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Abstract

The present work aims at paving the way to future studies relating or not the occurrence
of drag reduction within the technique of dimpled surfaces. Dimples immersed in a turbulent
boundary layer still represent one of the newest and more debated passive flow control tech-
niques. Here are presented the major research contributions, among which, one in particular
is selected to be replicated with an innovative immersed boundary direct numerical simula-
tion (DNS) code suited for studying the turbulent channel flow problem with the ability of
modeling virtually any kind of wall surface.

The selected dimple geometry is analyzed into a turbulent flow regime. The code is ma-
nipulated to suit the model of the dimple, which is redefined in an accurate manner starting
from the current available literature, which often presents unclear or in disagreement results.
The selected dimple geometry proves to be one of the most exploited for its analytical math-
ematical definition and the possibility of being constructed and implemented.

The hope for such a passive flow control device to positively affect drag is still out there,
or at least the hope to clarify its behaviour, and with this work may be a little bit closer,
especially for those who would like to start from this dimple geometry and push forward the
research with more powerful numerical tools, higher Reynolds number closer to real possible
applications and a parametric study which takes into account a variation of the shape or the
mutual disposition of the dimples on the surface. The adopted numerical code proves itself
to be a useful and powerful tool to search for new scientific evidence even within the case of
dimples.
Keywords: turbulent drag reduction, dimples, DNS, channel flow, immersed boundary
method, flow control.
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Sommario

Con questo lavoro si vuole aprire la strada a studi futuri che trattano la riduzione di attrito
tramite la tecnica di superfici ricoperte di dimples. Le dimples immerse in uno strato limite
turbolento rappresentano tuttora una delle ultime e più dibattute tecniche di controllo passivo
per flussi turbolenti. Vengono qui presentati i maggiori contributi nel campo della ricerca sulle
dimples, tra i quali una in particolare è selezionata per essere replicata attraverso un’innovativa
implementazione del metodo dei contorni immersi sviluppato all’interno di un codice di sim-
ulazione numerica diretta (DNS) progettato appositamente per trattare il problema di un
flusso in un canale turbolento e nel quale è possibile modellare virtualmente qualsiasi tipo di
superficie a parete.

La geometria di dimple selezionata viene costruita, implementata nel solutore numerico,
e testata in un canale turbolento. Il codice è manipolato per includere al meglio questo
modello di dimple, che viene ridefinito in maniera accurata proprio partendo dalla letteratura
disponibile, che spesso presenta risultati poco chiari o in disaccordo tra loro. La geometria
di dimple selezionata è una delle più utilizzate grazie sia alla sua relativamente semplice
definizione matematica che alla possibilità di essere realizzata ed implementata.

La speranza che un tale dispositivo di controllo passivo del flusso turbolento influenzi
in maniera positiva la resistenza è ancora là fuori, o come minimo la speranza di chiarire
al meglio il suo comportamento, e con questo lavoro potrebbe essere un po’ più vicina, in
particolar modo per chi voglia cominciare da questa configurazione di dimple e spingere oltre
la ricerca magari con strumenti numerici più potenti, un numero di Reynolds maggiore, ed
uno studio parametrico che consideri una variazione della forma o la reciproca posizione delle
dimples sulla superficie. Il codice impiegato si dimostra uno strumento utile ed anche una
potente fonte di nuove prove scientifiche nel caso delle dimples.
Parole chiave: riduzione di attrito turbolento, dimples, DNS, flusso di parete, metodo dei
contorni immersi, controllo del flusso.
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1. Introduction

Passion is the perfect guide into the realm of turbulence, especially for those engineers and
scientists that for about forty years now are still trying to understand its unsolved problems.
These kind of problems are of paramount importance in the contemporary world and could
potentially affect many aspects of our lives. As well as passion, which is necessary to find the
right motivation to push the research forward, money is the other big character of the whole
story. In particular, the aviation industry is responsible for at least hundreds of millions of
dollars of income every single year. Each innovation, especially in the field of drag reduction,
may lead to huge savings, needless to say that a reduced fuel consumption corresponds to a
best environmental print across the globe.

Nature has always proven to be the best source of information and adaptation and men
have always tried to access its secrets in order to exploit them in an advantageous manner.
The topic of the present study, turbulent drag reduction, is a perfect example of this. It is
known that the skin of some sharks presents a very peculiar structure as a result of millions
of years of evolution. It is believed that these kind of structures lead to a turbulent drag
reduction that enhances the ability of these type of fast moving sharks to smoothly swim
in their environment. As it is reported in the 1989 article [3]: "The skin of fast sharks is
covered with tiny scales which have little longitudinal ribs on their surface." A recent example
is presented in figure 1.1 thanks to the courtesy of the University of Basel. Concepts like this
have led to some of the most important aspects among the field of drag-reducing techniques:
riblets. Riblets have been quite largely studied and it has been reported that this type of
roughness may lead to almost a 10 % drag reduction capability [6], [56].
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CHAPTER 1

Figure 1.1: Skin of Hammerhead shark
Nr. 120462 Mag: 200x by 30cm x-axis

Source: Foto & Coloration by Daniel Mathys, Nano Imaging Lab, Swiss Nano Science Insti-
tute, University of Basel, Switzerland

In [3] it is reported that: "it was considered impossible to devise a surface having less friction
drag in a turbulent boundary layer than that produced by a smooth surface." More recent
numerical techniques than those that the authors of this specific paper could adopt have led
to the not so obvious conclusion that this is in fact possible and this is a relevant result that
could inspire new designs that could equip the next generation of civilian aircrafts. A more
recent article such as [10] explores other lift-generating aspects of the hammerhead sharks, in
support to the fact that a strong attention is currently paid to nature. The inspiration to try
to solve even the most crucial aerodynamics problems may thus come even from below the
oceans.
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Introduction

As well as the business of aviation and the global effort of trying to build a more sustainable
world, in which every aspect that could reduce the influence of drag in an environmentally
way matters, there is also the need to reduce drag to go faster. This year marks the return
to Italy of the so called Prada Cup, preamble to the more prestigious America’s Cup, the
oldest international competition in any sport [50]. A first and last attempt to introduce such
a drag-reducing device as riblets dates back to 1987 [23] when the American team Stars &
Stripes crossed the line and won the Americas’ Cup defeating the Australian opponent. The
Americans, under the previous advice of NASA Langley Research Center, managed to cover
their hull with a longitudinal grooved surface film layer. As long as the regulations permit such
a technical solution, it is very interesting to note how these changes largely affect the global
result in these kind of competitions. The numerical analysis of these problems is becoming
more and more important, just like the study in association with the Politecnico di Milano
[27], also dealing with an America’s Cup winning competition boat design, demonstrates. In
this context the analysis of a drag-reducing surface becomes of great importance as well as
the comprehension of its nature and its physics.

Flow control techniques are becoming of prime interest especially when it is remembered
that up until as mush as ≈ 55 % of the total drag on a civil aircraft is made up of viscous drag
as stated in [1]. Potential benefits are enormous and they all start with better comprehension
of the physics that comes into play thanks to more powerful numerical instruments every year.

A turbulent boundary layer dynamics is characterized by what appears to be a set of quasi-
deterministic and coherent structures as pointed out in [35]. Turbulence is not as chaotic as
it has been thought for decades. More modern views recognize coherent repeating patterns
in those regions closer to a surface. Where the non-dimensional height expressed in viscous
units above the surface lies in the region 0 < z+ < 100, the so called wall cycle occurs (see
e.g. [14]), and it is exactly here that the dynamics of the flow may be altered thanks to some
kind of flow control technique. In this fluid dynamic ballet low-speed fluid particles tend
towards the region above the surface carrying a negative momentum with them (ejections),
and high-speed fluid particles are swept away towards the region next to the wall, generating
strong velocity gradients that modify the skin-friction drag (sweeps). These aspects combine
to generate low speed streaks (LSS) that meander across the wall accompanied by quasi-
streamwise vortices (QSV) which are responsible for transferring kinetic energy from the mean
flow to the turbulent eddies which reflect the turbulent behaviour of the flow field [13], [38].
All these aspects tend to be strictly connected: the streaks are the result of the streamwise
vortices, and the regeneration of these vortices can be seen as a result of the subsequent
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breakdown of these streaks [11].

Despite being beneficial in terms of drag reduction, riblets have not encountered the
dimension of civilian flight application yet. This is mainly due to high maintenance costs as
well as difficulties encountered in the realization process on a vast scale production. Benefits
might easily be overwhelmed by new costs if this kind of technology is not mature. Dimples
are instead macroscopic structures less sensitive to dirt and mechanical degradation.

Riblets and riblets-like devices such as dimples are part of the so called passive drag-
reducing techniques. This means they act passively with no need of an external source of
energy to guarantee their functioning. Being several order of magnitude larger than riblets,
dimpled geometries are easier to produce, to install, to maintain, and they could potentially
be overall cheaper. Of course, it is not clear yet whether dimples work or not. Their total
beneficial effect is expected to be lower than that of riblets, if any; nevertheless the ease this
technology brings with it might lead to such a beneficial result which is comparable to that
of riblets. In contrast to passive techniques there are the so called active techniques, which
come with an external source of power. These techniques are more complicated to develop
and to install with respect to the passive ones, and the need to install actuators and sensors
adds weight to the design. They usually deal with deforming walls or surfaces that can move
sinusoidally. Once again, it is kind of a balance between pros and cons since it has been
demonstrated that these active techniques may lead to higher net power savings compared
to the passive ones. The literature on such topics is enlarging and the Politecnico di Milano
proves again to be part of the state of the art of the knowledge in this specific field thanks to
contributions like [55], [31], [32], and [9].

The goal of the present work is to recap the dimple technology studied in literature, to
select the most promising dimple geometry and to start to set up the dimple problem in an
advanced programming language which has entirely been conceived and developed by Prof.
Paolo Luchini. The direct numerical simulation (DNS) code adopted has been developed by
himself as well, and being an algorithm suited for the immersed boundary method, it is an
appropriate tool for studying this new kind of passive drag reduction technique. The code
deals with incompressible turbulent flows developing into a channel with indefinite parallel
walls. It contains the so called InBody function which allows to design the wall surface to
simulate.
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2. Turbulence background

Feynman: Look at the equations for the atomic and molecular forces in water, and you can’t
see the way water behaves; you can’t see turbulence.

Omni: That leaves the people with questions about turbulence - the meteorologists and oceanog-
raphers and geologists and airplane designers - kind of up the creek, doesn’t it?

Feynman: Absolutely. And it might be one of those up-the-creek people who’ll get so frustrated
he’ll figure it out, and at that point he’ll be doing physics. With turbulence, it’s not just a case
of physical theory being able to handle only simple cases - we can’t do any. We have no good
fundamental theory at all.

1965 Nobel laureate in Physics Richard Feynman on turbulence during an interview with
OMNI magazine in 1979.

2.1 Turbulence characteristics

Turbulence is ubiquitous: it is the standard for real application flows. As may arise from
Feynman’s words about the topic, it is often reported that turbulence is the last great unsolved
problem of classical physics. It has been fascinating scientists and engineers for centuries, as
reported in [39], in which it is shown a marvellous drawing by Leonardo da Vinci (1452-
1519), and its consequences are enormous for practical purposes. Engineering problems such
as combustion, transport (airplanes, cars, trains, boats and so on), flows into pipes, and even
internal flows in the human body are all examples of applications of turbulent motion of flows.

6



Turbulence background

Figure 2.1: Leonardo da Vinci’s drawing showing chaotic motion of water as depicted in [39]

Source: [24]

Turbulence is a characteristic of the flow even though it is often mathematically modeled
as if it were a property of the fluid to keep the math as simple as possible. It is in contrast
to laminar flows, which are characterized by low Reynolds numbers, that is high viscosity
or low velocity or characteristic length of the problem. Laminar flows represent therefore an
exceptional case and they are not as important nor fascinating as turbulent ones. There is a
whole branch of fluid dynamics dealing with investigating how turbulence is generated starting
from instabilities of the laminar flow.

The main parameter regarding turbulence is the so called Reynolds number, in honor of
Osborne Reynolds, who firstly studied transition from laminar flows to turbulent regimes in
his famous experiment in 1883 [33]. Thanks to his pioneering study, new aspects of turbulent
transition came to the attention of an increasing number of researchers, revealing that sys-
tematic chaos and turbulent motion may as well result into a spatially localized pattern. This
led to link turbulence behaviour to the complex mathematical theory of chaos which is able
to describe the physics of non-linear dynamical systems.
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The Reynolds number is defined as:

Re =
u l

ν
(2.1)

Expression 2.1 is telling that a major role in understanding the behaviour of turbulence is
due to the ratio between the velocity u [m/s] of the fluid times a characteristic length l [m]

of the problem under exam, and the kinematic viscosity ν [m2/s] of the fluid. The Reynolds
number generally expresses the ratio between inertial forces and viscous forces. As pointed out
in [49], dealing with turbulence may help reconstruct other interesting features of this non-
dimensional parameter. The inverse of the Reynolds number may be as well seen as the ratio
between a time scale of turbulent diffusion and a time scale of molecular diffusion. Moreover,
its square root is proportional to the ratio between a diffusive turbulent length scale and a
laminar one. All these aspects lead to some of the main characteristics of turbulent flows:

• High Reynolds numbers

• Three - dimensional

• Unsteadiness

• Mixing

• Multi - scale

Turbulent fluid dynamics is described by a set of non-linear partial differential equations
knwon as the incompressible Navier-Stokes equations:

∂u
∂t

+ (u · ∇)u +∇P =
1

Re
∇2u

∇ · u = 0

(2.2)

The first expression in 2.2 is the momentum equation, whereas the latter one represents the
continuity equation. According to a predefined reference frame these two equations consider
the three directions in space and the three components of the velocity vector field along these
directions, namely u, v, and w. The Reynolds number appears in the momentum equation,
and as it grows, the convective non-linear terms play a bigger role in the physics behaviour
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of the flow. Three-dimensionality is intrinsic in turbulent flows. The topic of this study,
dimpled surfaces, exhibits a purely three-dimensional behaviour. Although turbulence may
be seen as 2D in some exceptional cases, e.g. the atmospheric boundary layer, its 3D nature is
strongly connected to the energy cascade theory, described by Richardson [34] and formalized
by Kolmogorov, according to which turbulence is extremely multi-scale and made up of fractal-
like structures. These turbulent eddies are fed with energy at the larger scales by the mean
flow and then energy is transferred to smaller and smaller eddies until viscosity dissipates
the energy turning it into thermal or internal energy. Diffusion and dissipation are therefore
fundamental in any turbulent flow and these aspects are once again depicted through the
momentum equation in expression 2.2.

2.2 Turbulence in ducts

In order to better understand turbulence, it is firstly often analyzed from a "pure" point of
view: therefore the theory of homogeneous isotropic turbulence (HIT) arises. For a better
comprehension and insight into these topics, which are not of primary importance inside this
work, it is possible to consult [49] and [28]. It is important to highlight the fact that homoge-
neous isotropic turbulence does not exist, nevertheless it is very useful to try to understand
from a physical and a statistical point of view the main aspects of turbulent flows, especially
the behaviour of the smallest scales of motion.

In contrast to homogeneous isotropic turbulence there is the more interesting turbulence in
ducts, also known as wall-bounded turbulence, which deals with the description and analysis
of turbulent motion in contact with a surface. This is of course much more relevant for
engineering purposes. The main aspects of this kind of turbulence are:

• Statistically one - dimensional flow

• Velocity profile close to the wall is universal with respect to Re and type of flow

• Hypothesis of high Re and scale separation

• Parallel indefinite walls and periodic repetition in space

Figure 2.2 represents the typical setup of these kinds of problems: the flow is driven across two

9



CHAPTER 2

indefinite parallel walls on which both a non-slip condition and a non-penetration condition
are imposed as boundary conditions. The domain is therefore repeatable in the streamwise
and spanwise directions, while it is obviously confined between the two walls in the wall-
normal direction. Figure 2.2 shows a typical example of the domain for wall-bounded flows
and the reference frame and nomenclature adopted hereafter as implemented in the numerical
procedure written in the code.

Figure 2.2: Definition of channel flow with reference adopted in the numerical code

The flow of the fluid is generated by a difference in pressure, ideally a pump which drives
the flow against the friction at the walls. The typical length scale is half the channel height,
namely the parameter δ. The velocity scale is the mean velocity per unit span, namely Ubulk:

Ubulk =
1

2 δ

∫ 2δ

0
u dz (2.3)

Therefore, a special Re number may be constructed: the bulk Reynolds number Reb.

Reb =
Ub δ

ν
(2.4)

Thanks to the so called Reynolds decomposition, which allows to decompose the main variables
of a turbulent flow into a mean part plus a fluctuating part, it is possible to restore the total
stress in such a channel flow as:

τ(z) = µ
du

dz
− ρ u′w′ (2.5)
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Therefore, as pointed out in equation 2.5, the total stress is the sum of the viscous molecular
stress and the so called Reynolds stress. This new kind of stress accounts for the turbulent
fluctuations and it is spread across the whole channel with the exception of the proximity to
the walls, where the non-slip and the non-penetration conditions make it vanish. The total
stress is thus linear in z and its viscous component is predominant right next to the walls,
whereas it is almost negligible elsewhere.

Another important feature in the plane channel flow is the friction coefficient, defined as:

Cf =
τw

1
2 ρ U

2
b

(2.6)

The presence of the velocity fluctuations and the mean components of the flow field
variables, averaged both in time and space, is evidence of the fact that statistics is the greatest
tool in a more advanced comprehension of turbulence dynamics, especially in the case of the
plane channel flow, where its statistics can be expressed in one dimension. A single turbulent
realization of the entire fluid domain is certainly useful to understand some indications of how
the flow is behaving, but its real nature relies in the analysis of more complex statistics.

Finally, taking into account the viscosity, it is possible to define the so called viscous or
inner scale, which is denoted by a "plus" symbol and allows to define important quantities
such as:

• Friction velocity uτ =
√

τw
ρ

• Viscous length δν = ν
uτ

• Friction coefficient Cf = 2
(
uτ
Ub

)2

• Reynolds number Reτ = uτ δ
ν

• Distance from the wall z+ = z
δν

= z uτν

These quantities are representative of the turbulent fluid motion close to the surface. The
friction coefficient is expressed as the square of the ratio between the inner velocity scale
and the external velocity scale. The Reynolds number is defined using both scales, and it
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is a measure of the separation between the scales: larger the Reynolds number larger the
separation between the bigger scales of motion and the smaller turbulent eddis. It is indeed
the ratio between the larger geometric scale and the inner viscous scale.

Under the assumption that the Reynolds number is sufficiently high to determine a net
separation between inner and outer scales, it is generally possible to divide the channel height
in different sublayers each one characterized by unique behaviours:

• z+ > 50 outer layer, where the dominant stresses are the turbulent ones

• z+ < 50 viscous layer, where both viscous and Reynolds stresses act

• z+ < 5 viscous sublayer, where viscous stress is prevalent

In the viscous sublayer, very close to the wall surface, the mean velocity profile expressed in
inner units gets linear with the distance from the wall:

u + = z+ (2.7)

where u + = u
uτ
. For higher values of z+, where the distance from the wall is such that

viscosity is playing a marginal role and the outer variables do not still come into play, it is
possible to define the behaviour of the so called logarithmic region:

u + =
1

κ
ln z+ +A (2.8)

where κ is the so called von Kármán constant and its value is usually ≈ 0.41. It is a universal
constant implemented in most CFD models, although its value could vary from model to
model.

Considering e.g. a pipe containing water flowing at Ub = 1 m/s, and given that the
diameter of the pipe is exactly 1 m, with a little bit of math it is possible to conclude that
the height of the viscous sublayer is ≈ 150 µm. This condition is extremely difficult to be
subjected to experimental fluid dynamics techniques, which would be too intrusive (e.g. a
hot-wire probe).
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This is just one of the main reasons why numerical techniques are becoming the solution
to investigate turbulent flows. Indeed this work deals with a direct numerical simulation
(DNS) code. This numeric technique is as accurate as possible since it does not provide ad
hoc numerical models to approximate the physics of a turbulent flow. The Navier-Stokes
equations are firstly discretized and then resolved in time and space without any turbulence
closure model, such as the ones used in RANS (Reynolds averaged Navier-Stokes) techniques,
nor filters adopted in LES (large eddy simulation) numerical codes. Therefore, it can be said
that a DNS code gets the most close to solve the real problem than any other method; this is
in fact true, at the expense of the computational resources available and the complexity of the
geometries to be analyzed. Since the computational grid size has to be able to get to reproduce
the smallest eddies of the flow, it is obviously not possible to study complex geometries. The
computational cost limits the applications of this technique. As it is reported in [12], where
it can be found kind of the state of the art of a DNS simulation, it is necessary 35 million
core hours to simulate the behaviour of the flow over a wing cross-section of an airplane.
Nevertheless, all of this is important in order to understand and predict how the flow behaves,
so that new designs and ideas may arise to control the flow.

2.3 A modern view for turbulent wall flows

As mentioned in section 1, during the last few decades a more modern view has established
among the research in turbulent flows. A quasi-deterministic vision of the chaotic fluid motion
sees new kinds of structures immersed into a random background. New scientific evidences
reveal that turbulence is not purely made up of chaos and chaotic eddies.

Into the viscous sublayer at about 3− 4 wall units height there are the so called LSS (or
low speed streaks), made up of alternating regions, even thousands of viscous units long,
of low speed flow with respect to the mean flow.

Ejections and sweeps characterize the vertical motion of turbulent fluid particles and are
important into the analysis of the shear stress.

• w
′
> 0, u′

< 0 for the ejections of fluid particles from the wall

• w
′
< 0, u′

> 0 for sweeps of fluid particles towards the wall
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Moreover, the so called QSV or quasi-streamwise vortices are the real engine of the
wall-bounded turbulence and a fundamental ingredient in the so called wall cycle. These
vortices are aligned with the streamwise direction, as their name suggests, and can be ≈ 300

viscous units long per ≈ 50 viscous units high above the wall. These vortices couple in counter
rotating pairs in order to sustain the wall cycle of turbulent production. They promote the
lift-up of vortical structures wchich then result into the production of hairpin vortices and low
speed streaks. The wall cycle, here examined in a non exhaustive way (see references in section
1), is made up mainly by these characters. It shows that it is possible to understand the global
behaviour of a turbulent flow by examining the most recurring patterns and structures and
their own behaviour. It is therefore very important to better understand this physics in order
to act on the turbulent production region close to the wall to manipulate any result, especially
the production of turbulent kinetic energy and shear stress.

In [37], thanks to a LES, it is possible to appreciate one of the fundamental ingredients
of the interaction between turbulent flows and a surface, namely the hairpin vortices, which
concur in the wall cycle. A snapshot of one of the simulations in [37] is captured in figure 2.3.
Although not being a direct numerical simulation, this analysis of a turbulent flow interaction
with a wall clearly shows, for an increasing Reynolds number, these vortices thanks also to a
quasi 2 billion grid points mesh adopted.
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Figure 2.3: Turbulent Boundary Layer (LES) highlighting the lift-up of hairpin vortices

Source: [37], snapshot from [36]

2.4 Control of turbulent flows

To conclude this chapter it is important to recall that the main purpose of this project is
to better analyze, with the available tools, a relatively new kind of turbulent drag reduction
device: dimples. To do so, it is important to understand firstly where this discipline is inserted
into.

During the past 20 - 25 years, thanks to the hypothesis that turbulence is not only a
chaotic system, it has become more and more relevant the branch of control of turbulent
flows. If turbulence is not merely chaos, this means it is possible to act within the cycle of
turbulence production for example to enhance some desired characteristics such as improving
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the lift coefficient for a wing or diminishing the viscous drag over a surface, or modifying the
wake of an object, or controlling the nature of its boundary layer.

Generally speaking, turbulence flow control is divided as anticipated in section 1 into
active and passive control. The former deals with distributed actuators, whereas the latter
deals with enhancing the shapes of a surface. Turbulent drag is made up of two drag sources:
there is one component of drag force which is caused by normal stresses, hence it is called
pressure drag, and there is one component caused by shear stresses, namely the skin-friction
drag. It is this latter source of drag that is the purpose of passive means for turbulent drag
reduction. As pointed out in [8], the friction coefficient is composed by a laminar component
and a turbulent one, in which the Reynolds stresses play a major role. This means that a
better comprehension of the behaviour of these turbulent fluctuations and their subsequent
control could result into a smaller friction coefficient.

Among the passive control techniques there are:

• tensegrity fabrics, which consist of deformable structures and surfaces under the action
of turbulent stresses

• polymers, therefore macromolecules which added in low concentrations into a pipeline
flow in a closed circuit can lead to different characteristics regarding friction drag

• riblets surfaces as mentioned in 1, which consist of very small grooves aligned with the
main flow direction. They can lead up to a 8 − 10 % drag reduction and are basically
the only passive solution actually giving some relevant benefit. Conversely, their main
drawback is that being approximately 10 − 20 viscous units in size, it is very difficult
and complicated to actually produce, use, and maintain something which is in the order
of the micrometers (see e.g. figure 1.1). These grooves work by interacting directly with
the QSV vortices in a precise phase of the wall cycle. They penalize transverse motion
of fluid particles and turbulent structures in such a way that becomes possible to weaken
the streamwise vortices.

The big disadvantage of the other family of flow control devices, namely the active tech-
niques, is that it is needed an external support of energy in terms of actuators and sensors to
monitor the behaviour of the interaction between flow and wall surface. The most promising
among these techniques are the so called travelling waves, which are capable of imposing an
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harmonic boundary condition at the wall. By introducing e.g. a sinusoidal transverse velocity
field, it is possible to reach important reductions in the friction coefficient. Although being
able to produce reductions in the order of almost 50 %, it has been proven that given the
amount of energy supplied, this final result could be more precisely in the order of at least a
5 %. Still, there is a lot more to discover about this topic.
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3. Dimples: state of the art

The main purpose of this work is to synthesize the current research regarding dimples as
a new kind of passive drag reduction technique, and to select and implement one of the most
promising or at least well-established geometries inside the available DNS code. Dimples are
shallow regions created onto a surface typically with a circular plan view, as figure 3.1 shows.
They were at first implemented to enhance heat transfer capabilities at a small pressure drop
penalty thanks to their shallowness.

Many different opinions arise when dealing with turbulent processes; often these opinions
are not in agreement, and the case of dimples is a perfect example of this phenomenon. Many
researchers and engineers are trying to solve the dimples problem, nevertheless consensus is
far from being achieved. It is sufficient to think that there is not yet a systematic research
on this topic, e.g. different geometries of dimpled surfaces are tested both experimentally
and numerically. Of course, it is very hard to try to establish some general truth via different
numerical and experimental procedures with different tools, not to mention the often intrusive
experimental setups represented by such methods as the hot-wire anemometry.
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Figure 3.1: Array of dimples in a staggered arrangement over a surface

Source: [53]

As already pointed out, since riblets are at least microscopic devices, their implementation
becomes easily too expensive to cover their benefits, let alone their maintenance costs. It is
for this reason that dimpled surfaces are attracting more and more researchers, since it is
estimated that the order of magnitude of the diameter of these indentations is the centimeter.
This of course translates into a manufacture and economic advantage e.g. in the aeronautical
industry, where passive drag reduction would mean saving fuel.

The interest in this technique is demonstrated by the fact that Spalart et al. in their recent
work from 2019 [40] investigate the behaviour of an array of dimples both experimentally
and numerically with a direct numerical simulation. Driven and encouraged by the work
reported in [53] by the TU Delft group, the experimental zero-pressure gradient setup of
Spalart et al. is not able to detect any decrease in drag for the staggered dimples configuration;
indeed it is reported a drag increase of about 1 − 2 %. The coverage ratio, namely the
ratio between the portion of the surface occupied by the dimples and the entire surface,
adopted for the experiment is 29 %. With their numerical experiment things do not go better.
They manage to simulate a small domain, containing just two dimples in both staggered and
aligned configurations, with periodic boundary conditions and a turbulent boundary layer
flow. Overall, with a discretization in the order of ∆x+ = 15, ∆y+ = 7.5, and a ∆z+ ranging
from 0.12 to 7.5, they manage to find a total drag increase of at least 1 % with an uncertainty
in the order of the same percentage. Moreover, they do not report any dependence of the
behaviour of the dimples with respect to the increasing Reynolds number. Separation is not
found as well, and overall a reduction in the viscous drag component is negatively balanced
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by an increase in pressure drag, which is introduced with the dimples with respect to a flat
wall surface. A reported higher total drag for the flow-aligned configuration rather than the
staggered configuration is evidence of the pressure drag penalty arising which in the end is a
new source of drag and adds to the viscous one for a globally higher drag force.

The results by Spalart et al. are in disagreement with the ones proposed in [53]. Here
the authors perform a direct force measurement using a wind tunnel balance to measure a
possible drag reduction in the experimental apparatus, a PIV (particle image velocimetry)
setup in order to better understand the flow behaviour, and a RANS simulation. While the
former experimental results lead to an up to 4 % drag reduction, the latter simulation does
not lead to the same result. They investigate a dimple with a depth to diameter ratio of 2.5 %

and 5 %, and both a staggered and a flow-aligned configuration of the array of dimples. Two
different coverage ratios are implemented: 33.3 % and 90 %. Some of the main results are
that:

• Increasing the depth to diameter ratio negatively affects drag performance for the two
coverage ratio patterns

• Drag reducing capabilities improve with Reynolds number for both coverage ratios and
depth to diameter ratios

• High density patterns show an increase in drag relative to low density ones

Best drag reductions are then found for the lower coverage ratio and the lower dimple depth
in a staggered arrangement; this is why it is proposed that this drag reduction is generated
by an alternating spanwise velocity pattern induced by the mutual position of the staggered
dimples.

Van Campenhout et al. in [52] come to the same conclusions as reported in [53]: in their
experimental study it is found that a converging-diffusing type of flow is generated over the
dimple depressions, and that for a staggered arrangement with a coverage ratio of 33 % and
a dimple depth to diameter ratio of 2.5 %, a mild drag reduction is achieved for increasing
Reynolds numbers in the range 10000− 40000 based on their experimental setup. They also
propose that alternating spanwise excitations of the near-wall flow interact with the turbulent
coherent structures into the boundary layer. Being the dimples very shallow, no separation
nor flow reversal is found. They also propose that the mechanism is similar to that of spanwise
wall oscillations which are capable of reducing the intensity of the hairpin vortices.
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In [18], [4], and [19] it is presented a detailed numerical approach by means of a DNS of a
surface covered with dimples. Their DNS study deals with a channel flow made up either of one
wall or two walls with dimples. At a Reτ = 590, corresponding to a Reb = 10935, the authors
are able to confront two meshes: one coarse and one finer. With the more accurate values of
∆x+ = 4.79, ∆y+ = 5.52, and ∆z+ = 0.293, their conclusion is that their arrangement of
dimples does not influence drag; it slightly increases the total drag. They find that wall-shear
stresses decrease within the dimples thanks to a very small recirculation region; the additional
contribution of pressure drag approximately compensates the former reduction and so no net
drag reduction is achieved, neither experimentally. Another early DNS study cited in [57]
reports larger drag in dimples compared to a flat plate.

Several works such as [16] or [42] deal with basic definitions of different types of flow
within a dimple thanks to techniques such as e.g. dye flow visualizations. It is reported that
the most useful configuration of a dimple for drag reduction purposes is the very shallow
dimple, in particular the depth to diameter ratio must not exceed 10 %. Within this limit a
diffuser-confuser type of flow is retrieved with no separation which would eventually enhance
the drag component introduced by pressure. Moreover, Lashkov and Samoilova exclude a
possible drag reduction by dimples in [17] with a direct balance method.

Once again, the same group of authors as in [52] experimentally investigate the problem
in [51]. Although no drag reduction is achieved, it is promoted the theory according to which
it is the interaction between adjacent dimples that causes alternating spanwise excitations of
the near-wall flow which lead to drag reduction.

This spanwise shear drag reduction theory is also independently proposed by another
group of researchers in [43]. Analogies to active wall oscillations are therefore presented. In
this experimental paper, the authors claim to report a drag reduction of ≈ 3 % through
pressure measurements and that ranging from a depth to diameter ratio of 1.5 % to 5 % leads
to a greater reduction in skin-friction, but also to flow separation and form drag. Higher values
of drag reduction are found for a higher coverage ratio. The mechanism of skin-friction drag
reduction is claimed to be the same as for a flat surface using active methods such as spanwise
wall motions. The dimples introduce a streamwise vorticity that means spanwise component
of fluctuations near the wall surface. Furthermore, it is reported that the net effect to the
total drag depends on the relative dominance between the drag reducing streamwise vorticity
and the drag increasing flow separation region. An important aspect is the dependence on the
Reynolds number as well, as it is demonstrated that as this parameter increases, the separation
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bubble inside the dimple shrinks. It is important to know that the dimple geometry described
briefly in this paper is almost the same as the one object of this study.

Another early study conducted in 2009 and explained in [54] demonstrates that from an
experimental point of view drag reduction is achieved once again for the shallowest dimples
tested, and values of ≈ 2.5 % and ≈ 5 % in drag reduction are measured respectively for an
aligned and a staggered arrangement. From a numerical point of view, instead, the average
decrease in friction drag is accompanied by a strong increase in pressure drag, resulting in a
global drag increase calculated by means of a LES. It is stated in here that if the dents are
capable of breaking up the coherence between two or more streaks (LSS) this may lead to a
reduction in the production of turbulent kinetic energy and turbulent drag. Given the typical
dimensions of low speed streaks, this could suggest an order of magnitude for the dimple
geometry, namely 100 viscous units for the spanwise direction and 1000 in the streamwise
direction.

Experience gained by a group of researchers in many articles about the topic such as in
[41], [45], [25], [46], [47], [48], [44] leads to the more recent 2020 paper referenced in [26].
Here a more complete numerical analysis is performed through a DNS with a Reb = 2800.
Although the main subject of this work is to implement into the available code a spherical
dimple, namely a geometry which presents a circular plan view, many of these articles deal
with the optimization of the basic concept of a circular dimple. The geometry of the circular
case among this group of scientific papers is almost the same as the one selected for the
implementation in CPL, this geometry being the most referenced to, and the most promising
in terms of drag reduction. As far as the shape is concerned, triangular depressions, elliptic
ones, diamond shaped dimples, tear drop dimples, and non symmetric circular dimples are
investigated mainly experimentally. Values of drag reduction ranging from 2 % to 4 − 7 %

are found, mainly involving higher values of coverage ratios and a depth less than 5 % the
diameter of the dimple. An increasing tendency to higher drag reduction is reported as a
function of the Reynolds number as well, due to the shrinking of a flow recirculation region.
The DNS domain accounting for a circular dimple presented in [26] is the one designated to
be reproduced into the CPL code. The dimple is reproduced on one of the two walls of the
channel, and it can be regarded as the fundamental unit of a staggered arrangement with a
coverage ratio equal to 90.7 %. This value is the highest possible with this geometry of dimple
and in most cases (not all of them) it is reported that higher drag reduction comes with higher
coverage ratio basically. Later on, this geometry is going to be described in detail. For their
simulation, values of ∆x+

ave = 7.82 and ∆y+
ave = 5.52 are adopted, while in the wall-normal
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direction ∆z+ ranges from 0.23 to 9.90.

It is important to note that with respect to figure 2.2, where the wall-normal direction is
recalled through the letter z, in literature and in most papers it is indicated with the letter
y, therefore it is better to specify this convenience adopted in the code in order to avoid any
confusion.

In general, in [26] and in related articles it is not found any drag reduction for the case
of a circular dimple with a DNS, although it is found both experimentally and numerically
through a LES analysis that some drag reduction occurs especially for the non-circular dimple
patterns, where a changed planform design and a modulating streamwise wall slope seems to
produce greater benefits. A DES (detached eddy simulation) presented in [44] reports different
results, not being able to witness any drag reduction for the values of Reτ simulated.

Surprisingly, the recent work cited in [29] could be regarded as outstanding, since it is in
disagreement with almost every other experiment or simulation. It reports that higher values
of drag reduction are achieved through a flow-aligned setup rather than a staggered dimples
arrangement. Within this recent LES analysis it is calculated that an almost null drag re-
duction (0.12 %) for the staggered arrangement has to be compared to a staggering 3.16 %

drag reduction percentage value for a non-overlapping arrangement. The setup is the same as
the one studied in [53], but not surprisingly at this point the results are contradictory. More-
over, it is analyzed in comparison to [52] how the streaks in a non-overlapping arrangement
are much better aligned with the dimples, leading to the assumption that a stabilization of
the vortices by dimples is possible and advantageous. Figure 3.2 shows a typical staggered
arrangement of dimples; it is sufficient to rotate the plan view by 90° to obtain a flow-aligned
pattern.
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Figure 3.2: Example of a staggered array of dimples, flow from left to right

Source: [18]
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4. Numerical procedure

The adopted numerical method is written in CPL, a programming language conceived and
developed by Prof. Paolo Luchini. It is a high-level programming language developed and
especially suited for scientific and fluid mechanics research. More information can be found
in [20], as well as a complete list of scientific references that used CPL codes which can be
found in [21].

The program is designed to perform a direct numerical simulation of an incompressible
turbulent channel flow. One of its main features is the way the immersed boundary strategy is
implemented into the program. The discretization adopted is a second order finite difference
scheme; the presence of two homogeneous directions allows the method to be parallelized
as well. One of the main advantages of an immersed boundary strategy is that it allows
to keep the computational costs as low as possible, since the grid is generated once for all
at the beginning of the computation, and a numerical strategy is then implemented to take
into account the geometry of the problem. Therefore, there is no need to use computational
resources in order to create a grid which resembles the geometry of the problem. A Cartesian
coordinate system is adopted.

With reference to equation 2.2, the incompressible Navier-Stokes equations (momentum
and continuity equations) are directly resolved in the physical domain, without the need to
exploit the Fast Fourier Transform and the Fourier domain. Periodic boundary conditions
are employed in the homogeneous directions. A no-slip boundary condition is adopted at the
two walls. The reference length δ of the problem, to which all dimensions are referred to, is
exactly half the channel height.
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4.1 Structure of the program

The code is composed of 5 files. Through a couple of shell lines it is possible to recall the
main file and execute the program.

• undwall.cpl is the main file of the code. It recalls the other files and reads or defines
the main parameters for the simulation. The boolean function InBody defining the
immersed boundary shape is written in this file. Moreover, the subroutine calcimbc
which calculates the coefficients of the immersed boundary scheme is present, as well as
the temporal loop of the simulation.

• iofiles.cpl is the input-output file of the program. It reads the initial flow field to be
fed to the simulation and contains the lines necessary to save the computed field.

• timestep.cpl is the file where the real numerical procedure to compute velocity and
pressure is implemented. It defines the 7 points laplacian lapl used into the computa-
tion of the immersed boundary coefficients. It defines the coefficients to evaluate the
numerical finite differences inside a structure named zc. It also defines the time-scheme
subroutines which can be selected into the time loop to advance in time the solution.
On top of that, it is here that thanks to the subroutine linestep and pressurelinestep the
three velocity components are updated in the predictor step and the pressure is updated
in the corrector step. Finally, At the end of the file the macro cpg imposes the flow rate
correction in case of a CFR (constant flow rate) simulation.

• parallelbcs.cpl defines the parallel subroutines and the periodic boundary conditions.

• parallelbcs.h is the header file defining parallel subroutines and periodic boundary
conditions as well.
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4.2 Discretization in space

Figure 4.1: Example of a staggered Cartesian grid

As far as the spatial discretization is concerned, a uniform spacing in the streamwise and
spanwise directions is adopted. A real function called scale is instead adopted to modu-
late the discretization in the wall-normal direction. Moreover, as can be seen from figure
4.1, the pressure is located at the intersection of the cells, namely at (∆x ix,∆y iy). The
velocity components are instead located half a cell postponed in the relative direction. There-
fore, u(ix, iy) for example is located at (∆x (ix + 0.5),∆y iy), and v(ix, iy) is located at
(∆x ix,∆y (iy + 0.5)). For the wall-normal direction, as a result of the stretching of the
spacing between cells in order to resolve the smaller turbulent scales, it is necessary to store
into memory two different arrays: zz(iz) and zd(iz). The size of this latter array is twice as
the size of the former one and it is used to store both pressure and the wall-normal velocity
component. In particular, the value of w(ix, iy, iz) is located at (∆x ix,∆y iy, zd(2 iz + 1)).
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4.3 Discretization in time

Three subroutines called rai1, rai2, and rai3 written in the timestep.cpl file are recalled in
the main temporal loop through another subroutine named timestep. This subroutine is made
general and accepts in this case the three steps that make up a third-order explicit Runge-
Kutta time-scheme. Subsequently the computed ∆t is fed to the subroutine linestep in order
to evaluate the velocity time marching.

4.4 The fractional step

The numerical procedure for the solution of the variables of the flow field is implemented in
such a way that a two-stage fractional step scheme is used. Two main steps are therefore
performed for each numerical time step. In the first step, which is called the predictor
step, the momentum equation is discretized and updated without taking into account the
continuity equation, hence the divergence free constraint. Later on, in the second step, the
so called corrector step, the new velocity field is projected onto the space of divergence free
vector fields.

The first step takes place into the subroutine linestep, whereas the second one into the
subroutine pressurelinestep, both contained into the timestep.cpl file. In the first step, obvi-
ously, there are three discretized momentum equations to be updated, one per each Cartesian
direction. Considering just the first equation, namely the one for the streamwise component
of the velocity:

∂u

∂t
= −∂u

2

∂x
− ∂uv

∂y
− ∂uw

∂z
− ∂P

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
(4.1)

After a formal discretization, it reads:

∂u

∂t
= RHS = rsdu− ∂P

∂x
= NL+ lapl − ∂P

∂x
(4.2)

NL represents the non-linear contribution to the equation, while lapl is the laplacian
term. The right hand side, or simply RHS, is evaluated with finite differences centered around
the point where the corresponding velocity component is located. For example u(ix, iy, iz)
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corresponds to ((ix + 0.5) ∆x, iy ∆y, zz(iz)). Taking into account as an example the first
non-linear term, it reads:

∂u2

∂x

(
(ix+ 0.5)∆x, iy ∆y, zz(iz)

)
=

1

2

(u2((ix+ 1) ∆x, ·)− u2((ix) ∆x, ·)
∆x

(4.3)

Therefore, the values of the velocity components are obtained through a linear interpola-
tion among the cells. This brings to:

u((ix+ 1)∆x, ·) =
1

2

(
u
(
(ix+ 1.5)∆x, ·

)
+ u
(
(ix+ 0.5)∆x, ·

))
(4.4)

and

u2((ix+ 1)∆x, ·) =
1

4

(
u
(
(ix+ 1.5)∆x, ·

)
+ u
(
(ix+ 0.5)∆x, ·

))2

(4.5)

In the end, expression 4.3 could be rewritten as:

∂u2

∂x
(ix, ·) =

1

4

(
u(ix+ 1, ·) + u(ix, ·)

)2 − (u(ix− 1, ·) + u(ix, ·)
)2

∆x
(4.6)

The laplacian is defined once for all at the beginning of the file timestep.cpl and merged
together with expression 4.6 and similar approximations to complete the procedure step. The
pressure gradient is also taken into account as well as a forcing term if a CPG (constant
pressure strategy) is adopted. The same expression taking into account all the discretized
non-linear contributions and the laplacian term could be visualized written in its original
CPL implementation as follows:

REAL rsdu = lapl(u) ∗ nu − ([u(1, 0, 0) + u(0, 0, 0)]2 − [u(−1, 0, 0) + u(0, 0, 0)]2 ∗ d1x +

{[u(0, 1, 0)+u(0, 0, 0)]∗[v(1, 0, 0)+v(0, 0, 0)]−[u(0,−1, 0)+u(0, 0, 0)]∗[v(1,−1, 0)+v(0,−1, 0)]}∗
d1y+ {[u(0, 0, 1) +u(0, 0, 0)] ∗ [w(1, 0, 0) +w(0, 0, 0)]− [u(0, 0,−1) +u(0, 0, 0)] ∗ [w(1, 0,−1) +

w(0, 0,−1)]} ∗ d1z)/4

The second passage of the implemented fractional step, namely the corrector step, is calculated
in the subroutine pressurelinestep in the timestep.cpl file. Here a red-black algorithm solves
the equation:

3

2

1

∆t
(un+1 − ũn+1) +∇φ = 0 (4.7)
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in which un+1 represents the velocity field after the corrector step, ũn+1 is the velocity field
right after the first predictor step, and φ is the pressure correction. In order to satisfy the
divergence free constraint, equation 4.8 holds:

∇ ·
(

3

2

1

∆t
(un+1 − ũn+1) +∇φ

)
= 0 (4.8)

which yields:

∆φ =
3

2

1

∆t
∇ · ũ (4.9)

The pressure is instead updated with:

pn+1 = p+ φ (4.10)

The divergence of the velocity field is calculated for each vertical line to obtain the value of
φ(iz). Equation 4.7 is inverted to obtain un+1 thanks to the projection into a divergence free
space. 3

2 is a sovra relaxation factor and it is used to speed up the correction. The subroutine
is then recalled into an external loop.

4.5 Immersed boundary method

As pointed out in [22], traditional numerical schemes could be able to handle complex ge-
ometries, although often require a large amount of computational time for grid generation.
Nevertheless, an immersed boundary scheme manages not to add significant computational
costs, since a modification of the body surface would require a modification of an external
file that could be fed into the numerical procedure. In addition, in a detailed work such as
[7], it is presented the basic concept of an immersed boundary scheme. It essentially deals
with modifying the Navier-Stokes equations by adding an additional body force which will
be applied in correspondence of the boundary such that a desired distribution of the velocity
field could be achieved.

The correction adopted in the current code is an implicit correction, therefore it is an inno-
vative way to mimic the presence of the physical body. In fact, there is no need to apply any
external body force in this kind of implementation, and the unknown variables are instead
multiplied by an immersed boundary coefficient term. Considering the equation:
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∂u

∂t
= RHS (4.11)

and discretizing it such that:
un+1 = un +RHS ∆t (4.12)

with the immersed boundary coefficient adopted, the new solution becomes:

un+1 =
un +RHS ∆t

1 + imbc ∆t
(4.13)

where imbc is exactly the immersed boundary coefficient. When e.g. imbc = 0 no correction
is applied; when imbc tends to infinity instead, being this coefficient at the denominator, it is
the value of the velocity that tends to zero. Therefore, it is a very large value of this numerical
coefficient that mimics the presence of the body surface, and the no-slip boundary condition
is applied. The implicit correction expressed by means of equation 4.13 becomes:

un+1 = un +RHS ∆t− un+1imbc ∆t

= un + (lapl +NL+∇P )∆t− un+1imbc ∆t
(4.14)

Moreover, the immersed boundary correction is applied only to the laplacian term lapl,
whereas the pressure gradient and the non-linear contributions are regarded as negligible close
to the wall surface. Considering only the component of the laplacian term in the wall-normal
direction:

lapl = ...+
1

∆z2

(
u(·, iz + 1)− 2u(·, iz) + u(·, iz − 1)

)
(4.15)

where u(·, iz) is the streamwise velocity component u(ix, iy, iz), therefore centered around the
point

(
∆x (ix + 0.5),∆y iy, zz(iz)

)
, it is possible to create a stencil for this laplacian term

that is fundamental in the application of the correction and the determination of the relative
position between the grid cells and the position of the immersed body. The arms of the stencil
connect the point around which it is centered to the adjacent points of streamwise velocities.

This stencil can be visualized in a simplified example in figure 4.2 where a two-dimensional
stencil with one arm inside the immersed surface is reproduced into a uniform wall-normal
direction grid spacing.
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Figure 4.2: Simplified 2D example of the laplacian stencil

Considering figure 4.2, u(·, iz − 1) is equal to zero, since the point to which it is referred to
is inside the domain of the body. Though, this is not the first point of null velocity, since
the first point where an arm of the stencil encounters the solid boundary is the one at the
intersection where the cross is located. Therefore, if δ is the distance from the center of the
stencil to the cross, the laplacian term becomes:

lapl = ...+
u(·, iz + 1)

(∆z + δ)∆z
− 2u(·, iz)

δ∆z
(4.16)

A non-centered scheme is then applied to evaluate the second order derivative in the center
of the stencil through two successive non-centered first derivatives. In so doing, the adopted
correction is applied only to the u(·, iz) term, and not to the term u(·, iz + 1). In the end,
equation 4.16 may be rewritten such that only the central point of the stencil is corrected with
the immersed boundary coefficient imbc term:
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lapl = ...+
u(·,iz+1)−u(·,iz)

∆z − u(·,iz)−0
δ

∆z
=
u(·, iz + 1)

∆z2
− u(·, iz)

(
1

∆z2
+

1

δ∆z

)
(4.17)

This is just a simplified example since it does not take into account the three-dimensionality
of the problem which is instead implemented in the code.

Figure 4.3: Schematic division into three regions of the computational domain

Figure 4.3 schematically shows how the domain is divided into three regions. In the first
one the solid boundary is present, hence this region is excluded from the calculation of the
variables. In the second region the flow interacts with the wall, hence an imbc is needed. The
third region is instead far from the solid surface and no correction is needed.
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5. Dimple implementation

As earlier anticipated, part of the present job is to select one dimple geometry to be
reproduced and analyzed in a CFD solver. Among the various domains and geometries studied
in literature, it is important to focus our attention to an easily repeatable dimple geometry at
first, since these types of surface indentations are characterized by many parameters, ranging
from the basic geometrical construction to the mutual spacial disposition of multiple dimples
over a plate. As explained in 3, the dimple domain used by the authors in [26] is the one to be
selected here. This is due to the fact that it is a simple rectangular domain which consists of
a dimple indentation in the middle and four quarters of dimple per each vertex of the domain.
In doing so, the simplest repeatable geometry is created, and a simple call to the function
defining this dimple is sufficient to expand the domain, if desired, and to analyze a full surface
covered with dimples.

First of all, some of the main features that compose the geometry of the selected dimple
are reported in figure 5.1. This surface texture is basically the union of a spherical indentation
and a torus, that is a toroid with a circular cross-section, that meet tangentially. Among these
features, according to the nomenclature adopted in figure 5.1, the most important parameters
are the diameter D, the radius of the circle that generates the spherical shape, namely R, the
depth of the dimple d, and the radius of the torus r.
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Figure 5.1: Schematic drawing of a cross-sectioned dimple indentation

Source: [53]

Thanks to an extensive literature dealing with dimples from a heat-transfer point of view,
geometrical relations between these parameters are already expressed in articles like [5]. Re-
ferring to the above figure, it is then possible to establish some of these important relations
such as:

R =
d

2
+
D2
n

8 d
(5.1)

where Dn is a nominal diameter which is considered in the following to manipulate and adjust
the shape of the dimple. It is basically the distance between any two points at a 180° angle
located at the intersection between the sphere and the horizontal surface. Another important
mathematical relation that dimples must satisfy tells that:

D

2
=
√
d (2 R+ 2 r − d) (5.2)

In order to reproduce the desired domain containing the fundamental repeatable dimple unit
as specified in [26], it is necessary then to construct the dimple as the connection of two
functions: one representing the spherical shape surface, and the other one representing the
torus. These two functions are simply:
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Zs = R− d−
√
R2 −

[
(x− x0)2 + (y − y0)2

]
(5.3)

and

Zt = − r +

√√√√(r2 −
[
D

2
−
√

(x− x0)2 + (y − y0)2

]2
)

(5.4)

where Zs and Zt respectively represent the surface of the spherical and the toroidal part.
x0 and y0 are instead the coordinates of the center around which the dimple is constructed.
Once again, another important relation is the one that tells exactly where the tangential point
between the inner sphere and the outer torus is located:

xtg =
R

(R+ r)

D

2
(5.5)

Therefore, in order to avoid any abrupt impact on the incoming flow, these two functions,
expressing two surfaces, first meet together smoothly and then meet the flat wall in a smooth
manner.

All these parameters are then adjusted in order to reproduce the case of the dimple analyzed in
the desired paper. Two more fundamental values are yet to be defined, namely the dimensions
of the domain in the streamwise (Lx) and spanwise (Ly) directions. These values are therefore
considered identical to the reference paper, and they are specified among the other parameters
in table 5.1.

D d r R Lx Ly

5 0.25 4.21 8.415 5
√

3 5

Table 5.1: Geometric parameters for the dimple in [26]

It is important to recall that the coverage ratio for this dimple is the maximum possible, being
the ratio between the portion of domain occupied by both the Zs and Zt functions and the
whole available surface ≈ 90.7 %.
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Therefore, figure 5.2 reproduces the dimple as implemented in the reference paper. The colors
suggest the height of the surface. As table 5.1 reports, the dimple depth to diameter ratio is
5 %, hence this parameter is in the suggested range 0− 10 % for drag reduction purposes.

Figure 5.2: 5 % depth to diameter ratio dimple

Since in the studied literature dimples with such a depth to diameter ratio hardly ever seem
capable to give any proof of drag reducing results, it is decided to modify the above parameters
in order to obtain a less impacting design with respect to a flat wall surface. A new depth
to diameter ratio of 1.5 % is therefore chosen since it also appears in other studies such as
the one cited in [43]. Thanks to equation 5.1, it is possible to calculate the nominal diameter
Dn in order to modify the dimple retaining though the same value of this parameter. The
coverage ratio as well as the dimensions of the domain Lx and Ly do not vary too. Thanks to
the other relations it is possible to modify table 5.1 as follows:

D d r R Lx Ly

5 0.075 14.0334 27.6708 5
√

3 5

Table 5.2: Geometric parameters for the modified dimple

In so doing, from a 5 % to a 1.5 % depth to diameter ratio, the dimple is shallower and
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its cross-section occupies less of the available computational domain. Figure 5.3 shows this
shallower modified geometry.

Figure 5.3: 1.5 % depth to diameter ratio dimple

The implementation of this geometry, which basically introduces a modification in the im-
mersed boundary coefficients, making it possible to evaluate the flow field parameters and its
statistics, is made general through a function of real values called dimple, and specified as
follows in CPL sintax:

REAL FUNCTION dimple(REAL x, y;REAL V ARIABLE xc, yc)

IF (x− xc)2 + (y − yc)2 < xtg2 THEN

RESULT = Rsph− depth− SQRT{Rsph2 − [(x− xc)2 + (y − yc)2]}

ELSE IF xtg2 < (x− xc)2 + (y − yc)2 AND (x− xc)2 + (y − yc)2 < (D/2)2 THEN

RESULT = −Rtor + SQRT{Rtor2 − (D/2− SQRT [(x− xc)2 + (y − yc)2])2}

ELSE

RESULT = 0

END IF

END dimple

Finally, thanks to one of the main important features of the DNS code, it is possible to recall
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the whole function and to apply it to the desired domain in a repeatable pattern inside the
boolean function InBody with one simple line:

BOOLEAN FUNCTION InBody(REALx, y, z)

RESULT = z < dimple(x, y, Lx/2, Ly/2) + dimple(x, y, 0, 0) + dimple(x, y, Lx, 0)+

dimple(x, y, Lx, Ly) + dimple(x, y, 0, Ly) + depth

END InBody

5.1 Dimple realization

On top of that, in order to demonstrate the real simplicity of such a smooth geometry as
the dimpled one, an example of the computational domain of the reference paper is repro-
duced through a rapid prototyping technique. This is also useful to understand the relative
dimensions between the diameter of the dimple and its depth, which proves indeed to be very
shallow even for the 5 % depth to diameter ratio case. Geometric proportions are the same as
the dimple shown in figure 5.2, whereas the dimension is obviously not to scale 1 : 1 for real
drag reduction purposes.

Figure 5.4: 3D printed example of the 5 % depth to diameter ratio dimple referring to the
configuration in [26]
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6. Turbulence statistics in flat channel flow: valida-
tion of the numerical procedure

First of all, a fully developed turbulent channel flow at Reτ ≈ 180 with flat walls is studied
and its main statistics are analyzed. In doing so, the first thing to be decided is whether to
proceed with a CFR (constant flow rate) or a CPG (constant pressure gradient) configuration.
As it is stated in [30], the specific choice of the forcing term does not affect the main statistics
of the problem in exam, although could contribute to some discrepancies if one is interested
in analyzing the strongest events of high wall friction, which are underestimated in a constant
flow rate simulation. This is not the case, therefore a simple implementation of the CFR case
is suggested for the entire work. The main purpose of this section is of course the one to
be able to reproduce the most important results presented in [15], which is a milestone in
turbulent fluid dynamics research.

In order to simulate a constant flow rate case, first of all a constant flow rate in the streamwise
direction is imposed, that is:

∫ 2δ

0
u dz = 2 (6.1)

Having said that, the correspondent bulk velocity Ubulk, which is defined according to equation
2.3, is equal to 1. It is highlighted that all the quantities in the program are made dimensionless
with the channel semi-height δ (which is equal to 1) and the bulk velocity calculated. Starting
from equation 6.1, with a little bit of math it is found that a first laminar velocity profile,
typical for the reference case of a Poiseuille flow, is given by:

u(z) =
3

2

1

δ3
z(2δ − z) (6.2)

Recalling that the bulk Reynolds number is defined as Reb = Ub δ
ν , with the current non-
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dimensionalization it is possible to impose the parameter nu in the main file of the program
equal to 1/2800, that is imposing a Reb equal to 2800, which in turn corresponds to a Reτ ≈
180. This value is chosen for being almost a standard in turbulent dynamics research mainly
because it is the Reynolds number in the afore mentioned pioneering work by Kim Moin &
Moser. On top of that, it is a low value for a Reynolds number in a turbulent flow, and that
translates into an easier computational effort.

For these turbulent channel flow simulations with a constant flow rate strategy to drive
the flow across the channel, it is considered that the outer scale of time is given by the ratio
δ

Ubulk
. The parameter ∆t is set equal to 0.002 in the main file of the program. A flow field

is then saved every 5 time units in order to guarantee reliable statistics. A total number of
100 files containing the instantaneous realizations of the turbulent flow forms the database on
which the main properties and statistics are then calculated through a specific program.

As far as the discretization of the domain is concerned, a total of nx = 200, ny = 150,
and nz = 140 points is considered respectively in the streamwise, spanwise, and wall-normal
directions. As already pointed out, the discretization is constant along the periodic directions,
while it is stretched in the wall-normal direction according to a sine function which modulates
the amplitude of the cells in order to generate smaller cells the closer to the wall surface.
Thanks to this function it is possible to have a more reliable representation of the values that
come into play where they are more significant, namely next to the surface of the channel.
Figure 6.1 shows the trend of the distance between the cells ∆z+ in viscous units considering
the implemented discretization and a Reτ ≈ 180 versus the height of the channel itself.

Moreover, thanks to the adopted discretization, the size of the computational cells are similar
to the ones adopted in [26]. Indeed, considering a Reτ ≈ 180, we have that ∆x+ ≈ 7.7,
∆y+ ≈ 6, and ∆z+ ≈ ranges from 0.65 to 3.65.
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Figure 6.1: ∆z+ as a function of z for the flat channel flow at Reτ ≈ 180

Finally, perturbations in the velocity field are superimposed to the original laminar flow
field that drives the flow at a constant flow rate in order to reach the status of turbulence.
Once the calculation reaches a statistical steady state, its statistics can be performed. To sum
up the main parameters involved in the simulation, table 6.1 is presented:

nx ny nz Reb ∆t ∆x+ ∆y+ ∆z+

200 150 140 2800 0.002 ≈ 7.7 ≈ 6 ≈ 0.65− 3.65

Table 6.1: Main parameters for the turbulent channel flow setup
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6.1 Results

In this section the main results dealing with the analysis of a turbulent channel flow at
Reτ ≈ 180 with the afore described setup are reported and compared to some of the main
results from [15]. In the following, the variables related to the mean centerline velocity are
marked by the subscript c. Therefore, Rec is the Reynolds number defined with the mean
centerline velocity Uc: Rec = Uc δ

ν . Figure 6.2 shows the trend of the mean streamwise velocity
expressed in wall units versus the non-dimensional distance from the wall.
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Figure 6.2: Mean velocity profiles

Both the velocity profiles of the lower and upper wall are presented, as well as the linear and
the logarithmic regions respectively defined through equations 2.7 and 2.8. A good agreement
is in general achieved over a number of 100 samples with a sampling ratio of 5 time units.
The total requested time to evaluate a complete flow field is about two hours. This allows to
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reproduce the so called law of the wall for a turbulent channel flow. Table 6.2 collects some
of the main results from [15], whereas table 6.3 shows the same results but calculated within
the current simulations.

Reτ Rec
Ub
uτ

Uc
uτ

Uc
Ub

Cf

≈ 180 ≈ 3300 15.63 18.20 1.16 8.18 10−3

Table 6.2: Mean flow variables from [15]

Reτ Rec
Ub
uτ

Uc
uτ

Uc
Ub

Cf

177.3933 3270.9525 15.7841 18.4390 1.1682 8.0276 10−3

Table 6.3: Mean flow variables calculated

From a first comparison between table 6.2 and table 6.3, once again a good agreement is in
general achieved for the main parameters involved. Differences may arise due to the different
computational procedures between the code used by Kim Moin & Moser and the one here
adopted, or the different Reynolds number reproduced.

Figure 6.3 shows instead the root-mean-square velocity fluctuations normalized by the wall
shear velocity expressed in global coordinates. The symmetric trend with respect to the
centerline of these quantities is in good agreement with the one proposed in [15].
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Figure 6.3: Root-mean-square velocity fluctuations normalized by the wall shear velocity in
global coordinates

Figures 6.4 and 6.5 show the same velocity fluctuations normalized by the wall shear velocity
expressed this time in wall coordinates, as well as the very same results presented in [15] for
a comparison.
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Figure 6.4: Root-mean-square velocity fluc-
tuations normalized by the wall shear veloc-
ity in wall coordinates
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Figure 6.5: Comparison between calculated
velocity fluctuations and velocity fluctua-
tions in [15]

Finally, the Reynolds shear stress normalized by the wall shear velocity expressed in global
coordinates and the root-mean-square pressure fluctuations normalized by the wall shear ve-
locity prms

ρ u2τ
are reported in figure 6.6 and figure 6.7. A general qualitative and quantitative

good agreement with the results calculated by Kim Moin & Moser is achieved.
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Figure 6.6: Reynolds shear stress normal-
ized by the wall shear velocity in global co-
ordinates
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On top of that, as the simulation proceeds, the mean spatial pressure gradients both in
streamwise (headx ) and spanwise (heady) directions are calculated. Figure 6.8 shows the time
fluctuations of these two gradients and of the result of a function named horizstress which
calculates the horizontal stress component acting on the wall, which, in this case of a flat wall
channel, exactly balances the mean pressure gradient in the same direction, that is a force per
unit volume. This is due to the fact that being the wall a flat wall, no contributions arising
from the pressure term are present. Indeed, there is no surface whose perpendicular direction
has a component in the streamwise direction, hence giving a force due to pressure. Therefore,
only the skin-friction contribution is present in this case. The computed difference between
the mean spatial streamwise pressure gradient and the mean value of wall friction is due to
the fact that the first quantity is the result of a built-in CFR correction, whereas the latter
quantity results from a specific subroutine whose goal is to approximate the skin-friction stress
component. Table 6.4 shows the time-averaged streamwise pressure gradient and the result
of the function horizstress averaged in time over the whole period of the simulation. The
difference between the two results is of the order of 1 %.
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Figure 6.8: Run-time pressure gradients and horizontal stress

time-averaged streamwise pressure gradient time-averaged wall friction

0.00401 0.00397

Table 6.4: Mean pressure gradient in streamwise direction and wall friction calculated

From a qualitative point of view, a single realization of the turbulent channel flow is
chosen to show some of its main features. Thanks to figure 6.9 a snapshot of the domain
is reproduced and the velocity magnitude across the mid-span y-normal cross-section can be
visualized. It is possible to see the fully developed turbulent flow with ejections and sweeps
motions of fluid. Figure 6.10 shows instead a z-normal cross-section taken at z+ ≈ 10. Here
thanks to the visualization of the velocity magnitude field it is possible to appreciate the
presence of the low speed streaks as discussed in the introductory chapter. This wall-normal
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cross-section very close to the lower surface highlights the presence of alternating meandering
zones of low-speed fluid and high-speed fluid.

Figure 6.9: Turbulent channel flow snapshot colored with velocity magnitude, y-normal
cross-section, flow from left to right

Figure 6.10: Turbulent channel flow snapshot colored with velocity magnitude highlighting
LSS, z-normal cross-section at z+ ≈ 10, flow from left to right
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7. Shallow dimple turbulence statistics

7.1 1D shallow dimple statistics

As far as the main purpose of the present work is concerned, that is the implementation of
the selected dimple geometry from the current literature into a direct numerical solver for
the computation of its fluid dynamics, two sets of simulations are performed at Reτ ≈ 180.
The first set of simulations is characterized by a coarse grid which enables to speed up the
computational procedure and to gather a larger amount of realizations, in order to create
a database of flow variables which can then be analyzed. A total of 300 fields is collected
to compute the results. Therefore, the main statistical properties of the flow field can be
discussed and its main 1D statistics computed. For this first set of simulations a spatial
discretization of nx = 150, ny = 130, and nz = 128 points is used. The ∆t is the same as the
one used for the flat wall simulations in order to guarantee that the CFL number for these
simulations is accurate enough. The main parameters involved are presented in table 7.1:

nx ny nz Reb ∆t ∆x+ ∆y+ ∆z+

150 130 128 2800 0.002 ≈ 10.39 ≈ 6.92 ≈ 0.72− 4

Table 7.1: Main parameters for the turbulent channel flow setup for the shallow dimple coarse
mesh case

Moreover, with this discretization, figure 7.1 shows the relation between z and ∆z+. The
function that gives the stretching of the mesh in the wall-normal direction is the same as
before, although for the coarse grid mesh there are less discretization points in this direction,
as well as in the other two.
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Figure 7.1: ∆z+ as a function of z for the shallow dimple channel flow, Reτ ≈ 180, nz = 128

By exploiting the subroutine that enables the computation of the immersed body coefficient,
it is possible to visualize in figure 7.2 the discretization of the whole domain, in particular the
discretization of the lower surface that represents the dimple surface.

A second set of simulations is carried out with a finer mesh, hence the same spatial discretiza-
tion as the one adopted in the flat channel case is used for the dimpled channel case. This
means that a total of nx = 200, ny = 150, and nz = 140 discretization points is used, there-
fore the main input parameters are the ones described in table 6.1. As far as the generation
of this second database is concerned, being the computational domain made up of a higher
number of points, the computational time required by the computer processor to execute the
necessary steps increases. Figure 7.3 shows the dimple geometry as computed by the program
with the immersed boundary technique applied to this second finer grid mesh.
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Figure 7.2: Coarse shallow dimple mesh: nx = 150, ny = 130, nz = 128

Figure 7.3: Finer shallow dimple mesh: nx = 200, ny = 150, nz = 140

Once it is reached a statistically steady state and fully developed turbulence, it is possible to
collect the computed flow fields in order to see the main statistical differences from the flat
wall channel flow case. Firstly, the 1D mean flow variables are computed, then it is possible to
better inspect the 3D domain to see how these variables punctually change with respect to the
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position in the domain. Therefore, first of all figure 7.4 shows the time-averaged streamwise
velocity component expressed in outer units. This velocity is non-dimensionalized by the bulk
velocity and averaged in the two homogeneous directions as well. It is evident the perturbation
introduced by the dimple on the lower surface of the channel if compared to the upper wall
surface.
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Figure 7.4: Mean streamwise velocity profile for the coarse mesh case

Figure 7.5 reproduces the computed law of the wall for the dimpled channel flow. The ac-
cordance with the linear and the logarithmic behaviour is clearly shown for the upper wall
flow, whereas the type of average adopted modifies the behaviour of the curve especially in
the viscous sublayer region of the lower surface.
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Figure 7.5: Mean velocity profiles for the coarse mesh case

Having said that, figure 7.6 shows the difference between the flat wall channel law of the wall
and the dimpled surface case. The main difference is the vertical shift between the two curves
in the logarithmic region, and that shift indicates that a slightly higher flow resistance, hence
a slightly higher drag force is present for the case of the shallow dimple with respect to the
flat wall case.
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Figure 7.6: Comparison between mean velocity profiles for the flat wall and the shallow dimple
on the coarse mesh

A ≈ 10 % difference in the computed mean streamwise pressure gradient that drives the flow
across the channel with respect to the flat wall case is another indication of the increase in
drag for the shallow dimple configuration. The main parameters for this analysis are presented
in figure 7.7, which shows the fluctuating in time pressure gradients in the homogeneous direc-
tions and the computed wall friction contribution, the difference being the arising contribution
induced by pressure. Indeed, as before specified, this additional source of drag depends on
the presence of the dimpled wall surface. Table 7.2 reports the main results of this analy-
sis. A computed difference of ≈ 2.5 % with a 1 % error is responsible for the pressure drag
contribution.
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Figure 7.7: Run-time pressure gradients and horizontal stress for the coarse mesh

time-averaged streamwise pressure gradient time-averaged wall friction

0.00444 0.00433

Table 7.2: Mean pressure gradient in streamwise direction and wall friction calculated for the
coarse mesh
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Figure 7.8: Comparison between mean velocity profiles for shallow dimple on the coarse mesh
and the fine mesh grid

As far as the fine grid simulations set is concerned, once a statistically steady fully developed
turbulent flow is reached over the dimple, 150 flow fields with a sampling ratio of 5 time units
are collected into a database in order to analyze the main statistics. Figure 7.8 shows the
overlap between the two mean streamwise velocity profiles as computed on the first coarse
mesh grid and the second finer mesh grid. The two curves indicate that the two discretiza-
tions implemented are similar in accuracy, although the increment in the number of points is
sufficient to increase the computational time required to generate a flow field at the required
sampling ratio by 50 %. Indeed, with the current CPU setup it is requested about one hour to
complete the generation of an analysable flow field for the coarse mesh grid case, and about
one hour and a half for the finer grid case.

As shown in figure 7.9 and table 7.3, there is still an increment of ≈ 9 % in the total flow
resistance if compared to the flat wall case. The computed difference representing the pressure
contribution on the finer mesh grid is ≈ 2 % in this case. With respect to the coarse mesh
grid the total resistance is lower by a 1.37 % factor. These results lead to think that a
stronger dependence on the discretization is present in the computation of the friction-related
quantities.
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Figure 7.9: Run-time pressure gradients and horizontal stress for the fine mesh

time-averaged streamwise pressure gradient time-averaged wall friction

0.00438 0.00429

Table 7.3: Mean pressure gradient in streamwise direction and wall friction calculated for the
fine mesh

Figure 7.10 finally shows the comparison between the results emerging from figure 6.8 and
table 6.4 versus the results from figure 7.9 and table 7.3. Therefore, the increment in resistance
over the dimpled channel computed with the finer spatial discretization is shown against the
same values but computed with a flat plane channel flow. Both the streamwise and spanwise
pressure contributions and their relative skin-friction drag contributions are presented. On the
top of the figure it is possible to notice how the curves representing the streamwise pressure
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contribution and the relative wall friction contribution for the dimple case constantly stay
above their correspondent flat-wall quantities.
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Figure 7.10: Run-time pressure gradients and horizontal stress for the fine dimple mesh (higher
curves) VS run-time pressure gradients and horizontal stress for the flat wall case (lower curves)

7.2 3D shallow dimple qualitative analysis and fluctuations

Being turbulence a complex time-dependent phenomenon, its study goes through the analysis
of a large number of realizations, being the single one almost useless. Nevertheless, some
visualizations of a single flow field are firstly reported here, since some differences with respect
to the flat wall channel could still be noted. For instance, from a qualitative point of view,
figure 7.11 shows a snapshot of the computed flow field for the coarse grid shallow dimple
case.
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Figure 7.11: Snapshot colored with velocity magnitude, y-normal cross-section, flow from
left to right

Although the presence of the lower dimpled surface induces the flow to follow its curvature,
no evidence of an abrupt separation is present. An inspection of the mean flow field over the
300 samples analyzed confirms that no recirculation region nor separation is present, and the
flow stays attached to the surface, being the dimple very shallow. This is in agreement with
the current literature.

Moreover, particular attention is paid to the visualization of the spanwise velocity com-
ponent near the lower wall since many articles deal with a spanwise alternating motion that
could somehow interact with the turbulent structures in the flow. Figure 7.12 and figure 7.13
respectively show the instantaneous spanwise velocity field for the flat wall and dimpled case
with the coarse mesh adopted. The z-normal cross-section is taken at the same height for
both cases, that is at z+ ≈ 18. It appears that the flat wall surface has a major irregularity
across the span of the channel, therefore the dimpled surface is contributing to alter the flow
into a more regular pattern, which better arises from an inspection of the time-averaged flow
field.
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Figure 7.12: z-normal cross-section colored
with the spanwise velocity component
v, flat channel, flow from left to right

Figure 7.13: z-normal cross-section colored
with the spanwise velocity component
v, dimpled channel, flow from left to right

Figure 7.14 shows the spanwise velocity pattern arising from the time-averaged realizations.
It is clear that a converging-diffusing type of flow is dominant over the dimple. The same type
of flow is present in literature for dimples with a depth to diameter ratio which is less than
10 %. This type of flow characterizes the shallow dimple geometry and could potentially lead
to some interesting features if a whole array of dimples could be analyzed. A visual inspection
of the same specular spanwise velocity component with respect to the channel half height
reveals that the flow loses memory of this behaviour right next to the upper wall surface.

Figure 7.14: z-normal cross-section at z+ ≈ 18 colored with the spanwise velocity compo-
nent v, time-averaged flow, coarse grid, flow from left to right
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Figure 7.15 represents the same variables as figure 7.14, non-dimensionalized by the friction
velocity uτ . It shows that the mean spanwise velocity v+ ranges from −0.6 to +0.6 approx-
imately. This result is comparable to the same value of spanwise motion if the standard
spanwise forcing technique were adopted in order to obtain drag reducing effects. The same
result appears if the case computed on the finer grid mesh were considered. Indeed, the
same configuration as the one reported in figure 7.15 leads to values of the spanwise velocity
component ranging from −0.8 to +0.66 inner units.

Figure 7.15: z-normal cross-section at z+ ≈ 18 colored with the spanwise velocity compo-
nent v non-dimensionalized by uτ , time-averaged flow, coarse grid, flow from left to right

Figure 7.16 shows instead the distribution of the spanwise velocity component non-dimensionalized
by the friction velocity for the plane reference channel flow. The coordinate z is the same
as the one adopted in the previous figure cross-section. The value of the analyzed velocity
component ranges from −0.42 to +0.35 in this case. Therefore, the dimpled geometry appears
to affect this velocity component by increasing it towards the limit of drag reducing values of
the active spanwise forcing technique.
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Figure 7.16: z-normal cross-section at z+ ≈ 18 colored with the spanwise velocity com-
ponent v non-dimensionalized by uτ , time-averaged flow, reference plane channel, flow from
left to right

Figure 7.17: x-normal cross-section inside the dimple colored with the spanwise velocity
component v non-dimensionalized by uτ , time-averaged flow, coarse grid, flow inside the
page
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Figures 7.17, 7.18, and 7.19 respectively show the same spanwise velocity distribution non-
dimensionalized by the friction velocity for the coarse mesh dimple case. The computed
values of this variable appear to be smaller inside the dimple indentation with respect to the
upstream and downstream locations captured on three streamwise cross-sections. Moreover,
the values in correspondence of the upstream cross-section appear to be higher if compared
to the downstream ones.

Figure 7.18: x-normal cross-section up-
stream of the dimple colored with the
spanwise velocity component v non-
dimensionalized by uτ , coarse grid, flow in-
side the page

Figure 7.19: x-normal cross-section down-
stream of the dimple colored with the
spanwise velocity component v non-
dimensionalized by uτ , coarse grid, flow in-
side the page

Finally, figures 7.20 and 7.21 show the time-averaged wall-normal velocity component across
the y-normal cross-section of the domain passing through the center of the dimple and the
time-averaged spanwise velocity component across the x-normal cross-section passing thorough
the center of the dimple.
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Figure 7.20: y-normal cross-section colored
with the wall-normal velocity compo-
nent w, coarse grid, flow from left to right

Figure 7.21: x-normal cross-section colored
with the spanwise velocity component
v, coarse grid, flow inside the page

The first picture shows how the flow follows the curvature of the surface, therefore the averaged
wall-normal velocity component is negative upstream of the dimple and positive downstream.
The perturbation induced reaches the upper wall. The perturbation introduced by the dimple
seems to dampen out in the second figure, where the regular spanwise velocity pattern right
above the dimple becomes more irregular approaching the upper wall. Comparable time-
averaged results are found in the case of the finer mesh grid as well.

Another visualization of the time-averaged flow which is not reported here for brevity
suggests that a higher pressure region is present inside the dimple depression, and two lower
pressure regions are present both upstream and downstream of the dimple cavity. The foot-
print of the pressure distribution extends for the whole channel height. This suggests that a
slight acceleration of the flow is induced by the dimple surface, a result in accordance with
the current literature.
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Figure 7.22: Root-mean-square velocity
fluctuations upstream of the dimple (coarse
mesh) VS flat channel case
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Figure 7.23: Root-mean-square velocity
fluctuations downstream of the dimple
(coarse mesh) VS flat channel case
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Figure 7.22 and figure 7.23 show the behaviour in global coordinates of the root-mean-square
velocity fluctuation components of the dimple computed with the coarse mesh versus the
same quantities computed for the flat wall channel. The curves are taken with respect to the
spanwise midplane of the dimple domain. The two graphs for each component computed in
the two cases almost collapse, however the peak of the curve both upstream and downstream
of the dimple cavity is slightly lower if compared to the reference case. For this latter case
the statistical quantities are computed as specified in chapter 6, whereas for the dimple the
time-averaging procedure is accompanied by a punctual spatial analysis. Exactly above the
center of the dimple instead, the peak of the curve reaches a higher value with respect to the
flat channel, as shown in figure 7.24.
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Figure 7.24: Root-mean-square velocity fluctuations above the dimple (coarse mesh) VS flat
channel case

What can be deduced from this preliminary analysis is that the current shallow dimple geome-
try alters the flow field especially in the vicinity of the surface itself, leading to a slight increase
in the computed resistance; nevertheless a spatial reorganization of the flow structures seems
to lead to a higher regularity of the flow variables especially in the spanwise direction and in
the region right upstream and downstream of the dimple cavity.

Looking at the same results computed on the finer mesh grid, and considering that the di-
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mension of the database is half the dimension of the database for the coarse grid case, it
appears that the fluctuations taken above the center of the dimple remain comparable or
slightly larger than those of the flat wall channel. The same variables captured in the up-
stream and downstream portions of the dimple do not vary much if compared to the ones
above the dimple cavity, although a decrease in the streamwise fluctuation is present near the
center of the channel, and a higher irregularity characterizes the behaviour of the spanwise
fluctuation component even at high values of the wall-normal coordinate.

Figures from 7.22 to 7.27 and the relative analysis are affected by the current limited com-
putational resources and the inaccurate number of statistical samples. In order to better un-
derstand how the presented quantities are affected by the dimple geometry, a more involved
analysis is needed.
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Figure 7.25: Root-mean-square velocity fluctuations above the dimple (fine mesh) VS flat
channel case
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Figure 7.26: Root-mean-square velocity
fluctuations upstream of the dimple (fine
mesh) VS flat channel case
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Figure 7.27: Root-mean-square velocity
fluctuations downstream of the dimple (fine
mesh) VS flat channel case
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8. Conclusion and future developments

A detailed review of the current literature about the dimple technology focused on its drag
reducing properties is presented and discussed. Among the many definitions of the dimple
geometry, one in particular is selected and modified in order to be preliminarily studied with
the aim of implementing this geometry into a DNS code written in CPL language.

The implementation of dimples as a passive drag reduction technique would translate into
huge savings in terms of fuel for the aeronautical industry, being drag due to skin-friction a
major contribution. The details of this technique as well as its pros and cons are also widely
discussed. Although the present work is not able to detect any presence of drag reduction due
to a dimple geometry into a channel flow, a lot could still be made and improved. Indeed,
a ≈ 10 % increase in resistance is found, being the contribution of the pressure drag really
small though. According to the current literature, this result appears to be overestimated
being the dimple very shallow. A different and more direct approach in the computation of
the stress over the surface is therefore auspicable. A new reference length δdimple could also
be taken into account when comparing the results to the flat wall channel flow. Nevertheless,
the small arising pressure drop (compared to the skin-friction contribution) due to the dimple
geometry and other properties of the mean flow field appear to be in agreement with the
current literature. The mean flow field does not show any recirculation region and the flow
stays attached. Particular attention is paid to the analysis and visualization of the mean
flow field behaviour over the dimple, and a reorganized converging-diffusing flow pattern is
observed with respect to a flat surface. The way the dimple surface affects the flow field results
in an increase of the maximum and minimum values of the spanwise velocity component in
inner units with respect to the reference plane case. The resulting values tends to be similar
to the ones reported for the spanwise forcing technique. The peaks of the root-mean-square
velocity fluctuations do not differ much if compared to the flat wall behaviour, although slight
differences are recorded for variables taken inside or outside the dimple.
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The tested dimple geometry in this preliminary work could also be modified and a para-
metric research could be carried on in order to study the relative impact of its main design
features such as the depth to diameter ratio. Another important feature is that dimples do not
stand alone and more simulations involving more dimples over the same surface are needed.
This leads to other important design choices such as the mutual spatial disposition of dimples,
that is their arrangement (staggered or aligned with the mean incoming flow) and the coverage
ratio over the surface.

Figure 8.1: Example of a large domain fea-
turing a staggered arrangement of dimples
characterized by the same repeating dimple
unit as tested in this work, flow from left to
right

Figure 8.2: Example of a large domain fea-
turing an aligned arrangement of dimples
characterized by the same repeating dimple
unit as tested in this work, flow from left to
right

Finally, it is important to remark that the present simulations are carried out on a single
personal computer, which has limited computational resources that are more than capable to
reproduce important results such as the ones in [15] from over three decades ago, but lack
the computational power required to analyze more complex geometries. With more powerful
means, complex geometries could be analyzed and reproduced more accurately, and a larger
domain with a complete set of dimples could be better analyzed and their reciprocal influence
studied. A larger database containing more statistical samples could also be implemented. As
far as the discretization of the problem is concerned, in [2], where it is adopted a similar code,
the spatial resolution can also be very high if compared to the one here described.
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