
Executive Summary of the Thesis

Simultaneous exploration and mapping for fully autonomous vehicles:
a mixed graph-mesh approach

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Pietro Tenani

Advisor: Prof. Lorenzo Mario Fagiano

Co-advisors: Danilo Saccani, Michele Bolognini

Academic year: 2020-2021

Abstract
The focus of this thesis is the development of a
novel controller for mobile robots used in explo-
ration and mapping tasks, in outdoor and non
GPS-denied environment. Specifically, the con-
troller is run on a multicopter equipped with
RGB-D camera and localisation sensor.
The proposed controller solves the problem of
real-time autonomous exploration and mapping,
with real-time obstacles reconstruction. The
controller uses a navigation graph for collect-
ing information about the obstacle-free area and
computing paths, and a triangular mesh for rep-
resenting the obstacles and selecting the best
target.
The controller is composed by two loosely in-
teracting data flows. The Mapping part merges
the images generated by the camera into a global
pointcloud, that is converted into a mesh. Fron-
tiers are computed and the best one is selected
by weighting the distance and the expected in-
formation gain factors. The Exploration part
generates a local convex polytope that repre-
sents free space, integrates new nodes into the
global navigation graph, and plan the path that
reaches the node closer to the received target.
Additional measures on the safety of the path

and edge cases are implemented as well.
The thesis introduces novelties in a variety of
domains, namely the study of the use of mesh in
exploration and mapping duty, a novel approach
for the generation of a convex polytope, a pas-
sive obstacle avoidance technique, and a rarely
studied frontier definition.
The proposed controller is successfully tested on
a simulated environment in Gazebo, and com-
pared with a state of the art exploration and
mapping framework.

1. Controller structure
1.1. Background
The proposed controller originated from G-
BEAM [1], a Graph Based Exploration and
Mapping controller that focus on building a map
of environment using a drone that moves on a
plane (at fixed height) equipped with a planar
lidar. The proposed controller used G-BEAM
as a starting point, and the skeleton of the data
flow and the subdivision between nodes has been
expanded and improved.

1



Executive summary Pietro Tenani

Figure 1: Data flow

1.2. Controller description
The proposed controller is composed by two
main workflows: the Mapping part and the Ex-
ploration part. The Mapping task is performed
by building and maintaining a mesh that repre-
sents the obstacles. The mesh is also used for se-
lecting the next target to be filmed. The Explo-
ration task is performed by building and main-
taining a navigation graph representing the free
space, and performing path computations and
security checks. Each workflow is kept as inde-
pendent as possible from the other, allowing for
an higher level of optimization. The data flows
and the subdivision between different modules
can be seen in Figure 1.

1.3. Innovative contributions in the
controller structure

The most important innovative contribution in-
troduced in the structure of the controller is the
use of two independent data structures for rep-
resenting obstacles and free space. The usual
approach consists on the adoption of a single

data structure (usually an occupancy grid), or
a secondary one built from the principal. The
proposed approach allows to optimise each step,
and use innovative data structures specialised ei-
ther on Mapping or Exploration

2. Obstacle representation
2.1. Mesh management
The obstacles are stored in a triangular mesh. In
order to build the mesh, the pointclouds received
from the camera are filtered and merged into
a global obstacle pointcloud. From the global
pointcloud the set of mesh vertices is extracted.
The number of vertices in the mesh (i.e. the
density of the vertices) is a tradeoff between the
quality of the reconstructed mesh (having more
vertices results in a higher precision), the com-
putational time (having more vertices requires
more computational resources), and the sensi-
tivity to noise (more vertices results in a more
noisy surface if the readings are not errorless).
Finally, once the vertices are extracted, the mesh

2



Executive summary Pietro Tenani

can be reconstructed. The chosen algorithm for
building the mesh is the Greedy Projection Tri-
angulation algorithm [3], an efficient meshing al-
gorithm specialized in fast reconstruction. The
computed mesh is provided to the user both as a
classic coloured mesh and as a wireframe struc-
ture.

2.2. Target selection
The reconstructed mesh is used for comput-
ing the next best target that optimise the dis-
tance/usefulness tradeoff. In order to find the
best target, the frontier set is determined (the
frontier is defined as the "border" of the mesh,
or more formally as the set of mesh edges that
are contained in a single triangle), then the fron-
tiers are grouped by continuity into holes, that
are possibly filtered. Finally, for each candi-
date target (the set of edges that compose the
holes) the number of nearby frontier points is
counted. The candidate target that maximise a
score function (directly proportional to the num-
ber of near edges, inversely proportional to the
distance of the candidate) is set as next target.

2.3. Pointcloud drift
A problem encountered during the testing of the
controller causes the partial pointclouds to be
misaligned with the ground truth model, thus
making the global pointcloud (and the recon-
structed mesh) very noisy and mostly useless.
The cause of the problem is not entirely known,
and it appears to be present mainly during fast
rotations and translations.
The solution adopted consists on checking at ev-
ery pointcloud integration if the drone is rapidly
moving or rotating, and in case the partial point-
cloud is discarded. A drawback of this simple
solution is the need for the drone to stay still
in order to update the obstacles, therefore ev-
ery few seconds the drone has to stop and the
exploration time gets a lot longer.

2.4. Innovative contributions in the
Obstacle representation func-
tionality

The use of a mesh in a Exploration and Mapping
approach is quite unexplored, as this data struc-
ture is usually considered not flexible enough.
Therefore the successful use of a mesh, with the
aid of a global pointcloud, shows a promising

Figure 2: Convex polytope generation

and flourishing research direction.
Moreover, the technique adopted for the compu-
tation of the frontiers has very few similar works
in literature. The usual approach consists in fo-
cusing the exploration on the Free areas that
are near Unknown zones, and therefore trying
to maximise the explored volume. The proposed
approach instead only considers the obstacles,
and it tries to minimise the unknown boundary
of the reconstructed mesh. This is too an inter-
esting research path, that is especially beneficial
when the goal of the exploration is a known ob-
stacle.

3. Graph management and
Navigation

3.1. Convex polytope
In order to build a navigation graph, used for
representing the walkable space, it is necessary
to extract from each computed frame a vol-
ume containing the maximum amount of free
space. This is achieved by using a convex poly-
tope. The novel algorithm developed for the the-
sis starts from the biggest right pyramid, and
then iteratively shrinks it in order to exclude all
the obstacles from the polytope. In Figure 2 is
shown the polytope generated in a two dimen-
sional case. The dots are the obstacles, the white
cone is the field of view, and the blue shape is
the convex polytope.

3



Executive summary Pietro Tenani

3.2. Graph construction and naviga-
tion

The graph is enriched of new nodes at each new
acquired pointcloud. The nodes are extracted
from inside the polytope, and inserted into the
graph if and only if they comply the minimum
distance between nodes. The vertical minimum
distance between nodes is shorter than the pla-
nar distance, so that the inherent greater chal-
lenge of vertical movements is overcome.
For the navigation in the graph the well known
Dijkstra algorithm is adopted, with a simple
variation that avoids certain edges and nodes
marked as prohibited. The destination node in
the graph is chosen as the closer to the target
produced by the frontier selection algorithm that
is reachable from the starting node.

3.3. No new path edge case
A special edge case is handled with care. This
is when the best destination node has been
reached, but the mesh target can not be seen.
In order to avoid a deadlock, the problem is
handled by first completely exploring the cur-
rent node, by performing a complete rotation
(thus ensuring that any information from the
current node is taken), and then computing a
new path after excluding the current node from
the possible destination nodes (thus forcing the
exploration and ignoring the current best node,
known to be useless). The list of forbidden nodes
is deleted at each target change.

3.4. Passive obstacle avoidance
In order to ensure that the paths computed are
at a safe distance from the obstacles, a passive
obstacle avoidance approach is adopted. Once a
path is computed, it is verified that all the nodes
and the entirety of all arcs are distant enough
from the obstacles. If this is verified path is ac-
cepted, otherwise the insecure nodes and edges
are marked as non walkable and the path is re-
computed.

3.5. Innovative contributions in the
Graph management functional-
ity

The first innovative contribution is the algo-
rithm for computing the three dimensional con-
vex polytope containing free space. Not much
research has been done in this direction, and

the proposed approach is well optimised, has a
known complexity upper bound (as each obsta-
cle is parsed at most once), and the polytope
covers more internal volume than many simpler
methods.
The adoption of a passive obstacle avoidance
system is quite innovative too, since the most
common approach consists on the use of a low-
level active obstacle avoidance system that di-
rectly interact with the flight controller, thereby
making unpredictable the trajectory followed.
The proposed approach, instead, ensures that
the drone can safely follow the exact computed
path, and among other alternatives has much
higher performance.

4. Testing results
The proposed controller has been developed in
C++ using ROS, and tested in a simulated envi-
ronment in Gazebo. The goal of the robot is to
autonomously map a large building (26 x 13 m,
and a maximum height of 11 m) both in absence
and presence of sensor noises. The results have
been analysed both visually and through some
metrics.
In Figure 3 the original model, the reconstructed
pointcloud and the mesh wireframe are pre-
sented.
The average total flight time is roughly 70/75
minutes. The running time for each module al-
lows for a real time execution, in particular the
most demanding task is the meshing computa-
tion, that requires half a second in the noiseless
case, just above one second in the noisy case. In
the first two columns on Table 1 are visible some
metrics, in particular the number of data points
and the distance values, measured by comput-
ing the mean, median and standard deviation of
the distances between the mesh and the ground
truth. The noiseless case is clearly better, how-
ever both the results are very good.
The meshing algorithm does not work perfectly
with small and thin objects, as the pointcloud
fails in reproducing the complexity of the sur-
face (an example of a shelter with small columns
present in the simulated environment can be
seen in Figure 4, where the black cloud is the
global pointcloud, the yellow squares are the
mesh vertices and the red lines are the recon-
structed mesh edges). However in most the cases
mapping buildings with no small details results

4



Executive summary Pietro Tenani

(a) Mesh vertices (b) Mesh wireframe

(c) Ground truth

Figure 3: Mesh reconstruction

in an almost perfect reconstruction.

4.1. RTAB-Map comparison
Finally, the proposed controller is compared
with a state of the art SLAM approach,
RTAB-Map [2]. The two algorithms are
tested at the pointcloud level, comparing the
global obstacle pointcloud of the proposed ap-
proach and the cloud published on the topic
rtabmap/cloud_map for RTAB-Map.
The RTAB-Map pointcloud’s distance metrics
with respect to the ground truth are visible on
the third column of Table 1 (note that RTAB-
Map has been tested without sensors noise, so
the values can only be compared with the first
column of the table), while the distance met-
rics between the two reconstructed pointcloud
are shown in Table 2.
Although storing one fourth of the points of
RTAB-Map, the proposed controller provides
very similar results, with the smallest difference
between the two clouds. Moreover, the proposed
approach does not perform SLAM and therefore
is much faster, so in situations that does not

no noise noise RTAB-Map
Nobs [-] 118273 285917 447568
dmax [m] 0.342 0.507 0.548
dµ [m] 0.048 0.101 0.042
dσ [m] 0.043 0.062 0.033
dmed [m] 0.039 0.083 0.035

Table 1: distance metrics

require Simultaneous Exploration and Mapping
the proposed approach can be preferred over
RTAB-Map.

5. Conclusions
Simultaneous exploration and mapping for fully
autonomous vehicles, adopting a mixed graph-
mesh approach that keeps the data flows as in-
dependent as possible.
The Mapping task is tackled by building a mesh
of the obstacles mapped during the flight and us-
ing it for extracting the frontier and the best tar-
get to film. The Exploration task is tackled by
building a navigation graph that stores informa-

5



Executive summary Pietro Tenani

(a) Ground truth (b) Reconstructed model

Figure 4: Detail of the shelter and columns imperfections

dmin [m] 0.0005
dmax [m] 0.438
dµ [m] 0.042
dσ [m] 0.020
dmed [m] 0.041

Table 2: comparison between RTAB-Map and
proposed controller pointclouds

tion about the free navigable space. Some spe-
cial procedures have been designed for handling
special cases: when no new path are available,
the pointcloud drift, and the obstacle avoidance.
The controller has been tested on a simulated en-
vironment and compared with a state of the art
algorithm. The results are very promising, the
reconstructed mesh is very similar to the ground
truth, and the proposed algorithm has similar
output and is more efficient than a state of the
art algorithm selected for the comparison.
Regarding the future of the research, a real world
testing would be the most interesting direction,
while further developments could include a col-
laborative multi drone approach, the possibility
to take advantage of prior knowledge at the be-
ginning of the mapping process, and the expan-
sion to a full SLAM algorithm.

References
[1] Leonardo Cecchin, Danilo Saccani, and

Lorenzo Fagiano. G-beam: Graph-based ex-
ploration and mapping for autonomous ve-
hicles. In 2021 IEEE Conference on Control
Technology and Applications (CCTA), pages
1011–1016. IEEE, 2021.

[2] Mathieu Labbé and François Michaud.
Rtab-map as an open-source lidar and vi-
sual simultaneous localization and mapping
library for large-scale and long-term on-
line operation. Journal of Field Robotics,
36(2):416–446, 2019.

[3] Zoltan Csaba Marton, Radu Bogdan Rusu,
and Michael Beetz. On Fast Surface Re-
construction Methods for Large and Noisy
Datasets. In Proceedings of the IEEE In-
ternational Conference on Robotics and Au-
tomation (ICRA), Kobe, Japan, May 12-17
2009.

6


	Controller structure
	Background
	Controller description
	Innovative contributions in the controller structure

	Obstacle representation
	Mesh management
	Target selection
	Pointcloud drift
	Innovative contributions in the Obstacle representation functionality

	Graph management and Navigation
	Convex polytope
	Graph construction and navigation
	No new path edge case
	Passive obstacle avoidance
	Innovative contributions in the Graph management functionality

	Testing results
	RTAB-Map comparison

	Conclusions

