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Abstract

Greenhouse gas emissions from human activities have been influencing the cli-
mate at an unprecedented rate, and temperature rise may lead to several im-
pacts over the entire world. Contrasting anthropogenic climate change requires
urgent mitigation actions. In this context, Integrated Assessment Models rep-
resent a helpful and influential tool. These models link climate, energy, and
economic features in one framework and are used to search for Benefit-Cost
optimal climate policies. Among these models, RICE50+ has recently intro-
duced higher geographical resolution and better consideration for economic
inequality. This thesis contributes to the analysis of the Benefit-Cost solutions
of this model (i.e., the optimal emission reduction pathways). In particular,
we addressed the identification of high-risk scenarios and robust optimal so-
lutions. We started with the re-simulation of the solutions over a set of plau-
sible future scenarios defined by the most relevant drivers of uncertainty of
the model: the socioeconomic baselines, the climate impact functions and the
Land-Use emission cases. Result performances have been measured for the ob-
jectives of welfare, temperature, and economic inequality. Then, we applied
a scenario discovery algorithm to identify which drivers lead to poorest per-
formance scenarios. Last, we performed a robustness analysis to identify the
most robust emission reduction pathways according to four criteria. Results
show that socioeconomic drivers characterized by low economic growth and
high inequality lead to highest risk scenarios with poor performance for ev-
ery objective. The functions projecting heterogeneous impacts lead to higher
inequality scenarios. Last, all the robust pathways highlighted the necessity
for a fast reduction of greenhouse gases, with most regions achieving carbon
neutrality by 2050. Our results suggest that the emission reductions should be
implemented taking deeply into consideration the economic inequalities and
the responsibilities for historical emissions.
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Sommario

Le emissioni antropogeniche di gas serra influenzano il clima a un ritmo senza
precedenti e l’aumento della temperatura può portare a numerosi impatti in
tutto il mondo. Contrastare il cambiamento climatico richiede urgenti azioni
di mitigazione. In questo contesto, gli Integrated Assessment Models sono un
utile strumento. Questi modelli collegano aspetti di clima, energia ed economia
e sono usati per cercare politiche climatiche ottimali dal punto di vista costi-
benefici. Tra questi modelli, RICE50+ ha introdotto una maggiore risoluzione
geografica e una migliore considerazione delle disuguaglianze economiche.
Questa tesi contribuisce all’analisi delle soluzioni ottimizzate da questo mod-
ello (cioè i percorsi ottimali di riduzione delle emissioni). In particolare, abbi-
amo affrontato l’identificazione di scenari ad alto rischio e di soluzioni robuste.
Abbiamo iniziato con la ri-simulazione delle soluzioni su un insieme di scenari
futuri plausibili definiti dai più importanti fattori di incertezza del modello:
le baseline socioeconomiche, le funzioni di impatto climatico e i casi di emis-
sioni Land-Use. Le performance dei risultati sono state misurate secondo gli
obiettivi di welfare, temperatura e disuguaglianza economica. Abbiamo poi
applicato un algoritmo di scenario discovery per identificare quali fattori por-
tano a scenari di performance più scarse. Infine, abbiamo eseguito un’analisi
di robustezza per identificare i percorsi di riduzione delle emissioni più robusti
secondo quattro criteri. I risultati mostrano che i driver socioeconomici carat-
terizzati da una bassa crescita economica e da un’alta disuguaglianza portano
a scenari a più alto rischio con scarse prestazioni per ogni obiettivo. Le fun-
zioni che proiettano impatti eterogenei portano a scenari di disuguaglianza più
elevati. Infine, tutti i percorsi robusti hanno evidenziato la necessità di una rap-
ida riduzione dei gas serra con la maggior parte delle regioni che raggiungono
zero emissioni nette entro il 2050. I nostri risultati suggeriscono che le riduzioni
delle emissioni dovrebbero essere attuate prendendo in considerazione le dis-
uguaglianze economiche e le responsabilità per le emissioni storiche.
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1
Introduction

Anthropogenic climate change is becoming one of the most important, urgent
and challenging issues that humanity has to face. The Intergovernmental Panel
on Climate Change (IPCC), the body of the United Nations (UN) with the re-
sponsibility of assessing the scientific knowledge on human-induced climate
change, regularly releases reports, produced through an immense review of
data and compilation of key findings. The recent release of the sixth Assess-
ment Report (IPCC, 2021a) emphasized a well-known fact: it is unequivocal
that Greenhouse Gases (GHG) emissions from human activities warmed the
climate at an unprecedented rate in the last 2000 years (IPCC, 2021b).

The increase of the Global Mean Temperature (GMT) affects the whole globe,
but with high spatial heterogeneity. Its effects include many observed changes
in weather and climate extremes like heatwaves, heavy precipitations and trop-
ical cyclones. Without an immediate and decisive effort to reduce GHG emis-
sions to at least a net-zero level, the rising temperature will exacerbate already
present impacts on aspects like human health, economic growth, agriculture
(Carleton and Hsiang, 2016) up to a risk of mass extinction (Song et al., 2021).

To reduce the GHG emissions, strong climate mitigation policies are needed.
In order to be effective, the negotiation and implementation of such policies
require strong and effective global cooperation. The United Nations Frame-
work Convention on Climate Change (UNFCCC) has a very important role
in establishing international treaties to reduce the human influence on climate
change, like the Kyoto Protocol and, more recently, the Paris Agreement (UN-
FCCC, 2015). In particular, the goal of the Paris Agreement is to hold the increase
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1. Introduction

in the global average temperature to well below 2°C above pre-industrial levels and
pursue efforts to limit the temperature increase to 1.5°C above pre-industrial levels
(UNFCCC, 2015). Despite looking like a very ambitious goal, extensive scien-
tific literature already proved that this agreement represents an economically
optimal pathway to mitigate the impacts of climate change, e.g. see Burke et al.
(2018); Ueckerdt et al. (2019); Hänsel et al. (2020); Glanemann et al. (2020); Gazzotti
et al. (2021); van der Wijst et al. (2021).

As the need for immediate and effective climate policies grows, it is funda-
mental to develop and implement mitigation and adaptation policies. This is
particularly challenging in a context of high uncertainty on the future socio-
economic scenarios and climate impacts that will occur. Further complications
also arise due to the heterogeneous damages of climate change. In fact, impacts
may be unequally distributed between regions: warmer countries, which also
tend to be poorer and less responsible for the past GHG emissions, suffer the
heaviest climate damages (Diffenbaugh and Burke, 2019). These impacts had a
relevant influence on economic inequality between countries and, in particu-
larly negative scenarios, such inequalities may start to rise again in the future
(Taconet et al., 2020).

A useful instrument used to evaluate, and thus design, climate policies and
inform policymakers are the Integrated Assessment Models (IAM). These mod-
els, according to Weyant (2017), are divided into two main categories: Cost-
Benefit (CB) or Detailed Process (DP) IAMs. In particular, CB-IAMs are com-
monly used for policy optimization. They provide an aggregated represen-
tation of climate damages and mitigation costs over a given future climate
scenario and optimize a mitigation policy that balances the marginal costs of
reducing the GHG emissions and the marginal benefits of the climate policy
(Weyant et al., 1995). Optimized policies are often represented by trajectories of
GHG emissions that maximize the economic benefit over the scenario consid-
ered by the model.

This thesis follows a recent CB-IAM called RICE50+, proposed by Gazzotti
et al. (2021). RICE50+ is based on the Dinamic Integrated Climate-Economy
(DICE) model by Nordhaus (2018). DICE is a globally aggregated model that
combines a neoclassical model of economic growth with a representation of the
climate system and economic damages of climate change to estimate optimal
paths for emission reduction. A major limitation of the model is the represen-
tation of the world as a single aggregated region. Nordhaus and Yang (1996) ad-
dressed the issue in a regionalised version of DICE called Regional Integrated
model of Climate and the Economy (RICE). However, RICE tackles the issue
marginally, representing only 12 regions.

2



1.1. Proposed methodology

One of the most relevant innovations introduced by RICE50+ is the very
high spatial resolution implemented: it considers 57 independent regions. The
model provides several optimal solutions, each one representing an optimal
climate mitigation policy in terms of GHG emissions reduction. Each solu-
tion has been optimized over a plausible future scenario, comprising different
socio-economic assumptions and different methods for computing future cli-
mate impacts.

1.1 Proposed methodology

In this work, we analyzed the optimal solutions of the RICE50+ model. We
generated an ensemble of 60 possible future scenarios, defined on the basis
of three relevant uncertain inputs of RICE50+. We then selected five relevant
objectives related to welfare, temperature increase due to climate change, and
economic inequality. We re-simulated each one of the optimal solutions over
the potential scenarios and computed the five objectives.

The output data obtained have been further analyzed using the Patient Rule
Induction Method (PRIM) (Friedman and Fisher, 1999). This method is a Sce-
nario Discovery algorithm designed to find policy-relevant clusters in the out-
puts of a simulation model. Lastly, we selected from the scientific literature six
well-known robustness metrics that we used to perform a robustness analysis
of the solutions of RICE50+. Then, we defined two criteria to select a set of
robust solutions. For each chosen solution we analyzed the performance over
the objectives and the corresponding emission trajectories across the different
regions.

1.2 The research questions

In this work, we aim to answer three major Research Questions (RQ) in order
to extend the results obtained by Gazzotti et al. (2021).

RQ1

Each solution of the RICE50+ model has been optimized over a specific scenario
defined by a combination of parameters of the RICE50+ model, including socio-
economic assumptions and climate impacts functions. By re-simulating each
solution over the new scenarios we defined and evaluating the objective per-
formances, we aim to investigate how much do the narratives of the Shared So-
cioeconomic Pathways (SSP)s and climate impact functions affect the RICE50+

3



1. Introduction

optimal outcomes. Therefore, we formulate our first research question as:
RQ1: To what extent do the drivers of uncertainty (SSPs and climate damages) affect
the performance of different objectives for the optimal solutions of the RICE50+ model?

RQ2

The combination of specific uncertain inputs of the model can define particu-
larly unfavourable scenarios that lead to bad outcomes, like a very high tem-
perature increase or a situation of high inequality. Our second purpose is then
to investigate the so-called high-risk scenarios. We want to identify the inputs
leading to unsatisfactory outcomes and quantify the importance of the differ-
ent drivers of the uncertainty of the model in defining such scenarios. Thus,
our second research question is:
RQ2: What are the drivers of poor performance for the objectives examined?

RQ3

The future possible climate scenarios are characterized by high uncertainty.
Therefore, we make use of a robustness analysis in order to identify the most
robust solutions of the RICE50+ model, namely solutions that allow us to ob-
tain satisfying outcomes regardless of which future conditions should occur.
Our third research question is:
RQ3: What are the most robust solutions across all the objectives and uncertainties
considered? What are their implications for climate policy?

1.3 Outline of the thesis

The thesis is organized as follows: Chapter 2 reviews the state of the art on the
existing types of IAMs and their corresponding use. It includes an overview
of the literature on the topic of economic inequality and its representation in
IAMs. Chapter 3 presents the RICE50+ model and the methodological proce-
dure followed in this thesis: the generation of the ensemble of scenarios and the
re-evaluation of the optimal RICE50+ solutions, the selection of the objectives,
the PRIM algorithm and the robustness analysis. In Chapter 4 numerical results
and outcomes of the methodology discussed are reported and commented in
order to answer each of the research questions. Chapter 5 concludes this thesis
summarising the main results, reporting the limitations and discussing future
research.

4



2
State of the art

In this chapter, we describe the state of the art upon which this thesis is based,
in order to provide the basic notions necessary for the understanding of this
work.

In Section 2.1, we provide an overview on climate policies. In Section 2.2,
we introduce the topic of IAMs and their uncertainties, in Section 2.3, we pro-
vide insights on the specific class of models CB-IAMs, while in Section 2.5,
we present a literature review on the topic of climate change and economic
inequality.

2.1 Climate policy

As anthropogenic climate changes acquire importance and unprecedented ur-
gency amongst the global issues that mankind has to face, several instruments
to address this challenge are analyzed and proposed by the scientific commu-
nity. Such instruments usually fall within the category of climate policies. They
can be local, national or international and are designed to tackle climate change
in two ways. Mitigation policies aim to minimize the extend of climate change,
for example by reducing GHG emissions improving energy efficiency, and tax-
ing or regulating GHG emissions and energy sources. Adaptation policies aim
to minimize the risks of climate change, for example by erecting safer and more
sustainable buildings and infrastructures or restoring damaged ecosystems.

In order to fulfill the temperature target of the Paris Agreement (UNFCCC,
2015), more and more ambitious climate policies are needed. Several reviews
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of such policies are available in the literature, see Fischer and Newell (2008);
Peñasco et al. (2021). In particular, in a comprehensive review of decarboniza-
tion policies, Peñasco et al. (2021) provide a framework to assess the impacts
of ten different policies. These include building codes and standards, renew-
able energy obligations, government procurement, public Research and Devel-
opment (R&D) funding, feed-in tariffs or premiums, energy auctions, energy
taxes (like a carbon tax) and tax exemptions, GHG emissions allowance trad-
ing schemes, tradable green certificates and white certificates (or energy effi-
ciency standards). Usually more objectives are considered by climate policies,
together with climate mitigation and adaptation. Aspects like economic com-
petitiveness and affordability, or fairness and social outcomes are taken into
account. This leads to the implementation of policies that could be more popu-
lar and effective over more issues, not just the environmental one. The authors,
together with the environmental and economics goals, evaluate several addi-
tional outcomes related to aspects like technology and innovation or distribu-
tional outcomes in order to identify potential trade-offs in the implementation
of such policies. While there is wide agreement on the positive outcome of all
the policies from an environmental and innovation point of view, other aspects
are rather debated. For example, measures like R&D have a positive impact
on competitiveness like increasing the probability that a firm receives venture
capital fundings (Howell, 2017). On the other hand, measures like GHG trad-
ing systems and energy taxes may have negative competitiveness and distri-
butional impacts like lowering employment rates because of the higher energy
costs (Scrimgeour et al., 2005) and because they may place higher burdens on
middle expenditure deciles (Flues and Thomas, 2015).

2.2 Integrated Assessment Models

Amongst the many instruments used to evaluate climate policies and inform
policymakers, Integrated Assessment Models (IAMs) play a very relevant role
and have been used to evaluate climate policies for decades (see Nordhaus (1993)).
As discussed by Weyant et al. (1995) explains, an integrated assessment frame-
work combines knowledge from different disciplines in order to explore pos-
sible future trajectories of human and natural systems, develop insights about
policy effects on efficacy and prioritize research needs. In particular, IAMs
connect climate, economy and energy to assess impacts or optimize climate
policies.

Two main categories of IAMs are identified by Weyant (2017):
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Figure 2.1: Complex sectoral interactions (Weyant, 2017).

1. CB-IAMs.

2. DP-IAMs;

Both categories are used to evaluate climate policies, but considering climate
impacts differently.

As explained by Weyant et al. (1995) and Fisher-Vanden and Weyant (2020), CB-
IAMs balance the marginal costs of controlling GHG emissions against those of
adapting to any climate change and are characterized by an aggregated repre-
sentation of impact and mitigation costs, usually aggregating sectors and re-
gions into single metrics. Some popular examples of CB-IAMs are DICE (Nord-
haus, 1993), RICE (Nordhaus and Yang, 1996) or Climate Framework for Uncer-
tainty, Negotiation and Distribution (FUND) (Anthoff , 2009).

On the other hand, as described by Weyant (2017), DP-IAMs are more disag-
gregated, with their components divided into a number of parts. Their purpose
is to provide assessments at a detailed regional and sectoral level. Some mod-
els perform this task using detailed economic evaluations of the costs of climate
change, others use projections of physical impacts like land inundated by sea
level rise or additional heat-stress death. This class of models is typically used
to perform mitigation analysis and study the energy-economic impacts on mit-
igation policies, analyze climate impacts on specific sectors like biodiversity or
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water resources. DP-IAMs can also be used to integrate mitigation and impact
analysis. This integration is useful because, as countries implement mitigation
and adaptation policies, these policies affect the climate. This in turn affects the
efficacy of the implemented strategies. These dynamics between the climate
and the efficacy of adopted climate policies can be captured and analyzed by
DP-IAMs integrating mitigation and impact analysis. Since DP-IAMs provide
more information on physical aspects, mitigation costs and impacts on specific
sectors, often the results of such models can be used to calibrate the main dy-
namics of more simple CB-IAMs. Some examples of DP-IAMs are REgional
Model of Investment and Development (REMIND) (Ueckerdt et al., 2017, 2019)
or IMAGE (Stehfest et al., 2014).

The number of such models has constantly increased up to approximately
20 global scale IAMs (Fisher-Vanden and Weyant, 2020). Those model have been
developed at different level of complexity, which increased in time, but most
importantly depends on the purpose of the IAMs. Usually CB-IAM are more
simple, like the original DICE (Nordhaus, 1993), which aggregates together the
whole world in a single region and uses a Ramsey model of optimal economic
growth integrated with a simple representation of the major forces affecting cli-
mate change to estimate an optimal path for emission abatement. Those mod-
els have a low level of complexity mainly because of the computational effort
needed to run them: optimizing a policy using a a highly detailed CB-IAM on
time scales of hundreds of years would require an exaggerated amount of time.
On the other hand, models like the DP-IAM can have a greatly improved level
of detail, like introducing higher degrees of geographical representation and
assessments of climate and non-market impacts also on biological and human
resources like agricultural impacts and terrestrial and ocean ecosystems (Reilly
et al., 2013). Those detailed evaluations are possible because DP-IAM only per-
form analyses on limited regions and specific aspects of climate change. Fig-
ure 2.1 represents an example of the complex interactions between climate and
non-climate-related sectors typical of IAMs.

2.2.1 Uncertainty in the Integrated Assessment Models

The use of IAMs includes projecting the future of the world over many decades
using several assumptions on aspects like productivity growth, technology dif-
fusion and development and projections about future policies (Weyant, 2017).
Unsurprisingly, this leads to strong uncertainties. Amongst the most relevant
types of uncertainties there are:

1. input uncertainties addressing measurements or the processing operations
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like extrapolations;

2. model uncertainties for example in the specification of an aggregate pro-
duction function;

3. parametric uncertainty such as uncertainties about climate sensitivity.

This can lead to a wide variety of different results between models, for this
reason the analyses and understanding of uncertainties in IAMs is of great im-
portance for policymakers. Socio-economic scenarios, climate impact functions
(also called damage functions) and climate models outputs are key aspects of
IAMs affected by relevant uncertainties. Some frameworks have been pro-
posed to simplify and order all these possible combinations of uncertain fac-
tors. For example, the SSP represent a scenario framework based on five narra-
tives describing alternative socio-economic developments, comprising differ-
ent narratives on aspects like economic and demographic drivers, energy sys-
tems, Land-Use change, emissions and mitigation scenarios, depicting a wide
uncertainty range on such long term projections (Riahi et al., 2017; O’Neill et al.,
2017). The definition of these pathways simplifies the use of all the combina-
tions of socio-economic scenarios, as they represent a universally known point
of reference.

Gillingham et al. (2018) use multiple IAMs to provide a detailed exploration
of the parametric uncertainty of three parameters relevant for influencing un-
certainty in the economics of climate change. The analyzed parameters are: the
rate of growth of productivity, the rate of growth of population, and the equi-
librium climate sensitivity, defined as the equilibrium change in global mean
surface temperature from a doubling of atmospheric CO2 concentrations. Their
aim is to develop a quantification of the uncertainty in policy-relevant model
outcomes that are commonly represented in several IAMs, such as: tempera-
ture, carbon dioxide concentrations and economic output. Amongst their key
findings, the projections of the IAMs are similar when using the modeler’s
baseline parameters, but diverge when different assumptions on the param-
eters are used. Despite these differences in the projections, the distributions of
the relevant outputs are similar across models with different structures. Lastly,
climate-related variables result to have lower uncertainty than economic vari-
ables.

Another very relevant source of both uncertainty and debate amongst aca-
demics are the climate impact functions. Many functions have been estimated
using methods like:

1. expert elicitation, based on interviews with a large number of scientists
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to collect their subjective opinion on climate economic impacts (Nordhaus,
1994);

2. science-based estimates, imposing physical thresholds like a temperature
change that represents a threat to human civilization (Weitzman, 2012);

3. econometric methods based on the analysis of economic growth and tem-
perature variation over time (Dell et al., 2012; Burke et al., 2015; Kahn et al.,
2019).

Those different approaches lead to a significant uncertainty on the impact esti-
mation, which can span from 0 to -10.2% of GDP for a temperature increases of
1-6°C according to experts elicitation, to an impact of -4.9 to -99% of GDP for
temperature increases of 3-12°C according to science-based estimates (Howard
and Sterner, 2017).

IAMs have been subject of criticism, most relevantly by Pindyck (2013, 2017),
because of their high uncertainties and, most relevantly, because of how they
are designed. Pindyck claims that: "These models have crucial flaws that make
them close to useless as tools for policy analysis" and give the false impression that
we know more than we actually do, thus creating the impression of a scientific
legitimacy. The main points of Pindyck critique concern the use of arbitrary
parameters, the impact functions, the treatment of uncertainty and the lack of
consideration for catastrophic outcomes.

All the impact functions have been criticized by Pindyck, stating that they
are made up arbitrarily, without being based on any theory or data. Pindyck
(2013) claims that the use of these arbitrary functions might not be very rele-
vant for a small temperature increase like 2-3°C since there is consensus that
the damages could be small. However, for higher temperature increases such
functions would tell us nothing about how much damages to expect.

IAMs also rely on highly uncertain parameters, one of the most relevant
being climate sensitivity. According to Pindyck, it is determined by physical
mechanisms that are largely unknown ((Forster et al., 2021) for the most recent
insights on climate sensitivity).

Trying to treat these uncertainties by assigning probability distributions and
running Monte Carlo simulations is not feasible because it is unknown which
distributions to assign to the uncertain parameters. Lastly, a problem of IAMs
is that they do not take into account catastrophic outcomes, defined as a large
decline of human welfare. Even if a similar outcome is highly unlikely, it would
be a very relevant driver of the Social Cost of Carbon (SCC). The SCC, defined
as the marginal cost of the impacts caused by emitting one extra tonne of GHG,
is one of most common climate mitigation policies implemented in IAMs. To
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solve these issues and evaluate a SCC, Pindyck (2019) proposes a survey of ex-
perts giving their opinions on the probability of an extreme outcome of climate
change and the reduction of GHG needed to avoid this outcome. Pindyck al-
ready considers the input of IAMs as experts’ opinions, so a survey would be
simpler and transparent.

Lastly, Pindyck also argues that the welfare function upon which IAMs are
based is largely dependent from parameters like the index of relative risk aver-
sion and the social time preference. The social time preference, also called dis-
count rate, is an important parameter used in Cost-Benefit Analysis (CBA). It
defines a relationship that makes consumptions at different points in time com-
parable with each other. This is achieved by assigning current values to future
consumptions (Feldstein, 1964). It reflects society’s evaluation of the relative
desirability of future consumption: a low value of this parameter favors con-
sumption in future points in time. The value of such parameters, which have
a strong influence on the outcomes of the models, is arbitrary and based on
ethical arguments. This gives to the modellers a high flexibility to the point
that a desired outcome can be obtained by a modeler by simply changing those
parameters according to their beliefs.

The social time preference was also at the centre of a debate between William
Nordhaus and Nicholas Stern. In his works, Nordhaus usually adopts a rate
of social time preference of 3% (Nordhaus, 1993). On the other hand, in Stern
(2006) a value of 0.1% is adopted. Nordhaus argued that the adoption of such a
low value is based on ethical judgement, rather than on scientific or economic
arguments (Nordhaus, 2007a,b). Because of this, Nordhaus (2007b) claimed that
the conclusions of work proposed by Stern, calling for urgent and immediate
action against climate change, were based on results not consistent with the
marketplace’s real interest rates and savings rates (Nordhaus, 2007b). Indeed,
Stern provided extensive ethical perspectives on the use of such a low rate of
social time preference. The main arguments are reported in Stern (2014a) and
Stern (2014b). However, Stern also asserted that the results of his review were
supported not only by ethical judgments but also by updated climate impacts
estimate and explicit risk assumptions (Stern and Taylor, 2007).

2.3 Cost-Bene�t Integrated Assessment Models

This thesis work focuses on the use of CB-IAMs. These models are used to as-
sess optimal mitigation pathways over different scenarios performing a CBA.
The CBA accounts for costs and benefits to optimize a policy associated to a
given scenario and help a policymaker to choose the most beneficial according

11



2. State of the art

to explicit criteria. From a climate change perspective, a climate policy optimal
from a CBA point of view is one for which marginal costs equal marginal bene-
fits. As explained by Weyant (2014, 2017), CB-IAMs are widely used mainly for
three applications:

1. evaluate optimal trajectories of GHG emissions and the corresponding
prices to charge for those emissions;

2. evaluate costs and benefits of non-optimal climate policies;

3. compute the SCC.

An optimal climate policy maximizes welfare value evaluated by the IAM
of choice, minimizing the impacts of climate change and the mitigation costs.
A policy evaluated by most of CB-IAMs consists in optimizing a control rate
on emissions, that can be implemented by imposing a price on the emissions.
This corresponds to an optimal carbon tax policy, namely a carbon tax equal
to the optimal marginal climate impact and mitigation cost. Other examples
of climate policies can be found, for example, in Chaturvedi and Shukla (2014).
The authors utilize the Global Change Assessment Model (GCAM) to evalu-
ate the energy efficiency role in climate mitigation policies in India and show
the importance of energy efficiency in reducing the building sector demand.
Further policies like R&D funding to advance technological change and energy
efficiency are implemented in such models. For example (Bosetti et al., 2007)
implements R&D in the World Induced Technical Change Hybrid (WITCH)
model to model technological change induced by climate policy and Kemfert
(2005) integrates induced technological change in the World Integrated Assess-
ment General Equilibrium Model (WIAGEM), demonstrating both the impor-
tance of such feature in the evaluation of mitigation policies and the positive
effects of investment projects on energy efficiency.

On the other hand, a non-optimal climate policy consist in a policy pursu-
ing a specified target in terms of, for example, GHG emissions or temperature
targets. Such policies are defined as non-optimal because pursuing them result
in having higher costs with respect to the optimal ones.

Some of the IAMs most common in the scientific literature, in addition to
those already mentioned, are the DICE model (Nordhaus, 1993), previously in-
troduced, but also RICE, a regional version of DICE (Nordhaus and Yang, 1996),
the Policy Analysis of the Greenhouse Effect (PAGE) model (Nordhaus, 2007b;
Hope, 2011) and the FUND model (Anthoff , 2009). Notably, updated versions of
the DICE model have recently been used to demonstrate that the Paris Climate
Agreement represents the optimal policy pathway for this century (Glanemann
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et al., 2020; Hänsel et al., 2020), result confirmed also by RICE50+ by Gazzotti
et al. (2021).

2.4 Treatment of uncertainty in Cost-Bene�t Integrated Assess-

ment Models

A condition of strict - or deep - uncertainty has been defined by Knight (1921)
and French (1986) as a condition in which it is not possible to say anything at
all on the true state of nature: it is neither known nor it is possible to quan-
tify this uncertainty in any way. It is only possible to define a list of possible
states of the world. Given the great uncertainty in socioeconomic assumptions,
climate impacts and climate scenarios previously mentioned, the analysis of cli-
mate policies falls within the discipline of decision making under uncertainty.
For this reason it is no longer possible to use approaches based on single best-
estimates views of the future (Lempert et al., 2006). These uncertain factors can
be explored through the construction and analysis of scenarios (Giudici et al.,
2020; McPhail et al., 2020).

In order to evaluate the performances of policies over an ensemble of sce-
narios, the concept of robustness can be utilized to identify a robust policy. A
policy can be defined as so when its performances result to be insensible to
changes in future conditions (Kasprzyk et al., 2013; Maier et al., 2016). The eval-
uation of such policies is useful for policymakers in order to choose between
alternatives that can lead to satisfying outcomes regardless of which future sce-
nario should come true. This evaluation task, called robustness analysis, can be
performed using a large number of quantitative methods that reflect the level of
risk-aversion of a Decision Maker (DM). There are, for example, metrics based
on expected value (Wald, 1949). Further metrics are based on regret, where re-
gret is defined as the difference between the performance of the selected option
for a plausible scenario and the best possible outcome for the same scenario
(Savage, 1951). Some metrics are based on the satisfaction of a threshold (Simon,
1956). Lastly, there are metrics also based on high-order statistical moments
(Voudouris et al., 2014; Kwakkel et al., 2016). For a review of proposed methods
on describing decisions under uncertainty see Jonathan et al. (2015), in which
the authors present a taxonomy of robustness frameworks to compare exist-
ing different methods to perform robustness analysis based on their methods
of alternatives generation, sampling of the states of the world, quantification
of robustness measures and identification of key uncertainties using sensitivity
analysis.
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Robustness analysis represents a very important tool in the analysis of cli-
mate policies optimized by CB-IAMs, because it is standard practice to explore
the high uncertainties of assumptions and parameters by building large ensem-
bles of scenarios. Simple metrics like Maximin and Maximax (Wald, 1949) have
been used to evaluate scenarios based on the Fifth Assessment Report of the
IPCC (IPCC, 2013), and rank climate policies according to the level of risk aver-
sion, showing how the preferences of a DM over uncertainties are as important
as the choice of parameters like the discount rate (Drouet et al., 2015). More
complex quantitative methods have also been proposed to evaluate alternative
climate policies like the Robust Decision Making (RDM) method(Lempert et al.,
2006; Hall et al., 2012), which is capable of generating possible robust strategies,
represent uncertainties by identifying a plausible set of states of the world and
identifies such states where the strategies perform poorly.

2.4.1 Additional climate policy targets in Cost-Bene�t Integrated Assessment
Models

IAMs are utilized to optimize policies or evaluate specific targets, however this
overlooks the fact that climate policies affect a large number of possible stake-
holders and can have relevant trade-offs, as previously mentioned. To address
this major issue, a recent development in the IAMs landscape has been the
introduction of multi-objective analysis to consider additional climate policy
targets.

Garner et al. (2016) proposes a version of DICE that considers four objec-
tives: global economic productivity, reliable temperature stabilization, climate
damages and abatement costs, quantifying important trade-offs. For example,
the authors find a strong disagreement between solutions maximizing global
economic productivity and reliable temperature stabilization, and given this
disagreement it is unlikely that the two could be formulated as a single ob-
jective. Without the use of a multi-objective formulation, this trade-off would
have been hidden from policymakers, providing them with a poorer context.
A similar analysis has been also proposed by Marangoni et al. (2021) using a
slightly modified version of the DICE model proposed by Garner et al. (2016).
The authors uses a multi-objective formulation to analyze adaptive mitigation
strategies, which prove themselves to be significantly more convenient, both
environmentally and economically, that predetermined strategies, especially in
a context of deep uncertainty like climate change.
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2.5 Economic inequality

An important aspect of climate change, often overlooked in IAMs, is the spatial
heterogeneity of the impacts (Dell et al., 2012; Burke et al., 2015; Diffenbaugh and
Burke, 2019; Kahn et al., 2019; Taconet et al., 2020) and the economic inequality
they lead to.

Three types of economic inequality are distinguished in the literature (Mi-
lanovic, 2011):

1. unweighted international inequality, which compares countries’ GDP per
capita by giving the same weight to every country, regardless of their pop-
ulation size;

2. population-weighted international inequality, which weights each coun-
try’s income by its population, assuming everyone in a country receives
the same income;

3. inequality across all individuals in the world.

The second type of inequality, which gives equal weight to every individ-
ual, is the most considered in the climate change literature. Growing evidence
shows that the impacts on the poors are larger than the impacts on the average
population (Hallegatte and Rozenberg, 2017), that poor countries will suffer the
bulk of the damage (Mendelsohn et al., 2006) and that climate change worsens
existing inequalities (Hallegatte and Rozenberg, 2017; King and Harrington, 2018;
Taconet et al., 2020).

Since the wealthiest countries are responsible for the vast majority of his-
torical GHG emissions, the issues of mitigation and adaptation are intertwined
with questions of justice on how the mitigation efforts should be shared. The
economic damages estimation of the UN mitigation targets (UNFCCC, 2015) by
Burke et al. (2018), based on historical economic responses to temperature vari-
ability (Burke et al., 2015), shows that achieving the stringent mitigation target
of 1.5°C will likely generate a net global benefit and lessen global inequalities,
since the consequences of achieving such target will be unequally distributed
with the poorest countries benefiting the most. Such considerations on inter-
national justice do not only interest countries, but individuals as well (Nielsen
et al., 2021)

Even though some commentators and academics argued that inequality is
not an important social problem (e.g. see Peterson (2017) for a review of the
arguments), a growing scientific literature shows that it is a scientifically inter-
esting question to study the evolution of global inequality and its connections
with climate change.
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The study by Diffenbaugh and Burke (2019) investigates the impact of histor-
ical anthropogenic climate change on country-level per capita Gross Domestic
Product (GDP), basing their work on previous relationships between economic
growth and temperature variability (Burke et al., 2015, 2018). By quantifying the
temperature trajectories in absence of anthropogenic forcing in many countries
and combining these trajectories with a temperature-GDP response function,
the authors calculate the counterfactual per-capita GDP, to calculate the impact
of historical forcing on population-weighted country-level inequality. Their re-
sults show that warming-induced penalties in poor countries and warming-
induced benefits in some rich countries increased inequality between countries
to the point that the ratio between the top and bottom population-weighted
deciles (Sala-i Martin, 2006) over the period 1961 - 2010 is 25% larger than in a
world without global warming.

The influence of climate change on within-country inequality would be a
critical question, but within-country inequality is difficult to model, requires
strong assumptions and comprehensive subnational data on incomes. (Taconet
et al., 2020; Diffenbaugh and Burke, 2019).

2.5.1 Economic inequality in Integrated Assessment Models and future prospects

Economic inequality is a social issue that has often been overlooked in IAMs,
with some notable exceptions. In particular, in their analysis Taconet et al. (2020)
relies on projections of mitigation costs and climate impacts of multiple IAMs
to build country-by-country GDP trajectories up to 2100, exploring 3408 sce-
narios. Their results show that in scenarios of high climate damages and low
mitigation, climate damages may outweigh the forecasted economic catch-up
of low-income countries, thus inequalities between countries may stop their
declining trend and rise again. Gazzotti et al. (2021) also give relevance to eco-
nomic inequalities, which are introduced in the new welfare formulation of
their RICE50+ model. Their results show that even following economically op-
timal mitigation policies, complying with the Paris Agreement, climate change
impacts increase inequalities and this effect can only be partially reduced by
mitigation, even in optimistic scenarios of cooperation and care for inequal-
ity. Despite the previously mentioned difficulties about data and assumptions,
there have also been attempts at representing inequality within geographical
regions in IAMs. As a relevant example, Dennig et al. (2015) base their anal-
ysis on World Bank data on national income and propose a modified version
of the RICE by dividing the regions into population quintiles and calculating
quintile distributions of income. For their analysis, the authors do not change
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the discounting assumptions of Nordhaus (Nordhaus, 2007b) and their results
show that when climate damages are distributed inversely proportionally to
income, the optimal mitigation efforts suggested by their model is equivalent
to the optimal mitigation in RICE under the assumptions of the Stern Review
(Stern, 2006).

In order to improve the evaluation of climate policies with respect to in-
equality, several options have been suggested. The literature on climate policies
traditionally follows a discounted-utilitarian Social Welfare Function (SWF) ap-
proach (Nordhaus, 1993; Stern, 2006), but Adler et al. (2017) propose the use of a
non-discounted prioritarian SWF, an uncommon approach for the evaluation
of climate policies. The concept behind this approach is to give greater weight
to well-being changes that affect worse-off individuals and, as the name sug-
gests, the formulation of the SWF following this approach does not include a
time-discount factor, thus being impartial between generations. Other practices
consist in enhancing the representation of poverty and inequality (Rao et al.,
2017), like adopting model features that incorporate social heterogeneity and
policy mechanisms. Other dimensions of inequality, currently lacking from the
analyses, should be implemented. Quantitative inequalities have been incor-
porated in IAMs more than qualitative and qualitative inequalities can hardly
be summarized by income inequality (Emmerling and Tavoni, 2021). For this rea-
son, Emmerling and Tavoni (2021) underline the importance of including a more
comprehensive list of dimensions of inequality into IAMs, like gender, race and
education.
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3
Methods

3.1 Introduction

The purpose of this thesis is to analyze how much the narratives of the SSP
and impact functions influence the performance of the optimal benefit-cost so-
lutions of the RICE50+ model over an ensemble of possible future scenarios,
identify which scenarios have the worst performance, and the importance of
the different drivers of uncertainty in defining such scenarios, and performing
a robustness analysis to identify the most robust solutions of the model. To
achieve these goals, we adopt the methodological procedure illustrated in fig-
ure 3.1, which reports the flowchart of the work used to perform the analyses
and the results obtained for each one of the three research questions previously
introduced in Section 1.2.

To evaluate the performance of the model, we selected relevant objectives
in terms of welfare, temperature and economic inequality, and we built an en-
semble of possible future scenarios by combining uncertain assumptions of the
model such as the SSP, the impact functions and the scenarios of Land-Use (LU)
emissions. We analyzed the performances of the optimal solutions of model
over their original scenario and over the entire ensemble of scenarios.

We then applied the algorithm of scenario discovery called PRIM (Friedman
and Fisher, 1999), which is used to identify scenarios that systematically lead to
unsatisfying performances and allows to quantify the relevance of every uncer-
tain driver defining those scenarios (Bryant and Lempert, 2010).

We implemented six different robustness metrics to perform a robustness
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Figure 3.1: Flow chart of the analysis process. The blue boxes represent the methods applied, while the
blue outlines represents the results associated with the methods and the arrows point to the logical
progression of the analysis. The chart is divided in three parts by the black dashed lines, associating
methods and results to the research question they answe to.

analysis and analyze the solutions according to those different metrics, cover-
ing different risk aversion levels. The results have been used to identify the
most robust solutions of the model across the different metrics and objectives,
and lastly we analyzed policy-relevant parameters of the most robust solutions
like the optimal emission control rate.

In the following sections we explore the different methodologies adopted to
perform these analyses.

3.2 The RICE50+ model

This study is based on the benefit-cost assessments of the RICE50+ model by
Gazzotti et al. (2021), which is based on the DICE model by Nordhaus, specifi-
cally the version DICE-2016R2 used in Nordhaus (2018). Many IAM have been
recently updated to include recent empirical assessments on climate change
economic impacts. These include: DICE (Moore and Diaz, 2015; Glanemann et al.,
2020; Hänsel et al., 2020), REMIND (Ueckerdt et al., 2019) or FUND (Moore et al.,
2017). The RICE50+ model also accounts for geographic heterogeneity and in-
equality as a key component of welfare optimization (Gazzotti et al., 2021). In
the following sections, we will provide a brief description of the components
of the model that are most relevant for our specific analyses. For more details
see Gazzotti et al. (2021).
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Figure 3.2: Geographical rapresentation of the regions of the model.

3.2.1 Regional aggregation and economy

The model accounts for 57 independent regions, based on the finest regional
disaggregation of the marginal abatement costs curves (MACC) available. The
socio-economic drivers come from the SSP (Riahi et al., 2017). Figure 3.2 shows
all the 57 independent regions.

The economic representation in the RICE50+ model is largely based on the
representation from Nordhaus DICE model. It computes the GDP production
for each region i and time t using a Cobb-Douglas production function:

YGROSS,i(t) = TFPi(t) · Ki(t)α · Li(t)1−α (3.1)

where TFPi(t) is the total factor productivity, Ki(t) the capital and Li(t) the
labor. The savings rates Si(t) determine investments and capital according to:

Ii(t) = Si(t) ·Yi(t) (3.2)

and:
Ki(t + 1) = (1− δk)

∆t · Ki(t) + ∆t · Ii(t) (3.3)

In DICE they are usually left as free variables to be optimized, but in this case
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the savings rates have been fixed starting from historical values and converging
linearly to the projections of DICE-2016R2, since the savings were not affecting
the results of the optimizations in a meaningful way and were increasing the
model complexity.

3.2.2 Emissions abatement

Every region can reduce their GHG emissions by increasing the fraction of
emissions to mitigate µi(t), hereafter also called emission control rate. The
evolution of this variable is therefore optimized by the cost-benefit analysis. It
ranges between [0, 1.2] and, unlike the original DICE formulation, the RICE50+
model also introduces a limitation in the mitigation increasing rate. As Hänsel
et al. (2020) did, a maximum increase rate of 20% over a 5-years period is fixed.

3.2.3 Climate impact functions

The RICE50+ model implements the following empirically-estimated impact
functions:

Burke et al. (2015) impact function

Burke et al. (2015) found a non-linear relationship between economic produc-
tivity and annual average temperature, with a maximum productivity at 13 °C
and strongly declining at higher temperatures. Using long-run estimates and a
single equation for every region, a function of growth effects related to country
level temperature was obtained:

h(Ti(t) = 0.0127 · Ti(t)− 0.0005 · Ti(t)2 (3.4)

The impact function is hereafter called Burke-Hsiang-Miguel (BHM). The
model uses four alternative specifications, which include different time lags,
capturing short-run (SR) and long-run (LR) impacts, and accounting for the
income differentiation between rich and poor countries. The corresponding
specifications are SRdiff and LRdiff.

The impacts on the production growth rate δi,BHM(t) are obtained by com-
puting the difference between the result of Equation 3.4 at time t and the same
value under reference temperature Ti0, defined as the average values between
1980 and 2010:

δi,BHM(t) = h (Ti(t))− h (Ti0) (3.5)
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Dell et al. (2012) impact function

Dell et al. (2012) provide another empirical estimation of a linear relationship
between temperature and economic growth. The relationship is composed of
a general, almost insignificant in magnitude, effect and a strong negative effect
of growth reduction that affects only poor countries, defined as having GDP
per capita below the median in the base year. The relationship is formalized as:

δi,DJO(t) = 0.00261 · (Ti(t)− Ti0)− 0.01655·
(Ti(t))− Ti0) |GDPpci(t0)<Median(GDPpci(t0))

(3.6)

Kahn et al. (2019) impact function

The last empirical estimation by Kahn et al. (2019) provides an empirical rela-
tionship between growth rate and the changes of the country-level temperature
over the historical norm. The results show a decrease of growth rate for a one
degree both in temperature rising and decreasing. There is no differentiation
between rich and poor countries. The relationship is:

δi,Kahn(t) = −0.0586 ·
(
[Ti(t)− Ti(t− 1)]− [Ti(t− 1)− Ti(t− 2)]

)
|Ti(t)>Ti(t−1)

−0.0520 ·
(
[Ti(t)− Ti(t− 1)]− [Ti(t− 1)− Ti(t− 2)]

)
|Ti(t)<Ti(t−1)

(3.7)

with Ti(t− 1) = n−1 ∑n
τ=1 Ti(t− τ) for n = 6.

3.2.4 Welfare

The RICE50+ model implements an extended welfare function with respect to
the original DICE. It replicates the idea of maximizing global consumption, but
it also allows to gradually change from equal marginal utility to population
weighting by using a parameter of inequality aversion γ. It is defined as:

W =
T

∑
t=1

 1
1− η

(
∑

i
wpop,i(t)

(
Ci(t)
Li(t)

)1−γ
) 1−η

1−γ

− 1

 · (1 + ρ)−t (3.8)

The model uses the four reference levels listed in table 3.1. The parameter ρ

represents the utility discount rate, also called rate of social time preference per
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γ value Interpretation
0 No inequality aversion

0.5 Intermediate inequality aversion (default)
1.45 High inequality aversion

2 Very high inequality aversion

Table 3.1: Inequality aversion alternative values

year (prstp), and has a default value of 1.5%. The regions can maximize their
welfare either in a non-cooperative or cooperative setting.

3.2.5 Land-use

Land-Use (LU) is an exogenous addition to the RICE50+ model dynamics. The
model takes the decreasing trend typical of DICE-2016R2 and differentiates
two cases: in the first case used for Buisness As Usual (BAU), every region
is affected by the decreasing trend. This means that high-emitting countries
decrease their emissions over time and countries that start with negative emis-
sions increase their emission towards the zero value. In the second case, used
for CBA optimizations, the decreasing trend is applied only to countries that
start with a positive value.

3.2.6 The RICE50+ model modi�cation

We modified the RICE50+ model in order to re-simulate its optimal solutions
over a range of scenarios. In this new version, the model takes as input the
optimal emissions control rate µi(t) of every region over the time period 2020
- 2300, each set corresponding to one of the 479 optimal solutions of the model
used in Gazzotti et al. (2021).

For the re-simulation of every solution, the model’s parameters are set to
match the values used to optimize that specific solution. Then, the model re-
simulates the solution over an ensemble of 60 scenarios given by the combina-
tion of:

1. the five SSPs;

2. the six impact functions described in Section 3.2.3:

• the four specifications of the BHM function: BHM-SR, BHM-LR, BHM-
SRdiff, BHM-LRdiff;

• the Dell-Jones-Olken (DJO) impact function;

• the Kahn impact function.
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3. the two cases of Land-Use emissions described in Section 3.2.5.

This allows us to explore the uncertainty over climate impacts, socioeconomic
and emissions scenarios,

The re-simulations lead to a total of 28.740 model runs, and for each one of
them the values of relevant objectives have been extracted. It therefore gen-
erates a data set of 28.740 values for each of the five objectives considered (see
Section 3.3). Note that inequality aversion and discount rate have not been con-
sidered in the generation of the scenarios. For every simulation they are fixed
to the values used in the optimization of the corresponding solution.

We performed the analyses on the data set obtained from the model runs
and on two other specific subsets:

1. a subset obtained by considering only solutions optimized with the CBA
Land-Use emission case, while ignoring the solutions optimized with the
BAU Land-Use emission case. This results in 26.940 values for each objec-
tive, and hereafter the dataset will be called CBA-subset;

2. a subset obtained by considering only the cooperative solutions resulting
in 21.540 data for every objective, here called Coop-subset. Note that the
Coop-subset is also a subset of the CBA-subset, since the cooperative so-
lutions have been optimized only considering a CBA Land-Use emissions
case.

3.3 Objectives

We carried out the analysis considering relevant objectives in terms of wel-
fare, temperature and economic inequality, all extracted from the runs of the
RICE50+ model’s solution over the ensemble of scenarios.

3.3.1 Welfare objective

In terms of welfare, the objective that we selected is the welfare value produced
by the RICE50+ model, described in Section 3.2.4 up to year 2100. The welfare
values have been normalized between 0 and 1 using a min-max feature scaling,
so given a set of welfare values W where Wi is the value resulting from scenario
i, the normalized welfare value is obtained applying the formula:

normWi =
Wi −min(W)

max(W)−min(W)
(3.9)
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The solutions which perform better in terms of welfare will have a value of 1
and the worst a value of 0.

3.3.2 Temperature objectives

As for temperature, the selected objective is the GMT evaluated by the model
in the year 2100. The best performances are represented by solutions with the
minimum values of temperature increase in 2100.

3.3.3 Inequality objectives

To consider economic inequality, many indices have been proposed in the liter-
ature. In this thesis we selected three amongst eight of the most popular (Sala-i
Martin, 2006).

Figure 3.3: Graphical representation of the Lorenz curve (Gastwirth, 1972).

The first index that has been selected as objective is the Gini index; this index
represents income inequality between a population and it is defined based on
the Lorenz curve L(p) represented in Fig.3.3. The curve is defined ∀p ∈ [0, 1]
and represents the fraction of the variable measured (like income) that the hold-
ers of the smallest pth fraction possess. The Gini index is defined as the ratio
of the area between the Lorenz curve L(p) and the 45° line to the area under
the 45° line (which is 1/2) (Gastwirth, 1972). The Gini index is also commonly
defined as half of the relative mean absolute difference. The relative mean ab-
solute difference is the average absolute difference between two individuals
or entities in the considered population divided by twice the level of income.
Given a population of N entities where xi is the income of entity i and x, the
Gini index is given by:
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G =
∑N

i=1 ∑N
j=1 |xi − xj|
2N2x

(3.10)

The second and third indexes selected are the ratios between:

1. top and bottom income deciles (90/10 ratio);

2. top and bottom income quintiles (80/20 ratio);

of the population-weighted country-level per capita GDP (Sala-i Martin, 2006;
Diffenbaugh and Burke, 2019; Gazzotti et al., 2021). According to Sala-i Martin
(2006):

The top-20-percent-to-bottom-20-percent is the ratio of the income of the per-
son located at the top twentieth centile divided by the income of the corre-
sponding person at the bottom twentieth centile. A similar definition applies
to the top-10-percent-to-bottom-10-percent ratio.

The three indexes are referred to the year 2100. The solutions which perform
better in terms of economic inequality, meaning that they have minimum levels
of inequality, will have minimum values of each of the three selected objectives.

3.4 Patient Rule Induction Method

PRIM, introduced by Friedman and Fisher (1999), is a scenario discovery algo-
rithm. Scenario discovery is based on the use of statistical or data mining
algorithm to find policy-relevant clusters of cases in large multidimensional
datasets of simulation model results. In particular, given a simulation model
with inputs x = (x1, x2, ..., xn) and output y, the purpose of the PRIM algorithm
is to determine likely values of y for specified values of x. This algorithm is used
to find combinations of constraints on a number of input parameters that pre-
dict policy-relevant cases, providing a quantitative justification for the choice
of some scenarios with respect to others (Lempert et al., 2008). The algorithm
has a wide range of possible applications, from identifying high-risk hospital
patients (Nannings et al., 2008), to analyzing terrorism data (Porter and Brown,
2007), up to the uncertainty analysis of climate scenarios (Rozenberg et al., 2014;
Taconet et al., 2020). In the following section, we will provide a brief description
of the algorithm, for more details see Friedman and Fisher (1999).

3.4.1 The algorithm

The ultimate goal is to seek a sub-region of the space of input values within
which the average value of the output is larger (or smaller) than the average
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over the entire input space. It is important to notice that maximizing a function
is equivalent to minimizing its negative, so it is possible to consider only the
maximization operation. Given a function f (x) with inputs x and output y, we
define Si as the set of possible values of input xi, which could represent real or
categorical values. The entire input domain S is represented by:

S = S1 × S2 × ...× Sn (3.11)

The goal of the algorithm can be formalized as finding a solution region R,
subset of S, so that the average of the input over the R is:

ŷR =
1

N · β̂R
∑

xi∈R
yi � y (3.12)

where y is the output average over the entire input space and β̂R represents a
property of any sub-region called support and defined as:

β̂R =
1
N ∑

xi∈R
1(xi ∈ R) (3.13)

The function 1(xi ∈ R) is an indicator function that has value of 1 if xi ∈ R and
0 otherwise. Such solution region R is specified by logical conditions involving
the values of the input variables, that is, it is defined as the union of a set of K
sub-regions {Bk}K

1 . If sik represents a subset of possible values of input xi, then
each sub-region Bk, also called box, is defined as:

Bk = s1k × s2k × ...snk (3.14)

Thus, every box is described by the intersection of subsets of values of each
input:

x ∈ Bk

n⋂
i=1

(xi ∈ sik) (3.15)

The goal of the optimization procedure is to induce a set of boxes from the
data that cover the input space where the output assumes large values. PRIM
performs this task in the covering process: the box construction algorithm is
applied iteratively to subsets of data, after iteration K the data covered by box
Bk are removed and the box Bk+1 is constructed from the remaining subset. The
algorithm iterates until the estimated mean within the boxes or the individual
support becomes too small (e.g. below a given threshold).

The box construction procedure is defined patient as it is composed of two
steps: a top-down peeling and a bottom-up pasting. The procedure is illus-
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Figure 3.4: Conceptual illustration of PRIM steps: a) peeling and b) covering process (Lempert et al.,
2008).

trated graphically in figure 3.4.

Top-down peeling

This phase begins with a box B that covers all the data, at each iteration a sub-
box b within B is removed. The sub-box b is chosen so that the box result-
ing from the removal operation has the largest possible output mean value.
This peeling procedure stops when the support of the current box βB becomes
smaller than a given threshold β0, a meta-parameter of the algorithm. Each
sub-box eligible for peeling is defined by one input parameter xi. Inputs that as-
sume real values provide two eligible sub-box that border the upper and lower
boundaries of box B on the ith input:

bi− = {x|xi < xi(α)}
bi+ = {x|xi > xi(1−α)}

(3.16)

where xi(α) is the α-quantile of the xi values for data in box B and xi(1−α) the cor-
responding (1− α)-quantile. α is the second meta-parameter of the algorithm.
Inputs that assume categorical values provide a set of eligible sub-boxes, one
for each of parameter’s values in the current box.
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Bottom-up pasting

The final box obtained from the peeling procedure has been defined by remov-
ing sub-boxes without knowledge of later peels that may have refined even
more the boundaries of the box. Therefore, it is possible that the final result
may be improved by adjusting some boundaries of the box, through a pasting
step. This procedure is the opposite of the peeling step: at each iteration the box
B is enlarged by adding a sub-box b so that the box resulting from the adding
operation has the largest possible output mean value. The eligible sub-boxes
are chosen in the same way as the peeling step. The procedure is iterated until
the addition of the next sub-box causes the output mean value to decrease.

3.4.2 PRIM diagnostics

The PRIM algorithm may make several forms of mistakes in performing its
task, in particular needlessly slicing off the end of a parameter’s range, or in-
cluding erroneous parameters. For this reason it is important to assess the sig-
nificance of the parameter’s constraints proposed. This can be done using a re-
sampling test or a quasi-p-value test (Bryant and Lempert, 2010; Rozenberg et al.,
2014).

Quasi-p-value test

This method uses a version of the p-value test to estimate the likelihood that
PRIM constrains some parameter by chance. If we consider a single box Bk from
the box set B, defined by constraints on parameters in a set SB, which contains
H high value cases amongst a total of T cases, the quasi-p-value is computed
considering the box B−k. This box is defined by constraints on all parameter, ex-
cept one parameter xi ∈ SB amongst the ones defining the box Bk. B−k contains
H−k high value cases amongst a total of T−k ≥ T cases. The null hypothesis
of the test is that the values of interest in box B−k are distributed amongst the
T−k values according to a binomial distribution with p(1) = H−k/T−k and the
test answer the question: what is the chance that T points drawn from such
distribution would have H or more high value cases amongst them? When the
ratio H−k/T−k is close to H/T, such chance is high and the contribution of the
parameter defining the box Bk is possibly due to chance.

Resampling test

This method evaluates the significance of an input as a driver of the scenario
definition by assessing how many times the same input arises from different
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samples of the same database. It consists of running the algorithm on multiple
sub-samples of the original data set and noting which constraints are consis-
tently considered relevant.

3.4.3 Comparison with other methods

Amongst the algorithm commonly used in the scenario discovery task, PRIM is
often compared to Classification And Regression Trees (CART) (Breiman et al.,
2017), a classification algorithm (Lempert et al., 2008). CART minimizes misclas-
sification rates to divide the output space into regions of high purity, i.e. regions
that contain mainly one output class. The output is given in the form of a deci-
sion tree, a hierarchical set of splitting criteria for determining the output class
associated with given input combinations (Lempert et al., 2008). The comparison
proposed by Breiman et al. (2017) finds that both algorithms perform their tasks,
but often with imperfections. For example PRIM, as mentioned previously, can
restrict too many dimensions and CART may generate too many boxes.

Another comparison that has been proposed by Kwakkel (2019) is between
PRIM and the Multi-Objectives Evolutionary Algorithm (MOEA) η-NSGAII.
While the MOEA gives results that dominate those founds with PRIM, the re-
sults are still very similar and the MOEA has the disadvantage of being much
more computationally expensive to the point of not recommending its usage
instead of PRIM for scenario discovery tasks.

3.4.4 PRIM application

We performed the scenario discovery task by applying the PRIM algorithm, de-
scribed in Section 3.4.1, to answer to the second research question and evaluate
what are the highest risk scenarios and what is the importance of the different
drivers of uncertainty. The version that we applied is the Matlab implemen-
tation by Jekabsons (2015). The PRIM algorithm has been applied to the CBA-
subset and the Coop-subset.

3.4.5 Inputs

When applied to the CBA-subset, the algorithm uses as inputs five variables
organized in an array where each column corresponds to a variable. Each row,
of number equal to the number of data in the subset, is formed by the combi-
nation of input values used to obtain the data in the corresponding row of the
subset analyzed. The variables are:

1. the five SSP used for the resimulation of the RICE50+ solutions;
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2. the six impact functions used for the resimulation of the RICE50+ solu-
tions;

3. the rate of social time preference per year;

4. the inequality aversion;

5. the cooperation level.

Each variable is categorical. When applied to the Coop-subset, the algorithm
uses the same input variables, without the cooperation level. The two cases
of LU emissions have not been considered as a variable worth investigating
because the scenarios defined by the variation of this variable do not have sig-
nificant differences (see Section 4.2). In both applications, the input arrays have
been randomly divided into two equal sets, one for the calibration and one for
the validation of PRIM.

3.4.6 Output

As output, the algorithm takes one column of the analyzed subset, correspond-
ing to a given objective. Since there are six objective, PRIM has been applied
six different times to each subset, every time considering a different objective
as output. The output arrays have also been randomly divided into two equal
sets for calibration and validation, coherently with the division of the input ar-
rays. The algorithm implemented by Jekabsons (2015) performs a maximization
task. Since our purpose was to find the highest risk scenarios corresponding
to the worse values of the objectives, we let PRIM search for maximum val-
ues while using as objectives the Gini index, temperature in 2100 and both the
90/10 and 80/20 ratios. Since the worse scenarios with respect to welfare have
a low value, PRIM in this case should perform a minimization task. To main-
tain a coherence with the previous applications, we converted the welfare to
negative values. This allowed us to find the scenarios with minimum welfare
by performing a maximization.

3.4.7 Meta-parameters

The two meta-parameters of the model are α and β0, mentioned in Section 3.4.1.
For α we set a value of 0.05, however every input used is categorical so in this
case the value of α has no influence on PRIM. For β0 we set a value of 0.1,
meaning that the box peeling operation continues until the support β of the
box (the fraction of data covered by the box, see Equation 3.13) drops below
the 10% of the dataset.
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Figure 3.5: Unifying framework of components and transformations in the calculation of commonly
used robustness metrics (McPhail et al., 2018).

3.4.8 Resampling test

To assess the significance of PRIM results and estimate the importance of the
drivers of uncertainty we performed a resampling test: for every application of
the algorithm we divided the subset analyzed into 30 sub-samples, run PRIM
on every sample and noted which constraints were consistently considered rel-
evant. We considered an input as relevant if it has been considered at least 50%
of the times (Rozenberg et al., 2014).

3.5 Robustness analysis

In order to answer to the second research question and identify the most robust
solutions of the RICE50+ model over the ensemble of generated scenarios, we
performed a robustness analysis evaluating the robustness value of six differ-
ent metrics which cover a wide range of risk aversion levels. Each metric has
been used to evaluate the robustness value of every solution for each one of
the five objectives. The work by McPhail et al. (2018) provides a useful tool by
introducing a framework for the calculation and comparison of a large number
of robustness metrics and has been used to select five of the six chosen metrics.
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The framework introduced is represented in figure 3.5. Evaluating a robust-
ness metric consists in transforming the performance value f (xi, S) of an al-
ternative xi over a set of scenarios S into the robustness value R(xi, S) of the
alternative over the same set of scenarios. Figure 3.5 shows this process broken
down into three different transformations: the first, T1, converts the perfor-
mance value into the information used in the calculation of robustness. In many
cases this is an identity transformation, but some metrics use regret or a con-
straint to assess whether a performance is satisfactory. The second, T2, consist
in determining which values are used to calculate the robustness, which may
be every value, a single one or a subset. The choice of which values to include
is a reflection of risk aversion, since the inclusion of more extreme scenarios
corresponds to a higher degree of risk aversion. The third transformation, T3,
consists in the actual calculation of the robustness value.

The framework can then be used to decide which metric is appropriate for
each decision context. For example, in relation to T1, the most appropriate
metric depends on whether the performance value relates to satisfaction of a
constraint or to the optimization of the performances. Regarding T2, the choice
of an appropriate metric depends on the likely impact of system failure and
on the risk aversion of the DM. Figure 3.6 shows a classification of robustness
metrics commonly used in the literature in terms of relative level of risk aver-
sion from a low level (Maximax, green colour) to a high level (Maximin, blue
colour). In relation to T3, the choice depends on the interest on how the per-
formance values over the different scenarios are summarized (e.g. interest in
the average performance of a system vs interest in the variability of the per-
formance of a system over the considered scenarios). It is only applicable to
metrics considering more than one scenario.

Such framework proves to be useful, since in the presence of multiple ro-
bustness definitions, each one representing different optimistic or pessimistic
attitudes of a DM, the definition itself of robustness should be included amongst
the uncertainties of the problem, because a misdefinition of the metric captur-
ing the DM’s preferences can lead to a degradation of the performances of a
system (Giuliani and Castelletti, 2016).

3.5.1 Robustness metrics

The metrics we chose will be summarized here. We used the framework by
McPhail et al. (2018) for the choice of five out of six metrics, in order to se-
lect metrics appropriate for the optimization of performance values that could
cover a wide spectrum of risk aversion levels. We used such metrics used to
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Figure 3.6: Classification of robustness metrics in terms of relative level of risk aversion from a low level
of risk aversion (green) to highly risk averse (blue). Hurwicz optimism-pessimism rule and Starr’s
domain criterion, because of their formulation, may be placed anywere in the classification (McPhail
et al., 2018).

evaluate the robustness level R(xi, S) of solution xi starting from the perfor-
mance values f (xi, si), where si ∈ S represent the i-th scenario amongst the
entire set of scenarios S.

Maximin

The maximin metric (Wald, 1949) is a metric that represent a very high level of
risk aversion, as it focus on the worst possible performance of every solution,
also known as security level. It guarantees the selection of a solution that will
have a performance at least equal to the security level. The robustness value is:

R = arg max
xi

(
min

S
f (xi, si)

)
(3.17)

Maximax

The maximax metric (Wald, 1949) is a metric that represent a very high level of
optimism and it is the opposite of the maximin metric. It focuses on the best
possible performance in a solution. The robustness value is:

R = arg max
xi

(
max

S
f (xi, si)

)
(3.18)
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Mean-variance

The metric mean-variance is based on the concept that a robust solution will
have a good average result with limited dispersion around it (Kwakkel et al.,
2016). It represents an average level of risk aversion. The robustness value is
formalized as follows, differentiating between the cases of performances to be
maximized or minimized:

R =

{
(µi + 1)/(δi − 1) maximization

(µi + 1)(δi − 1) minimization
(3.19)

where µi and δi are respectively the mean and standard deviation of the per-
formance values f (xi, S) of solution xi over the set of scenarios S. The +1 is
included to avoid situations where µi or δi are zero. According to Kwakkel et al.
(2016), this metric has some downsides: it does not provide insights on the
trade-offs between improving µi and reducing δi, functions combining µi and
δi are not always monotonically increasing and it treats equally positive and
negative deviations from the mean.

Percentile-Based Skewness

The metric Percentile-Based Skewness (PBS) (Voudouris et al., 2014; Kwakkel et al.,
2016) is based on the skewness of the performances’ distribution of solution xi

over the scenarios S. It represents an average degree of risk aversion (see Figure
3.6) and the robustness value is:

R =


( f (xi,s90)+( f (xi,s10))/2−( f (xi,s50)

( f (xi,s90)−( f (xi,s10))/2 maximization

− ( f (xi,s90)+( f (xi,s10))/2−( f (xi,s50)
( f (xi,s90)−( f (xi,s10))/2 minimization

(3.20)

s90, s50 and s10 are scenarios that represent respectively the 90th, 50th and 10th

percentiles for f (xi, S). A high value of this metric means that the performance
values of a solution are skewed towards better performance values.

Percentile-Based Peakedness

The metric Percentile-Based Peakedness (PBP) (Voudouris et al., 2014; Kwakkel et al.,
2016) is based on a variation of the kurtosis and represents the peakedness of
the performances’ distribution of solution xi over the scenarios S. It represents
an average degree of risk aversion, slightly lower than PBS (see Figure 3.6). The
robustness value is:
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R =
f (xi, s90)− f (xi, s10)

f (xi, s75)− f (xi, s25)
(3.21)

s90, s75, s25 and s10 are scenarios that represent respectively the 90th, 75th, 25th

and 10th percentiles for f (xi, S). A high value of this metric implies that the
performances value of solution xi are more peaked around the median value.
The version of the metric that we implemented is proposed by McPhail et al.
(2018) and slightly differs from the version by Kwakkel et al. (2016). The latter
propose a metric with a double formulation for performances to be maximized
or minimized, but this is not needed since this metric assesses the peakedness
around the median regardless of whether a performance should be minimized
or maximized.

Limited Degree of Confidence

The Limited Degree of Confidence (LDC) (Aaheim and Froyn, 2001; McInerney
et al., 2012), a metric not discussed by the framework by McPhail et al. (2018),
is a weighted average between the worst outcome (represented by the max-
imin criterion) and an expected utility. However, the maximin criterion focuses
on the single worst performance of a solution, ignoring other poor outcomes.
For this reason, the metric we chose is an alternative formulation proposed
by McInerney et al. (2012) which replace the maximin criterion with the Condi-
tional Value at Risk (CVaR) (Pflug, 2000). This consists in the expected value of
the worst q-th portion of the performances distribution of a solution over the
scenarios S. The robustness value is then calculated as:

R = max

{
β

[
1

NS

NS

∑
i=1

f (xi, si)

]
+ (1− β)

[
1

qNS

qNS

∑
i=1

f (xi, si)

]}
(3.22)

where β is the weight of the weighted average and NS is the number of sce-
narios. For the implementation we selected q equal to 0.1, to consider the
worst 10-th portion of the performances distribution of every solution and
β = [0.2; 0.5; 0.7; 0.9].

3.6 Robust solution selection

After evaluating every robustness value, we normalized and ranked the re-
sults. The robustness values of each solution xi over a given scenario s ∈ S and
a given objective Oj, R(xi, s)|Oj , have been normalized between 0 and 1 using a
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min-max feature scaling so that the the solution with the best robustness value
is associated with a value of 1, in order to allow comparisons between metrics.
We ranked independently the robustness values R(xi, S)|OBJ so that the solu-
tion with the best robustness value has the highest ranking, associated with a
rank of 1, and the worst a rank of 479. To select the most robust solution x∗
amongst every xi according to multiple metrics and across all the objectives,
we used two alternative methods.

First method

For every solution xi we evaluated a function Ji defined as:

Ji =
1

Nmetrics · NOBJ

NOBJ

∑
j=1

Nmetrics

∑
k=1

(1− Rank j,k)
6 (3.23)

This is a function measuring the distance between 1 and the ranking values of
solution xi for every robustness metric over every objective considered. Nmetrics

and NOBJ represent the number of metrics and of objectives respectively. Since
the ranking value of 1 represents the best possible robustness value, the robust
solution x∗ will be the one with the minimum value of Ji:

x∗ = min Ji (3.24)

The power of 6 in the definition of Ji gives more weight to lower rankings.

Second method

The second method is also based on the robustness ranking and consist in the
application of what essentially is a maximin criterion, so the robust solution x∗
will be obtained by:

x∗ = arg max
xi

(
min

metrics,OBJ
Rank j,k

)
(3.25)

Difference between methods

The first method selects a robust solution that has high robustness ranking
across each metric and objective, expressing particular aversion for solutions
with specifics bad rankings through the presence of the power of 6 in the for-
mulation. The second method selects a robust solution with a high degree of
risk aversion since it focuses on the worst ranking of every solution to select
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the one that has the highest worst ranking. The two methods have been se-
lected to highlight solutions with an average robust performance across all the
objectives and solutions with the best worst-case respectively.

Application of the methods

The metric PBP is based on the skewness of the performances’ distribution of
the solutions. The metric PBS, on the other hand, represents the peakedness of
the performances’ distribution of solutions. Since those two metrics are based
solely on the characteristics of the performances’ distribution, we decided not
to consider them when applying the two methods for the selection of robust
solutions previously introduced. Instead, we used PBP and PBS to analyse
disagreements between the robust solutions selected by the two methods.

First, we applied the two methods considering the robustness ranking of the
four selected metrics for every objective. The aim was to obtain a robust so-
lution representing a compromise between all the metrics and the objectives.
Then, we applied the methods to the robustness ranking of the metrics consid-
ering only specific objectives. The aim was to obtain a set of solutions, each
one robust with respect to an objective. The selected objectives are welfare, the
temperature in 2100 and the 90/10 ratio.
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Results

4.1 RICE50+ optimal outcomes

4.1.1 Experiment setting

To address the first research question formulated in Section 1.2, we re-simulated
the 479 optimal solutions of the RICE50+ model over the 60 potential scenar-
ios evaluating the objectives for a total of 28.740 simulations as described in
Section 3.2.6 and 3.3. From the resulting dataset we extracted the subset of the
cooperative solutions over the same scenarios that were used to optimize them.
We analyzed the performances on both this subset and the complete dataset. In
the following sections, we will refer to the objective Temperature in 2100 also
with the T2100 notation and to the 90/10 income ratio and 80/20 income ratio
with 90/10 and 80/20 respectively.

4.1.2 Results

Performance of solutions in the optimization phase

First, we analyzed the performance of the cooperative solutions with respect to
the specific scenario used for their optimization. Figure 4.1 shows these results.

Observing welfare, we notice a clear differentiation between the solutions:
the ones optimized using SSP5 lead to the highest values of welfare, followed
by solutions with SSP1, SSP2, SSP4 and SSP3. This was expected, since the
narratives of SSP5 is characterized by a strong emphasis on economic growth,
while SSP1 is a pathway of strong collaboration, technological progress and
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Figure 4.1: Performances of the optimal cooperative solutions over the objectives: welfare, temperature
in 2100, 90/10 ratio, 80/20 ratio and Gini index. The solutions are divided by SSP: green for SSP1,
blue for SSP2, red for SSP3, brown for SSP4, magenta for SSP5.

a shift towards lower resource and energy intensity. On the other hand, SSP4
and especially SSP3 are pathways of slower economic development. See O’Neill
et al. (2017) and Riahi et al. (2017) for a more detailed description on the narra-
tives of the SSPs.

Concerning temperature in 2100, the majority of solutions optimized with
SSP1 have lower values than the other solutions, with most of the solutions
remaining under 2°C. Solutions designed with the other SSPs lead to tempera-
tures in 2100 which lie between 1.5 - 2.5°C. Considering solutions with tem-
peratures higher than 2.5°C, three of them have been optimized over SSP2
and the others over SSP3-5. These results are also coherent with the narra-
tives of the SSPs since SSP1 is a pathway of sustainability. Consequently, solu-
tions designed over such a pathway reach a low temperature. Differently, the
SSP5 is characterized by high exploitation of fossil fuels, SSP4 by investments
in carbon-intensive energy sources and SSP3 by strong environmental degra-
dation. Therefore, we expected to find solutions optimized with these SSPs
amongst the ones with higher temperatures.

Observing the 90/10 and 80/20 ratios, it emerges that SSP5, SSP1 and SSP2
have the lowest levels of inequality. Solutions with a 90/10 ratio higher than 10
and an 80/20 ratio higher than 6 have been, almost exclusively, optimized over
SSP4. The lowest Gini values are from SSP1,SSP 5 and SSP2, while SSP3 and
4 have the highest values, showing concordance between the results for this
objective and the 90/10 and 80/20 ratios. These results can be explained by
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Figure 4.2: Performances of the optimal cooperative solutions over the three objectives: welfare, tem-
perature in 2100 and 90/10 ratio. The solutions are divided by impact function: grey for BHM-LR,
orange for BHM-LRdiff, purple for BHM-SR, green for BHM-SRdiff, bright red for DJO, cyan for
Kahn.

the fact that SSP5 and SSP1 represent pathways of human capital development
and inequality reductions, while in SSP2 the inequalities improve slowly. On
the contrary, in the SSP3 inequalities persist and SSP4 is a pathway of steadily
increasing inequalities between countries.

Since the values of 80/20 ratios and Gini index follow the same behaviour
of the 90/10 ratio, their analysis does not provide additional significant infor-
mation. Hence, in the following sections, we will not furthermore explicitly
consider these objectives. Also, we limit our analysis to maintain a coherence
with the previous works on economic inequality related to climate change, like
Diffenbaugh and Burke (2019) and Gazzotti et al. (2021).

Figure 4.2 shows the same data as Figure 4.1, but reported by impact func-
tion. Observing welfare, we notice that for each SSP, the solutions can be dif-
ferentiated by impact function. Solutions optimized with BHM-SR and BHM-
SRdiff functions have higher welfare values, while the solutions with lower
values for every SSP have been designed with BHM-LR and Kahn functions.
We can explain these results with the different formulations of the impact func-
tions previously mentioned in Section 3.2.3. These differences lead to contrast-
ing impact projections: BHM-SR, SRdiff and DJO project positive to irrelevant
climate impacts on rich regions and damages on poor ones. On the other hand,
the Kahn, BHM-LR and LRdiff functions project negative impacts for every re-
gion.
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Concerning temperature, there is no clear differentiation between solutions
with temperature values under 2.5°C. Over that values we find only one so-
lution optimized with the BHM-SR function. The other solutions have been
optimized with either DJO or BHM-SRdiff function.

Regarding the 90/10 ratio, the solutions designed with Kahn function, fol-
lowed by BHM-LR and LRdiff have the lowest values. Solutions with the high-
est values, like a 90/10 ratio index over 20, have been optimized almost exclu-
sively with DJO, BHM-SRdiff and SR functions. We can explain those results
considering that the BHM-SR and BHM-SRdiff functions project positive cli-
mate change impacts for rich regions and negative for poor regions. Therefore,
they lead to scenarios with a high level of inequality between countries. BHM-
LR and Kahn functions project negative impacts for every region, leading to
scenarios with lower inequality.

Re-evaluating solutions’ performance across all potential scenarios

Having examined the performance of the different solutions with respect to
the scenario used in their optimization, we evaluated the performance of the
solutions over all potential scenarios by re-simulating them under the six dif-
ferent climate damages impact specifications, the five SSPs and the two cases
of Land-Use emissions. The results divided by SSP are represented in Figure
4.3.

The welfare values represented in Figure 4.3a follows a pattern similar to
the one showed in Figure 4.1. Solutions re-simulated over scenarios defined
by SSP5 and SSP1 have the highest welfare, with a median value of 0.96 and
0.90. SSP2 follows with median welfare of 0.80. Despite the solutions re-
evaluated over SSP5 having a higher median and maximum welfare, the ones
re-simulated over SSP1 lead to high results with a lower variability, with a min-
imum value of 0.78 (higher than the minimum value of 0.73 of SSP5). Solutions
re-evaluated over SSP4 and SSP3 have the lowest welfare with median values
of 0.68 and 0.50, respectively. In particular, SSP3 leads to the minimum welfare
values.

The values of temperature in 2100 in Figure 4.3b are lower for solutions re-
simulated over SSP1 with a median temperature of 1.76°C. In line with the
previous section, solutions re-evaluated over SSP5 have a higher temperature
with a median of 2.06°C and a maximum temperature of 4.58°C. Solutions re-
simulated over SSP2-4 can also lead to slightly higher temperatures than SSP1.

The 90/10 ratio in Figure 4.3c confirms the pattern highlighted in the previ-
ous section, with higher inequalities for solutions re-simulated over SSP3 and
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Figure 4.3: Performances of the optimal solutions simulated over the entire ensemble of scenarios. (a)
represents the welfare values, (b) the temperature in 2100, (c) the 90/10 ratio. The solutions are
divided and colored by SSP: green for SSP1, blue for SSP2, red for SSP3, brown for SSP4, magenta
for SSP5.

4, the pathways of strong inequality. In particular, SSP4 leads to the highest val-
ues of the 90/10 ratio with a median of 21.73 and a maximum value of 85.26.

Figure 4.4 represents the same data of Figure 4.3, but reported and coloured
by damage function specification. The temperature values in Figure 4.4b do
not show relevant differences between the different damage functions. We find
slight differences in the welfare values represented in Figure 4.4a. These val-
ues are higher for the solutions re-simulated over the functions BHM-SR and
SRdiff, which both have median values of 0.86. However, observing the values
of the 90/10 ratio in Figure 4.4b, we notice that the solutions re-evaluated over
those functions lead to higher economic inequality. The solutions re-simulated
over the DJO function have lower welfare values than the previous two func-
tions but lead to even higher values of 90/10 ratio index.

Specifically, the solutions simulated over the BHM-SR function have a me-
dian value of the 90/10 ratio of 6.03 and in scenarios of very high inequality,
they can reach a value of 40.05. We notice even higher values for the SRdiff
function, with a median of 9.58 and a maximum of 69.25. The solutions re-
simulated over the DJO have a median value of 8.63, but they show greater
variability and have the highest maximum values of the 90/10 ratio.

We find the lowest welfare values associated to solutions re-simulated over
the functions Kahn (with median welfare of 0.75), BHM-LRdiff (with a median
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Figure 4.4: Performances of the optimal solutions simulated over the entire ensemble of scenarios. (a)
represents the welfare values, (b) the temperature in 2100, (c) the 90/10 ratio. The solutions are
divided and colored by damage function: grey for BHM-LR, orange for BHM-LRdiff, purple for
BHM-SR, green for BHM-SRdiff, bright red for DJO, cyan for Kahn.

of 0.80) and BHM-LR (with a median of 0.82). According to the values of the
90/10 ratio, these functions are also associated with the lowest economic in-
equality. The median values are lower than 4, and only a few scenarios with
the BHM-LRdiff function lead to a 90/10 ratio higher than 20.

We can explain these results with the different formulations of the impact
functions previously mentioned. The Kahn, BHM-LR and LRdiff functions
project negative impacts which are more homogeneous across regions than
the other functions. Rich and poor regions both suffer damages, and this can
lead to scenarios with lower welfare values and lower inequalities across coun-
tries. On the contrary, as previously mentioned, the functions BHM-SR, SRdiff
project benefits for the rich regions as a consequence of climate change. The
DJO function projects a negligible effect on rich regions and impacts on poor
ones. Threfore, the differentiation between rich and poor can lead to scenarios
where few rich regions improve their welfare, thus leading to the high welfare
values represented in the results. However, the poor regions suffer high climate
impacts. This differentiation can explain the high values of the 90/10 ratio.

The results show that the narratives of the SSPs and the damage functions
affect significantly the outcomes of the optimal solutions of the RICE50+ model.
Additionally, they show that scenarios that seem to lead to satisfying welfare
values can also lead to high economic inequality between rich and poor regions,
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as is the case for solutions re-simulated over the functions BHM-SR, SRdiff and
DJO and pathways of high inequality like SSP3 and SSP4. These scenarios raise
ethical concerns and questions of international justice. The richest countries, re-
sponsible for the majority of the past GHG emissions, can significantly increase
their welfare, while the poorest and less liable countries suffer the highest dam-
ages. Together with justice issues, these results also raise policy-relevant con-
cerns. In scenarios of high economic inequality, the worse-off countries may
also suffer serious consequences in terms of social and political aspects like
immigration and political instability (Barnett, 2003; Carleton and Hsiang, 2016;
Sofuoğlu and Ay, 2020).

4.2 Highest risk scenarios

4.2.1 Experiment setting

We here consider the second research question of the thesis introduced in Sec-
tion 1.2. In this second experiment, we wanted to identify the highest risk
scenarios in terms of low welfare, as well as high temperature values and high
economic inequality. Secondly, we wanted to quantify the importance of the
different drivers of uncertainty in defining the high risk scenarios. To perform
this task, we applied the PRIM algorithm and we executed a resampling test as
described in Section 3.4.1 and 3.4.4. We performed the analysis on two subsets.
The first CBA-subset considers only the values obtained by the simulation of
solutions optimized with the CBA Land-Use emission setting, supposing de-
creasing or constant land use emissions. The second is the Coop-subset, with
the values obtained by the re-simulation of solutions optimized with the coop-
erative setting. In the following Section, we report the results of the analysis
of the cooperative solutions. The results of the first analysis are reported in the
Additional Material, in Section A.1.

4.2.2 Results

Analysis of cooperative solutions

Cooperation is by far the most important driver for high-risk scenarios for ev-
ery objective considered, as reported in Section A.1. To focus better on the
other drivers of uncertainty, we decided to remove the non-cooperative solu-
tions and apply the PRIM algorithm to the Coop-subset only. As explained in
Section 3.2.6, the dataset is obtained considering only the values obtained by
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the re-simulation over the 60 scenarios of solutions optimized with the cooper-
ative setting.

We reported the results graphically in a similar way as Kwakkel and Jaxa-
Rozen (2016): the input of PRIM are on the columns, the boxes identified by
the algorithm are on the rows. On each row, the red cells represent the rules of
the box. Mean and support are in the last two column, while the results of the
resampling test are in the last row. As stated in the previous Section, we did
not consider the objectives 80/20 ratio and Gini index, because their analysis
did not provide additional meaningful information.

In Figure 4.5 we represented the results on the validation set for welfare,
temperature in 2100 and 90/10 ratio.

By applying PRIM to the welfare objective represented in Figure 4.5a, we
identified four boxes with an average value lower than the global average of
0.78. The boxes cover 10% of the dataset each. The results are coherent with the
ones represented in Figure A.1a: the significant inputs are the SSPs, the dam-
age functions and the inequality aversion. The SSP3 and SSP4 are still the rel-
evant drivers for low welfare scenarios due to their narrative of low economic
growth. The most relevant damage functions are BHM-LRdiff and Kahn. As in
the previous Section, the selected functions are the ones that project damages
to every region. In this case, the algorithm selected every inequality aversion
level. However, the most relevant is the value 0, representing no inequality
aversion.

The analysis of temperature in 2100 produced four boxes with an average
lower than the global average. As represented in Figure 4.5b, they cover from
10% to 11% of the data. All the inputs are significant, and the selected values
are not very different from the results displayed in Figure A.1b. In this case,
the algorithm selected all the SSPs and inequality aversion values. However,
the most relevant values remain the SSP2, SSP3 and SSP4, as well as the 0 and
0.5 values of inequality aversion.

In Figure 4.5c we represented the results of the PRIM application on the
90/10 ratio. We displayed three boxes covering from 10% to 14% of the data.
The significant inputs are the SSPs and the damage functions. The results are
not significantly different from the previous analysis of the same objective.

Considering the results of the two cases analyzed, we can conclude that the
SSPs are significant drivers of high-risk scenarios for each objective. Specifi-
cally, SSP3 for every objective, SSP2 and SSP5 for temperature, SSP4 for welfare
and inequality. SSP1 is the pathway that does not lead to high-risk scenarios in
any objective. It highlights the need for policies for sustainable economic and
technological development, applied with efficient cooperation.

50



4.2. Highest risk scenarios

SSP Damage func on Prstp Inequality aversion Mean Support

SSP1 SSP2 SSP3 SSP4 SSP5
BHM-

SR

BHM-

LR

BHM-

SRdi

BHM-

LRdi
DJO Kahn 0.001 0.015 0.03 0 0.5 1.45 2 0.78 10770

Box 1 0.50 0.10

Box 2 0.61 0.10

Box 3 0.67 0.10

Box 4 0.70 0.10

Le�overs 0.90 0.60

Significance 100% 100% 26.7% 60%

(a) Welfare

SSP Damage func on Prstp Inequality aversion Mean Support

SSP1 SSP2 SSP3 SSP4 SSP5
BHM-

SR

BHM-

LR

BHM-

SRdi

BHM-

LRdi
DJO Kahn 0.001 0.015 0.03 0 0.5 1.45 2 1.86 10770

Box 1 2.36 0.10

Box 2 1.98 0.10

Box 3 1.92 0.10

Box 4 1.97 0.11

Le�overs 1.72 0.59

Significance 100% 86.7% 100% 100%

(b) Temperature in 2100

SSP Damage func on Prstp
Inequality aversion

Mean Support

SSP1 SSP2 SSP3 SSP4 SSP5
BHM-

SR

BHM-

LR

BHM-

SRdi

BHM-

LRdi
DJO Kahn 0.001 0.015 0.03 0 0.5 1.45 2 8.46 10770

Box 1 34.26 0.10

Box 2 12.75 0.10

Box 3 8.19 0.14

Le�overs 3.72 0.67

Significance 100% 100% 10% 20%

(c) 90/10 ratio

Figure 4.5: Results of the PRIM analysis on: (a) welfare, (b) temperature in 2100, (c) 90/10 ratio,
considering only the dataset obtained by the simulation of the cooperative solutions. On the columns
there are the inputs, on the rows the boxes. The red cells represent the rules of the boxes. In the last
two columns there are mean and support of each box. The results of the resampling test are in the last
row expressed as significance.
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Impact functions are also significant drivers of high-risk scenarios for each
objective. In particular, the Kahn, BHM-LRdiff and LR functions lead to low
welfare scenarios. On the other hand, BHM-SRdiff and SR lead to scenarios
with high economic inequality. The DJO function is relevant for both objec-
tives: it projects just a negligible effect on the rich regions, and because of the
damages on the poor regions, the function is a driver for low welfare scenarios.
At the same time, due to its differentiation, it also leads to scenarios with high
90/10 ratios.

These results highlight the importance of economic inequality as a policy-
relevant issue. The occurrence of such diversified damages suggests taking
into consideration policies to reduce economic inequality. In scenarios of ben-
efits for the wealthiest regions and impacts for the worse-off ones, it could be
convenient to consider redistribution objectives when designing climate poli-
cies. Moreover, according to the results, the regions that are wealthier and
more responsible for the historical GHG emissions should consider sustaining
the major mitigation efforts.

Finally, from the results of welfare and temperature, we can conclude that
inequality aversion and the rate of social time preference are significant drivers
of high-risk scenarios. A scenario discovery analysis considering a higher num-
ber of scenarios defined also by the combination of those two inputs may be an
interesting future development.

4.3 Robust solutions

4.3.1 Experiment settings

To answer the third research question we posed in Section 1.2, we evaluated
the robustness value of every solution over the five objectives. For every ob-
jective, we used the robustness metrics introduced in Section 3.5.1. We based
the analysis on the complete dataset obtained by the re-simulation of every so-
lution of the RICE50+ model over the 60 scenarios. Then, using the methods
introduced in Section 3.6, we selected four representative robust solutions. We
analyzed the performance of the chosen solutions and assessed their emission
control rate (also called µ).
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Solution PBP PBS
W1 0.59 0.27
W2 0.67 0.23

Table 4.1: Robustness values of the solutions W1 and W2 according to the PBP and PBS metrics.

4.3.2 Results

Robust solutions selection

First, we evaluated the robustness values for every solution. Then, we pro-
ceeded by removing the dominated solutions and focusing the analysis on the
non-dominated ones. A solution si is defined as non-dominated when there is
not any other solution sj ∈ S whose robustness values are all higher or equal to
the values of si.

After that, we applied the selection methods to the non-dominated solu-
tions. First, as explained in Section 3.6, we considered the rankings of the ro-
bustness metrics maximax, maximin, mean-variance and LDC (all four speci-
fications) for each objective. By doing this, we selected a compromise solution
with high robustness across every objective. Second, we considered the three
most relevant objectives: welfare, the temperature in 2100 and the 90/10 ratio
index. We repeated the selection procedure three times, each time considering
one of these objectives independently. For each selection procedure, we chose
one solution for a total of three solutions, which resulted in being the most
robust for the three objectives, respectively.

In every application the two methods agreed in selecting the same robust
solutions, except for the case of welfare. When selecting the robust solution
considering only the metrics evaluated over welfare, we obtained two different
solutions, here called W1 and W2. To select a single robust solution between the
two, we analyzed the robustness using the metrics PBP and PBS, whose values
are reported in Table 4.1.

The two metrics show a trade-off between the solutions. W1 has higher ro-
bustness according to PBP. This means that the performances of this solution
are more peaked around the median value. On the other hand, W2 is more
robust according to PBS. This reflects the fact that the performances of W2 are
more skewed towards better values. Neither the two methods for the robust so-
lution selection nor the analysis of the additional metrics can point to the most
robust solution. For this reason, we decided arbitrarily to focus the analysis on
the solution called W1. In the following sections, we will refer to it as Welfare
solution.

In Table 4.2 we reported the four robust solutions we selected and the values
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Solution name SSP Damage function prstp Inequality aversion Cooperation level
Compromise SSP3 DJO 0.015 1.45 coop

Welfare SSP5 DJO 0.03 1.45 coop
Temperature SSP1 BHM-LR 0.001 0 coop

90/10 SSP3 DJO 0.03 2 coop

Table 4.2: Set of selected robust solutions and values of the parameters of RICE50+ used to optimize
each solution.

of the RICE50+ parameters used to optimize each solution. In the first row of
the table we reported the name we will use in the following sections to refer to
each solution. We chose the names according to the objectives we considered
when selecting each solution, so:

1. Compromise solution: selected considering the robustness metrics evalu-
ated over every objective;

2. Welfare solution: selected considering the robustness metrics evaluated
over the welfare objective;

3. Temperature solution: selected considering the robustness metrics evalu-
ated over the temperature in 2100 objective;

4. 90/10 solution: selected considering the robustness metrics evaluated over
the 90/10 ratio objective.

Performance of the robust solutions

In Figure 4.6 we represented the performances of the four robust solutions over
the 60 scenarios.

In terms of welfare, the Welfare solution leads to the highest minimum sce-
narios compared to the other solutions. On the other hand, the Compromise
solution and the Temperature solution lead to the worst cases. Regarding the
temperature in 2100, the best scenarios belong to the Temperature and Compro-
mise solutions. The 90/10 solution leads to scenarios with higher temperatures.
In any case, considering every solution, few scenarios go beyond 2°C. Consid-
ering the 90/10 ratio, we notice that all solutions lead to scenarios with low
values, however, there are still many scenarios with high economic inequali-
ties.

Emission control rate map

Lastly, we analyzed and reported the emission control rate of every solution we
selected. This allowed us to describe the most robust GHG emission reduction
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Figure 4.6: Performance of the selected robust solutions over the 60 scenarios for the objectives welfare,
temperature in 2100 and 90/10 ratio. The solutions are divided by colour: green for the Compromise
solution, red for the Welfare solution, purple for the Temperature solution and yellow for the 90/10
solution.

policies that have been optimized by the RICE50+ model. For every solution,
we reported the emission control rate in maps for four representative years:
2030, 2050, 2080 and 2100. The complete data sets used to produce the maps
are reported in the Additional material, in Section A.2.

We reported the emission control rates of the Compromise solution in Fig-
ure 4.7 and 4.8. In the year 2030, represented in Figure 4.7a, every region has
an emission control rate of 43%. This result is obtained from an initial emission
control rate of 3% in 2020. Then, as explained in Section 3.2.2, the maximum in-
crease of the emission control rate is 20% every 5 years. In 2050, 42 regions out
of 57 reach an emission control rate of 100%, thus reaching net-zero emissions.
The emission reduction of these regions goes over 100% in 2080, as represented
in Figure 4.8a. This means that those regions have negative GHG emissions.
After that, the control rate does not change significantly from 2080 to 2100. On
the other hand, the emissions control rate of the remaining regions lies between
69 - 98% in 2050. These values increase slightly in 2080 and 2100, but without
reaching 100%. We can notice that the regions with a lower emission control
rate are Sub-Saharan Africa, the regions of the Middle East and Central Amer-
ica. These regions lie around the tropical area and tend to be poorer than the
ones in the temperate area. Therefore, requiring a lower mitigation effort from
these regions is coherent with a climate policy that considers economic inequal-
ities.
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Figure 4.7: Emission control rate maps of the Compromise solution for the years: (a) 2030, (b) 2050.
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Figure 4.8: Emission control rate maps of the Compromise solution for the years: (a) 2080, (b) 2100.
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Figure 4.9: Emission control rate maps of the Welfare solution for the years: (a) 2030, (b) 2050.
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Figure 4.10: Emission control rate maps of the Welfare solution for the years: (a) 2080, (b) 2100.
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The emission control rates of the Welfare solution are reported in Figure
4.9 and 4.10. In the year 2030, represented in Figure 4.9a, the majority of the
regions have a 43% emission control rate. The few exceptions with a lower rate
are regions like Sub-Saharan Africa and South Asia. From 2050 to 2080, the
emission control rate increases in every region, similarly to the Compromise
solution. In 2100, represented in Figure 4.10b, 39 out of 57 regions are already
removing carbon out of the atmosphere. Like in the previous case, the regions
around the tropical area have a lower emission control rate, between 60% and
97%.

We reported the emission control rates of the Temperature solution in Figure
4.11 and 4.12. Every region starts with miu of 43% in 2030, as shown in Figure
4.11a. In 2050, 47 regions out of 57 have an emission control rate of 100%. Of
the 10 remaining regions, Sub-Saharan Africa has the lowest miu of 77%, while
the values of the other regions lie between 87% and 99%. In 2080 every region
reaches negative emissions. This does not change from 2080 to 2100, as Figure
4.12 shows. The Temperature solution represents the fastest and more decisive
emission reduction policy. There is no differentiation between rich and poor
regions: prioritizing the temperature objective requires strong emissions re-
ductions for every region and this leaves no opportunity to consider inequality
objectives.

In Figure 4.13 and 4.14 we represented the emission control rates of the
90/10 solution. Their emission reduction effort increase from 2030 to 2050 is
lower than the other solutions. In 2050 only 34 regions have an emission con-
trol ratio of 100%. The emission control rate increase lightly in 2080 and 2100.
As shown in Figure 4.14b, in 2100 only 35 regions reach negative emissions.
The remaining regions have an emission reduction from 60% to 99%. In this
solution, the differentiation between rich and poor regions is the most relevant.
This result is coherent with a policy that results robust for the economic in-
equality objectives. Indeed, such policy requires the richest regions to reach
negative emissions, while the worse-off ones bear a lower mitigation effort.

In conclusion, all selected robust solutions show a fast and immediate emis-
sion reductions. However, we highlighted a significant difference between the
solutions, represented in terms of differentiation in the mitigation effort be-
tween regions. Since the regions in the tropical area tend to be poorer, a solu-
tion proposing an emission reduction policy robust with respect to inequality
will project a mitigation effort significantly lower on those regions. This het-
erogeneity becomes smaller when taking into consideration solutions robust
with respect to other objectives like the Compromise solution. Also, despite
the high emission reductions required by every solution, scenarios leading to
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Figure 4.11: Emission control rate maps of the Temperature solution for the years: (a) 2030, (b) 2050.
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Figure 4.12: Emission control rate maps of the Temperature solution for the years: (a) 2080, (b) 2100.
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Figure 4.13: Emission control rate maps of the 90/10 solution for the years: (a) 2030, (b) 2050.
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Figure 4.14: Emission control rate maps of the 90/10 solution for the years: (a) 2080, (b) 2100.
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low welfare, high temperature and high inequality still remain.
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5
Conclusions and future research

In this thesis, we explored relevant drivers of uncertainty of the RICE50+ CB-
IAM and investigated the robustness of its assessed optimal Benefit-Cost cli-
mate policies. Our goals were:

1. To analyze how much do the narratives of the SSPs and the damage func-
tions included in the RICE50+ model influence its optimal solutions;

2. To identify the high-risk scenarios with respect to the objectives considered
and quantify the relevance of each driver of uncertainty in defining such
scenarios;

3. To select a set of robust optimal solutions of the model over the considered
scenarios, and analyze their emission abatement pathways.

We considered as objectives welfare, temperature increase and economic in-
equality, as explained in Section 3.3. First, we defined an ensemble of 60 scenar-
ios resulting from the combination of the five SSPs, the six damage functions
and the two Land-Use emissions cases. We re-simulated the emission control
rates of 479 optimal solutions of the model and for each solution we obtained
the objective values over the ensemble of scenarios. Then, we analyzed the per-
formances of the solutions both over their original optimization scenario and
the entire ensemble of scenarios to determine the influence of the SSPs narra-
tives and damage functions’ specification on the optimal solutions.

To identify the high-risk scenarios, we applied the PRIM algorithm. Its goal
is to identify combinations of the input parameters that produce output values
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larger (or smaller) than the global average. We applied the algorithm to two
different cases:

1. the dataset obtained by the re-simulation of the RICE50+ solutions opti-
mized with the CBA Land-Use emissions setting (see Section 3.2.5). For
this case, we selected five input variables: the SSPs and impact functions
used for the re-simulation, the rate of social time preference per year, the
inequality aversion and the cooperation level.

2. The dataset obtained by the re-simulation of all the RICE50+ solutions op-
timized over the cooperative setting. For this case, we used all the input
variables of the previous case, excluding the cooperation level.

As outputs, we utilized the most relevant objectives amongst the selected
ones: welfare, the temperature in 2100 and the 90/10 income decile ratio. We
then applied a resampling test to quantify the relevance of every input in defin-
ing the high-risk scenarios, as explained in Section 3.4.8.

To answer to our final research question, we performed a robustness analysis
using the six robustness metrics explained in Section 3.5.1: maximin, maximax,
mean-variance, PBS, PBP and LDC. After evaluating the robustness values, we
implemented the two methods described in Section 3.6 to select a set of robust
solutions. Lastly, we analyzed the optimal emission control rates of the selected
robust solutions, representing the corresponding emission control rate maps in
Section 4.3.2.

We first analyzed the influence of the SSPs narratives and damage functions
specifications on the optimal RICE50+ solutions. As reported in Section 4.1.2,
we showed that both the SSPs and the impact functions significantly affect the
outcomes of the solutions. Furthermore, we highlighted the presence of sce-
narios that can lead to high welfare values and, simultaneously, to high eco-
nomic inequality. Those scenarios may raise ethical and policy-relevant con-
cerns about the distribution of climate impacts and mitigation efforts.

Through the application of PRIM we highlighted the presence of several
high-risk scenarios associated to the SSPs and damage functions. In particu-
lar, in Section 4.2, we found scenarios of low welfare driven by SSP3, SSP4 and
Kahn, BHM-LR and LRdiff damage functions. SSP2 and SSP5 resulted to be
significant drivers for scenarios of high temperature. High inequality scenarios
were always defined by SSP3 and SSP4, and by BHM-SR, SRdiff and DJO im-
pact functions. We discussed the obtained results analyzing the narratives of
the SSPs and the different formulations of the impact functions. In particular,
the formulation of functions like DJO and BHM-SR leads to highly heteroge-
neous impacts which exacerbate inequalities.
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Last, in Section 4.3, we identified four robust solutions: one for each of
the relevant objectives and a solution of compromise across every objective.
Furthermore, we analyzed the optimal emission reduction pathways of the se-
lected solutions. The all depict a strong need for a fast and urgent reduction of
the GHG emissions. However, these results suggest that this reduction should
consider the existing economic inequalities as well as each country’s responsi-
bilities for historical GHG emissions.

To conclude, this work presents some limitations that could be addressed in
future studies.

1. The analyses performed in this thesis could be applied considering a big-
ger ensemble of plausible future scenarios. Our application of PRIM ev-
idenced the relevance of the parameters of inequality aversion and rate
of social time preference per year in defining high-risk scenarios. Those
parameters could be considered, together with the SSPs, the damage func-
tions and the Land-Use emissions cases, to generate more possible future
scenarios. Furthermore, different values of climate sensitivity could also
be used to generate more scenarios.

2. The application of other methods could provide further insights on the
results of this thesis. For example, the scenario discovery can be further
explored by applying the CART method, mentioned in Section 3.4.3. The
robustness analysis could also be repeated using different robustness met-
rics.

3. The analysis of robust climate policies could be expanded by applying the
methods used in this thesis to the outputs of other IAMs.

4. This thesis provided robust emission reduction policies at a high level
of geographical representation, based on the spatial scale of the RICE50+
model. However, because of the relevant economic inequalities, such re-
ductions resulted in being strongly differentiated between regions. Be-
cause of this, further efforts should be spent to improve the spatial resolu-
tion of the IAMs used to optimize mitigation policies.

5. Lastly, future research should try to provide progress on the representation
of economic inequality within countries, as well as other types of inequal-
ity, as reported in Section 2.5.
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A
Additional material

A.1 Scenario discovery analysis of all the set of solutions

In this section, we report the results of the application of PRIM on the CBA-
subset and the related considerations. In Figure A.1 we represented the results
on the validation set for welfare, temperature in 2100 and 90/10 ratio.

By applying PRIM to the welfare objective represented in Figure A.1a, we
found four boxes with average welfare from 0.57 to 0.69, lower than the global
average of 0.77. The boxes cover from 10% to 11% of the dataset. According to
the resampling test, the significant inputs are the SSPs, the damage functions,
the inequality aversion and the cooperation level. Amongst the SSPs, SSP3 and
SSP4 are the most relevant in defining high-risk scenarios because of their nar-
ratives of low economic growth. The algorithm selected all the damage func-
tions, but the most relevant are BHM-LRdiff, Kahn and the DJO functions. The
first two are damage functions that project impacts on rich and poor countries
alike, therefore leading to low welfare values. The DJO function has a negative
effect only on poor countries, as explained in Section 3.2.3. These impacts affect
only part of the world’s regions; however, they are sufficient to lead to scenar-
ios of below-average welfare, especially when coupled with the slow economic
development of SSP3. The algorithm also selected as rule all inequality aver-
sion levels from the absence of inequality aversion (non-cooperative solutions)
to the value 1.45. The remaining value of 2 represents a very high inequality
aversion, as reported in Table 3.1. This rule shows that a low level of inequal-
ity aversion can undermine the possibility of achieving high welfare scenarios.
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The non-cooperative setting is also a relevant driver leading to high-risk scenar-
ios. This rule highlight the importance of international cooperation in avoiding
scenarios that result in unsatisfactory welfare values.

Our analysis of temperature in 2100, reported in Figure A.1b, resulted in four
boxes with an average temperature higher than the global average. The boxes
cover from 10% to 11% of the dataset. All the inputs are significant, based on
the results of the resampling test. The SSP2, SSP3 and SSP5 are the most sig-
nificant drivers to high temperature scenarios. The narrative of the SSP5 is of
strong development based on the exploitation of fossil fuels and lack of en-
vironmental concern, so it can pose high challenges to mitigation efforts and
result in scenarios of high temperature. The SSP3 also project a relevant use
of fossil fuels, together with disregard for the environmental concerns. This
results in environmental degradation and scenarios with high temperatures.
The SSP2 narrative is better than the first two concerning the environmental
issue, but it still projects the use of fossil fuels. This can explain why it has been
selected as a significant input for high temperature scenarios. The algorithm
selected all the damage functions except Kahn and all the levels of the rate of
social time preference. The most relevant value is the highest: 0.03. This value
represents a society that gives importance to the consumptions in present times,
and less relevance to the consumptions in future points in time. The preference
is translated into fewer concerns for the future generations, therefore it leads
more easily to high-risk scenarios. Just as in the previous case, the algorithm
selected the low levels of inequality aversion and the non-cooperative setting
as relevant inputs leading to high unsatisfactory scenarios. These rules again
show the relevance of the economic inequality issue and the international co-
operation in leading to high-risk scenarios.

By applying PRIM to the 90/10 ratio objective represented in Figure A.1c,
we obtained two boxes with an average ratio of 15.90 and 30.31, higher than
the global average of 9.16. The boxes cover 12% and 11% of the dataset re-
spectively. The significant drivers are the SSPs, the damage functions and the
cooperation level. Concerning the SSP, SSP3-5 have been selected, with SSP4
being the most relevant. We expected a similar result result since the SSP4 de-
scribes specifically a pathway of increasing inequalities between countries. As
relevant damage functions, the algorithm selected all the functions but Kahn
and BHM-LR. Those two functions are the ones projecting negative impacts
more evenly, while the selected ones tend to project an uneven distribution of
damages, as previously discussed. This is, understandably, a driver for scenar-
ios of high inequality. The last significant input is again the cooperation level: a
non-cooperative setting leads to high-risk scenarios with respect to inequality.
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(b) Temperature in 2100
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(c) 90/10 ratio

Figure A.1: Results of the PRIM analysis on: (a) welfare, (b) temperature in 2100, (c) 90/10 ratio. On
the columns there are the inputs, on the rows the boxes. The red cells represent the rules of the boxes.
In the last two columns there are mean and support of each box. The results of the resampling test
are in the last row expressed as significance.
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A.2 Emission control rates

Here we report the set of emission control rates of the four robust solutions we
selected in Section 4.3. The data are referred to every region of the RICE50+
model for the years 2030, 2050, 2080 and 2100. Table A.1 refers to the Compro-
mise solution, table A.2 to the Welfare solution, table A.3 to the Temperature
solution and table A.4 to the 90/10 solution.

Table A.1: Emission control rates of the Compromise solution, referred to every region in the years
2030, 2050, 2080 and 2100.

Region 2030 [%] 2050 [%] 2080 [%] 2100 [%]

arg 43 100 103.45 106.21
aus 43 100 103.45 106.21
aut 43 100 103.45 106.21
bel 43 100 103.45 106.21
bgr 43 100 94.63 94.64
blt 43 100 103.45 106.21
bra 43 100 103.45 106.21
can 43 100 103.45 106.21
chl 43 100 103.45 106.21
chn 43 100 103.45 102.39
cor 43 100 103.45 106.21
cro 43 83.46 77.03 77.77
dnk 43 100 103.45 106.21
egy 43 81.79 84.51 88.76
esp 43 100 103.45 106.21
fin 43 100 103.45 106.21
fra 43 100 103.45 106.21
gbr 43 100 103.45 106.21
golf57 43 85.61 76.53 75.1
grc 43 100 103.45 106.21
hun 43 100 103.45 106.21
idn 43 100 103.45 106.21
irl 43 100 103.45 106.21
ita 43 100 103.45 106.21
jpn 43 100 103.45 106.21
meme 43 79.41 81.2 85.53

Continued on next page
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Table A.1: Emission control rates of the Compromise solution, referred to every region in the years
2030, 2050, 2080 and 2100.

Region 2030 [%] 2050 [%] 2080 [%] 2100 [%]

mex 43 83.29 80.76 83.38
mys 43 100 103.45 106.21
nde 43 98.41 98.37 99.26
nld 43 100 103.45 106.21
noan 43 96.18 97.42 100.59
noap 43 92.94 91.09 95.27
nor 43 100 103.45 106.21
oeu 43 91.87 81.61 78.42
osea 43 100 103.45 106.21
pol 43 100 103.45 106.21
prt 43 100 103.45 106.21
rcam 43 84.1 90.67 100.6
rcz 43 100 103.45 106.21
rfa 43 100 103.45 106.21
ris 43 100 103.45 106.21
rjan57 43 92.71 94.4 97.78
rom 43 92.52 86.59 87.67
rsaf 43 59.36 72.96 84.39
rsam 43 100 102.42 105.18
rsas 43 67.54 75.17 83.29
rsl 43 100 103.45 106.21
rus 43 100 103.45 106.21
slo 43 100 103.45 106.21
sui 43 100 103.45 106.21
swe 43 100 103.45 106.21
tha 43 100 103.45 106.21
tur 43 100 99.42 98.81
ukr 43 96.71 85.77 81.25
usa 43 100 103.45 106.21
vnm 43 100 103.45 106.21
zaf 43 100 97.05 96.65
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Table A.2: Emission control rates of the Welfare solution, referred to every region in the years 2030,
2050, 2080 and 2100.

Region 2030 [%] 2050 [%] 2080 [%] 2100 [%]

arg 43 100 103.45 106.21
aus 43 100 103.45 106.21
aut 43 100 103.45 106.21
bel 43 88.59 103.45 106.21
bgr 43 74.95 76.34 78.1
blt 43 88.92 103.45 106.21
bra 43 100 103.45 106.21
can 43 100 103.45 106.21
chl 43 92.7 103.45 106.21
chn 43 100 98.83 96.65
cor 43 100 103.45 106.21
cro 43 54.38 56.48 60.36
dnk 43 99.21 103.45 106.21
egy 43 65.8 76.51 82.04
esp 43 77.62 102.46 106.21
fin 43 98.52 103.45 106.21
fra 43 100 103.45 106.21
gbr 43 100 103.45 106.21
golf57 43 68.24 70.51 73.26
grc 43 93.01 103.45 106.21
hun 43 83.36 103.45 106.21
idn 43 93.27 103.45 106.21
irl 43 95.72 103.45 106.21
ita 43 79.76 103.45 106.21
jpn 43 83.91 103.45 106.21
meme 39.6 58.53 67.37 73.86
mex 43 65.32 74.12 80.81
mys 43 83.54 95.56 104.76
nde 43 83.08 100.33 106.21
nld 43 89.84 103.45 106.21
noan 43 74.63 85.74 91.43
noap 43 66.33 77.8 85.01
nor 43 100 103.45 106.21

Continued on next page
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Table A.2: Emission control rates of the Welfare solution, referred to every region in the years 2030,
2050, 2080 and 2100.

Region 2030 [%] 2050 [%] 2080 [%] 2100 [%]

oeu 43 69.31 71.21 73.17
osea 43 80.62 94.87 104.99
pol 43 100 103.45 106.21
prt 43 78.36 103.45 106.21
rcam 41.82 64.85 83.2 96.16
rcz 43 100 103.45 106.21
rfa 43 91.83 103.45 106.21
ris 43 91.47 91.12 88.89
rjan57 43 76.89 94.56 104.36
rom 43 67.04 72.97 77.23
rsaf 19.4 49.9 76.9 90.9
rsam 43 82.47 94.06 100.15
rsas 26.29 53.55 74.46 85.24
rsl 43 85.89 103.45 106.21
rus 43 100 103.45 106.21
slo 43 75.64 101.03 106.21
sui 43 96 103.45 106.21
swe 43 92.23 103.45 106.21
tha 43 87.55 103.45 106.21
tur 43 81.52 84.11 85.72
ukr 43 81.72 81.48 78.85
usa 43 100 103.45 106.21
vnm 43 81.78 97.3 104.88
zaf 43 80.11 85.88 88.38

Table A.3: Emission control rates of the Temperature solution, referred to every region in the years
2030, 2050, 2080 and 2100.

Region 2030 [%] 2050 [%] 2080 [%] 2100 [%]

arg 43 100 103.45 106.21
aus 43 100 103.45 106.21
aut 43 100 103.45 106.21
bel 43 99.8 103.45 106.21

Continued on next page
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Table A.3: Emission control rates of the Temperature solution, referred to every region in the years
2030, 2050, 2080 and 2100.

Region 2030 [%] 2050 [%] 2080 [%] 2100 [%]

bgr 43 100 103.45 106.21
blt 43 100 103.45 106.21
bra 43 100 103.45 106.21
can 43 100 103.45 106.21
chl 43 100 103.45 106.21
chn 43 100 103.45 106.21
cor 43 100 103.45 106.21
cro 43 100 103.45 106.21
dnk 43 100 103.45 106.21
egy 43 100 103.45 106.21
esp 43 97.04 103.45 106.21
fin 43 100 103.45 106.21
fra 43 100 103.45 106.21
gbr 43 100 103.45 106.21
golf57 43 100 103.45 106.21
grc 43 100 103.45 106.21
hun 43 100 103.45 106.21
idn 43 100 103.45 106.21
irl 43 100 103.45 106.21
ita 43 95.96 103.45 106.21
jpn 43 100 103.45 106.21
meme 43 87.69 103.45 106.21
mex 43 99.92 103.45 106.21
mys 43 100 103.45 106.21
nde 43 100 103.45 106.21
nld 43 99.52 103.45 106.21
noan 43 100 103.45 106.21
noap 43 100 103.45 106.21
nor 43 100 103.45 106.21
oeu 43 100 103.45 106.21
osea 43 100 103.45 106.21
pol 43 100 103.45 106.21
prt 43 95.96 103.45 106.21
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A.2. Emission control rates

Table A.3: Emission control rates of the Temperature solution, referred to every region in the years
2030, 2050, 2080 and 2100.

Region 2030 [%] 2050 [%] 2080 [%] 2100 [%]

rcam 43 100 103.45 106.21
rcz 43 100 103.45 106.21
rfa 43 100 103.45 106.21
ris 43 100 103.45 106.21
rjan57 43 100 103.45 106.21
rom 43 100 103.45 106.21
rsaf 43 77.24 103.45 106.21
rsam 43 100 103.45 106.21
rsas 43 100 103.45 106.21
rsl 43 100 103.45 106.21
rus 43 100 103.45 106.21
slo 43 91.58 103.45 106.21
sui 43 100 103.45 106.21
swe 43 99.08 103.45 106.21
tha 43 100 103.45 106.21
tur 43 100 103.45 106.21
ukr 43 100 103.45 106.21
usa 43 100 103.45 106.21
vnm 43 100 103.45 106.21
zaf 43 100 103.45 106.21

Table A.4: Emission control rates of the 90/10 solution, referred to every region in the years 2030, 2050,
2080 and 2100.

Region 2030 [%] 2050 [%] 2080 [%] 2100 [%]

arg 43 100 103.45 106.21
aus 43 100 103.45 106.21
aut 43 100 103.45 106.21
bel 43 100 103.45 106.21
bgr 43 91.78 86.37 85.8
blt 43 100 103.45 106.21
bra 43 100 103.45 106.21
can 43 100 103.45 106.21
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A. Additional material

Table A.4: Emission control rates of the 90/10 solution, referred to every region in the years 2030, 2050,
2080 and 2100.

Region 2030 [%] 2050 [%] 2080 [%] 2100 [%]

chl 43 100 103.45 106.21
chn 43 100 95.26 88.85
cor 43 100 103.45 106.21
cro 43 72.19 67.3 68.04
dnk 43 100 103.45 106.21
egy 43 72.43 77.25 82.11
esp 43 100 103.45 106.21
fin 43 100 103.45 106.21
fra 43 100 103.45 106.21
gbr 43 100 103.45 106.21
golf57 43 75.06 64.51 62.56
grc 43 100 103.45 106.21
hun 43 100 103.45 106.21
idn 43 95.23 97.89 99.14
irl 43 100 103.45 106.21
ita 43 100 103.45 106.21
jpn 43 100 103.45 106.21
meme 43 69.65 72.19 76.53
mex 43 74.19 72.26 74.55
mys 43 98.35 102.35 106.21
nde 43 76.1 78.2 79.74
nld 43 100 103.45 106.21
noan 43 81.87 85.03 88
noap 43 75.17 75.59 80.46
nor 43 100 103.45 106.21
oeu 43 81.77 73.97 71.39
osea 43 87.53 91.8 100.24
pol 43 100 103.45 106.21
prt 43 100 103.45 106.21
rcam 43 67.52 77.22 88.38
rcz 43 100 103.45 106.21
rfa 43 100 103.45 106.21
ris 43 100 94.53 91.29
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A.2. Emission control rates

Table A.4: Emission control rates of the 90/10 solution, referred to every region in the years 2030, 2050,
2080 and 2100.

Region 2030 [%] 2050 [%] 2080 [%] 2100 [%]

rjan57 43 84.06 89 93.5
rom 43 78.47 75.01 76.22
rsaf 20.89 36.5 53.37 66.46
rsam 43 93.73 95.13 98.12
rsas 29.98 41.7 51.17 59.59
rsl 43 100 103.45 106.21
rus 43 100 103.45 106.21
slo 43 100 103.45 106.21
sui 43 100 103.45 106.21
swe 43 100 103.45 106.21
tha 43 100 103.45 106.21
tur 43 94.67 87.83 86.06
ukr 43 87.6 79.56 75.61
usa 43 100 103.45 106.21
vnm 43 86.39 95.03 100.52
zaf 43 94.04 90.32 90.01

89


	Glossary
	Introduction
	Proposed methodology
	The research questions
	Outline of the thesis

	State of the art
	Climate policy
	Integrated Assessment Models
	Uncertainty in the Integrated Assessment Models

	Cost-Benefit Integrated Assessment Models
	Treatment of uncertainty in Cost-Benefit Integrated Assessment Models
	Additional climate policy targets in Cost-Benefit Integrated Assessment Models

	Economic inequality
	Economic inequality in Integrated Assessment Models and future prospects


	Methods
	Introduction
	The RICE50+ model
	Regional aggregation and economy
	Emissions abatement
	Climate impact functions
	Welfare
	Land-use
	The RICE50+ model modification

	Objectives
	Welfare objective
	Temperature objectives
	Inequality objectives

	Patient Rule Induction Method
	The algorithm
	PRIM diagnostics
	Comparison with other methods
	PRIM application
	Inputs
	Output
	Meta-parameters
	Resampling test

	Robustness analysis
	Robustness metrics

	Robust solution selection

	Results
	RICE50+ optimal outcomes
	Experiment setting
	Results

	Highest risk scenarios
	Experiment setting
	Results

	Robust solutions
	Experiment settings
	Results


	Conclusions and future research
	Bibliography
	Additional material
	Scenario discovery analysis of all the set of solutions
	Emission control rates


