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1. Introduction
The ever-increasing exploitation of space has led
to a soar in the number of artificial objects that
are currently orbiting our planet, at an alarm-
ing rate. The ability to repair or dispose of
these systems at their end-of-life has become a
priority objective for leading space agencies, as
they pose substantial threats to the longevity of
operational satellites and of forthcoming space
endeavors. Space robotic manipulators have
emerged as promising solutions to tackle these
impending problems, and with improvements to-
wards their autonomy, reliability, and reactivity,
could one day provide a universal solution for
both In-Orbit Servicing (IOS) and Active Debris
Removal (ADR) missions. With the purpose of
achieving similar goals, the recent applications
of Deep Reinforcement Learning (DRL) in the
space field show that these methodologies can
be used to train autonomous agents, that can
provide increased robustness and adaptability
when introduced into spacecraft Guidance, Nav-
igation, and Control (GNC) systems. While the
recent surges in DRL show that it is a field with
vast potential, its applications to Space Robots
in the literature are still at a preliminary stage,
and need to be extended.

2. Related works
The application of DRL to enhance the Guid-
ance and Control (G&C) of robotic arms in
space emerges as a potential solution to over-
come the main difficulties encountered in classic
manipulator control strategies. Among these,
there is the ill-posed inverse kinematics prob-
lem for high-Degree of Freedom (DoF) redun-
dant manipulators, as well as the great complex-
ities in including additional objectives such as
collision avoidance and motion constraints into
the robotic arm trajectory. In [1] DRL is used
to plan the trajectory of only 6 of the 7-DoFs of
the considered manipulator, to achieve a simple
end-effector positioning and attitude alignment
objective. An obstacle avoidance objective is
added in [2], but is only demonstrated for the
path-planning of a 3-DoF robotic arm. In [3], a
6-DoF manipulator is trained to achieve the po-
sition tracking of circular trajectories with the
end-effector, despite fully neglecting its attitude.

3. Problem statement
Fig. 1 reports the main phases of an Orbital
Robotics Mission (ORM) for the capture of an
uncooperative Target. This is one of the most
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complex scenarios, where the use of DRL strate-
gies could be the most beneficial. The focus of
this thesis is on the pre-capture phase, where the
state of the Space Robot (SR), which mounts
a 7-DoF manipulator, needs to be synchronized
with the target. The objective is to maneuver
the end-effector of the robotic arm such that
it is held stationary and at a fixed offset with
respect to the desired grasping position on the
target, which is critical to provide greater sim-
plicity and safety in the subsequent contact and
capture operations.

Figure 1: Mission phases.

3.1. Research objectives
The primary goal of this work is to evalu-
ate whether an agent can be trained to au-
tonomously generate the trajectory of a 7-DoF
redundant manipulator through the state-of-
the-art Proximal Policy Optimization (PPO)
DRL algorithm, to guide the end-effector to-
wards a desired goal state. The aim is to high-
light what level of accuracy can be achieved in
terms of the end-effector positioning and atti-
tude alignment, as well as the overall consecu-
tive duration that this performance can be guar-
anteed for, as the target spins. Autonomous
DRL agents have been found to be highly adap-
tive and robust when applied to different G&C
problems in the space field, hence an additional
objective of this work is to evaluate whether
these same characteristics are also found in an
agent trained to guide a robotic manipulator, es-
pecially when the training and testing environ-
ments have large domain gaps. Finally, the fi-
nal part of this work is aimed at providing some
preliminary understanding towards the agent’s
tracking capabilities with the end-effector, when
there is substantial relative motion between the
SR and the mission target, and to see how the

performance in this scenario compares to the
previous results. These objectives have been for-
mulated as a set of research questions, which are
answered in the conclusions of the thesis based
on the obtained results.

4. Space Robot dynamics
The SR is modeled as a multi-body system with
a 6-DoF base and a 7-DoF manipulator. Within
the scope of this study, the SR is assumed to be
Free-Flying, meaning that the base of the SR can
be actively controlled, in contrast to the Free-
Floating case [4]. By employing a direct-path
kinematics approach, and a Newton-Euler dy-
namics formulation, the nonlinear time-variant
equations of motion are retrieved (see Eq. 1) [5].

H(q)q̈ +C(q, q̇)q̇ = τ (1)

where H ∈ R13×13 is the symmetric, positive-
definite Generalized Inertia Matrix (GIM), C ∈
R13×13 is the Convective Inertia Matrix (CIM)
containing the Coriolis and centrifugal forces,
and τ ∈ R13 is the vector of generalized forces.
The selected vector of generalized variables is [5]

q = [q0, qm]⊤ = [r0,R0, qm]⊤ (2)

where r0 and R0 are the 6-DoFs corresponding
respectively the Center of Mass (CoM) position
and attitude of the base, employing a quaternion
representation, and qm collects the 7 joint angles
of the robotic arm.
The SR is described through a file in the
URDF (Unified Robotics Description Format),
and the whole model is implemented in Simulink
through the Simscape Multibody library, which
is responsible for integrating the equations of
motion. Explicit representations of the kine-
matic and dynamic quantities of the multi-body
SR are retrieved through the MATLAB library
SPART (SPAce Robotics Toolkit) [5]. The im-
plementation is validated by cross-checking the
outputs from the two libraries.

4.1. Target dynamics
Without loss of generality, the target’s shape is
chosen as a central cylinder, with two protrud-
ing solar panels. The target’s CoM is positioned
at the origin of the LVLH reference, hence its
translational motion can be disregarded. Its at-
titude evolution is described through the Euler
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Equations in principal body axes, as in Eq. 3.

Iω̇ + ω × Iω = M (3)

where I is the target’s diagonal inertia matrix,
ω is its angular velocity in the principal axis
frame, and M is the vector of external torques,
assumed to be null in this work.

5. GNC implementation
The SR GNC architecture employed in this the-
sis is found in Fig. 2. The autonomous PPO
agent generates the guidance of the manipula-
tor and provides it to the controller. The control
block is used to close the feedback loop and to
actuate the system, in order to retrieve the next
simulation step. Additionally, this thesis oper-
ates under the assumption of having full knowl-
edge of the variables that enter the G&C blocks.
A physical navigation block responsible for pro-
ducing these quantities has been omitted since
it is outside the scope, but analyses including
modeled uncertainty have been carried out.

Figure 2: Space Robot GNC architecture.

5.1. DRL guidance
The SR G&C problem is formulated as a
Partially Observable Markov Decision Process
(POMDP), and is then solved through the PPO
DRL algorithm, which has demonstrated its
ability to solve high-dimensional continuous con-
trol problems effectively. DRL is built on the
following concepts: the autonomous agent, the
environment, the policy, the reward function,
and the observation and action spaces. In short,
the agent carries out trial-and-error interactions
with the environment, and receives a higher re-
ward the closer it gets to its objective. As the
training progresses, the manipulator’s guidance
law (i.e. the policy) is optimized such that the
overall reward obtained by the agent is maxi-
mized. The policy is embedded in a Feedforward

Neural Network (FNN) that only carries out the
guidance tasks; when given as input the obser-
vation vector o (see Eq. 4), it produces a set of
actions a as an output (see Eq. 5).

o = [qm, q̇m, r̃, θ̃, ṽ, ω̃]⊤ (4)

where the first two vectors correspond to the cur-
rent joint angles and rates, and the remaining
vectors represent the errors between the current
and desired Cartesian end-effector states.

a = q̇∗m = [ϕ̇1, ϕ̇2, ϕ̇3, ϕ̇4, ϕ̇5, ϕ̇6, ϕ̇7]
⊤ (5)

where ϕ̇i correspond to the desired joint rates of
the manipulator, and are integrated outside of
the policy such that both the angle and rate set-
points can be provided to the controller. Since a
stochastic policy is selected to circumvent local
minima during optimization, both the mean and
standard deviation of each ϕ̇i is outputted from
the guidance. After optimization, only the mean
action values are considered.

5.2. Reward function
The reward function has been designed with the
primary goal of producing an autonomous agent
that can guide the end-effector towards the de-
sired state, in terms of both position and at-
titude, through the motion of the manipulator
joints. The reward function in Eq. 6 is based on
the concept of Artificial Potential Field, and is
developed starting from the one found in [1].

Uk = −r̃ +
10

1 + r̃ax
+

10

1 + r̃tx
+

10

1 + θ̃

∆U = Uk − Uk−1

rk =

{
∆U if ∆U ≥ 0

1.5∆U if ∆U < 0

(6)

where rk is the reward given to the agent at each
timestep, r̃ is the error between the current and
desired end-effector positions, r̃ax and r̃tx are
the projections of r̃ parallel and transverse to
the X-body axis of the SR (see Fig. 3), and θ̃
is the scalar error between the end-effector’s de-
sired and current attitude in axis-angle represen-
tation. Additionally, a time minimization and
a simplified collision avoidance objective have
also been included in the reward, and have been
found to increase the overall performance of the
agent. Please refer to the full manuscript for
their implementation.
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5.3. Control system
The SR’s control system is based on a non-
linear model-based feedback linearization con-
troller, with the goal of coupling the control
systems of the base and of the manipulator,
to compensate for any disturbances generated
by one on the other. The resulting linearized
system is controlled through two Proportional-
Derivative (PD) regulators, respectively for the
base and manipulator. The base is kept at the
desired synchronized state with respect to the
target, while the manipulator is commanded by
the PPO agent. The complete control law is re-
ported in Eq. 7.

τ =

{
τ0
τm

}
= H

{
PD(q̃0, ˜̇q0)

PD(q̃m, ˜̇qm)

}
+Cq̇ (7)

where H and C are the system’s GIM and CIM
and PD(q̃, ˜̇q) = KP (q

∗−q)+KD(q̇
∗− q̇), with

the starred quantities being the set-points. The
PD’s scalar gains are reported in Eq. 8.

KP,0 = 0.4 KD,0 = 0.3

KP,m = 2.5 KD,m = 1.25
(8)

6. Baseline agent performance
The first scenario treated is that of an uncoop-
erative target tumbling solely around its major-
inertia axis, corresponding to the axis of the
cylinder in Fig. 3. The angular rate of the SR
ω0 is synchronized to that of the Target ωT to
minimize any relative motion. The CoM of the
SR’s base is positioned along the target’s angu-
lar momentum LT , at a nominal distance of 5 m.

Figure 3: IOS motion synchronization scenario.

To stress the agent’s abilities and avoid that it is
subjected to the same scenario more than once,

the initial conditions of each simulation are ran-
domly selected within a vast pool:
• Target tumbling rate ωT ∈ [−3, 3] deg/s.
• A perturbation δϕi ∈ [−15, 15] deg is added

to each initial joint angle.
• Grasping position on the Target is selected

anywhere on the cylinder’s circular face,
where the end-effector needs to be posi-
tioned at a 35 cm offset from this location.

• A value ∈ [−25, 25] cm is added to the nom-
inal distance between the two spacecraft.

The FNN hyperparameters reported in Tab. 1
are selected through a sensitivity analysis. The
agent is trained for 7500 episodes of 420 s dura-
tion, and the reward evolution is shown in Fig. 4.

Table 1: Neural Network hyperparameters.

Layers Actor neurons Critic neurons
1st hidden 300 300
2nd hidden 300 300
3rd hidden 300 300

Learning Rate 1e-5 1e-5
Activation tanh tanh

Figure 4: Baseline agent training.

The trained agent is tested through a Monte
Carlo analysis of 500 testing episodes, to evalu-
ate the performance that can be achieved. With
respect to the current literature, more stringent
conditions need to be satisfied to consider an
episode successful: the agent must keep the end-
effector within {5 cm, 5 deg} tolerances around
the desired state, for at least 30 s consecutively.
Fig. 5 shows that regardless of where the grasp-
ing position is located on the target’s circular
face, the agent can successfully achieve its objec-
tive with a 100% success rate. Additionally, the
end-effector error evolution in Fig. 6 shows that
once the errors enter inside the desired thresh-
olds, they can stay within them for consecutive
periods much longer than 30 s.
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Figure 5: Correlation between randomized grasp
point location on target’s face and agent success.

Figure 6: End-effector error evolution.

The thresholds and consecutive time used to
compute episode success are heavily mission-
dependent, hence a sensitivity analysis has been
conducted to further analyze the agent’s per-
formance when these conditions are changed.
Overall, when the thresholds are reduced to
{4 cm, 4 deg} and {3.5 cm, 3.5 deg}, the success
rate respectively drops to 95% and 84%, show-
ing that the agent can still achieve its objective
in the majority of cases.

6.1. Robustness & generalization
The past literature shows that using DRL for
GNC problems can be beneficial in terms of sys-

tem autonomy, robustness, generalization, and
adaptability. To understand whether the agent
possesses these characteristics, it is tested in
four environments that have a large domain gap
with respect to training. The results obtained
in these conditions are briefly described.

Spin rate synchronization errors. In these
conditions, the main difference with respect to
training is that a relative rotation between the
SR and the grasping point emerges, of maximum
0.5 deg/s [6]. The agent’s performance drops
by about 6% (see Tab. 2), showing that in the
majority of cases, it can achieve its objective.

Table 2: Success rate comparison.

Baseline Synchronization errors
100% 94%

Larger targets. The agent is trained on a tar-
get of 50 cm radius. The tests show that as long
as the target’s radius does not exceed 64.5 cm
(29% increase), the agent successfully achieves
its goal with no changes in performance.

Uncertain navigation. By adding varying
levels of modeled uncertainty (offset from mean
+ Gaussian noise) to the observation vector en-
tering the policy, the agent is found to be in-
sensitive to its knowledge on the manipulator’s
joint angles and rates. Instead, it is sensitive to
uncertainty on the end-effector’s errors with re-
spect to the desired state (i.e. on its knowledge
of the real position of the grasping position). De-
spite this, conducting the agent’s training with
uncertainty is found to increase its performance.

Single-joint failures. By conducting 200× 7
testing episodes with each joint locked in place
(see Tab. 3), the agent is found to not general-
ize well to degraded manipulator configurations,
and fails quite arbitrarily, which would not al-
low for a mission to be conducted. By hav-
ing the agent encounter random joint failures
during training, improvements are not seen in
terms of success rate alone, but rather in terms
of where the failures are located on the target’s
face, which end up only being encountered in
specific locations. In these conditions, a 100%
success rate could be achieved by selecting an
opportune attitude synchronization phasing, in
function of the failed joint.
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Table 3: Baseline agent success.

Joint 1 2 3 4 5 6 7
Success rate 62% 9% 13% 0% 42% 58% 54%

7. Complex trajectory tracking
The final chapter of this work extends the
agent’s abilities to achieve a concurrent end-
effector position and attitude tracking objective.
The end-effector’s desired time-varying state is
generated by perturbing the target’s initial spin
rates, specifically along the intermediate inertia
axis (see Eq. 9). This results in an unstable ro-
tational equilibrium, and the target starts tum-
bling around all three of its body axes.

ωT = [0,±δωy, ωz]
⊤ (9)

where ωz ∈ ±[1, 3] deg/s is the randomized
major-axis spin rate, and δωy is the spin rate
perturbation taken between 10-15% of ωz. The
agent is trained for 16000 episodes (see Fig. 7)
with the same hyperparameters found in Tab. 1;
the episode randomizations introduced previ-
ously persist both during training and testing.

Figure 7: Trajectory tracking training.

Again, a 500 episode Monte Carlo analysis is
used to evaluate the agent’s performance. After
training, the agent’s success rate reaches 83%
on the {5 cm, 5 deg} thresholds, due to the
greater complexity of the tracking objective. If
instead the {5 cm, 10 deg} thresholds from [7]
are used, the success rate increases to 97%. In
this scenario, Fig. 8 shows that the main bot-
tleneck in performance is the agent’s attitude
tracking capabilities, since the attitude error has
large oscillations around the 5 deg limit. A fi-
nal comparison is made between the two agents
from the nominal and perturbed target environ-
ments. Fig. 9 shows the distribution of the max-
imum consecutive time in an episode, that the

Figure 8: End-effector error evolution.

end-effector satisfies the imposed thresholds. In
the unperturbed scenario, the baseline agent can
keep the end-effector’s errors low for long con-
secutive time periods, resulting in a distribu-
tion that is shifted to higher values. By instead
looking at the performance of the agent trained
on the perturbed target, the distribution spans
over a wider range of values, specifically towards
lower ones. This is due to the attitude error os-
cillations that occasionally lead to the loss of the
desired pointing, and explain the overall lower
performance achieved by the agent.

Figure 9: Agent performance in mono-axial and
multi-axial target tumbling conditions.

8. Conclusions
In this thesis, DRL is successfully employed
to train an autonomous agent in providing the
guidance of a 7-DoF manipulator mounted on a
SR, to achieve an end-effector positioning and
attitude alignment objective, chosen within a
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vast pool of randomized initial conditions. The
baseline agent achieves a 100% success rate
in keeping the end-effector’s state errors below
thresholds of {5 cm, 5 deg} for at least 30 s con-
secutively, with respect to a goal state; addi-
tionally, if the requested errors are reduced to
{4 cm, 4 deg} and {3.5 cm, 3.5 deg}, the success
rate respectively drops to 95% and 84%. The
system adapts to errors in the angular rate syn-
chronization between SR and target, achieving
a 94% success rate, and can also achieve its ob-
jective without changes in performance, when
trying to fulfill the objective on targets that are
at most 29% larger with respect to training. The
agent is then subjected to increasing levels of un-
certainty in the navigation outputs, and is found
to be most sensitive to errors in its knowledge
on the end-effector’s goal state. When random
joint failures are introduced, the highly differ-
ent manipulator dynamics make the objective
almost unachievable for the agent. The addi-
tion of random actuator failures during training
is provided as an effective solution to increase
the agent’s overall performance and robustness.
Finally, the agent is trained to synchronize the
end-effector with a time-varying state, gener-
ated by perturbing the target’s rotational dy-
namics. While seeing an overall decrease in per-
formance with respect to the nominal case, the
agent achieves a 97% success rate within thresh-
olds of {5 cm, 10 deg}.

8.1. Future developments
Overall, using a DRL-based manipulator guid-
ance system makes studying similar approaches
in the future very enticing, in view of the bene-
fits they provide even at such a preliminary de-
sign stage. A few methods to extend the current
state-of-the-art on these topics are proposed:

• The main push should be towards increas-
ing the achievable accuracy in the end-
effector’s state, overcoming the current
{5 cm, 5 deg} limit that provides a 100%
success rate. This could be done by defining
a new reward function, or by using alterna-
tive architectures to implement the policy,
such as Recurrent Neural Networks.

• To exploit the advantages of both classic
and DRL-based guidance architectures, a
strategy worth looking into could be a hy-
brid guidance system, where the main guid-

ance tasks are done in a classic framework,
while tasks such as collision avoidance are
achieved in real-time by an autonomous
agent that perceives its surroundings.
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