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1. Introduction
The massive increase of data and computing re-
sources available made possible, over the last 15
years, a significant growth in the field of ma-
chine learning—particularly, in deep learning.
The term deep learning generally refers to Neu-
ral Network (NN) methods. These methods are
able to extract patterns and models automati-
cally from large volumes of data, and are gener-
ally agnostic to the underlying scientific princi-
ples driving the variables. However, in scientific
problems the variables can interact in complex
nonstationary and nonlinear ways, and the avail-
able dataset is often limited: this makes consid-
erably difficult the challenge of achieving good
performances with data-hungry methods.

Recently, a class of methods that incorporate
Partial Differential Equations (PDEs) into a
NN emerged, these methods are commonly re-
ferred to as Physics-Informed Neural Networks
(PINNs) [6]. This technique can automatically
extract patterns from data while taking advan-
tage of the theoretical knowledge accumulated
in scientific theories. The fundamental step of
this approach is embedding a PDE into the loss
of the NN using automatic differentiation: by
constraining the NN to minimize the PDE resid-
ual, the space of admissible solutions the NN can
identify is shrunk to the physical ones.

1.1. Objective
The objective of this work is to investigate the
possibility of using the PINNs to approximate
the Shallow Water Equations, a system of hy-
perbolic PDEs that simulates free-surface flow
problems.

Specifically, parametric cases are intentionally
built upon selected benchmark problems, for the
purpose of testing the degree to which the PINN
is a convenient tool to be used when dealing with
many-query problems. The PINN seems to be
a promising tool to deal with this class of prob-
lems for one fundamental reason: following one
training session, the PINN is able to instantly
provide simulations for every requested parame-
ter value. Consequently, the computational cost
of the complete parameter space analysis is, ba-
sically, the one of a single training session.

2. Mathematical model
While the Navier–Stokes equations are a com-
prehensive model that can describe the motion
of a three-dimensional real fluid, the computa-
tional cost of a three-dimensional model simula-
tion is very high. It makes sense to reduce the
model for calculations with simpler flow condi-
tions. The depth-averaged two-dimensional flow
equations, also called Shallow Water Equa-
tions (SWE), provide a suitable approximation
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to model free-surface flow problems. Within
the ambit of this work the equations are
written in conservative form, in the Carte-
sian coordinate system, following the notation
illustrated in Fig. 1.

Figure 1: 2D SWE. Notation.

The expression of the inviscid 2D SWE, hold-
ing as unknowns the water height h(x, y, t) and
the two horizontal components of the depth-
averaged velocity u(x, y, t) and v(x, y, t), is given
in Eq 1.
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where:

• the coordinate z defines the vertical direc-
tion, to which the free surface elevation is
associated;

• g is the standard gravitational acceleration;
• u = [u, v]T is the velocity vector;
• C is the Chézy’s friction coefficient.

Additional force terms can be included in the
term S, depending on the chosen application.
In order to properly pose this PDE problem,

Boundary Conditions (BC) and Initial Condi-
tions (IC) constraints are needed. Moreover,
the problems examined throughout this work
are often defined in big spatial domains, develop
within large time scales, or involve infinitesimal
solutions. Since the NN best deals with both do-
mains and solutions belonging to the O(1) scale,
the effective strategy that can get every single
problem to fit with the solver is the scaling.

3. Neural Networks
Mathematically, the NN is a compositional func-
tion. The simplest NN is the Feedforward Neu-
ral Network (FNN), which applies linear and
nonlinear transformations to the inputs recur-
sively. Although many different types of NNs
have been developed in the past decades, the
FNN is suitable for most PDE problems [4] and
it will be the only NN variety considered in this
work. A typical FNN architecture is illustrated
in Fig. 2.

Figure 2: Example of FNN.

The constituent parts that make up the FNN’s
architecture and terminology are:

• the neurons;
• the layers;
• the neurons per layer;
• the activation functions;
• the weights;
• the biases;
• the loss function.

Moreover, the fundamental tools required by
this technology are:

• the Automatic Differentiation (AD), re-
quired to compute the gradients of the loss
function with respect to the NN’s weight
and biases, and, for the PINN, to compute
the derivatives of the NN outputs with re-
spect to its inputs;

• the stochastic gradient descent.
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4. Physics-Informed Neural
Networks

The PINNs are a specific type of NNs trained
to approximate the solution to any given law of
physics described, in general, by a PDE or by a
system of PDEs. This kind of approach allows
to use the PDEs in strong form directly.

4.1. Partial differential equations
Let u(x) be an unknown function defined in the
spatio-temporal domain Ω ⊂ Rd, let λ be the set
of data on which the PDE depends. For the sake
of simplicity, a second-order differential equation
is considered. In this case, the generic PDE is
expressed as:

P(u,λ) = f

(
x,

∂u

∂x1
, . . . ,

∂u

∂xd
,

∂2u

∂x1∂x1
, . . . ,

∂2u

∂x1∂xd
, . . . ,λ

)
= 0

where x = (x1, . . . , xd). Any of the variables
xi, for i = 1, . . . , d, could represent the tempo-
ral variable, consequently, the IC is dealt with
as a special case of Dirichlet data on the spatio-
temporal border t = 0. Suitable BC can be sym-
bolized in the following form:

B(u,x) = 0 on ∂Ω

where B(u,x) could be Dirichlet, Neumann,
Robin, even time-depending BC.

4.2. The PINN algorithm
The PINN algorithm is simple, and it can be
described in four steps:

Step 1: a NN û(x,θ) is built as a surrogate of
the unknown solution u(x), where x ∈ Rd.

θ is the set of all the NN’s parameters, so
that: θ = {Wℓ,bℓ}1≤ℓ≤L.

Wℓ ∈ RNℓ×Nℓ−1 and bℓ ∈ RNℓ are the
weight matrix and the bias vector in the
ℓ-th layer, respectively, and L is the num-
ber of layers of the NN.

The NN’s input neurons number matches
d, while the NN’s output neurons number
matches the dimension of u.

Step 2: two sets of scattered training points
Tf ⊂ Ω and Tb ⊂ ∂Ω are defined: these are
the locations in the computational domain
where û will be trained, i.e., û is constrained
to satisfy the PDE in these points.

The whole training points set is defined as
T = {Tf , Tb}.

Step 3: a suitable loss function is defined to
make an estimation of the discrepancy be-
tween û and the constraints, the PDE and
the BC/IC, whose residuals are respectively
symbolized as P(û,λ) and B(û,x):

L(θ, T ) = wfLf (θ, Tf ) + wbLb(θ, Tb)

where wf and wb are the weights, and:

Lf (θ, Tf ) =
1

|Tf |
∑
x∈Tf

∥P(û,λ)∥22

Lb(θ, Tb) =
1

|Tb|
∑
x∈Tb

∥B(û,x)∥22

All the derivatives within both the residuals
P(û,λ) and B(û,x) are effectively handled
via AD.

Step 4: the loss function L(θ, T ) is minimized
through the training of the neural network
û. This procedure will constantly update
the parameters set θ up to an optimal com-
position θ∗ that will get û to behave the
desired way.

A diagram of the whole procedure—for the case
of the 1D heat equation supplied with mixed
BCs—is shown in Fig. 3.

Figure 3: PINN algorithm. Application to the
1D heat equation. (from Ref. [4]).
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4.3. Error analysis
The intrinsic limits of the NN approach are due
to the fact that:

• The NN have inevitably limited size. Let
F be the family of all the functions
representable by a given finite-size NN;
the best function representable by the
NN, i.e., the closest to u, is defined as:
uF = argminf∈F∥f − u∥.
The approximation error Eapp is defined
as: ∥uF − u∥.

• The NN are trained on a finite set of train-
ing points. The NN’s representable func-
tion if the loss is at the global minimum is
defined as: uT = argminf∈FL(f, T ).

The generalization error Egen, deter-
mined both by the density of the training
points and by the NN’s expressiveness, is
defined as: ∥uT − uF∥.

• Minimizing the non-convex, highly nonlin-
ear, loss function can be computationally
unmanageable, hence, the computation of
the global minimum of L is a task very un-
likely to be performed. Let ũT be the actual
function represented by the NN as a result
of the training.

The optimization error Eopt is defined as:
∥ũT − uT ∥.

Hence, the total error E is defined as:

E def
== ∥ũT − u∥ ≤ Eapp + Egen + Eopt

The illustration of this error decomposition is
shown in Fig. 4.

Figure 4: Error analysis. Decomposition of the
total error (from Ref. [4]).

5. Results
The PINN tool is applied to some preliminary
elliptic, parabolic and hyperbolic models, then,
to ten case tests built on the SWE model. For
the sake of brevity, two problems are picked and
shown in this document. All the tests are con-
ducted on a NVIDIA® T4 GPU, a cloud com-
puting resource freely accessible in Google Co-
laboratory.

5.1. Dam break on a dry domain with
friction, parametric

This case is built upon the Dressler’s dam break
with friction presented in [2]. The problem is
defined in the domain Ω× (0, T ), with:

Ω = (xmin, xmax)× (ymin, ymax)

and x ∈ (0, 2000), y ∈ (0, 1), t ∈ (0, 40). The
additional variable y accounts for the parameter
space. The dam break is instantaneous and the
bottom is flat.

The initial conditions are:

h(x, y, 0) =

{
6 m x ≤ 1000 m
0 m x > 1000 m

and

u = 0 m/s

No boundary condition is required to be set.
The additional parameter space is integrated in
the mathematical formulation by way of a linear
transformation between the variable y and the
Chézy’s friction coefficient, C, actually entering
the PDE:

C = 100y + 20

This technique is used with the purpose of
keeping the parameter space dimension unitary,
while obtaining a Chézy’s friction coefficient
ranging extensively from the values 20 and 120.

The SWE are implemented holding as unknowns
h and u, plus, two supplementary inequalities
are included in the system for the purpose of
making the learning faster. The complete sys-
tem is given in Eq. (2).
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∂h

∂t
+

∂(hu)

∂x
= 0

∂(hu)

∂t
+

∂(hu2 + 1
2gh

2)

∂x
= −g

u|u|
C2

h ≥ 0

u ≥ 0

(2)

Model setup. Considering the large spatio-
temporal domain, the model has to be scaled.
Specifically, the reference values for the scaling
of the space (L), time (T), water height (H) and
velocity (U) are set as:

• L = 2000
• T = 40

• H = 6
• U = u120

max

where u120
max is the maximum value of the numer-

ical solution for the water velocity, considering
C = 120, computed by FullSWOF_1D [1].

Hyperparameters. For the training is used
an Adam optimizer and a fixed learning rate of
10−4, the hyperbolic tangent is used as activa-
tion function, and the network architecture is
set to 4 hidden layers with 60 neurons per layer.
The training points in the domain and for the
IC are 2 × 104 and 103, respectively. No train-
ing point is set on the boundary. The number
of iterations is 5× 105.
The loss function is made up of six terms:
(Lh

PDE , Lhu
PDE , Lh

ineq, Lu
ineq Lh

IC , Lu
IC), respec-

tively generated by the residuals of the mass con-
servation and of the momentum balance equa-
tions, the inequalities and the ICs for the vari-
ables h and u. Every single term enters the loss
function with an associated weight that proved
to work fine after a trial-and-error effort:

L = 102Lh
PDE + 102Lhu

PDE + 105Lh
ineq

+ 105Lu
ineq + 105Lh

IC + 105Lu
IC

The results of the learning of the variables h and
u, for one selected value of the parameter C,
are shown in Fig. 5. Examining the plots, the
PINN predictions are a little bit smoother than
the FullSWOF_1D approximation. However,
the features of this case study—particularly, the
position of the shock—appear to be identified
almost perfectly.
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Figure 5: Dam break on a dry domain with fric-
tion, parametric. PINN solutions for (a) the
water height, and (b) the velocity. Comparison
with the FullSWOF_1D results.

5.2. Circular dam break, parametric
This case is built upon the circular dam break
presented in [3]. The problem is defined in the
domain Ω× (0, T ), with:

Ω = (xmin, xmax)× (ymin, ymax)× (zmin, zmax)

and x ∈ (−25, 25), y ∈ (−25, 25), z ∈ (1, 20),
t ∈ (0, 1). The additional variable z accounts
for the parameter space. Still, the dam break is
instantaneous and the bottom is flat.
The initial conditions are:

h(x, y, z, 0) =


10 m |x| ≤

√
100− y2,

|y| ≤
√
100− x2

1 m otherwise
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and

u(x, y, z, 0) = 0 m/s
v(x, y, z, 0) = 0 m/s

while the boundary conditions are:

u(xmin, y, z, t) = 0 m/s
u(xmax, y, z, t) = 0 m/s

and

v(x, ymin, z, t) = 0 m/s
v(x, ymax, z, t) = 0 m/s

The SWE are implemented holding as unknowns
h, u and v. The gravitational acceleration, g, en-
ters the PDE as a wide-ranging parameter be-
longing to the third spatial axis of the problem,
i.e., z. The complete system is given in Eq. (3).
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Remark. In spite of the large domain, the
model is not scaled.

Hyperparameters. For the training are used,
sequentially, Adam and L-BFGS optimizers.
The learning rate is fixed at 10−3, the hyper-
bolic tangent is used as activation function, and
the network architecture is set to 4 hidden layers
with 30 neurons per layer. The training points in
the domain, on the boundary and for the IC are
1.2×104, 5×103 and 1.2×104, respectively. The
number of iterations is 3 × 105 with the Adam
optimizer and 2× 105 with the L-BFGS.

The loss function is made up of ten terms:
(Lh

PDE , Lhu
PDE , Lhv

PDE , Lh
IC , Lu

IC , Lv
IC , Lu

BCxmin
,

Lu
BCxmax

, Lv
BCymin

, Lv
BCymax

), respectively gen-
erated by the residuals of the mass conservation
and of two momentum balance equations, the
three ICs and the four BCs. Every term enters
the loss function with an associated weight set
to 1:

L = 1Lh
PDE + 1Lhu

PDE + 1Lhv
PDE

+ 1Lh
IC + 1Lu

IC + 1Lv
IC

+ 1Lu
BCxmin

+ 1Lu
BCxmax

+ 1Lv
BCymin

+ 1Lv
BCymax

The results of the learning of the variable h,
for two selected values of the parameter g, are
shown in Fig. 6. Examining the plots, the fea-
tures of this case study seem to be replicated
pretty well. Specifically, the PINN predictions
preserve the symmetry of the problem.
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Figure 6: Circular dam break, parametric.
PINN solutions for the water height.
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6. Conclusions
The extensive PINN application showed that the
accuracy of the numerical solutions produced is
solid: the integral errors, as well as the qualita-
tive inspection of the results, gave evidence of
an extremely accurate tool, regardless of the the
presence of viscosity or shock waves.
Dealing with parametric problems, the PINNs
shown their suitability: once that the network
was trained over the needed parameter space,
every single recall of the model for the requested
parameter value was immediate. This happened
in light of the fact that these recalls were only
evaluations of a trained network.
PINNs proved to work well when the dimen-
sions of the problems were increased. There is
no mesh to be built. One more dimension for the
problem domain translates into one more input-
layer neuron, one more dimension for the prob-
lem solution translates into one more output-
layer neuron.
Some factors that could be counted against the
use of PINNs have been experienced. The com-
putational cost of the PINN training is consid-
erably high: the average time required for the
training of every single model examined has been
of about four hours. Moreover, the choices of
the effective hyperparameters’ values, and of the
proper scaling of the model, is currently done
empirically through a tough trial-and-error task.
Due to these challenges, PINN is currently not a
believable alternative to traditional methods like
Finite Element Method (FEM) or Finite Volume
Method (FVM). But those methods take advan-
tage of a 50-years-long process of development,
so, daring a comparison today is not even fair.
Putting things in perspective, since research in
the neural network field is very active, great im-
provements are expected.
Concerning the design of the most effective
neural network architecture for the problem at
hand, there’s still experience to be accumulated
before it ceases to be done empirically by the
user. Finally, in order to reduce the computa-
tional cost of the training, the clustered residual
points distribution [5]—a smaller set of points
placed were they matter the most, without a
priori knowledge of the solution—even for the
parametric cases, would definitely help.
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