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Abstract

In this report, the Urban Heat Island (UHI) effect was studied by intro-
ducing the Local Climate Zone (LCZ) concept, which is an effective tool for
the differentiation of local urban climates. With the first objective of devel-
oping a universal and accurate method for LCZ maps derivation, Random
Forest supervised classification was used on remote sensing images covering
the Metropolitan City of Milan. Then, satellite images of summers 2006 to
2009 and 2020 to 2022 were leveraged to study the variation of land sur-
face temperature (LST) in the light of the urban morphology and land cover.
Complementary, the air temperature (AT) variation between LCZs was inves-
tigated as well using official and crowd-sourced in-situ measures from 2018 to
2021. As a result, an overall accuracy of 94% has been achieved for the LCZ
map using Landsat-8 images. However, the optimal final result was obtained
by adding a building height dataset, reducing the universality of the method.
With respect to temperature variations, the results confirmed that: (1) The
artificial LCZs had higher LSTs than natural ones with a mean difference
statistically and practically significant of 6.7 ◦C. (2) Two main factors partic-
ipated in the reduction of LST: the height of building, introducing shadows
on the ground, and the vegetation, increasing the portion of pervious materi-
als. (3) In turn, vegetation was retrieved as factor of AT reduction, but the
building height turned out to have the opposite effect as high buildings retain
the heat and prevent air from circulating. This was illustrated by a statisti-
cally significant mean difference of 1.0 ◦C between the Open low-rise and the
Compact mid-rise classes. (4) The LCZs with higher building density were
associated with slightly lower ATs, especially in winter and autumn. Finally,
the analysis of records over 2018 to 2021 revealed a strong linear correlation of
0.9 between the AT and the LST. This study showed great potential of both
satellite thermal data and crowdsourced information for climate research. In
addition, the findings might be of great interest for urban climate specialists
and urban planners in the pursuit of heat mitigation strategies.

Keywords : Local climate zone (LCZ), Land surface temperature (LST),
Air temperature (AT), Urban heat island (UHI) effect, Remote sensing, Su-
pervised classification, Crowdsourcing.
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1 Introduction

1 Introduction

Nowadays, more than 55% of the world population leave in urban areas (UN [2020])
and this number reaches more than 75% for European population (EEA [2021]). As
cities have expanded, urbanization has replaced green spaces with artificial struc-
tures with different thermal capacities and conductivities, affecting the land surface
energy processes and regional climates (Salazar et al. [2015]). In particular, the de-
velopment of urban areas led to the formation of urban heat islands (UHI), defined
as the phenomenon in which temperature tends to be higher in urban regions than
surrounding non-urban areas.

UHI are caused by a combination of several factors such as the ability of materials
to absorb and store heat, the reduced vegetation, the anthropogenic heat and the
varying urban geometry influencing wind flows (NASA [2020]). They have important
implications for regional climate change, air and water quality, energy consumption,
human health and urban ecosystem health (McCarthy et al. [2010], T. R. Oke [2017],
Shao et al. [2006]). Therefore, the investigation of UHI is undoubtedly relevant and
studies focusing on understanding the causes and effects of UHI are increasing, as
shown by Almeida et al. [2021]’s review.

Two types of UHI can be differentiated: the Surface Urban Heat Islands (SUHI),
representing the radiative temperature difference between impervious and natural
surfaces, and the Atmospheric Urban Heat Islands (AUHI), referring to the air
temperature in layers from surface to 1.5 km above it. The SUHI is mainly studied
using remote sensing and thermal sensors data that enable to derive the land surface
temperature (LST). On the other hand, the AUHI is traditionally measured using
in situ sensors, capturing air temperature (AT) at 2m above the ground.

Due to the relevance of the issue, the UHI have been widely investigated in studies
of urban climatology and observations of urban–rural air temperature differences
have been reported for cities worldwide (Rizman et al. [2008]). However, traditional
UHI research mostly calculates the urban-rural difference of temperature but does
not consider more local scales, which over-simplifies the spatial and temporal het-
erogeneity of urban climates. Therefore, to address the inadequacies of urban–rural
description, the “local climate zone” (LCZ) classification system has been developed
(Stewart and Oke [2012]). Defined as “regions of uniform surface cover, structure,
material, and human activity that span hundreds of meters to several kilometers in
horizontal scale”, it is a useful research tool for measuring the relation between ur-
ban configuration and the UHI phenomenon, and is growing in popularity in studies
of local temperature features.

1.1 Thesis outline

In this context, the present thesis aims to study more locally the temperature vari-
ation using LCZ classification as well as satellite images and in-situ measurements.

Indeed, the first chapter is devoted to the development of an optimal method to
derive LCZ maps from satellite imagery. This method intends to be universal in

1



1 Introduction 1.2 Study area and time range

order to be replicable in any city of the world.

The second chapter focuses on the land surface temperature to analyze the SUHI
effect through the prism of the LCZs. After determining the LST derivation method
from satellite imagery, urban morphology and land use characteristics are investi-
gated to determine the factors that further mitigate high surface temperatures.

For its part, the third and last chapter elaborates on the AUHI effect by investigating
the air temperature. The AT is firstly compared with the LST, and then studied in
the light of the LCZs to identify the contributors to its decrease.

1.2 Study area and time range

The study is focusing on the Metropolitan City of Milan (MCM), located in the
Lombardy region of Italy (see Fig. 2) and replacing the Province of Milan since
January 2015. It covers 1575 km2 of geographical area, including the city of Mi-
lan and other 133 municipalities. With more than 3 million inhabitants (Eurostat
[2022]), it is the second most populous Metropolitan City in the nation after the
Metropolitan City of Rome.

Figure 2: Location of the study area. CRS: WGS 84/Pseudo-Mercator.

The MCM is flat, with an altitude ranging from 98m to 199m, and has a climate
similar to much of Northern Italy’s inland plains, where hot, humid and muggy
summers and cold and wet winters prevail. In addition, Milan suffers from poor
wind circulation, causing stagnation of fog and pollutants (Pichierri et al. [2012])
and intensification of the heat island effect (Bacci and Maugeri [1992]), which makes
it a suitable test area for investigating local climate effects.

Furthermore, the average yearly temperature fluctuates between 2.5 ◦C in January

2



1 Introduction 1.2 Study area and time range

and 23.6 ◦C in July, the hottest month in the MCM. However, maximums higher
than 35 ◦C are becoming increasingly frequent during summer (AM [2022]), with a
record temperature of 39.3 ◦C reached during the summer of 2003.

Also, as urbanization is mainly centered in the city of Milan with almost 40% of
the total province’s population, a wider range of climate zones were included by
considering also the surroundings that encompass agricultural lands, forests and
smaller towns.

Finally, the study focused primarily on recent years, but the period investigated
depended heavily on data availability. While the LST, available on a wide range of
time was exploited for both 2006-2009 and 2020-2022 periods, the AT was limited
to the years from 2018 to 2021.

3
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2 Local Climate Zones mapping

2.1 Introduction

In the future, the urban climate is likely to face increasing heat waves of higher
intensity and longer duration (IPCC [2014]), giving major importance to the un-
derstanding and monitoring of urban climates. However, urban climates are usually
shown through the prism of the urban-rural dichotomy, that is not adequate to relate
the local heterogeneities inside the modern urban agglomerations and is not relevant
from the climate perspective. Therefore, the Local Climate Zone (LCZ) classifica-
tion system has been developed as a climate-centred classification system for urban
temperature studies (Stewart and Oke [2012]). The LCZ concept classifies urban
and natural environment into 17 classes, depending on their physical and thermal
surface properties. It distinguishes between ten ‘built’ (1-10) and seven ‘non-built’
(A-G) classes (see Figure 3) and is designed to function easily in any city or region.

Figure 3: Local Climate Zones classes and definitions. (Stewart and Oke [2012])

4



2 Local Climate Zones mapping 2.2 Data sources and description

When developing the LCZ maps, numerous types of data have been used in the
literature and can be categorized into remote sensing-based, GIS-based and in-situ
measurement datasets. With regard to remote sensing, the most frequently used
satellite imagery data are Landsat 8, 7 or 5 and Sentinel 1 and 2 (Aslam and Rana
[2022]). While the first provides images with easy access for any country or region,
the second is often preferred for its larger spatial resolution. Remotely sensed data
is used for a supervised classification of LCZs, following the protocol established
by the World Urban Database and Access Portal Tools (WUDAPT) project and
formalised by Bechtel et al. [2015]. This protocol includes: selecting a spatial area
that contains a city of interest, creating training areas (TAs) that illustrate each
type of LCZ present, and using the available satellite imagery to classify the entire
domain into LCZ types. The supervised classifier adopted for LCZs is usually the
Random Forest (RF) classifier, which is an ideal compromise between the achieved
accuracy and computational performance (Bechtel et al. [2015]).

In this context, this chapter aims at creating the LCZ of the Metropolitan City of
Milan with the highest possible accuracy, based on multispectral images and a RF
classifier. The methodology followed aims to be universal so that it can be easily
replicated in other cities.

2.2 Data sources and description

2.2.1 Premilinary analysis of Land Cover

In order to determine the temporal range to consider for the LCZ mapping, a pre-
liminary analysis of the evolution of land use was carried out. Starting from the Soil
consumption data of Milan (Carta Nazionale Consumo Suolo) for the years 2006,
2012, 2015 and 2020, changes of land cover could be highligthed by computing the
difference betwenn each pair of maps. It turned out that for the years 2020, 2015
and 2012, only very small changes took place, resulting in very similar soil maps.
However, for the year 2006 a significant change was observed since a motorway was
constructed in June 2012 and appears distinctly on the map of difference (see Fig.
4). It is the so called ”Autostrada A58”, also named ”Tangenziale Est Esterna di
Milano” (TEEM), and corresponds to the second ring road east of Milan after the
A51. As this new road could modify the thermal behaviour of its local surroundings,
a deeper investigation of the temperature before and after 2012 can be carried out
by targeting it (see section 3.5). However, as LCZ maps delineate uniform regions
that extend over hundreds of meters to kilometers (Stewart and Oke [2012]), roads
are generally not represented and this change cannot be detected using these maps.
Therefore, for the LCZ classification, a single year was sufficient to represent the
land cover for the period 2006-2021 and in order to exploit the most recent images,
the year 2021 was chosen.

5
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2 Local Climate Zones mapping 2.2 Data sources and description

© OpenStreetMap contributors

Figure 4: Differences of soil consumption between
2006 and 2012. CRS: WGS 84/UTM Zone 32N.

2.2.2 Satellite imagery

Prior to the selection, a study of the available satellite missions and their charac-
teristics was made in order to select the most suitable for the LCZ classification.
Certain criteria were imposed, including free availability and complete coverage of
the area of interest, as well as high spatial resolution, necessary to detect local cli-
mates. Moreover, the LCZ classification requires multispectral images with bands in
the VNIR (Visible and Near Infrared) and SWIR (Short Wave InfraRed) to exploit
the widest possible spectral range. Having all these criteria set, the first state of the
art on available satellite imageries resulted in the list summarized in table 1.

Several sensors were good candidates for the LCZ classification, namely Landsat 8
OLI, Sentinel-2 MSI and Terra ASTER. However, despite its high resolution appre-
ciated for the LCZ mapping, ASTER was disqualified due to an anomaly detected
on its SWIR sensor since April 2008, making six of its ten spectral bands unusable.
(USGS [2008]). Thus, only Sentinel-2 and Landsat 8 missions were selected to per-
form the LCZ classification. A comparison of the two was made later to determine
the best image for this task (see section 2.3).

Launched in February 2013, Landsat 8 is the new generation of the series of Landsat
satellites. It collects images of the Earth every 16 days with two main sensors:
OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor). The OLI
instrument operates at nine wavelengths in the range of 0.433-2.300µm and provides
images with a spatial resolution from 15 to 30m. In this chapter, only the spectral
bands 1 to 7 (30m resolution) have been exploited, as bands 8 and 9 are not relevant
for classification purposes.

Available to the public since December 2020, Landsat Collection 2 (USGS [2020])
is the second major reprocessing of the Landsat archive containing both Level-
1 data derived from Landsat 1-9 and science products from Landsat 4-9. They
are free data open to public, downloadable via EarthExplorer and cover the entire

6
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2 Local Climate Zones mapping 2.2 Data sources and description

Mission and
Sensor

Spatial resolution
multispectral bands

Spatial
coverage

Temporal
resolution

Temporal
coverage

Landsat 4, 5:
TM[1] 30m Global 16 days 7/1982 - 12/1993

Landsat 7:
ETM+[2] 30m Global 16 days 3/1984 - 01/2013

Landsat 8:
OLI/TIRS[3] 30m Global 16 days 02/2013 - Present

Landsat 1-5:
MSS[4] 90m Global 16 days 07/1972 - 01/1999

Terra: ASTER[5] 15 - 30m Global 12 hours 03/2000 - Present

Terra & Aqua:
MODIS[6] 500m Global 16 days 04/2002 - Present

Sentinel 2A & 2B:
MSI[7] 10 - 60 m Global 5 days

07/2015 - Present
and 03/2017 -

Present

SNPP and NOAA
20: VIIRS[8] 375 -750m Global 12 hours

10/2011 - Present
and 11/2018 -

Present

[l] TM: Thematic Mapper; [2] ETM+: Enhanced Thematic Mapper Plus; [3] OLI: Operational Land Imager, TIRS: Thermal

Infrared Sensor; [4] MSS: Multispectral Scanner System; [5] ASTER: Advanced Spaceborne Thermal Emission and Reflection

Radiometer; [6] MODIS: Moderate Resolution Imaging Spectroradiometer; [7] MSI: MultiSpectral Instrument; [9] VIIRS:

Visible Infrared Imaging Radiometer Suite.

Table 1: Comparison of available satellite mission images.

Earth. Although Level-1 data can be rescaled easily to top of atsmosphere (TOA)
radiance using radiometric rescaling coefficients, they include atmospheric effects
and require additional advanced corrections to obtain TOA reflectance. In contrast,
the Level-2 products are ready-to-use as they include atmospheric correction and
provide Bottom Of Atmosphere (BOA) reflectance as well as science products like
the surface temperature. Therefore, the Landsat 8 Collection 2 Level 2 (C2L2)
images were selected for the LCZ mapping from Landsat.

In turn, Sentinel-2 consists of two identical satellites (Sentinel-2A and Sentinel-2B)
operating simultaneously, achieving a revisit time of 5 days. One of the mission ob-
jectives of this satellite is to monitor changes of the Earth’s surface. Its Multispectral
Instrument (MSI) operates at 13 spectral bands in the range of 0.433-2.200 µm and
provides images with a spatial resolution from 10 to 20m in the VNIR and SWIR
(band 2 to 8), and 60m for its coastal aerosol and cirrus bands (bands 1 and 10,
respectively). In order to take advantage of the 20m resolution, only the bands
from 2 to 8 (including 8A) have been considered in this study. Similarly to the
Landsat 8 C2L2 product, the Level 2A products have been used to directly get
the BOA reflectance images. They were downloaded freely from Sentinels Scientific
Data Hub.

Initially, for each satellite, four dates were considered in order to take into account
seasonality and increase classification accuracy, as found by Bechtel et al. [2015].
The acquisition dates of downloaded products are reported in the table 2. It can be
noted that two images per date were considered for Sentinel-2 because the study area
was located at the intersection of two images. Moreover, the selection of date has
been strongly restricted by the availability of images with cloud coverage inferior to
5%. These scenes were used for the first LCZ classification carried out to determine
the best imagery to use. Subsequently, an extra scene was added for Landsat-8 in
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order to improve the accuracy of the result (see section 2.5).

Landsat 8 Sentinel-2

Winter 05 December 2021 10:10AM 16 January 2021 10:23AM (2A)

Spring 19 May 2021 10:10AM 10 June 2021 10:15AM (2B)

Summer 06 July 2021 10:10AM 14 August 2021 10:20AM (2A)

Autumn 24 September 2021 10:10AM 18 October 2021 10:19AM (2A)

Additional 16 March 2021 10:10AM -

Table 2: Selected satellite images.

2.2.3 Additional datasets

The classification performed to create the LCZ maps was a supervised classification
(see section 2.3.2) which requires some training areas to learn the different classes.
This is the part where urban expert knowledge plays an important role and some
additional datasets were therefore needed. Starting from the work of Loftian [2016]
who created a training set over the city of Milan, the vector layer has been augmented
to cover the entire MCM. To that end, three types of data were used, namely the
soil consumption, the building height and high resolution imageries.

The soil consumption dataset was the Soil consumption data of Milan, already
presented in section 2.2.1 and is provided for free by SINAnet (Sistema Informativo
Nazionale Ambientale), the national environmental information system of Italy. It
divides the MCM territory into 21 land use classes, plus one class for non-built-up
areas, in a 10m pixel raster. It provided a first insight of the underlying LCZ classes.

Then, the building height dataset was obtained from the Lombardy Region Topo-
graphic database, in a geopackage called 02 immobili ed antropizzazioni.gpkg. The
layer named unita volumetrica (volumetric unit), contains the buildings of the MCM
with a field portraying their height in meter. Therefore, this data was leveraged to
determine the building height of the training areas.

Finally, the Google Satellite images present a very high resolution of about 0.15m
over Europe. Obtained through the QuickMapServices plugin of QGIS, it was ex-
ploited as a last resort to identify precisely the objects on the ground and perfect
the training areas.

2.3 LCZs from Landsat-8 and Sentinel-2

Now, this section aims to perform a first classification of the LCZs using Landsat-8
and Sentinel-2 images separately and to obtain two maps for comparison. The result
with the best accuracy was then used in the following chapters of this study. The
different steps followed to obtain the two LCZ maps are summarised in Figure 5.
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Figure 5: Flowchart for LCZ mapping from Landsat-8 and Sentinel-2

2.3.1 Data pre-processing

As C2L2 and Level 2A products of Landsat 8 and Sentinel-2, respectively, are already
providing the BOA reflectance images, no additional atmospheric correction was
required. Therefore, Landsat 8 images only needed the standard pre-processing
such as clipping to area of interest and merging of the eight bands into one single
multispectral raster, to obtain the four seasonal Landsat images.

Sentinel-2, on the other hand, required more steps, especially as the eight bands
(from 2 to 8A) do not have the same resolution (10m to 20m). Arjasakusuma et al.
[2022] proved in their study that for machine learning-based modeling, resampling
to a coarser resolution is preferable to a higher resolution as it didn’t improve the
performance of the model. Therefore, SAGA GIS was used for resampling the images
and obtain a homogeneous spatial resolution of 20m. Then, the same standard
procedure (clip and merge) was applied to obtain the four seasonal Sentinel images.
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2.3.2 Random forest classification

In recent years, a variety of machine learning algorithm were adopted for solving
problems in geosciences and remote sensing such as neural networks, support vector
machines, self-organizing map, decision trees, random forests or genetic program-
ming (Lary et al. [2016]). Their main advantage against traditional methods are
that they don’t require the prior knowledge of the data model and are usually
faster. Indeed, they are able to learn the characteristics of target classes from train-
ing samples and to identify these learned characteristics in the unclassified data.
Furthermore, supervised classifiers have been proved to be more robust than model-
based approaches (Niemeyer et al. [2014]) and to provide better results for image
classification.

Moreover, the use of a combination of multiple classifiers to produce a single classifi-
cation is generally more accurate than any of the individual classifiers. The resulting
algorithm, known as ensemble classifier, combines the predictions of its individual
components to make predictions with higher precision. Over the last twenty years,
the Random Forest (RF) ensemble classifier has been increasingly used due to the
outstanding results obtained and its speed of processing (Belgiu and Drăguţ [2016]).
It has therefore been selected as the classifier in this study and its functioning is
outlined in the following.

2.3.2.1 Description of the algorithm

The Random Forest algorithm is a supervised machine learning algorithm that re-
duces the variance of the predictions of a single decision tree, thereby improving
its performance, by combining many decision trees. Through an approach called
bagging, RF performs parallel learning on multiple randomly constructed decision
trees trained on different subsets of the data. The ideal number of trees, which can
be several hundreds or more, is an important parameter: it is highly variable and
depends on the problem. Concretely, each tree of the random forest is trained on a
random subset of data according to the bagging principle, with a random subset of
features. The predictions are then averaged when the data are quantitative or used
for voting in the case of classification trees. This main principle is summarized in
the Fig. 6.

The random forest algorithm offers several advantages over other supervised classi-
fiers. Indeed, it is known to be one of the most efficient ”out-of-the-box” classifiers
(i.e. requiring little data pre-processing), it is a non-parametric method and pro-
vides fast computational performance (Oxoli et al. [2018]). Moreover, it ensures an
unbiased error estimate as only 2/3 of the training dataset is randomly selected for
learning and the remaining 1/3 is used to test the accuracy of the model. Thus, in
principle, there is no need of additional data for the accuracy assessment. However,
when dealing with spatial data, to avoid spatial correlation of testing and training
sets, it is always better to use an external dataset for validation. Therefore, in this
study two independent training and testing sets were created.
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Figure 6: Main principle of the RF algorithm (from Abilash [2018])

2.3.2.2 Training and testing data

As all satellite images refer to 2021 and in general no significant change in land
cover is observed over a year, one single training set has been used for all the
classifications. Starting from the work of Loftian [2016], the training vector layer
was augmented from 149 to 296 polygons in order to cover the entire MCM. To
identify and assign the proper class to each training polygon, a combined analysis
of the building height dataset and Google imagery was performed. Since the RF
algorithm already estimates the classification error internally in the run, an iterative
improvement of the training dataset could be carried out until a satisfying overall
accuracy was achieved.

From the 17 LCZs originally defined by Stewart and Oke [2012], only 8 have been
identified in the area of study, namely Compact Mid-Rise (class 2) Compact Low-
Rise (class 3), Open Mid-Rise (class 5), Open Low-Rise (class 6), Large Low-Rise
(class 8), Scattered Trees (class 102), Low Plants (class 104) and Water (class 107).
To guarantee the best possible accuracy, a homogeneous repartition of the area
per class in the training dataset has been ensured, as shown in table 3. A lower
percentage can be noted for the water class (107) but as water bodies are easily well
classified, this slight lack was not an issue. Similarly, an independent testing set of
129 polygons was created.

To carry out the RF classification, the algorithm implemented in R studio by Horn-
ing [2010] has been exploited. It holds the advantages of performing faster than any
GIS-implemented Random Forest and enables the user to define its own parameters.
In addition, it outputs the “out-of-bag” error together with the confusion matrix,
useful for the iterative improvement of the training dataset. Thus, for each of the
eight seasonal satellite images, the RF classification was run, resulting in eight LCZ
maps (four Landsat and four Sentinel).

11
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Class
Area (m²) in

Training
dataset

% of
Training
dataset

Area (m²) in
Testing
dataset

% of Testing
dataset

2 5 390 302 12.9 2 316 470 14.3

3 4 242 641 10.2 1 686 754 10.4

5 4 866 078 11.7 1 714 881 10.6

6 5 234 236 12.6 2 511 317 15.5

8 5 953 483 14.3 2 307 364 14.2

102 6 512 231 15.6 1 847 137 11.4

104 6 064 292 14.6 2 039 605 12.6

107 3 378 391 8.1 1 753 408 10.8

Table 3: Repartition of classes in training and testing datasets.

2.3.3 Post-processing

To remove the so-called salt and pepper effects that are typical in the pixel-based
classification, a majority filter with a 2Ö2 moving window was applied on each of
the eight LCZ maps using SAGA GIS. Then, the four Landsat filtered maps were
combined using majority voting in QGIS in order to obtain a single final Landsat
LCZ map. The small percentage of pixels for which no majority was found was left
with no-data value. In the same way, the final Sentinel LCZ map was obtained.

2.3.4 Accuracy assessment

The accuracy is commonly assessed using the confusion matrix which compares the
pixels of a predicted class with the pixels of a ground reference class. To understand
how a confusion matrix works, it is important to understand the four main termi-
nologies: TP, TN, FP and FN. They are depicted in the Fig. 7 for the simple binary
case but can be easily extended to more classes. The precise definition of each of
these terms is as follows:

� TP (True Positives): cases where the prediction is positive, and the true value
is actually positive.

� TN (True Negatives): cases where the prediction is negative, and the actual
value is actually negative.

� FP (False Positive): cases where the prediction is positive, but the actual value
is negative.

� FN (False Negative): cases where the prediction is negative, but the actual
value is positive.

It enables to compute some accuracy statistics such as:

� Overall Accuracy (OA): percentage of correct classified pixels based on the
total number of pixels. It is computed with Equ. 2.1.

OA =
TP + TN

TP + TN + FN + FP
(2.1)
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Figure 7: Confusion matrix with a binary problem.

� Producer’s Accuracy (PA): percentage of classified pixels which correctly rep-
resents the true category on the ground.It is computed with Equ. 2.2 and can
also be called ”recall”.

PA =
TP

TP + FN
(2.2)

� User’s Accuracy (UA): percentage of ground truth pixels which are correctly
detected in classified map. It is computed with Equ. 2.3 and can also be called
”precision”.

UA =
TP

TP + FP
(2.3)

Thus, the accuracy assessment was performed for the two final LCZ maps using the
SCP plugin of QGIS and the independent testing set as reference.

2.3.5 Results and comparison

Figures 8 and 9 show the two final LCZ maps, derived from Landsat 8 and Sentinel-
2 respectively. When looking only at these maps, very few differences could be
noticed, which was a first important point as they are supposed to represent the
same concept. The Sentinel LCZ map appeared however to have finer details mainly
due to the higher spatial resolution (20m over 30m for Landsat 8). The confusion
matrices and the derived accuracies, presented in Fig. 10 and Tab. 4 for Landsat
and Fig. 11 and Tab. 5 for Sentinel, enabled to make further differentiations.

Firstly, Landsat was found to give the best output classification with 94.9% of overall
accuracy against 92.7% for Sentinel-2. However, when looking at the UA and PA,
except for classes 3 and 5, the two classifications revealed a similar high performance
with slightly higher values for Landsat.

On the contrary, for the classes 3 and 5 Sentinel-2 gave particularly bad results with a
PA of 43.6% and 30.6%, respectively. It appeared to have difficulty identifying class
3 (Compact Low-Rise) as 30% of the pixels were wrongly assigned to class 6 (Open
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Figure 8: Final Landsat LCZ map (30m resolution).

Figure 9: Final Sentinel LCZ map (20m resolution).

Low-Rise) and 16% to class 2 (Compact Mid-Rise). Also, even though Landsat
was better for this class, similar confusion was observed, mainly because class 3 is
exactly between classes 2 and 6. Sentinel-2 classification had even more difficulty
in identifying class 5 (Open Mid-Rise) with 50% of the pixels wrongly assigned to
class 6 and only 31% correctly classified. Landsat performed much better in this
category with a PA of 62% but this was still very low in comparison to the other
categories. This issue is mainly due to the fact that classes 3, 5 and 6 have very
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similar reflectivities in all the considered bands, as shown by Oxoli et al. [2018].

Finally, independently of the comparison between the two results, both Landsat and
Sentinel LCZ maps proved to hold a very good overall accuracy. As a comparison,
out of the 846 available LCZ maps of the WUDAPT database, only 26 (i.e. 3%)
have an accuracy higher than 90%. However, Demuzere et al. [2021] warn the users
that a high OA do not automatically mean that the map is correct. It could be due
to one or more of the following:

i The accuracy assessment is only performed for pixels within the training areas
dataset and pixels outside these areas are not subject to quality control.

ii Too few LCZ classes in the training sample can lead to a falsely high OA.

iii Training polygons may be erroneous due to misinterpretation of the landscape
by the user, such as confusion of similar classes or the use of non-persistent land
covers.

The first point (i) has been avoided with the use of an external testing data for
the accuracy assessment. The second (ii) has been considered in the study as Bare
soil/Sand and Bare rock/Paved classes were initially added to the training categories.
However, the resulting maps and accuracies were not satisfying only for these two
classes, and they were not enough present on the ground to have sufficient training
data. They were therefore discarded. The last point (iii) can hardly be verified or
avoided as the training set is in the end always subjective and depends on the expert
who created it.

In the end, the comparison of the two imageries gave similar results for both Landsat-
8 and Sentinel-2, with slightly better results for the Landsat one. Therefore, in the
following, the LCZ from Landsat has been used as the reference LCZ map. However,
to handle the issue raised before regarding the low PA for classes 3 and 5, an attempt
of improvement have been carried out and is presented in the section 2.5.

Figure 10: Confusion matrix for Landsat-8 LCZ classification.

2.4 Distribution of classes over the territory

Starting from the LCZ map derived from Landsat-8, an analysis of the distribution
of the different classes over the MCM have been carried out. The distribution of each
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Class PA (%) UA (%) OA (%)

2 - Compact Mid-Rise 98.7 94.5

94,9

3 - Compact Low-Rise 60.6 91.7

5 - Open Mid-Rise 62.1 86.3

6 - Open Low-Rise 94.1 80.8

8 - Large Low-Rise 98.0 96.7

102 - Scattered Trees 99.6 96.5

104 - Low Plants 98.6 99.3

107 - Water 100.0 99.5

Table 4: Accuracies for Landsat-8 LCZ classification.

Figure 11: Confusion matrix for Sentinel-2 LCZ classification.

Class PA (%) UA (%) OA (%)

2 - Compact Mid-Rise 97.6 86.9

92.7

3 - Compact Low-Rise 46.6 92.5

5 - Open Mid-Rise 30.6 82.3

6 - Open Low-Rise 89.4 76.1

8 - Large Low-Rise 96.7 93.4

102 - Scattered Trees 98.9 97.5

104 - Low Plants 99.3 98.0

107 - Water 99.6 98.7

Table 5: Accuracies for Sentinel-2 LCZ classification.

class is summarized in the Table 6. With the use of majority voting for combining
the four LCZ maps, when no majority could be established the pixels were left with
no-data value. As a result, the final map is composed of 7.7% of no-data pixels. To
cope with this issue an improvement has been attempted in the section 2.5.

The Metropolitan City of Milan turned out to be predominantly composed of class
104 (Low Plants) with 47.6% of the territory covered by it. This reflected the exten-
sive agricultural lands cultivated in the surroundings of Milan. With 13.8% of the
territory, the second most represented class was class 8 (Large Low-Rise), account-
ing mainly for the industrial areas present in the MCM. Then, similar percentage
was recorded for classes 6 (Open Low-Rise) and 102 (Scattered Trees) with 11.0%
and 11.8% of the province, respectively. While the first disclosed the presence of
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Class
Pixel
count

% (with
no data)

% (without
no data)

2 - Compact Mid-Rise 49988 2.9 3.1

3 - Compact Low-Rise 22165 1.3 1.4

5 - Open Mid-Rise 53684 3.1 3.3

6 - Open Low-Rise 193323 11.0 12.0

8 - Large Low-Rise 240717 13.8 14.9

102 - Scattered Trees 206733 11.8 12.8

104 - Low Plants 833464 47.6 51.6

107 - Water 15756 0.9 1.0

No data 134431 7.7 -

Table 6: Distribution of classes over the MCM.

smaller cities in the surrounding of Milan, the second depicted the natural forests
and woods of the MCM, especially in the west part along the Ticino (river). In turn,
classes 2 (Compact Mid-Rise), 3 (Compact Low-Rise) and 5 (Open Mid-Rise) were
particularly under-represented when considering the entire area of interest with less
than 3.5% for all of them.

Class
Pixel
count

% (with
no data)

% (without
no data)

2 - Compact Mid-Rise 41437 20.5 22.9

3 - Compact Low-Rise 2472 1.2 1.4

5 - Open Mid-Rise 27205 13.5 15.1

6 - Open Low-Rise 10815 5.4 6.0

8 - Large Low-Rise 40903 20.3 22.7

102 - Scattered Trees 16809 8.3 9.3

104 - Low Plants 39741 19.7 22.0

107 - Water 1187 0.6 0.7

No data 19642 9.7 -

Table 7: Distribution of classes over the city of Milan.

A second study of the classes distribution was carried out, focusing this time only
on the city of Milan (see Tab. 7). The marginal class 2 into the MCM became
prominent, covering 20.5% of the region’s capital, as its city center is largely com-
posed of compact mid-rise neighbourhoods. As one moves away from the center, less
dense districts appear, explaining the high presence of the Open Mid-Rise class with
13.5%. In addition, the portion of class 8 (Large Low-Rise) increased, becoming the
second most represented class in Milan. The numerous warehouses bordering the
city may explain this phenomenon. However, the Compact Low-Rise class remained
under-represented with only 1.2% of pixels over the city. Composed of a dense mix
of low-rise buildings, it accounts mainly for residential areas without trees, which
are quite rare in the MCM given the modern urban planning patterns. Since no
large water bodies lies in the province, for both Milan and the MCM, the water
class portion was found to be low with less than 1%.
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2.5 Classification improvement

As highlighted in the previous sections 2.3.5 and 2.4, two main issues had to be
solved regarding the LCZ classification performed on Landsat-8 images, namely
the substantial percentage of no-data values in the MCM (7.7%) and the low PA
obtained for classes 3 and 5.

To cope with the first point, an additional image was added to the process. Indeed,
when performing the majority voting, having an even number of maps would lead
more often to equality than in the odd case. Therefore, the image of 16 March
2021 was selected, pre-processed and exploited through the RF algorithm in order
to produce a fifth LCZ map and carry out the majority voting on the five Landsat
maps.

As the second issue was mainly due to the fact that classes 3, 5, 6 and 8 show similar
reflectivities in all the considered spectral bands, an additional dataset had to be
considered. Fung et al. [2022] showed in their study that adding the building height
as a new band to the input raster improves significantly the accuracy of the high-
and mid-rise classes in the RF classifiers. Therefore, the building height dataset
has been exploited a second time and transformed into a raster of 30m resolution,
by computing the average height in each cell. This raster was merged with each
of the five Landsat multispectral images, giving five final rasters of eight bands (7
Landsat and 1 building height). Then, the same method as explained in section 2.3.2
was applied, with the RF classification, the majority filter and finally the majority
voting.

Figure 12: Final LCZ map from Landsat-8 after improvements.

The LCZ map resulting from these two improvements is presented in Fig. 12. A
second analysis of the distributions over the MCM and the city of Milan was carried
out using the new map, (see Tab. 8 and 9) and revealed an improvement in terms
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of no-data pixels as they decreased from 7.7% to 3.7%. As regards the distribution
of classes, both for the MCM and for Milan, the predominant classes remained the
same as before, with a majority of Low plants, Scattered Trees, Large and Open
low-rise classes in the former and a preponderance of Compact and Open mid-rise,
Large low-rise and Low plants in the latter.

Then, the evaluation of accuracies was conducted. The resulting confusion matrix
and accuracies can be found in Fig. 13 and Tab. 10, respectively. Firstly, the overall
accuracy decreased slightly from 94.9% to 94.0% which might seems not to be an
improvement. However, when looking to the PA of classes 3 and 5, a significant
increase could be highlighted, passing from 60.6% to 82.8% for class 3 and from
62.1% to 82.5% for class 5. For all other classes, the PA and UA decreased slightly
but remained very good with a PA and UA better than 90% and 94% respectively.
Hence, containing more homogeneous and all very high accuracies (PA, UA and
OA), the resulting LCZ map demonstrated a better quality and was therefore the
LCZ map used later as the reference.

Class
Pixel
count

% (with
no data)

% (without
no data)

2 - Compact Mid-Rise 50752 2.9 3.0

3 - Compact Low-Rise 45919 2.6 2.7

5 - Open Mid-Rise 75444 4.3 4.5

6 - Open Low-Rise 182048 10.4 10.8

8 - Large Low-Rise 250179 14.3 14.8

102 - Scattered Trees 314929 18.0 18.7

104 - Low Plants 749081 42.8 44.4

107 - Water 17946 1.0 1.1

No data 63963 3.7 -

Table 8: Distribution of classes over the MCM after improvements.

Class
Pixel
count

% (with
no data)

% (without
no data)

2 - Compact Mid-Rise 44379 22.0 23.1

3 - Compact Low-Rise 4789 2.4 2.5

5 - Open Mid-Rise 36316 18.0 18.9

6 - Open Low-Rise 7961 3.9 4.1

8 - Large Low-Rise 40252 19.9 21.0

102 - Scattered Trees 24613 12.2 12.8

104 - Low Plants 32163 15.9 16.8

107 - Water 1386 0.7 0.7

No data 10075 5.0 -

Table 9: Distribution of classes over the city of Milan
after improvements.
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Figure 13: Confusion matrix for the final LCZ
classification after improvements.

Class PA (%) UA (%) OA (%)

2 - Compact Mid-Rise 97.9 95.7

94.0

3 - Compact Low-Rise 82.8 89.6

5 - Open Mid-Rise 82.5 94.4

6 - Open Low-Rise 90.9 85.9

8 - Large Low-Rise 97.7 95.1

102 - Scattered Trees 99.0 95.3

104 - Low Plants 99.2 98.5

107 - Water 99.4 99.6

Table 10: Accuracies for the final LCZ classification
after improvements.
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3 Land Surface Temperature mapping

3.1 Introduction

Land Surface Temperature (LST) is an important variable within the Earth climate
system, integrating the interactions between the surface and atmosphere and all en-
ergy fluxes between the atmosphere and the land (Meng et al. [2017], Sahani [2021]).
According to NASA’s Goddard Institute for Space Studies (GISS) (NASA [2021]),
Earth’s global average surface temperature in 2020 tied with 2016 as the hottest year
on record, continuing a long-term warming trend due to human activities. Conse-
quently, an increasing number of researchers have investigated the importance and
effects of LST on various topics, including urban climate (Voogt and Oke [2003]),
evapotranspiration (Senay et al. [2019]), geothermal energy (Sekertekin and Arslan
[2019]), forest fire monitoring (Maffei et al. [2018]) and environmental studies (Weng
[2009]), among others.

LST can be estimated either from radiance measurements by in-situ meteorological
stations or through remotely sensed thermal infrared (TIR) data. Although they
usually offer a high resolution and wide time coverage, fixed ground stations are often
few in number and therefore fail to provide large-scale thermal information, such as
for an entire city or region. More and more studies are exploiting satellite remote
sensing images that, on the contrary, allow temporal and spatial LST analysis on a
large scale.

The radiances measured by the radiometers onboard satellites depend not only on
surface parameters (temperature and emissivity) but also on atmospheric effects
(Li et al. [2013]). Therefore, different methods have been used in the literature for
the estimation of LST, depending on the knowledge of the Land Surface Emissivity
(LSE) and the atmospheric corrections. In case LSEs are known a priori, single-
channel (or mono-window) methods, multi-channel (or split-window) methods and
multi-angle methods are the three most commonly used categories of algorithms.
While the first uses only one TIR band, the second and third include more than
one TIR band. However, in case LSEs are unknown, the stepwise recovery method,
the simultaneous recovery of LSE and LST with known atmospheric information,
and the simultaneous recovery method with unknown atmospheric information are
applied (Sahani [2021]).

Several studies focus on the relation between LCZ and LST. Han et al. [2022] showed
that the LSTs in the city of Xi’an (China) tended to decrease from urban to natural
areas and highlighted a gradually decreasing LST from the city center to rural areas.
In addition, Du et al. [2020] conducted their study in Nanjing (China) and found
out that the warmest and coolest zones varied with seasons and that LCZs showed
greater differences in LST during summer than in other seasons. They also pointed
out the substantial impact of building height on LST, with low buildings giving rise
to higher LSTs. Furthermore, Khoshnoodmotlagh et al. [2021] demonstrated that
compact high-rise, compact mid-rise, and heavy industrial areas tended to increase
the surface temperature in the city of Tehran (Iran). However, Yang et al. [2020]
explored the thermal environment characteristics of several cities in the light of their
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LCZs. It turned out that the proportion of LCZs are different depending on the city
sizes and that higher LSTs are experienced in larger cities. In addition, even if
similar patterns between cities could be outlined with highest temperatures in class
“Industry” for all of them, some differences were found, highlighting that the specific
thermal environment of each city as well as their size modify the distribution of LST
among the LCZs.

With this background, the present chapter includes three main aims. Firstly, two
methods of LST retrieval were compared to determine the most appropriate for the
study of local climates in the Metropolitan City of Milan. Then, the selected method
was leveraged to determine the LST variability among the LCZs of the MCM for
statistical analysis and comparison. Finally, a further study was carried out on the
new road highlighted in section 2.2.1, to determine whether a change in the local
thermal environment was caused by the construction of such a highway.

3.2 Data sources and description

Similarly to the previous chapter, a preliminary study of the available satellite mis-
sions suitable for the LST mapping have been carried out. As this task is performed
on images acquired by thermal sensors, only satellites carrying thermal sensor(s)
have been considered. In addition, the free availability and the full coverage of the
area of interest were imposed, together with the highest possible spatial resolution
of the thermal band, necessary to detect the local temperatures. From these criteria,
the table 11 was built.

Mission and
Sensor

Spatial resolution
thermal bands

Spatial
coverage

Temporal
resolution

Temporal coverage

Landsat 4, 5: TM
120m (resampled

30-60m)
Global 16 days 7/1982 - 12/1993

Landsat 7: ETM+ 60m (resampled 30m) Global 16 days 3/1984 - 01/2013

Landsat 8 and 9:
OLI/TIRS

100m (resampled 30m) Global 16 days 02/2013 - Present

Terra: ASTER 90m Global 12 hours 03/2000 - Present

Terra & Aqua:
MODIS

1km Global 16 days 04/2002 - Present

ISS /
ECOSTRESS:

PHyTIR
60m

CONUS
only

varies/every few
days

06/2018 - Present

Sentinel 3A & 3B:
SLSTR

1km Global 1 day
O2/2016 - Present and

04/2018 - Present

SNPP and NOAA
20: VIIRS

375 -750m Global 12 hours
10/2011 - Present and

11/2018 - Present

Table 11: Comparison of available satellite missions with thermal sensors.

Landsat-8 and Landsat-9 satellites carry specific Thermal Infrared Sensors (TIRS)
measuring the land surface temperature in two thermal bands (10 and 11) with
a resolution of 100m. However, due to a calibration error detected on band 11,
numerous exiting studies determine the LST using only Landsat 8 band 10 (Garćıa
[2021]). Their predecessor, Landsat-5, was carrying the Landsat Thematic Mapper
(TM) which created images consisting of six spectral bands with a spatial resolution
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of 30m (Bands 1-5 and 7), and one thermal band (Band 6) of 120m resolution.
The Landsat 7 Enhanced Thematic Mapper (ETM+) images are usually discarded
from studies because from 2003 onward the Scan Line Corrector was not working
correctly, resulting in scene losses of around 22% (Hamid Reza Pourghasemi [2019]).

The analysis of available thermal images, summarized in Tab. 11, stressed that
Landsat-5, 8 and 9 were the best imagery for deriving the LST map. Indeed,
the Landsat Collection 2 data includes thermal images with the highest resolu-
tion (30m) thanks to advanced data processing and resampling applied on acquired
scenes (USGS [2020]). This collection contains both Level-1 data and Level-2 science
products, both of which were used in this study to derive the LST with different
methods (see section 3.3).

The correlation between the LCZs and the LST was chosen to be studied over the
most recent period with images from 2020 to 2022. To detect the highest tempera-
tures experienced across the study area, only images acquired during summer (from
the 21st of June to the 21st of September of each year) were selected, which resulted
in six different dates, reported in the table 12. The selection was restricted to dates
with a maximum cloud coverage of 5% over the study area.

Level Date File name

L2 19 July 2020 10:10AM LC08 L2SP 194028 20200719 20200911 02 T1

L2 05 September 2020 10:10AM LC08 L2SP 194028 20200905 20200918 02 T1

L2 06 July 2021 10:10AM LC08 L2SP 194028 20210706 20210713 02 T1

L2 06 July 2021 10:10AM LC08 L2SP 194028 20210722 20210729 02 T1

L2 09 July 2022 10:10AM LC08 L2SP 194028 20220709 20220721 02 T1

L2 17 July 2022 10:10AM LC09 L2SP 194028 20220717 20220719 02 T1

L1 06 July 2021 10:10AM LC08 L1TP 194028 20210706 20210713 02 T1

L1 22 July 2021 10:10AM LC08 L1TP 194028 20210722 20210729 02 T1

Table 12: Selected Landsat 8-9 satellite images for the period 2020-2022.

Then, to evaluate the effect of the construction of the new road in 2012 in the
East part of the MCM, images in the period 2006-2009 were exploited as well. The
presence of clouds in most of images limited the selection to the four dates listed in
table 13.

Level Date File name

L2 16 July 2007 10:04AM LT05 L2SP 194028 20070716 20200830 02 T1

L2 02 September 2007 10:03AM LT05 L2SP 194028 20070902 20211210 02 T1

L2 05 July 2009 09:59AM LT05 L2SP 194028 20090705 20200827 02 T1

L2 06 August 2009 09:59AM LT05 L2SP 194028 20090806 20200827 02 T1

Table 13: Selected Landsat-5 satellite images for the period 2006-2009.

Moreover, in order to validate the LST maps derived from Landsat products, a
reference dataset was needed. As reported by Garćıa [2021], there exists four val-
idated methods for establishing the reliability of a LST map. They are: in situ
measurements, the radiance method (relying on atmospheric profiles), comparison
with ambient temperatures near the ground and cross-reference. The latter method
consists in validating a given LST by comparing it with the LST obtained by an-
other satellite whose data are well founded. In this study, the Sentinel-3 level 2 LST
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products were chosen as a reference as they directly include the LST with a spatial
resolution of 1km. This validation was carried out only on images of 2021 in order
to determine the most appropriate method to derive LST in this study, as explained
in the following section 3.3. Therefore, only the images of the 06 July 2021 and 22
July 2022 were downloaded, both acquired at 09:46AM i.e. 24 minutes before the
Landsat-8 images.

3.3 Methods for LST retrieval

As explained in the introduction to this chapter, several methods exist for deriving
the LST from satellite images, two of which were exploited in this study. While the
first is directly using the Collection 2 Level 2 (C2L2) products already containing
ready-to-use LST maps, the second is deriving LST from Collection 2 Level 1 (C2L1)
images by applying the so called single channel algorithm (SCA). In this section, the
two methods are presented and compared to a reference, the Sentinel-3 level 2 LST
product, in order to determine the approach to follow when computing the LST in
the next sections.

3.3.1 LST from Level 2 products

The Landsat 8 Level 2 ST product is derived from the Collection 2 Level 1 TIRS
band 10 and generated from the single channel algorithm (USGS [2020]). Therefore,
it already contains the atmospheric corrections calculated using, among others, the
ASTER Global Emissivity Database (GED) data, ASTER Normalized Difference
Vegetation Index (NDVI) data, and atmospheric profiles of geo-potential height,
specific humidity, and air temperature.

To retrieve the LST from the L2C2 image, a linear transformation of the digital
number (DN) was performed on band 10 as shown in Eq. 3.2 and 3.2.

LSTKelvin = 0.00341802 ∗DN + 149 (3.1)

LSTCelsius = LSTKelvin − 273.15 (3.2)

As documented in Cook et al. [2014], the presence of clouds may cause large negative
errors in the LST distribution. To avoid as much as possible this issue, the portions
of the MCM with significant cloud coverage were removed for each of the two dates.
Fig. 14 displays the resulting LST map for the 6th of July 2021, with temperatures
ranging from 7.1 ◦C to 65.9 ◦C and an average and standard deviation of 39.8 ◦C and
7.1 ◦C, respectively. In turn, Fig. 15 shows the result for the 22nd of July 2021, that
variates from 12.0 ◦C to 63.2 ◦C with a mean of 40.6 ◦C and a standard deviation of
5.6 ◦C. Thus, the latter map presents less variability and slightly higher temperature
than the first. The greater range of variation for July 6 can be explained by the
strong effects of clouds, which are not all detected and therefore not all eliminated,
but modify the thermal response acquired by the sensor.
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Figure 14: LST map of 06 July 2021 from C2L2 product (30m resolution).

Figure 15: LST map of 22 July 2021 from C2L2 product (30m resolution).

3.3.2 LST from Level 1 data

Although the C2L2 product has the serious advantage of holding atmospheric cor-
rections and being a ready-to-use image, most of the studies in the literature start
from the C2L1 products, mainly because the C2L2 product is global and researchers
prefer to apply their own and more local corrections.

Among the algorithms mentioned in the introduction of this chapter, the single
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channel algorithm was used in the present study to retrieve the LST from Landsat-8
level 1 products. SCA has been widely used to extract LST using single thermal band
(Duan et al. [2019], Sahani [2021], Mahato and Pal [2018]) and has been proved to be
theoretically accurate for the LST retrieval (Mujabar and Rao [2018]). Also known
as the model emissivity method (Hook et al. [1992]), it uses estimated atmospheric
parameters to correct the atmospheric effect in a single channel to retrieve LST.

The procedure suggested by Weng et al. [2004] has been followed in this study
and contains four steps that are: (1) the retrieval of TOA spectral radiance, (2)
the conversion of spectral radiance to at-satellite brightness temperature, (3) the
estimation of land surface emissivity and (4) the estimation of LST. These four
steps were carried out using the Rasterio library in Python.

Step 1: Retrieval of TOA spectral radiance from the digital number

When the Landsat-8 TIRS sensor acquires an image, a mixture of energy reflected
from the surface and the atmosphere is recorded. This is the so called Top of
Atmosphere spectral reflectance (Lλ), retrieved from band 10 using the radiance
rescaling factors provided in the metadata file (USGS [2016]) (see Eq. 3.3).

Lλ = ML ∗DN + AL (3.3)

where:

� Lλ : the TOA spectral radiance for each pixel (in Wm−2 sr−1 µm−1),

� ML : the Band-specific multiplicative rescaling factor from the metadata (ML

= 0.0003342),

� AL : the Band-specific additive rescaling factor from the metadata (AL =
0.1000),

� DN : the digital number i.e. the pixel value.

Step 2: Conversion to At-Satellite Brightness Temperature

The Brightness temperature (TB) is the temperature of a blackbody that would
emit the same amount of radiation as the targeted body in a specified spectral band
(Spampinato et al. [2011]). Thus, the spectral radiance can be modified for at-
satellite brightness temperature using the thermal constants K1 and K2 provided in
the metadata file (see Eq. 3.4).

TB =
K2

ln(K1

Lλ
+ 1)

(3.4)

where:

� TB : At-satellite brightness temperature (in Kelvin),

� Lλ : the TOA spectral radiance for each pixel (in Wm−2 sr−1 µm−1),

� K1 and K2 : Band-specific thermal conversion constants from the metadata
(K1 = 774.8853 and K2 = 1321.0789).
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Step 3: Estimation of land surface emissivity (ϵ)

The emissivity characterizes the ability of a body to emit radiation (Rhinane et al.
[2012]) and is affected by both the surface and the wavelength. As the (TB) obtained
in step 2 refers to a black body, corrections for spectral emissivity are required.
Various approaches are available for the modelling and estimation of LSE, but the
NDVI-threshold method proposed by Sobrino et al. [2004] was implemented in this
study, as it is a reliable, applicable and easy-to-apply approach.

The Normalized Difference Vegetation Index (NDVI) is a common and widely used
remote sensing index. It ranges from -1 to +1 and assesses whether the observed
target contains green healthy vegetation or not. While higher values correspond to
green and dense vegetation, lower ones show sparse vegetation or even water (for
-1). It is computed as the difference between near-infrared (NIR) and red (RED)
reflectance divided by their sum as shown in Eq. 3.5. In this study, the Red and
NIR bands of Landsat-8 OLI sensor were used, that are respectively bands 4 and 5.

NDV I =
NIR−RED

NIR +RED
(3.5)

Then, the NDVI-threshold method obtains the emissivity estimation from the NDVI
considering three cases:

1. NDVI < 0.2 : In this case, the pixel is considered as bare soil and the emis-
sivity is obtained from reflectivity values in the red region with the following
equation :

ϵ = 0.973− 0.074 ∗RED (3.6)

2. NDVI > 0.5 : The pixels are considered as fully vegetated and a constant
value of emissivity is fixed, typically to 0.99 :

ϵ = 0.99 (3.7)

3. 0.2 ≤ NDVI ≤ 0.5 : When the NDVI is between 0.2 and 0.5, the pixel
contains a mixture of bare soil and vegetation and the emissivity is computed
as defined in Eq. 3.8 :

ϵ = ϵv + ϵs ∗ (1− Pv) + dE (3.8)

where:

� ϵv : emissivity of vegetation (ϵv = 0.9863, approximation from Garćıa
[2021]),

� ϵs : emissivity of soil (ϵs = 0.9668, approximation from Garćıa [2021]),

� Pv : proportion of vegetation or fractional vegetation cover, computed
with Eq. 3.9.

� dE : coefficient of rugosity, taken as 0 for flat surfaces.

Pv = (
NDV I −NDV Imin

NDV Imax −NDV Imin

)2 (3.9)
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Step 4: estimation of land surface temperature (LST)

Finally, the LST has been calculated using Eq. 3.10, following Artis and Carnahan
[1982] and Mahato and Pal [2018] later.

LST =
TB

1 + (λ ∗ (TB

ρ
) ∗ ln(ϵ))

(3.10)

where:

� LST : Land Surface Temperature in Kelvin,

� TB : brightness temperature in Kelvin,

� λ : wavelength of emitted radiance (10.895µm for Landsat-8 band 10),

� ρ : ρ = h ∗ c/σ = 1.438 ∗ 10−2mK (σ = Boltzman’s constant = 1.28 x
10−23JK−1, h = Planck’s constant = 6.626 x 10−23J s, c = velocity of light =
2.998 108 ms−1 )

� ϵ : land surface emissivity.

The LST, obtained in Kelvin, has been converted into degree Celsius by subtracting
273.15 from each pixel value. The resulting maps for the 6th and 22nd of July 2021
are presented in Fig. 16 and 17. As a first result, it could be highlighted that the
level-1 derived LST maps presented lower temperatures than the level-2 ones, with
averages of 26.5 ◦C and 26.4 ◦C for 06 and 22 July respectively (against 39.8 ◦C and
40.6 ◦C from level 2 products). The variation in temperature was lower as well since
the standard deviations were 3.7 ◦C and 2.8 ◦C as opposed to 7.1 ◦C and 5.6 ◦C.
These numbers are summarized in the Tab. 14 and 15 of section 3.3.4, where a
deeper comparison of the results was carried out.

Figure 16: LST map of 06 July 2021 from
C2L1 product (30m resolution).
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Figure 17: LST map of 22 July 2021 from
C2L1 product (30m resolution).

3.3.3 LST from Sentinel-3 products

Sentinel-3 satellites are equipped with the Sea and Land Surface Temperature Ra-
diometer (SLSTR) whose main objective is to provide global and regional sea and
land surface temperatures with a very high level of accuracy (ESA [2021]). It cap-
tures images in six spectral bands with a resolution of 500m (bands 1 to 6) and
three thermal bands that enable to determine the LST (bands 7, 8 and 9) with a
spatial resolution of 1000m.

Similarly to Landsat-8, Sentinel-3 thermal products are available for download with
two levels of processing (level 1 and level 2). While level 1 data contain radiance and
brightness temperatures, level-2 products directly includes the LST together with
other quantities such as the Fire Radiative Power or Water Single Temperature.
Therefore, the SLSTR Level-2 LST products were exploited to provide reference
maps for the two previously selected dates (06 and 22 July 2021). They are shown
in Fig.18 and 19 and their statistics are summarized in the Tab. 14 and 15.

3.3.4 Comparison of LST maps and methods

At this point, four Landsat-derived maps (06 July 2021 Level-1, 06 July 2021 Level-
2, 22 July 2021 Level-1, 22 July 2021 Level-2) and two Sentinel-3 references (06 July
2021 and 22 July 2021) were established.

To begin with, a comparison of the box-plots for each of the two dates was made.
The Fig. 20 shows the box-plots for the 6th of July 2021, displaying the distribution
of data based on a five number summary (minimum, first quartile, median, third
quartile, and maximum). This graph anticipated a greater proximity of Sentinel-
3 to the Landsat-8 Level 2 product than to the Landsat-8 Level 1 one since its
median appeared to be included in the interquartile range (IQR, 25th to the 75th
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Figure 18: LST map of 06 July 2021 from
Sentinel-3 (1km resolution).

Figure 19: LST map of 22 July 2021 from
Sentinel-3 (1km resolution).

LST Map Mean (°C) Stdev (°C) Min (°C) Median (°C) Max (°C)

Landsat C2L2
(30m)

39.8 7.1 8.2 40.5 65.9

Landsat C2L1
(30m)

26.5 3.7 10.7 26.8 40.5

Sentinel-3
(1000m)

34.7 5.1 14.2 35.4 43.2

Table 14: Summarized statistics for the derived LST maps of 06 July 2021.

percentile) of the Level-2 product. However, the C2L2 map turned out to hold a
large variation with its maximum and minimum values encompassing both the Level-
1 values and Sentinel-3 ones, which could reveal a lower accuracy and precision in
the LST estimation.

In turn, the Fig. 21 draws the box-plots for the 22nd of July 2021. This time,
the median of the Sentinel-3 product (33.2 ◦C) was not contained in any of the two
other IQRs. However, its third quartile (from 50th to the 75th percentile) appeared
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LST Map Mean (°C) Stdev (°C) Min (°C) Median (°C) Max (°C)

Landsat C2L2
(30m)

40.6 5.6 12 41.2 63.2

Landsat C2L1
(30m)

26.4 2.8 12 26.7 38.4

Sentinel-3
(1000m)

33 3.1 19.1 33.2 38.7

Table 15: Summarized statistics for the derived LST maps of 22 July 2021.

Figure 20: Box-plots of LST values per method - 06/07/2021.

to be included into the first quartile (from 25th to the 50th percentile) of the Level 2
product, which might again lead to the conclusion of a greater proximity of Sentinel-
3 to the Level 2 LST map.

Figure 21: Box-plots of LST values per method - 22/07/2021.

These preliminaries, though, were not sufficient to draw any conclusion. To take
into consideration the spatial distribution of the temperature, a further analysis of
the differences per pixel was carried out. To do so, the four Landsat-derived LST
maps had to be resampled to the same spatial resolution of 1000m, which has been
done using the SAGA GIS resampling tool with the Mean value (cell area weighted)
upscaling method.
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Then, the difference between the resampled Landsat maps and their corresponding
Sentinel-3 reference was computed, pixel per pixel. The Tab. 16 presents the range
[mean difference – standard deviation ; mean difference + standard deviation] for
each date and each level versus the Sentinel-3 product. It can be noted that the
computed difference was Landsat – Sentinel, which led to negative values in case
Sentinel had higher temperatures.

06/07/2021 22/07/2021

Landsat C2L2 range of diff. (°C) [0.4 ; 10.0] [5.1 ; 10.5]

Landsat C2L2 mean diff. (°C) 5.2 7.8

Landsat C2L1 range of diff. (°C) [-12.1 ; -4.1] [-8.3 ; -4.5]

Landsat C2L1 mean diff. (°C) -8.1 -6.4

Table 16: Range of difference between Landsat-derived LST and Sentinel-3.

For the 6th of July 2021, the Level 2 product turned out to be closer to the reference
with an absolute mean difference of 5.2 ◦C, against 8.1 ◦C for Level 1, and a range
closer to 0, which would mean a zero difference. For the 22nd of July 2021, the
difference between the two absolute means was smaller but the Level 1 was closer
to the reference with an absolute mean of 6.4 ◦C, against 7.8 ◦C for Level 2. In
addition, it is important to notice that, while Level 2 products appeared to have,
in average, higher values than the Sentinel-3 ones, the Level 1 maps presented the
opposite behaviour with lower temperatures.

Then, to give more meaning to these numbers, the study of Garćıa [2021] has been
exploited. Indeed, he studied six different techniques to derive the LST from both
Landsat-8 and Sentinel-3 images, using 10 images over the year 2017 for each mission.
By averaging the derived LST maps, he could compare the results from each of the six
algorithms, which resulted in the Fig. 22. While the first three box-plots correspond
to algorithms using Landsat-8 products, the following three refer to algorithms using
Sentinel-3 images and the last one is an in-situ reference. Moreover, the yellow box-
plot was derived from the official Sentinel-3 SLSTR Level 2 product, also used in
the present chapter.

These results revealed important points for the analysis in the present study. Firstly,
for all algorithms the values have a large variation around the mean with more than
10 ◦C of difference between the 25th and the 75th percentile. More specifically, the
Sentinel-3 reference product has an IQR of 14 ◦C. Therefore, the differences found
in the present study (see Tab. 16) being smaller than 14, they are not aberrant
results.

Moreover, Garćıa [2021] demonstrated that the methods based on Landsat 8 algo-
rithms had higher mean values than Sentinel 3 with a mean difference of 3K, this
difference being even greater during dry periods (April-September). As the present
study has considered the month of July 2021, that is the hottest month of the year
in the MCM, it appeared coherent to find a difference between Level 2 and reference
products of 5.2 ◦C and 7.8 ◦C depending on the date.

On the other hand, the Level 1 map, with values below the Sentinel-3 reference
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Figure 22: Statistics Landsat 8 and Sentinel 3A
LST algorithms (from Garćıa [2021])

product, deviated from the previously mentioned study. Although Garćıa [2021]
also used Level 1 products, algorithms requiring more knowledge of atmospheric
corrections have been applied, which could explain the significant difference in re-
sults. Thus, the Level-1 LST maps derived in the present study didn’t have enough
evidence of their validity to be exploited as they were.

However, when looking at the LST maps from Level 1 and Level 2 of the same day
(Fig. 14 and 16 for 06 July, Fig. 15 and 17 for 22 July), many similarities could
be observed. The legend scale being different for the two levels, it seemed that
they both represent the same quantities, only shifted of a certain bias or linearly
transformed. In order to check these hypotheses, the linear correlation between the
two maps has been computed through the Pearson’s coefficient (see section 4.2.3.2
for definitions), which resulted, for both dates, in a correlation coefficient of 0.99.
This revealed a strong positive linear relation, consistent with the hypotheses of bias
or linear transformation.

In addition, the per-pixel difference was evaluated, which led to the statistics con-
tained in Tab. 17. With a range of difference of [9.9 ◦C-16.7 ◦C] for the 06 July 2021
and [11.3 ◦C-16.9 ◦C] for the 22 July 2021, the bias hypothesis seemed less plausible
than the linear transformation to describe the relationship between Level 2 product
and Level 1 derived map.

As a conclusion, this section compared the Landsat-8 Level 1 derived LST maps with
the Landsat-8 Level 2 products and intended to use the Sentinel-3 official SLSTR
Level 2 product to validate or reject them. However, significant differences were
found between the three products for the two considered dates of 2021. In the
absence of ground truth, the Sentinel-3 level 2 product cannot be considered more
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06/07/2021 22/07/2021

Range of diff. (°C) [9.9 ; 16.7] [11.3 ; 16.9]

Mean diff. (°C) 13.3 14.1

Table 17: Differences between Level 1 and Level 2 derived LST.

accurate than the Landsat-8 one, nor vice versa. Therefore, in the general case,
both sources should be used in parallel when studying the LST without any ground
validation. Nonetheless, as Landsat-8 presents a higher resolution of 30m, it should
be preferred for local analyses.

Moreover, even if the Level 1 and Level 2 maps turned out to be strongly linearly
correlated, the Level 2 maps have shown promise of better accuracy than Level 1. In
their validation study, Laraby and Schott [2018] found that when the atmospheric
transmission is at least 0.85 and clouds are more than 10 km away, the root mean
squared error (RMSE) of Landsat Level 2 LST is at most 0.78K, which is a very
good accuracy of a global ST product. As a result, Landsat-8 Level 2 LST data
have been used in the following to study the LST on other dates. Level 1s, on the
contrary, have no longer been calculated for these additional dates. However, with
an initial idea of a linear relationship between the two Landsat-8 LST levels, further
analysis comparing the two LSTs could be the subject of future work.

3.4 Study of LST per LCZ

Once the method for LST retrieval was defined, the analysis of the LST variation
between the LCZs could be carried out. The period of 2020-2022 was chosen to
perform this task, with the six dates recalled in the Tab. 12.

3.4.1 LST maps for 2020-2022 period

Thus, four additional LST maps were computed from the Landsat-8 Level 2 LST
products, using the method described in section 3.3.1. They resulted in four maps
whose statistics are summarized in the Table 18.

Date Mean ◦C Stdev ◦C Min ◦C Max ◦C

2020 07 19 35.2 5.1 21.8 58.2

2020 09 15 33.8 3.3 21.2 52.2

2021 07 06 39.8 7.1 8.2 65.9

2021 07 22 40.6 5.6 12.0 63.2

2022 07 09 44.6 5.9 23.2 62.8

2022 07 17 48.0 6.2 30.0 67.9

Table 18: Statistics for derived LST maps (2020-2022 period)

However, the two maps of 2020 presented lower temperatures than the other four,
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with a mean LST of 35.2 ◦C and 33.8 ◦C. This was not initially a problem but later
proved to be a hindrance as it prevented the temperature distribution within each
LCZ class from being normal. Indeed, when studying the density histograms for the
artificial classes, (as explained in section 3.4.3), three peaks appeared, highlighting a
non-homogeneity with respect to temperature (see Fig. 23a and 23b). When the two
2020 maps were removed, these peaks disappeared, revealing that the temperature
difference in that year was the cause of the non-normal distribution within the
artificial classes. Consequently, the two maps of 2020 were discarded for the study
of LST per LCZ.

(a) Built-up, including maps of 2020 (b) Built-up, excluding maps of 2020

(c) Natural, including maps of 2020 (d) Natural, excluding maps of 2020

Figure 23: Density histograms of built-up and natural groups

Nevertheless, the remaining four maps, presented in Fig. 24, were used to study the
temperature per class of the LCZ system.

3.4.2 LST per LCZ class

The LCZ map derived in the section 2.5 from Landsat-8 images of 2021 was exploited
to compute the temperature statistics per class. Fig. 25 depicts the box-plot of each
class, with the first five representing artificial zones and the last three representing
natural ones.

A first observation concerning the separation of artificial classes from natural classes
could be made. Indeed, the built-up climate zones turned out to experience higher
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(a) 06/07/2021 (b) 22/07/2021

(c) 17/02/2022 (d) 09/07/2022

Figure 24: The four considered maps for the period 2020-2022.

Figure 25: Boxplots of LST per LCZ class (period 2020-2022)

mean temperatures (ranging between 45.9 ◦C and 48.5 ◦C) than the non-built-up
zones (where average temperatures range between 36.1 ◦C and 41.8 ◦C). Nonetheless,
the variation within each class being quite large, a study of the statistical significance
of the difference in means between artificial and natural classes was carried out in
the section 3.4.3.

In addition, when looking only at the artificial classes (from 2 to 8), the means,
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ranging between 45.9 ◦C and 48.5 ◦C, appeared to be very similar. To better under-
stand if a difference could be detected between built-up classes, a deeper analysis
was carried out in section 3.4.4.

3.4.3 Comparison of LST - Artificial VS Natural classes

In the following, the difference in means found between artificial and natural classes
was studied under the prism of statistical and practical significances. The eight LCZ
classes were merged and reorganized into two groups: artificial and natural areas.
Thus, the mean temperature and standard deviation could be calculated for each of
these two new classes and are presented in Table 19.

Mean (◦C) Stdev (◦C)

Artificial 47.1 3.3

Natural 40.3 7.3

Table 19: Statistics for Artificial and Natural groups (period 2020-2022)

The objective was then to determine the probability of the difference between the
two groups. To do so, several statistical measures exist.

T-Test

The T-Test is an exact statistical test used to determine if there is a significant
difference between the means of two groups. It runs on a set of three assumptions
that are:

1. Independence: The observations in one sample are independent of the
observations in the other sample.

2. Normality: Both samples are approximately normally distributed.

3. Homogeneity of Variances: Both samples have approximately the same
variance.

While the first two could be assumed as true (see the density histograms in Fig. 23b
and 23d), the third one could not be validated. Indeed, the built-up group held a
variance of 11.1 ◦C against 53.6 ◦C for the natural one. Therefore, the T-Test has
not been applied.

Z-Test

The two-sample Z-Test is an approximative statistical test that could be used as
an alternative as it only requires the first two aforementioned assumptions. It is
usually applied in case of large sample size (more than 30 samples) to check if the
means of two populations are different or not. This is done by establishing the null
hypothesis and the alternative hypothesis and calculating the value of the z-score,
as in Eq. 3.11 :
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z =
(X̄1 − X̄2)− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

(3.11)

where:

� X̄1 and X̄2 : means of the two samples,

� µ1 and µ2 : means of the two populations,

� σ2
1 and σ2

2 : variances of the two populations, estimated from the data as the
sample size is very large (it is the number of pixels i.e. more than 190 000 for
both groups),

� n1 and n2 : size of the two samples.

The null hypothesis can be stated as H0 : µ1 = µ2 and the alternative hypothesis as
HA : µ1 ̸= µ2.

To check if the statement in the null hypothesis was correct, a significance level
was set at 5%. Then, the p-value, or probability value, indicates the probability
that the data could have occurred under the null hypothesis. While a small p-
value (≤ 0.05) indicates strong evidence against the null hypothesis, a large p-value
(> 0.05) indicates weak evidence against the null hypothesis i.e. an inability to
reject it.

From the considered data, a very high z-score of 403.3 was obtained, corresponding
to an extremely low p-value close to 0. Theoretically, this result would have given
enough evidence to reject the null hypothesis and validate the alternative one, mean-
ing that the difference of the two means is statistically significant and that natural
areas mitigate high temperature more than artificial ones.

However, Lin et al. [2013] pointed out the p-value problem associated with very
large samples. Indeed, with more than 10 000 samples as in the present case, p-
values go quickly to zero, and solely relying on p-values can lead the researchers to
claim support for results without practical significance. Far from rejecting the use of
hypothesis testing, they advocate its use in combination with other considerations
such as the effect size and confidence intervals, in order to give more practical
meaning to the analysis.

Effect size

An effect size is a measure of the strength of an observed effect of one variable
on another. Calculated from empirically observed data, it indicates the practical
significance of a research outcome. In the present case, the difference of mean
temperature between the natural and artificial groups is the effect size. The greater
it is, the more this difference is likely to be meaningful in the real world. Contrary
to statistical significance, the effect size is not influenced by the sample size, which
makes it an appropriate tool to use in the present study.
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One of the most common measurements of effect size is Cohen’s d (Cohen [2013]),
which is calculated as in Eq. 3.12 :

d =
X̄1 − X̄2√

s21+s22
2

(3.12)

where:

� X̄1 and X̄2 : means of the two samples,

� σ2
1 and σ2

2 : variances of the two populations, estimated again from the data.

It takes the difference between two means and expresses it in standard deviation
units, giving as a result how many standard deviations lie between the two means.
To interpret the result, the following guidelines are set:

� d < 0.01 indicates a negligible effect,

� 0.01 ≤ d < 0.20 indicates a very small effect,

� 0.20 ≤ d < 0.50 indicates a small effect,

� 0.50 ≤ d < 0.80 indicates a medium effect,

� 0.80 ≤ d < 1.20 indicates a large effect,

� 1.20 ≤ d < 2.00 indicates a very large effect,

� 2.00 ≤ d indicates a huge effect,

Thus, using the Eq. 3.12 the obtained d-value was 0.94, corresponding to a large
effect. The built-up mean LST is therefore 0.94 standard deviations above the
natural one and this difference was proved to have a large practical significance.

Confidence intervals

Confidence intervals (CIs) are ranges that are assumed to contain the true parameter
value somewhere within them with a fixed probability (Davis [2020]). A hypothesis
test can be carried out by checking if the CI includes the null hypothesis value (0
in case H0 is looking for a difference between two means). The advantage of using
CIs over the statistical significance is that CIs imply the magnitude of the effect
in addition to the positive or negative response of the effect plausibility. In case of
normally distributed data, the CIs for the difference of two means can be calculated
using the z critical values, as shown in equ. 3.13.

(X̄1 − X̄2)− zα/2

√
σ2
1

n1

+
σ2
2

n2

< (µ1 − µ2) < (X̄1 − X̄2) + zα/2

√
σ2
1

n1

+
σ2
2

n2

(3.13)

where:

� X̄1 and X̄2 : means of the two samples,
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� zα/2 : z-score associated to a confidence level α/2 (for a 95% CI, α = 0.05),

� µ1 and µ2 : means of the two populations,

� σ2
1 and σ2

2 : variances of the two populations, estimated again from the data,

� n1 and n2 : size of the two samples.

From this equation, the obtained confidence interval was 6.71 ◦C-6.75 ◦C meaning
that the difference between artificial mean LST and natural one is at 95% probability
between 6.71 ◦C and 6.75 ◦C.

Consequently, the analysis carried out in this section confirmed that natural areas
mitigate high temperatures more, with a difference in mean LST statistically and
practically significant. This difference for the four considered dates of 2021 and 2022
lies in the range 6.71 ◦C and 6.75 ◦C with a 95% probability.

3.4.4 Comparison of LST between artificial classes

Next, this section focuses on the artificial areas to determine whether there was a
significant difference in temperature between the different classes.

Class Mean (◦C) Std. (◦C)

5 - Open Mid-Rise 45.9 4.2

2 - Compact Mid-Rise 47.1 3.3

6 - Open Low-Rise 47.3 4.3

3 - Compact Low-Rise 48.5 3.7

8 - Large Low-Rise 48.5 4.4

Table 20: Ordered mean LST for artificial classes (period 2020-2022)

The Tab. 20 ranks the five classes according to their mean LST. While class 5 (open
mid-rise) appeared to have the lowest mean LST with 45.9 ◦C, classes 3 (compact
low-rise) and 8 (large low rise) exhibited the highest LSTs with a mean of 48.5 ◦C.
The other two classes, including class 2 (compact mid-rise) and class 6 (open low-
rise), resulted in an intermediary mean LST with 47.1 ◦C and 47.3 ◦C, respectively.
These result were similar to other researches (Unal Cilek and Cilek [2021], Han
et al. [2022]). Nonetheless, with means ranging from 45.9 ◦C to 48.5 ◦C, artificial
areas have a maximum difference of 2.6 ◦C between pairs of built-up classes. Observ-
ing that the standard deviations are all higher than this difference (from 3.3 ◦C to
4.4 ◦C), it appeared difficult to draw straight forward conclusions on the differences
in average LST. However, as in the previous section, an analysis of statistical and
practical significance was carried out.

The most common statistical test used to compare the means of multiple (three
or more) groups of a single independent variable is one-way ANOVA, also known
as the Analysis of Variance test. Like the T-test, it helps to determine whether
differences between groups of data are statistically significant. It runs on the same
set of assumptions, namely independence, normality and homogeneity of variances.
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The first was admitted and, as the sample sizes were large, the normality could be
assumed and was confirmed by the density histograms in Fig. 26. However, here
again, the variances differed too much to validate the third assumption (see table
21).

(a) Class 2 (b) Class 3 (c) Class 5

(d) Class 6 (e) Class 8

Figure 26: Density histograms for artificial classes (period 2020-2022)

Class Variance

5 - Open Mid-Rise 11.1

2 - Compact Mid-Rise 14.0

6 - Open Low-Rise 17.3

3 - Compact Low-Rise 18.5

8 - Large Low-Rise 19.8

Table 21: Variance in LST for artificial classes (period 2020-2022)

When the data violates the assumption of homogeneity of variances, the Welch’s
ANOVA (W-test) can be used as an alternative. Under the only assumptions of
independence and normal distribution, it enables to compare the means of three or
more groups, as explained by Delacre M [2019]. However, the W-test relies on the
p-value and in the same way as for the previous Z-test, the obtained p-value was
very close to 0. Indeed, the sample sizes still being very large, with more than 175
000 pixels, the p-value problem persisted.

Therefore, two-by-two comparisons have been performed to detect if any pair of
classes had a mean LST difference with practical significance. While Table 22 sum-
marizes the Cohen’s d of each pair and their corresponding interpretations, Tab. 23
provides the 95% CIs of their difference.

With a difference of mean LST ranging from 2.59 ◦C to 2.65 ◦C, classes 3 (Compact
low-rise) and 5 (Open mid-rise) turned out to have a d-value of 0.65, corresponding
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CLASS 2 3 5 6 8

2 - Compact
Mid-Rise

-
Small
(0.40)

Small (0.32)
Very small
(0.063)

Small (0.34)

3 - Compact
Low-Rise

Small
(0.40)

-
Medium
(0.65)

Small (0.27)
Very small
(0.015)

5 - Open
Mid-Rise

Small
(0.32)

Medium
(0.65)

- Small (0.35)
Medium
(0.61)

6 - Open
Low-Rise

Very small
(0.063)

Small
(0.27)

Small (0.35) - Small (0.28)

8 - Large
Low-Rise

Small
(0.34)

Very small
(0.015)

Medium
(0.61)

Small (0.28) -

Table 22: Effect size for difference between artificial classes

CLASS 2 3 5 6 8

2 - Compact
Mid-Rise

- 1.38 to 1.43 1.19 to 1.23 0.24 to 0.27 1.45 to 1.49

3 - Compact
Low-Rise

1.38 to 1.43 - 2.59 to 2.65 1.12 to 1.16 0.04 to 0.09

5 - Open
Mid-Rise

1.19 to 1.23 2.59 to 2.65 - 1.46 to 1.49 2.67 to 2.70

6 - Open
Low-Rise

0.24 to 0.27 1.12 to 1.16 1.46 to 1.49 - 1.19 to 1.23

8 - Large
Low-Rise

1.45 to 1.49 0.04 to 0.09 2.67 to 2.70 1.19 to 1.23 -

Table 23: CIs for difference between artificial classes (in ◦C)

to a medium effect. The mean LST of the compact low-rise class is therefore 0.65
standard deviations above the open mid-rise one, and this difference has a medium
practical significance. This could be explained by the fact that, in contrast to class
3, class 5 contains some trees and mid-rise buildings that introduce some shadows
into the area and contribute to the lowering of the LST.

Similarly, the d-value between classes 8 (Large low-rise) and 5 (Open mid-rise) re-
vealed a medium effect size, with a difference of mean LST ranging from 2.67 ◦C
to 2.70 ◦C and higher temperatures experienced in class 8. Indeed, while the Large
low-rise class corresponds to a land cover mostly paved without trees, which iden-
tifies mainly industrial and storage areas in the MCM, the Open mid-rise class
encompasses more permeable cover, trees and shadows.

On the contrary, all other pairs turned out to be very similar, with d-values high-
lighting small or very small effects.

Fortunately, this point did not prevent the conclusions of two previously argued
observations from being drawn. Indeed, when looking at the order of the classes
sorted by increasing average LST (Tab. 20), it appeared that two factors influenced
the decrease in temperature: firstly, as expected and proven in section 3.4.3, the
presence of trees and permeable cover, and secondly, the height of buildings, in-
troducing some shadows. Indeed, on the one hand, the open mid-rise class, that

42



3 Land Surface Temperature mapping 3.5 Effect of the new road on LST

encompasses both factors, demonstrated the lowest mean LST, while on the other
hand, the large low-rise and compact low-rise classes, which are deprived of both,
hold the highest average LST. Moreover, class 2 (Compact Mid-Rise) that only in-
cludes mid-rise buildings but lacks of trees, ended up in the middle. The same was
true for class 6 (Open Low-Rise) that, on the contrary, carries some trees but only
low-rise structures. Therefore, the positive effect of one factor only compensated the
lack of the other, resulting in a mean LST that could not be significantly different
from classes holding both factors or none of them.

Moreover, it could be highlighted that the difference of density of buildings between
classes did not demonstrate any effect on the LST. Indeed, classes 5 and 8 that
are the two most different classes in terms of mean LST, both refer to areas of
low density. Also, classes 3 and 6 (compact low-rise and open low-rise) that only
differ by the density of buildings, were proven to have only a small effect size i.e. a
difference in mean LST not practically significant.

To conclude, the analysis of LST between the five artificial classes highlighted two
main factors participating in the mitigation of high temperatures. The first is the
high height of buildings (over 10m) since LSTs tended to decrease as the building
height increased. It seemed therefore that the presence of tall buildings reduces
the heat captured from the ground by creating shaded areas. The second identified
factor is the presence of vegetation that increases the portion of pervious materials
in the area. These conclusions, that are in line with those of Du et al. [2020], must
be qualified, however, as the differences observed have not been shown to be of large
significance (only a medium effect at best could be observed). To further investigate
the two aforementioned factors, one could take into consideration more images over
a wider period of time. As the main obstacle to this achievement was the presence
of clouds, a more refined way of dealing with clouds could be sought in order to
increase the number of usable images and obtain a clearer result.

3.5 Effect of the new road on LST

The preliminary analysis of the evolution of land cover carried out in section 2.2.1
revealed an important change from 2006 to 2012. Indeed, the motorway called
“Autostrada A58” in the east part of Milan was built in June 2012, involving land
cover changes over 15 kilometres. Thus, the present section aims to analyse the
effect of this new road on the LST, by comparing mean temperatures before and
after its construction.

3.5.1 Area of study

To focus particularly on the road, the area of interest (AOI) has been narrowed to
a rectangle of 19 kilometer by 15 kilometer as shown in Fig. 27.
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Figure 27: AOI focusing on the new road.

3.5.2 LST maps for the “before” and ”after” periods

Then, to represent the period before the construction of the motorway, images over
2006-2009 have been selected. Due to the high presence of clouds during the summer
of the years 2006 and 2008, no images could be exploited. However, for 2007 and
2009 four dates were presenting a cloud coverage of less 5% and have therefore been
selected (see Tab. 13). The Collection 2 Level 2 LST products were exploited to
derive the LST maps presented in Fig. 28, clipped to the new area of interest.

The period 2020-2022 previously analysed has been selected to represent the LST
after the construction of the new road. From the six derived LST maps in section
3.4.1, only five were leveraged, namely the 19/07/2020, 05/09/2020, 06/07/2021,
09/07/2022 and 17/07/2022. The image from the 22nd of July 2021 presented
clouds over the AOI and was therefore discarded.

3.5.3 Mean LST per period

From the four images of the 2007-2009 period, the mean value per pixel has been
computed, giving birth to the mean LST map for 2007-2009, depicted in Fig. 29a.
Likewise, the mean LST map for 2020-2022 has been derived and is presented in
Fig. 29b.

3.5.4 Mean LST over the road

Then, from both resulting maps, the mean LST along the location of the new road
was computed. To avoid over-interpreting the temperature difference along the
motorway, which could be due to a simple overall difference over the two periods,
the mean LST and its standard deviation over the entire AOI were derived as well.
Fig. 30 illustrates the result from which a first observation could arise. While the
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(a) 16/07/2007 (b) 02/09/2007

(c) 05/07/2009 (d) 06/08/2009

Figure 28: The four considered maps for the period 2007-2009

(a) 2007-2009 period (b) 2020-2022 period

Figure 29: Mean LST maps before and after road construction

difference in mean over the whole area of study is 6.1 ◦C, the difference in mean over
the road is 9.0 ◦C i.e. about 3 degrees more, thus anticipating an increase of LST
due to the construction of the motorway.

3.5.5 Map of difference between the two periods

To further investigate this difference, a second analysis was carried out. The differ-
ence between the two maps presented in Fig. 29 (Mean LST over 2007-2009 and
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Figure 30: Mean LST per period.

Mean LST over 2020-2022) was computed, resulting in the map shown in Fig. 31.
Looking at it, the new motorway could already be discerned, which demonstrates a
greater temperature difference in its location.

Figure 31: Map of difference in LST (After - Before)

Furthermore, from the map Fig. 31, the mean difference between the two periods
over the whole area of study could be derived, as well as the mean difference over
the location of the road, depicted in Fig. 32. This last investigation confirmed that
soil temperatures at the site of the new motorway were higher after than before its
construction. Indeed, while the LST over the AOI increased by 6.2 ◦C in average,
the rise was even higher at the site of the new road with an average of 9.3 ◦C.

In conclusion, this section demonstrated the alteration of a local climate due to
the construction of a motorway. Specifically, an increase of 3.1 ◦C on average was
observed at the location of the new road. This finding could be interpreted in the
lights of the conclusions drawn in section 3.4, as motorways are usually lines of
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Figure 32: Difference between ”mean 2020-2022” and ”mean 2007-2009” maps

impermeable concrete, devoid of vegetation and shadows. Thus, they do not hold
either of the two factors detected as temperature regulators, which could explain
the observed increase of LST. Furthermore, the present conclusion could be used
as a starting point for planners who want to study the impact of vegetation and
shade surrounding a given road or area. Indeed, as this section showed that a
conventional highway has a significant impact on ground temperature, one could
wonder whether the presence of vegetation or mid-rise buildings on its sides could
reduce it significantly.
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4 Air temperature

4.1 Introduction

Air temperature (AT) is the most commonly measured meteorological parameter and
is fundamental to climate and global change research. Its estimation and monitoring
is useful in many fields such as meteorology, hydrology and ecology and, unlike the
surface temperature, it reflects the environmental conditions directly experienced
by living beings.

Most current AT measurements are collected at 2m above ground level by standard
weather stations which generally rely on regional infrastructure for weather data
collection. Although they acquire data with high accuracy and temporal resolution,
these stations provide only point samples whose distribution is rarely designed to
effectively reflect spatial variation in air temperature (Vancutsem et al. [2010]).
Moreover, official weather stations tend to be strategically located to be operational
and therefore do not optimally represent all environments (Prihodko and Goward
[1997]).

In this context, many researchers have turned toward remote-sensing techniques that
solve the problem of spatial dispersion thanks to their regular and global coverage of
the land surface parameters. In particular, the LST recovered from thermal sensor
images has been extensively studied to derive an estimate of the near surface AT.
According to Vancutsem et al. [2010], this derivation is far from straightforward
and, to estimate AT from LST, two approaches may be distinguished, one is for
minimum AT, another is for maximum AT.

During the night, as the thermal infrared signal is not affected by solar radiation,
the LST data provides a good estimation of daily minimum temperatures. Indeed,
Zhu et al. [2013] compared the the MODIS LST nocturne data with official AT
records and discovered a correlation of 0.94 and a root mean squared error (RMSE)
of 2.97 ◦C. Similarly, Shen and Leptoukh [2011] reported a correlation higher than
0.95 between minimum AT and nighttime LST.

On the other hand, for day-time temperatures, the result is significantly variable
between studies. During day, the relation between LST and AT depends on many
factors: solar radiation, cloud-cover, wind speed, soil moisture, surface roughness,
vegetation, water vapor and season (Vancutsem et al. [2010], Shen and Leptoukh
[2011]). Therefore, depending on the study, the area of interest and the period
considered, the results are varying. While do Nascimento et al. [2022] and Zhu
et al. [2013] found a correlation higher than 0.8 in their study focusing respectively
on São Paulo (Brazil) and the Xiangride River basin (Tibet), Shen and Leptoukh
[2011] found significant variation of the linear regression coefficients from one station
to another in northern Eurasia regions. Nonetheless, Iqbal and Ali [2022] studied
the relation between AT and LST in Pakistan through various predictive models
(linear, quadratic, cubic, exponential) and reported the linear function to be the
most appropriate with values of correlation of 0.78 and 0.62 for two stations during
summer.
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Therefore, being dependent on many local factors, the relationship between AT and
LST cannot currently be globalized. Nevertheless, according to Jin and Dickinson
[2010], although not similar, LST and AT are complementary in their contribution of
valuable information to the study of climate change. Hence, after the study of LST
conducted in Chapter 3, the following focuses on air temperature with two main
aims: (i) Verify the existence and type of correlation between day-time AT and
LST for the Metropolitan City of Milan, (ii) Analyse the variation of AT between
the LCZs. As various in situ data were considered for the air temperature, a first
description of the data sources and pre-processing is made in the following section.

4.2 In situ data sources

Ground sensors can be divided into two main categories: quality-controlled refer-
ence weather stations and crowdsourced networks. While the firsts are traditionally
managed by public authorities, the seconds are hold by amateurs sharing their ob-
servations.

4.2.1 Reference and quality-checked weather stations

In each region of Italy, the official environmental and weather monitoring is car-
ried out by the Regional Agency for Environmental Protection (ARPA, Agenzia
Regionale per la Protezione dell’Ambiente) which provides free access to its data.
For ARPA Lombardy, the datasets are published on the Lombardy Open Data Por-
tal. In particular, the air temperature measures are included in the weather sensor
datasets (Dati sensori meteo), downloadable yearly as CSV files.

In the Metropolitan City of Milan, 15 stations have monitored the air temperature
from 1989 to present, with a frequency of 10 minutes. Their spatial distribution is
reported in the Fig. 33.

4.2.2 Crowdsourcing weather stations

Despite the high quality of the reference station measurements, their limited number
over the territory does not provide sufficient spatial resolution to study temperature
variations at the very local scale. As a result, turning to crowdsourcing appears to
be a suitable complementary solution as it offers measures of stations distributed
worldwide with a high spatial density. It is even more relevant since the density
is higher in urban areas, where very few reference stations are usually located to
ensure precise and representative observation, not affected by urban heat noises.

However, crowdsourced atmospheric data do not benefit from the calibration, quality
assurance and control of traditional data, hence data correction is a crucial step
before any analysis can be carried out.

4.2.2.1 Netatmo stations
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The amateur weather stations chosen to be used in this study are the Netatmo
weather stations (Netatmo [2021]) as they are distributed worldwide with a high
density, especially in our study area as showed by the Fig. 33, and the data is made
available for free via an application programming interface (API). The stations are
composed of two modules, an indoor and an outdoor module, that are easy to set
up and require a minimum amount of maintenance.

Figure 33: ARPA and Netatmo weather stations in 2021

The outdoor module measures several variables including at least the outside air tem-
perature (specified manufacturers accuracy: ±0.3 ◦C) and relative humidity (±3%)
at 5 minutes intervals and are transferred automatically to the Netatmo server via
Wi-Fi connection. Moreover, the users can choose whether their data is public or
not, which in the first case makes it accessible to everyone via an API.

Using this public Netatmo API and the patatmo Python package developed by
Büchau [2017], two methods have been used. First, the Getpublicdata method,
returning instantaneous data from all stations within a specified area, along with
their metadata (identifier, latitude, longitude and altitude of the station). Then, the
Getmeasure method is returning the data for a specific station in a given time range
and was thus used to extract the past records of each station. The returned data is a
dictionary containing for each hour of the selected time range, the average, minimum
and maximum measured temperatures, with the corresponding timestamps.

The number of available stations over the Metropolitan City of Milan depends on
the year but ranges from 55 in 2014 to 688 in 2021 and increases with time. No data
was recorded before 2014 in our area of study. The number of available stations
before data cleaning is reported in table 24.
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Year Nb of stations

2021 688

2020 611

2019 490

2018 368

2017 287

2016 216

2015 120

2014 55

Table 24: Number of Netatmo stations in the MCM per year

4.2.3 Data cleaning

Data cleaning, also called data cleansing or data scrubbing, is an essential step before
using any dataset. Essentially, garbage data in is garbage analysis out. Thus, data
cleaning is the process of spotting and correcting incorrect, corrupted, duplicate,
or incomplete data in a dataset and enables to improve its quality. The first step
before exploiting in situ measurements has therefore been the data cleansing.

4.2.3.1 ARPA Data pre-processing

In order to clean Netatmo data, the stations of ARPA have been used as a reference.
However, the downloaded ARPA data could not be used directly and needed a 3-
steps pre-processing. The Fig. 34 summarizes the pre-processing flowchart of ARPA
data, that have been followed for all years from 2018 to 2021.

Figure 34: ARPA data pre-processing steps

Filter Milan stations

ARPA data is downloaded from Geoportale Lombardia and is provided in a CSV
file containing all measures of all weather stations of the Lombardy region for the
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selected year. Therefore, the first step was to filter the CSV file in order to keep only
the measures of temperature and only for the 15 stations inside of the Metropolitan
City of Milan. The output was saved in a file named “ARPA data Milan”.

Remove outliers

Although their quality is checked by regional authorities and meet quality standard
certification as requested by the national law, the ARPA temperature time series
were found to have some outliers. For example, some stations had recorded tem-
peratures bellow −30 ◦C or higher than 60 ◦C, or recorded a 30 ◦C temperature in a
winter month. Therefore, a cleaning was carried out on the ARPA data Milan file
using the Z-score method.

The one sample Z-test is a statistical concept that helps to understand if a data
value is greater or smaller than the mean and quantify how far away it is from it.
More specifically, the Z-score is the number of standard deviations away from the
mean that a certain data point is. It is defined as follow, for a point x, a mean µ
and a standard deviation σ:

Zscore =
x− µ

σ
(4.1)

In the Z-score method for outlier detection, if the z-score of a data point is more
than 3, the data point is considered to be very different from the others and therefore
an outlier. In this study, the Z-score of each observation has been computed with
Python using the mean and standard deviation of the corresponding month. For
2018, 2019, 2020 and 2021, the number of identified and removed outliers were 1261
(0.18%), 2999 (0.41%), 737 (0.10 %) and 1570 (0.20%), respectively. The output
was saved in a file named “Cleaned ARPA data Milan”.

Create the ARPA virtual station

For some steps of the Netatmo data cleaning (see section 4.2.3.2), it was convenient
to compare the amateur measures with the values of a single virtual ARPA station.
The latter consists of a single time series whose values are the hourly averages of the
measurements of the ARPA stations. The hourly minimum and maximum together
with the standard deviation have also been computed and stored with the means in
a file named “Virtual ARPA station”.

4.2.3.2 Netatmo data cleaning

Being based on crowdsourced stations, the Netatmo data is de-facto provided with
no quality standard certification. Therefore, several types of outliers had to be
removed:

� Outlier times series: entire time series that is completely different from the
others. They can be detected only when compared with a reference time series,
in this study the measures of the ARPA virtual station. Two types of outliers
times series can be distinguished:

– Uncorrelated time series: Time series with low correlation with the
reference station
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– Biased time series: Time series with high correlation with the reference
station but containing a bias i.e. the mean is globally higher or lower.

� Unrealistic values: values out of the possible range of normal temperature
for Milan (for example, 60°C or -15°C).

� Point outliers: value that is unusual in a specific time instant when compared
either to the other values in the time series (global outlier) or to its neighboring
points (local outlier).

To remove properly these outliers, two different approaches were tested. The flow-
charts Fig. 35 and Fig. 36 represent their steps and the removals of measures
associated to each step is summarized in the Table 26. Even if the correction was
applied for years 2018 to 2021, only removals associated to 2021 were reported since
similar percentages are retrieved for the four years.

Removal of uncorrelated times series

For both approach A and B, the first step has been to compute the correlation of
each of the station time series with the one of the virtual ARPA station. To do so,
the Pearson’s coefficient (also known as Pearson’s R or bivariate correlation) has
been used. It is the most common way to measure a linear correlation between two
sets of data. Denoted with the symbol “R”, it is the ratio between the covariance
of two variables and the product of their standard deviations:

rXY =
cov(X, Y )

σXσY

(4.2)

where cov(X, Y ) is the covariance between X and Y ; σX and σY are the standard
deviation of X and Y , respectively.

The Pearson’s correlation coefficient returns a value between -1 and 1, where:

� -1 indicates a strong negative linear relationship

� 0 indicates no linear relationship at all

� 1 indicates a strong positive linear relationship

In this study, times series with a Pearson’s coefficient lower than 0.6 were considered
to have a very low correlation with the ARPA stations and have been removed.

Removal of unrealistic values

For both approach A and B, the unrealistic values were removed by using, for
each month, the minimum and maximum values of the virtual ARPA station,
minARPA and maxARPA respectively. Every value out of the range [minARPA−2 ◦C
; maxARPA+2 ◦C] were considered as unrealistic values and therefore removed.
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Figure 35: Netatmo cleaning steps - Approach A
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Figure 36: Netatmo cleaning steps - Approach B
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Removal of Biased time series – Approach A

In the first approach, the idea was to apply an automated anomaly detection al-
gorithm in order to remove, for each month, the time series with strong bias with
respect to the others. One of the most widely used algorithms for anomaly detection
is Isolation Forest, which uses a tree-based unsupervised learning approach to detect
unusual points. It has the advantage of being fast with very big datasets like in this
study, and efficient to detect values that are few and different.

Isolation Forest can directly detect anomalies using isolation, i.e. estimating how far
a data point is from the rest of the data. However, Isolation Forest models require
hyper-parameter tuning to generate their best results, particularly the “contamina-
tion” value. This parameter sets the fraction of points in the data to be anomalous.
By default, this parameter is set as “auto”, meaning that a generic threshold is
chosen, but this may affect a lot the model results.

Therefore, an intermediate step was added to estimate the contamination factor for
each month. The virtual ARPA station measures were aggregated month by month
into a single mean (µARPA) together with the corresponding standard deviation (σ)
in order to be compared with the mean of each Netatmo station. Each crowdsourced
mean value outside the interval [µARPA-3σ ; µARPA+3σ] was flagged as an outlier.
Thus, the fraction of flagged months could be used as an estimation for the contami-
nation factor. The results for 2021 is shown in Table 25. It can be noted that for the
months where no station was flagged, the contamination parameter was arbitrarily
set to 0.001.

Month
Nb of flagged

stations
Total nb of
stations

% of flagged
stations

Contamination
factor

January 5 426 1.12 0.012

February 1 437 0.23 0.002

March 0 449 0.00 0.001

April 0 442 0.00 0.001

May 0 433 0.00 0.001

June 0 439 0.00 0.001

July 0 446 0.00 0.001

August 0 375 0.00 0.001

September 0 370 0.00 0.001

October 0 447 0.00 0.001

November 3 456 0.66 0.007

December 2 486 0.41 0.004

All year 11 5206 0.21 -

Table 25: Removals and contamination factors used for 2021.

Once the contamination factor estimated, the Isolation Forest algorithm could be
run for each month. The result for 2021 is depicted on the Fig. 37. By looking in
details at it, it turned out that all previously flagged stations were removed, plus
some more months (28 months, i.e 0.35% of the data for 2021). Moreover, a closer
examination of the months removed by Isolation Forest but not previously flagged

56



4 Air temperature 4.2 In situ data sources

was carried out and revealed that they were effectively strange and probably outliers.
The algorithm was therefore satisfying at this point.

Figure 37: Result of Isolation forest - Flagged outliers per month (2021)

Removal of point outliers – Approach A

After the Isolation Forest cleaning, point outliers were still to be removed. Several
anomaly detection and prediction approaches were tested, such as Local Outlier
Factor (LOF), Isolation Forest, Density-Based Spatial clustering of applications with
noise (DBScan) and the Mean Absolute Deviation (MAD) but none of them were
satisfactory. The main issue was that the periodicity of the temperature was not
well taken into account and therefore only high peaks were removed, even for heat
peaks that were probably accurate when compared to the ARPA station values.
Another approach, more classical, was therefore needed.

Removal of Biased time series – Approach B

In the second approach, the biased time series were removed by using the hourly
values of the virtual ARPA station. For each station and each hour h, all measures
outside the interval [TARPA(h)-3σ ; TARPA(h)+3σ] were flagged as outliers and there-
fore removed. This step caused the removal of a significant amount of data for each
considered year (35.6%, 19.5%, 29.8% and 18.17% for 2018, 2019, 2020 and 2021
respectively) but allowed for the removal of biased time series with high certainty.

57



4 Air temperature 4.3 Correlation between LST and Air temperature

Removal of point outliers – Approach B

Finally, to eliminate point outliers, a moving average was applied to the time series
of each station. Also called rolling mean, the moving average is a type of arithmetic
average calculated by taking the mean of a given set of values over a specified period.
For this study, a 3 hour window was considered. This last step resulted in the final
cleaned Netatmo dataset including measurements from the years 2018 to 2021.

Step Nb measures
% removed by

the step
% removed from

inital

Initial data 3881171 - -

High correlation 3875048 0.16 0.16

In range Min-Max 3871169 0.10 0.26

A. Isolation forest 3857792 0.35 0.60

B. In range mean 3std 3167683 18.17 18.38

B. Rolling mean 3167683 0 18.38

Table 26: Cleaning removals per step, for Netatmo data (2021)

4.3 Correlation between LST and Air temperature

Once the data was cleaned, the first objective of this chapter was to study the
correlation between the land surface temperature (LST) and the air temperature
(AT). As the number of measurements and available Netatmo stations decreases
when going back in time, only the period 2018-2021 was considered to ensure a
maximum coverage of the MCM.

4.3.1 LST retrieval for 2018-2021

The LST maps derived in the chapter 3 only covered four dates of the summers 2020
and 2021. Therefore, in order to build a more complete LST time series over the
period 2018-2021, additional dates were considered. This time the selection was not
restricted to the summer season and all images with less than 5% cloud cover were
chosen. It resulted in 36 different dates, reported in the table 27. All images were
acquired at approximatively 10:10AM and correspond to the Collection 2 Level 2
Landsat-8 products. Then, they were converted into 36 LST maps using the method
explained in section 3.3.1.

4.3.2 Correlation with ARPA stations

The correlation between LST and AT was first studied using the official data of
the fifteen ARPA stations. To do so, the measures to consider had to coincide
with the acquisition date and time of the LST maps. Therefore, for each of the 36
selected dates and each ARPA station, the average temperature between 9:00 AM
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2018 2019 2020 2021

19/01/2018 06/01/2019 14/04/2020 11/01/2021

08/03/2018 22/01/2019 01/06/2020 28/02/2021

25/04/2018 27/03/2019 19/07/2020 16/03/2021

27/05/2018 28/04/2019 20/08/2020 19/05/2021

28/06/2018 30/05/2019 05/09/2020 06/07/2021

30/07/2018 17/07/2019 24/11/2020 22/07/2021

15/08/2018 18/08/2019 26/12/2020 24/09/2021

02/10/2018 03/09/2019 10/10/2021

18/10/2018 05/10/2019 26/10/2021

05/12/2021

13/12/2021

Table 27: Selected Landsat-8 images for the period 2018-2021.

and 11:00 AM has been calculated, which resulted in AT time series of 36 dates
for each station. Then, the LST at each station location was extracted from the 36
maps, which generated a LST time series of 36 dates for each station.

To compute the linear correlation between AT and LST, the Pearson’s coefficient
was used and revealed a strong correlation ranging from 0.91 to 0.99 for the fifteen
ARPA monitoring points. This result agrees with the linear correlation between
LST and AT found by Iqbal and Ali [2022] and the linear coefficients of Colombi
et al. [2007], higher than 0.75 and often higher than 0.90.

4.3.3 Correlation with Netatmo stations

In a second step, this correlation was also evaluated using Netatmo data. In the
same way as for ARPA, the average of the measurements from 9:00 AM to 11:00 AM
of each date was calculated for each station and the corresponding LST extracted
from the 36 maps. In order to avoid inconsistent results, stations with less than 10
measurements out of the 36 dates were excluded from this analysis. Thus, the data
from 351 stations could be exploited and were also found to have a strong linear
correlation with the LST with a Pearson’s coefficient ranging from 0.85 to 0.99. In
fact, only 3 stations were below 0.9, which showed a consistency with the results
found for the ARPA stations.

However, this strong correlation does not imply that the LST and the AT are iden-
tical. Indeed, with a Mean Error (ME, equ. 4.3) of 8.98 ◦C and the Root Mean
Square Error (RMSE, equ. 4.4) of 10.54 ◦C, the LST appeared to be higher than
AT and a transformation should be considered in order to use it as an estimate
of AT. As reported in the introduction of this chapter, this transformation is not
straight forward and is not analyzed further in this study.

ME =
1

n

∑
(LST − AT ) (4.3)
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RMSE =

√
1

n

∑
(LST − AT )2 (4.4)

4.4 Air temperature per LCZ

The second objective of this chapter was to analyze the air temperature variation
between the LCZs. To do so, the ARPA and Netatmo in situ measures from January
2018 to December 2021 were exploited together with the LCZ map built in the sec-
tion 2.5. Firstly, the LCZ class corresponding to each in situ station was extracted.
The number of station per class over the period 2018-2021 is reported in the table
28. It can be noted that no station is present in the water areas and very few are
placed in natural zones, mainly because Netatmo users tend to place their device at
their house location.

Class 2 3 5 6 8 102 104 107

Total
Name

Compact
Mid-
Rise

Compact
Low-
Rise

Open
Mid-
Rise

Open
Low-
Rise

Large
Low-
Rise

Scattered
Trees

Low
Plants

Water

Nb.
sta-
tions

49 57 95 189 44 5 8 0 447

Table 28: Number of stations per class (2018-2021)

Several periods of time and seasons were considered and enabled to draw different
conclusions, that are presented in the following. Nonetheless, for each evaluated
period, only stations containing more than 70% of data were kept. This avoided
biased results from stations measuring for only few dates over of the period. In the
remainder of this chapter, Netatmo and ARPA stations are combined and conflated
as ”stations”.

4.4.1 Period 2018-2021, all seasons

First of all, all four years and all seasons were considered together. Since the num-
ber of Netatmo stations has increased from year to year, considering the average
temperature over the four years for all stations would have led to non-comparable
values. Indeed, the recent stations would have included only a few months while
the older stations would have a value covering 4 full years. Therefore, the yearly av-
erage temperature recorded at each station from 2018 to 2021 has been computed,
enabling to get for each station at maximum four AT values and one LCZ class.
The number of values per class is reported in Tab. 29. Then, the statistics per class
could be computed and are summarized by the box-plots in Fig. 38.

The natural classes turned out to have the lowest AT means with 14.9 ◦C and 15.0 ◦C
for Scattered Trees and Low plants, respectively. However, very few stations are
located in these areas in comparison to the artificial ones, preventing any conclusion
from being drawn on the difference between natural and built-up classes.
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Class 2 3 5 6 8 102 104

Total
Name

Compact
Mid-Rise

Compact
Low-Rise

Open
Mid-Rise

Open
Low-Rise

Large
Low-Rise

Scattered
Trees

Low
Plants

Nb.
values

42 80 101 290 56 24 16 609

Table 29: Number of values per class (2018-2021).

Figure 38: Box-plots of AT values per class (2018-2021)

Secondly, the Open low-rise class was found very close to the natural classes with a
mean of 15.3 ◦C and proved to be the coolest artificial area. This zone is character-
ized by the presence of vegetation, a low density and small buildings.

Then, the Compact low-rise, Large low-rise and Open mid-rise classes revealed a very
similar average temperature with 15.7 ◦C, 15.9 ◦C and 16.0 ◦C, respectively. While
the Open mid-rise zones hold some vegetation and buildings of medium height, the
Compact low-rise areas encompass the opposite lands with no vegetation and small
buildings. Large low-rise class is also composed of soils without vegetation and
rather low buildings, but corresponds more to industrial and storage areas.

Finally, the Compact mid-rise zones experienced the highest air temperatures with
an average of 16.3 ◦C, i.e. 1.0 ◦C more than the lowest mean in artificial areas (Open
low-rise). It is characterized by the absence of vegetation, high density and buildings
of medium to high height.

As a result, it appeared that, while high (or medium) buildings are contributing to
increase the air temperature, vegetation is participating to its decreasing. However,
as vegetation is subject to seasonality, a high variability is observed in classes con-
taining green grounds like class 104 or class 6. Therefore, a further analysis season
per season was carried out.
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4.4.2 Study of seasonality, period 2018-2021

For each year from 2018 to 2021, the average temperature recorded by each station
in each season was computed. The number of values considered per class and per
season is reported in the Table 30 and considers, here again, a maximum of four
values per station.

Class 2 3 5 6 8 102 104

Total
Name

Compact
Mid-Rise

Compact
Low-Rise

Open
Mid-Rise

Open
Low-Rise

Large
Low-Rise

Scattered
Trees

Low
Plants

Summer 68 89 136 305 61 23 17 699

Autumn 58 96 123 326 62 24 19 708

Spring 47 77 124 300 60 24 16 648

Winter 55 80 119 285 71 24 16 650

Table 30: Number of values per class and per season (2018-2021).

4.4.2.1 Autumn

The Fig. 39 summarizes the air temperature statistics by class for the autumn
season. Similar observations as for the hole years can be done, with specifically a
difference between Open low-rise (the coldest built-up) and Compact mid-rise (the
hottest built-up) of 1.3 ◦C.

Figure 39: Box-plots of AT values per class in autumn (2018-2021)

4.4.2.2 Winter

Then, the Fig. 40 depicts the box-plots of AT per class for the winter season. While
the Scattered trees class still holds the lowest mean, the Low plants areas revealed
higher AT than Open low-rise ones. This might be due to the fact that in winter
Low plants has almost no vegetation. Moreover, the difference in average between
Open low-rise (the coldest) and Compact mid-rise (the hottest) is of 1.6 ◦C.

4.4.2.3 Spring

The analysis of AT for spring season led to similar observations as for winter and
is illustrated in Fig. 41. Indeed, the Low plants zones also experienced higher
temperatures than Open low-rise ones, maybe because the vegetation was growing.

62



4 Air temperature 4.4 Air temperature per LCZ

Figure 40: Box-plots of AT values per class in winter (2018-2021)

Moreover, the Low Plants class holds a large variability with a standard deviation
of 1.6 ◦C, that might be due to the changes in vegetation occurring during spring
season. The difference between Open low-rise (the coldest) and Compact mid-rise
(the hottest) is of 0.8 ◦C which is a bit lower than in other seasons.

Figure 41: Box-plots of AT values per class in spring (2018-2021)

4.4.2.4 Summer

Finally, the Fig. 42 reports the box-plots for the summer season. The Scattered
trees class is still the lowest with a mean temperature of 24.2 ◦C. However, unlike
what would be expected for the summer season that has a flurishing vegetation,
Low plants is not the second coldest class. Indeed, Open low-rise is the second with
24.5 ◦C, preceding Compact low-rise, Low plants, Large low-rise and Open mid-rise
that all have almost the same mean (25.0 ◦C, 25.0 ◦C, 25.1 ◦C and 25.2 ◦C). The
highest mean AT is still for Compact mid-mise areas with 25.6 ◦C, that is 1.1 ◦C
warmer than Open low-rise zones.

Hence, whatever the season considered, the lowest temperatures was experienced in
the Scattered trees areas and the highest ones in the Compact mid-rise zones, which
is consistent with the results previously obtained over the period 2018-2021. In
addition, the difference between the coolest artificial class (Open low-rise) and the
warmest one (Compact low-rise) was found to vary among the seasons but appeared
higher than 1.1 ◦C during winter, autumn and summer.

Furthermore, seasonality seems to have an impact on the air temperature of the
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Figure 42: Box-plots of AT values per class in summer (2018-2021)

Low plant class since during winter and spring Low plants is among the classes with
middle temperatures while in autumn and summer it is among the coolest. However,
this result should be qualified by the fact that very few stations are present in the
natural classes.

Nonetheless, as the behaviour of the Low plants class appeared to be surprising
during summer, an additional study was carried out, by separating the summer
values year by year. But, since the number of station is decreasing when going back
in time, only the year 2021 was studied, enabling at the same time to focus on the
same period as the one considered for LST.

4.4.3 Summer 2021

For each in situ station, the mean temperature over the summer 2021 was computed.
The number of values considered per LCZ class is reported in the Table 31. It can
be noted that less values were available as only one mean per station was calculated
(only one year).

Class 2 3 5 6 8 102 104

Total
Name

Compact
Mid-Rise

Compact
Low-Rise

Open
Mid-Rise

Open
Low-Rise

Large
Low-Rise

Scattered
Trees

Low
Plants

Nb
values

24 32 40 97 21 5 6 225

Table 31: Number of values per class (summer 2021).

As shown by the Fig. 43, the analysis of AT per LCZ highlighted again Scattered
trees and Compact mid-rise as the classes experiencing the lowest and highest mean
temperatures, respectively. Then, Low plants and Open low-rise have the same mean
and median (24.2 ◦C) and are far bellow the Large low-rise and Compact low-rise
zones (24.7 ◦C).

Therefore, for the summer 2021, the Low plants zones didn’t demonstrate the sur-
prising behaviour notified when analysing the four summers all together. Indeed,
it stands among the classes with the lowest mean temperatures, together with the
Open low-rise areas that also contain vegetal cover. This might be due to the fact
that very few data are available for the Low plants class, making every measure hav-
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ing a strong impact on the resulting mean. If at the location of one of the stations
in a low plant zone, during one of the summer a change happened (no culture in
the agricultural land, change of vegetation, de-calibrated sensor...), the result would
be strongly impacted. This is why, in general, the conclusions drawn with regard
to the AT in natural areas must be qualified and should be the subject of a more
in-depth study containing more data.

Figure 43: Box-plots of AT values per class in summer 2021

Nevertheless, the previous observations over different periods and seasons led to the
following inferences:

1. While the lowest mean temperatures were recorded in the Scattered trees
zones, the highest ones were in the Compact mid-rise areas, whatever the
period or season considered.

2. When looking only at artificial classes, the coolest and warmest classes were, in
all cases, the Open low-rise and Compact mid-rise, respectively. In average, a
difference of 1.0 ◦C is observed between them and this difference is even higher
than 1.3 ◦C when separating seasons (for winter and autumn).

3. When investigating the characteristics of classes with higher/lower tempera-
tures, it appeared that high buildings are contributing to increase the AT,
which is the opposite of LST, and that vegetation tends to decrease it.

4. Seasonality may have an impact on the AT of the Low plants class that shows
higher temperatures during winter and spring than in autumn and summer
with respect to the other classes.

In the following, these findings have been examined in the light of statistical and
practical significance. In particular, the analysis focused on the difference observed
between artificial classes.

4.4.4 Statistical and practical significance

In order to statistically evaluate the observations previously made, the first two
cases were considered: (1) all years and seasons combined and (2) season by season.
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4.4.4.1 Period 2018-2021, all seasons

The first objective was to determine whether there was a significant difference of
AT between the artificial classes, considering the full period 2018-2021. Natural
classes were discarded due to the lack of data.

ANOVA test

As explained in the section 3.4.4, the most commonly used statistical test to compare
means of three or more groups is the one-way ANOVA, operating under three as-
sumptions: independence, normality and homogeneity of variances. While the first
was admitted, the second was checked with the help of density histograms. Depicted
in Fig. 44, these histograms revealed a distribution that can be approximated as
normal for classes 3, 5 and 6. However, for classes 2 and 8, it was necessary to carry
out an additional test, the D’Agostino’s K2 test. Named from Ralph D’Agostino,
it calculates summary statistics from the data, namely kurtosis and skewness, to
determine if the data distribution departs from the normal one. For all the artificial
classes, the resulting p-value was higher than 0.05, meaning that their distribution
could be assumed to be normal.

(a) Class 2 (b) Class 3 (c) Class 5

(d) Class 6 (e) Class 8

Figure 44: Density histograms of AT for artificial classes (2018-2021)

Then, since the variance of AT in artificial classes ranges from 0.8 to 1.9, the homo-
geneity of variance could be assumed, and was confirmed through a Levene’s test.
Hence, the ANOVA test could be performed on classes 2, 3, 5, 6 and 8.

The one-way ANOVA has one categorical independent variable (here, the LCZ
classes) and a normally distributed continuous dependent variable (here, the AT).
The goal of the ANOVA test is to check for variability within the groups as well as
the variability among the groups and its test statistic is given by the F-test. The
null hypothesis tested is H0 : µ1 = µ2 = . . . = µ, i.e. all AT means are equal among
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the classes. As there are several components to the ANOVA formula, they have
been organized into a table (see Table 32).

Source Of
Variation

Sum Of Squares
Degrees Of
Freedom

Mean Squares F Value

Between
Groups

SSB =
∑

nj(X̄j–X̄)2 df1 = k–1 MSB = SSB
k−1

f = MSB
MSE

Error SSE =
∑∑

(X–X̄j)
2 df2 = N–k MSE = SSE

N−k

Total SST = SSB + SSE df3 = N–1

SSB = sum of squares between groups ; SSE = sum of squares of errors; X̄j–X̄ = mean of the jth group; X–X̄j = overall

mean; nj = sample size of the jth group; X = each data point in the jth group (individual observation); N = total number

of observations; k = number of groups; SST = Total sum of squares.

Table 32: ANOVA table

When applying the ANOVA formula on the built-up classes, the resulting F-value
is 10.17 which corresponds to a p-value of 5.83 ∗ 10−8. With a significance level of
5%, the null hypothesis was therefore rejected, which confirmed that not all group
means are equal. However, the one-way ANOVA cannot identify the specific groups
that are statistically different from one another. Thus, an additional test had to be
conducted.

T-test

Running on the same assumptions as ANOVA, the T-test could be performed on
pairs of classes in order to identify the groups significantly different from others.
This test estimates the true difference between two group means using the ratio of
the difference in means over the pooled standard error of both groups. The formula
is given by equation 4.5 and the tested null hypothesis is H0 : µ1 = µ2 = µ, i.e. the
means of the two populations are equal.

t =
X̄1 − X̄2√
(s2( 1

n1
+ 1

n2
))

(4.5)

where:

� t is the t-value,

� X̄1 and X̄2 are the means of the two groups being compared,

� s2 is the pooled standard error of the two groups, computed with equ. 4.6,

� n1 and n2 are the number of observations in each of the groups.

s2 =

∑
(X − X̄1)

2 +
∑

(X − X̄2)
2

n1 + n2 − 2
(4.6)

A larger t-value indicates a more significant difference between the groups and is
associated to a smaller p-value. Thus, the t-value was computed for all pairs of
classes among the artificial classes and the corresponding p-value was reported in
the table 33. In addition, in order to check also the practical significance of the
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Classes
2 and

3
2 and

5
2 and

6
2 and

8
3 and

5
3 and

6
3 and

8
5 and

6
5 and

8
6 and

8

Mean
diff.

0.56 0.30 0.95 0.33 0.27 0.38 0.23 0.65 0.03 0.62

p-value 0.01 0.13 0.00 0.18 0.12 0.02 0.29 0.00 0.17 0.00

H0 NO OK NO OK OK NO OK NO OK NO

Cohen’s
d

0.51 0.28 0.75 0.27 0.24 0.30 0.18 0.52 0.03 0.47

Size
effect

Medium Small Medium Small Small Small
Very

small /

Small

Medium
Very

small

Small /

Medium

Table 33: T-test and Cohen’s d for pairs of classes (2018-2021)

differences, the Cohen’s d value was calculated, enabling to estimate the magnitude
of the effect.

As a result, the hypothesis of equal mean was rejected in five cases (see the ’NO’
in table 33). The previously observed difference between classes 2 (Compact mid-
rise) and 6 (Open low-rise) was found to be statistically and practically significant
with a medium effect size and a mean difference of 0.96 ◦C. In the same way, Open
mid-rise (class 5) and Large low-rise (class 8) zones have both also proved to be
statistically and practically different from class 6, with a mean difference of 0.65 ◦C
and 0.61 ◦C, respectively. The effect size for class 8 and 6 is only small but is very
close to the limit of the medium effect (d ≥ 0.50). These three points validated
the previously stated deductions, i.e. tall buildings increase the AT and vegetation
tends to decrease it. In addition, the hypothesis of equal mean was rejected as
well for classes 3 (Compact low-rise) and 2 (Compact mid-rise), which differ only in
building height, confirming once again the previous conclusions.

Furthermore, classes 3 and 6 also turned out to be statistically different, which could
introduce a new consideration: the density of buildings. Indeed, even if Open low-
rise zones introduce some vegetation, it differs from Compact low-rise areas mainly
by the density of their buildings. The rejection of the null hypothesis suggests
therefore that the mean difference 0.38 ◦C is statistically significant and that air
temperature increases with building density. The effect size, however, is only small,
showing that density has less impact than the previous two highlighted factors.

On the other hand, no difference could be clearly stated from the statistical point
of view between classes 2 and 5, and 3 and 5. Indeed, Open mid-rise zones (class
5) contain both factors of warmth (medium size buildings) and coolness (vegetation
and low density) that compensate each other and give to class 5 an intermediate
mean temperature. Similarly, class 8 (Large low-rise) encompasses areas with low
buildings but no vegetation and is also in an intermediate position with no significant
difference from classes 2, 3 and 5.

4.4.4.2 Period 2018-2021, with seasonality

The same statistical and practical tests were performed on the AT of artificial classes
considering this time seasonality. The D’Agostino’s K2 and Levene’s tests validated
the assumptions of normality and equal variance for each season over 2018-2021.
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Thus, the t-tests on pairs of classes together with the Cohen’s d coefficients were
computed and are summarized in the tables 34, 35, 36 and 37.

Classes
2 and

3
2 and

5
2 and

6
2 and

8
3 and

5
3 and

6
3 and

8
5 and

6
5 and

8
6 and

8

Mean
diff.

1.01 0.80 1.62 1.02 0.21 0.61 0.01 0.83 0.22 0.60

p-value 0.00 0.00 0.00 0.00 0.15 0.00 0.97 0.00 0.14 0.00

H0 NO NO NO NO OK NO OK NO OK NO

Cohen’s
d

0.96 0.85 1.55 1.02 0.21 0.56 0.01 0.80 0.23 0.57

Size
effect

Large Large
Very

large
Large Small Medium

Negli-

gible
Large Small Medium

Table 34: T-test and Cohen’s d for pairs of classes - Winter (2018-2021)

Classes
2 and

3
2 and

5
2 and

6
2 and

8
3 and

5
3 and

6
3 and

8
5 and

6
5 and

8
6 and

8

Mean
diff.

0.48 0.19 0.83 0.55 0.29 0.35 0.07 0.63 0.36 0.28

p-value 0.01 0.23 0.00 0.01 0.04 0.01 0.69 0.00 0.05 0.06

H0 NO OK NO NO NO NO OK NO OK OK

Cohen’s
d

0.47 0.21 0.78 0.54 0.30 0.33 0.07 0.62 0.37 0.26

Size
effect

Small /

Medium
Small Medium Medium Small Small

Very

small
Medium Small Small

Table 35: T-test and Cohen’s d for pairs of classes - Spring (2018-2021)

Classes
2 and

3
2 and

5
2 and

6
2 and

8
3 and

5
3 and

6
3 and

8
5 and

6
5 and

8
6 and

8

Mean
diff.

0.68 0.41 1.03 0.59 0.28 0.35 0.09 0.63 0.18 0.44

p-value 0.00 0.00 0.00 0.00 0.02 0.00 0.53 0.00 0.18 0.00

H0 NO NO NO NO NO NO OK NO OK NO

Cohen’s
d

0.79 0.47 1.09 0.66 0.32 0.37 0.10 0.67 0.21 0.46

Size
effect

Medium

/ Large
Small Large Medium Small Small

Very

small
Medium Small Small

Table 36: T-test and Cohen’s d for pairs of classes - Summer (2018-2021)

Classes
2 and

3
2 and

5
2 and

6
2 and

8
3 and

5
3 and

6
3 and

8
5 and

6
5 and

8
6 and

8

Mean
diff.

0.80 0.61 1.29 0.91 0.19 0.48 0.11 0.68 0.30 0.38

p-value 0.00 0.00 0.00 0.00 0.18 0.00 0.56 0.00 0.05 0.02

H0 NO NO NO NO OK NO OK NO OK NO

Cohen’s
d

0.74 0.65 1.17 0.93 0.18 0.42 0.09 0.62 0.30 0.34

Size
effect

Medium Medium Large Large
Very

small
Small

Very

small
Medium Small Small

Table 37: T-test and Cohen’s d for pairs of classes - Autumn (2018-2021)

When considering seasonality, more differences were reported as statistically signifi-
cant, as shown by the red cells highlighting the pairs for which a different conclusion
from the previous analysis was found.
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For all seasons, the AT difference between classes 2 (Compact mid-rise) and 8 (Large
low-rise) became statistically significant, with a size effect from Medium to Large.
This result once again reinforced the idea of a warming effect of building height, not
only yearly but also during each season.

Similarly, for all seasons except the spring, the difference between classes 2 (compact
mid-rise) and 5 (open mid-rise) became statistically significant. However, the size
effect turned out to strongly vary between the seasons with a small effect in summer,
a medium one in autumn and a large effect in winter. Therefore, density, which was
previously considered as a weak factor of coolness, turned out to have a greater
impact during cooler periods.

In addition, H0 was rejected for the pair of classes 3 (compact low-rise) and 5
(open mid-rise) in spring and summer, emphasising the significance of the higher
AT recorded in the compact low-rise areas. This result appeared to be surprising
since more vegetation is present in class 5 than class 3. But, it revealed that the
building height factor is more impacting than density or vegetation during summer
and spring (i.e. when temperatures are higher) inside artificial areas. The same
conclusion can be drawn from the fact that during spring, difference between 6
(open low-rise) and 8 (large low rise) is no longer statistically significant.

Finally, in section 4.4.2, an accentuation of the temperature difference between zones
with the lowest and highest AT (Open low-rise and Compact mid-rise) was observed
when considering seasonality. It has been confirmed there since a larger practical
significance during summer, autumn and winter was reported.

4.4.5 Conclusions

In summary, the analysis of AT variation between the artificial LCZs highlighted
two main factors of freshness: low-rise buildings and the presence of vegetation.
Indeed, in all considered cases, the coolest and warmest classes were respectively the
Open low-rise and Compact mid-rise. Their mean difference of 1.0 ◦C was proven to
be statistically and practically significant and to increase when separating records
season per season, with more than 1.3 ◦C in winter and autumn.

In addition, the statistical analysis brought to light density as complementary pa-
rameter impacting the AT. In facts, for all pairs of classes holding the same char-
acteristics but the density of building, the higher mean AT was found in the denser
class. This factor seemed to have a smaller impact than the two others since only
small size effects were assigned to it when considering all seasons together, but
turned out to have greater impact during cooler periods (autumn and winter).

In comparison to the conclusions made for LST, the vegetation as mitigating fac-
tor was retrieved. However, while the height of buildings is reducing the surface
temperature thanks to shadows, it appeared to increase the mean air temperature,
probably because buildings retain the heat and prevent air from circulating. Also,
the building density that did not prove to have any significant impact on the LST,
was added as a small air heat factor.
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Due to the lack of data in the natural areas, even if a lower average AT was recorded
by the few stations inside them, no conclusion could be clearly stated. A further
work containing a larger number of in situ measures inside natural zones could be
carried out to establish and quantify the air temperature decrease induced by the
natural areas.
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5 Conclusion and recommendations for further

work

This thesis aimed to study the impact of urban morphology and land covers on
the temperatures experienced in the Metropolitan City of Milan. Thus, the spatial
variations of both land surface temperature and air temperature in the LCZs were
investigated through a study divided into three chapters.

Firstly, the LCZ map of the MCM was derived from Landsat-8 and Sentinel-2 satel-
lite imagery using the Random Forest classification. Offering a spatial resolution of
30m, the Landsat-8 LCZ map was found to be better than the Sentinel-2 one for all
considered accuracies (OA, UA and PA). However, as the classification tended to
confuse the compact low-rise, open mid-rise and open low-rise classes with a PA of
less than 62% for the first two, an additional dataset containing the building height
was added and proved to be a good solution to the problem. The final LCZ map
holds a very high OA of 94%.

In the second phase, the LST was investigated. From the Landsat-8 Collection 2
dataset, both the Level 1 and Level 2 images were exploited to retrieve the LST
and were compared with a reference, the Sentinel-3 SLSTR product. As a result,
significant differences were found between the three LST maps of each considered
days. Indeed, while Level 2 maps showed higher temperatures than the reference
with +5.2 ◦C and +7.8 ◦C degrees on average, Level 1 maps, on the contrary, illus-
trated lower temperatures with −8.1 ◦C and −6.4 ◦C on average. However, in the
continuity of the work of Garćıa [2021], who also reported higher mean values for
Landsat Level 2 than Sentinel 3 SLSTR, the Level 2 results were stated to be more
accuracte than Level 1’s. Nevertheless, the two Landsat levels were found to have a
strong linear correlation with a Pearson coefficient of 0.99. This relationship has not
been further investigated and may be the subject of future research to understand
the origin and nature of the observed difference.

Then, the Level 2 product of four dates in the summers 2021 and 2022 were leveraged
to study the variation of LST between the LCZ classes. First, the natural areas were
proved to mitigate high temperature more than artificial zones, with a difference
in mean LST statistically and practically significant of 6.7 ◦C. Secondly, smaller
differences were found among the built-up classes with a maximum difference of
2.6 ◦C between Open mid-rise and Large low-rise zones. However, two main factors
participating in the mitigation of high temperatures emerged: the height of buildings
and the presence of vegetation. Indeed, the higher the buildings and the greener the
zones, the lower the reported LST was. In addition, the investigation of the LST
on the location of a new motorway built in 2012 highlighted an average increase of
3.1 ◦C between the 2007-2009 and 2020-2022 periods. This finding came to confirm
the previous conclusions as motorways are generally lines of impermeable concrete,
devoid of vegetation and shade.

The third part moved to a more perceptible quantity: the air temperature. Since
official weather monitoring stations are few and far between, the dense network of
amateur Netatmo stations was exploited. Being crowd-sourced data, the Netatmo

72



5 Conclusion and recommendations for further work

measures required a cleaning that was carried out using the regional ARPA stations
as a reference. This pre-processing removed around 20% of the initial dataset.

Then, considering 36 dates from 2018 to 2021, a correlation ranging from 0.85 to
0.99 between day-time AT and LST was reported for both Netatmo and ARPA
stations. This stands among the highest correlations found in the literature, together
with the results of Colombi et al. [2007] who reported coefficients higher than 0.9.
However, since the relation between day-time AT and LST is strongly impacted by
several factors such as surface cover, wind speed, water vapour or seasonality, the
transformation from one to the other is not straightforward and should be analysed
in more detail in further studies, as initiated by Iqbal and Ali [2022] who suggest
that research be directed towards a linear relationship whose coefficients depend on
the season.

Finally, in-situ measures from 2018 to 2021 were exploited to study the variation
of AT between the LCZ classes. When focusing on artificial zones, the maximum
difference in mean AT was found between the Open low-rise and Compact mid-rise
classes, with the latter 1.0 ◦C warmer than the first. This difference appeared even
larger when considering seasonality, with more than 1.3 ◦C in autumn and winter.
Moreover, by analysing the characteristics of warmer/cooler zones, two main factors
of air freshness were identified, namely the presence of vegetation (as for LST) and
low-rise buildings (as opposed to LST). The low density of buildings has also been
noticed as a third element of less significance and was proved to have greater impact
during cooler periods (autumn and winter). For its part, the study of AT variations
in natural areas has been limited by the insufficient number of stations located there
and would merit further research with more data.

As future work, several points could be considered:

� A major issue associated with the usage of LST products was the cloud cov-
erage that reduced significantly the number of exploitable images. One could
therefore try to solve this issue by considering a more refined way of dealing
with clouds.

� The lack of ground truth for the LST has prevented the validation of any
LST map derived in this study. A further analysis considering on-site mea-
sures of soil temperature would enable to understand the differences observed,
but as such in-situ data are quite rare, specific measurements would have to
be conducted by researchers and make this validation more complicated and
costly.

� Taking into account the strong linear correlation established in this study, the
relationship between LST and air temperature could be further investigated
by considering other factors such as wind speed, water vapor or soil moisture.

� The crowd-sourced data used in this study revealed a great potential for the
use of citizen data. In particular, only temperature data has been exploited,
but Netatmo stations measure more parameters such as humidity or air qual-
ity that could also be explored. However, two main drawbacks of Netatmo
stations have been identified. Firstly, they are not (or very rarely) located in
natural areas, and are therefore more suitable for urban data analysis. One
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should consider additional datasets provided for example by associations man-
aging weather stations in extra-urban areas. Secondly, the Netatmo network is
quite recent and enabled at maximum to carry out analyses from 2018. Older
networks could be considered, but crowd-sourcing being a recent phenomenon,
it is not easy to find many old data. One could exploit the urban-scale temper-
ature data provided by the Copernicus Climate Change Service (Hooyberghs
et al. [2019]) at a spatial resolution of 100 meters, that cover the years 2008 to
2017. This dataset has great potential but only encompasses European cities
and no extra-urban areas.
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