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Abstract

Introduction: Identifying the structure and health of tissues is crucial in digital pathol-
ogy, and the basement membrane (BM) serves as a key indicator for evaluating tissue
architecture. Existing Graph Neural Networks (GNNs) approaches to edge classification
in cell-graph models lack true convolutional characteristics and may fail to account for re-
current structures inherent in the graph, such as triangular motifs. Aim: This thesis aims
to introduce and evaluate a novel framework for edge classification in cell-graphs, focusing
on identifying basement membranes (BMs) in oral mucosa samples. The model targets
improved classification accuracy by incorporating convolutional structures and recurrent
triangular motifs in a Delaunay-generated graph. Methods: To address this challenge,
an Edge Aggregated Graph Neural Network (EAGNN) was employed for node and edge
feature aggregation, and a Triangular Motif Convolutional Neural Network (TM-CNN)
was introduced for edge classification. The dataset for this study comprises manually
annotated oral mucosa samples from both healthy and diseased patients, provided by
the Karolinska Institutet. The graph models for these samples were generated using
Delaunay triangulation. Results: When compared to existing literature baselines, the
proposed model exhibited superior performance, achieving a 2% higher F1 score for the
minor class and significant improvements in identifying degraded BMs in tissue samples.
Conclusion: The findings validate that incorporating convolutional layers and consid-
ering recurrent triangular motifs in the graph improves edge classification. The model’s
ability to identify BMs, even in degraded tissue structures, holds significant implications
for diagnostic accuracy in oral pathology.

Keywords: Digital Pathology, Graph Neural Network, Convolutional Neural Network,
Triangular Motif, Cell-Graph, Basement Membrana, Oral Mucosa
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Abstract in lingua italiana

Nel contesto avanzato della patologia computazionale, la segmentazione dei tessuti è
stata identificata come una delle questioni più complesse e fondamentali, in particolare
l’identificazione delle membrane basali (BM). Questa problematica è considerata di im-
portanza cruciale per gli esperti di patologia orale, per l’analisi delle biopsie e per la
determinazione del grado istopatologico delle malattie. Per affrontare questo complesso
problema, un approccio innovativo è stato sviluppato, in cui Edge Aggregated Graph Neu-
ral Network (EAGNN) è stata utilizzata per l’aggregazione delle caratteristiche di nodi
e bordi, e Triangular Motif CNN (TM-CNN) è stata introdotta per catturare strutture
ricorrenti nel grafo e fornire una classificazione accurata dei bordi,

Il dataset per la valutazione del modello è stato fornito dall’Istituto Karolinska e include
un ampio numero di campioni di mucosa orale, che sono stati raccolti sia da pazienti sani
che da pazienti affetti da varie malattie orali. Un’accurata annotazione manuale di ogni
campione è stata effettuata da esperti in patologia orale. Un modello a grafo cellulare
è stato costruito su queste annotazioni utilizzando algoritmi avanzati di triangolazione,
specificamente la triangolazione di Delaunay.

Un rigoroso processo di valutazione è stato effettuato, durante il quale le prestazioni del
modello sono state paragonate con altri metodi esistenti nella letteratura scientifica. È
stato dimostrato che il modello sviluppato supera in prestazioni i metodi preesistenti,
con un miglioramento particolarmente significativo evidente nei campioni con strutture
di tessuto complesse o degradate. Un punteggio F1 superiore del 2% nella classe mi-
noritaria è stato ottenuto dal modello, che ha anche dimostrato notevole robustezza nel
riconoscimento delle membrane basali. In aggiunta, un metodo per la validazione dei risul-
tati generati dai modelli è stato introdotto. Questo metodo ha contribuito notevolmente
alla comprensione dei risultati. La segmentazione del grafo cellulare è stata effettuata in
base alle strutture triangolari che mostrano una presenza di membrane basali. Grazie al
metodo proposto, i risultati dei modelli sono stati comparati visualmente, permettendo
una migliore comprensione dell’efficacia dell’approccio. Il modello proposto ha mostrato
una riduzione significativa nelle previsioni rumorose, particolarmente nei campioni che
presentano una struttura di BM degradata.



Non solo l’efficacia del modello nel migliorare la capacità di classificazione dei bordi tra
diverse strutture cellulari è stata evidenziata, ma nuove frontiere per la comprensione e
l’interpretazione delle interazioni tra cellule e BM in modelli a grafico cellulare sono state
aperte. Vaste implicazioni per il campo della biologia computazionale e della medicina
personalizzata potrebbero essere sostenute da questi risultati.

Future direzioni prevedono l’estensione del modello a altre tipologie di tessuti e malat-
tie, con l’intenzione di migliorare ulteriormente la precisione e l’efficacia della patologia
computazionale. Inoltre, l’integrazione del modello propostocon altre tecniche di imaging
medico potrebbe essere considerata per fornire un quadro clinico più completo e det-
tagliato, contribuendo così a una diagnosi più accurata e a trattamenti più efficaci.

Parole chiave: Patologia Computazionale, Graph Neural Network, Convolutional Neural
Network, Triangular Motif, Grafo Cellulare, Membrana Basale, Mucosa Orale
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1| Introduction

As the digital revolution continues to impact healthcare, the field of digital pathology
stands at an intriguing crossroads. Despite remarkable advancements in imaging and
computational methods, the sector grapples with persistent challenges, particularly in au-
tomating and accurately identifying histological features crucial for medical diagnoses and
treatment planning. One case in point is the identification of features like the basement
membrane (BM) in complications arising from chronic graft-versus-host disease (cGVHD)
after hematopoietic stem cell transplantation (HSCT). Traditional methods that rely on
manual annotation of these features in whole-slide images (WSIs) are not only time-
consuming but also prone to observer variability [68]. Thus, there is an urgent need for
techniques that enhance efficiency and reduce errors in histological examinations.

In recent years, machine learning methods, particularly Graph Neural Networks (GNNs),
have emerged as innovative tools to tackle this challenge. They have been utilized to
automate and refine the accuracy of these histological analyses. Notably, cell-graph mod-
els that can capture intricate cellular interactions and high-level histological relationships
in WSIs have been proposed [3, 27, 48]. While GNNs demonstrate significant promise
in handling these cell-graph models to identify and classify complex histological features
such as the BM [27, 48], they may fall short in capturing complex, higher-level structural
features within graphs. This is an area where Convolutional Neural Networks (CNNs)
excel, given their inherent ability to identify intricate patterns and structures. While
GNNs focus on message-passing mechanisms, they may not capture these complex struc-
tural patterns within the graphs as effectively. Therefore, the integration of CNN-inspired
concepts into GNNs could provide an innovative pathway to enhancement, leading to the
capture of richer graph representations.

This work aims to address this limitation by incorporating a pattern recognition compo-
nent into the GNN framework. This enhancement not only improves the accuracy and
robustness of BM predictions, but also provides a valuable tool for pathologists. It au-
tomates the identification of BM, potentially assisting in the histological grading process
and facilitating more efficient and precise diagnostics in oral pathology. This study was
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carried out in collaboration with the KTH Royal Institute of Technology (KTH) and
Karolinska Institute (KI).

Contributions of this Work Building upon the framework established by [27], this
work maintains the core structure while introducing key enhancements. New features, ex-
tracted using CNNs pre-trained on existing datasets, aiming to enrich the representational
capabilities of the cell-graph models, are introduced.

Given that conventional edge classification or link prediction approaches typically focus on
the two nodes encompassing an edge, these models often miss out on a more comprehensive
context.

To address this limitation, the main contribution of this work is the development of a new
classifier that combines convolutional layers for pattern recognition with triangle based
recurrent structures for edge classification. This classifier uses recurrent triangle based
motifs associated with each edge in the cell-graph, taking a context-aware approach. The
consideration of broader context provided by graph motifs has resulted in fewer false
positives, effectively providing cleaner, more accurate results, and significantly enhancing
the accuracy of BM identification.

Differing from earlier approaches [27, 48], the error was backpropagated through the entire
structure (including the GNN and the classifier), resulting in a comprehensive learning
mechanism. This mechanism marked a departure from the methodology in [27, 48], where
the error was propagated only within the GNN layers. A notable enhancement in the
performance of the GNN, especially for BM identification tasks, was achieved through
this learning mechanism.

Furthermore, a graph segmentation technique is developed, offering a refined means of
evaluating the GNN predictions on the cell-graph models, facilitating clearer interpreta-
tion and insights into model performance.

In conclusion, the proposed approach underscores the importance of a more context-
aware, structure-oriented edge classification. This significantly enhances the performance
of GNNs in Digital Pathology (DP) tasks, particularly in BM identification, marking a
substantial advancement in this field.

Thesis Outline The rest of this thesis is organized as follows:

• State of the Art: In this chapter, the existing knowledge and developments in
fields relevant to the research are presented. The medical background establishes
foundational knowledge on oral histology, tissue, mucosa, and the technological
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aspects of digital pathology. The technical background provides insight into machine
learning, artificial neural networks, graph theory, and graph neural networks. The
chapter concludes with a review of significant works related to deep learning in
digital pathology, BM identification, and edge classification.

• Methodology: This chapter details the methods and approach taken in the re-
search. The foundations of the graph definitions, datasets, and cell-graph modelling
are laid out. Further, details of the GNN framework, model optimization techniques,
and the evaluation metrics used are discussed in depth.

• Experiments and Results: Here, the practical implementation of the research
is presented. The setup of the experiments, the results obtained, and a qualitative
assessment are presented, focussing on graph segmentation.

• Discussion: In this chapter, reflections on the findings are presented. We interpret
the results, discuss their broader implications, identify the limitations of the study,
and propose potential avenues for future research.

• Conclusions: The main research takeaways are summarized, reaffirming the sig-
nificance of the findings and their contribution to the field.
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2| State of the Art

This State of the Art section will provide a comprehensive overview of the existing research
in the field of Machine Learning in DP and how it has been applied to the diagnosis and
management of oral diseases. The section will be organized into three parts: Medical
Background, Technical Background, and Related Works.

2.1. Medical Background

In this section, the medical background necessary for understanding the context of oral
tissue analysis and the importance of image analysis is provided. It is essential to under-
stand the basic structure and functions of oral tissues, particularly the basement mem-
brane (BM), to appreciate the significance of oral tissue analysis in disease diagnosis and
management. Equally important is the comprehension of oral diseases and their impact
on these tissues

2.1.1. Oral Histology

Histology is the study of the microscopic structure of tissues and organs, and how these
structures relate to their functions [52]. In the case of oral histology, this involves examin-
ing the cellular and extracellular components of the oral tissues, and understanding how
they contribute to the various physiological and pathological processes that occur in the
mouth [49].

There are many different techniques and tools that are used in oral histology, including
microscopy, staining techniques, and imaging technologies. By using these tools, oral
pathologists are able to gain a deeper understanding of the structure and function of the
oral tissues, and to identify changes or abnormalities that may be indicative of disease or
other health conditions [49].

A specific instance where oral tissue analysis proves to be crucial is in the case of
Hematopoietic Stem Cell Transplantation (HSCT) patients who may develop oral chronic
Graft-versus-Host Disease (cGVHD). cGVHD is a common complication post-transplantation,
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often manifesting as a variety of symptoms such as mouth sores, dry mouth, and changes
in taste. Histological examination of oral tissues in these patients can help in the early
detection and diagnosis of oral cGVHD, thereby facilitating timely intervention and man-
agement [68].

2.1.2. Oral Tissue

Collecting an oral tissue involves a procedure known as a biopsy, which is the removal of
a small sample of tissue from the oral cavity.

Once the samples are collected, they undergo a series of steps for preparation. The first
step is fixation, which allows to preserve the sample structure. To prevent breakdown of
DNA, RNA, proteins and tissue structure specimens are immersed in fixative [58].

The next step involves infiltration of the specimen with paraffin, which is an embedding
medium that facilitates slicing of the tissue into thin sections, typically ranging from 5 to
15 µm, using a microtome [58]. Prior to downstream analyses, the paraffin is removed by
treating the specimen with xylene.

The third step involves staining the colorless paraffin sections, using haematoxylin and
eosin (H&E) to enable light microscopic examination. Firstly, the tissue is immersed
in water with haematoxylin, which imparts a general deep purple or blue color to the
specimen. Structures with high affinity for the dye, such as nuclear DNA and cytoplasmic
RNA, are more heavily stained. Subsequently, the slide is stained with eosin, which
provides a pink dye to proteins non-specifically [58].

The last step involves mounting the slides with pinene or acrylic resins as adhesives and
covering them with a coverslip to create a permanent preparation suitable for analysis.
This preparation can be viewed using a microscope or scanned using advanced equipment
such as whole slide scanners to produce high-resolution digital images known as Whole
Slide Images (WSIs), which can be viewed on a computer screen [58]. An example of
H&E stained oral tissues is illustrated in figure 2.1.

2.1.3. Oral Mucosa

The oral mucosa is the lining of the oral cavity [49], which covers the lips, cheeks, tongue,
hard and soft palates, and floor of the mouth. The oral mucosa has a number of purposes,
such as protecting the oral cavity’s deeper tissues, providing sensation, acting as the
location of glandular activity, and acting as a conduit for secretion[50]. Anatomically, the
oral mucosa is between the skin and the gastrointestinal mucosa and exhibits some traits



2| State of the Art 7

Figure 2.1: Two examples of H&E staining of oral mucosa samples

of both.

An underlying layer of connective tissue known as the lamina propria and a stratified squa-
mous epithelium known as the oral epithelium make up the two major tissue components
of the oral mucosa [49, 50].

Just like any other tissue, the oral mucosa can be in a state of health or disease. In
a healthy state, it performs its functions effectively, maintaining the overall oral health.
However, in the presence of certain conditions such as infections, autoimmune diseases,
or malignancies, the oral mucosa can become inflamed. This inflammation can alter its
structure and function, leading to symptoms like pain, redness, swelling, and sometimes
even ulceration [68].

In figure 2.2, examples of oral mucosa in both states - healthy and inflamed - are depicted.
This comparison serves to illustrate the changes that occur in the oral mucosa during
disease processes.

Oral Epithelium

The oral epithelium is a stratified squamous epithelium that is involved in protecting the
oral cavity against physical, chemical, and microbial challenges. It also plays a role in
sensation and secretion. The oral epithelium undergoes continuous turnover and regener-
ation, which is essential for maintaining the integrity of the oral mucosa [49].

Basement Membrane (BM)

The basement membrane (BM) is a thin sheet-like structure that separates the epithelial
layer from the underlying connective tissue (lamina propria). It is crucial in supporting
the epithelium, facilitating cell migration during wound healing, and acting as a barrier.
The BM is mainly composed of collagen, laminins, and other proteins.
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Figure 2.2: Whole slide images (WSIs) of a healthy oral mucosa (top) and inflammed oral
mucosa (bottom). The boxes show the magnified areas. Arrows point to key cell types,
epithelial tissue (green), fibroblasts (yellow), endothelial cells (blue) and inflammation
(red). The finger structure of the lamina propria can be seen as well as the basal layer
of the epithelial. The very densely packed cells of the basal layer can be seen in the
magnified images and how they diverge from each other when approaching the top.

Disruptions or breakages in the BM can indicate pathological conditions, allowing cells
such as cancer cells or inflammatory cells to infiltrate deeper tissues. This is commonly
associated with the progression of diseases like oral cancer [68]. An example of a disrupted
BM can be seen in the bottom figure of figure 2.2, where the continuity of the BM is
compromised.

In the context of oral chronic Graft-versus-Host Disease (cGVHD), the BM plays a sig-
nificant role. In this condition, the immune cells of the donor graft attack the recipient’s
tissues, including the oral mucosa. The BM, in this case, can become a site of immune at-
tack, leading to its disruption and subsequent tissue damage. Understanding the changes
in the BM in oral cGVHD can provide valuable insights into the disease’s pathogenesis
and help in the development of targeted therapeutic strategies.

Lamina Propria

The lamina propria is the connective tissue layer found under the epithelium. It provides
the oral mucosa with elasticity and resilience. The lamina propria also contains blood
vessels, nerve endings, and immune cells, which are essential for nourishment, sensation,
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and defense against pathogens.

2.1.4. Digital Pathology (DP)

Pathology is the study of disease, including the causes, nature, and effects of disease on
the body [18]. In medicine, pathology plays a critical role in the diagnosis and treatment
of various diseases. Traditionally, pathologists analyze tissue samples under a microscope
to identify abnormalities and make a diagnosis.

Digital Pathology (DP), also known as virtual pathology or telepathology, is a relatively
new field in pathology that uses digital technology to analyze and interpret pathology
images [34]. In DP, glass slides containing tissue samples are scanned to create WSIs that
can be viewed on a computer or mobile device. These images can then be analyzed and
interpreted by pathologists using specialized software.

DP is important for several reasons. First, it allows pathologists to view and analyze
pathology images from anywhere in the world, which is particularly useful in areas where
there is a shortage of pathologists [34]. Second, digital images can be easily shared with
other medical professionals, allowing for more collaborative and accurate diagnoses [34].
Finally, DP has the potential to improve diagnostic accuracy and efficiency, leading to
better patient outcomes [34].

Whole Slide Image (WSI)

WSI technology has revolutionized DP and opened up new avenues for more accurate and
efficient diagnostic analysis. WSI offers numerous advantages over traditional microscopy,
including the ability to capture high-resolution images of entire specimens, providing the
pathologist with a more comprehensive view of the sample. With WSI, a pathologist can
zoom in and out, navigate and annotate images, and share them with colleagues from
anywhere, regardless of geographic location[34].

The advent of WSI has also paved the way for advanced image analysis techniques. These
techniques, often powered by machine learning and artificial intelligence, can process and
analyze the high-resolution images generated by WSI to extract meaningful information.

WSI has been shown to be especially beneficial when combined with computer-aided
detection (CAD) tools, which can help detect subtle changes in tissue morphology that
may not be apparent to the naked eye[25]. CAD systems can be trained using machine
learning algorithms to accurately identify abnormal tissue patterns and classify them
accordingly. This can greatly improve the accuracy and speed of diagnoses, as well as
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reducing the risk of error associated with manual analysis.

In essence, the integration of WSI with advanced image analysis techniques is transforming
the field of pathology, enabling more precise, efficient, and reproducible diagnoses [3, 16].

2.1.5. Oral cGVHD and Grading of Tissue Severity

Chronic Graft versus Host Disease (cGVHD) is a complication that may occur after
Hematopoietic Stem Cell Transplantation (HSCT), a procedure that involves the trans-
plantation of stem cells or bone marrow. In cGVHD, the donated cells perceive the
recipient’s body as foreign and initiate an immune response, attacking the recipient’s
tissues. The oral cavity is frequently affected in cGVHD, and oral manifestations can
include changes in the oral mucosa, salivary glands, and other structures.

Grading systems have been developed to assess the severity of oral cGVHD based on
histological criteria such as lymphocyte infiltration, inflammation, and BM breakages.
These grading systems can help in making an objective assessment of the tissue and
guiding the management and prognosis of patients undergoing HSCT. Table 2.1 presents a
comprehensive grading system detailing the histological criteria used to assess the severity
of oral mucosal cGVHD. By understanding the changes in the BM and other oral tissues
as depicted in this grading system, clinicians can better predict the course of the disease
and tailor treatment strategies accordingly [68].

2.2. Technical Background

This section serves as an introduction to the wide range of technical concepts that form
the base of the present research. These diverse set of concepts and methodologies are
fundamental to fully grasp the depth and breadth of the study at hand.

The discussion begins with the field of Machine Learning (ML), emphasizing its role in
classification problems. This provides a transition into the realm of Artificial Neural Net-
works (ANNs), from their origins as perceptrons to their evolution into more sophisticated
forms like Convolutional Neural Networks (CNNs), a cornerstone of modern deep learning
architectures.

The discourse then ventures into Graph Theory and its embodiment in Graph Neural
Networks (GNNs). This includes an examination of the core principles of GNNs and how
they extend the foundational concepts of ANNs to handle structured data in graph form.
The specific mechanics of message passing in GNNs, along with their types and uses, are
also explored.
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Grade
Features 0 1 2 3 4

1. Inflammation
infiltrate

Small numbers of
scattered cells,
papilla focused

Sparsely clustered
cells

Tightly clustered
cells

Band-like
infiltrate

Extensive band-like
infiltrate

Score: 0 1 2 3 4
2. Intra-epithelial

infiltration of
lymphocytes

None / occasional Sporadic Focal Widespread

Score: 0 1 2 3
3. Liquefaction
degeneration None Sporadic Widespread Confluent

Score: 0 1 2 3
4. Apoptosis None / occasional Sporadic Widespread

Score: 0 1 2

5. Basal membrane
alteration Thin intact Increased thickness

Thinning / loss with
detachment, and / or

pseudo rete ridges
Score: 0 1 4

6. Flattening /
atrophy Normal rete ridges

Some flattening of
rete ridges across
biopsy (<25%)

Flattening of rete
ridges across biopsy

(25-75%)

Flat atrophic
oral epithelia
across biopsy
(75-100%)

Score: 0 1 2 3
Total score: 19

Table 2.1: Histological grading criteria for defining features of oral mucosal cGVHD [68]

Building on this, the spotlight shifts to Cell Graphs in DP, examining their construction
and utility. This sets the foundation for a discussion on the crucial role and techniques of
edge classification in graph analysis.

In summary, this section seeks to furnish the reader with the technical knowledge required
to understand the research methods, significance of the outcomes, and the overall contri-
bution to the field. It also lays the groundwork for the upcoming "Related Work" section,
which situates this research within the wider context of existing studies in this domain.

2.2.1. Machine Learning (ML)

Machine Learning (ML) is a field of artificial intelligence that focuses on the design of
systems that can learn from and make decisions based on data. ML systems are designed
to learn from data, iteratively improve their performance, and adapt to new situations,
reducing the need for explicit programming for every possible scenario. These systems
employ algorithms that learn patterns within data and make predictions or decisions based
on these recognized patterns [46].
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Fundamental Concepts in ML

ML revolves around several core concepts. One fundamental concept is the idea of a model,
a mathematical or computational structure that represents the patterns identified in the
data. The learning algorithm generates this model based on the input data or training
data. The quality of a model’s predictions or decisions is measured by a loss function,
which the algorithm strives to minimize. A feature refers to an individual measurable
property or characteristic of the phenomenon being observed. Features constitute the
dimensions of the model’s input space, allowing it to learn from various aspects of the
data [46].

Supervised and Unsupervised Learning The two primary categories of ML are
supervised and unsupervised learning. In supervised learning, models are trained on a
labeled dataset, i.e., each instance in the training data consists of an input vector and
the corresponding target output. The goal is to learn a mapping from inputs to outputs
and to be able to make accurate predictions for new, unseen data. Examples of super-
vised learning tasks include regression (predicting a continuous output) and classification
(predicting discrete, categorical output) [8].

Unsupervised learning, on the other hand, involves learning from unlabeled data. The
learning algorithm aims to discover the inherent structure or patterns in the input data.
Examples of unsupervised learning tasks include clustering (grouping similar instances
together), dimensionality reduction (simplifying the input data without losing too much
information), and anomaly detection (identifying unusual instances) [8].

Overview of Classification Problems in ML Classification, a subset of supervised
learning, is a task that involves predicting the class or category of an instance given its
features. For example, in the context of email, the task might be to classify emails as
"spam" or "not spam" based on their content. In the biomedical field, classification tasks
often involve predicting the presence or absence of a disease based on patient data [8].

In binary classification, there are two possible classes, while in multiclass classification,
there are more than two possible classes. Classification models are trained using a set of
labeled instances, and their performance is evaluated based on their ability to correctly
predict the classes of new, unseen instances. Some of the common metrics used for
evaluating classification models include accuracy, precision, recall, and the F1 score [8].

Overview of Regression Problems in ML Regression, another significant area of
supervised learning, involves predicting a continuous output variable given a set of input
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features. For instance, predicting the price of a house based on various attributes like its
size, location, number of rooms, and age is a classic example of a regression task. In a
biomedical context, regression tasks often include predicting a patient’s blood pressure,
cholesterol levels, or any other quantitative biomarker based on personal and clinical data
[8].

Regression models are trained using a dataset where the true output values are known,
and their performance is typically evaluated based on the difference between the predicted
and actual values. Common metrics for evaluating regression models include the mean
absolute error (MAE), root mean square error (RMSE), and coefficient of determination
(R2) [8].

2.2.2. Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) are computational models inspired by the human
brain’s interconnected network of neurons. They are designed to learn patterns in data
through an iterative process, enabling them to perform tasks such as classification, re-
gression, and pattern recognition [22].

Basics of ANNs: Perceptron, Multi-layer Perceptron

The simplest form of an ANN is a Perceptron, proposed by Frank Rosenblatt in 1958 [57].
A perceptron takes a vector of input features and calculates a weighted sum, applying a
step function to output a binary result. Figure 2.3 illustrates a basic perceptron model.

Figure 2.3: A basic Perceptron model.

A Multi-layer Perceptron (MLP) is a more complex ANN, comprised of multiple layers
of perceptrons, or neurons. MLPs contain an input layer, one or more hidden layers, and
an output layer. Each layer is fully connected to the next, with each connection having
an associated weight [22]. MLPs can model non-linear relationships, making them more
flexible and powerful than a single-layer perceptron. Figure 2.4 depicts a MLP with one
hidden layer.
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Figure 2.4: A Multi-layer Perceptron (MLP) with one hidden layer.

The non-linear relationship between layers in MLPs is introduced through Activation
Functions. They perform a non-linear transformation of the input data, enabling the
model to learn complex patterns. Some commonly used activation functions include the
Sigmoid, Tanh, and ReLU [2] (Rectified Linear Unit) functions.

Loss Functions quantify the difference between the network’s predictions and the actual
values. They are used during the training phase to update the network’s weights, with
the goal of minimizing this difference. Commonly used loss functions include the Mean
Squared Error (MSE) for regression tasks and Cross-Entropy Loss for classification tasks.

These elements together form the foundational building blocks of ANNs.

Activation Functions

Activation functions introduce non-linearity into the network, enabling it to learn complex
patterns and make more nuanced predictions. Without an activation function, a neural
network would only be capable of learning linear relationships, regardless of its depth.
Some commonly used activation functions include:

• Sigmoid: The sigmoid function maps any input to a value between 0 and 1, which
can be interpreted as a probability. Its mathematical form is:

f(x) =
1

1 + e−x
(2.1)

• Tanh: The hyperbolic tangent function, or tanh, also squashes its input but in the
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range from -1 to 1. Its mathematical form is:

f(x) = tanh(x) =
ex − e−x

ex + e−x
(2.2)

• ReLU (Rectified Linear Unit): The ReLU [2] function takes the maximum of 0
and the input value, effectively removing negative values during the learning process.
ReLU and its variants (like Leaky ReLU, Parametric ReLU, and Exponential Linear
Units) are the most commonly used activation functions in modern deep learning
models. Its mathematical form is:

f(x) = max(0, x) (2.3)

Loss Functions

In the context of ML, a loss function L is used to quantify how far the predictions of a
model, parameterized by θ, deviate from the true values given input data X and corre-
sponding labels y. This can be represented as:

L(θ,X, y) (2.4)

The specific form of L depends on the task at hand. Some common choices include:

• Mean Squared Error (MSE): Used predominantly for regression tasks, the MSE
loss function minimizes the difference between the predicted and actual continuous
values, represented as:

L(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2 (2.5)

• Cross-Entropy Loss: Typically used for binary or multi-class classification tasks,
the Cross-Entropy loss function is formulated as:

L(y, ŷ) = − 1

n

n∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (2.6)

Here, y represents the true label, ŷ the predicted output, and n the total number of data
points.
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Backpropagation and Training of ANNs

Training an ANN involves adjusting the weights associated with each connection in the
network to minimize the difference between the network’s predicted output and the actual
output, quantified by the loss function [22]. The mechanism used for this purpose is the
Backpropagation algorithm, which is based on the concept of gradient descent.

Gradient descent adjusts the weights in the direction that reduces the loss function most
rapidly, i.e., the negative of the gradient of the loss function with respect to the weights
[59]. The Backpropagation algorithm, thus, comprises two main steps:

Forward Pass: The input data is propagated through the network layer by layer, and the
output of each layer is computed using the inputs, weights, and activation function. The
network’s output is then compared with the actual output to compute the loss.

Backward Pass: The gradient of the loss function with respect to the weights is computed
using the chain rule of calculus, a process known as backpropagation of errors. The
weights are then updated by a small step in the direction of the negative gradient to
decrease the loss [59].

This process is repeated over multiple epochs or full passes through the training dataset
until the model’s performance on a separate validation set stops improving, indicating
convergence [22]. Through iterative minimization of the loss function via backpropagation
and gradient descent, the network learns the optimal weights for accurate predictions on
unseen data.

Model Regularization and Overfitting

Overfitting is a common problem in ML where a model performs well on the training
data but poorly on unseen data (i.e., validation or test data). This typically occurs when
the model learns the noise or outliers in the training data, making it overly complex
and less generalizable [22]. Several techniques have been developed to prevent overfitting
and improve model generalization, including regularization, dropout, batch normalization,
early stopping, etc.

Regularization Techniques Regularization techniques add a penalty term to the loss
function to discourage over-complex models and thus mitigate overfitting. The two most
commonly used types of regularization are L1 and L2 regularization.

L1 regularization, or Lasso regression, adds the absolute value of the weights to the
loss function. This can result in some weights being zero, effectively performing feature
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selection [67]. Mathematically, the L1 regularized loss function can be expressed as:

L′(θ,X, y) = L(θ,X, y) + λ
∑
|θ| (2.7)

L2 regularization, or Ridge regression, adds the squared value of the weights to the loss
function. This generally results in smaller weights but does not drive them to zero [29].
The L2 regularized loss function can be represented as:

L′(θ,X, y) = L(θ,X, y) + λ
∑

θ2 (2.8)

These regularization techniques can make the model more robust to noise in the training
data, improving generalization to unseen data.

Dropout Dropout is a specific regularization technique used in neural networks. Dur-
ing training, certain neurons are randomly "dropped out" or deactivated with a certain
probability. This technique can prevent complex co-adaptations of the neurons, forcing
them to learn more robust features that are useful in conjunction with many different
random subsets of other neurons [64].

Dropout essentially creates a "thinned" version of the network, and the predictions for
the final model are made by averaging the predictions of these thinned networks. This
encourages the network to develop a redundant representation, making it more robust
and reducing overfitting.

Figure 2.5: Illustration of a neural network with and without Dropout.
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Figure 2.5 illustrates the concept of Dropout in a neural network. The left side represents
a standard neural network with three hidden layers, while the right side represents the
same network after applying Dropout. The crossed nodes are the "dropped out" neurons.

Batch Normalization Batch Normalization is another technique used to improve the
training of ANNs. Introduced by Ioffe and Szegedy [30], this method addresses the prob-
lem of internal covariate shift, which is the change in the distribution of network activa-
tions due to the change in network parameters during training. This shift can slow down
the training process and make it harder to achieve a stable network.

Batch Normalization addresses this issue by normalizing layer inputs for each mini-batch.
This normalization helps to maintain a stable distribution of activations, thereby accel-
erating the training process. Additionally, Batch Normalization also has a regularizing
effect similar to Dropout, as the normalization is based on the batch’s statistical proper-
ties, adding some level of noise to the layer’s inputs. This regularizing effect can reduce
the need for Dropout or other regularization methods [30].

The batch normalization process involves two steps:

• Standardizing the inputs: The mean and variance for each input are computed
across the mini-batch, and the inputs are then standardized.

• Scaling and shifting: The standardized inputs are then scaled and shifted using
parameters that are learned during the training process.

The process of Batch Normalization can be represented as follows:

BN(xi) = γ

(
xi − µB√
σ2
B + ϵ

)
+ β (2.9)

where xi is the input, µB and σ2
B are the mean and variance of the mini-batch, ϵ is a

small number to avoid division by zero, and γ and β are learned parameters for scaling
and shifting.

By incorporating these techniques, it is possible to significantly reduce overfitting in ML
models, leading to improved generalization and performance on unseen data.

Deep Learning and Convolutional Neural Networks (CNNs)

Deep Learning, a subset of ML, leverages ANNs with multiple layers, known as Deep
Neural Networks (DNNs). These networks are capable of learning high-level features
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from raw input data, making them particularly suited for tasks such as image and speech
recognition, where the data has a complex hierarchical structure [40].

Convolutional Neural Networks (CNNs) are a specific type of DNN designed to process
grid-like data, such as images. A CNN comprises convolutional layers, pooling layers, and
fully connected layers. Convolutional layers apply a set of learnable filters to the input,
pooling layers reduce the spatial dimensions, and fully connected layers perform classi-
fication. This architecture enables the CNN to automatically learn hierarchical feature
representations from the raw image data [39]. Figure 2.6 shows a simplified architecture
of a CNN.

Figure 2.6: Simplified architecture of a Convolutional Neural Network (CNN).

Mathematical Framework of CNNs The operations performed in a CNN can be
broken down into several key steps: convolution, activation, pooling, and classifica-
tion/regression. These operations are represented mathematically as follows:

Convolution Operation The convolution operation, performed in the convolutional
layer, applies a set of learnable filters (or Kernels) to the input. Each filter slides over the
entire image and performs an element-wise multiplication followed by a summation (dot
product) between the filter and the section of the image it currently covers. Mathemati-
cally, this operation is expressed as:

fi,j =
∑
m

∑
n

Ii−m,j−nKm,n (2.10)
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where I is the input image, K is the filter, and fi,j is the feature map at location i, j. See
Fig. 2.7.

Figure 2.7: An illustration of the convolution operation. A 3x3 filter K slides over the
input image I, and for each position, an element-wise multiplication followed by a sum-
mation (dot product) is performed to produce the feature map I ∗K.

Activation Function Post convolution, an activation function is applied to introduce
non-linearity into the model. The most commonly used activation function in CNNs is
ReLU [39].

Pooling Operation The pooling layer reduces the spatial dimensions (i.e., width and
height) of the input. The most common type of pooling is max pooling, which takes the
maximum value in the window (filter or kernel) that slides over the input. An example
of pooling is shown in Figure 2.8.

Fully Connected Layer The final layers in a CNN are the fully connected layers, which
perform classification/regression based on the features learned by the convolutional layers.

In the context of this study, deep learning, particularly CNNs, forms the foundational
concepts that are extended to GNNs, paving the way for efficient edge classification in
cell-graphs.

2.2.3. Graph Theory

Graph theory is a branch of mathematics that studies the properties of graphs. A graph,
in this context, is a structure that consists of a set of vertices or nodes and a set of edges
that connect pairs of vertices [43].
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Figure 2.8: An illustration of the pooling operation with 2 × 2 filter and stride 2. (Top-
Right) Result of Max-pooling. (Bottom-Right) Result of Mean-Pooling.

Mathematically, a graph G can be defined as G = (V , E) where V is the set of vertices
with |V| = n nodes and E is the set of edges connecting these nodes. An edge between
two nodes u, v ∈ V is denoted as (u, v) ∈ E .

One key concept in graph theory is the adjacency matrix, A ∈ Rn×n. For a graph with n

vertices, A is an n × n matrix where A[u, v] = 1 if ∀u, v ∈ V : (u, v) ∈ E , otherwise 0 .
For an undirected graph, the adjacency matrix is symmetric [43]. In fig. 2.9 an example
of how an adjacency matrix is built is shown.

In case of a weighted graph the entries of the adjacency matrix can be arbitrary real
values.

Figure 2.9: (Left) Example of undirected graph with four nodes and four edges. (Right)
Adjacency matrix of the graph.

Graphs can also have attributes and features at a node, edge or graph-level. Node-level
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features can be represented by a feature matrix X ∈ Rn×d, while edge-level features by
a tensor E ∈ Rn×n×p, where m and p are respectively the dimension of a single node
features vector and a single edge features vector.

ML Tasks on Graph Data

There are three main types of tasks that can be performed on graph data in the context
of ML: node classification, link prediction or edge classification, and graph classification
[43].

Node Classification Node classification is a key ML task that is applied to graph data.
In this context, we are given a set of nodes, denoted as V , and the goal is to predict the
label yu for each node u ∈ V . This task differs from traditional supervised classification
tasks where data points are assumed to be independent and identically distributed (i.i.d).
In contrast, nodes in a graph are interconnected, forming a network of relationships that
can be utilized to enhance the classification process [43].

In mathematical terms, the node classification task can be represented as: yu = f(xu),
where xu denotes the feature vector of a node u and f is a function that can be learned
from the data. The function f maps the features of each node to its corresponding label,
thereby enabling the prediction of labels for unlabeled nodes.

Link Prediction and Edge Classification Link prediction is a task that aims to
identify missing or potential connections (edges) in a graph. Given a set of nodes, repre-
sented as V , and an incomplete set of edges, denoted as Etrain, the objective is to predict
the edges that are not present in Etrain but exist in the complete edge set E [43]. This
task can be viewed as both a supervised and unsupervised learning problem, depending
on the availability of training data.

Mathematically, the link prediction task can be expressed as: yuv = f(xu, xv, euv), where
xu and xv are the feature vectors of nodes u and v, euv represents the edge between nodes
u and v, and f is a function that can be learned to predict whether an edge yuv exists
between nodes u and v.

Edge classification is a related task, with the difference being that instead of predicting
the existence of edges, it involves predicting the labels yuv for each edge euv in E . This
task is useful in scenarios where edges in a graph can have different types or categories,
and the goal is to classify these edges based on their characteristics.
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Graph Classification, Regression, and Clustering These tasks involve classifica-
tion, regression, or clustering over entire graphs. For classification or regression tasks,
given a dataset of multiple different graphs, the goal is to make independent predictions
specific to each graph. Graph clustering, on the other hand, involves learning an unsu-
pervised measure of similarity between pairs of graphs.

In the context of graph classification or regression, the task can be mathematically ex-
pressed as: yG = f(

⊕
u∈V xu)

2.2.4. Graph Neural Networks (GNNs)

Introduced by Scarselli et al. in 2009, GNNs provide a way to apply deep learning
techniques to graph-structured data [61]. GNNs are designed to accommodate certain
characteristics of graph data that differentiate it from other forms of data [43]. One such
property is that nodes in a graph don’t have a specific order, making them permutation
invariant. This characteristic requires us to use adjacency matrices that are independent
of the node order [10]. Another factor is that graphs can differ in size and structure, unlike
images that can be resized or cropped. GNNs address these characteristics by adopting
a version of the convolution operation that can be applied to graph-structured data.
They achieve this by implementing a form of message passing between nodes, updating
information iteratively using simple non-linear neural network functions. This contrasts
with the conventional convolution used in CNNs, as demonstrated in Figure 2.10.

At the start, the GNN layer accepts a graph G = (V , E) and a set of node features
X ∈ Rn×d, where d symbolizes the embedding (features) dimension. The GNN aims
to learn and adjust the node features Xv for each node v ∈ V by considering its own
and neighboring features. This learning and updating process results in the final node
embeddings Z ∈ Rn×dk , where dk is the dimension of the node embedding after k iteration.

At each iteration k, each node u ∈ V , represented by a hidden embedding h
(k)
u , gathers

messages from nodes in its neighbourhood N(u). This information is accumulated into
a message m

(k)
N(u) via the AGGREGATE(k) function, a permutation invariant operation

that could be a sum, mean, or maximum:

m
(k)
N(u) = AGGREGATE(k)(h(k)

v ,∀v ∈ N(u)) (2.11)

The collected message m
(k)
N(u) is then merged with the earlier embedding h

(k−1)
u of node

u using the UPDATE(k) (denoted also as COMBINE(k)) function, which results in a
refreshed embedding h

(k+1)
u :
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Figure 2.10: Two-dimensional convolution vs graph convolution [75]

h(k+1)
u = UPDATE(k)(h(k)

u ,m
(k)
N(u)) (2.12)

This procedure is executed for K iterations until the final layer outputs the node embed-
ding zu ∈ Rdk for each node:

zu = h(K)
u , ∀u ∈ V (2.13)

The newly generated node embeddings serve as abstract representations learned through
the accumulation of neighboring features within the nodes. These embeddings can be
used to perform tasks, e.g., node classification and edge classification.

GNNs take various forms, each tailored to address specific challenges associated with
processing graph-structured data. While all GNN architectures aggregate information
from local neighborhoods to generate node embeddings, the mechanisms they employ to
do so vary significantly.

Spatial-based GNNs: These models handle the graph data directly in its original form.
The information from each node’s neighborhood is aggregated and processed, considering
the spatial relationships among the neighboring nodes [43].
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Spectral-based GNNs: These models deal with the graph data in the spectral domain
by using graph Fourier transform. They leverage the spectral theory of graphs, specifically
the graph Laplacian and its eigenvalues and eigenvectors [43].

Spatial-based GNNs

The focus of this work is placed exclusively on the spatial-based formulation of GNNs.
The framework for this formulation is presented in the subsequent paragraphs.

Mathematical Formulation In a typical spatial-based GNN, the architecture is lay-
ered, and each layer k computes a low-dimensional (dk-dimensional) representation hk

u ∈
Rdk of the graph structure around node u. The computation at each layer k consists of
two stages.

Firstly, an AGGREGATEk operation produces an integrated representation hk
N(u) of all

immediate neighbors v ∈ N(u) of u using the representations hk−1
v from the previous layer

k − 1:

hk
N(u) = AGGREGATEk(hk−1

v , ∀v ∈ N(u)) (2.14)

Secondly, a COMBINEk operation updates the representation hk
u of u by combining its

previous representation hk−1
u from layer k− 1 with the aggregated representation hk

N(u) of
all its immediate neighbors N(u):

hk
u = COMBINEk(hk−1

u , hk
N(u)) (2.15)

This iterative computation over layers 0 ≤ k ≤ K is initialized by setting h0
u = Xu, where

Xu is the node features vector.

Matrix Formulation Spatial variants of GNNs can be implemented using matrix mul-
tiplication representation, as presented in [5, 20, 51]:

Hk
agg = AHk−1W k

0 (2.16)

where Hk
agg ∈ Rn×dk is the tensor matrix of all aggregations hk

N(u), A ∈ Rn×n is the
adjacency matrix, Hk−1 ∈ Rn×dk−1 is the tensor matrix of representations hk−1

v on the
(k − 1)-th layer, and W k

0 ∈ Rdk−1×dk is a matrix of learnable parameters.
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The combine operation is formulated as:

Hk = σ(Hk
agg +Hk−1W k

1 ) (2.17)

where W k
1 ∈ Rdk−1×dk is a second matrix of learnable parameters, and σ is a nonlinear

function applied pointwise, such as ReLU [2].

Finally, after K layers, a low-dimensional node embedding Z ∈ Rn×dK is obtained as a
tensor matrix, Z = HK .

Types of Spatial-based GNNs In the realm of spatial-based GNNs, several variants
have been proposed, each with unique characteristics and strengths. Here, a brief overview
of some of the most prominent types is provided:
Graph Convolutional Networks (GCN): Introduced by Kipf and Welling [38], GCNs
extend convolution operations from Euclidean space to graphs. They achieve this by
aggregating the features of neighboring nodes and combining them with the features of
the target node. The simplicity of the GCN has made it one of the foundational GNN
models.

GraphSAGE (Graph Sample and Aggregation): Developed by Hamilton et al. [24],
GraphSAGE introduced an inductive learning framework to GNNs. Unlike GCNs, which
are inherently transductive and require the entire graph for training, GraphSAGE gener-
ates embeddings by sampling and aggregating features from a node’s local neighborhood.
This approach enables the use of node feature information even when the model is tested
on unseen graphs.

Graph Attention Networks (GAT): Proposed by Veličković et al. [69], GATs incor-
porate attention mechanisms into GNNs. This mechanism allows GATs to assign different
weights to the features of neighboring nodes during the aggregation process. As a result,
GATs are capable of handling graphs with varying node degrees and complex structures.

Graph Isomorphism Network (GIN): Created by Xu et al. [77], GINs are designed to
capture the graph isomorphism – the ability to discern between different graph structures.
GIN uses a multilayer perceptron in its propagation model, enabling the network to learn
to differentiate various graph structures.

In essence, all GNN architectures leverage the graph’s topology and node features to
derive informative node embeddings. However, the ways they aggregate and transform
the local information differ, leading to different performances depending on the nature of
the graphs and the problem at hand.
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Graph Construction in DP

Graph-based representations have gained popularity in DP due to their effectiveness in
capturing intricate relationships between various biological entities [3]. In these graphs,
nodes and edges generally symbolize biological entities and the interactions between them,
respectively. The construction of such graphs typically involves two key steps: node
definition and edge definition.

Node Definition Nodes in the graph can represent different entities depending on the
specific task. One common approach is to define nodes based on biologically meaningful
entities. For instance, in a cell-graph, nodes correspond to individual cells, which can be
identified either through automated methods such as deep learning models like Hover-
Net [23], CIA-Net [83], UNet [56], or through manual annotation by expert pathologists.
Other representations, like patch-graphs, form nodes based on fixed-sized patches that
are either randomly sampled from WSIs or selected using a method that removes non-
tissue regions [33]. Moreover, nodes can also be created from meaningful tissue regions,
as cell-to-tissue graph, identified by pre-trained deep learning models on tissue datasets
(e.g., NCT-CRC-HE-100 [35]). An example of these 3 differents representation is shown
in fig. 2.11.

Figure 2.11: A representation of different graph-based models for histopathology images.
A) Cell-graph representation for prostate cancer. B) Tissue-graph representation for
colorectal cancer. C) Hierarchical cell-to-tissue graph representation for breast cancer.
(Source: [3])

Edge Definition Edges within these graphs encapsulate the interactions or relation-
ships between different biological entities. They can be defined using various methods,
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each bringing their unique perspective to the interactions between entities. Proximity
thresholds, nearest neighbor rules, and probabilistic models are among the commonly
used techniques for edge definition. Moreover, graph construction methods like Delau-
nay triangulation and the nearest neighbor method further refine the process of edge
definition.

Delaunay triangulation creates a set of triangles from a given set of points in a plane,
ensuring that no point is inside the circumcircle of any triangle [42]. On the other hand,
the nearest neighbor method connects each point to its k nearest neighbors, resulting in
a k-nearest neighbor graph [55].

The combination of these edge definitions and graph construction methods enables the ex-
traction of complex, multi-scale features from histopathological images. This unlocks new
possibilities in computational pathology by forming an intricate network of relationships
between biological entities [3].

2.3. Related Work

The realm of DP has witnessed remarkable advancements due to the advent and prolifer-
ation of ML techniques, particularly deep learning. These methods have been adopted to
facilitate numerous tasks such as tissue segmentation, classification, and grading, leading
to promising avenues of research in precision medicine and improved diagnostic techniques
[3, 16, 17].

However, despite these substantial advancements, traditional CNNs and Deep Neural Net-
works (DNNs) can sometimes fall short in capturing the complex histological dependencies
inherent in tissue images. These dependencies, which include the spatial relationships and
interactions between different cell types and tissue structures, can be crucial for accurate
disease diagnosis and grading.

Therefore, there is not only room but also a pressing need for the introduction of novel
methodologies that can effectively capture these histological dependencies and further
enhance the performance and reliability of DP tools.

The aim of this section is to provide an overview of the state-of-the-art methods employed
in DP, with a focus on deep learning approaches, and GNNs in particular. The strengths
and limitations of these existing methods will be discussed, and areas where the proposed
solution introduces novelty and potential improvements will be identified. This discussion
is crucial as it highlights the context and relevance of the work being presented and its
potential contribution to this rapidly evolving field [3].
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2.3.1. Deep Learning in DP

In recent years, deep learning has been leveraged extensively to make groundbreaking
advancements in DP [16]. The application of deep learning has resulted in enhanced
precision and automation in the analysis of various biological structures, spanning from
cellular to glandular, up to region-wide scales. This review focuses on key studies in the
realm of DP that have harnessed deep learning techniques to solve a variety of complex
tasks.

Deep learning methodologies have been effectively utilized for cellular-level DP image
analysis, including semantic segmentation of cellular objects, cell and nuclei detection,
mitosis detection, and instance segmentation of cells or nuclei [16]. Different architectures
such as CNNs, Fully Connected Networks (FCNs), and Stacked Autoencoders (SAEs) have
been employed. Ciresan et al. [14] used an ensemble of CNNs for neuronal membranes
segmentation, whereas Ronneberger et al. [56] employed a U-Net model with deformation
augmentation for a similar task. Moreover, Song et al. [63] adopted a multi-scale CNN
and graph partitioning-based method for cytoplasm and nuclei segmentation. For mitosis
detection, a deep regression network was leveraged by Chen et al. [12].

Gland-level DP image analysis primarily employs architectures like CNNs and FCNs,
often coupled with post-processing techniques for gland segmentation. Bentaieb et al. [6]
implemented a multi-task learning approach for gland grading and segmentation, whereas
Xu et al. [79] utilized an FCN-based semantic segmentation with a HED side convolution
channel for contour detection.

At a broader scale, deep learning has made significant contributions to region-level or
WSIs analysis in DP. Techniques like CNNs, FCNs, among others, have been utilized
for tasks such as classification, segmentation, and region-level feature extraction. For
instance, Xu et al. [78] demonstrated the application of a CNN with Multiple Instance
Learning (MIL) for colon region classification and segmentation, while Wang et al. [72]
used an FCN with context-aware feature selection for lung WSI classification.

However, while these techniques have achieved impressive results, they predominantly
rely on pixel-level information. This dependence becomes a limiting factor as it fails to
capture histological and topological relationships between biological structures. This gap
presents an opportunity for novel methodologies that can encapsulate relational infor-
mation between biological structures at a higher level, offering a promising direction in
DP.

In the following sections, the relatively new and promising domain of graph-based deep
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learning methods in digital pathology, which aims to address this limitation and has shown
promising results in recent studies, are explored.

GNN Applications in DP GNNs have shown significant potential in computational
pathology, demonstrating their versatility in handling complex data structures. These
applications can be categorised based on the models of cellular structures used:

• Cell-graphs: Cell-graph models have been utilised for a number of tasks:

– Breast Cancer Classification: Techniques involving cell-graphs with GINs
have been developed for breast cancer classification [19, 31, 32].

– Prostate Cancer Classification: Sureka et al. [66] modelled histology tissues
as a graph of nuclei, employing GCNs and Random Survival Forest (RSF) for
breast and prostate cancer classification.

– Colorectal Cancer Classification: Cell-graphs have been used along with
various GNN models for colorectal cancer classification[65, 82].

– Renal Cancer Classification: Cell-graphs have been used with GraphSAGE
models for renal cancer classification [13].

• Tissue-Graphs: Tissue-graph models have been applied for the following tasks:

– Breast Cancer Classification: Lu et al. [44] utilised tissue-graphs and GIN
for classifying breast cancer status.

– Prostate Cancer Segmentation and Classification: Anklin et al. [4] pro-
posed a method using a variant of GIN, SegGini, for segmentation and classi-
fication in prostate cancer.

– Skin Cancer Classification: GCNs have been used for skin cancer classifi-
cation [74].

• Patch-Graphs: Patch-graph models have been used for a number of applications:

– Cancer Region-of-Interest (ROI) Retrieval and Classification: Tech-
niques involving patch-graphs and GCNs have been employed for breast and
lung cancer ROI retrieval and classification [1, 44, 53]. Notably, Ozen et al. [53]
and Zheng et al. [81] proposed methodologies for breast cancer and lung cancer
ROI retrieval respectively.

• Other Models: Some studies have used other innovative models (e.g. Cluster-
Centroids-Graph[62]):
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– Cervical Cancer Classification: Fusion CNN-GCN models have been utilised
for cervical cancer classification [62].

While the majority of the studies in the literature have primarily focused on classifica-
tion tasks, only a few have ventured into developing frameworks for ROI retrieval and
segmentation tasks. These frameworks often employ tissue-graph or patch-graph models,
underscoring the versatility and expansive potential of GNNs in digital pathology.

Nevertheless, none of these methods have touched upon the specific problem of BM identi-
fication or any closely related tasks within the context of cell-graphs. In the next section,
the current works on BM identification are analyzed.

2.3.2. BM Identification

BM identification is a crucial and challenging task in digital pathology. Several stud-
ies have considered this problem [11, 70, 73]. However, most of these methods depend
upon pixel level information, which falls short in capturing histological and topological
relationships between the BM and various cells locally present in the tissue.

Wang et al. [70] proposed a deep learning-based method to perform the basal membrane
segmentation. They regarded this as an object contour segmentation problem and modi-
fied a contour segmentation deep learning model with an adversarial training strategy.

Wu et al. [73] introduced a semi-automatic algorithm for the measurement of the glomeru-
lar basement membrane thickness in electron microscopy kidney images. This algorithm
involved manually inputting a string of sparsely spaced points along the central line of
the basement membrane and using two distance functions of edges to the central line to
construct the membrane boundaries.

Cao et al. [11] presented a method for the automatic segmentation of the pathological
glomerular basement membrane in transmission electron microscopy images. They used
a random forest-based ML method, termed as random forest stacks, which can automat-
ically segment different morphologies and gray-level basement membranes.

These studies indicate the ongoing effort to automate BM identification in digital pathol-
ogy. However, the challenge remains in fully leveraging the histological and topological
relationships in cell-graphs for this task. Notably, only two works have addressed this
task using a cell-graph framework [27, 48]. The details of these two cornerstone studies
will be discussed in the following paragraph.



32 2| State of the Art

GNN applications for BM identification Two seminal works [27, 48] have addressed
the problem of BM identification using cell-graph frameworks, employing GNNs with a
specific aim to classify edges as either crossing or non-crossing the BM.

The first work [48] uses the GraphSAGE GNN framework to learn novel node embed-
dings. In this approach, only node labels (cell labels) are considered for node aggregation.
The classification of an edge is performed by applying a non-linear activation function
to the scalar product of the two node embeddings representing the edge. While this
method marks a significant advancement in GNN-based BM identification, it does not
fully leverage the relational information embedded within the edges.

The second study [27] extends this concept by introducing an Edge Aggregated GNN
(EAGNN) architecture that considers both node and edge features. This method intro-
duces new features such as cell density and cell entropy for nodes, and neighborhood
overlap similarity, node distance, cell entropy difference, and cell density difference for
edges. The edge classifier consists of a Bidirectional Concatenation (BC) of node em-
beddings followed by a Multi-Layer Perceptron (MLP). This MLP serves to classify the
concatenated node embeddings. The outputs are then accumulated and subjected to a
sigmoid function, effectively deciding whether the edge crosses the BM or not.

Despite the novelty of these approaches in leveraging GNNs for BM identification, they
still present room for improvement. In particular, these methods do not fully consider
potential patterns encapsulated within triangular motifs, a critical structure in the cell-
graph built using Delaunay triangulation. Furthermore, while the MLP was employed as
a scoring mechanism, it lacked an optimization or training process, limiting its capacity to
enhance performance iteratively. Therefore, there is still significant potential for further
enhancement of these GNN-based BM identification approaches.

2.3.3. Edge Classification Task

The study of GNNs has predominantly focused on node features and their aggregation
for tasks such as node and graph classification. However, this node-centric view often
overlooks the potential value of edge features and the importance of context-awareness
in edge classification tasks. Edge features can provide additional, sometimes crucial,
information about the relationships between nodes, and a classifier that is aware of a
broader context could potentially enhance the performance of edge classification.

Edge-based Aggregation While many of the commonly used GNN frameworks pri-
marily focus on node feature aggregation layers, they may overlook the potential to fully
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utilize information crucial for tasks such as edge classification. Incorporating edge fea-
tures into the GNN architecture, however, is not straightforward and presents its own set
of challenges. As a result, only a few works have ventured in this direction, aiming to
develop methods for effective edge-based aggregation in GNNs [20, 21, 27, 76, 80].

The MPNNs model proposed in [20] aggregates edge distance features within nodes to
update the embeddings. The EAGNN model [27] integrates multi-dimensional edge fea-
tures with node embeddings to update node representations, which are then used for edge
classification tasks in DP. In contrast, the Adaptive Edge Features Guided GAT model
[21] introduces an attention mechanism that combines both node and edge features, with
the edge features being adaptive across network layers, meaning that the GNN computes
new edge embeddings at each update. The NENN model [80] introduces a hierarchical
dual-level attention mechanism that alternately stacks node-level and edge-level attention
layers to learn and aggregate embeddings for nodes and edges, allowing the node and edge
embeddings to mutually reinforce each other. These works highlight the potential of edge
features in enhancing the performance of GNNs. However, their direct applicability to
edge classification tasks remains an open area for research.

Context-Awareness Classifier In the context of edge classification tasks within GNNs,
the development of a classifier that is aware of a broader context could potentially enhance
the classification performance. However, when trained on single edges, an edge classifier
may lack a broader context, which could limit its performance [21]. While several recent
works have proposed methods to enhance context-awareness at the GNN level, these have
been primarily designed for node or graph classification tasks. For instance, the Ego-GNN
model [60] exploits ego-network structures to capture both local and global structural in-
formation. Equivariant Subgraph Aggregation Networks (ESAN) [7] represent each graph
as a set of subgraphs and process it using an equivariant architecture. The work on GCNs
via Motif-based Attention [54] introduces a motif-matching guided subgraph normaliza-
tion method to capture neighborhood information. The k-dimensional GNNs (k-GNNs)
proposed in [47] take higher-order graph structures at multiple scales into account. The
model proposed in [9] uses a topologically-aware message passing scheme based on sub-
structure encoding. Lastly, MeshCNN [26], designed specifically for triangular meshes,
operates on the mesh edges. However, their direct applicability to edge classification
tasks remains an open area for research, and the development of context-aware tech-
niques specifically designed for edge classification would be a valuable contribution to the
field.
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In this chapter, the methodology underpinning this research is laid out in detail. Begin-
ning with foundational graph definitions, the text moves on to describe the specifics of the
KI dataset. Subsequently, the architecture and functionality of the cell-graph model are
elucidated, setting the stage for a comprehensive explanation of the Graph Neural Net-
work (GNN) Framework. Within this framework, particular attention is given to the node
embedding layers and the specialized edge classifier, TM-CNN. Model optimization tech-
niques, including backpropagation and the formulation of the loss function, are discussed
to provide insight into how the model was fine-tuned for optimal performance. Finally,
the chapter concludes with a thorough review of the evaluation metrics employed in the
study, ranging from precision and recall to F1 score, ROC-AUC Curve, and accuracy.
This methodology chapter serves as a blueprint for the experiments and analyses that
follow, offering a rigorous framework for evaluating the efficacy of the proposed model.

3.1. Graph definitions

Definition 3.1 (Delaunay Triangulation). Given a set of vertices V = {v1, v2, ..., vn} in
the plane, a Delaunay triangulation DT (V) is a triangulation such that no vertex in V is
inside the circumcircle of any triangle in DT (V).

Definition 3.2 (Motif). Given a graph G = (V , E), where V is the set of vertices and E
is the set of edges, a motifM = (V ′, E ′) is a subgraph of G, such that V ′ ⊆ V and E ′ ⊆ E .
The motif M represents a specific configuration of nodes and edges that recurs within
the graph G.

Definition 3.3 (Triangular Motif). Given a graph G = (V , E), a triangular motif T =

(V ′, E ′) is a subgraph of G, such that V ′ ⊆ V , E ′ ⊆ E , |V ′| = 3, and |E ′| = 3. All vertices
in V ′ are connected to each other, forming a cycle.

Lemma 3.1 (Delaunay Triangulation Triangle Formation). For a graph G generated by a
Delaunay triangulation of a set of vertices V in the plane, each triangle in the triangulation
is a triangular motif. Therefore, the entire graph G can be viewed as a collection of these
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motifs.

Lemma 3.2 (Edge-Associated Triangular Motifs in Delaunay Triangulation). Let G =

(V , E) be a graph generated by a Delaunay triangulation of a set of vertices V in the plane.
For each edge (u, v) ∈ E , where u, v ∈ V , if (u, v) is an interior edge of G, then there exist
exactly two triangular motifs in G that include (u, v). However, if (u, v) is a boundary
edge of G, then there exists exactly one triangular motif in G that includes (u, v).

The algorithm used to extract all Edge-Associated Triangular Motifs is presented in Al-
gorithm 3.1.

Algorithm 3.1 Triangular Motif Extraction in Graphs
Require: A graph G = (V , E) where V is the set of vertices and E is the set of edges.
Ensure: MOTIFS - A set of extracted triangular motifs from the graph.
1: Function get_neighbors(u, v): {Return the sets of neighbors of vertices u and v}
2: Function get_closest_vertices(vertices): {Compute the two closest vertices among

the common neighboring vertices}
3: Function PADDING(): {Perform zero-padding, or random-padding between u and

v, or mirror-padding of the vertex}
4: Initialize MOTIFS as an empty set.
5: for each edge (u, v) in E do
6: N(u), N(v)← get_neighbors(u, v)
7: vertices ← N(u) ∩N(v)
8: if dim(vertices) = 1 then
9: if DROP_EDGE then

10: continue
11: else
12: motif 1 ← (u, v, vertices [0])
13: motif 2 ← PADDING()
14: MOTIFS ← MOTIFS ∪{motif 1,motif 2}
15: end if
16: else if dim(vertices) = 2 then
17: motif 1 ← (u, v, vertices [0])
18: motif 2 ← (u, v, vertices [1])
19: MOTIFS ← MOTIFS ∪{motif 1,motif 2}
20: else if dim(vertices) > 2 then
21: closest_vertices← get_closest_vertices(vertices)
22: motif 1 ← (u, v, closest_vertices[0])
23: motif 2 ← (u, v, closest_vertices[1])
24: MOTIFS ← MOTIFS ∪{motif 1,motif 2}
25: end if
26: end for
27: return MOTIFS
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3.2. KI dataset

The KI dataset, sourced from the Department of Dental Medicine at Karolinska Institutet
(KI), serves as the primary foundation of this study. This dataset comprises WSIs of H&E
stained oral mucosa tissue gathered from patients who had received HSCT and present
different levels of oral manifestations of cGVHD and healthy volunteers [68].

Due to their large size, the original WSIs were cropped into 2000× 2000 pixel regions for
easier handling. Within these images, cells have been manually labeled by a team of three
experts from the Department of Dental Medicine at KI. In total, approximately 62000

cells have been manually annotated and classified [48]. Additional annotations were also
performed to identify the basement membrane.

Figure 3.1: (a) WSI of healthy buccal oral mucosa that has been segmented into tiles of
2000 × 2000 pixels. (b) Annotation of the extension of the BM visualised with blue line.
(c) Nuclei centroids were annotated and labelled as either epithelial (red), fibroblast or
endothelial (blue), inflammatory (green) or lymphocytic (yellow) (Image taken from [48])

Figure 3.1 offers a visual overview of the KI dataset and its annotations.
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3.3. Cell-graph model

In order to enable a comprehensive analysis of interactions and structures within tissues at
the cellular level, a cell-graph model was constructed. This model utilizes tiles which in-
corporate BM annotations. The graph model was generated using Delaunay triangulation
(see def. 3.1).

In the resulting graph, the cells served as nodes and the edges were formed based on the
Delaunay triangulation. Notably, the edges were then labeled based on their interaction
with the BM, classified as either crossing or not crossing the BM [27, 48].

To ensure a consistent evaluation, the same data split as in [27, 48] was employed. Thus,
the cell graph dataset was divided into distinct training, validation, and testing subsets
(see Table 3.1).

Dataset Non-Crossing Edges Crossing Edges Total Edges
Training 96195 6221 102416

Validation 20017 1169 21186
Testing 45779 2733 48512
Total 161991 10123 172114

Table 3.1: Distribution of edge classes across different splits

Figure 3.2 provides a visual representation of the generated Cell-Graph models used in this
study. It is crucial to note the repetitive structures linked to each edge in these models. In
graphs produced using Delaunay triangulation, each edge is associated with two triangular
motifs within the graph’s body, and a single triangular motif on its boundaries.

The following features are considered within the dataset.

Node Features

In the graph-based model, both manually annotated and computed features for each node,
which represents a cell in the original histology image, are used. The following features
are used:

1. Cell Type: Each node v ∈ V is labeled by its cell type Ntype(v) ∈ T , where T =

{epithelial, fibroblast and endothelial, inflammatory, lymphocyte} is the set of cell
types considered.

2. Cell Density: The local cell density at a node v ∈ V is defined as the average
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Figure 3.2: Cell-graph model generation. (Left) Manually Annotated Tile. (Right) Gen-
erated Graph; (red) BM crossing edges, (black) BM non-crossing edges.

distance between v and its immediate neighbours u ∈ N(v).

Nden(v) =
1

|N(v)|
∑

u∈N(v)

d(v, u) (3.1)

3. Cell Entropy: The local cell entropy of a node v ∈ V is calculated by first finding the
probability pv(τ) of encountering a cell type τ ∈ T in its immediate neighbourhood.
Cell entropy is then defined using the Shannon entropy measure.

pv(τ) =
|u ∈ N(v) or u = v : Ntype(u) = τ |

|N(v)|
(3.2)

Nent(v) = −
∑
τ∈T

pv(τ)× ln pv(τ) (3.3)

4. DL Extracted Cell Features: In addition to the above cell features, already pre-
sented in [27], a deep learning model (ResNet18 [28]), with weights pre-trained on
ImageNet [39], is utilized to extract meaningful cell features Ndnn. This is done by
cropping patches of size 32 × 32 around the cell from the WSIs and passing them
through the model.

Edge Features

Edges in the graph represent relationships between the cells (or nodes) in the histological
image. For each edge, the following labels are used:
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1. Node Distance: The Euclidean distance between the endpoints of each edge u, v ∈ E :

Êdis
u,v = d(u, v) (3.4)

2. Cell Density Difference: The difference in cell density along edge u, v ∈ E :

Êden
u,v = Nden[v]−Nden[u] (3.5)

3. Cell Entropy Difference: The difference in cell entropy along an edge u, v ∈ E :

Êent
u,v = |Nent[v]−Nent[u]| (3.6)

4. Neighbourhood Overlap Similarity: The Sorenson similarity index quantifies the
overlap between the neighbourhoods of two nodes u and v.

Ênei
u,v =

2|N(u) ∩N(v)|
deg(u) + deg(v)

(3.7)

5. BM Crossing: A binary valued BM crossing measure for each edge u, v ∈ E : Êbm
u,v = 1

if u, v crosses the BM, otherwise Êbm
u,v = 0.

6. DL Extracted Edge Features: Following the same line of approach used for node
features, deep learning edge features Ednn are also extracted using a pre-trained
ResNet-18 [28]. Considering the edges vary in size, patches of size 128 × 128 are
cropped around the edge’s center from the WSIs and passed through the model to
derive these features.

The feature values are normalized to maintain the feature scale during the message passing
operations in the GNN layer. The normalization1 is defined for feature 1 ≤ p ≤ P and
edge (u, v) ∈ E as:

EX
uvp =

ÊX
uvp∑

v′∈N(u) |ÊX
uv′p|

(3.8)

3.4. GNN Framework

In this section, the GNN framework is presented. The framework consists of two primary
components: Node Embedding Layers and an Edge Classifier. The discussion initially

1Normalization computed as presented in [27]



3| Methodology 41

focuses on the Node Embedding Layers, a crucial component of the architecture that is
rooted in the methodology proposed by EAGNN from Nair et al. [27]. The generation of
rich node embeddings is accomplished by this component.

The discourse then shifts to the novel edge classifier, the Triangular Motifs Convolutional
Neural Network (TM-CNN). In contrast to traditional approaches [27, 48], the TM-CNN
is explicitly engineered to extract significant patterns pertinent to edge classification tasks.
A comprehensive perspective GNN Framework will be presented throughout this section.

3.4.1. Node Embedding Layers

The proposed architecture builds upon the node embedding layers proposed in [27],
EAGNN.

The node embedding layers aim to derive latent node representations from a graph. The
EAGNN architecture follows a layered structure, where each layer k computes a low-
dimensional (dk-dimensional) representation hk

u ∈ Rdk of the graph structure around node
u.

In the EAGNN, the computation at each layer k is slightly different from the general GNN.
Instead of performing an AGGREGATE operation on nodes followed by a COMBINE
operation, the EAGNN incorporates multiple edge features by aggregating edge features
into the node embeddings. The major difference between the EAGNN layer and other
GNN layers is the way that edge features are normalized before aggregation (equation 3.8).

Following the matrix multiplication as in Equation 2.16, the aggregation operation of the
proposed model at layer k, named EAggk, is formulated as follows:

EAggk(Ep, H
k−1) = EpH

k−1W k
0 (3.9)

where Ep is the p-th feature matrix of the edges (i.e. Ep ∈ Rn×n is the projection of
E ∈ Rn×n×P edge feature tensor onto the single edge feature p ).

Then, the previous node representation is combined using the combine operation formu-
lated in Equation 2.17. These aggregation and combining operations are performed for
each edge feature, and they are then concatenated all together. Therefore, the formula
for the k-th EAGNN layer is given by:

Hk = σ[∥Pp=1 (EpH
k−1W k

0 +Hk−1W k
1 )] (3.10)
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where ∥ denotes the concatenation operator and σ a non-linear function. Note that this
non-linear function is not used in the final layer K of the node embedding layers. After
K embedding layers, the node representation zu is given by zu = HK

u for node u.

Figure 3.3: EAGNN architecture overview.

3.4.2. Edge Classifier: TM-CNN

Contrasting with traditional approaches that employ MLPs or multiplication operators [27,
48], the Triangular Motifs Convolutional Neural Network (TM-CNN) is proposed as a
uniquely tailored edge classifier, designed specifically for discerning meaningful patterns
pertinent to edge classification tasks.

The TM-CNN framework for edge classification is inspired by methodologies commonly
used in pattern learning tasks such as Text Classification [36, 45, 71] and Financial Time-
Series Classification [41]. These tasks often involve generating text or time-series embed-
dings and passing them through 1D-Convolutional layers. This approach allows for the
extraction of local and global features, which are crucial for accurate classification. Simi-
larly, in this work, the TM-CNN classifier aims to extract and learn meaningful patterns
from the motif structures for effective edge classification.

The TM-CNN classifier is designed to take as input the two triangular motifs associated
with an edge (u, v). These triangular motifs are formed by the nodes (u, v, z) and (u, v, w),
where u, v, z, and w represent the node embeddings learned after K-iteration by the
EAGNN architecture. Each node embedding has a size of RdK , resulting in an input to
the TM-CNN classifier of size dk × 4 (corresponding to 4 channels).

The TM-CNN architecture consists of two 1D convolutional layers and two fully connected
(FC) layers:

1. The first convolutional layer takes an input of size (dk×4) and applies nf1 filters. The
output F1 of this layer is a feature map of size (dk×nf1), where each feature is a result
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Figure 3.4: Triangular Motifs CNN (TM-CNN) architecture overview.

of the convolution operation applied to the input and the filter. Mathematically,
this operation can be represented as:

F1,j = Conv1D(I, f1,j)∀j = 1, . . . , nf1 (3.11)

F1 = [F1,1|F1,2| . . . |F1,nf1
] (3.12)

where I is the input (i.e. the 4 node embeddings), f1,j is the j-th filter, F1,j is the
j-th vector of the feature map and F1 is the feature map.

2. The second convolutional layer takes the feature map F1 as input and applies nf2

filters. The output of this layer is a feature map of size (dk × nf2). This operation
can be represented as:

F2,j = Conv1D(F1, f2,j)∀j = 1, . . . , nf2 (3.13)

F2 = [F2,1|F2,2| . . . |F2,nf2
] (3.14)

Following the convolutional layers2, the feature map F2 is flattened into a vector of size
(dk ∗ nf2) and passed through two FC layers:

1. The first FC layer (FC1) takes the flattened feature vector as input and applies a
linear transformation followed by a non-linear activation function σ. The output
size of this layer is nfc12 . This operation can be represented as:

FC1 = ReLU(W1 · F2 + b1) (3.15)

2Each convulotional layer employs a ReLU [2] activation function for non-linearity



44 3| Methodology

where W1 and b1 are the weight matrix and bias vector of the FC layer, respectively.

2. The second fully connected layer (FC2) receives the output of FC1, carrying out
another linear transformation. However, in this case, the output is directly passed
through a sigmoid function, resulting in a scalar value between 0 and 1. The output
size of this layer is therefore 1. This operation can be described as:

suv = σ(W2 · FC1 + b2) (3.16)

where suv ∈ [0, 1] represents the edge classification output of the TM-CNN classifier for
an edge (u, v) and σ the sigmoid activation function. This output value is then compared
to a predetermined threshold to make a final binary classification (either 0 or 1).

Figure 3.4 gives an overview of the proposed architecture.

Padding

Edges located on the boundary have a single triangular motif associated with them. To
ensure that the input to the TM-CNN remains consistent for both inner graph edges and
boundary edges, it’s necessary to apply a Padding technique. This is an essential step in
filling any missing parts of the TM-CNN input. The following three distinct strategies
have been proposed:

Zero-Padding: In this method, the absent portions of the triangular motif are filled
with zeros. Despite being straightforward and computationally efficient, this technique
may fail to accurately mirror the information that might exist in the missing sections.

Random-Padding: This strategy populates the missing sections by generating the ab-
sent triangle, with the edge (u, v) serving as the base, and either u or v selected randomly
as the vertex. Although this method introduces variability to the input, it could also
potentially incorporate noise, thereby misdirecting the model.

Mirror-Padding: This approach involves mirroring the existing values within the tri-
angular motif to complete the missing sections. As it relies on the existing values from
the same motif, it might offer a more accurate representation of the absent information.
However, it could also inadvertently amplify any present noise or errors within the data.
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3.5. Model Optimization and Backpropagation

The training of the proposed model involves the use of a specific loss function and an op-
timization algorithm, coupled with the backpropagation method for computing gradients.

3.5.1. Loss Function and Optimization

The Binary Cross-Entropy (BCE) loss function is employed, designed for binary classifi-
cation tasks, and is defined as:

L(suv, yuv) = −yuv log(suv)− (1− yuv) log(1− suv) (3.17)

where suv is the edge classification output of the TM-CNN classifier for an edge (u, v),
and yuv denotes the actual label for the edge.

Optimization of the model’s parameters is achieved through the Adaptive Moment Esti-
mation (Adam) optimizer [37]. In Adam, each weight and bias in the model maintains
separate learning rates, which are adaptively adjusted over the course of training. Updates
of the weights and bias are performed using the formulas:

Wnew = Wold − α
∂L

∂Wold

(3.18)

bnew = bold − α
∂L

∂bold
(3.19)

where α is the learning rate and L represents the loss function.

3.5.2. Backpropagation

Backpropagation is utilized to efficiently compute the gradient of the loss function with
respect to the model parameters. It comprises two main steps:

1. Forward Pass : The input is propagated through the network to compute the output.
The computed output is then used to evaluate the loss function.

2. Backward Pass : The gradient of the loss function is computed with respect to the
model’s parameters. This is achieved by propagating the gradient of the loss function
backwards through the network.
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The gradient of the loss function with respect to the parameters at the i-th layer, denoted
as θi, is given by:

∂L

∂θi
=

∂L

∂ai
· ∂ai
∂θi

(3.20)

where ai is the output of the i-th layer. This gradient is computed as:

∂L

∂ai
=

∂L

∂ai+1

· ∂ai+1

∂ai
(3.21)

where ai+1 is the output of the (i+ 1)-th layer.

In the proposed model architecture, the input is passed through the EAGNN to compute
node embeddings during the forward pass. These embeddings combined, form triangular
motifs which are input to the TM-CNN to compute the edge classification output. The
BCE loss function computes the loss between the predicted output and the actual labels.

During the backward pass, the gradient of the loss is propagated backwards through the
TM-CNN layers and then through the EAGNN layers to update the model parameters.
Unlike previous methodologies [27, 48], the error is backpropagated through the entire
structure, enhancing the accuracy of edge classification. The Adam optimizer performs
the parameter updates based on these computed gradients.

3.6. Evaluation Metrics

Several evaluation metrics have been employed to assess the performance of the proposed
model. These metrics provide different perspectives on the model’s ability to correctly
classify instances, and together they offer a comprehensive view of the model’s perfor-
mance.

3.6.1. Precision

Precision, also known as the positive predictive value, measures the proportion of true
positive predictions (i.e., correctly identified positive instances) among all instances that
the model predicted as positive. It is calculated as follows:

Precision =
TP

TP + FP
(3.22)
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where TP is the number of true positives and FP is the number of false positives. A high
precision indicates a low rate of false-positive errors.

3.6.2. Recall

Recall, also known as sensitivity or true positive rate, measures the proportion of true
positive predictions among all actual positive instances. It is calculated as follows:

Recall =
TP

TP + FN
(3.23)

where FN is the number of false negatives. A high recall indicates a low rate of false-
negative errors.

3.6.3. F1 score

The F1 score is the harmonic mean of precision and recall, providing a single metric that
balances the two values. Unlike the arithmetic mean, the harmonic mean tends towards
the smaller of the two values, so a high F1 score requires both precision and recall to be
high. The F1 score is calculated as follows:

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(3.24)

3.6.4. ROC-AUC Curve

The Receiver Operating Characteristic (ROC) curve is a plot that illustrates the perfor-
mance of a binary classifier as the discrimination threshold is varied. The curve is created
by plotting the true positive rate (recall) against the false positive rate (1 - specificity)
at various threshold settings. The Area Under the ROC Curve (AUC) provides a scalar
measure of the model’s performance across all thresholds, with a value of 1.0 representing
perfect classification and 0.5 representing a model that performs no better than random
chance.

3.6.5. Accuracy

Accuracy is the most intuitive performance measure. It is simply the ratio of correctly
predicted instances to the total instances in the dataset. It is calculated as follows:
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Accuracy =
TP + TN

TP + TN + FP + FN
(3.25)

where TN represents true negatives. However, accuracy can be misleading in the presence
of class imbalance, as it may simply reflect the underlying class distribution. Therefore,
it is important to consider accuracy alongside other metrics such as precision, recall, and
the F1-score.
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4| Experiments and Results

In this chapter, a comprehensive empirical analysis of the proposed models for assessing
basement membrane (BM) conditions is presented. Through a mixture of quantitative
and qualitative evaluations, the capabilities, advantages, and limitations of the models are
explored. Methodologies for training and testing are delineated, and performance metrics
are employed to offer both a general and detailed understanding of model efficacy.

4.1. Experimental Setup

The cell-graph dataset was divided into two subsets: 70% used for training and 30%

allocated for testing. A portion of the training dataset, 15%, was reserved for validation.
The population sizes of the edge classes in the dataset, as shown in Table 3.1, indicate a
data imbalance towards BM non-crossing edges.

The GNN models, denoted by EAGNNi where i represents the number of layers used
in the model, along with TM-CNN, were trained using backpropagation to minimize the
mean of the binary cross-entropy loss function across each mini-batch.

The main GNN configuration (EAGNNi,TM-CNN) used is presented in Table 4.1.

Training was performed for 100 epochs with a mini-batch size of 32. Each batch included
16 BM crossing edges and 16 BM non-crossing edges to avoid bias derived from the
imbalance in the data.

The Adam optimizer was used with an initial learning rate of 0.001. The learning rate
was scheduled to decrease by 0.1 after every 40 epochs. To prevent overfitting on the
training data, dropout with a probability of 0.5 was applied to EAGNNi layers and the
TM-CNN classifier. Furthermore, the weight-decay parameter was set to 0.0001.

This configuration will be used throughout the following sections for all experiments. For
any additional configurations, refer to Appendix A
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EAGNNi

# layers Nodes Edges Hidden Dim Output Dim Activation
i dim(NF) dim(EF) 64 64 ELU [15]

TM-CNN
# channels Channel Dim Filters 1 Filters 2 Activation FC1 FC2

4 64 16 32 ReLU[2] (32× 64, 128) (128, 1)

Table 4.1: Model Configuration. (EAGNNi) NF and EF represent respectively node and
edge features considered in the study, and their dimension determined respectively the
Node and the Edge Feature Matrices input dimensions.

Computational Resources The experiments were performed on a workstation with
the following hardware and software specifications:

• CPU: AMD Ryzen 5 5600-X 6-core

• GPU: NVIDIA GeForce RTX 3060

• RAM: 16GB

• Operating System: Windows 10 Education N

For software, the following versions were used:

• Python: 3.8

• PyTorch: 1.7.1

These specifications provide context for the computational cost and feasibility of the
proposed methods. This information is also crucial for other researchers who might want
to replicate the experiments or compare them with other methods.

4.2. Model Evaluation

Model evaluation encompasses two essential phases: validation and testing. These stages
are indispensable for optimizing the model configuration and subsequently testing its
efficiency in handling novel data.

During the validation phase, the various model configurations are assessed on the vali-
dation data. This process aids in identifying the configuration that delivers the optimal
results and fine-tuning its parameters for maximum efficacy.

Once the model is optimized through validation, it is subjected to the testing phase. In
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this stage, the performance of the model on unseen data is evaluated and juxtaposed with
two baseline methods previously proposed in the literature [27, 48]. This comparison
provides a measure of the model’s ability and effectiveness in practical scenarios, offering
an unbiased insight into its real-world performance.

4.2.1. Validation Results

Different configurations of the (EAGNNi,TM-CNN) model were trained, and their per-
formance was subsequently evaluated on the validation set. This step was crucial as it
enabled us to assess the model’s ability to generalize to unseen data, and if necessary,
adjust hyperparameters.

A critical hyperparameter in this context is the threshold parameter τ . This threshold
is used to adjust the score suv, essentially dictating whether it is classified as 0 or 1.
The tuning of this threshold was conducted with respect to the F1 score metric on the
validation set.

Table 4.2, displaying the performance metrics (including precision, recall, F1 score, ROC-
AUC curve, and accuracy) for each (EAGNNi,TM-CNN) configuration on the valida-
tion set, was employed to ascertain the optimal number of aggregation layers within the
EAGNN backbone model.

Precision, recall and F1 score are computed with respect to the minority class, BM crossing
edges.

After conducting an ablation study on both Node Features (NF) and Edge Features (EF)
as detailed in Appendix A and as per the insights from [27], only N1 and E1234 features
were retained for the final model. The features N234 and E5 did not contribute to an
improvement in the model’s performance metrics and were thus excluded from the final
feature set1.

The inclusion of additional information into node embeddings via aggregation, rather
than limiting aggregation to two EAGNN layers, as proposed in [27], has demonstrated
substantial benefits. As evidenced in Table 4.2, extending the aggregation process to five
layers has led to a notable improvement in the F1 score for BM crossing edges. However,
it is worth mentioning that in terms of accuracy and ROC-AUC curve, all configurations
demonstrated similar performance due to the significant imbalance favoring non-crossing

1N1 corresponds to Node Type (Ntype), N2 to Cell Density (Nden), N3 to Cell Entropy (Nent) and N4

to DL Extracted Cell fearutes (Ndnn). Similarly, E1 is Node Distance (Êdis), E2 is Cell Density difference
(Êden), E3 is Cell Entropy difference (Êent), E4 is Neighborhood Overlap Similarity (Ênei) and E5 is
DL Extracted Edge Features (Êdnn).
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Model Classifier NF EF Precision Recall F1 ROC-AUC Accuracy
EAGNN2 TM-CNN N1 E1234 0.8792 0.8529 0.8658 0.9930 0.9854
EAGNN3 TM-CNN N1 E1234 0.8873 0.8554 0.8711 0.9926 0.9860
EAGNN4 TM-CNN N1 E1234 0.8882 0.8563 0.8720 0.9927 0.9861
EAGNN5 TM-CNN N1 E1234 0.9018 0.8640 0.8825 0.9926 0.9873
EAGNN6 TM-CNN N1 E1234 0.8846 0.8657 0.8751 0.9930 0.9864

Table 4.2: Performance metrics of the various (EAGNNi,TM-CNN) configurations on the
validation set. The metrics are employed to ascertain the optimal number of aggregation
layers (i) within the EAGNN backbone model. Node Features (NF) and Edge Features
(EF) represent aggregated node and edge characteristics, respectively.

(EAGNN5,TM-CNN) Precision Recall F1
τ = 0.97 0.8915 0.8717 0.8815
τ = 0.98 0.9018 0.8640 0.8825
τ = 0.99 0.9157 0.8358 0.8739

Table 4.3: Precision, Recall and F1 score metrics of the (EAGNN5,TM-CNN) configura-
tion with varying threshold τ on the validation set. The metrics are used to determine
the optimal value for the threshold τ .

edges.

The selection of the optimal threshold value, denoted as τ̂ , was meticulously executed by
tuning it on the validation set. As displayed in Table 4.3, the choice of τ̂ significantly
influences the precision, recall, and F1 score metrics. The table reports the metrics as
computed by the (EAGNN5, TM-CNN) model configuration. The optimal threshold τ̂

was determined to be 0.98, which maximizes the F1 score with respect to BM crossing
edges on the validation set.

With regard to the classifier architecture, various configurations of convolutional layer
sizes and activation function were evaluated. However, no discernible improvement was
observed in these experiments. Detailed information regarding these variations can be
found in Appendix A (refer to Table A.1 for specifics).

4.2.2. Testing Results

In the testing phase of the experiment, the performance of the proposed models was com-
pared with two models previously reported in the literature. Specifically, the (EAGNN2,
BC+MLP) model presented by Nair et al. in [27] and the (GraphSAGE, MUL) model
from [48].
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Model Classifier NF EF Precision Recall F1 ROC-AUC Accuracy
[48] GraphSAGE MUL N1 - 0.3417 0.7011 0.4594 - 0.9071
[27] EAGNN2 BC+MLP N1 E1234 0.8548 0.8427 0.8395 0.9799 0.9822
EAGNN2 TM-CNN N1 E1234 0.8523 0.8595 0.8559 0.9866 0.9837
EAGNN5 TM-CNN N1 E1234 0.8526 0.8657 0.8591 0.9874 0.9840

Table 4.4: Benchmarking of GNN models, edge classifiers, and aggregated node and edge
features for BM prediction on the oral mucosa cell-graph dataset.

In these comparisons, BC stands for bidirectional concatenation, which consists in com-
bining the embeddings of two nodes through concatenation in both directions to obtain
a final score in an orientation-invariant way. Meanwhile, MUL refers to a multiplication
operation between the embeddings of two nodes, generating a score to classify the edge.

The comparative results provide a valuable reference point, allowing us to assess the
performance improvements offered by the proposed models in the context of established
approaches in the field. They facilitate a comprehensive evaluation of the effectiveness of
the proposed models in accurately predicting BM crossing edges.

As exhibited in Table 4.4, all proposed experiment configurations surpass the performance
of both (EAGNN2,BC+MLP) [27] and (GraphSage, MUL) [48]. As the (EAGNN2,BC+MLP)
[27] model had already proven superior to the (GraphSage, MUL) [48] model, it has been
chosen as the primary benchmark for further discussion. The proposed model configu-
ration, (EAGNN5,TM-CNN), demonstrates a significant enhancement, with an F1 score
on BM crossing edges that is approximately 2% higher. Maintaining a similar level of
precision while exhibiting superior recall, meaning that fewer false negatives are yielded
by this model.

4.3. Qualitative Results

In this section, a qualitative analysis of the results produced by the (EAGNN5,TM-
CNN) model, identified as the best in this study, is conducted. For comparison, the
(EAGNN2,BC+MLP) model from [27] is also included. The BM prediction results are
depicted in Figures 4.1 and 4.2, offering a visual representation of the respective perfor-
mance of each model.

Figure 4.1 features the predictions made by both models on an intact BM sample from
the test set. The actual BM annotation is represented by the blue line, with true positive,
false negative, and false positive edge predictions represented by green, yellow, and red
lines respectively. A similar performance level is observed for both models in this scenario,
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showcasing their comparable capability in classifying BM crossing edges in healthy BM
samples.

Figure 4.2 shows a sample presenting a degraded BM. The superior performance of the
(EAGNN5,TM-CNN) model becomes more noticeable under these more challenging con-
ditions. Even with the complications introduced by the degraded BM, BM crossing edges
are identified with increased accuracy by the (EAGNN5,TM-CNN) model.

This improved performance contributes to an approximately 10% increase in the F1 score
metrics related to BM crossing edges. A significant reduction in the number of false
positive predictions is achieved by the (EAGNN5,TM-CNN) model, particularly evident
in the decreased noise within the epithelial layer, as depicted in Figure 4.2(b). This
reduction in error exemplifies the robustness of the model and its ability to maintain high
performance even in challenging circumstances.

This qualitative analysis provides a visual confirmation of the statistical results previously
presented, demonstrating the tangible improvements offered by the (EAGNN5,TM-CNN)
model. The potential of the model for real-world applications, where accurate BM pre-
diction is of utmost importance, is emphasised.

4.3.1. Graph Segmentation

To intuitively visualize the model’s predictions, a color-coded segmentation was employed.
This process assigns colors to the triangular motifs, recurring in the graph, based on the
number of BM crossing edges per triangle.

The segmentation categories are as follows2:

(Empty) Triangles with 0 BM crossing edges

(Red) Triangles with only 1 BM crossing edge

(Yellow) Triangles with 2 BM crossing edges

(Green) Triangles with 3 BM crossing edges

Red triangles indicate areas where the BM is compromised, indicating breaks or disrup-
tions in its structure. In contrast, yellow and green triangles denote regions where the
BM remains contiguous and intact. For further details, please refer to Appendix B.

The efficacy of the proposed (EAGNN5,TM-CNN) model in segmenting oral tissue graphs
2It should be noted that cases with n BM crossing edges, where n > 3, have been excluded from

consideration
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is effectively elucidated through visual examples. In Figures 4.3 and 4.4, a comparative
perspective is offered between the ground truth and the segmentations generated by the
(EAGNN2,BC+MLP)[27] and the (EAGNN5,TM-CNN) models.

The segmentation of a healthy oral tissue graph is depicted in Figure 4.3. The ground
truth is displayed in the leftmost panel for comparison, the segmentations derived from
the (EAGNN2,BC+MLP)[27] model are exhibited in the middle panel, and the results
produced by the (EAGNN5,TM-CNN) model are shown in the rightmost panel.

The segmentation for an oral tissue graph featuring BM breakages is displayed in Figure
4.4. The panels from left to right represent the ground truth, the outcomes from the
(EAGNN2,BC+MLP)[27] model, and the segmentations achieved by the (EAGNN5,TM-
CNN) model.

In the outcomes achieved by the (EAGNN5,TM-CNN) model, a notable reduction in
noisy predictions is observed, significantly enhancing the clarity of the segmentation.
This represents an improvement over the results yielded by the (EAGNN2,BC+MLP)[27]
model, where noisy predictions were more prevalent. Particularly within the epithelial
layer, the (EAGNN5,TM-CNN) model has been able to accurately identify regions that
were previously misclassified as BM segments by the (EAGNN2,BC+MLP)[27] model.
This leads to a more accurate depiction of BM segments.

Moreover, the preservation of the BM structure by the (EAGNN5,TM-CNN) model is ap-
parent, even though it isn’t flawless. Conversely, the application of the (EAGNN2,BC+MLP)
model results in a loss of information along the BM, accompanied by the occurrence of
false predictions far from the BM as depicted in Figure 4.4.

In addition, the (EAGNN5,TM-CNN) model considerably reduces the number of red
triangles, which signify potential BM breakages. This reduction in the portrayal of BM
breakages is particularly conspicuous in the example provided in Figure 4.4. Thus, a
more accurate and clearer visual representation of the tissue’s condition is provided by
the (EAGNN5,TM-CNN) model.

These visual portrayals allow for an immediate comparison between the segmentations
produced by the two models and the ground truth, highlighting the relative effectiveness
of each model.



56 4| Experiments and Results

(a) (EAGNN2,BC+MLP)[27] F1 score: 0.9297 (BM crossing edges)

(b) (EAGNN5,TM-CNN) F1 score: 0.9286 (BM crossing edges)

Figure 4.1: Comparison of (EAGNN2,BC+MLP) [27] and (EAGNN5,TM-CNN) predic-
tions for healthy BM tissue sample. The blue line is the BM annotation. The green,
yellow and red lines represent true positive, false negative and false positive edge predic-
tions respectively
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(a) (EAGNN2,BC+MLP)[27] F1 score: 0.5329 (BM crossing edges)

(b) (EAGNN5,TM-CNN) F1 score: 0.6340 (BM crossing edges)

Figure 4.2: Comparison of (EAGNN2,BC+MLP) [27] and (EAGNN5,TM-CNN) predic-
tions for degraded BM tissue sample. The blue line is the BM annotation. The green,
yellow and red lines represent true positive, false negative and false positive edge predic-
tions respectively
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(a) Ground Truth (b) (EAGNN2,BC+MLP)[27] (c) (EAGNN5,TM-CNN)

Figure 4.3: Segmentation of an healthy Oral Tissue’s graph. Red triangles indicate dis-
ruptions in the BM structure, while yellow and green triangles indicate BM continuity.
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(a) Ground Truth (b) (EAGNN2,BC+MLP)[27] (c) (EAGNN5,TM-CNN)

Figure 4.4: Segmentation of an Oral Tissue’s graph presenting BM breakages. Red tri-
angles indicate disruptions in the BM structure, while yellow and green triangles indicate
BM continuity.
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5| Discussion

The problem of accurately identifying and localizing basement membranes (BMs) and
their breakages in oral tissue samples was addressed in this research. This issue holds sig-
nificant relevance in the field of computational pathology, especially for pathologists study-
ing oral cGVHD and histopathological severity grading [68]. The methodology adopted
involved the development and implementation of a novel model, (EAGNN5,TM-CNN),
for edge classification tasks in cell-graph models. Its performance was compared against
an existing model, (EAGNN2,BC+MLP), as proposed by Nair et al. [27].

The findings obtained from this study have been promising. Notably, superior effectiveness
in identifying BMs, particularly in samples with degraded BMs, was demonstrated by the
(EAGNN5,TM-CNN) model. This enhanced performance is largely a result of the error
being backpropagated through the entire structure, leading to the optimized training
of both the GNN and the classifier, as well as the inclusion of convolutional layers to
capture common combinations of recurrent structures within the graph. Furthermore,
the interpretability of the model was enhanced through the introduction of a new graph
segmentation technique in this study, thus proving beneficial for pathologists.

In this discussion section, the key findings of the study, their implications, and potential
areas for further research will be explored. Additionally, some of the limitations of the cur-
rent study will be discussed and future directions proposed to overcome these limitations
and enhance the utility of the model.

5.1. Interpretations

The effectiveness of the proposed model, (EAGNN5,TM-CNN), is attributed to an amal-
gamation of several factors. First and foremost, the extended training implemented at
both the GNN level and the classifier level allowed for a more nuanced understanding of
BM structures and their aberrations. This comprehensive training played a pivotal role
in the superior recognition capabilities of the model, particularly in samples containing
degraded BMs.
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An integral aspect of the model’s performance comes from integrating triangular motifs
into the edge classification task. As expected, these recurrent structures, inherent in a
Delaunay generated graph, provided a broader context for classifying edges, which in
turn led to improved performance. This strategic integration validated the hypothesis
that accounting for common patterns in the data structure would enhance the model’s
predictive capabilities.

The incorporation of convolutional layers in the classifier model served as an additional
enhancement. These layers enabled the model to further recognize and capture patterns
in triangular motifs, reinforcing the model’s ability to get a picture of the broader context
of cell-BM interactions. Consequently, the model’s ability to detect and classify edges, as
either BM crossing or non-crossing, accurately was considerably boosted.

New features (i.e., Ndnn and Ednn) for the GNN node embeddings layer were introduced,
building upon the work of [27, 48]. Despite these additions, the performance of the
proposed model was not improved, as evidenced in the conducted ablation study (see
Appendix A). This lack of enhancement could be directly attributed to the pre-training
of the feature extraction model on ImageNet [39], rather than a dataset more specific to
the task.

In addition to these enhancements, the introduction of a new graph segmentation tech-
nique proved instrumental in refining the model’s interpretability. This technique facili-
tated the partitioning of the graph into distinct segments, simplifying the interpretation of
results. This, in turn, is particularly beneficial for pathologists, as it allowed for a clearer
understanding of the segmented graph results compared to edge results. Consequently, it
enabled a better appreciation of the model’s performance in detecting and localizing BMs
and their breakages in oral tissue samples.

In summary, the combination of extended training, convolutional layers, the consideration
of triangular motifs, and the novel graph segmentation technique led to the superior
performance and enhanced interpretability of the (EAGNN5,TM-CNN) model. This not
only furthered the model’s edge classification capabilities but also opened new avenues
for understanding and interpreting cell-BM interactions in cell-graph models.

5.2. Implications

The results obtained from this study hold significant implications for both the field of
computational pathology and clinical practice. The ability of the (EAGNN5,TM-CNN)
model to accurately identify and localize BMs, especially in samples with degraded BM,
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can greatly assist pathologists in their work. By improving diagnostic accuracy, this model
could potentially enhance patient outcomes, especially for those suffering from conditions
such as oral cGVHD where early and accurate detection is vital [68].

Moreover, the enhanced interpretability offered by the novel graph segmentation technique
provides pathologists with a nuanced understanding of BM conditions. This interpretabil-
ity serves not primarily to streamline the diagnosis, but to offer robust decision support
that can mitigate observer variance. By facilitating a deeper and more consistent under-
standing of the tissue’s condition, our model can be a valuable tool in guiding both the
assessment of disease severity and the subsequent course of treatment, potentially leading
to more targeted and effective treatment strategies.

In addition, the integration of triangular motifs into the edge classification task has
broader implications. It highlights the importance of considering the inherent structure
of the data in computational models. This approach has the potential to extend beyond
computational pathology and may be valuable for a wide range of graph-based tasks,
where accounting for structural context could yield improved results.

Furthermore, the enhanced performance and interpretability of the (EAGNN5,TM-CNN)
model may also encourage the broader application of computational models in pathology.
It demonstrates the potential benefits of integrating advanced computational techniques
into traditional pathological processes, thereby paving the way for future advancements
in computational pathology.

On a broader level, this research also provides a new perspective for understanding and
interpreting cell-BM interactions. The unique approach of using graph-based models to
represent and analyze tissue samples could open up new avenues for research, potentially
leading to the discovery of new biological insights and diagnostic techniques. Conse-
quently, the implications of this study extend beyond the immediate goal of improving
the identification and localization of BMs, potentially influencing the wider field of com-
putational biology.

5.3. Limitations

An attempt was made in this study to enhance the model’s performance by incorporating
new features, different from those employed by Nair et al. [27]. However, as evidenced
in the ablation study (refer to Tables A.2 and A.3 in Appendix A), these modifications
did not yield the expected improvement in performance. A plausible explanation for this
outcome might be associated with the nature of the deep learning features used, which
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were extracted using a ResNet18 [28] model pretrained on the ImageNet [39] dataset.
The pretrained model, although effective in many contexts, might not be entirely apt for
capturing the specific features relevant in tissue images, thereby limiting its effectiveness
in this application.

Furthermore, it was noted that the model currently lacks richer edge representations which
could provide a more granular understanding of cellular interactions. The development of
these intricate edge representations, while complex, could be an avenue for future research
to further enhance the model’s capabilities.

As a future direction, it would be of interest to explore the use of models pretrained on
datasets more closely related to the task at hand. More specifically, employing a model
pretrained on tissue image datasets might offer a richer and more relevant set of features
for the task, potentially enhancing the model’s performance (as it has been presented in
[3]). Further research is needed to investigate this possibility and its potential impact on
the model’s performance.

5.4. Future Works

In terms of future research and developments, this study has identified several promising
directions. The primary focus of this work has been on the identification and localization
of BMs and their breakages, employing the (EAGNN5,TM-CNN) model which has demon-
strated superior performance over existing approaches. However, there remain numerous
avenues for refinement and enhancement of the model as well as its potential applications.

While the (EAGNN5,TM-CNN) model already presents a substantial improvement in
handling BM identification, a natural extension of this work could be to augment the
model to also grade the severity of BM breakages. This advancement could lead to
the development of a more comprehensive tool that not only assists pathologists in the
identification of BM conditions but also aids in determining their severity, which is a
crucial aspect of disease diagnosis and treatment planning [68].

While the results of this study show promise for the (EAGNN5,TM-CNN) model, there is
always room for future refinement and exploration. This study has primarily focused on
improving the classifier within the GNN framework for edge classification. However, one
potential area of improvement could be the node and edge representations. The EAGNN
architecture, while able to aggregate edge features into node embeddings, may lack robust
edge representations. This could be addressed by enhancing the edge classification task
to consider not only node embeddings but also edge embeddings.
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In this vein, there have been some novel approaches to improving edge representations. For
instance, [21] proposed a framework for updating edge representation at each aggregation
step using an attention mechanism. This method, however, has been criticized by Yang
et al. [80] as not being suitable for edge or link prediction tasks due to its linear edge
representation update, which they suggest can lead to a loss of edge information.

As an alternative, Yang et al. proposed a framework using a dual-attention mechanism for
node and edge embeddings updates, called the Node and Edge features in Graph Neural
Network (NENN). The NENN consists of a node-level attention layer and an edge-level
attention layer that are alternately stacked to learn and aggregate embeddings for nodes
and edges. This approach allows the node and edge embeddings to mutually reinforce
each other, providing a potentially more effective method of edge information update.

As a future direction, it could be fruitful to implement NENN within the GNN framework
and evaluate its effectiveness in the BM identification task. While NENN has been shown
to outperform other methods in academic citations and molecular graphs, its application
in a digital pathology context has not yet been explored. The introduction of such a
methodology could further enhance the performance of the model, potentially leading to
even more accurate identification of BMs in oral tissue samples.

In addition to grading the severity of BM breakages, the (EAGNN5,TM-CNN) model could
be potentially extended and adapted for a variety of tasks, such as tissue segmentation,
tumor region segmentation, boundary detection, and region of interest (ROI) retrieval.
Furthermore, it could also be employed for classification tasks.

The value of such an approach is evident when considering the work of other researchers
in this field. For instance, Anklin et al. [4] proposed a tissue-graph model for prostate
cancer segmentation using GIN. Moreover, patch-graph approaches have been used for
retrieving regions of interest in breast and lung cancers [1, 44, 53]. The proposed model
could potentially enhance the performance of these tasks by focusing on the cellular level,
as opposed to lower level structures such as patches and tissue graphs.

By expanding the application of the (EAGNN5,TM-CNN) model to these tasks, it could
serve as a versatile tool in the realm of computational pathology. This opens up a range of
opportunities for further research and development, potentially leading to breakthroughs
in the diagnosis and treatment of various diseases. The proposed model could be a
valuable addition to the existing repertoire of AI-powered tools in the field of pathology,
complementing and enhancing the capabilities of current approaches.
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6| Conclusions

This research presented a novel method for the identification and localization of base-
ment membranes (BMs) in oral tissue samples, a significant challenge in computational
pathology, particularly concerning oral cGVHD and tissue severity grading [68]. Un-
like most existing methods in the literature for edge classification or link prediction,
which primarily depend on embeddings of two individual nodes, the proposed model, the
(EAGNN5,TM-CNN), has integrated motifs associated with edges to achieve improved
performance in edge classification. This innovative approach has not only demonstrated
superior performance but also helped reduce noise in predictions, effectively eliminating
isolated prediction cases that are typically unlikely to occur in real scenarios.

The proposed model was evaluated against the (EAGNN2,BC+MLP) model suggested by
Nair et al. [27], and the results revealed a marked improvement, especially in the identi-
fication of degraded BMs. The enhanced performance can be attributed to the extended
training at the GNN level and classifier level and the incorporation of convolutional layers
to capture recurrent structures within the graph. Additionally, the introduction of a novel
graph segmentation technique significantly improved the interpretability of the model, a
crucial aspect for real-world applicability.

While the results were promising, the study was not without limitations. Despite the
incorporation of new features, the performance of the model did not significantly improve,
which can be partly attributed to the pretraining of the feature extraction model on
ImageNet [39], a less task-specific dataset. This has highlighted the importance of using
more relevant pretraining datasets, particularly those specific to tissue images.

The current study sets the stage for numerous avenues of future research. Potential areas
include adapting the model to grade the severity of BM breakages, investigating the impact
of using models pretrained on more relevant datasets, and enhancing the model’s edge
representations. Furthermore, the model could be trained on a larger dataset, thereby
enhancing its robustness and reducing sensitivity to data imbalance. Such improvements
could significantly enhance the model’s generalization ability and reliability.

Moreover, the broad applicability of the (EAGNN5,TM-CNN) model suggests its po-
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tential use in a variety of computational pathology tasks. This potential to contribute
significantly to the diagnosis and treatment of various diseases underscores the model’s
significance.

In conclusion, this research has made an important contribution to computational pathol-
ogy by developing an innovative model that effectively identifies and localizes BMs in oral
tissue samples. By providing enhanced interpretability of results, the model can be more
easily utilized by pathologists. Nonetheless, the research also emphasizes the need for
ongoing investigation and refinement to address identified limitations and fully unlock
the model’s potential.
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A.1. Model Selection

This appendix section provides a summary of performance metrics for different filter
configurations of the TM-CNN model combined with the EAGNN5 backbone. For these
configurations, the node features (NF) and edge features (EF) were set as N1 and E1234,
respectively. The performance metrics were evaluated on the test set.

Table A.1 presents the precision, recall, and F1 score for three different configurations
of the TM-CNN model, where nf1 and nf2 represent the number of filters in the first
and second convolutional layers, respectively. The configurations are as follows: TM-
CNN(nf1 = 8, nf2 = 16), TM-CNN(nf1 = 16, nf2 = 32), and TM-CNN(nf1 = 32,
nf2 = 64).

The results suggest that the TM-CNN(nf1 = 16, nf2 = 32) configuration achieves the high-
est precision, recall, and F1 score, with values of 0.8526, 0.8657, and 0.8591, respectively.
The other two configurations, although comparable, exhibit slightly lower performance
metrics.

These findings contribute to the model selection process by identifying the filter configu-
ration of the TM-CNN that leads to the best performance when paired with the EAGNN5

backbone, under the given node and edge feature settings.

Precision Recall F1
TM-CNN(nf1 = 8, nf2 = 16) 0.8469 0.8558 0.8513
TM-CNN(nf1 = 16, nf2 = 32) 0.8526 0.8657 0.8591
TM-CNN(nf1 = 32, nf2 = 64) 0.8394 0.8606 0.8499

Table A.1: Performance metrics for different filter configurations of the TM-CNN model
in combination with the EAGNN5 backbone. NF=N1 and EF=E1234. Results are shown
for the test set.
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A.2. Ablation study

The Ablation Study section presents the examination of the effects of different node feature
(NF) and edge feature (EF) configurations on model performance, primarily through two
tables.

Table A.2 depicts an ablation study on the impact of various node feature configurations
on the performance of the test set. Five different settings are explored using EAGNN2

and EAGNN5 models in combination with a TM-CNN classifier. These configurations
involve different combinations of node features, designated as N1, N14, N12, and N123,
with N1 representing Node types. The edge features remain constant at E1234 for all
configurations in this study. According to the results, the best performance across all
metrics—precision, recall, F1 score, and accuracy—is achieved with the EAGNN5 model
when employing N1 node features. It’s noteworthy that using N4, which signifies DL
extracted features, resulted in lower performances.

Model Classifier NF EF Precision Recall F1 ROC-AUC Accuracy
EAGNN2 TM-CNN N1 E1234 0.8523 0.8595 0.8559 0.9866 0.9837
EAGNN2 TM-CNN N14 E1234 0.8152 0.8006 0.8078 0.9731 0.9785
EAGNN5 TM-CNN N1 E1234 0.8526 0.8657 0.8591 0.9874 0.9840
EAGNN5 TM-CNN N12 E1234 0.8202 0.6224 0.7077 0.9765 0.9710
EAGNN5 TM-CNN N123 E1234 0.8476 0.8566 0.8520 0.9879 0.9832

Table A.2: Ablation study examining the impact of different node feature (NF) configu-
rations on the test set performance.

Table A.3 carries out a similar ablation study, but this time focusing on the influence
of different edge feature configurations on the test set performance. All experiments in
this study use the EAGNN5 model and a TM-CNN classifier, along with the N1 node
feature. The configurations differ in their edge features, marked as E1234, E123, E12,
and E1. According to the results, the model performs best when the E1234 edge feature
configuration is used, demonstrating the highest precision, recall, F1 score, and accuracy.
It’s important to mention that the E5 configuration, which would represent aggregating
edge features with a p = 512 channels (where p denotes the dimension of the features
extracted using the pretrained ResNet18 model), has not been included in the table due
to the significant computational cost of such a procedure, resulting in a out of memory
error when aggregating information for updating node embeddings.

These ablation study tables offer valuable insights into how different configurations of
node and edge features can influence model performance. They help in identifying the
most effective combinations of features for this particular classifier and the dataset under
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Model Classifier NF EF Precision Recall F1 ROC-AUC Accuracy
EAGNN5 TM-CNN N1 E1234 0.8526 0.8657 0.8591 0.9874 0.9840
EAGNN5 TM-CNN N1 E123 0.8360 0.8525 0.8442 0.9859 0.9823
EAGNN5 TM-CNN N1 E12 0.8338 0.8390 0.8364 0.9852 0.9815
EAGNN5 TM-CNN N1 E1 0.8093 0.8386 0.8237 0.9821 0.9798

Table A.3: Ablation study assessing the effect of different edge feature (EF) configurations
on the test set performance.

study.

As informed by [27], they confirm that the most effective features combination for this
specific task and the tested dataset is the N1 node feature paired with the E1234 edge
feature configuration.
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B.1. Graph Segmentation

To enhance comprehension of the model predictions on the graph, a segmentation method
is introduced. Considering that the graph generated by Delaunay triangulation consists
of Triangular Subgraphs, which correspond to combinations of 3 edges in a graph, these
triangles are then color-coded to represent healthy or degraded basement membranes
(BMs).

Triangles are segmented as follows:

(Empty) Triangles with 0 BM crossing edges

(Red) Triangles with only 1 BM crossing edge

(Yellow) Triangles with 2 BM crossing edges

(Green) Triangles with 3 BM crossing edges

Notably, red triangles serve as indicators of compromised BMs. In these cases, the BM
enters the triangle via one edge, but does not exit, indicating an interruption or break
(with the exception of rare cases where the BM enters and exits through the same edge,
which can be filtered out). Conversely, yellow and green triangles are indicative of con-
tiguous BM structures, with the BM entering the triangle through one edge and exiting
via another. Specifically, green triangles are cases where the BM enters through one edge,
exits, re-enters through a different edge, and exits again through the third edge.

Figures B.1, B.2, and B.3 provide instances of both healthy and damaged basement mem-
branes (BMs) extracted from the oral tissue samples of three distinct patients. For each
sample, the presentations are categorized into the ground truth segmented graph, the
segmented graph inferred from the predictions of the model proposed by [27], and the
segmented graph deduced from the predictions of the model presented in this study. It’s
crucial to note the manner in which the ground truth segmentation helps elucidate the
nature of graph segmentation. A continuous path delineated within yellow triangles illus-
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trates an intact BM localized in that segment of the graph. Conversely, the presence of
a red triangle indicates a deterioration of the BM leading to a break, thereby disrupting
the "triangle path".
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(a) Ground Truth (b) (EAGNN2,BC+MLP)[27] (c) (EAGNN5,TM-CNN)

Figure B.1: Segmentation of an healthy Oral Tissue’s graph
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(a) Ground Truth (b) (EAGNN2,BC+MLP)[27] (c) (EAGNN5,TM-CNN)

Figure B.2: Segmentation of an Oral Tissue’s graph presenting BM breakages
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(a) Ground Truth (b) (EAGNN2,BC+MLP)[27] (c) (EAGNN5,TM-CNN)

Figure B.3: Segmentation of an Oral Tissue’s graph presenting BM breakages
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