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Abstract

The car’s automation technology is progressing fast and has already reached
a very good level of safety. Because of the advantages that autonomous cars
will introduce, the question of how a driver wants to be driven becomes more
and more important to ensure driving comfort for the passive driver and, so,
fast and wide acceptance of this technology.

The I.DRIVE (Interaction between Driver, Road Infrastructure, Vehicle
and Environment) Lab of Politecnico di Milano, where this research was
conducted, aims at developing inter-disciplinary proficiency required for the
analysis and modeling of behavioral aspects due to the interaction between
driver, vehicle, infrastructure, and environment.

In this research thesis, we have developed a software and hardware plat-
form that allows studying, in a real car, the interaction between driver, car,
road infrastructure and environment. We focused on driver stress and the
driving factors that impact driver stress to increase the little available knowl-
edge in this field and help the acceptance of car automation in the future.

We instrumented a vehicle with different sensors to acquire vehicle’s and
environmental’s data. To assess the driver’s stress with a continuous and ob-
jective measure, we acquired the driver’s physiological signals; we developed
software able to acquire the sensor’s signals, and store them in a database.
Furthermore, our software analyzes the vehicle and environmental data to
extract information about the surroundings and stress indexes from the phys-
iological data. Finally, we used the data in a correlation analysis using the
K-nn algorithm to evaluate the correlation between stress indexes and driving
features.

To validate our framework, six drivers performed a manual drive, an
autonomous drive, and a manual drive as passengers. We validated our
platform with the data acquired in these experiments. Moreover, we evaluate
the correlation using our software pipeline.

Results demonstrate that longitudinal jerk, the angular velocity on x-
axis, and the linear acceleration on y-axis have a high correlation with the
skin conductance’s phasic component and the respiration rate that are two
stress indexes. The ratio between low frequency and high frequency and the
heart rate of the electrocardiogram showed a low correlation with all driving
features studied.
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C H A P T E R

1. Introduction

In the past two decades, autonomous cars have become a reality for many
car manufacturers and software companies, and, nowadays, there are many
ongoing tests on autonomous cars in our streets. Indeed, the car’s automation
technology is progressing fast and has already reached an excellent safety
level.

As autonomous cars will reduce pollution, reduce road traffic, and increase
road safety when commercially available, it becomes crucial to have a fast
and wide acceptance of this technology. Understanding how a driver wants
to be driven becomes a key factor [5].

In 2014, SAE international, a standards developing organization, provided
a taxonomy with detailed definitions for six levels of driving automation,
ranging from no driving automation (level 0) to full driving automation (level
5), in the context of motor vehicles and their operation on roadways [3]
(Figure 1.1). With the higher car automation levels (level 3-5 of SAE), the
human role changes from active driver to passengers. The lack of controls
perceived as passengers can lead to a higher stress level and discomfort if the
car does not behave as expected [5]. If passengers do not feel relaxed and
comfortable in autonomous driving conditions, they probably will not use it,
and so, the acceptance and usage of this technology will be delayed [6].

Therefore, to guarantee the success and the acceptance of this technol-
ogy, it becomes essential to focus on the passenger’s comfort, as a psycho-
physiological aspect and not as an ergonomic issue, where there is little avail-
able knowledge, and it is also important to understand how to increase the
comfort and reduce the stress from the physiological point of view.

The present research is a part of the I.DRIVE Lab (Interaction between
Driver, Road Infrastructure, Vehicle and Environment) that aims to develop
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Figure 1.1: An infographic of the six levels defined in the SAE standard

inter-disciplinary competencies for the analysis and modeling of behavioral
aspects related to the interaction between driver, vehicle, infrastructure, and
the environment in conventional or autonomous vehicles, where the driver
becomes, de facto, a passenger (so the term driver refers to both driver and
passenger). The laboratory is composed of a fixed structural component,
based on a Virtual Reality simulator (Figure 1.2), and a mobile component,
based on an instrumented vehicle (Figure 1.3) that are the core of this re-
search.

While we used the I.DRIVE simulator to compare the physiological an-
swer between a real car and a simulator [33], this research aimed to develop
a platform that allows studying, in a real environment, the interaction be-
tween driver and car, focusing on the driver stress and the driving factor that
impact on driver stress, to increase the knowledge in this field and help the
acceptance of the car automation technology in the future.
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Figure 1.2: The I.DRIVE fixed-based driving simulator during an acquisition

Figure 1.3: The instrumented Tazzari zero car used in this research

The majority of previous research studies that have studied driver stress
and workload have been conducted in driving simulators. Driving simula-
tors have many benefits, like doing experiments in a controlled environment,
studying dangerous maneuvers or dangerous situations, and repeating the
same experiment with different participants. Still, the findings in a simula-
tor may not be easily generalizable to real-life. Indeed, in most simulators, it
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is impossible to feel the body’s acceleration as in a real car, and the fact that
a crash will not cause real harm makes a driver drive faster and less careful
[33].

Since there are only a small number of on-road driver’s stress studies
available, our research focuses on real environments in which the results on
driver’s stress and what influences the driver’s stress may be more accurate.
However, the data are more challenging to measure and analyze.

To achieve our goals, we have used an instrumented Tazzari Zero car
(Figure 1.3). In the Tazzari we installed cameras, an inertial measurement
unit (IMU), a global positioning system (GPS) and a light detection and
ranging (LIDAR). From these sensors, we obtain some information such as
speed, acceleration and jerk of the car in the three dimensions, number and
category of obstacles detected, their position with respect to the car and, for
the obstacles in front of the car, their time headway with respect to the car.

Moreover, most previous research in this field uses only questionnaires
or interviews to understand how stressful a drive is. Indeed, measuring the
passenger/driver discomfort in real-time is not an easy task since the passen-
ger/driver, in our case, is not in a controlled environment, but it is in a highly
dynamic environment. There are few examples of real-time discomfort ac-
quisition in literature, such as using a handset control [17] [18] (Figure 1.4).
However, it is possible to use a handset only in an autonomous, not in a
manual drive, and, in our study, we want to be free to acquire the stress level
in both autonomous and manual drive. For these reasons, the real comfort
of a passenger/driver is usually acquired after driving with questionnaires or
interviews.

Questionnaires and interviews are not a direct stress measure since they
are subjective and are retrospective information on the passenger’s stress,
and, for this reason, they may have strong biases. In the platform devel-
oped, in order to acquire a stress metric, physiological sensors are used. In
particular, in our car, we have installed sensors to monitor the physiological
signals of the driver/passengers, such as the electrocardiogram (EKG), gal-
vanic skin response (GSR) and respiration. From these sensors we are able
to extract stress indexes such as the heart rate (HR), the ratio between low
frequency (LF) and high frequency (HF) (LF/HF) [41] [45], respiration rate
(RR) [46] and the tonic component (TC) and phasic component (PC) of the
skin conductance (SC)[23] [45].

Moreover, the physiological sensors are an objective, direct and contin-
uous stress measure. This research has used questionnaires and interviews
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Figure 1.4: An example of handset control for real time discomfort acquisition
used in the research [17] [18]

only to compare and validate the acquired data analysis results.

With the platform developed in this research, we increased the knowl-
edge of passenger comfort in a real instrumented car from the physiological
perspective overcoming previous research limits of using simulators and ques-
tionnaires. To validate the entire data acquisition and processing pipeline and
ensure that all data acquired is useful for future and better analysis, we had
done a correlation analysis on data collected during an acquisition campaign
with 6 participants from 24 to 32 years old.

For correlation analysis, we used the K-nn algorithm [26]. This algorithm
allows studying the correlation between a time series and event sequences.
Time series were retrieved from the stress indexes while the event sequences
were extracted from the driving features. Furthermore, this algorithm pro-
vides information on the delay relationship between the time series and the
event sequences and if the event sequences cause an increase or a decrease in
the time series values. We tested the algorithm on the data acquired from
our platform.

Results demonstrates that the phasic component extracted from the skin
conductance and the heart rate extracted from the EKG are the only stress
indexes showing a high correlation with the driving features. Furthermore,
results show that the driving factors that impact the driver’s stress the most
are the longitudinal jerk, the speed, and the angular velocity on y-axis.
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1.1 Research questions and objectives

This research’s main goal was to develop and validate a platform, allowing
the on-road study of the driver’s comfort as a physiological issue and the
driving features that impact the drive’s physiological comfort. Indeed, in the
field of driver/passenger’s comfort, especially from the physiological point of
view, some points needed an investigation and a deepening, such as:

• Which physiological data provides more information on the driver’s
stress level considering a real drive’s dynamic environment?

• Which are the driving factors in a manual drive that impact the driver’s
comfort/stress?

• Are the stressful driving factors discovered in manual drive the same
in an autonomous drive?

• Are the general stress in an autonomous drive higher than a manual
drive due to the lack of control?

• Are there stressful driving factors in common for different drivers?

There are already answers to some of these questions in literature but are
often limited to simulations [17] [18] [19] [39] [5] [9] [8] or are limited to
specific maneuvers [34] [7]. With our system, we extended the answer to
these questions to the real environment and developed a tool which will
enable further studies in this field

1.2 Thesis outline

The structure of the thesis is the following:

• Chapter 2 briefly describes the physiological signals and some of the
stress indexes that are possible to extract from them. Afterward, this
chapter gives a review of the literature. We survey the previous studies
in the field of driver/passenger stress acquisition and the driving factors
that impact this stress to highlight the problems and limitations in
the existing literature and how our research contribution has improved
these studies.
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• Chapter 3 describes the I.DRIVE hardware. It describes in detail the
characteristics of the sensors used in the instrumented car. Further-
more, it describes the fixed-base simulator hardware.

• Chapter 4 describes the software component developed and used for the
data acquisition, the extraction of additional features from raw data
and the data analysis. Moreover, the entire data processing pipeline is
shown.

• Chapter 5 describes how the acquisition campaign was done. In par-
ticular, it describes the participants who took part in the acquisition
and the experimental protocol used in our study. Furthermore, the
achieved results are shown and discussed.

• Chapter 6 concludes the thesis, suggesting and detail further direction
for our research.





C H A P T E R

2. Literature review

This chapter briefly describes the physiological signals and some of the stress
indexes possible to extract from them to understand this chapter better.
Afterward, we survey the previous studies in the field of driver/passenger
stress acquisition and the driving factors that impact this stress to highlight
the problems and limitations in the existing literature and how our research
contribution has improved these studies. In the first part of the literature
review, we show the existing simulation studies and, in the second part, we
show the previous studies conducted on real vehicles. At the end of each
section, we compare our research with the existing literature to highlight
how our study improved upon these studies.

2.1 Physiological signals and stress indexes

In 2015, Shahsavarani published on International Journal of Medical Reviews
a review [38] of stress trying to cover all facts and theories. In psychological
sciences stress can be defined as a feeling of mental press and tension. Many
formal definitions have been proposed in recent years, some of these defini-
tions can be found in Table 2.1. We use Shahsavarani’s 2013 [37] definition
“Any effect of change in surrounding environment on living being which re-
sults in disruption of homeostasis (internal balance) of that living being is
called stress.” Stress has a positive form that can improve bio psycholog-
ical health and facilitate performance, but high level of stress could result
in biological, psychological and social problems. Stress can be external with
environmental sources, as could be in our work, or caused by internal per-
ceptions of the individual. Other factor that influences the level of stress is
the exposure time of stressors that could be acute or short-term, chronic or
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Table 2.1: Stress definitions in Literature [38]

long-term, for our work we consider only short-term.
The Autonomic Nervous System (ANS) plays an important role in trans-

lating stress into a Physiological response. The ANS is composed of the
Parasympathetic Nervous System (PNS) and Sympathetic Nervous System
(SNS), two branches that are both tonically active with opposing activities.
The activity of the Sympathetic Nervous System drives what is called the
”fight or flight” response. The ”fight or flight” response to emergency or
stress increased heart rate, muscle contraction, vasoconstriction, bronchodi-
lation, sweating and many others. The Parasympathetic Nervous System, is
activated as a secondary response in what is called ”rest and digest” and in-
volves maintaining homeostasis. The hypothalamic-pituitary-adrenal (HPA)
axis is a neuroendocrine system that mediates a stress response.

The physiological signals useful to determine the level of stress most used
in driving studies are the electrocardiogram (EKG), the respiration rate and
the skin conductance (SC) also known as galvanic skin response (GSR).
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Figure 2.1: An example of two QRS complex and the RR interval

Electrocardiogram

The electrocardiogram (EKG) measures the heart electrical activity. Since
the Sympathetic Nervous System activity affect the heart rate, from this
signals it is possible to extract different stress indexes as the heart rate (HR)
and the heart rate variability (HRV) in time or in frequency domain [41] [45].

For both of these stress indexes it is important to find in the EKG signals
what is called QRS complex (Figure 2.1). The QRS complex corresponds to
the depolarization of the right and left ventricles of the heart and contraction
of the large ventricular muscles. In adults, the QRS complex normally lasts
60 to 100 ms. The time between two consecutive R peeks is called RR
interval and it is the base for the extraction of the heart rate and the heart
rate variability (Chapter 4.2)

The heart rate is the speed of the heartbeat measured by the number
of contractions (beats that correspond to R peeks) of the heart per minute
(bpm). The heart rate variability, instead, measures the variation in the time
interval between heartbeats (RR interval).

The most widely used methods to analyze the HRV can be grouped under
time-domain (Table 2.2) and frequency-domain (Table 2.3). The ratio be-
tween low frequency (LF) and high frequency (HF) (LF/HF) estimates the
ratio between SNS and PNS. The effects of varying cardiac sympathetic and
cardiac parasympathetic nerve activity on LF/HF are non-linear [11], this
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Table 2.2: HRV time-domain measures [36]

leads to an accurate analysis of LF/HF in order to obtain valid information.

Skin conductance

The skin conductance measures the variation in the electrical characteristics
of the skin. As we have seen before, if the SNS is highly aroused, sweat gland
activity also increases, which increases skin conductance. So, from this signal
it is possible to measure the stress of a person [45] [23].

The skin conductance is divided into two components: the phasic compo-
nent (PC) and the tonic component (TC). The tonic component is responsible
for the slow changes in the skin conductance signal and it is considered the
background level of activity. The phasic component, instead, is responsible
for rapid changes in the skin conductance signal. The tonic component re-
flect general changes in autonomic arousal while the phasic component is an
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Table 2.3: HRV frequency-domain measures [36]

event-related stress measure related with SNS activity.
Another stress index derived from the skin conductance is the orienting

response [20]. The orienting response measures a fast change in the skin
conductance detecting the onset and peak of individual responses, as shown
in Figure 2.2. Individual responses are considered an orienting response only
if the first derivative of the response exceeds a threshold that depends on
the application. Responses occurring less than one second after a previous
response are counted as a continuation of that response. Once an orienting
response is detected three features are extracted and are: the magnitude of
the response (OM), the duration of the response (OD) and the area of the
response (OA) computed as OA = 1

2
∗OM ∗OD (Figure 2.2).

Respiration

The respiration signals measured expansion and contraction of the chest cav-
ity. The respiration is related to the stress [28]. Two stress indexes are ex-
tracted from the respiration signals: the respiration rate and the respiration
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Figure 2.2: An example of orienting response features extracted from the
skin conductance (SC) [20]

signal’s power spectral density information. The respiration rate is the rate
at which breathing occurs. The frequency information in the respiration sig-
nal is computed using the power spectral density function, extracting the
average energy in each of the first four 0.1 Hz bands of the power spectral
density range 0.1-0.4 Hz. Picard et al. [28] showed that the three higher
frequency bands of the respiration signal are more related to the stress.

2.2 Driver comfort and trust studies in the

driving simulator

In literature, there is driver stress research using simulators. These research
benefit from doing experiments in a controlled virtual environment, allowing
them to study dangerous maneuvers or dangerous situations safely. Further-
more, it is easier and less time expensive to repeat the same experiment with
different participants. The disadvantage of using a simulation instead of a
real car is that it is impossible to feel the body’s acceleration in most sim-
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ulators. Even when the simulator would allow to provide the human with
the feelings of some acceleration, it is not easy to reproduce the same feeling
and reaction of a real car. For this reason, still, the findings in a simulator
may not be easily generalizable to real-life. Nevertheless, there are studies
on driver comfort focusing on the improvement of simulators. Some of these
studies use real car data to validate and compare the simulation results.

Two types of simulators exist, the fixed-base (Figure 2.3a) and the moving-
base simulator (Figure 2.3b). The main difference between the two types is
that with the moving-base, it is possible to reproduce some motion feedback
due to physical motion mechanism, while the fixed-base simulators have no
physical motion mechanisms. Most of the time, the moving-base simulator’s
motion feedback needs to be as similar as possible to the reality if we want
to reproduce the same feeling we experience in real life, but this cannot al-
ways be attained [8]. The motion system’s parametrization is not a simple
task and sometimes requires focusing only on the motion feedback we are
interested in.

[8] [9] used the same advanced moving-base simulator platform to find the
best motion system’s parametrization. The simulator used in these studies
is composed of a hexapod that moves along a linear rail and can simulate
the motion feedback of a real car (Figure 2.4). Depending on the simulator’s
orientation with respect to the rail, the simulator can simulate better the
longitudinal or the lateral motion.

In the first of these two studies, Bellem et al. [8] assessed the behavioral
validity of two simulator configurations comparing with a real test-track.
They focus on two maneuvers: the lane change maneuvers for the lateral
motion and the deceleration maneuvers for the longitudinal motion. In both
of the maneuvers, they tried six different parametrizations for the simulation.
The participants had to provide a comfort rating on a scale from 1 to 7 for
each scenario.

The data acquired about the participant’s comfort showed that the con-
figuration with the simulator settings with the vehicle positioned parallel to
the linear rail has a relative and absolute validity. With the simulator settings
with the vehicle positioned transversely to the linear rail, it is not possible
to demonstrate a relative and absolute validity. Furthermore, Bellem et al.
showed that the validity of a simulator highly depends on the motion sys-
tem’s parametrization and that it was necessary to apply a scaling factor for
both lateral and longitudinal motion cues with respect to the real car due to
the underestimation of speed in virtual environments.
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(a)

(b)

Figure 2.3: An example of the two types of simulators-: (a) moving-base (b)
fixed-base

In the same simulator, Bellem et al. [9] studied the acceleration and jerk
configurations that maximize the comfort in the lane change, acceleration,
and deceleration maneuvers. They applied three different acceleration pro-
files for each maneuver arranged in three pairs for pairwise comparison. The
participants stated which of the two varieties presented in a direct pair com-
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Figure 2.4: The advanced moving-base simulator [8] [9]

parison they preferred.

Bellem et al. found that the driving style perceived as comfortable in the
maneuvers tested are characterized by low jerks and early action in situations
in which a criticality might arise and a softer onset in uncritical situations.
They also demonstrate that a comfortable autonomous car does not neces-
sarily have to drive as a human driver since passive drivers prefer the safest
possible lane change alternative disregarding whether actual risk is imma-
nent or not. Furthermore, in the deceleration maneuver, the approach with
the most deceleration in the first part of the maneuver should not be used
in automated driving style. This is surprising, as this behavior was reported
as natural behavior in literature [25].

In the Siebert et al. [39] work, using a fixed-base simulator, authors stud-
ied the time headways threshold that divides the feeling of risk and the feeling
of comfort in adaptive cruise control and a self-driving car. They studied the
time headway (i.e., s the distance between vehicles measured in time) for
three different speeds: 50, 100 and 150 km/h. They varied the time head-
ways from 4s to 0.5s and from 0.5s to 4s, asking the participant to report a
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(a)

(b)

Figure 2.5: The mean time headway thresholds and standard deviation in:
(a) adaptive cruise control, (b) self-driving [39]

change in their comfort/risk experience.

They found that the mean time headway threshold was between 1.5s and
2.0s and that there was no difference between different speeds. Furthermore,
they found that there was no significant difference between time headways of
self-driving (Figure 2.5b) and distance-assisted driving (Figure 2.5a). Finally,
they suggest that the car needs to adapt to the individual driver’s time
headway threshold with a high automation level.

In the Scherer et al. [34] work, they focused on modeling a customized
automated driving style based on manual driving that makes the driving
experience comfortable for the driver.

Scherer et al. [34] used a driving simulator to derive the participant’s
driving parameters, and then, they tested, in a field study, the parameters
essential for the perceived comfort discovered in simulation.
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Figure 2.6: Development of younger and older drivers’ trust in highly auto-
mated driving [19]

The participants drove manually in the simulator, and afterward, this
drive was played as a replay so that the participants experienced their own
driving style in a highly automated drive. Furthermore, three automated
driving styles were presented to the participants, one based on their own
driving style and two on other participant’s driving style. Scherer et al.
assessed the comfort and enjoyment with questionnaires and interviews and
the discomfort during autonomous drives with a handset control (Figure 1.4).
Together with the comfort data, the simulator data highlighted that longi-
tudinal control parameters were important for the participant’s comfort.

The field study on a real car had focused its attention on the braking and
acceleration parameters. The same handset control was installed in the test
vehicle, like in the driving simulator, to record the perceived comfort. This
study showed only preliminary results that indicate that driving parameters
concerning longitudinal control have a high impact on subjectively perceived
comfort.

In the Hartwich et al. [19] work, the authors examined the development of
drivers’ trust and acceptance regarding highly automated driving at different
stages of system experience in a driving simulator and on a real vehicle. The
participants performed four drives in the simulator: a training drive, a man-
ual drive and two highly automated drives. Subsequently, they conducted a
test track study to provide a more physically realistic experience. The test
track is limited to acceleration and deceleration maneuvers. Questionnaires
assessed the trust and acceptance in all the drives.

Analyzing the data, they found that the drivers’ acceptance and trust
in automation increased after the first system experience (Figure 2.6). The
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(a) (b)

Figure 2.7: Aerial view of the of the urban scenario tested for the com-
parison between (a) the real-life driving and (b) the 3D virtual simulation,
reconstructed in Unity 3D using GPS coordinates to segment the different
driving scenes. The red pins represents the Landmarks used to define the 15
driving segments

trend continued in the subsequent test track study. Indeed, trust and accep-
tance remained stable and did not decrease after the real experience.

In the Ruscio et al. [33] study, developed in the I.DRIVE lab, we presented
a methodological and conceptual description of a first validation study per-
formed on vehicle data (travel time and speed) and physiological data (elec-
trodermal activity (EDA)) using the I.DRIVE simulator (Figure 3.6) and the
I.DRIVE vehicle (Figure 1.3) equipped with the same sensors.

To test the relative and absolute validity of the data acquired in simula-
tion and the real vehicle, we selected an urban portion of the City of Milan
- Italy, as a testing scenario. The urban circuit was chosen to include a
wide range of turning radii and roadway widths that all together require the
driver to adjust his behavior to safely and efficiently face the circuit. The
circuit was composed of 15 coherent segments: 8 straights parts, 6 turns and
1 roundabout. The beginning and end parts of each segment were isolated,
considering 15 landmarks from GPS coordinates. The landmarks were also
used to rebuild the same urban portion of Milan in the virtual simulator,
using Unity 3D (Figure 2.7).
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In our study, we conducted the pilot test on one male participant that
drove on both virtual and real scenarios. Descriptive statistic (Mean and
standard deviation) were computed for the overall time, speed and electro-
dermal activity. We calculated the Pearson Correlation Coefficient to assess
the relationship among the distribution of the dependent variables across the
15 different driving scene between the two experimental settings (I.DRIVE
virtual simulation, I.DRIVE real-life vehicle). We used the non-parametrical
Mann-Whitney U test to test the presence/absence of significant differences
between the null hypothesis of random distribution of the dependent mea-
sures (time, speed and electrodermal activity) and the observed values in the
two experimental settings.

We found only a relative validity for the travel time (Figure 2.8a) and the
speed (Figure 2.8b) since, in simulation, the speed is always underestimated.
The reactivity scores of electrodermal activity confirmed previous research
that indicated different absolute values for skin conductance activity in vir-
tual simulations. However, the pattern of reactivity scores could provide
relative validity (Figure 2.8c).

In the Hartwich et al. [17] and [18] works, authors showed the effects
of driving automation and driving style familiarity on driving comfort, en-
joyment and system acceptance. In a fixed-base simulator, they studied
how comfortable and enjoyable is the autonomous drive compared to manual
drive. Furthermore, they studied if a familiar autonomous driving style (i.e.,
a driving style that corresponds to each drivers’ manual driving style) leads
to higher driving comfort and enjoyment. The participants had to manually
drive in different scenarios while the simulator recorded the driving data.
Afterward, to simulate the autonomous drive with the participants’ driving
style, they replayed the participant manual drives recorded in simulation.

On another day, the participants experienced their autonomous driving
style as a familiar style and two unfamiliar automated drives based on the
other participants’ manual drives. They selected young and older drivers
to see if comfort and enjoyment differ with age. They assessed the accep-
tance, comfort and enjoyment with questionnaires and the discomfort dur-
ing autonomous drive with a handset control (Figure 1.4). They concluded
that automation increased both age groups’ comfort but decreased younger
drivers’ enjoyment (Figure 2.9a). Moreover, younger drivers showed higher
comfort, enjoyment and acceptance with familiar autonomous driving styles,
whereas older drivers preferred unfamiliar driving styles (Figure 2.9b).

In the Basu et al. [5] work, they used a simulator to understand the
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(a)

(b)

(c)

Figure 2.8: Dependent variables measured across the experimental setting for
virtual driving and real-life driving: (a) time, (b) speed and (c) electrodermal
activity (EDA)
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(a)

(b)

Figure 2.9: Driving comfort and enjoyment rated by the younger and older
drivers comparing:(a) manual and the own autonomous driving style, (b) the
automated driving style familiarity [17] [18]

autonomous drive defensiveness preferred by drivers with respect to their
own driving style. The participants demonstrated their manual driving in
different scenarios, while the simulator collected data. In the second part,
the participants tried four autonomous driving styles with different levels of
defensiveness: aggressive, defensive, own style (participants did not know it
is their own), ”distractor” style (i.e., a different participant’s style).

After the participants had tried each autonomous driving style, they con-
ducted an interview asking participants to rate each driving style in terms of
comfort and similarity with their own drive style.
They found that, overall, participants prefer a different driving style than
their own, and, typically, they prefer a more defensive style than their own
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Figure 2.10: Mean Defensiveness Score Across Participants [5]

when they are passengers (Figure 2.10).

In the researches described above, it is possible to observe that it is dif-
ficult to reproduce the same feeling and reaction of a real car [8] [33]. The
drivers’ feeling and reactions also depend on the parametrization, and the
configuration of the simulator [8].

Several studies had to validate the driving simulators comparing the data
coming from them with the data of a real vehicle [8] [34] [19] [33]. All these
works found that there is only a relative validity between data coming from
the simulation and a car. Therefore, this confirms that the findings in a
simulator may not be easily generalizable to real-life. Despite that, some
findings discovered in simulation remain interesting [5] [17] [18] [19] [9] and,
for some type of study, the simulation are the only way to perform a study
due to safety reasons [39].

With the platform developed in our research, we can extend and validate
the simulation study results in a real environment. Indeed, in most simula-
tion studies, comfort data are assessed using questionnaires and interviews.
Our research improved the comfort/stress information coming from question-
naires and interviews using an objective stress measurement acquired from
the physiological sensors. Physiological sensors provide us better and more
detailed information about the driver’s state during a drive.

A study in simulation [5] supports one of our research hypotheses that
an autonomous drive is more stressful than a manual drive due to the lack
of control. Moreover, a study [9] demonstrated that an autonomous car does
not necessarily have to drive as a human driver. However, two studies [17] [18]
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challenged our research hypotheses showing that younger drivers perceived
higher comfort, enjoyment and acceptance with familiar autonomous driving
styles. We investigated this point showing that autonomous cars are, in
general, more stressful than a manual drive, and so we disagree with the
studies [17] [18]

2.3 Driver comfort studies in real vehicles

In literature, there are also few driver stress researches conducted on real
cars. These research studies the driver’s comfort level and the driving events
and parameters that affect the driver’s stress level. The advantage of per-
formed studies in real environments is that the results are more accurate with
respect to simulations, but it is more difficult to measure and analyze data.
Furthermore, all the on-road studies are performed on manual drives since it
is difficult to find roads where it is possible to drive autonomously.

In the Bellem et al. [7] study, authors identified the driving parameters
to differentiate between three different driving styles: everyday, comfortable
and dynamic driving. The study was performed driving a car manually in an
urban, rural and highway environment. Bellem et al. asked the participants
to drive in a fashion that corresponds to their idea of everyday, comfortable
and dynamic driving style. Throughout the test runs, participants rated the
maneuvers immediately after they completed them.

The results showed that the discriminating metrics of driving style were
the same in both urban, rural (Table 2.4) and highway condition (Table 2.5)
with only a few minor exception. The acceleration, jerk, quickness (i.e.,
the swiftness with which a maneuver takes place) and headway distance in
seconds were the essential metrics to differentiate between the three driving
styles. Furthermore, they highlighted a higher sensitivity to acceleration and
consequently to jerk with higher speed.

The Healey et al. [21] work performed a preliminary study quantifying
the driver’s stress using physiological signals in a real drive. They collected
information about the driving situation’s context with cameras and drivers’
stress information using different physiological sensors. Four types of signals
were measured during the driving task: skin conductance (SC), respiration,
electrocardiogram (EKG) and electromyography (EMG). After processing
the physiological signals, they extracted some stress index: the heart rate
(HR) and inter-beat interval (IBI) from the EKG, the rising edge with a steep
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Table 2.4: Metrics able to distinguish between driving styles on urban and
rural roads [7]

Table 2.5: Metrics able to distinguish between driving styles in a highway
setting [7]

slope of the SC, the respiration rate (RR) from respiration and a trigger of
muscle activity using EMG. With these drivers’ stress and driving context
information, they preliminary discovered that multiple sensors could help
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Table 2.6: Recognition stress performance of each individual feature [20]

Table 2.7: Recognition stress performance using two different features com-
bination [20]

discriminate reaction to driving events. Afterward, they discovered that
individuals’ responses to similar driving conditions could vary from day to
day.

Healey and Picard [20] continued this work, improving the previous study’s
indexes used to detect the driver’s stress. They extracted the mean and vari-
ance of three signals: SC (µG, σG), respiration (µR, σR), EMG (µε, σε). They
extracted the orienting response features from skin conductance, including
the frequency of occurrence (SF ), the sum of durations (

∑
SD), the sum

of magnitudes (
∑
SM) and the sum of the estimated areas (

∑
SA where

SA = 1
2
∗ SM ∗ SD. Two features were extracted from the EKG signal: the

heart rate and the autonomic balance (AB) that was calculated by finding
the ratio of Low Frequency (LF) energy to High Frequency (HF) energy in
a five-minute window of the heart rate spectrum. Furthermore, the individ-
ual drivers’ stress of the events encountered during the drives were assessed
with questionnaires. Each feature was tested to see how well it performed to
recognize the stress with a linear classifier (Table 2.6). Afterward, a second
analysis was performed combining multiple physiological indexes (Table 2.7).
The results showed that using a combination of features, performance for rec-
ognizing driver’s stress improves significantly.
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Table 2.8: Confusion matrix for the recognition algorithm with 5min intervals
[22]

In a similar study, Healey and Picard [22] analyzed physiological data
during a real-world driving in rest, highway and city driving conditions, ex-
tracting features from 5 minutes non-overlapping intervals of data to distin-
guish between three levels of driver stress (low, medium, high). They used
questionnaires to validate general stress levels extracted from the acquired
data.

They used four types of physiological sensors: EKG, EMG, SC and res-
piration. Statistical features were calculated for each segment: normalize
mean of EMG and normalized mean and variance for respiration, heart rate
and SC. Four spectral power features were calculated from the respiration
signal representing the energy in each of four bands(0-0.1, 0.1-0.2, 0.2-0.3
and 0.3-0.4 Hz). From SC, four orienting response features were calculated
(Figure 2.2). They also extracted the heart rate variability (HRV) from the
EKG, and from the HRV, they extracted the ratio between low frequency
(LF) and high frequency (HF) (LF/HF) feature. Afterward, they trained
a recognition algorithm that used a linear discriminant function to classify
each 5min windows’ features in one of the three stress classes (Table 2.8).

A second analysis compared continuous features, calculated at 1-second
intervals. For this continuous analysis they used: mean and variance of the
EMG (µε, σε), SC (µG, σG), respiration (µR, σR), the mean of HR (µH), the
LF/HF on a 300s and a 100s window (L100, L300) and the LF+MF/HF (MF
stand for the medium Frequency) ratio in a 100s and 300s window (M100,
M300). To validate the stress levels in this second analysis, they manually
analyzed the driver videotapes by advancing them at 1s intervals, recording
the number of stress indicators (stops, turning, bumps in the road, head-
turning and gaze changes) in each frame. Finally, they did a correlation
analysis between the stress metric created from the video and the stress
metrics coming from physiological signals in the 1s segments (Table 2.9).
The result showed that three stress levels could be recognized with a high
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Table 2.9: Correlation coefficient between the stress metric created from the
video and variable from the sensors. A set of random numbers ”w” was also
correlated with the video metric for each drive. [22]

level of accuracy using 5 min intervals (Table 2.8) and that heart rate and
skin conductivity metrics provided the highest overall correlations with 1s
intervals (Table 2.9).

Rigas et al. [31] used a Dynamic Bayesian Network to estimate car drivers
stress in a real environment. They used the EKG and the electrodermal
activity (EDA) sensors. The features extracted were calculated over a 10-
second window and were: heart rate variation from baseline (HRvB) and
the EDA mean of first absolute differences (MFAD). The HRvB provides
the instant variation of the heart rate from the estimated baseline, and the
MFAD provides a measure of rapid EDA activity. They used video recordings
and the driver’s self-annotation to annotate the driving event and driver
stress (Normal, Low and medium stress). The driver reported his state after
experiencing a driving event. The annotated stress is assigned at a specific
time segment.

They observed that using a Naive Bayes classifier on the collected data
the classification results are poor (Table 2.10). Afterward, they trained a
dynamic Bayesian network (DBN) (Figure 2.11) and showed that the overall
accuracy improved with this approach (Table 2.11).
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Figure 2.11: The dynamic Bayesian network model for stress detection [31]

Table 2.10: Confusion matrix (conf. mat.), accuracies (acc.) and positive
predictive value (PPV) for each class for the classification using naive Bayes
classifier of normal(N) vs low stess(L)/medium stress(M)/high stress(H)
classes [31]

In another study, Rigas et al. [32] used a Bayesian network (BN) to detect
driver’s stress events based on physiological features and driving event infor-
mation in a real unconstrained driving condition. The detection was based
on three physiological signals: EKG, EDA, respiration. Features from those
signals are extracted using 10s-windows and were: estimation of the trend of
HRV (FAD), normalize measures of the differences of skin conductivity (B),
the entropy of the spectrum of the respiration (RE). For the event detection
(hard braking and overtaking), they used the naive Bayes classifier with the



2.3 Driver comfort studies in real vehicles 31

Table 2.11: Confusion matrix (conf. mat.), accuracies (acc.) and positive
predictive value (PPV) for each class for the classification using dynamic
Bayesian network of normal(N) vs low stess(L)/medium stress(M)/high
stress(H) classes [31]

car information on speed, deceleration, heading change, throttle and RPM
of the engine.

A microphone in the car acquired the driver’s self-annotations of stress
levels caused by events. The driver had to say the event, and next, the
perceived stress level. They trained and tested two BN, one with only the
physiological features (Figure 2.12a) and one adding to the previous one the
driving information (Figure 2.12b).

Comparing the two BN models’ results, they observed a significant in-
crease in stress event detection accuracy, adding the driving information.
The first model (BN1) had a significant number of false-positive (Table 2.12)
due to the increasing of heart rate or skin conductance without drivers ex-
periencing increased stress. The driving events information introduced in
the second model (BN2) reduced the false positives increasing the accuracy
(Table 2.13).

In the researches described above, it is possible to see that most of the
on-road studies on driver comfort are focused on how to assess the stress
level of the driver [21] [20] [22] and which are the driving parameters or
events that affect the driver stress [7] [31] [32]. Furthermore, it is possible to
observe that there are no studies on automated cars. Indeed all the studies
are performed in manual driving conditions and, often, are limited to only
some maneuvers or events [7] [32] [31]. We overcome these limits with our
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(a)

(b)

Figure 2.12: (a) BN1 model using only physiological features. (b) BN2 model
using also driving information [32]

platform since we can study the drivers’ stress level in autonomous driving
conditions, and besides, we can compare the stress level with manual driving.
We focused on driving parameters that affect the driving stress during the
entire driving, not just looking at single maneuvers.

Physiological sensors are used to assess the driver’s stress level [21] [20]
[22] [31] [32], corroborating our hypothesis that it is possible to assess driver
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Table 2.12: Confusion matrix, sensitivity, specificity, and F1 for each class
and total accuracy for the classification of stress events for train and test
subjects using BN1 model [32]

Table 2.13: Confusion matrix, sensitivity, specificity, and F1 for each class
and total accuracy for the classification of stress events for train and test
subjects using BN2 model [32]

state information from physiological sensors and giving us information on
which are the most promising physiological data to use. Indeed, EKG, SC
and respiration are showed to be the most promising signals and the most
used in these studies, while EMG signal is showed to be not so reliable [22].
In our studies, we acquired all these promising signals, and these previous
studies support our choice.
Questionnaire and interview are used to validate the stress level measured
using physiological stress metrics and are not used as the only driver’s stress
measure.





C H A P T E R

3. I.DRIVE

In our research, we needed to acquire data about vehicle, environment and
driver’s physiological state. This chapter describes the I.DRIVE hardware,
which include the vehicle, the simulator and all equipped sensors.

3.1 I.DRIVE vehicle

The vehicle is a Tazzari Zero (Figure 3.1), a two seats electric city car. This
car has a range of 140 km given by lithium batteries. The battery of the
vehicle powers all the sensors installed in the car, resulting in a reduced,
autonomy that, for our studies, is not a problem. The car’s maximum speed
is 100km/h, and it is not possible to drive on highways since the engine has
only 15KW power. The vehicle supports four driving modes:

• Standard: this mode is suggested for everyday use in the urban envi-
ronment

• Economy: this mode limits the acceleration and the maximum speed
to increase the autonomy of the batteries

• Rain: this mode is similar to the standard mode with limits to acceler-
ation and brake assist, in order to increase the grip and safety in rainy
conditions

• Race: this mode allows maximum performance in terms of acceleration
and speed. In this mode, the autonomy decrease
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Figure 3.1: The I.DRIVE instrumented Tazzari zero

3.1.1 Environmental sensors

Different sensors are equipped in the vehicle to perceive the environment
surrounding the car, giving us different information about the type and the
distance of the objects around the car (e.g. pedestrians, cars, cyclists)

LIDAR

Light detection and ranging (LIDAR) is a technology that measures the
distance by lightening a target with a laser and analyzing the reflected light
signals. In our car, we have installed a Velodyne HDL-32E (Figure 3.2a) that
utilizes 32 lasers vertically aligned from +10.67◦ to −30.67◦ to provide an
unmatched vertical field of view. Its rotating head design delivers a real-time,
360◦ horizontal field of view. This sensor generates a point cloud of up to
700,000 points/sec (Figure 3.2b) with a range from 1 meter up to 100 meters
with an accuracy of ±2cm. The rotating head frequency is customizable from
5Hz to 20Hz, but the standard rotation frequency is 10Hz.

LIDAR sensor allows our vehicle to perceive the obstacle around, giving
the distance from them. This information is used for obstacle avoidance
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(a) (b)

Figure 3.2: (a) The velodyne HDL-32E, (b) an example of pointcloud

in the navigation software. Furthermore, using a neural network [48] [47],
we were able to detect the obstacles as well as the type of obstacles (e.g.
pedestrians, cars, cyclists).

Cameras

On the car’s roof, two Prosilica GC1020 (Figure 3.3a) have been mounted,
one facing the street in front of the car and one looking at the car’s back.
Another Prosilica Camera is installed inside the car, looking at the face of
the driver. The Prosilica GC1020 is a network camera connected to the PC
through Ethernet. It can work at a maximum frame rate of 33 fps with a
maximum resolution of 1024 x 768. It supports different output format such
as:

• Mono format: Mono8, Mono12, Mono12Packed

• Color RGB format: RGB, RGB8Packed, BGR8Packed

• Raw format: BayerRG8, BayerRG12, BayerGR12Packed

We set the Prosilica cameras to work at 30 fps with a resolution of 1024 x 768,
and the output format used is BayerRG8. The Prosilica GC1020, looking at
the car’s front mounts a particular wide-angle lens called Theia MY125M
(Figure 3.3b). Thanks to the focal length of 1.3mm, this lens allows us to
have a horizontal field of view of 125◦ and a vertical field of view of 109◦ with
very low distortion.
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(a) (b)

Figure 3.3: (a) Prosilica GC1020 camera, (b) Theia MY125M lens

The external cameras are used only to have visual feedback of what is
happening precisely in front and back of the car. The internal camera is used
to see what the driver is doing during the drive.

3.1.2 Vehicle Dynamics Sensors

The vehicle dynamics provide information on the driver’s driving style. Fur-
thermore, it is also useful to identify driving events like hard braking or an
overtaking. We installed in the vehicle sensors able to acquire this data.

GPS receiver

In our vehicle, we have two different global positioning system (GPS) re-
ceivers. The first one is a GPS Garmin 18LV (Figure 3.4a) that generates
position data according to the standard $GPRMC NMEA at a frequency of
1Hz. The Garmin GPS is connected through a serial port RS-232 to the
Velodyne sensor. This GPS is also used to synchronize data generated from
the Velodyne sensor with time pulses precision. If Garmin 18LV is not con-
nected to the Velodyne, an internal clock is used that has a drift of about
5 seconds per day. Thus, the Garmin 18LV GPS is essential in our settings
because it gives us the car’s position and guarantees synchronized data from
the Velodyne sensor. Furthermore, with the position information coming
from this sensor, we estimate the car’s speed.

In our car, we installed another GPS receiver called Yuan10 (Figure 3.4b.
The additional GPS receiver is due to the onboard computer’s synchroniza-
tion problem that we discovered using the Garmin 18LV GPS. The Garmin
receiver’s synchronization problem is not due to hardware problems but due
to this receiver’s data acquisition using the UDP protocol.
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(a) (b)

Figure 3.4: (a) The Garmin 18LV GPS receiver, (b) the Yuan10 GPS receiver

Features Garmin 18LV Yuan10

Hot start 1 s < 1 s
Warm start 38 s < 29 s
Cold start 45 s 29 s
Reacquisition < 2 s 1 s
Sensitivity -155 dBm min -148 dBm, -161 dBm
Update rate 1 Hz 1, 2, 4, 5, 8, 10 Hz

Table 3.1: Comparison table between Garmin 18LV and Yuan10 GPS re-
ceivers

The UDP packets are acquired using different ROS (Robot Operating
System) node that introduced a latency that is not acceptable for the onboard
computer synchronization. Instead, the Yuan10 is connected to the onboard
PC with a USB and, the time information is directly sent to the software
that handles the PC clock synchronization (NTP). The Yuan10 receiver has
a max frequency of 20Hz, but, in our setup, a frequency of 1Hz is enough.
The data generated by this GPS use the NMEA standard.

We selected this GPS receiver for the synchronization since it has a high
sensitivity (-148 dBm) that allows it, in a cold start, to have a fast position fix.
The high sensitivity during tracking (-161 dBm) allows continuous coverage
of the position, also where the satellite coverage is low. In Table 3.1, it is
possible to see a comparison table between the used GPS receivers.
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(a) (b)

Figure 3.5: (a) Xsens MTi IMU with reference system, (b) the Velodyne IMU
with reference system

Inertial measurement unit

The inertial measurement unit (IMU) used in our system is an Xsens MTi
(Figure 3.5a). This IMU contains a 3D magnetometer that provides infor-
mation about the earth’s magnetic field, a 3d accelerometer that provides
information about the linear acceleration and a 3D gyroscope that provides
the angular speed. The acquisition frequency of this sensor is 100 Hz.

With the Xsens IMU, we can measure all the acceleration perceived inside
the vehicle, and, from this information, we can calculate the jerk. Another
useful information retrieved from this sensor is the angular speed that gives
us information on how fast the car is turning.

Inside the car, there is another IMU that is embedded in the Velodyne
sensor Figure 3.5b. The Velodyne IMU is composed of three 1D gyroscopes
and three 2D accelerometers. The information coming from this IMU is less
precise than the Xsens data, also because the Velodyne is installed on the
roof of the car, and this is not the best position to have precise car’s inertial
measures.
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Figure 3.6: The I.DRIVE fixed-base simulator

3.1.3 On-board computer

In the car, we have installed a Shuttle slim computer that, despite its small
size, has enough computing power to handle all the ROS acquisition software
and has enough storage space to save the data acquired by the sensors. This
computer does not perform signals analyses that are done offline on a more
powerful computer.

3.2 I.DRIVE driving simulator

The driving simulator consists of a fixed-base physical structure that includes
a set of commercial vehicle controls such as the steering wheel with force
feedback, the gear shift lever with automatic transmission, and the brake
and accelerator pedals (Logitech G920) (Figure 3.6). Like a real car, it is
possible to move the seat closer or farther than the steering wheel to find a
comfortable driving position. Three 32-inch screens providing 175◦ field of
view show the virtual driving scenario.

The simulation software is crucial since it influences the degree of im-
mersion. In our simulator, we use two different simulation software: a game
engine called Unity 3D [42] and IPG CarMaker [16] that is a software devel-
oped for driving simulation.
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3.3 Physiological sensors

The I.DRIVE vehicle and simulator assess the driver/passenger’s state using
the same physiological sensors.

3.3.1 Procomp Infiniti

Procomp Infiniti is an 8 channels encoder (Figure 3.7a) used to acquire, in
real-time, physiological signals of a person. Two of these eight channels
have a sampling rate of 2048 samples/sec, and the other six channels have a
sampling rate of 256 sampling/sec. The Procomp Infiniti sample the input
signals coming from physiological sensors (Figure 3.7b), encode the samples,
and send them to a TT-USB interface. The transmission of the data from
the encoder to the TT-USB interface passes through a fiber optic cable to
ensure the signals’ quality and the best electrical insulation.

The signals that the Procomp Infiniti can acquire are:

• Electromyography (EMG)

• ElectrocardiogramEKG

• Electroencephalogram (EEG)

• Skin conductance SC

• Body temperature

• Respiration

• Blood Volume Pulse (BVP)

These physiological sensors are considered as not invasive.

In our study, we use the respiration sensor that needs to wear a chest
band and the EKG and SC sensors that need to apply electrodes on the
driver’s skin. The EKG is the only signals acquired at 2048 samples/sec, the
SC and the respiration are acquired are 256 samples/sec.
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(a) (b)

Figure 3.7: (a) Procomp Infiniti encoder, (b) Sensors available for the Pro-
comp Infiniti

3.3.2 Eye tracker

The eye tracker used in our work is a Pupil core [24] glasses (Figure 3.8).
This sensor has three cameras, one for the world image and two for the eyes.
The world camera mounts a wide-angle lens with a field of view of 100◦ and
can acquire images at different resolution and frame rate: 1920x1080 @30fps,
1280x720 @60fps and 640x480 @120fps. Eyes cameras have an infrared sensor
that helps find the pupil independently from the iris color and have three
possible configurations: 1920x1080 @30fps, 1280x720 @60fps and 640x480
@120fps.

For our experiments, the world camera uses the 1280x720 @60fps configu-
ration, which is a good trade-off between resolution and sampling frequency.
The eye camera uses the 640x480 @120fps configuration since, for pupil de-
tection, it is better to have a high sampling rate instead of a high resolution.

The Pupil core needs a calibration every time that a camera is moved
and every time that it is taken off and put on. The calibration process uses
a marker to correlate the world camera with eye cameras.

With this sensor, we have gaze tracking during driving. We know where
the driver/passenger is looking and where the driver/passenger is focusing
his attention. Furthermore, by analyzing the world images acquired by the
eye tracker with the YOLO neural network [30] (Figure 3.9), we also know
what the driver/passenger is looking at (e.g. pedestrians, cars, cyclists).
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Figure 3.8: The Pupil core eye tracker

Figure 3.9: An example of the world camera image with the gaze position
represented as a purple circle on the followed car and the bounding box
generated by the YOLOv3 network
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4. I.DRIVE software
architecture

This chapter describes the software developed to acquire the data of the
I.DRIVE vehicle’s sensors showed in Chapter 3, and the software developed
and used to process and analyze these data. Furthermore, the architecture
and the pipeline of the system is shown.

4.1 Vehicle data acquisition

The data acquisition software developed is based on ROS (Robot Operating
System) [29] [2], an open-source framework widely use in robotics. One of
the main features of ROS is the modularity; indeed, its structure is based on
nodes, messages and services. This feature allowed our acquisition software
to have a modular design, and we can add or remove sensors driver easily.
The only sensor that is not acquired using ROS is the eye tracker since it
needs its software to work.

4.1.1 ROS driver and data visualization

Our physical sensors need a ROS driver node that read the signals generated
from them and that send the data acquired on a ROS topic. For some of
our sensors, ROS already provides the driver nodes, but we need to develop
a custom driver node for others.
The Procomp Infinity works only on Windows operating systems. However,
our ROS system works on an Ubuntu operating system, which made it nec-
essary to develop a driver on a Windows virtual machine. The Windows
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Figure 4.1: Acquisition software architecture from physical sensors to ROS
topic

driver read the Procomp data and send them through a UPD socket to a
ROS client that convert the data received in a ROS topic.
In Figure 4.1 it is possible to see a general schema of our ROS drivers.

The GPS sensor needs an additional ROS node since the NMEA sentence
acquired with the driver is not enough. For extracting the car position and
speed from the NMEA sentence, we used a ROS node connected to the GPS
driver.

The real-time visualization of the acquired data is essential since it allows
to know if the drivers are working correctly. ROS provides a package called
RVIZ, a visualizer used to visualize standard ROS topic data. Almost all the
topic generated from our sensor drivers use a standard message format, and
so it is possible to visualize them on RVIZ (Figure 4.2).
Since the Procomp ROS client use a custom topic and not a standard one, we
create a custom ROS node that visualize all the physiological data acquired
by the Procomp (Figure 4.3).
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Figure 4.2: RVIZ screen example with the Proslica images and the point
cloud generated by the Velodyne

Figure 4.3: Example of the Procomp custom visualizer with the EKG, SC
and respiration signals

4.1.2 ROS data storage

The data generated by the sensors and acquired using ROS need to be stored
on the PC for the subsequent offline analysis. We use the MongoDB database
[1] since it has better performance with respect to other databases. Mon-
goDB is a NoSQL database that uses JSON-like documents called BSON.
ROS provide a package that converts the topics into BSON documents and
stores them into MongoDB. This node generate a MongoDB collection for
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Figure 4.4: The ROS node finite state machine

each of the ROS topic. We modified this package to make it more effi-
cient with the topics that contain a large amount of data. We create a new
database for each driver’s acquisition so that it is easy to organize and store
different acquisitions.

4.1.3 ROS finite state machine

To handle the state of the nodes in our ROS acquisition systems, we created
a finite state machine with three possible states:

• INIT: this state indicates that the node is booting and initializing or,
for a driver node, that it is waiting that the sensor is connected.

• STARTED: this state indicates that the node is working correctly

• STOPPED: this state indicates that the node is not working or it
stopped to work

. The Figure 4.4 show the possible transition between this states.
Each ROS node has its finite state machine and has to communicate, with a
ROS service, its state to a ROS node called Heartbeat that manages all node
state machines. Every ROS node also has to send an alive signal continuously
to the heartbeat node because, if the time between to different alive signals
becomes greater than a timeout, the heartbeat node considers that node as
stopped and changes the state of that node in STOPPED.
The states of the nodes are shown in a custom visualizer developed by us
that display the state of the nodes and some topic statistics such as the
delivered messages per second, the dropped messages per second and the
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Figure 4.5: An example of ROS node state visualizer for the two Prosilica
sensors and the Xsens IMU

traffic generated in Kbytes/sec (Figure 4.5). With this monitoring system we
can see in real-time if the entire acquisition system is working or if something
is happened during an acquisition.

4.2 Features extraction

The data acquired by our ROS system are raw and, for some raw data, we
need to prepare and process them to extract further information useful for the
subsequent analyzes. The data preparation and processing are done offline
using the data saved in the MongoDB databases and the CSV files generated
by the eye tracker software.

4.2.1 Stress indexes

EKG

The extraction of the stress index from the physiological signals is an im-
portant part of the data processing. To extract the stress indexes we use
custom Matlab® software [14]. The EKG raw signal is pre-processed using
a band-pass filter to reduce the noise on the signals and extract the signals’
components in the interval 8Hz-20Hz, the most interesting EKG frequencies
for the QRS complex. The filter output signal (xfilt) is squared to improve
R peak extraction performance. From this squared signal, we generate two
different signals. One signal tells the QRS complex’s energy in the entire
heartbeat period and is extracted applying a moving average on a window
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(a) (b)

Figure 4.6: (a) An example of the QRS signal and the MAQRS and MAbeat
signals. (b) A zoom on the (a) graph in which it is possible to see that where
MAQRS is greater than the MAbeat the QRS complex is present

W1=611msec.

MAbeat[n] =
1

W1

W1
2∑

i=−W1
2

x2filt[n+ i]

The other signal helps identify the QRS complex’s position using a moving
average on a window W2=97msec.

MAQRS[n] =
1

W2

W2
2∑

i=−W2
2

x2filt[n+ i]

It is possible to identify the position of a QRS complex seeing when the
MAQRS are greater than MAbeat plus a threshold [13]Figure 4.6. Also using
a threshold, this algorithm can identify false QRS complex. We decide to
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implement two different threshold, one high and one low,

Thigh[n] =

{
1 if MAQRS[n] > MAbeat + βz̄

0 otherwise

where β = 0.5 and z̄ is the mean value of the squared filter signal x2filt.

Tlow[n] =

{
1 if MAQRS[n] > MAbeat

0 otherwise

Afterward, we analyzed the Thigh and Tlow checking that the possible QRS
complexes identified have a time interval greater or equals to 97ms. When an
identified QRS complex on Thigh pass the control we search in that interval
the R peak looking at the highest value of xfilt. Furthermore, an AR model
is implemented using the measure

d(i) = R(i)−R(i− 1)

where d(i) is a temporal series given by the difference of two consecutive
positions of the R peak. With the AR model, we can predict the value of
d(i+1). We search around the predicted position if there is a valid Thigh QRS
complex. If there is a valid Thigh QRS complex, a new R peak is extracted in
the identified Thigh interval. Otherwise, we search around the same predicted
position if there is a valid Tlow QRS complex and we use this interval to
search the new R peak.

After we have identified all the R peak in the EKG signal and create the
temporal series d(i), we can extract stress indexes. One of the stress indexes
is the heart rate variability (HRV) spectral power. First, we resample the d
series to 4Hz and, then, we analyze a two-minute sliding window extracting
the power spectrum with the Welch periodogram [44]. From this spectrum
analysis, we extract the frequency power in the interval 0.04Hz - 0.15Hz called
Low Frequency (LF) and in the interval 0.15Hz - 0.4Hz called High Frequency
(HF). We are interested in the ratio between low frequency (LF) and high
frequency (HF) (LF/HF) that is a stress index since the LF is influenced
mostly by the Sympathetic Nervous System and the HF is influenced by
the Parasympathetic Nervous System. So when a person is stressed, the
LF activity increases and the HF activity decreases. Therefore, the more a
person is stressed, the higher is the LF/HF ratio.
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Another stress metric extracted from the EKG is the heart rate (HR)
obtained from the d series.

HR(i) = 60s/d(i)

The HR is measured as beat per minute and this is why we divide 60s with
the time between two R peaks.

Skin conductance

The SC raw is resampled to 4Hz. Afterward, the signal is deconvolved using
the Bateman function to obtain the SC driver [10]. This deconvolution has
the disadvantage that amplifies error noise to high frequency. To solve this
problem, the deconvolution output signal is convolved with a Gaussian filter
equivalent to a low-pass filter. The resulting of this process is the SC drive
signal dSC [n]. This signal is the sum of two components, the driver of the
phasic component (dph) and the driver of the tonic component (dto).

dSC [n] = dph[n] + dto[n]

To estimate the tonic component of the SC we performed a peak detection
on the dSC [n] function in order to identify impulses. An impulse section is
defined by the local minima preceding and succeeding the peak in time. All
time sections that are not part of detected impulses are considered to reflect
non-overlapped tonic component.

Finally, dto[n] is estimated for a time grid with 10s spacing by averaging
the values of available inter-impulse sections within the range of half of the
grid spacing before and after the grid points. We interpolate this values
based on the grid data to obtain dto[n] (Figure 4.7). Convolving the dto[n]
with the Bateman function, we obtained the tonic component (TC) of our
SC signal. The phasic component (PC) is retrieved subctracting to the SC
signal the tonic component. The phasic component of the skin conductance
is a reliable measure of the stress of a person. Furthermore, it is event-related
because the response to an event is rapid (1s - 4s).

Another stress metric extracted from the skin conductance is the orienting
response [22] [20]. To extract the orienting response features, we detected the
onsets and peaks of the orienting responses by first detecting slopes exceeding
a critical threshold (0.5) and then finding the local minimum preceding that
point (onset) and the local maximum following that point (peak). Afterward,
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Figure 4.7: The SC driver dSC [n] and the tonic driver dto[n]

for each pair of onset and peak, we extract three orienting response features
Figure 4.8:

• The magnitude that is the difference between the peak and the onset
values

OM = vpeak − vonset

• The duration that is the difference between the peak and the onset
time

OD = tpeak − tonset

• The energy that is the area of the response

OA =
1

2
∗OM ∗OD

Also the frequency of the orienting responses give us stress information. With
this stress index, we detected the most stressful events.
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Figure 4.8: An example of orienting response features extracted from the
skin conductance (SC) [20] [22]

4.2.2 Gaze position

The Pupil eye tracker needs its software to work. With the Pupil software,
we can calibrate the eye tracker before any acquisition using a marker and
we can save locally the acquired data. This software also extracts useful
information about the gaze and the pupil.

The output of this software is a series of CSV files and the three eye
tracker cameras video. In these CSV, there is a timestamped information
on the gaze positions in the world camera images with related confidence
(Figure 4.10a) and the pupil diameter. Furthermore, we took the world
camera images and we processed them with a convolutional neural network
called YOLOv3 [30] (Figure 4.9) to perform object detection.

YOLOv3 is trained to identify more than 100 classes of objects. For our
purpose, we use it to identify only eight classes that include: car, truck, bus,
traffic light, motorbike, bicycle, person. For each identified object, YOLOv3
provides a confidence score that tells how good is the detection. We ana-
lyzed only detected objects with a confidence level greater than 25%, since
the results were pretty accurate, although the low confidence level used (Fig-
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Figure 4.9: The YOLOv3 detection network architecture. The network has
24 convolutional layers followed by 2 fully connected layers [30]

ure 4.10b).
Since the eye tracker world images acquired are taken from inside the

car, YOLOv3 detected our cockpit most of the time, classifying it as a car.
To overcome this problem, we excluded from the YOLOv3 output all the
bounding boxes, which dimension was greater than 60% of the entire frame.

4.2.3 Object detection and identification

We analyze the Velodyne point cloud using e deep neural network named
SECOND [48] [47]. SECOND, with his detection network structure (Fig-
ure 4.11) is able to identify in the 3D space of a point cloud, different driving
objects as cars, cyclist, buses, construction vehicles, motorcycles, pedestri-
ans, traffic cones, trailers, trucks and barriers. It is also able to provide the
orientation estimation of the objects detected.

We tried this network on our LIDAR data using the developer’s pre-
trained SECOND network, but the detection results were not good. Our low
detection results were due to the dataset used to train the pretrained network
called KITTI [15]. The KITTI dataset has a LIDAR with 64 layers that are
double our 32 layers. This mismatch causes the low detection result that we
obtained.

To overcome this problem, we trained the SECOND network using the
NuScene dataset [12], a large-scale public dataset for autonomous driving
developed by nuTonomy. NuScenes provide data from the entire sensor suite
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(a)

(b)

Figure 4.10: An example of the world camera image with the gaze position
represented as a purple circle on the following car after the Pupil software
extraction in (a). In (b) the bounding box generated by the YOLOv3 network

Figure 4.11: The SECOND detection network structure [48]

of an autonomous vehicle: 6 cameras, 5 radars and one lidar, all with a full
360-degree field of view. NuScenes comprises 1000 scenes, each 20s long and
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Figure 4.12: An example of the SECOND detection output on our point
clouds. The red boxes are cars while the purple ones are pedestrian

fully annotated with 3D bounding boxes for 23 classes and 8 attributes. This
dataset uses the same Velodyne HDL-32E sensors that we have on our car,
so the LIDAR data provided are the same LIDAR data that we acquired.

To analyze our point clouds with the SECOND network trained with
NuScene data, we converted our MongoDB point cloud documents into mul-
tiple files with the ”.bin” extension using the same data structure of the
NuScene dataset.

The output generated by the SECOND network for each point cloud
contains (Figure 4.12): the 3D position, orientation and dimension of the
bounding boxes detected, the labels of these bounding box (e.g. car, bicycle,
pedestrian, etc...) and the confidence of the detection. We have considered
only the detection with a score higher than the 60% that avoid false detection,
maintaining almost all the correct detection. Some false detections are still
present using this threshold, but it is not a problem since they are present
in only a small number of frames.

The information coming from this elaboration is crucial since we are able
to know what objects are around the car and the distance from these objects.

Since the LIDAR point clouds have a 360◦ horizontal field of view, we
had divided the field of view in 4 interval of 90◦ (Figure 4.13): front, back,
right and left.
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Figure 4.13: An example of identified objects position in an entire acquisition
divided in the four interval: front, back, left, right

We extract another driving information from Velodyne that is the time
headway, the time difference between the nearest identified object and is
calculated as:

Time headway =
distanceofnearestobjectinfront

speedofthecar

4.3 Data preparation

After we acquired the sensors and extracted new and useful information,
we needed to merge all this data in a data frame using the same sampling
frequency for all the time series. Furthermore, the time series sampling
frequency had to be fixed for the entire acquisition interval.

We have seen in Chapter 3 that the sensors installed in the vehicle acquire
at different sampling frequencies. We have also seen that data processing
sometimes changes the sampling frequency. We chose the 100Hz frequency
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Figure 4.14: Data pipeline from the source of data to the final merged
Dataframe used for the correlation analysis

that allows us not to lose any useful information. The frequency of 100 Hz
is much higher than needed for some stress indexes, which change with a
frequency of 1-4 Hz. Furthermore, 100Hz is the same frequency of both IMU
sensors from which we extract essential information on the vehicle dynamics.
We interpolate data when there are missing values only if valid data sur-
round the missing data. After interpolation, the missing information will be
considered as NaN that will be handled by our correlation analysis software.

In Figure 4.14 it is possible to visualize the data pipeline from the data
storage to the final data-frame. We retrieve the data from the MongoDB
database and the CSV generated by the Pupil software, extract new fea-
tures with the algorithms showed in section 4.2. After that, we merged all
these data downsampling and upsampling them. The merged data are used
subsequently for the correlation analysis.

4.4 Data analysis

The first data analysis we performed answered the question of which driving
feature affects the driver’s stress level and which values of a single feature
affect and how the stress level. This analysis is performed using the K-NN
algorithm [26] [35], an algorithm able to finds the correlation between a time
series and an events sequence.

This algorithm is applied for each driving session (manual driving, au-
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tonomous driving and manual driving as passenger) of each participant.
We considered for this analysis, 4 physiological stress indexes:

• Phasic component (PC) and tonic component (TC) of skin conductance

• Ratio between Low Frequency (LF) and High Frequency (HF) (LF/HF)
of EKG

• Heart rate (HR)

Furthermore, we considered 20 driving features:

• Angular velocities on xy axes obtained from the Xsens IMU

• Linear accelerations on xy axes obtained from the Xsens IMU

• Jerks on xy axes extracted from the Xsens IMU

• Angular velocity on xy axes obtained from the Velodyne IMU

• Linear acceleration on xy axes obtained from the Velodyne IMU

• Speed extracted from the Velodyne GPS

• Number of identified objects for the back, front, left and right position
extracted from the Velodyne point cloud

• Distance of the nearest identified object for the back, front, left and
right position extracted from the Velodyne point cloud

• Time headway extracted from the Velodyne point cloud

We analyze each physiological stress index, comparing them with each
driving feature obtaining 4 x 20 levels of correlations.

4.4.1 Event sequence identification

We needed, first of all, to identify the event sequence in environmental and
vehicle dynamics data. In a time series, the event sequence was identified
by searching when the time series values are above/below a threshold. Since
we did not know which thresholds to use to define the events, we used per-
centiles concerning all single acquisition. The percentiles gave us the possibil-
ity to test more easily different events threshold for a time series, identifying,
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Figure 4.15: An example of the events sequence (the red lines) extracted
from the Xsens linear acceleration on the x-axis (blue line) using the 99th
percentile that correspond to an acceleration of 11.17 m/s2

subsequently, the thresholds that maximize/minimize the stress level of the
driver/passenger. The algorithm used to obtain the event sequence from our
time series for a given percentile is defined in Algorithm 1. The events re-
turned by the Algorithm 1 had a minimum time between them since, without
this minimum time, we could have many events in a small time interval that
did not give us useful information. In Figure 4.15 an example of the events
sequence extracted from the Xsens linear acceleration on the x-axis using the
99th percentile that correspond to an acceleration of 11.17 m/s2.

Suppose the events sequence and a stress index time series have a cor-
relation relationship. Every time an event happened, it is possible to see
a corresponding change of the time series. To study the potential tempo-
ral relationships between an event’s occurrence and its corresponding change
of the time series, we compared the sub-series before and after the event
occurred.

The physiological features do not respond instantaneously to a stressful
event but have a delay or an advance in the response time. To take into
account the delay or the advance response time of the stress indexes, we
used some temporal parameter to select the rear and front sub-series:

• Latency: defined as the time between the end of the event and the
start of the effect on the physiological measure, if 0 it means that the
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Algorithm 1 Transformation of time series in event sequence

require time-series (TS), Percentile, PercentileStep, minimum time between
two events from 0 to T (min)
return Events

1: define Events = [ ]
2: if Percentile > 50 then
3: CurrentPercentile = 100
4: while CurrentPercentile > Percentile do
5: for i in 0. . . T do
6: if TS[i] >= CurrentPercentile of TS then
7: Events← i
8: i+ = min
9: end if

10: end for
11: CurrentPercentile − = PercentileStep
12: end while
13: else
14: CurrentPercentile = 0
15: while CurrentPercentile < Percentile do
16: for i in 0. . . T do
17: if TS[i] <= CurrentPercentile of TS then
18: Events← i
19: i+ = min
20: end if
21: end for
22: CurrentPercentile + = PercentileStep
23: end while
24: end if
25: Drop Duplicates of Events

change in the physiological index is considered immediately when the
event occurs.

• Duration: defined as the time window in which a physiological index
continue to change. The rear and the front sub-series must have the
same duration.

• Shift:defined as a temporal shift of the event occurrence. It can be ei-
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(a) 0s latency, 0s shift, 5s duration (b) 0s latency, +1s shift, 5s duration

(c) 1s latency, 0s shift, 5s duration (d) 0s latency, 0s shift, 10s duration

Figure 4.16: Example of temporal parameters. Front sub-series is defined by
a red color and rear sub-series by green color

ther negative which means that there is an anticipatory response in the
physiological indexes (for example before breaking) or positive which
menas that the physiological indexes changes after a certain amount of
time.

In Figure 4.16 is shown an example of latency, duration and shift use.

We used the Algorithm 2 to obtain the correlation relationship between an
events sequence and a time series using different percentile, latency, duration
and shift. For each event we applied different parameter to extract different
front and rear sub-series and, using another algorithm, we search if there is a
change between the front and the rear sub-series due to the event occurred.
We applied the same procedure for different percentile.

4.4.2 Correlation algorithms

The algorithm used for correlation analysis had to detect a change in the
physiological stress time series without knowing precisely what this change
means. Changes in our problem affect the whole system since, after a change,
the system does not return to the initial state but to a changed one. Indeed,
if we considered T0 as the driver’s initial state of body stress, when a stressful
event occurs, due to short-term stress, the state change in T1. After a certain
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Algorithm 2 Extraction of correlation relationship between an events se-
quence and a time series using different percentile, latency, duration and
shift
require physiological time-series (TS), environmental or vehicle time-series
(TS D)
result Correlations

1: define Arrays of percentiles[0. . . P],latencies[0. . . L],shifts[0. . . S] and du-
rations[0. . . D], Correlations=[ ]

2: for percentile in percentiles do
3: Events = Algorithm 1(TS D, percentile)
4: for latency in latencies do
5: for shift in shifts do
6: for duration in durations do
7: FrontStart = −duration+ shift
8: FrontEnd = +shift
9: RearStart = +shift+ latency

10: RearEnd = +duration+ shift+ latency
11: for event in Events do
12: Front = TS[event+ FrontStart : event+ FrontEnd]
13: Rear = TS[event+RearStart : event+RearEnd]
14: Correlations← Algorithm(Front, Rear)
15: end for
16: end for
17: end for
18: end for
19: end for

amount of time, depending on the person and which physiological index we
are considering, the influence of short-term stress decreases, but longer-term
stress could remain, returning to a stress state T0′ that is different from the
initial one. However, in our study, we considered only the short-term stress
and not the influence of longer-term stress. For this reason, we defined the
time between events to be equal or greater to the duration of short-term
stress.

Furthermore, in our problem, we extracted only the direction of change
(increase or decrease of stress) and not the magnitude of change, since it
depends on the person. So our correlation algorithm needed to consider each
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occurred event as a single event, searching for an increase or a decrease of
stress.

For the correlation study between rear and front sub-series, we com-
pared the performance in terms of accuracy and computational complexity
of four different algorithms: Pearson Correlation Coefficient (PCC), Auto-
Regressive Moving Average (ARMA), Nearest Neighbor Statistic Based Method
(NNSBM) and energy test.

Pearson Correlation Coefficient

The Pearson Correlation Coefficient is a method that measures the correla-
tion between two time series X and Y . The PCC dentoted as ρ, is calculated
as follows:

ρX,Y =
cov(X, Y )

σXσY
=

E[(X − µX)(Y − µY )]

σXσY

where cov is the covariance, µX and σX are the mean and the standard
deviation of X, µY and σY are the mean and the standard deviation of Y and
E[∗] denotes the expected value.

The Pearson Correlation Coefficient ranges from -1 to 1. A value of ρ = 1
implies a total linear correlation between X and Y , while a value of ρ = −1,
implies a total negative linear correlation. A value of ρ = 0, implies no
linear correlation. So the more the value of ρ is near to 0, the weaker is the
correlation between X and Y .

PCC is weak to outliers and might not be efficient if the population is
not normal.

Auto-Regressive Moving Average

The Auto-Regressive Moving Average (ARMA) model are widely used in
forecasting of time series. In our study, we compare prediction based on
front sub-series data with the rear sub-series data.

The AR (Auto-regressive) part involves regressing the variable on its own
past values. The MA (Moving Average) part involves modeling the error
term as a linear combination of error terms occurring contemporaneously
and at various times in the past. Given a time series Xt an ARMA(p,q)
model is defined as:

Xt − α1Xt−1 − . . .− αp′ = εt + θ1εt−1 + . . .+ θpεt−q
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To compare the prediction based on the front sub-series with the actual rear
sub-series we used the Root Mean Square Error (RMSE) defined as:

RMSE =

√√√√ n∑
i=1

(Xpredi −Xreari)2
n

where Xpred is the prediction value, Xrear the actual value of the rear sub-
series and n is the length of the sub-series. To define the parameters of the
ARMA model, we compared results using different parameters.

Nearest Neighbor Statistic Based Method

With the Nearest Neighbor Statistic Based Method (NNSBM) [35] [26] our
correlation analysis problem can be transformed to a multivariate two-sample
hypothesis-testing problem. Let X1, . . . , Xn1 and Y1, . . . , Yn2 be independent
random samples of <d from unknown distributions F (x) and G(x), respec-
tively, with corresponding densities f(x) and g(x). The hypotheses of the
two-sample problem can be stated as follows:{

H0 : F (x) = G(x)

H1 : F (x) 6= G(x)

If the H1 is true, that means that the probabilistic distribution F (x) is sta-
tistically different from the G(x) distribution.
Given Ω1 = {1, . . . , n1} and Ω2 = {n1 + 1, . . . , n} and label the pooled sam-
ples as Z1, . . . , Zn with n = n1 + n2 where

Zi =

{
Xi i ∈ Ω1

Yi−n1 i ∈ Ω2

With the NNi(r) that represent the r-th nearest neighbour to the sample
point Zi we define:

Ii(r) =

{
1 if NNi(r)belongs to same sample as Zi

0 otherwise

In order to test our hypothesis, we considered the statistic:

Tk,n =
1

nk

n∑
i=1

k∑
r=1

Ii(r)
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which is the proportion of all k nearest neighbor comparisons in which a
point and its neighbor are members of the same sample. The Tk,n is small
under the null hypothesis H0 and large when the two sub-series are different.

Energy test

The energy test [40] is a statistical distance between two observations. The
energy test is based on Newton’s gravitational potential energy. The idea of
energy statistic is to consider statistical observations as bodies governed by a
statistical potential energy, which is zero if and only if null hypothesis is true.
In our study, we used the two sample energy statistic corresponding to the
energy distance ε(X, Y ) for independent random samples X = X1, . . . , Xn1

and Y = Y1, . . . , Yn2 :

εn1,n2(X, Y ) =
2

n1n2

n1∑
i=1

n2∑
m=1

|Xi − Ym|−

1

n2
1

n1∑
i=1

n1∑
j=1

|Xi −Xj| −
1

n2
2

n2∑
l=1

n2∑
m=1

|Xl −Xm|

The statistic:
Tn1,n2 = (n1n2/(n1 + n2))εn1,n2

is applied for testing homogeneity (i.e. the equality of distributions X and
Y). The H0 null hypothesis is rejected for large values of Tn1,n2 .

4.4.3 Correlation algorithms comparison

For the comparison of the correlation algorithm, we used sub-series extracted
from our test acquisition with and without abrupt changes. We compare the
accuracy and complexity of each algorithm.

To evaluate the algorithms’ accuracy, we applied them to different sub-
series in which we knew if there was an abrupt change or not. We extracted
the ROC curve, measuring the true positive rate (TPR) and the false positive
rate (FPR) of the algorithm output. We calculated the TPR and FPR as:

TPR = TP/(TP + FN)

FPR = FP/(FP + TN)
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AUC range Accuracy classification
0.9 < AUC < 1.0 Excellent
0.8 < AUC < 0.9 Good
0.7 < AUC < 0.8 Worthless
0.6 < AUC < 0.7 Not Good

Table 4.1: Accuracy classification using the AUC value

p\q 0 1 2 3 4 5
0 - 0.75 0.56 0.52 0.56 0.77
1 0.78 0.79 0.80 0.75 0.70 0.64
2 0.79 0.79 0.81 0.69 0.63 0.56
3 0.84 0.85 0.87 0.82 0.79 0.61
4 0.79 0.83 0.90 0.77 0.70 0.59
5 0.77 0.85 0.82 0.74 0.72 0.61

Table 4.2: AUC results for the ARMA(p,q) model

where TP represents the true positive, FN represents the false negative, FP
represents the false positive and TN represent the true negative.
To generate a summary statistic from the ROC curve, we calculated the area
under the curve called AUC as:

AUC =

∫ 1

0

ROC(t)dt

The closer to 1 is the AUC, the more accurate the algorithm is. A value
of 0.5, instead, provides an accuracy equal to a random test. In Table 4.1 it
is possible to see the accuracy classification for each AUC range.

For the ARMA(p,q) algorithm, we calculate the AUC value for different
p and q parameter (from 0 to 5) to identify the best parameters value to
use in our study. In Table 4.2 it is possible to see the AUC value for each
pair of p and q parameters. The best results had been obtained with the
ARMA(4,2) model with an AUC of 0.90.
Also for the NNSBM we calculated the AUC value for different values of the
k parameter (from 1 to 10). In Figure 4.17 is possible to see how AUC value
change with the different k parameters. The best result was obtained using
k = 4 with a AUC of 0.889.
For the Pearson Correlation Coefficient we obtained a AUC value of 0.77
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Figure 4.17: AUC value trend for different k values of the NNSBM algorithm

which result in a worthless accuracy level.
For the energy test we obtained a AUC value of 0.91 that is an excellent
result.
In Figure 4.18 it is possible to see the ROC curves with the relative AUC
values of all the algorithm analyzed. The 4-NNSBM, ARMA(4,2) and energy
test algorithms obtained similar accuracy results while PCC obtained a very
low accuracy.

Furthermore, we considered the complexity of the algorithms based on a
series of length n. The complexity of the algorithms are;

• PCC: O(n)

• ARMA(p,q): the complexity of this model depends on the value of
the parameters (p,q) and it is O((p+ q)n2)

• k-NNSBM: the complexity of the algorithm depends on parameter k
and it is O(k2n)

• Energy test: O(n2)

Despite the lowest complexity, the PCC algorithm had a too low accuracy
to be used. The other algorithms showed a similar level of accuracy. However,
the NNSBM algorithms turned out to be the most efficient, so we decided to
use this algorithm in our analysis.
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(a) (b)

(c) (d)

Figure 4.18: ROC curves and AUC values for the algorithm: (a) PCC, (b)
ARMA(4,2), (c) 4-NNSBM, (d) energy test

4.4.4 Application of correlation algorithms

Applying the 4-NNSBM algorithm only to the rear and front sub-series might
not be enough to understand if there is a change in the time series due to
the event occurred [26]. To better understand if there was a change in the
time series due to an event, we need to find the average correlation for every
considered time-series using it as a reference threshold.

To compute the average correlation for a time-series, we randomly sam-
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Algorithm 3 Computation of the average level of correlation for a time
series
require TS = time-serie with timestamps from 0 to T, latency, shift, dura-
tion, maxIterations, minIterations, maxConfidence
result AverageCorrelation

1: define Correlations=[ ]
2: FrontStart = −duration+ shift
3: FrontEnd = +shift
4: RearStart = +shift+ delay
5: RearEnd = +duration+ shift+ delay
6: for iterations in[0 . . .maxIterations] do
7: r = Random i ∈ [0 . . . T ]
8: Front = TS[r + FrontStart : r + FrontEnd
9: Rear = TS[r +RearStart : r +RearEnd]
10: Correlations← NNSBM Algorithm(Front, Rear)
11: if iterations > minIterations then
12: if Confidence(Correlations) ≤ maxConfidence then
13: break loop
14: end if
15: end if
16: end for
17: AverageCorrelation = average(Correlations)

pled the considered time series and, applying the 4-NNSBM algorithm to each
random front and rear sub-series, we obtained correlation values that were
used to compute an average level of correlation. This algorithm is showed in
Algorithm 3, where it is also possible to see that this algorithm have a mini-
mum number of iteration (30). Algorithm 3 stops when a maximum number
of iteration is reached (5% of all population) or when the confidence interval
is sufficiently small (Figure 4.19). In Figure 4.20 there is an example of the
correlation average computed using our algorithm on different time series.

Once we had computed the average correlation of random samples of a
time series, we needed to understand if, on average, the time-series increased
or decreased.

We applied the Algorithm 4 that compare the average correlation com-
puted using the Algorithm 3 with a correlation of new random samples. If
the correlation of the new random samples is below the average correlation,
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Figure 4.19: Example of average correlation’s trend on different iterations
with the confidence interval

Figure 4.20: Average level of correlation and confidence interval for different
time-series computed with Algorithm 3

it means that there is a change in the values between the front and rear sub-
series. To identify whether there is a significant value increase or decrease
from front to rear sub-series, we used the t-test. The tscore between front and
rear is computed by the following equation:

tscore =
µfront − µrear√

σ2
front+σ

2
rear

n

where µfront and µrear are the mean values of front and rear sub-series.
σfront and σrear are their variance values. If tscore < −α we have a posi-
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Figure 4.21: Example of average increasing and decreasing probabilities trend
on different iterations with the confidence interval

Figure 4.22: Example of events extracted from the linear acceleration on x
axis with the information on whether each event has increased (blue vertical
lines) or decreased (red vertical lines) the phasic signal time series

tive monotonic effect and, if tscore > α we have a negative monotonic effect.
If tscore < |α| we can not determine the effect type with a high level of con-
fidence.
Algorithm 4 stops when a maximum number of iteration is reached or when
the confidence interval is sufficient small (Figure 4.21).

Afterward, we applied the Algorithm 4 but, instead of using random
samples, we used the events sequence extracted using the Algorithm 2. In
Figure 4.22 there is an example of events sequence extracted using Algo-
rithm 2 with the information retrieved using Algorithm 4 on whether each
event has increased or decreased the time series.

In order to compare the average correlation of increasing and decreasing
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Algorithm 4 Extraction of average probability that a time series increase
or decrease
require TS = time-series with timestamps from 0 to T, latency, shift, dura-
tion, α, maxIterations, minIterations, maxConfidence
result AverageIncreasing, AverageDecreasing

1: define Increasing = [ ], Decreasing = [ ]
2: AverageCorrelation = Algorithm 3(TS)
3: FrontStart = −duration+ shift FrontEnd = +shift
4: RearStart = +shift+ delay RearEnd = +duration+ shift+ delay
5: for iterations in[0 . . .maxIterations] do
6: r = Random i ∈ [0 . . . T ]
7: Front = TS[r + FrontStart : r + FrontEnd]
8: Rear = TS[r +RearStart : r +RearEnd]
9: Correlation = Algorithm(Front, Rear)

10: if Correlation < AverageCorrelation then
11: compute tscore
12: if tscore > α then
13: Increasing ← 1 Decreasing ← 0
14: else
15: if tscore < −α then
16: Increasing ← 0 Decreasing ← 1
17: else
18: Increasing ← 0 Decreasing ← 0
19: end if
20: end if
21: else
22: Increasing ← 0 Decreasing ← 0
23: end if
24: if iterations > minIterations then
25: if Confidence(Increasing) ≤ maxConfidence then
26: if Confidence(Decreasing) ≤ maxConfidence then
27: break loop
28: end if
29: end if
30: end if
31: end for
32: AverageIncreasing = average(Increasing)
33: AverageDecreasing = average(Decreasing)
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Figure 4.23: Example of probability that the average correlation of increasing
event sequence is higher than the average correlation of increasing random
samples

events sequence with the average correlation of increasing and decreasing ran-
dom samples, we used the Welch’s t-test [43] since our samples have unequal
size and unequal variance. The Welch’s t-test formula is:

t =
µX − µY√
σ2
X

n1
+

σ2
Y

n2

df =
(
σ2
X

n1
+

σ2
Y

n2
)2

σ4
X

n2
1(n1−1)+

σ4
Y

n22(n2−1)

where µX and µY are the mean of the samples, σX σY are the standard de-
viation of the samples, n1 and n2 are the samples size, t is the t statistic and
df is the degree of freedom.
Using Welch’s t-test, we have the probability that the average correlation of
increasing and decreasing events sequence is higher than the average corre-
lation of increasing and decreasing random samples. In figure Figure 4.23,
it is possible to see an example of the output of Welch’s t-test for increasing
events sequence.
Figure 4.24 showed a diagram of all the data analysis steps that we performed
from the time series to the probability of correlation.

Afterward, we studied how the results obtained from the whole proce-
dure with respect to percentiles since we had to understand how different
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Figure 4.24: Diagram of the data analysis steps from the time-series to the
correlation probability

Figure 4.25: Example of probability of correlation trend with respect to
percentile for the events sequence of jerk on x axis applied to the phasic
component of the skin conductance

percentiles influence the probability obtained. In Figure 4.25 is showed an
example of correlation probability with respect to percentiles.

Finally, to understand if a driving style feature impacts driver’s stress,
we compared the probability of correlation curves with respect to percentiles
(Figure 4.25) with two curves. One curve identifies a stress-relevant feature.
It starts from a correlation probability equal to 1 at the 100th and the 0th
percentile and decreases to 0.5 at the 50th percentile. The no-stress-relevant
curve, instead, is a flat line with a probability value of 0.5. We use the root
mean square error to understand whether a curve is nearer to the stress-
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Figure 4.26: An example of probability of correlation trend compared to the
stress-relevant (RMSE=0.013) and no-stress-relevant (RMSE=0.1) reference
curves

relevant or the no-stress-relevant reference curves. In Figure 4.26 is it possible
to see the probability curve of Figure 4.25 compared with the stress/no-stress
reference curves. We use the ratio between RMSE as following:

stress ratio =
RMSE(no-stress-relevant)

RMSE(stress-relevant)

This ratio gave us information about how much the correlation probability
curve is near the stress-relevant curves with respect to the no-stress-relevant
curves. A good ratio must be at least 2 (higher is better) to have reasonable
confidence that the curve is much closer to stress relevant than no-stress
relevant reference.





C H A P T E R

5. Experiments

We tested all the hardware and software developed on field acquisitions.
These acquisitions aimed to validate the entire system pipeline using ques-
tionnaires and looking at the results obtained from the correlation analysis.
This chapter describes the preliminary test conducted to see that the plat-
form developed worked properly, showing preliminary results,and a field cam-
paign showing the final setup used, the protocol applied for the acquisition,
and the results. Furthermore, we discuss the results obtained.

5.1 Preliminary test

Before starting with the acquisition campaign, we made an on-road acqui-
sition to check that all our hardware and software worked properly. This
acquisition was performed on a single driver in a manual drive settings on
the route in Figure 5.1. We acquired all I.DRIVE vehicle sensors except for
the respiration sensor that was added after this test. After we checked that
all the sensors had been acquired properly without loosing any data, we use
the acquisition data to test the analysis software.

Firstly we tuned the duration, latency and shift parameters (Subsec-
tion 4.4.1) for each physiological index that we used. To compare and select
the best parameters to use in the data analysis, we searched the parameters
that maximize the stress ratio. We tested duration values from 1s to 20s,
latency values between 0s and 10s, and shift values from -5s to 5s. All the
following stress ratio graph are relative to the event sequence extracted from
the jerk on x-axis since, in literature, the longitudinal jerk was reported to
be a feature that has a high impact on the driver’s stress level[7].

As we can notice from Figure 5.2 we have the stress ratio values of ratio
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Figure 5.1: The test track route

between low frequency (LF) and high frequency (HF) (LF/HF) for different
duration. We have a peak for duration = 4s with a stress ratio below
1. Since a good stress ratio must be at least 2 to have a good correlation
probability, the LF/HF index is not considered as useful for our correlation
study. For this reason, we did not analyze the shift and latency parameter
for this stress index.

In Figure 5.3 we can see that the heart rate have a stress ratio peak at
10s with a value above 2. Using the duration value of 10s, we analyzed the
stress ratio for the latency. In Figure 5.4 it is possible to see that we have
a peak with a latency value of 2s. Finally, we studied the heart rate shift.
The best stress ratio value for the shift parameters is obtained for a value
of 1s (Figure 5.5). For correlation analysis of the heart rate, we then used a
duration value of 10s, a latency value of 2s, and a shift value of 1s.

In Figure 5.6 we report the stress ratio values for the tonic component
of the skin conductance according to duration values. We have 3 different
peaks but none of them exceeds a stress ratio value of 2. For this reason,
also for this index, we did not go further on the analysis.
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Figure 5.2: Stress ratio of LF/HF for different duration values

Figure 5.3: Stress ratio of heart rate for different duration values

The skin conductance’s phasic component had a peak at 5s with a stress
ratio above 3 (Figure 5.7). This stress ratio value provides the information
that, with a duration value of 5s this stress feature is useful to distinguish if
an event is stressful. We studied the skin conductance’s phasic component
stress ratio for latency values and we discovered that we had a peak with
a latency of 3s (Figure 5.8). Finally, for the phasic component we studied
the stress ratio for different shift values (Figure 5.9). We found that the
best shift value is 0s since, for this value, we have a stress ratio peak. For
correlation analysis of the skin conductance’s phasic component we used a
duration of 5s, a latency of 3s and a shift of 0s.
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Figure 5.4: Stress ratio of heart rate for different latency values

Figure 5.5: Stress ratio of heart rate for different shift values

This time parameters analysis confirmed that the phasic component is one
of the best physiological stress indexes as reported in the literature studies.
We discovered that also the heart rate was a good estimator of the driver’s
physiological stress.

We proved that the ratio between low frequency (LF) and high frequency
(HF) and the tonic component are not useful in our study for understanding
the driver’s stress. We expected a low stress ratio for the skin conductance’s
tonic component. Indeed, although several studies have shown that changes
in tonic component can be related to general changes of emotional state
and level of stress, it changes slowly, and the measurement intervals have
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Figure 5.6: Stress ratio of skin conductance’s tonic component for different
duration values

Figure 5.7: Stress ratio of skin conductance’s phasic component for different
duration values

to be long, from 10s to minutes. The low stress ratio value for the ratio
between low frequency (LF) and high frequency (HF) could happen since it
has computed on time windows of 2 minutes, and thus, it is not event-related.
Besides, the frequency analysis could be corrupt by noise on the EKG signals
that are not a problem for the heart rate computation.

Since in the analysis of physiological data we discovered that the only
reliable stress indexes in our setup were the skin conductance’s phasic com-
ponent and the heart rate, we reported below the results obtained using only
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Figure 5.8: Stress ratio of skin conductance’s phasic component for different
latency values

Figure 5.9: Stress ratio of skin conductance’s phasic component for different
shift values

these stress features.

We computed, for each driving feature, the correlation probability accord-
ing to different percentiles using the algorithm described in Section 4.4. We
computed the stress ratio separately for high percentiles (50th-100th) and
low percentiles (0th-50th) since the correlation probability curves had differ-
ent trends with respect to the stress-relevant and no-stress-relevant curves
in the two percentile intervals. The different trend was due to the differ-
ent meaning that high percentile and low percentile had, depending on the



5.1 Preliminary test 85

Jerk X 2.75
Jerk Y 1.70
Jerk Z 1.59
Speed 1.27

Time headway pedestrians —
Time headway cars 1.55
Angular velocity X 0.48
Angular velocity Y 1.47
Angular velocity Z 1.38

Linear acceleration X 1.64
Linear acceleration Y 0.54
Linear acceleration Z 1.63

Linear velocity X 2.88
Linear velocity Y 1.30

Table 5.1: Stress ratio of driving features in correlation with skin conduc-
tance’s phasic component at high percentiles

driving feature considered. For example, for longitudinal acceleration, low
percentiles mean that the car is braking, and high percentiles mean that it
is accelerating.

In Table 5.1 we report the stress ratio at high percentile for each driving
feature with respect to the phasic component. The only driving features
that shows a stress ratio above 2 are the jerk and linear velocity on x-axis.
Time headway for the pedestrian is not available due to the few events that
occurred during this acquisition. A high value of jerk on x-axis denotes a
sudden increase in acceleration. A high jerk is frequent when the car starts
from a standstill. High linear velocity, instead, is frequent on the straight
road.

In Figure 5.10 and Figure 5.11 it is possible to see the correlation prob-
ability with respect the stress-relevant and no-stress-relevant curves for jerk
and linear velocity at high percentiles. Seeing at the figures, it is possible to
understand why the two curves have a high stress ratio.

In Table 5.2 we report the stress ratio at low percentile. As it is possible
to see, the driving features that showed a stress ratio value above 2 are
different with respect to high percentiles. In this case, the only driving
feature that has a high stress ratio is the angular velocity on y-axis. The
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Figure 5.10: Probability of correlation for Jerk on x in correlation with skin
conductance’s phasic component at high percentiles (blue curve) with re-
spect to stress-relevant (red dashed curve) and no-stess-relevant (blue dashed
curve)

Figure 5.11: Probability of correlation for linear velocity on x in correlation
with skin conductance’s phasic component at high percentiles (blue curve)
with respect to stress-relevant (red dashed curve) and no-stess-relevant (blue
dashed curve)
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Jerk X 1.34
Jerk Y 1.72
Jerk Z 0.75
Speed 0.46

Time headway pedestrians —
Time headway cars 1.68
Angular velocity X 0.64
Angular velocity Y 2.73
Angular velocity Z 1.59

Linear acceleration X 1.03
Linear acceleration Y 0.67
Linear acceleration Z 1.71

Linear velocity X 1.71
Linear velocity Y 1.82

Table 5.2: Ratio of driving style’s features in correlation with PC index at
low percentiles

angular velocity on y-axis provides information on how fast the pitch angle
changes. The pitch angle could change due to the road (downhill or uphill) or
the suspension movement when the car is braking or accelerating. Since our
test drives were performed on a flat road, the angular velocity on y-axis, in
our study, change only due to the car’s braking or accelerating. Figure 5.12
showed the correlation probability of the angular velocity on y-axis.

Table 5.3 showed the stress ratio at high percentile for each driving fea-
ture with respect to the heart rate. The heart rate confirmed what we had
found with the phasic component features. Indeed, considering the heart
rate, the driving features that show a high impact on the stress are jerk on
x-axis and linear velocity on x-axis. In Figure 5.13 and Figure 5.14 it is
possible to see the correlation probability curves for jerk and linear velocity
at high percentiles.

For low percentiles, the heart rate confirmed again what we discovered
analyzing the phasic component. Indeed, the HR considered the angular
velocity on y-axis as a stress factor (Table 5.4). Furthermore, the heart rate
considered as a stress factor also Jerk on z-axis. The jerk on z-axis denotes a
change in the vertical acceleration (perpendicular to the floor). Figure 5.15
and Figure 5.16 showed the correlation probability curve for the angular
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Figure 5.12: Probability of correlation for angular velocity on y in correlation
with skin conductance’s phasic component at low percentiles (blue curve)
with respect to stress-relevant (red dashed curve) and no-stess-relevant (blue
dashed curve)

Jerk X 2.35
Jerk Y 1.50
Jerk Z 1.95
Speed 1.09

Timeheadway pedestrians —
Timeheadway cars 1.62
Angular velocity X 0.91
Angular velocity Y 0.48
Angular velocity Z 0.40

Linear acceleration X 0.45
Linear acceleration Y 0.54
Linear acceleration Z 0.35

Linear velocity X 2.47
Linear velocity Y 1.51

Table 5.3: Ratio of driving style’s features in correlation with heart rate
index at high percentiles

velocity on y-axis and jerk on z-axis with the heart rate at low percentiles.



5.1 Preliminary test 89

Figure 5.13: Probability of correlation for Jerk on x in correlation with the
heart rate at high percentiles (blue curve) with respect to stress-relevant (red
dashed curve) and no-stess-relevant (blue dashed curve)

Figure 5.14: Probability of correlation for linear velocity on x in correlation
with the heart rate at high percentiles (blue curve) with respect to stress-
relevant (red dashed curve) and no-stess-relevant (blue dashed curve)

In this preliminary analysis, results demonstrate that not all the stress
indexes computed in our study were reliable for detecting the driver’s stress
in the wild. We showed that only the heart rate extracted from EKG and
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Jerk X 1.57
Jerk Y 1.44
Jerk Z 2.36
Speed 0.83

Timeheadway pedestrians —
Timeheadway cars 1.12
Angular velocity X 0.57
Angular velocity Y 2.16
Angular velocity Z 0.42

Linear acceleration X 1.16
Linear acceleration Y 1.84
Linear acceleration Z 0.58

Linear velocity X 1.56
Linear velocity Y 1.59

Table 5.4: Ratio of driving style’s features in correlation with heart rate
index at low percentiles

Figure 5.15: Probability of correlation for angular velocity on y in correlation
with the heart rate at low percentiles (blue curve) with respect to stress-
relevant (red dashed curve) and no-stess-relevant (blue dashed curve)

phasic component extracted from skin conductance are highly correlated with
driving features. Instead, the LF/HF and the skin conductance’s tonic com-
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Figure 5.16: Probability of correlation for jerk on z in correlation with the
heart rate at low percentiles (blue curve) with respect to stress-relevant (red
dashed curve) and no-stess-relevant (blue dashed curve)

ponent measures returned a low correlation with driving events. We expected
a low correlation for the skin conductance’s tonic component but not for the
LF/HF. Indeed, for the skin conductance’s tonic component is it known that
it changes slowly and, for this reason, the measurement intervals have to be
long (from 10s to minutes). Since we focused on the event-related stress in
our analysis, our measurement interval is too short (max 10s) to perceive
a change in the tonic component. For the LF/HF, instead, several studies
have shown that it is a valid stress index, but this study does not confirm it.
The EKG signal may have too much noise due to the driver’s movement or
the driver’s speaking. This noise could affect the frequency analysis and so
the LF/HF quality. Furthermore, the LF/HF is computed on a window of 2
minutes and, for this reason, it could be not so event-related as we expected.
Nevertheless, the LF/HF should be investigated further.

Because of the result obtained from this preliminary test, we decided
to study in the acquisition campaign only the skin conductance’s phasic
component, the heart rate and the LF/HF.
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5.2 Acquisition campaign

In the acquisition campaign, we tested our research questions using our plat-
form with several participants in three different scenarios: a common manual
drive, an autonomous drive, and a manual drive but in the passenger seat.

5.2.1 Participants and experimental setup

A total of 6 men aged between 24-32 years participated in our experiments.
Only PhD students and professors of Politecnico di Milano took part in
this study due to insurance issues. All participants held a valid driver’s li-
cense, and four of them had a previous autonomous driving experience, while
two had never experienced autonomous driving. Data were collected anony-
mously, and informed consent was obtained after explaining the task to the
participants. No rewards were given for participation in the experiments.
All experimental procedures were conducted in accordance with the permis-
sion of the Politecnico di Milano ethics commission granted on 2th December
2020.

The experiment took place on a 270mt route created in the Politecnico
di Milano campus (Figure 5.17) using the I.DRIVE instrumented vehicle
described in Chapter 3. This car was equipped with additional hardware and
software that enable the car to drive autonomously in a known environment.
Indeed, to drive the car autonomously, we created a test track’s map driving
the car on the predefined route and acquiring the lidar and GPS data.

5.2.2 Protocol

The driving study is divided into three different sessions: a common manual
drive, an autonomous drive, and a manual drive but in the passenger seat.

Before starting with the experiments, the participant had to read an in-
formative about the experiment’s aims, how the experiment was performed,
what the participant had to do, the possible risks connected to the exper-
iments and how we had handled the data respecting European privacy law
called GDPR. Afterward, the participant had to sign an informed consent
and a consent to data processing. Furthermore, the participant had to fill
a pre-drive questionnaire (Appendix A) with general questions about his
driving experience and stress level before the experiment.
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Figure 5.17: The track route

We had asked the participant to remove all the electronic devices he
had (i.g. smartphone, watches) since they might interfere with the Procomp
sensors. Afterward, we started to place on the participants the 3 electrodes to
measure the electrocardiogram (EKG) sensor, the 2 electrodes on the fingers
to measure the skin conductance (SC) and the chest band to measure the
respiration.

The participant wore the eye-tracking and performed the calibration pro-
cess. In the calibration procedure, the participant had to look at the center
of the marker (Figure 5.18) and slowly move his head in a spiral motion while
continuing to gaze at the center of the marker. The data collected during
the calibration period is used afterward from the pupil software to correlate
the world camera with the eye cameras.

Afterward, the participant entered the car sitting on the driver’s seat.
We connected all the physiological sensors to the Procomp. After a brief
check that all the sensors are working correctly, we asked the participants to
speak only if it is necessary. Indeed, speaking during an acquisition changes
the respiration rate and, consequently, the heart rate. At this point, we
started the acquisition with a 3 minutes baseline for the physiological sensors.
During the baseline, the participant had to relax with the eyes closed to avoid
distractions. When the 3-minute baseline has passed, the participant drives
manually on the track at the speed he prefers for 5 laps. After driving,
the participant had to fill a questionnaire (Appendix A) on the driving just
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Figure 5.18: The marker used for the eye tracker calibration

experienced.
Subsequently, we started again acquiring the 3 minutes baseline, but, in

this session, the participant experienced an autonomous drive for 5 laps. The
autonomous drive was performed at about 10-11 km/h to ensure maximum
safety. After this drive, we asked the participants to fill a questionnaire on
the autonomous drive just experienced.

Finally, we asked the participant to move to the passenger seat and we
acquired the participant baseline and the data on a manual drive but as a
passenger. The participant had to fill the last questionnaire on the manual
driving experienced as a passenger.

During the three baselines and the three driving sessions, we acquired
the vehicle, the environmental, and the physiological sensors installed in the
I.DRIVE car.

5.2.3 Results of the acquisition campaign

Time parameters analysis

In the first part of the analysis, we used each participant data acquired
in the three scenarios (autonomous, manual and passenger) to extract the
duration, latency and shift parameters for each stress index that we used (skin
conductance’s phasic component, heart rate, LF/HF and respiration rate).
To select the best parameters to use in the data analysis, we searched the
parameters that maximize the stress ratio as we did in the preliminary test.
All the following stress ratio are relative to the event sequence extracted
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from the jerk on x-axis. In this case, low percentiles of the jerk on x-axis
indicate an abrupt acceleration, while high percentiles of the jerk on x-axis
indicate an abrupt deceleration.

For the skin conductance’s phasic component we extracted each par-
ticipant’s stress ratio values for different durations in the range 1s - 10s.
We computed the best duration values on both high percentiles and low
percentiles. For high percentiles, we found that only participant 5 had a
stress ratio value above 2 for the duration of 5s (Figure 5.19a). We can
observe a peak above 2 also at a duration value of 1s for participant 5, but
the value is lower than the peak at 5s. For low percentiles, we discovered
that participant 1,5,6 had a high correlation value with a duration value of 5s
while participant 4 had a high stress ratio values for a duration of 6s (Fig-
ure 5.19b). Participant 5 presented again 2 peaks above 2 and we selected
the one with a higher value.

For the analysis of latencies and shift values of the skin conductance’s
phasic component we considered only low percentiles since they had shown
more correlation than high percentile. Furthermore, in these analyses, we
considered only the participants who showed a high correlation value in the
duration parameter analysis.

Figure 5.20 shows, for each participants, the stress ratio for different
latency values (0s - 5s). We found that participant 1 and 4 had a high
stress ratio for a latency value of 0s, participant 5 had a high correlation for
a value of 3s and participant 6 had a peak with a latency of 1s. Figure 5.21
showed, for each participants, the stress ratio for different shifts values (-2s
- 2s). We found that all the participants have a stress ratio value above 2
for a shift value of 0s.

In Table 5.5 are reported the duration, latency and shift parameter of
the skin conductance’s phasic component that we used in the subsequent
correlation analysis for each participant. For participants 2 and 3 we decided
to use a duration value of 5s, a latency value of 1s and a shift value of 0s since
they showed a low Stress ratio and no valid time parameters were extracted
for them.

For the heart rate we extracted each participant’s stress ratio values
for different durations in the range 2s - 20s. For both low percentiles (Fig-
ure 5.22a) and high percentiles (Figure 5.22b), we did not find a stress ratio
values above 2. This means that no participant had a high correlation with
the heart rate.

Since no participants showed a high correlation value, we decided to use
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(a) High percentiles

(b) Low percentiles

Figure 5.19: Stress ratio values of skin conductance’s phasic component for
different duration values. The red dotted horizontal line is the Stress ratio
threshold



5.2 Acquisition campaign 97

Figure 5.20: Stress ratio values of skin conductance’s phasic component at
low percentiles for different latency values. The red dotted horizontal line is
the Stress ratio threshold

Figure 5.21: Stress ratio values of skin conductance’s phasic component at
low percentiles for different shift values. The red dotted horizontal line is the
Stress ratio threshold
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(a) Low percentiles

(b) High percentiles

Figure 5.22: Stress ratio values of heart rate for different duration values.
The red dotted horizontal line is the Stress ratio threshold
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Participant Duration [s] Latency [s] shift [s]

1 5 0 0
2 - - -
3 - - -
4 6 0 0
5 5 3 0
6 5 1 0

Table 5.5: Values of duration, latency and shift used in the skin conductance’s
phasic component correlation analysis for each participant

for the subsequent correlation analysis of the heart rate, the time parameters
founded in the preliminary test: a duration of 10s, a latency of 2s and a shift
of 1s.

For the ratio between low frequency (LF) and high frequency (HF) (LF/HF)
we extracted each participant’s stress ratio values for different durations in
the interval 2s - 36s. For both low and high percentiles, we found that only
participant 2 had different stress ratio peaks above 2 (Figure 5.23a)(Figure 5.23b).
The highest peak for both low and high percentiles have a duration value of
32s.

We analyzed the latency and shift values only for participants 2 since
he was the only one that showed a high correlation in the duration study.
Figure 5.24a and Figure 5.24b show the stress ratio trend for different la-
tency values in the interval 0s - 5s. We discovered that for both low and high
percentiles, the best participant 2 latency value was 2s.

Finally, we computed the stress ratio for different shift values. Fig-
ure 5.25a shows that the best shift value was 1s for low percentiles while
Figure 5.25b shows that the best shift value for high percentiles was 2s.

For all participants that did not show a high correlation value, we used
the same parameters discovered for participant 2, and so, we used a duration
value of 10s, a latency value of 2s and a shift value of 1s.

For the respiration rate, we extracted each participant’s Stress ratio val-
ues for different duration in the interval 1s - 10s. For high percentiles (Fig-
ure 5.26a), we discovered that only participant 5 have a high Stress ratio
with a duration value of 2s while, for low percentiles (Figure 5.26b), partici-
pant 1 and 3 show a high correlation ratio at 2s while participant 5 showed
a high Stress ratio at 4s.
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(a) Low percentiles

(b) High percentiles

Figure 5.23: Stress ratio values of LF/HF for different duration values. The
red dotted horizontal line is the Stress ratio threshold
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(a) Low percentiles

(b) High percentiles

Figure 5.24: Stress ratio values of LF/HF for different latency values. The
red dotted horizontal line is the Stress ratio threshold
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(a) Low percentiles

(b) High percentiles

Figure 5.25: Stress ratio values of LF/HF for different shift values. The red
dotted horizontal line is the Stress ratio threshold
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(a) Low percentiles

(b) High percentiles

Figure 5.26: Stress ratio values of respiration rate for different duration
values. The red dotted horizontal line is the Stress ratio threshold



104 Experiments

Figure 5.27: Stress ratio values of respiration rate at low percentiles for
different latency values. The red dotted horizontal line is the Stress ratio
threshold

We analyzed the latency and shift values only for low percentiles since,
in the duration parameter analysis, we discovered that only one participant
showed a significant correlation at high percentiles. In the latency analysis
(Figure 5.27) we discovered that participant 1, 3 and 5 have a significant
Stress ratio value for a latency of 0s. For the shift parameter (Figure 5.28),
we found a Stress ratio value above 2 for participant 1 and 3 with a shift
value of 0s and, for participant 5 with a shift value of -1s.

In Table 5.6 are reported the duration, latency and shift parameter of the
resiration rate that we used in the subsequent correlation analysis for each
participant. For participants 2, 4 and 5 we decided to use a duration value
of 2s, a latency value of 0s and a shift value of 0s.

Correlation analysis

After the analysis of physiological data time parameters, we computed, for
each participant and each driving feature, the correlation ratio according to
different percentiles using the algorithm described in Section 4.4.

From Figure 5.29 to Figure 5.34 is possible to see the stress ratio related
to the skin conductance’s phasic component of each participant for every
driving features that we had considered. In Table 5.7 is possible to see the
frequency of the first 5 driving features that showed highest stress correlation
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Figure 5.28: Stress ratio values of respiration rate at low percentiles for
different shift values. The red dotted horizontal line is the Stress ratio
threshold

with the skin conductance’s phasic component.
The jerk on x-axis demonstrated that it is highly correlated with the

stress in both high and low percentiles. This means that the abrupt changes
in the acceleration in both acceleration and braking phase as an impact on the
stress observed with the skin conductance’s phasic component. The angular
velocity on x-axis, the linear acceleration on y-axis, and the angular velocity
on z-axis have a higher stress correlation. All these driving features identify,
in different ways, that the car is turning. The angular velocity on x identifies
a change in the roll angle due to the car suspension’s lateral movement. The
linear acceleration on y measures the lateral acceleration applied to the car.
The angular velocity on z measures a change in the yaw angle of the car.

In Table 5.7 is possible to notice that almost all the stressful driving
features found have a higher frequency in the autonomous drive scenario.
This is confirmed from Figure 5.35 that shows the stress ratio mean over
all participants in the autonomous, manual and passenger scenario. Indeed,
in Figure 5.35 is possible to see that the stress ratio using the skin conduc-
tance’s phasic component is higher in autonomous condition with respect to
the other two scenarios. The mean of the stress ratio in the manual scenario
is lower than the passenger scenario but not significantly, especially for low
percentiles.

We computed the stress ratio related to the respiration rate of each par-
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(a) High percentiles (b) Low percentiles

Figure 5.29: Participant 1 stress ratio of the skin conductance’s phasic com-
ponent for each driving features in the three driving scenarios (autonomous,
manual, passenger)

(a) High percentiles (b) Low percentiles

Figure 5.30: Participant 2 stress ratio of the skin conductance’s phasic com-
ponent for each features in the three driving scenarios (autonomous, manual,
passenger)
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(a) High percentiles (b) Low percentiles

Figure 5.31: Participant 3 stress ratio of the skin conductance’s phasic com-
ponent for each features in the three driving scenarios (autonomous, manual,
passenger)

(a) High percentiles (b) Low percentiles

Figure 5.32: Participant 4 stress ratio of the skin conductance’s phasic com-
ponent for each features in the three driving scenarios (autonomous, manual,
passenger)
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(a) High percentiles (b) Low percentiles

Figure 5.33: Participant 5 stress ratio of the skin conductance’s phasic com-
ponent for each features in the three driving scenarios (autonomous, manual,
passenger)

(a) High percentiles (b) Low percentiles

Figure 5.34: Participant 6 stress ratio of the skin conductance’s phasic com-
ponent for each features in the three driving scenarios (autonomous, manual,
passenger)
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Participant Duration [s] Latency [s] shift [s]

1 2 0 0
2 - - -
3 2 0 0
4 - - -
5 4 0 -1
6 - - -

Table 5.6: Values of duration, latency and shift used in the respiration rate
correlation analysis for each participant

Driving features A M P

High jerk on x 6 0 0
Low jerk on x 5 0 0

Low angular velocity on x 4 2 0
High linear acceleration on y 4 0 0
High angular velocity on z 3 1 0

Table 5.7: Frequency distribution of the most stressful driving features ob-
served between all participants in the three driving scenario (Autonomous,
Manual, Passenger) for the skin conductance’s phasic component

ticipant for every driving features. From Figure 5.36 to Figure 5.41 is possible
to see the stress ratio related to the respiration rate of each participant for
every driving features.

In Table 5.8 is possible to see the frequency of the first 5 driving features
that showed the highest stress correlation with the respiration rate. The
result found with the respiration rate confirmed what we discovered with the
skin conductance’s phasic component. Indeed, for the respiration rate, the
jerk on x was still one of the most stressful driving features, as also the linear
acceleration on y and the angular velocity on x. The only difference between
the two analysis was the angular velocity on z that, for the respiration rate,
did not show a high-stress correlation as for the skin conductance’s phasic
component.

Figure 5.42 confirmed, for the respiration rate, that the autonomous sce-
nario was more stressful than the manual scenario. For high percentiles (Fig-
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(a) High percentiles (b) Low percentiles

Figure 5.35: Mean Stress ratio values of the skin conductance’s phasic com-
ponent over all participants in the three driving scenario (Autonomous, Man-
ual, Passenger)

(a) High percentiles (b) Low percentiles

Figure 5.36: Participant 1 stress ratio of the respiration rate for each driving
features in the three driving scenarios (autonomous, manual, passenger)

ure 5.42a), the passenger scenario was the most stressful, and the difference
between the autonomous and the manual scenarios are not high. Instead,
for low percentiles, the passenger scenario had a similar stress ratio with
respect to the manual scenario.

We computed the stress ratio related to the heart rate of each participant
for every driving features. From Figure 5.43 to Figure 5.48 is possible to see
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(a) High percentiles (b) Low percentiles

Figure 5.37: Participant 2 stress ratio of the respiration rate for each features
in the three driving scenarios (autonomous, manual, passenger)

(a) High percentiles (b) Low percentiles

Figure 5.38: Participant 3 stress ratio of the respiration rate for each features
in the three driving scenarios (autonomous, manual, passenger)
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(a) High percentiles (b) Low percentiles

Figure 5.39: Participant 4 stress ratio of the respiration rate for each features
in the three driving scenarios (autonomous, manual, passenger)

(a) High percentiles (b) Low percentiles

Figure 5.40: Participant 5 stress ratio of the respiration rate for each features
in the three driving scenarios (autonomous, manual, passenger)
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(a) High percentiles (b) Low percentiles

Figure 5.41: Participant 6 stress ratio of the respiration rate for each features
in the three driving scenarios (autonomous, manual, passenger)

(a) High percentiles (b) Low percentiles

Figure 5.42: Mean Stress ratio values of the respiration rate over all partic-
ipants in the three driving scenario (Autonomous, Manual, Passenger)
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Driving features A M P

Low jerk on x 6 0 0
Low linear acceleration on y 3 1 0

High jerk on x 3 1 0
Low nearest car on the back 3 0 1
Low angular velocity on x 2 1 0

Table 5.8: Frequency distribution of the most stressful driving features ob-
served between all participants in the three driving scenario (Autonomous,
Manual, Passenger) for the respiration rate

(a) High percentiles (b) Low percentiles

Figure 5.43: Participant 1 stress ratio of the heart rate for each features in
the three driving scenarios (autonomous, manual, passenger)

the stress ratio for each participant for low percentiles and high percentiles.

We decided to analyze the correlation of the heart rate despite, in the time
parameters analysis, we discovered that the stress correlation of the heart
rate was very low. The correlation analysis confirmed the low correlation
value that we found in the time parameters analysis, and no driving features
showed a significant frequency over all the participants.

Despite the low stress ratio showed from the heart rate, in Figure 5.49
is possible to see that also for the heart rate the stress ratio mean in the
autonomous scenario is higher than the manual and passenger scenario. How-
ever, in this case, the passenger scenario showed a slightly lower stress cor-
relation with respect to the manual drive.

Finally, we computed the stress ratio related to the heart rate variability
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(a) High percentiles (b) Low percentiles

Figure 5.44: Participant 2 stress ratio of the heart rate for each features in
the three driving scenarios (autonomous, manual, passenger)

(a) High percentiles (b) Low percentiles

Figure 5.45: Participant 3 stress ratio of the heart rate for each features in
the three driving scenarios (autonomous, manual, passenger)



116 Experiments

(a) High percentiles (b) Low percentiles

Figure 5.46: Participant 4 stress ratio of the heart rate for each features in
the three driving scenarios (autonomous, manual, passenger)

(a) High percentiles (b) Low percentiles

Figure 5.47: Participant 5 stress ratio of the heart rate for each features in
the three driving scenarios (autonomous, manual, passenger)
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(a) High percentiles (b) Low percentiles

Figure 5.48: Participant 6 stress ratio of the heart rate for each features in
the three driving scenarios (autonomous, manual, passenger)

(a) High percentiles (b) Low percentiles

Figure 5.49: Mean Stress ratio values of the heart rate over all participants
in the three driving scenario (Autonomous, Manual, Passenger) for the heart
rate
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(a) High percentiles (b) Low percentiles

Figure 5.50: Participant 1 stress ratio of the heart rate variability for each
features in the three driving scenarios (autonomous, manual, passenger)

(a) High percentiles (b) Low percentiles

Figure 5.51: Participant 2 stress ratio of the heart rate variability for each
features in the three driving scenarios (autonomous, manual, passenger)

of each participant for every driving features. From Figure 5.50 to Figure 5.55
is possible to see the stress ratio for each participant for low percentiles and
high percentiles.

The correlation analysis confirmed the low correlation value that we found
in the time parameters analysis, and no driving features showed a significant
frequency over all the participants. However, it is possible to see in Fig-
ure 5.56 that also for the heart rate variability, the stress ratio mean in
the autonomous scenario is higher than the manual and passenger scenario.
Furthermore, the passenger scenario and the manual scenario show a similar
stress correlation.
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(a) High percentiles (b) Low percentiles

Figure 5.52: Participant 3 stress ratio of the heart rate variability for each
features in the three driving scenarios (autonomous, manual, passenger)

(a) High percentiles (b) Low percentiles

Figure 5.53: Participant 4 stress ratio of the heart rate variability for each
features in the three driving scenarios (autonomous, manual, passenger)
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(a) High percentiles (b) Low percentiles

Figure 5.54: Participant 5 stress ratio of the heart rate variability for each
features in the three driving scenarios (autonomous, manual, passenger)

(a) High percentiles (b) Low percentiles

Figure 5.55: Participant 6 stress ratio of the heart rate variability for each
features in the three driving scenarios (autonomous, manual, passenger)
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(a) High percentiles (b) Low percentiles

Figure 5.56: Mean Stress ratio values of the heart rate variability over all
participants in the three driving scenario (Autonomous, Manual, Passenger)

Questionnaire analysis

We analyzed the post-driving questionnaires (Appendix A) that participants
filled after each scenario to compare the questionnaire results with the cor-
relation analysis results.

In the questionnaire, we asked the participants to evaluate their agitation
during the driving scenario. In Figure 5.57, it is possible to see that the
participants evaluated the autonomous scenario as the scenario where they
felt most agitated. This confirmed what we discovered in the correlation
analysis. Contrary to what we discovered in the correlation analysis, the
participants evaluated the passenger scenario as the calmest scenario.

In our questionnaire, we also asked the participants to rate the stress
they felt using multiple statements. We calculate the average over all the
statements for each participant. After, we compute the mean of all the
participants. Figure 5.58 shows again that the autonomous scenario was the
most stressful, while the other two scenarios had a similar degree of stress. If
we compared Figure 5.58 with Figure 5.57 it is possible to observe that the
results were similar but, all the values in Figure 5.58 were smaller than the
values in the Figure 5.57.

We asked to the participants to evaluate the degree of control they felt
during the driving scenario. Figure 5.59 demonstrates that, in the au-
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Figure 5.57: Mean of the degree of agitation over all participant in the three
scenarios on a scale from 0 (very calm) to 5 (very agitated)

Figure 5.58: Mean of the degree of stress over all participant in the three
scenarios on a scale from 0 (no stress) to 5 (stressed)
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Figure 5.59: Mean of the degree of control over all participant in the three
scenarios on a scale from 0 (no control) to 5 (full control)

tonomous scenario, the participants perceived a lack of of control. The lack
of control was perceived from the participants also in the passengers scenario.

5.2.4 Discussion

The time parameters results demonstrated that not all the stress indexes com-
puted in our study were reliable for detecting the driver’s stress in the wild.
We showed that only the phasic component extracted from skin conductance
and the respiration rate were correlated with driving features. Instead, the
LF/HF and the heart rate measures returned a low correlation with driving
events. We expected a low correlation for the LF/HF since the results we
obtained in the preliminary test, but we did not expect a low correlation for
the heart rate.

The skin conductance’s phasic component demonstrated to be a reliable
stress index in our experiments since, in every acquisition, it showed good
correlation values with the driving features. Furthermore, the results ob-
tained with this stress index confirmed the questionnaire results.

The HR need further investigation since, in the preliminary test, it showed
an excellent correlation, and it confirmed the skin conductance’s phasic com-
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ponent results. In contrast, in the acquisition campaign, it showed to have
a very low correlation. A cause of the low correlation should be due to the
noise in the EKG signal. Indeed, in the acquisition campaign, we faced with
different body types and, when the participant sat in the car, sometimes
happened that the EKG became really noisy due to the electrode on the
iliac crest that, sometimes, in the sitting position, did not provide the best
contact with the skin.

We demonstrated that the physiological indexes’ time parameters changed
from index to index and were not the same for all participants. We found
that some time parameters had the same value over all the participants, like
the shift for the skin conductance’s phasic component or the latency for the
respiration rate. However, we need more data to demonstrate that these
fixed parameters are valid for every possible participant. Furthermore, the
time parameters could also change in time when getting more comfortable
with autonomous driving. Constant monitoring in time for each participant
could lead to the detection of changes in the time parameters, but we not
investigated the time parameters evolution.

The correlation analysis showed that the jerk on x-axis, the linear accel-
eration on y-axis and the angular velocity on x-axis are the driving features
that mostly affect the participants’ stress. The jerk on x showed a high
correlation on both acceleration and braking phases since it showed a high
correlation for both low and high percentiles. The angular velocity on x does
not have a strong correlation for high values; this means that the stress is
detected only when the car is turning on the left.

Both the skin conductance’s phasic component and the respiration rate
showed the same correlation results with the driving features, except for an-
gular velocity on z, which was only detected for the phasic component and the
nearest car on the back that was only detected for the respiration rate. Since
we found a correlation with the angular velocity on x, the correlation with
the angular velocity on z could make sense since it is another feature that
provides information on how fast the car is turning. Instead, the correlation
with the nearest car on the back might be a false positive detection since we
had very few cars following us during the test. However, we cannot say pre-
cisely why we have this correlation difference between the two physiological
indexes with our analysis, and a further investigation is needed.

In both the skin conductance’s phasic component and the respiration
rate analysis, the stressful driving features founded had a higher frequency
in the autonomous drive scenario. It should happen due to the higher stress
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level that we detected in the autonomous scenario. Indeed, in the manual
and passenger scenarios, we found a lower stress level than the autonomous
one. Consequently, we found a shallow frequency for the stressful driving
features. It means that the driving features discovered in the three scenarios
are not the same due to the difference in the stress level detected in the three
scenarios.

Since in the autonomous scenario, we limited the car’s speed to only 10-11
km/h, the higher stress level that we detected in the autonomous scenario
than the other two scenarios is most significant. Indeed, If we detected a
higher stress level in the autonomous scenario at a speed of 10-11 km/h, this
means that at a higher speed, the stress should be much higher.

Finally, comparing the correlation analysis results and the questionnaire’s
answers, we discovered that the questionnaire answers confirmed the results
extracted from the physiological sensors. Indeed, questionnaire answers con-
firmed that the autonomous drive is the most stressful scenario in both the
degree of agitation and stress. Furthermore, the questionnaires highlighted
that the participants felt a lack of control in the autonomous scenario. As we
expected, the participant’s degree of control was almost maximum in manual
driving.





C H A P T E R

6. Conclusion and future
research direction

The thesis work presented here brings new possibilities of study for the emerg-
ing domain represented by the passenger’s comfort as a physiological issue.
There is little available knowledge in the on-road passenger’s comfort study,
but it will become crucial for the future autonomous cars’ acceptance and
trust.

To address this purpose, we developed a platform that allows studying,
in a real environment, the interaction between driver and car, focusing on
the driver stress and the driving factor that impacts driver stress. Its design,
from the sensors to the acquisition and processing software, was discussed in
detail, aiming to provide a view of challenges existing in the domain.

The acquisition and processing software has been developed keeping the
entire system modular and allowing the system to be flexible. For example,
in our system, it is easy to add a new sensor with the relative ROS acquisition
driver or add new driving measures or physiological indexes to the processing
software. Such modularity is essential since it allows us to evolve the whole
system easily and test several configurations.

We developed a software able to detect, using the K-nn algorithm, the
probability of correlation between a time-series extracted from Physiological
stress indexes and an event sequence extracted from Vehicle or Environ-
mental’s data. A correlation between a time-series and an event-sequence
indicates an increase in the driver’s stress level.

The on-field experiments that we conducted using our platforms allowed
us to achieve our thesis’s primary goal, which was to validate the entire sys-
tem. Indeed, the correlation analysis results demonstrated that our platform
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is able to acquire and process physiological and driving features extracting in-
formation on the driver’s stress that are consistent for different physiological
stress indexes and are confirmed by the questionnaire answers.

From all Physiological indexes considered in our study, the ones that ob-
tained higher correlation were the respiration rate and the skin conductance’s
phasic component. The information obtained from the two physiological in-
dexes is similar. Both demonstrate that the longitudinal jerk, the linear
acceleration on y and the angular velocity on x-axis are the driving factors
that impact the driver comfort/stress. This answered our research questions
on which physiological data provides more information on the driver’s stress
level and the driving factors that impact driver comfort/stress.

With the respiration rate and the skin conductance’s phasic component
we demonstrated that the stress level in an autonomous drive is higher than
a manual drive or a manual drive as a passenger. Questionnaire answers
confirmed the higher stress level in the autonomous drive. Furthermore, the
questionnaires proved that the higher stress level in the autonomous drive is
also due to the lack of control.

Our research has provided a hardware and software platform that is the
base from which we can perform different studies on the interaction between
driver/passenger and car, expanding the little available knowledge on this
field.

6.1 Future work

There are a series of future developments for the work we have conducted.
Firstly, we will make new acquisitions to have more data to study and

have participants with different backgrounds and experiences.
With the data acquired and future data, we will develop and test new

algorithms to detect stress, comparing different methods’ results. We will
also add to the analysis more stress indexes like the temporal analysis of the
heart rate variability (HRV) and new driving parameters as the acceleration
and braking pedals movements and the steer encoder.

This research is part of the I.DRIVE project where it is available a fixed-
base simulator. The next step of our research will be to validate our simula-
tor with the vehicle data. We have already done a first validation study [33]
where we presented the methodological and conceptual description of a vali-
dation protocol. For the previous validation study, we used only the galvanic
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skin response and the speed measures since, in the previous version of the
set-up, the vehicle had only a GPS and a skin conductance sensor. We will
validate the simulator with the actual vehicle set-up by comparing the phys-
iological responses and the driving features in the same scenario. The future
validated link between the I.DRIVE simulator and the vehicle will allow the
development of integrated research paradigms, optimizing both experimental
settings’ pros and cons.

Another opportunity for improvements is the use of less invasive phys-
iological sensors inside the vehicle. Indeed, our physiological sensors need
electrodes that are connected by wires to the Procomp. These wires could
annoy the driver during some maneuvers and force him to perform unnatural
movements increasing the stress. We already tested two methods to measure
the Remote PhotoPlethysmoGraphy (rPPG) that allows extracting cardiac
information just by analyzing a video stream of a person’s face.

In the first test, we used a high-rate (120fps) RGB camera to acquire the
driver’s face and tested it in a real scenario. It was revealed to be inaccurate
due to light condition changes during the drive and poor face tracking.

In the second test, we used a Single-Photon Avalanche Diode (SPAD)
camera in order to perform rPPG with higher accuracy, especially in low
illumination conditions, exploiting the higher sensitivity of the SPAD sensors
[27]. We tested it inside the car in a static condition and the results showed
high accuracy. In the feature, we will test it on real scenarios to see if the
accuracy stays high.

Also for eye tracking, there are systems based on cameras mounted on the
cockpit of the car. An eye tracker based on cameras would avoid using glasses
that could be annoying, especially for those who already wear glasses. An
interesting future development will be to apply the correlation information
between stress and driving features to an autonomous car local planner.
Indeed, our system can detect the driving features that impact the driver’s
stress, giving the information on which value (percentile) of each stressful
driving feature has a high impact on the stress. With this information, we
could modify an autonomous car planner’s parameters to make the passenger
feel less stressed. The development of an autonomous car planner able to
considered the passenger’s stress information would help a broad acceptance
of the car automation technology.

We are developing a local planner that will control our vehicle using the
Model Predictive Control (MPC) framework [4]. With this approach, we will
add, remove, or modify the control parameters’ constraints with the infor-
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mation coming from our platform, making the driving style more relaxing
for the passenger.
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A P P E N D I X

A. Questionnaires

These are the pre and post driving questionnaires proposed to the experiment
participant as defined in the protocol at subsection 5.2.2 to understand the
participant backgrounds and experiences and if there has been any change
after a driving scenario in driver’s stress and mood.

A.1 Pre-Driving Questionnaire

1. What is your gender?

• Male

• Female

• Other

• Prefer not to say

2. How old are you? ............

3. Do you own a driving license?

• Yes

• No

4. How long have you had your driving license?

• Less than 5 months

• From 5 months to 1 year
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• From 1 year to 2 years

• From 2 years to 5 years

• For more than 5 years

5. Do you or your family own a car?

• Yes

• No

6. How often do you drive a car?

• Never in last 3 months

• Twice a month

• Once a week

• Twice or three times a week

• Everyday

7. The following questions relate to your experience as a driver in an
everyday driving scenario. Please circle the appropriate number - there
are no right or wrong answers.

• I feel unsafe at high speeds:
Not at all / Somewhat / Moderately / Very much

• I get uncomfortable with heavier congestion:
Not at all / Somewhat / Moderately / Very much

• Getting close to other vehicles make me feel uncomfortable:
Not at all / Somewhat / Moderately / Very much

8. The following questions relate to your experience as a passenger in
an everyday driving scenario. Please circle the appropriate number -
there are no right or wrong answers.

• I feel unsafe at high speeds:
Not at all / Somewhat / Moderately / Very much

• I get uncomfortable with heavier congestion:
Not at all / Somewhat / Moderately / Very much
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• Getting close to other vehicles make me feel uncomfortable:
Not at all / Somewhat / Moderately / Very much

9. How do you consider your driving style?

• Very Defensive

• Defensive

• Aggressive

• Very Aggressive

10. Which is your favourite driving style as passenger?

• Very Defensive

• Defensive

• Aggressive

• Very Aggressive

11. Have you ever ridden an autonomous vehicle?

• Yes

• No

12. On a scale from 1 to 10 ( being 1 Not Trusting and 10 being Fully
Trusting) please rate your overall trust in autonomous vehicles and
their safety:
1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10

Emotional State Analysis
SAM (Self-Assessment Manikin) Scale

Choose the figure that better describes your emotional state

1. Emotive state
From very distressed to very euphoric
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2. Degree of agitation
From very calm to very agitated

3. Degree of self-control
From no control to full control of situation

A.2 Post-Driving Questionnaire

1. How do you rate the experience of autonomous driving?
From 0 very negative to 5 very positive
0 / 1 / 2 / 3 / 4 / 5

2. Did you feel comfortable wearing physiological sensors?
From 0 very uncomfortable to 5 very comfortable
0 / 1 / 2 / 3 / 4 / 5

3. Would you like to repeat the autonomous driving?
From 0 absolutely no to 5 absolutely yes
0 / 1 / 2 / 3 / 4 / 5

Please read each statement and circle the appropriate number to indicate how
you felt during the drive about various situations and driving characteristics.
There are no right or wrong answers. Do not spend too much time on any
one statement.

1. Vehicle speed?
Very Uncomfortable / Uncomfortable / Comfortable / Very Comfort-
able
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2. Vehicle acceleration?
Very Uncomfortable / Uncomfortable / Comfortable / Very Comfort-
able

3. Vehicle jerk?
Very Uncomfortable / Uncomfortable / Comfortable / Very Comfort-
able

4. Vehicle speed on turns?
Very Uncomfortable / Uncomfortable / Comfortable / Very Comfort-
able

5. Vehicle braking?
Very Uncomfortable / Uncomfortable / Comfortable / Very Comfort-
able

6. Distances from other vehicles?
Very Uncomfortable / Uncomfortable / Comfortable / Very Comfort-
able

7. Distances from pedestrians?
Very Uncomfortable / Uncomfortable / Comfortable / Very Comfort-
able

Please read each statement and circle the appropriate number to indicate
how you felt during the drive. There are no right or wrong answers. Do not
spend too much time on any one statement.

1. I felt nervous
Not at all / Somewhat / Moderately / Very Much

2. I felt jittery
Not at all / Somewhat / Moderately / Very Much

3. My body felt tense
Not at all / Somewhat / Moderately / Very Much

4. I felt tense in my stomach
Not at all / Somewhat / Moderately / Very Much

5. My body felt relaxed
Not at all / Somewhat / Moderately / Very Much
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6. My heart rate was racing
Not at all / Somewhat / Moderately / Very Much

7. I felt my stomach sinking
Not at all / Somewhat / Moderately / Very Much

8. My hands were clammy
Not at all / Somewhat / Moderately / Very Much

9. My body felt tight
Not at all / Somewhat / Moderately / Very Much

Emotional State Analysis
SAM (Self-Assessment Manikin) Scale

Choose the figure that better describes your emotional state

1. Emotive state
From very distressed to very euphoric

2. Degree of agitation
From very calm to very agitated

3. Degree of self-control
From no control to full control of situation
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