 5.20, focusing more
specifically on the integral action introduced: we deal with a discrete-time integrator

82



5.3. IMC with recurrent neural networks and integral action

with sample time equal to Tc and gain µ = 5 · 10−4. Therefore, the expression of the
integrator is:

I(z) = µ

z − 1 , µ = 5 · 10−4

It is clear from Figure 5.20 how the integrator removes the mismatches between ỹ0

and y, as previously mentioned.
Considering now the input of the controller e, the setpoint ỹ0 is influenced by

other two terms, i.e.:
e(t) = ỹ0(t) + xint(t)− ẽIM(t) (5.19)

Recalling that the training of both the controller and the model were performed using
normalized datasets in the range [-1,1], we have to ensure that even the controller
input e is inside this range at every time instant, otherwise we could have an undesired
behaviour of the controller, since it does not know exactly what to do with data
outside the prescribed range. Hence, an additional implementation aspect has to be
considered, introducing an anti wind-up action on the integrator. Let us highlight
how this implementation has been done in order to guarantee that the output of the
integral action xint is always such that:

−1 ≤ ỹ0(t) + xint(t)− ẽIM(t) ≤ +1 ∀ t (5.20)

The adopted implementation of the integral action added to Scheme 5.11 is provided
in Figure 5.23, where the two limits of the saturation action are equal to:

elow(t) = −1− ỹ0(t)− xint(t) + ẽIM(t)
eup(t) = +1− ỹ0(t)− xint(t) + ẽIM(t)

and the resulting control scheme is indicated in Figure 5.24. It can be noticed how the
anti wind-up control is designed in order to be triggered when the range [elow, eup]
is exceeded, considering as feedback signal the difference between the input and the
output of the saturation.

Figure 5.23. Anti wind-up scheme for the integral action; notice the limits of saturation are
based on the controller input e.
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Figure 5.24. IMC scheme with integral action and anti wind-up scheme.

5.3.1 Performances with h1, h3

Recalling the setpoints A and B introduced in Figures 5.13a and 5.13b, we are going
to assess if the introduction of the integral action is able to ensure zero-error output
regulation.

• Starting from setpoint A, in Figures 5.25a and 5.25b the responses of the control
scheme are represented. As expected, the mismatches for every step have been
removed with the introduction of the integrator, ensuring almost a perfect
reference tracking. Let us notice how for the first step of the trajectory, the
offset is reduced slowly, however for a longer time length the output-reference
difference would be completely cleared.

(a) (b)

Figure 5.25. (a) Setpoint A vs output h1 of the plant; (b) Setpoint A vs output h3 of the
plant.
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• Considering setpoint B, the results are almost identical to what has been observed
for trajectory A. Indeed, no steady-state errors are observed in Figures 5.26a
and 5.26b.

(a) (b)

Figure 5.26. (a) Setpoint B vs output h1 of the plant; (b) Setpoint B vs output h3 of the
plant.

Analysing the obtained results, for the h1, h3 system the control scheme with
integral action performs very well, removing all the steady-state errors: the tracking
of the assigned trajectories is almost perfect, and the errors due to the (normal)
imperfect training of the RNNs are cleared.

5.3.2 Performances with h1, h2

Let us focus now on the system with h1, h2 as reference output levels. The results
without integral action have been described in Section 5.2.4, where the steady-state
errors were highlighted.

We expect that the introduction of the integrator allows us to guarantee perfect
tracking of the imposed trajectories, as for h1, h3 system in Section 5.3.1.

• Let us consider setpoint C (Fig. 5.17a): as said before, the offsets are almost
removed, however especially for h1 the tracking is not perfect; exact zero offsets
may be achieved for longer steps or faster integral action (i.e. higher gain
µ of I(z)). Also, focusing on h2, the new scheme leads to higher overshoots
amplitudes than classic IMC scheme (let us compare Fig. 5.18b and Fig. 5.27b).
Notice that speeding up the integral action may lead to faster tracking, but on
the other hand the peaks of the overshoots will be increased, maybe leading to
oscillations on plant outputs.
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(a) (b)

Figure 5.27. (a) Setpoint C vs output h1 of the plant; (b) Setpoint C vs output h2 of the
plant.

• We consider now the setpoint D. No differences with respect to trajectory C are
expected, indeed looking at Figures 5.28a and 5.28b, the results are very similar:
almost zero offsets is achieved, and the overshoots are increased in terms of
amplitude.

(a) (b)

Figure 5.28. (a) Setpoint D vs output h1 of the plant; (b) Setpoint D vs output h2 of the
plant.

Taking into account what has been observed, the results for h1, h2 are worse in
terms of precision than the ones saw for h1, h3 system. The main cause is the lower
accuracy of the controller training due to its higher complexity (no informations about
upper tanks are available, therefore a direct correlation between qa, qb and h1, h2 is
not easy to be found). However, doing a comparison between Sections 5.2.4 and 5.3.2,
strong improvements have been registered in the tracking of the trajectories with the
implementation of an integral action, showing how the control scheme well performs.

Let us point out that the obtained results of the IMC plus integral action scheme
in terms of response time were expected: in continuous time the introduction of the
integrator in the loop introduces a phase loss of -90°, which means worse settling
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time is achieved (even if we are considering discrete-time domain). The tuning of the
integral gain µ can partially limit such problem as already mentioned, however we
may observe an increase of the output oscillations in the tracking task (up to possible
instability).

5.4 Conclusions
In Chapter 5 the Internal Model Control scheme has been presented, introducing its
properties for a common SISO, linear system. Then, its main variations for MIMO
and nonlinear systems were treated, focusing on the usage of NNs (more specifically,
RNNs) in the scheme as controller and model.

In particular, in Section 5.2.1 the training of the RNN controller was highlighted,
focusing on the procedure starting from a pre-trained RNN model representing the
plant and the feasibility of the generated training dataset.

Also, the introduction of an integrator in the classic scheme has been proposed,
discussing its zero steady-state offset property.

Four trajectories (two for h1, h3 system and two for h1, h2 system) have been
introduced for the performance evaluations, and for each one a comparison between
IMC scheme with and without integral action has been done in Sections 5.2 and 5.3
respectively, showing how the control architecture well performs in both these cases.
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Conclusions

In Chapter 1, an introduction to neural networks has been presented: first of all, an
explanation of the common feed-forward NNs was provided, highlighting how the
neurons work. Starting from the behaviour of a single neuron, and considering that
the flow of the inputs in a FFNN is unidirectional, the corresponding final outputs of
such network has been computed through the so-called feed-forward passage. To be
able to perform operations with NNs, they have to be trained properly: in order to
train a FFNN, the backpropagation algorithm has been considered. It takes usage of
the gradient descent algorithm (or its main variation, the stochastic gradient descent)
together with the feed-forward and backward passages: the final result is a fully
trained FFNN. Also, it has been discussed how the main goal of the training operation
is the minimization of a given cost function (e.g. the mean square error between
the network predictions and the expected values) through the regulation of the NN’s
parameters, i.e. its weights and biases.

At this point, a second type of NNs has been introduced: the so-called recurrent
neural networks. The main advantages discussed are their capability to memorise
useful patterns observed in the analysed data, computing the outputs not only on
the basis of the current inputs, but also on the basis of the older ones: indeed a
correlation between the current output y(t) of the RNN and the current and older
inputs u(t), u(t − 1), .., u(0) (and outputs y(t − 1), .., y(0) too) has been shown.
This led us to consider this kind of NNs instead of the FFNNs. In order to explain
the training of RNNs, the unfolding operation together with the backpropagation
through time were discussed, focusing on how the unfolding of RNNs leads essentially
to FFNNs. Also, the truncated version of BPTT was introduced, exploiting its
advantages in terms of computational cost due to the limited unfolding of the network
(i.e. lower required average training time). At the end of the chapter, the optimizers
to speed up the training operations were briefly shown, exploiting the main training
problems that may arise (vanishing and exploding gradients). The gated units used
to build RNNs were described, together with their main characteristics, highlighting
their memorization capabilities.

In Chapter 2, the benchmark considered, i.e. the four-tanks system, has been
introduced. Firstly, a mathematical model was proposed, allowing us to exploit its
nonlinear properties. Then, its linearisation was discussed, focusing on the correspond-
ing computed transfer matrix. Starting from this, the analysis of the steady-state
conditions for the system showed how, considering a generic stationary operating
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point, there exists an unique input providing it only if the sum of the two opening
position of the valves is different from 1, i.e. γ1 + γ2 6= 1. Then, it has been showed
how the positions of the three-way valves determine the location of a multivariable
zero of the linearised system, leading to the stability or instability of the transfer
matrix inverse. Also, the step responses and Bode diagrams of the linearised system
were presented.

In Chapter 3 the main elements for RNN structure (with GRU or LSTM cells) has
been discussed. In particular, we faced the choice of the cost function (i.e. the MSE
washout), of the optimizer and discussed the initialization of the parameters. The
latter may lead to problems in the training procedure, as discussed in the chapter,
therefore it has to be performed carefully. In the second section, the design of
experiments has been performed: the input signals qa, qb were generated from scratch
as a sequence of steps (with random amplitudes and lengths), starting from a set of
preliminary assumptions such as their maximum amplitude. In order to mimic the
behaviour of real signals, white noise was added to the generated inputs over their
whole time length. Also, the sampling of the signals has been treated: it is a key point,
since it has been showed how the sampling period Tc = 25 s led to an attenuation of
almost 40 dB. Let us point out that the normalization of the final collected dataset
is mandatory in order to guarantee a correct (i.e. informative) training dataset: its
discussion focused on the importance to normalize all the data collected over multiple
experiments with the same corresponding values. This procedure allows us to ensure
the usage of the same normalization scale for all the signals. Then, the batches for
validation and training phases were created, considering a single experiment as a
single batch.

In Chapter 4, the training of the NN model has been performed: more specifically
the goal of this chapter was to provide a RNN such that its behaviour is as equal
as possible to the one of the real plant. Due to the peculiarities of our benchmark,
two types of system were considered: the first one with h1, h3 as outputs, while the
second one with h1, h2 as outputs. Different networks were considered, changing
every time the structure (in terms of adopted cells, number of units and number of
layers). The obtained results showed how, for the system with outputs h1 and h3,
the best selected architecture was the RNN with GRU cells, 5 units and only one
layer. Indeed, this network guaranteed the best compromise between the required
average training time and the accuracy of the predictions. Comparing LSTM cells
with GRUs (considering the same number of units and layers), a lower precision of the
outputs from the former has been observed, showing the higher ease of training of the
GRU cells (they can be seen as an exemplification of LSTMs, since they are composed
by only two gates instead of three). Also, some trials with a saturated dataset were
performed in order to check if the trained NN was able to match the saturation zones:
the results depicted the difficulty of the network to predict such areas, showing a not
so high accuracy of the NN outputs (the increasing of the number of units helped
in such problem, however it does not represent a final solution). Since the training
operations were always performed with the BPTT approach, the truncated one was
applied: huge improvements of the required training times were recorded with all the
examined structures due to both the reduction of training samples and the limited
unfolding of the RNNs. On the other hand, a lower accuracy of predictions was
observed since considering subsequences of reduced length T̃ may prevent the NN to
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observe patterns in the data longer than T̃ .
About the system with h1 and h2 as outputs, different outcomes were noticed: the

increase of the number of both units and layers led to a remarkable improvement
in terms of predictions accuracy. Thus, the best selected architecture was the one
characterised by two layers and 15 units each in contrast with the previous system’s
trainings. The main reason to this outcome is that, disregarding all the informations
about the upper tanks’ levels, the training is much more tricky, i.e. the value of
validation MSE will be higher if the number of units is not high enough.

In Chapter 5, the internal model control scheme has been presented and discussed,
underlying its application to SISO, MIMO and nonlinear systems. In particular, we
focused on the usage of RNN models and RNN controllers in the IMC scheme: a
long discussion about the training procedure of the controller was faced, pointing
out the theoretical and practical approaches. The recorded performances of such
scheme were interesting: the tracking of the imposed setpoints (for both the systems
mentioned in the previous chapter) was good, only some steady-state mismatches
were observed; this is expected since the perfect controller cannot be obtained in
practice. Starting from these results, the implementation of a discrete-time integral
action in the regulator structure in order to remove the achieved offsets was discussed,
highlighting the behaviour of the resulting IMC scheme under ideal hypothesis (like
perfect modelling). For both the systems with h1, h3 and h1, h2 as outputs, the
introduction of the integral term removed all the steady-state mismatches between
the IMC outputs and the imposed setpoints. On the other hand, the effects of the
additional integral term were reflected on the increase of the settling time required by
the signals to follow the setpoints, and on the increase of their overshoots (in terms of
amplitude). Since the RNN controller works only with input signal in the range [-1,1],
an anti wind-up scheme was added to the integral term, acting on the controller input:
this guarantees it is always in the correct range of values, so no undesired behaviours
are observed.

In conclusion, this Thesis showed how the introduction of RNNs in IMC scheme
may lead to very good results in terms of reference signals tracking. More specifically,
their usage as model of the plant and as controller allowed us to notice only small
steady-state offsets between the control scheme’s outputs and the setpoints (local gain
errors). The implementation of an integral action to solve this problem ensured zero
errors at the steady-states, however a slowdown of the tracking procedure has been
recorded. Thus, the final control scheme showed very good performances, allowing
us to think about a possible usage of neural networks for the control of other types
of systems. Clearly, some cons can be pointed out: the trainings of both model and
controller require a lot of data to be available (if the training dataset size is too small,
it will be non-informative), and the corresponding network structures are difficult to
be immediately defined since there are no fixed rules at this purpose. Also, if the
training set is not well-defined, for example it does not cover all the possible admissible
values, the resulting performances of the NNs would be affected considerably.
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