
Politecnico diMilano

School of Industrial and Information Engineering
Department of Mechanical Engineering

Master of Science in
Mechatronics and Robotics

Design and implementation of
real-time edge computing
algorithm for tool wear

forecasting in industrial

machinery

Supervisor:
Prof. Ing. Alfredo Cigada

Co-Supervisor:
Ing. Leonardo Iacussi

MSc Thesis by:

GabrieleMaisano
matr. 977527

Academic Year 2022/2023

Abstract

The following paper will explain in detail a project of predictive maintenance
applied on a punching machine.

The project consisted of three main parts:

1. Define the machine most critical components;

2. Find the right sensor for the application;

3. Develop an algorithm that takes the sensor’s data and discriminates
whether the machine is operating in a normal or faulty condition.

In order to define the most critical components, it’s important to explain
how the machine is made and how mechanical parts interacts with each
other to obtain the punched sheet metal.

The definition of the sensor was made considering mainly the minimum
sampling rate to avoid aliasing and the minimum full scale to avoid satura-
tion.
Additionally, spacial and electrical constraints are taken into consideration,
too.

At the end, the selection of the most suitable algorithm was done com-
paring a peak recognition algorithm, different machine learning models and
a neural network approach.
The final algorithm was developed considering that it need to be deployed
to a sensor node that can perform edge computing.

Keywords predictive maintenance; punching machine; artificial intelli-
gence; machine learning; real-time edge computing; tool wear forecasting

I

Acknowledgements

It’s difficult for me to enumerate all the people that led me during this ex-
traordinary journey.
This thesis is only a very small part of my university career and i want to
thank every friend, every professor, and every colleague that sustain me
during this experience.

Let me do the acknowledgements in my mother language so that i can
be more spontaneous.

La prima persona che vorrei ringraziare è la mia fidanzata Francesca,
veramente per tantissime cose, ma soprattutto per la pazienza che ci mette
a ricordare tutto quello che io dimentico.

Poi naturalmente un gigante rigraziamento va a tutta la mia famiglia,
che in ogni momento mi ha supportato e mi ha sempre dato la carica nei
momenti un po’ più difficili.

Inoltre, desidero ringraziare il professor Cigada e il suo dottorando ing.
Iacussi per il loro prezioso contributo, i consigli preziosi e il costante sostegno
che mi hanno fornito durante il percorso di tesi.

Ci tengo anche a dire grazie a tutti i miei colleghi e amici che in qualche
modo fanno tutti parte di questo elaborato.
In particolare ad Alessandro, Andrea, Marco, Alberto e Bruno, che sono
stati dei colleghi con cui stare assieme è sempre stato un piacere, e con loro
ringrazio anche tutta la KONE Industrial che mi ha dato l’opportunità non
solo di effettuare il lavoro di tesi al suo interno, ma anche di conoscere un
gruppo così coeso e affiatato.

Un gigante ringraziamento anche a tutti i miei amici di sempre: Aurora,
Sofia, Elisa, Camilla, Tatjana, Beatrice e Giulia per gli innumerevoli momenti
indimenticabili passati assieme.
Poi Matteo, Valerio, Davide B., Davide S. e Luca per la disponibilità, pazienza
e affetto che hanno sempre dimostrato nei miei confronti.

III

Impossibile dimenticare Valentina e Alberto, che sono sempre stati esempio
di costanza e ambizione per me.
E Alan e Giulia che con la loro tenerezza e curiosità mi hanno insegnato a
vedere sempre il bello delle cose.
Infine, ma non per importanza, i miei ex compagni del liceo Riccardo,
Daniele, Matteo, Lorenzo, Alessia, Virginia, Beatrice e Rebecca con i quali
conservo tantissimi ricordi veramente preziosi e, ogni tanto, imbarazzanti.

IV

Contents

Abstract I

Acknowledgements III

1 Introduction 1
1.1 Context . 1
1.2 Thesis outline . 2

2 What is predictive maintenance? 3
2.1 Different maintenance solutions 3

2.1.1 The best approach for the punching machine 4

3 Preliminaries and State of the Art 7
3.1 The punching machine . 7

3.1.1 The Salvagnini S4 - 1262 7
3.1.2 The main components of the machine 8
3.1.3 The operations of the machine 9

3.2 Places where sensors will be installed 12

4 Hardware components installed 13
4.1 Goals and constraints . 13
4.2 First solution: STWIN . 13
4.3 Fallback solution: SensorTile.box 15
4.4 The turning point in hardware definition 25
4.5 The PLC system . 26

4.5.1 The chosen PLC . 26
4.5.2 The project implementation into the PLC 27
4.5.3 Another obstacle: the communication time 31

4.6 The definitive solution . 35
4.6.1 The machine head . 37

5 Design and Implementation 43
5.1 The acquisitions collected by means of STWIN.box 43
5.2 Shears recognition using the microphone acquisitions 46
5.3 Shears recognition directly on the accelerometer signal 53

V

5.3.1 Real-time application . 54
5.3.2 Filtering the signal . 57
5.3.3 Peak recognition function 60
5.3.4 Machine learning implementation 64
5.3.5 Discussion about the feasibility of a good neural net-

work algorithm . 76
5.4 Punching recognition . 80
5.5 Comparison with a newer punching machine, operating with

a shearing tool at the end of its service life 84
5.6 Comparison between different level of shear wear on the same

punching-shearing center . 88

6 Side Projects 93

7 Conclusions and Future Works 99
7.1 Conclusions . 99
7.2 Future works . 101

A Algorithm that divide the acquired signal into many batches with-
out overlapping 103

B SensorTile.box final script to define dashboard 105

C Define webpage where the variable got with Python from the PLC
is shown 121

D Datalog directly on the PC by means of Python and a USB cable 123

E Real time peak recognition exploiting the microphone acquired
signal 125

F Definitive real time peak recognition algorithm 129

G Real-time application code using find_peaks 131

H Steps to define peakfinder_mine 135

Bibliography 137

VI

List of Figures

3.1 Layout of the punching machine 7
3.2 A punched metal sheet . 9
3.3 Manipulator and working floors visualization 10
3.4 The pumping system . 10
3.5 A closer look at the pumping system 11
3.6 Details of holes in the punched metal sheets 11
3.7 Last operations to reach the final product 12

4.1 STWIN board . 14
4.2 SensorTile.box board . 16
4.3 An example of pre-loaded app in the default firmware 17
4.4 The setup of the SensorTile.box connected to the debugger . . 18
4.5 The SensorTile.box mounted on the manipulator arm 18
4.6 The plot of the accelerations collected 19
4.7 Power spectra of the three axis of the acquired acceleration

signal . 20
4.8 PCA analysis on the acquired signal by the SensorTile.box . . 21
4.9 STD of a portion of the signal compared with the labels given

by K-Means algorithm . 21
4.10 Dashboard of SensorTile.box project in conditions of waiting

machine and operating machine 24
4.11 PLC SIEMENS S7-1200, CPU 1212C DC/DC/RLY 26
4.12 Proximity sensor scheme . 28
4.13 Proximity sensor connection to PLC 28
4.14 Siemens PRONETA user interface 29
4.15 Hardware and software response to digital input stimulation . 29
4.16 Python output for the code shown above 31
4.17 TIA Portal screen to monitor cycle time (one sample per cycle) 32
4.18 SCL function that stacks input signal into an array of 256

samples) . 32
4.19 TIA Portal screen to monitor cycle time (256 samples per cycle) 33
4.20 Python output for the piece of code shown above 34
4.21 Timestamp of the PLC, extracted with the Python script 35
4.22 STWIN.box . 36

VII

4.23 S4 operating head position . 37
4.24 S4 operating head from below 38
4.25 S4 operating head layout . 38
4.26 The different installation points of the STWIN.box 39
4.27 Comparison between different STWIN.box positions 41
4.28 Filtered acceleration data from above and from the side 42

5.1 The results of the 30-min acquisition 44
5.2 Comparison between acceleration in x-axis, y-axis and z-axis . 45
5.3 Comparison between acceleration in z-axis and microphone

signal . 46
5.4 Comparison between acceleration in z-axis and filtered mi-

crophone signal . 47
5.5 Peaks recognized by the real-time algorithm over the micro-

phone signal . 50
5.6 Peaks shifted from the microphone signal to the acceleration

one . 51
5.7 Peaks of the microphone signal over itself and over the accel-

eration one . 51
5.8 Zoom on some shears of figure 5.7 51
5.9 Peaks of the downsampled microphone signal over itself and

over the acceleration one . 52
5.10 Zoom on some shears of figure 5.9 53
5.11 FIFO mode of operation . 55
5.12 Comparison between filtered and non-filtered acceleration of

the first duty cycle . 58
5.13 Butterworth filter at different filter orders 59
5.14 Peaks found over the filtered acceleration in z-axis 62
5.15 Comparison between built-in function find_peaks and custom

function . 64
5.16 Relationship between machine learning, artificial intelligence

and deep learning . 66
5.17 Machine learning performance on different kind of data 67
5.18 Some plots of features, one correlated with each other 70
5.19 Plots of features identified with SelectKBest, one correlated

with each other . 71
5.20 PCA analysis of the features matrix 72
5.21 Agglomerative Clustering results 74
5.22 K-Means results . 75

VIII

5.23 DBSCAN results . 75
5.24 Neural network structure . 76
5.25 Sigmoid and ReLU non-linear activation functions 77
5.26 Summary of the neural network structure 79
5.27 Comparison between the predicted label by the model and

the expected one . 79
5.28 Agglomerative Clustering algorithm performed over the ac-

quired signals - data point distribution 81
5.29 Agglomerative Clustering algorithm performed over the ac-

quired signals - labels over the acquired signal 81
5.30 Pass band filter on the first duty acceleration acquisition . . . 81
5.31 Results of the operation of removing shears from punches

recognition . 83
5.32 Power spectrum of the stacked recognized punches 83
5.33 Dashboard of the state of health of the punching and shearing

tool of several punching-shearing center as of 12th April . . . 84
5.34 Dashboard of the state of health of the punching and shearing

tool of several punching-shearing center as of 22th May 85
5.35 Comparison between the raw accelerations of the S4 1724 and

those of the S4 1262 . 85
5.36 Comparison between the filtered accelerations of the S4 1724

and those of the S4 1262 . 86
5.37 Shears identified in the S4 1724 acceleration data 86
5.38 Comparison between the PS of S4 1262 and S4 the one of 1724

(whole acquired signal) . 87
5.39 Comparison between the PS of S4 1262 and S4 the one of 1724

(considering only the signal corresponding to the shears) . . . 87
5.40 Dashboard of the state of health of the punching and shearing

tool of several punching-shearing center as of 06th June 89
5.41 Comparison between filtered used shearing tool signal and

non filtered one . 89
5.42 Shears recognized by the peakfinder_mine function 90
5.43 Power spectrum on the whole signals 90
5.44 Power spectrum on the shear signals only 90
5.45 Power spectrum on the first 10 shear signals only 92

6.1 Dashboard related to the data acquired by the PLC system . . 94
6.2 Electrical scheme to install the PT100 temperature sensor into

the PLC system . 94

IX

6.3 The PLC system installed in the electrical panel 95
6.4 Pareto diagrams from the breakdown analysis 95
6.5 The different smartphone app screens 97
6.6 The database which include all the evaluation results 97

X

1Introduction

1.1 Context

Before you get to the heart of the project, I want to explain the context in
which this paper takes shape.

The whole project work was carried out during an internship at KONE
Industrial, a well-known company that produces and installs elevators and
escalators worldwide.

The company was founded in 1910 in Finland and has grown to become
one of the leader manufacturers in its field; at the moment, KONE has ap-
proximately 60’000 employees worldwide.
I worked in the headquarters of Pero (MI), Italy, that is the division respon-
sible for the production of the standard cabins and doors of an elevator. In
particular, in this company unit the final product is completely developed
from a basic sheet of metal. It is punched, then pressed and shaped to be-
come a wall of an elevator cabin, then to improve its structural integrity,
additional reinforcements derived from another basic coil of metal are in-
corporated; furthermore, to minimize noise and vibrations, an anti-noise
material is attached to the back of the cabin wall.
Similar manufacturing processes are employed for producing elevator doors
starting from a basic sheet of metal as well.
Overall, in the factory there are five production lines characterized by a high
level of automation, and each line can incorporate a punching machine, a
bending machine and anthropomorphic robots that are responsible for fix-
ing the reinforcements to the wall using specialized adhesive and rivets.

In Pero my desk was in the maintenance office, that is conveniently close
to the punching machine on which I needed to put sensors and other hard-
ware components.

The goal of this project was to provide a predictive maintenance solution
to a punching machine, namely the Salvagnini S4 with the serial number

1

1262. This machine is quite old, as it was produced in 2009, and it does not
have any available for consultation analog sensors inside it.
However, in order to implement a predictive maintenance solution, many
data of the machine have to be collected, so at least one sensor must be
installed.

The sensor can be attached to the machine in a permanent, semi-permanent,
or removable way. We decided that the permanent way was the best one,
since it guarantee a continuous monitoring of the state of health of the ma-
chine. The selection of the most suitable sensor was the most critical point
of the whole project, so a more detailed discussion will be engaged later on.

After the sensor data have been collected, they need to be processed and
evaluated in a central processing unit (CPU) that can detect the abnormal
working condition of the operating machine.
Different algorithms were compared for this purpose, with particular em-
phasis placed on Artificial Intelligence algorithms.

The structure of the thesis is outlined below, providing an overview of
the guidelines that led the progress of the project.

1.2 Thesis outline

The paper is structured in the following way:

• In chapter 2, it’s explained what predictive maintenance is and why it
is convenient to adopt it.

• In chapter 3, the machine and the operations performed are described
in details.

• In chapter 4, we discuss about the sensor and the hardware components
that need to be implemented in order to carry out the data collection
and analysis.

• In chapter 5, we present our solution for the data analysis, considering
different approaches.

• Finally, in chapter 7, we present our conclusions and possible future
paths toward which our work could be extended.

2

2What is predictive maintenance?

2.1 Different maintenance solutions

The maintenance of the machine is a fundamental requirement to guarantee
continuous and correct operation of the mechanical machine.
Depending on the maintenance approach that the enterprise want to under-
take, the costs of the repair and of the preventive actions can change a lot.

The main and most used maintenance strategies are the following:

• Run-to-failure (breakdown maintenance);

• Preventive (scheduled) maintenance (PM);

• Predictive maintenance (PdM).

Run-to-failure strategy

The run-to-failure approach (also called reactive maintenance) is the most
simple approach. In fact the machine is let operating without any mainte-
nance operation until one or more components fails and need to be substi-
tuted.
It may seem that this approach is a bad and ineffective strategy, but this
approach is used often for non-critical components, which don’t produce a
dangerous or expensive damage in the system.

Preventive maintenance strategy

As opposed to the reactive maintenance, the preventive maintenance ap-
proach is largely used when we are dealing with critical or expensive com-
ponents.
This strategy consists in changing a piece on a regular basis, which depends
either on operating cycles or operating time. For example a rubber gasket
need to be replaced after some time, because it lose its plastic properties;

3

while a cutting insert need to be replaced after some cycles because it lose
its cutting capacity.

The scheduling of the maintenance bring the company to reduce the
downtime costs and to maintain a good level of standard quality in the fin-
ished products. The drawback is that the scheduling process need some time
and money in addition to the ones spent to substitute the worn components
of the machine.

In KONE this approach is largely used for the punching tools, the fluid
dynamic pumps and other critical components.

Predictive maintenance strategy

The most complex approach is predictive maintenance, and it is an opti-
mization of the preventive approach.
It consists of getting data from the system, analyzing them and define a
maintenance schedule based on those data.
In particular, it uses condition monitoring tools to detect various deteriora-
tion signs, anomalies, or equipment performance issues.
This strategy offers the advantage of fully utilizing components through-
out their lifespan: in fact, the maintenance on the component happens only
when data estimate that a piece of equipment is near to failure, avoiding
unnecessary replacement of components that are still in their useful life and,
at the same time, changing them before failure happens.

In synthesis, the major pros are reduced maintenance time and cost,
longer asset lifespan, reduced risks relating to safety, environment, and
quality; but the drawbacks are large investments in hardware, software,
expertise, and staff training.
In fact, in order to implement a predictive maintenance strategy, machine
learning, real-time data, and inter-connectivity must be used.

2.1.1 The best approach for the punching machine

In our case study, the best approach is the predictive maintenance one.
That’s because the punching machine is very articulated and expensive, and
because we want to reduce the downtime cost as much as possible.

4

For those reasons, our goal is to schedule activities based on constant con-
dition monitoring. So, once unhealthy trends are identified, damaged parts
are repaired or replaced to avoid more costly failures.

In particular, our application aims to analyze the acceleration amplitude,
which refers to the maximum rate of change of velocity experienced by a
structure during its vibrational motion. We choose to go in that direction,
because accelerations are key parameters in evaluating the intensity and
severity of vibrations.

5

3Preliminaries and State of the Art

3.1 The punching machine

In this section, a detailed description of the punching machine will be given.
In particular, the layout, the main components, and an example of its oper-
ation will be presented.

3.1.1 The Salvagnini S4 - 1262

The punching machine has a conveyor belt for input and another one for
output. During the operating condition, it is provided that a metal sheet
enters the machine from an automated vertical warehouse, it is punched
and sheared, and then it exits the Salvagnini S4 to go towards the bending
machine to be transformed into the final product.

The figure below shows a synthetic machine scheme:

Figure 3.1: Layout of the punching machine

As you can see from the figure, the machine has the following main
components:

• 2/6 : shearing and punching tools;

7

• 3 : refrigerator;

• 4 : lubrication grease tank;

• 5 : manipulator;

• 7/8 : scraps tanks, that are under the machine;

• 11/12 : input conveyor, that moves raw sheets;

• 13 : output conveyor, that moves machined sheets;

• 15 : working floors.

3.1.2 The main components of the machine

In this subsection, a brief description of all the main components listed be-
fore will be presented.

Shearing and punching tools
The shears are used to remove the excess of external material around the
raw metal sheet, in order to give the right dimension to the sheet of metal
and to prepare the bending process. The punching tools are used to make
some holes in the metal sheet, in order to make couplings between the fin-
ished walls for the elevator or between them and other external components
(cables, push-button panel, etc.)
The following figure (figure 3.2) shows the different kind of holes that the
punching tools can produce.
Notice that a more detailed description of the machine head that includes
the shearing and punching tools will be discussed in the section 4.6.1.

Manipulator
The manipulator is used to move the metal sheet during the punching and
shearing operations. In fact, the punching and shearing tools can only move
vertically, while every movement in the plane parallel to the ground (over
the x and y axis) is addressed to the manipulator.
Two motors operate on the y axis by means of a ball screw driven transmis-
sion; while another two motors operate on the x axis by means of a rack and
pinion transmission.
The manipulator has some clamps in the end in order to receive the metal
sheet and keep it attached to the manipulator itself.

8

Figure 3.2: A punched metal sheet

Working floors
The working floors consists of both moving and fixed floors. The moving
ones are used to receive the metal sheet from the warehouse, to place it
within the clamps of the manipulator, and to move the punched sheet out
of the machine towards the bending machine.
The following figure (figure 3.3) shows the manipulator from the lateral side
and a part of the working floors.

Hydraulic pumps
The pumps are the actuators that use oil to govern the descent and ascent
of the punching and shearing tools. In particular, a high-pressure pump
operates on the punching tools during the active descent movement: the oil
is sent to the tool at a pressure of up to 400 bar. Moreover, another low-
pressure pump is used to manage the passive ascent movement of the tools,
and it operates at 125 bar.
The pumping system is shown in the figures 3.4 and 3.5.

3.1.3 The operations of the machine

In this paragraph, all the operations of the machine will be explained in
detail. Specifically, we will focus on the path followed by the metal sheet.

At the beginning, the sheet is taken out of the warehouse and led into
the punching machine by means of a belt-driven conveyor.
While the conveyor is still running, a bar rises up to align the metal sheet in
the x direction. At this point the conveyor stops, and a new bar rises up and

9

Figure 3.3: Manipulator and working floors visualization

Figure 3.4: The pumping system

moves the metal sheet in the y direction to align it in that direction, too.
Once the metal sheet is correctly positioned, the manipulator starts moving,
and, with its clamps, grabs the metal sheet.

The metal sheet is now machined: the manipulator moves the sheet, and

10

Figure 3.5: A closer look at the pumping system

the punching and shearing tools operate; the sheet is then rotated by 180
degree in order to machine it also on the side that was previously grabbed
by the manipulator.

The machined metal sheet is now ready to exit the punching machine: the
clamps release the metal sheet on another conveyor belt, that starts running,
and let the sheet move towards the bending machine.

Now the bending process is starting, but we won’t go into details with
this process, because the case study is focused on the predictive maintenance
applied to the punching machine.

After the bending process, the sheet is processed by a robot that sticks
stiffeners to the metal sheet by means of industrial adhesives and rivets.

At the end, they are stocked into a buffer warehouse, ready to be packed
and shipped to the construction site.

Figure 3.6: Details of holes in the punched metal sheets

11

(a) Metal sheet after bending (b) Metal sheet with stiffeners applied

Figure 3.7: Last operations to reach the final product

3.2 Places where sensors will be installed

In order to implement the predictive maintenance strategy, many data are
needed, so some sensors need to be installed.

The selection of the sensor was quite critical, and it will be treated in
detail in the chapter 4.
Anyway, the sensors chosen are accelerometers, in order to base the detection
of anomalies in the machine’s behaviour on the vibrations that the machine
generates during its operating condition.

The decision on where to put sensors was quite difficult as well. In the
beginning, we opted to install one sensor on the manipulator, in order to
get data that can detect anomalies on the rack-pinion transmission, and on
the four motors that control the manipulator; but, in the end, that place was
inconvenient for the reasons that will be discussed in 4, so the predictive
maintenance was focused on the machine head, and in particular on the
shearing tool.

In addition to the accelerometer, we intend to install other sensors to
check how much clean the oil is, how much lubricating grease there is on the
rack, or to monitor vibrations on other critical machine components, such as
the pumps.

12

4Hardware components installed

4.1 Goals and constraints

The aim of the whole project is to monitor the punching machine just de-
scribed. In particular, the sensor will be initially installed on the manipulator.

Unfortunately it’s evident that the manipulator arm moves during the
operational stage, so the first constraint appears: we need a component that
is able to follow the manipulator movements, and the most suitable solution
is to rely on wireless sensors that can greatly simplify the installation of the
sensor, avoiding using cables and carrying them from the manipulator to
the central processing unit.
For this reason, we opted for an embedded system, that can communicate by
means of a Bluetooth or WiFi connection and that can take data and analyze
them directly on the board.

4.2 First solution: STWIN

The first solution was identified in an embedded system from STMicroelec-
tronics called STWIN. According to the manufacturer, this electronic board
is made for industrial application.
The board is composed of the following components:

• CPU: ARM Cortex-M4 at 120MHz with 2 MB of flash memory (STM32L4R9);

• some MEMS sensors (listed further ahead);

• Bluetooth connectivity;

• optional WiFi connectivity;

• lithium battery;

• ON/OFF button and user button;

13

• SD card slot;

• plastic box as carter.

The sensors available inside the board are:

• ultra-wide bandwidth (up to 6 kHz), low-noise, 3-axis digital vibration
sensor (IIS3DWB);

• 3D accelerometer+3D Gyro iNEMO inertial measurement unit (ISM330DHCX)
with machine learning core;

• ultra-low-power high performance MEMS motion sensor (IIS2DH);

• ultra-low-power 3-axis magnetometer (IIS2MDC);

• digital absolute pressure sensor (LPS22HH);

• relative humidity and temperature sensor (HTS221);

• low-voltage digital local temperature sensor (STTS751);

• industrial grade digital MEMS microphone (IMP34DT05);

• analog MEMS microphone with frequency response up to 80 kHz
(IMP23ABSU).

The figure below (figure 4.1) shows an image of the STWIN board.

Figure 4.1: STWIN board

Despite the many sensors that are included in the board, the only sensor
interested in the predictive maintenance project is the 3-axis accelerometer

14

and 3-axis gyroscope called ISM330DHCX. So we will focus only on its fea-
tures.
In particular, the accelerometer has a full scale of 16g, which is equal to a full
scale of almost 160 m/s2, and a maximum sampling frequency of 6667 Hz.
It is important to notice that those features are very poor compared to those
of a traditional piezo-accelerometer. In fact, a standard piezo-accelerometer
can have 100g of full scale and 15 KHz of sampling frequency. In fact, the
main advantage of a MEMS sensor is not its performance, but it is its low
cost: it costs only a few tens of euros, while the worst piezo-accelerometer
starts at a cost of a few hundred of euros.

Unfortunately, the global political context didn’t help. Both the COVID
pandemic and the terrible war in Ukraine have had a heavy impact on
the micro-conductor industry, and the STWIN board was not available for
months.
The only way to proceed with the project was to choose another electronic
board available on the market.

4.3 Fallback solution: SensorTile.box

The market’s constraints forced us to discard our first option: the STWIN
electronic board. So, after meticulous research, we selected the most similar
solution available on the market: the SensorTile.box.

The features of this electronic board can be summarized in the following
list:

• CPU: ARM Cortex-M4 at 120MHz with 2 MB of flash memory (STM32L4R9);

• some MEMS sensors (listed further ahead);

• Bluetooth connectivity;

• lithium battery;

• SD card slot;

• plastic box as carter.

The sensors available inside the board are:

• Digital temperature sensor (STTS751);

15

• 6-axis inertial measurement unit (LSM6DSOX);

• 3-axis accelerometers (LIS2DW12 and LIS3DHH);

• 3-axis magnetometer (LIS2MDL);

• Altimeter / pressure sensor (LPS22HH);

• Microphone / audio sensor (MP23ABS1);

• Humidity sensor (HTS221).

The figure below (figure 4.2) shows an image of the SensorTile.box board.

Figure 4.2: SensorTile.box board

The features of this board are comparable with those of the STWIN board;
the only differences are in the absence of WiFi connectivity and the ON/OFF
button.
Those differences are not substantial, so the chosen board was purchased
and tested practically.

Data logging

The first step in analyzing data and implementing an anomaly detection
algorithm is to log and visualize the data.

Data logging is fortunately easy with the SensorTile.box thanks to a
ready-to-use firmware available on the manufacturer’s website.

16

Data logging firmware loading

The firmware already installed on the SensorTile.box board is a default
firmware that can exploit some algorithms of artificial intelligence as illus-
trative examples.
The Bluetooth connection is the key to visualize and control the firmware.
For that purpose, an application called ST BLE Sensor must be installed on a
smartphone.

Figure 4.3: An example of pre-loaded app in the default firmware

In order to load into the electronic board the Datalog firmware, a debug-
ger is needed, together with the PC program STM32CubeIDE to compile the
firmware onto the SensorTile.box.

Once the Datalog firmware was installed in the electronic board, the board
was connected to the battery, switched on, and connected to the smartphone
app via Bluetooth.
Now we were able to collect data from the machine.

Data collection

The data collection was made by attaching the board to the manipulator in
a rigid way, by means of self tapping screws. The figure below (figure 4.5)
shows in detail how the board was connected, and the reference systems of
both the manipulator and the 3-axis accelerometer, included in the electronic

17

Figure 4.4: The setup of the SensorTile.box connected to the debugger

board, are shown.

Figure 4.5: The SensorTile.box mounted on the manipulator arm

Once the sensor was mounted, the machine was switched on, and the
Datalog firmware could start.
Notice that the features of the sensor were set as follow:

• sampling frequency = 6667 Hz;

• full scale = 16 g ∼ 157 m/s2

After the start button in the smartphone is clicked, the recording takes place.
All the data extracted are saved in the SD card inserted in the SensorTile.box.
Notice that the SD card must meet some requirements of writing speed, so

18

a class10 SDHC card was used.

Now, we are ready to begin analyzing the extracted acceleration data.

Analysis of the acquired signals

The data are analyzed through jupyter notebook, that is a compiler of Python
3.

By means of the library HSDatalog provided by the manufacturer, it’s
possible to get the data from the .csv file saved in the SD card during the
data collection.
The data that has been plotted exhibits the pattern in the figure 4.6.

Figure 4.6: The plot of the accelerations collected

In the figure 4.6, the dashed black lines represent the maximum full scale
available in the board. So every collected sample which reaches the dashed
lines corresponds to a saturated point, that is not a significant point in the
analysis and must be discarded.
That’s actually a quite big problem due to the poor characteristics of the
sensor.
But the possibility to work in wireless mode is a such big advantage that we
kept going on using the SensorTile.box.

19

After the data are acquired, they are divided into many windows (as
done in the code presented in the appendix A), and for each window a full
dataset of features is extracted, as done in the section 5.3.4.
The power spectra of the acquired signal, already divided, is shown in the
figure 4.7, with each line corresponding to a window of the signal.

Figure 4.7: Power spectra of the three axis of the acquired acceleration signal

Therefore, the extracted features are reduced using a PCA algorithm and
implemented in several clustering models in order to find relationships be-
tween the data points. The results of the PCA transformation is shown in
the figure 4.8.

Unfortunately, it is difficult to detect a clear relationship between the
data points, and therefore the clustering process is quite difficult to be im-
plemented.
The only clustering that is possible to perform is between two macro-
conditions of the punching machine: punching machine working on a metal
sheet or punching machine still that wait for a new piece to be processed.

In fact, using a K-Means machine learning algorithm we can determine
these two conditions, as it is shown in the figure 4.9.

20

Figure 4.8: PCA analysis on the acquired signal by the SensorTile.box

Figure 4.9: STD of a portion of the signal compared with the labels given by
K-Means algorithm

In order to go on with the project and perform a machine learning algo-
rithm on the acquired data that can define if the manipulator is working in a
healthy condition or in a faulty one, we cannot rely on the clustering process,
but we have to use a different machine learning algorithm. In fact, there are
also some algorithms which aim is not to classify the data into groups (as the
machine learning algorithms listed in the section 5.3.4), but their objective is
to detect anomalies. They are called one class machine learning algorithms.

21

In particular, among the machine learning algorithms developed for
anomaly detection purposes, we utilized the Elliptic Envelope algorithm
and the Mahalanobis distance to the centroid of a reference acquisitions in
order to define if the new acquired data are related to a healthy or faulty
state of the manipulator.

Mahalanobis distance

Mahalanobis distance is a measure used to quantify the distance between a
point and a distribution of points in multivariate statistical analysis.

Unlike Euclidean distance, which assumes variables are uncorrelated
and have equal variances, Mahalanobis distance considers the covariance
matrix of the variables, allowing for a more accurate assessment of the
dissimilarity between data points. In particular, its algorithm measures how
many standard deviations away a point is from the mean of the distribution,
taking into account the shape and orientation of the distribution.

Elliptic Envelope

The Elliptic Envelope is an algorithm that can identify outliers in a dataset,
assuming that the normal data points follow an elliptical distribution, while
the outliers are placed outside that ellipse.

The algorithm works by fitting an elliptical shape to the data by means of
a covariance estimation method. In particular, it estimates the center of the
ellipse and its shape by considering the Mahalanobis distance, that is com-
puted considering the correlations between the different features of the data.

Therefore, the algorithm assigns an anomaly score to each data point
based on its distance from the center of the ellipse.

The limitations of this algorithm is that it is very good at recognizing
outliers, but it’s difficult to evaluate if the gradual wear of the components
can be detected with this method. This can be a problem, because we don’t
have the permission or the possibility to simulate a faulty conditions, and
we need to rely only on the healthy ones.
This limitation bring us to the impossibility of testing and certificating this
method.

22

The post-processing of the acquired data using Elliptic Envelope

The idea of the predictive maintenance algorithm is to define a reference
dataset that describes the distribution of the data points when the machine
is in healthy condition. Therefore we can acquire other data in real-time
and compare its centroid with the distribution computed by means of the
reference dataset.
The complete algorithm used to define the distribution corresponding to the
healthy operating condition can be divided into several pieces.

• Acquiring the data;

• cleaning the data, that is removing the corrupted data;

• extracting some statistical features (listed in the following paragraph
5.3.4);

• exploiting the PCA algorithm to reduce the features matrix dimension
(a more detailed description of this algorithm will be discussed in the
following paragraph 5.3.4);

• exploiting the Elliptic Envelope algorithm and define three areas (healthy,
less healthy, near to failure) through the Mahalanobis distance.

Once the areas describing the level of health of the manipulator are de-
fined, we can perform the just described algorithm on the new inference data
and perform the mean of the highest Mahalanobis distances computed, in
order to compare the centroid of the new incoming data with the pre-defined
areas of the reference dataset.
In fact, if an anomalous condition is detected, the mean of the highest Maha-
lanobis distances of the inference data will be displaced far away from the
centroid.

In the appendix B the complete algorithm developed in Python is shown.
The results are instead shown below (figure 4.10).

As the results shown, the generated dashboard presents distinct sections:
one dedicated to the distribution figures of the reduced features through
PCA algorithm; another displaying the plot of the accelerations, and a third
section showing the history of the acquired signals.

In particular, the plot of the data distribution is divided in sections con-
sidering the 33%, 66% and 100% of the data that are closer to the centroid.

23

(a) Dashboard when machine is waiting - healthy condition is test-
bench simulated

(b) Dashboard when machine is operating - anomaly is test-bench
simulated

Figure 4.10: Dashboard of SensorTile.box project in conditions of waiting
machine and operating machine

If the inference data is near to the centroid, the signal is considered healthy;
otherwise, it indicates an anomaly.
Furthermore, it is important to notice that the algorithm is performed twice,
considering both the condition of moving manipulator and of stopped ma-
nipulator. The new incoming data is then classified as either moving or
stopped and it is compared with the corresponding reference distribution.

Regarding the history of the acquired data, the classified condition of the
inference data is taken into consideration and only its result is highlighted:
it becomes green if we detect a healthy condition, while it becomes red if a
faulty condition is detected.

Specifically, we consider the faulty condition as the case in which the
mean of the largest 10% of Mahalanobis distances in the inference set is
higher than the mean of the largest 1% of Mahalanobis distances in the ref-
erence set.

Unfortunately this project cannot be validated, because we do not have
the possibility to simulate a faulty condition in the S4 1262 punching-
shearing center.

24

Moreover, there are additional hardware issues related to the use of the
SensorTile.box, that will be discussed in detail in the next section.

4.4 The turning point in hardware definition

From the hardware point of view, some restrictions come to light, such as the
requirement of a very long and strong USB cable, in order to let the board
run in a cabled mode and collect the output analyzed data that declare the
healthy status of the monitored components.

That problem can nullify one of the big advantages of the board, that is
the cost-effectiveness. Thus, it is necessary to employ the wireless Bluetooth
mode.

At this point, the battery life of the sensor need to be identified, because
the application is not compatible with a device that need to be recharged too
often.
In fact, since it is required to maintain constant control over the machine’s
health, the sensor and CPU must operate continuously.
Moreover, the battery change operation can generate some issues: the ma-
chine must be stopped first in order to have access the sensor safely, and
then some minutes must be spent to dismount the sensor and change its
battery.

After some research on the web about the battery life of the Sensor-
Tile.Box, it appears that the board can work continuously for a few tens of
hours before requiring recharging. Unfortunately those performance levels
are unacceptable for the application.

In addition to the hardware issues, it was necessary to learn from scratch
the programming language of the STM32CubeIDE.

In the meanwhile, my colleagues suggested me an alternative solution,
that is extensively used in the company: the PLC system, known also as
Programmable Logic Controller.
In the face of the advice received, I decided to look into this option as well.

25

4.5 The PLC system

PLC stands for Programmable Logic Controller, as anticipated in the pre-
vious section, and it is an electronic device used to control the automation
lines. Due to its reliability and robustness, it is quite common in companies
with an high level of automation.
Moreover, the opportunity to incorporate additional modular devices makes
the PLC system a great candidate for the application in the automated fac-
tory supply chain.

Up to now we have seen the most evident benefit of using this tool. How-
ever, there are also some drawbacks, such as the high cost of its components
and the need to know the programming language, that is often a proprietary
language.
The diffusion of this kind of tool led me to choose to investigate in further
detail this system, considering also that acquiring some knowledge about
this system can be maybe useful in my future projects.

In particular, the most used PLC systems in the company are the SIEMENS
ones: many automatic machines or industrial robots in the company are con-
trolled with a SIMATIC S7-1200, or SIMATIC S7-1500, or SIMATIC ET200.

4.5.1 The chosen PLC

For economic reasons I chose a CPU 1212C DC/DC/RLY from the SIEMENS
S7-1200 series.

(a) External view (b) Wiring scheme

Figure 4.11: PLC SIEMENS S7-1200, CPU 1212C DC/DC/RLY

26

This CPU is compact, in order to be integrated easily into existing elec-
trical panels, and it features 8 digital inputs, 2 analog inputs and 4 relay
outputs for controlling external devices.
It is powered by a 24V DC power supply and it can be programmed us-
ing the proprietary SIEMENS IDE called TIA PORTAL over the PROFINET
communication port.

In order to take the acceleration data, it’s necessary to implement an
accelerometer, exploiting the analog input port of the CPU.

4.5.2 The project implementation into the PLC

As already said, the idea behind the project is to define the degradation level
of some machine components by analyzing the accelerometer data into the
time and frequency domain. Therefore, some mathematical tools are neces-
sary in order to extract the features of the signal and exploit them to detect
anomalies or find the remaining useful life.

Unfortunately, TIA PORTAL, that is the software used to program the
Siemens PLC, does not include a ready-to-use function for the Fast Fourier
Transform, which is a mathematical tool at the basis of the frequency domain
analysis.
So, for the sake of simplicity, it was decided to extract the accelerometer data
obtained through the PLC and transmit them into a Python script, because
it is a simpler and more effective tool for data analysis.

Even if the data analysis will occur into a Python script, it was neces-
sary to program the PLC using TIA PORTAL. In particular it was needed
to download the hardware configuration to the device and also a simple
software program that can calibrate the input value, changing its quantity
from its bit value into the physics one.
In fact, through the 10bit analog input port, the PLC can acquire a voltage
or current value in form of a bit value, that is a value between 0 and 210 = 1024.

However, before starting to investigate the analog input signal, I wanted
to start working with some digital input signals, that are much simpler to
manipulate.

27

The first steps into PLC programming

The first thing to do is to prepare the hardware configuration in TIA POR-
TAL and download it into the PLC.
Using the wiring scheme given by the constructor (Figure 4.12), it’s possible
to connect a proximity sensor for metals, that is a digital output sensor.

Figure 4.12: Proximity sensor scheme

Figure 4.13: Proximity sensor connection to PLC

Then it is necessary to move on the software side: the IP address of the
PLC has to be set, then the PLC becomes reachable from the computer and
the software can be downloaded to the device.
In order to set the IP address, we need to use a free-to-use Siemens software
called Siemens PRONETA. In the highlighted box in figure 4.14 the IP address
of the PLC can be defined.

28

Figure 4.14: Siemens PRONETA user interface

Once the IP address is set, the PLC can be reached, and though TIA
PORTAL, it’s possible to go online and monitor the memory, input and
output variables.
In the figure 4.15, you can see what are the results of bringing a piece of
metal near to the proximity sensor.

Figure 4.15: Hardware and software response to digital input stimulation

29

The python script to analyze the data extracted with the PLC

In order to extract data from the PLC and transmit them to the PC, a
Python script is needed. In particular a library to enable the communi-
cation between the PC and the PLC is available from the web. This li-
brary is called Snap7, and the documentation is open for consultation at
https://snap7.sourceforge.net/.

A sample code to connect the PLC to the PC is shown below.

Code 1

import snap7

import struct

IP = ’192.168.100.1’

RACK = 0

SLOT = 1

plc = snap7.client.Client()

plc.connect(IP, RACK, SLOT)

Then, it’s possible to add another piece of code to extract data from the
PLC and visualize them into a webpage.
In our case, we can visualize the proximity sensor output with the piece of
code described in the appendix C.
The steps of this algorithm are listed below:

• Connect with PLC S7 1200;

• Prepare server importing the necessary libraries;

• Define where to get data from, that is a database in the PLC’s memory;

• Open web-page;

• Define server and dashboard on web-page.

The result is shown in the figure 4.16.

After getting some confidence with the PLC system, it’s possible to switch
from digital inputs to analog ones. However, some preliminary require-
ments must be met: in particular a good sampling frequency is needed.
So, we proceed by taking as many data as possible in a certain period of time
and computing the sampling frequency.

30

https://snap7.sourceforge.net/

Figure 4.16: Python output for the code shown above

4.5.3 Another obstacle: the communication time

The sampling frequency is defined by two main components:

• The CPU performance of the PLC;

• The communication time between the PLC and the Python script.

For what concern the first component, it’s possible to monitor the cycle
time of the PLC by means of TIA PORTAL. And we can notice that the cy-
cle time, which correspond to the updating period of the PLC variables, is
around 1 millisecond (please refer to figure 4.17).

Unfortunately, getting one sample per millisecond correspond to a sam-
pling frequency of 1/10−3 = 1000 Hz. Therefore, according to the Nyquist-
Shannon theorem, the maximum frequency of the power spectrum is equal to
500 Hz.
In fact, the Shannon-Nyquist theorem provides guidelines for accurately
sampling analog signals in order to preserve all the information contained
within them, and declares that a continuous-time signal can be completely
and uniquely reconstructed without samples distortion or loss of informa-
tion if the sampling frequency is greater than or equal to twice the maximum
frequency component in the signal. In other words, the sampling rate must
be greater than or equal to twice the bandwidth of the signal.

31

Figure 4.17: TIA Portal screen to monitor cycle time (one sample per cycle)

Thus, the performance of the PLC are not enough for our application, that
need to analyze accelerations with frequency components up to 1200Hz (fig-
ure 4.7).

In order to optimize the performance of the PLC, it’s possible to stack
the incoming input values into an array with few lines of code using SCL
programming language. In the figure 4.18 the PLC code is shown.

Figure 4.18: SCL function that stacks input signal into an array of 256 sam-
ples)

The CPU performance is not that different: in fact the mean cycle time is
again 1 millisecond (Figure 4.19).

32

Figure 4.19: TIA Portal screen to monitor cycle time (256 samples per cycle)

Now the sampling frequency is equal to approximately 256/(2 · 10−3) =
128000 Hz, that is higher than the one of the SensorTile.box and certainly
more than enough for our application.

Once the first issue is solved, we can move on and evaluate if the com-
munication time between the PLC and the Python script can raise some
problems.

The Python script that connects with the PLC and extract the array of 256
samples is shown below:

Code 2

CONNECT WITH PLC S7 1200

import snap7

import struct

from datetime import datetime

IP = ’192.168.100.1’

RACK = 0

SLOT = 1

DB_NUMBER = 1

START_ADDRESS = 0

SIZE = 514

plc = snap7.client.Client()

33

plc.connect(IP, RACK, SLOT)

time_in = datetime.timestamp(datetime.now())

db = plc.db_read(DB_NUMBER, START_ADDRESS, SIZE)

DI = []

for i in range(int(SIZE/2)-1):

DI.append(int.from_bytes(db[0:2], "big"))

time_out = datetime.timestamp(datetime.now())

The communication time in order to extract 256 samples from the PLC
is of about 33 milliseconds, as it’s shown in the results in the figure 4.20. So
the sampling frequency is about 256/(33 · 10−3) ∼ 7760 Hz.

Figure 4.20: Python output for the piece of code shown above

Up to now, the performance of the overall system is quite good. But
things get worse when we try to run the python script to acquire more than
one array, because it get some time between one Python call and the follow-
ing one.
In particular, we can plot the timestamp of the PLC, got with the python
script in a similar way to what was done for the digital input, and the results
shows that many data were lost during the Python call to the PLC, as shown
in the figure 4.21.

Moreover, we need to consider that the signal evaluate till now was a
digital one, so lighter than the real acceleration value that we need to acquire.

After these considerations, the overall performance is not sufficient in
order to collect a representative timeserie of the actual phenomenon.

34

Figure 4.21: Timestamp of the PLC, extracted with the Python script

Unfortunately, even contacting the SIEMENS customer service, it was no
solution for this issue.
Therefore, the PLC system is not suitable for our application, and it was
discarded.

The only solution to proceed with the predictive maintenance project was
to take a step backward and focus again on the ST Microelectronics board.

4.6 The definitive solution

While we are working on the PLC, a new version of the STWIN comes out
on the market: the STWIN.box.
A picture of this board is shown at figure 4.22.

Its main features are the following ones:

• CPU: ARM Cortex-M33 at 160MHz with 2 MB of flash memory (STM32U585AI);

• many MEMS sensors:

– ultra-wide bandwidth (up to 6 kHz), low-noise, 3-axis digital
vibration sensor (IIS3DWB);

– 3D accelerometer + 3D Gyro iNEMO inertial measurement unit
(ISM330DHCX) with machine learning core;

– ultra-low-power high performance MEMS motion sensor (IIS2DH);

– ultra-low-power 3-axis magnetometer (IIS2MDC);

35

Figure 4.22: STWIN.box

– high-resolution, low-power, 2-axis digital inclinometer (IIS2ICLX)
with machine learning core;

– 4 bar absolute digital output barometer (ILPS22QS);

– relative humidity and temperature sensor (HTS221);

– low-voltage,0.5°C accuracy temperature sensor (STTS22H);

– industrial grade digital MEMS microphone (IMP34DT05);

– analog MEMS microphone with frequency response up to 80 kHz
(IMP23ABSU);

• Bluetooth, WiFi and NFC connectivity;

• lithium battery;

• ON/OFF button and user button;

• SD card slot;

• expandable via a 34-pin FPC connector.

The performance of the ISM330DHCX sensor are listed below:

• sampling frequency = 6667 Hz;

• full scale = 16 g ∼ 157 m/s2

36

The WiFi connectivity can be exploited to send the data read at the ma-
nipulator and classified on the edge as nominal or faulty to a database or
dashboard.
However the analysis of the manipulator movements and vibrations can still
raise some problems about the battery charging.
Moreover, it is better to avoid fixing the STWIN.box to the manipulator be-
cause the board is quite big with respect to the attachment area and would
have been fixed to a housing connected to the manipulator. Since the hous-
ing is just a small sheet of metal, there is a chance that we monitor the
housing behaviour rather than the manipulator one.

In order to avoid this quite serious issues, we decided to analyze a
different machine component, that is as critical as the manipulator for a
correct machine behaviour: the machine head.

4.6.1 The machine head

The heart of the Salvagnini S4 is a multi-press head placed at the center of
the machine (figure 4.23). It has up to 96 tools that operates individually
and are always available.

The head can accommodate many punching tools, one shearing tool and
one rotator clamp.
An image of the head from below is shown in the figure 4.24 and the layout
of the operating head is presented in the figure 4.25.

Figure 4.23: S4 operating head position

The aim of the project became to monitor the shearing process and define
whether the shearing tool is working fine or not. The use of an accelerom-
eter for that purpose can be useful to analyze the machine head structure

37

Figure 4.24: S4 operating head from below

Figure 4.25: S4 operating head layout

response to the shear, that produces an impulse excitation, that is a sudden
and short-duration force to the structures, leading to their subsequent vibra-
tional response. By analyzing the acceleration amplitudes, we can observe
how the structures interact with the impulse and identify any variations in
their dynamic behavior.

In fact, the wear of the shearing tool can affect the power spectrum of the
accelerations: its cutting edges may become deformed, leading to changes in
the cutting process, or its geometry and surface condition may change, caus-
ing fluctuations in the forces and vibrations transmitted to the surrounding
structures.

38

From the predictive maintenance point of view, the shearing tool is a
quite critical machine component, because the manufacturer guarantee that
its lifespan is at least of 1 000 000 shears, that can be equivalently expressed
as approximately one year of work, but it can be useful to schedule the
maintenance operation just before failure happens due to the high cost of
the component and to its high changing time.
In fact, exploiting the shearing tool at its maximum capability, we can save
money directly (less shearing tools used over some years) and indirectly
(minimizing the downtime of the punching machine for tool changing and
optimizing the scheduling to reduce production losses).

In order to analyze the machine vibrations, the STWIN.box was installed
in two different point of the machine head structure by means of a strong
double-sided tape.

Then the two different acquisitions were compared and the best sensor
position was defined.
In particular, the sensor was installed over the machine head (figure 4.26a),
and on one of its sides (figure 4.26b).

(a) STWIN.box over the head (b) STWIN.box on one side of the head

Figure 4.26: The different installation points of the STWIN.box

39

The acquisition firmware

In order to acquire the accelerometer data from the STWIN.box board a dat-
alogging firmware must be compiled into the board.
Fortunately there is a ready-to-use version available on the ST website, called
FP-SNS-DATALOG2.

After downloading the firmware into the ST board, we can acquire the
data directly into a computer, using a USB cable to connect physically with
the board and launching the Python script shown in the appendix D.

The output of the script is a list of .dat files containing the data acquisition
of all the active sensors.
In order to decrypt and analyze them, the library HSDatalog, provided by
ST, can be exploited.
In particular we can have visualize the plot (figure 4.27a) using the following
simple Python script :

Code 3 : comparing different sensor positions

from HSD.HSDatalog import HSDatalog

def upload_acquisition(acq_folder):

hsd = HSDatalog().create_hsd(acq_folder)

sensor = HSDatalog().get_sensor(hsd, "ism330dhcx_acc")

acc_df = HSDatalog().get_dataframe(hsd, sensor)[0] * g

acc_df[’Time’] = np.array(acc_df)[:,0] / g

return acc_df

upload the first acquisition (no-load cycles)

acq_folder = .̈..\\no-load cycles - side"

df_1 = upload_acquisition(acq_folder)

upload the second acquisition (no-load cycles)

acq_folder = "...\\no-load cycles - above"

df_2 = upload_acquisition(acq_folder)

It seems that the magnitude of the accelerations is higher when the data
are collected from above; nevertheless, if we don’t use the sharey property
in the plot, the differences in the shapes of the two collected acceleration
data are quite few.

40

(a) sharey = True

(b) sharey = False

Figure 4.27: Comparison between different STWIN.box positions

Moreover, as it’s better explained in the section 5.3.2, the collected data
must be filtered in order to highlight the shears and to perform a peak recog-
nition process to find and isolate them.

The piece of code (code 4) and the plot of the filtered signals (figure 4.28)
are shown as follow.
Notice that the functions in the code will be declared and described in the
chapter 5.
Notice also that some data in the df_2 dataframe are corrupted, so in the
code we have to discard them: a better explanation of this phenomenon will
be shown in the chapter 5.

Code 4 : comparing different sensor positions using filtered data

def fsampfinder(df_ACC):

...

return fsamp

def filter_mine(df_ACC, fsamp):

41

...

return filtered_acc_z

df_2 = df_2.iloc[0:1680000] # remove corrupted data

fsamp_1 = fsampfinder(df_1)

fsamp_2 = fsampfinder(df_2)

filtered_1 = filter_mine(df_1, fsamp_1)

filtered_2 = filter_mine(df_2, fsamp_2)

Figure 4.28: Filtered acceleration data from above and from the side

So, from the filtered data, we can see that the shears are better recogniz-
able when the sensor is set on one side of the head.
Moreover, that position is convenient also from a maintenance point of view,
because is more at hand.
In the end, it’s better to set the sensor in that position also because the mi-
crophone can better acquire the sound of the shears.

Now that the hardware part is completely defined, we can concentrate
on the software part, where the aim becomes to recognize the shears and
find a way to monitor the health of the shearing tool.

42

5Design and Implementation

5.1 The acquisitions collected by means of STWIN.box

As it was explained in the previous chapter (chapter 4), the best position
for the STWIN.box is on the side of the operating head of the Salvagnini S4
machine.

The aim of the project is to identify the shears and distinguish them from
the other acceleration data, therefore the health of the shearing tool can be
determined. Therefore some data have to be recorded.

The most important thing in data analysis is the quality of the data itself,
and we need to ensure that the sensor is put in a position to work at best.
So, the screws that fixes the plastic case of the ST board are fixed very well,
and the board was stuck at the well cleaned head surface by means of a
strong industrial double-sided tape.
From that moment on, the screws were never removed or loosen by us.

The fixing of the screws is crucial for defining the quality of the extracted
data, because since the sensor is installed over a plastic board, we can easily
get inaccurate data acquiring the board oscillations more than the actual
oscillations made by the structure of the punching head.

Another crucial aspect for data analysis is obviously the quantity of data
collected. So, the first thing to do is to acquire as many data as possible.
In particular, the first idea was to leave the PC running with the Python
script presented in the code 8 and modify only the line time.sleep(240)
into time.sleep(1800) in order to let the acquisition run for 30 minutes
straight. Unfortunately, the board generated a runtime_error, and all the
acquired data above 4 minutes of recording were corrupted (as you can see
in the figure 5.1a).

So the only way to acquire the data is to use exactly the same piece of
code shown in code 32 in the appendix D and create many .dat files, that will

43

(a) Acceleration in z-axis of the 30-min
acquisition (b) Dataframe from the 30-min acquisition

Figure 5.1: The results of the 30-min acquisition

need to be uploaded to the analysis Python script one at a time.

In the end, using the 4 minutes acquisition script, many acceleration data
are collected:

• n. 2 .dat files of no-duty cycles with the sensor positioned above the
operating head;

• n. 2 .dat files of no-duty cycles with the sensor positioned on the side
of the operating head;

• n. 30 .dat files of duty cycles with the sensor positioned on the side of
the operating head, and shearing tools used for about 250’000 times;

• n. 8 .dat files of duty cycles with the sensor positioned on the side
of the operating head of a newer Salvagnini punching machine with
shearing tools used for about 1’000’000 times, that is the expected end
of life by the manufacturer;

• n. 6 .dat files of duty cycles with the sensor positioned on the side of
the operating head, and shearing tools used for about 450’000 times;

Notice that only the 2 acquisition files of no-duty cycles with the sensor
on the side of the head and the 30 acquisition of duty cycles are consid-
ered from now on. The 2 acquisitions with the sensor above the head are
discarded due to the considerations given in the chapter 4; the other acqui-
sitions will be instead analyzed in the following sections.

The uploading script is similar to the script in code 3 but also the data
acquired by the imp34dt05_mic microphone will be uploaded in order to find
the shears starting from the audio, as it will be explained more in detail in

44

the next section.

In order to simplify the computations in the Python analysis script, it’s
possible to keep the accelerations over only one of the three axis: the most
effective one is the z-axis as it’s noticeable from the figure 5.2 that com-
pares the accelerations over the three axis collected in the first no-duty cycle
acquisition file.

Figure 5.2: Comparison between acceleration in x-axis, y-axis and z-axis

Since no big differences are visible, we can choose an arbitrary axis to
work with, and the selection goes to the z-axis, that is the one outgoing from
the STWIN.box.

Moreover, we can notice that the maximum acceleration amplitude is
around 25m/s2 and it is way below the maximum amplitude of the MEMS
accelerometer, that is equal to 16 · g ∼ 157m/s2.

45

5.2 Shears recognition using the microphone acquisitions

As anticipated in the previous section, the first attempt to recognise the
shears was made exploiting also the microphone data.

The used microphone included in the STWIN.box board is called IMP34DT05,
that is a MEMS omnidirectional digital microphone for industrial applica-
tions.

In the figure 5.3 the plot of the microphone and acceleration data of only
one acquisition file of a duty cycle operation are shown.

Figure 5.3: Comparison between acceleration in z-axis and microphone
signal

Unfortunately, data corresponding to the loudest audio, so to the shears,
are not so different from the other and we cannot distinguish the shears
using the raw microphone signal directly.

Therefore, a filtering process on the microphone is needed, in order to
highlight the more noisy shearing signals.
A low-pass filter that keeps only the low frequency components can be
implemented on the microphone signal: in particular a 2000Hz low-pass
filter is used.
Below the Python script (code 5) to implement the filter and the figure (figure
5.4) that compares accelerations in z-axis and filtered microphone signal are
shown.

46

Code 5 : filtering the microphone acquisition

from scipy import signal

cutoff_freq_MIC = 2000.0 #Hz

filter_order_MIC = 2

peak_timeserie_MIC = mic_26.T.to_numpy()[1]

b_MIC, a_MIC = signal.butter(filter_order_MIC,

cutoff_freq_MIC, ’lowpass’, fs=fsamp_MIC, analog=False)

filt_timeserie_MIC = signal.filtfilt(b_MIC, a_MIC,

peak_timeserie_MIC, method="gust") #Low Pass Filtered

Figure 5.4: Comparison between acceleration in z-axis and filtered micro-
phone signal

Looking at the filtered microphone acquisition the shears are quite evi-
dent, so this path can be the correct one in order to detect them.

Unfortunately, the sampling frequency of the accelerometer and of the
microphone are quite different, as highlighted by the following Python func-
tion (code 6).

Code 6 : sampling frequency of the duty cycle acquisitions

mic_list = [mic_1, mic_2, ... , mic_31, mic_32]

df_ISM330DHCX_MIC = pd.concat(mic_list, axis=0,

ignore_index=True)

df_list = [df_1, df_2, ... , df_31, df_32]

df_ISM330DHCX_ACC = pd.concat(df_list, axis=0,

ignore_index=True)

47

def fsampfinder(df_ACC):

n_samples = df_ACC.shape[0]

time = np.matrix(df_ACC)[:,0]

t_max = time[n_samples-1]

t_min = time[0]

dt = (t_max-t_min)/n_samples

fsamp = 1/dt

return fsamp

fsamp_acc = fsampfinder(df_ISM330DHCX_ACC)

fsamp_mic = fsampfinder(df_ISM330DHCX_MIC)

It results that f samp_acc = 7166.197 Hz and f samp_mic = 47963.387 Hz.

In the end, the concept of using the microphone data consists in identi-
fying shears through microphone acquisition and subsequently transfer the
interval of samples containing the shear to the acceleration signal; so that it
can be analyzed in the frequency domain of the accelerometer acquisition.
The problem is that the interval of samples considered in the audio signal
must be scaled in order to be comparable with the samples in the accelera-
tion signal.
In practice, if the sampling frequency of the audio acquisition is higher, it
results in a larger interval containing the shear compared to the correspond-
ing interval in the acceleration acquisition.

Before entering more in the detail about signal scaling, we need to rec-
ognize the microphone peaks that correspond to the shears: in order to do
that, the Python library scipy is exploited, and in particular the function
scipy.signal.find_peaks.

Additionally, considering that the final objective is to work with the code
in real time, the script was written to simulate the real-time behaviour of the
ST board.
It is important to note that a more detailed examination of this phenomenon
will be addressed in the following sections (section 5.3.1).

The Python script to emulate the real-time microphone acquisition con-
sists of few steps, which are described below.

• Filter the microphone signal. The piece of code is shown in code 35 in
the appendix E;

48

• Define the window and overlap dimensions;

Code 7

overlap = 512

win_dim = 2048

The simulated real-time signal consists of a series of 2048 samples long
buckets that has an overlap of 512 samples with the subsequent ones.
Please be aware that these values are specific to the acceleration signal and
need to be adjusted in the microphone signal because of the different sam-
pling frequency.

• Relate the window dimension of the microphone with the acceleration
one;

Using the variables defined in the code 7, it’s possible to divide the
acceleration signal into len_df = 30773 buckets, that simulate the real-time
operating conditions.

It results that the microphone need win_dim_mic = 13710 and overlap_mic
= 3428 to make the audio signal comparable with the accelerometer one,
which has win_dim = 2048 and overlap = 512.

• Define the dimensions and the number of the microphone buckets to
analyze. The piece of code is shown in codes 37 and 38 in the appendix
E;

It results that the number of the necessary buckets is len_df_for_iterations
= 30773, that is the same as len_df as expected.

• Perform the real-time peak recognition of the pre-filtered microphone
signal. The piece of code is shown in code 39 in the appendix E;

The results for a specific segment of the signal containing shear occur-
rences are shown in the figure below (figure 5.5).

Given that peak recognition was conducted on the microphone signal
using a bucket of samples with a length of win_dim, and that the algo-
rithm recognize only if there is a peak within the bucket or there is not, it’s
possible to subsequently reduce the dimension of the bucket only for the
peaks_list_mic in order to make the list dimension equal to the one of the
accelerometer acquisition.
In fact, the resulting peaks_list_divided_mic is a list of arrays: the length of the

49

Figure 5.5: Peaks recognized by the real-time algorithm over the microphone
signal

list is 30773 array, each long 13710 units. The array can contain only zeros
or ones as defined by the algorithm.
So, we can reduce the array dimension simply exploiting the following script
(code 8).

Code 8

peaks_mic1 = peaks_list_divided_mic[0][:win_dim] # reduce

dimension of first array only

peaks_mic2 = [x[:win_dim-overlap] for x in

peaks_list_divided_mic[1:]] # reduce the other arrays

peaks_mic2.insert(0, peaks_mic1) # concatenate

peaks_mic_to_acc = np.hstack(peaks_mic2)

Now the peaks_mic_to_acc list consists of 30 773 arrays, each with a length
of win_dim - overlap units, except for the first array, which has a length of
win_dim units.
This operation is useful to adjust the peaks found by means of the micro-
phone signal into the accelerometer acquisitions.
The results are shown in the figure below (figure 5.6).

It’s possible to notice that some of the peaks detected are shifted with
respect to the actual shear. We can also observe that this issue is due to the
microphone adjustment of the buckets dimensions.
The figure below (figure 5.7) shows that quite well.

Considering that the algorithm that adjust the microphone peaks to the
acceleration one has been developed by me, it can be wrong.

50

Figure 5.6: Peaks shifted from the microphone signal to the acceleration one

Figure 5.7: Peaks of the microphone signal over itself and over the accelera-
tion one

Figure 5.8: Zoom on some shears of figure 5.7

So, an alternative solution comes into play: the exploiting of the library scipy,

51

and in particular of its function signal.resample, which is a function that make
a downsampling of the microphone signal to bring its sampling frequency
similar to the one of the accelerometer.
The Python implementation of the downsampling process is provided in the
code 9. The peak recognition in real-time is computed as described in the
code 39.

Code 9

from scipy import signal

filtered_mic_downsampled = signal.resample(

filtered_df_ISM330DHCX_MIC, len(df_ISM330DHCX_ACC))

extra_samples = (len(filtered_mic_downsampled) - win_dim)

% (win_dim-overlap)

df_ISM330DHCX_MIC_trim = pd.DataFrame(

filtered_mic_downsampled[:len(

filtered_mic_downsampled)-extra_samples])

len_df = ((len(df_ISM330DHCX_MIC_trim)-win_dim) /

(win_dim-overlap))+1

Unfortunately the results are not so different from the previous one, as
it’s shown in the figures 5.9 and 5.10.
Moreover the utilization of the microphone may give rise to potential issues
on the CPU utilization due to its demanding requirements in terms of sam-
pling frequency and subsequent data analysis of the acquired signal.

Figure 5.9: Peaks of the downsampled microphone signal over itself and
over the acceleration one

52

Figure 5.10: Zoom on some shears of figure 5.9

In conclusion, the microphone signal can be useful in order to detect
the shears in the acceleration signal, as expected from the significant noise
generated by the shear.
Despite it is possible to operate using that audio sensor, there are some
difficulties that can be avoided: the main problems are the non optimal per-
formance of the script and the CPU computational effort demanded from
the microphone sensor.
It’s better to avoid an high computational effort on the edge, because it may
lead to less accuracy in the algorithm due to hardware limitations.

In order to avoid all of that, a new and simpler strategy was adopted:
analyzing the accelerometer signal directly, and attempting the peak recog-
nition algorithm on it without incorporating the audio sensor.

5.3 Shears recognition directly on the accelerometer sig-
nal

As seen in the previous section, using a microphone sensor can introduce
several drawbacks due to the fact that the sampling frequency and data
analysis of the acquired audio signal can be computationally demanding,
leading to increased CPU utilization.
Moreover, the microphone may introduce challenges in synchronizing the
detected peaks with the accelerometer.

To overcome these inconveniences, an alternative strategy comes into
play: focusing only on the accelerometer signal.

53

In fact, by directly analyzing the accelerometer data and performing the peak
recognition algorithm on it, the drawbacks associated with the microphone
sensor can be avoided.

In this section, we will focus on:

• what "real-time application" means;

• filter the accelerometer acquisitions;

• implement the peak recognition function using both a built-in function
from the scipy library and a custom function;

• define what is machine learning and implement some algorithms;

• implement a neural network algorithm;

5.3.1 Real-time application

Real-time applications are those application where it’s important to provide
instantaneous or near-instantaneous responses, often with minimal delay or
latency. These applications are commonly used in robotics or control sys-
tems, where prompt and accurate responses are critical.

The STWIN.box is a board specifically designed for the real-time appli-
cation, enabling simultaneous data analysis and continuous data collection.
The operating condition in which will be used is referred to as FIFO mode,
an acronym for "First In, First Out." In this way, the new collected sample is
stacked in the end of the acquired array, while the last collected sample is
discarded from the array, as shown in the figure 5.11

Before compiling the firmware in the STMicroelectronics IDE, called
STM32CubeIDE, and deploying it to the STWIN.box board, we need to sim-
ulate through Python the behaviour of the board under real-time operating
condition and check the effectiveness of every algorithm used.
Detailed discussions and explanations of these Python scripts will be pre-
sented in the subsequent subsections.

The Python simulation of the real-time operating condition involves di-
viding the entire acquired array into multiple buckets, each corresponding
to the small array that is collected within the board in FIFO mode.

54

Figure 5.11: FIFO mode of operation

The code implementation is shown below (code 10).

Code 10

overlap = 2048-512 # 512 samples will change based on FIFO

win_dim = 2048

win_dim is the real-time array length

remove last incomplete bucket from the whole acquisition

extra_samples = (len(df_ACC_450) - win_dim) %

(win_dim-overlap)

df_ACC_450_trim = pd.DataFrame(df_ACC_450.to_numpy()[

:len(df_ACC_450)-extra_samples,:])

len_df = ((len(df_ACC_450_trim)-win_dim) /

(win_dim-overlap))+1

for i in range(int(len_df)):

if i == 0 :

don’t use overlap for the starting array

begin = i

end = begin + win_dim

df_realtime = df_ACC_450_trim.iloc[begin:end]

real-time data analysis here

else :

use overlap for every array but the first one

55

begin = end - overlap

end = begin + win_dim

df_realtime = df_ACC_450_trim.iloc[begin:end]

real-time data analysis here

The script involves the use of an if condition because the starting array
can’t overlap with the previous array, because it does not exist. So, the start-
ing array is as long as win_dim and correspond to the first win_dim samples
of the whole acquisition; while the second array will be correspondent to the
interval of samples between the 512th and the 2048 + 512 = 2560th samples
of the whole acquisition and so on for the remaining arrays.

Issues arising from the real-time operating conditions

The issues that arises working with short real-time arrays in a Python script
can be of several types:

• Limited data resolution, especially in the frequency domain;

• limited context and representation: short arrays may not capture the
complete context of the data.

The limits on the context of the data is solved using a big overlap between
one array and the following one. In fact 3/4 of the array is preserved into the
following array, and only 1/4 of it is discarded.

For what concern the limited data resolution, no solution is available and
the only thing to do is keeping the window dimension as big as possible,
in order to perform the Fast Fourier Transform using as many samples per
segment as possible.
Moreover, the window dimension have to be preferably at the power of 2
and not too large, in order to optimize the memory of the STWIN.box CPU
and not to lose some data.
So, we choose a window dimension of 211 = 2048 samples and a overlap of
29 = 512 samples.

The following script (code 11) shows that, during the FFT computation,
it’s possible to set the nperseg parameter that is responsible for the frequency

56

resolution and filtering degree of the power spectrum.
Considering that the higher value for the nperseg parameter correspond to
win_dim, we need to keep win_dim as large as possible to combine a good
frequency resolution with the possibility to filter the spectrum.

Code 11

import scipy as sp

[freq_PS, PS]= sp.signal.welch(df, nperseg=512,

scaling=’spectrum’)

freq_PS = freq_PS * fsamp # fsamp = fsampfinder(df)

delta_freq = np.mean(np.diff(freq_PS))

In order to demonstrate that, it’s possible to use for example as df the
whole acquired dataframe df_ISM330DHCX_ACC.T.to_numpy()[3] and find
out that the results of the frequency resolution are different based on nperseg
parameter:

• if nperseg = 512 => delta_freq = 13,9964 Hz;

• if nperseg = 2048 => delta_freq = 3,4991 Hz.

After establishing the limitations imposed by utilizing a real-time ap-
plication, we can move on and analyze the incoming data simulating the
real-time operating conditions.

5.3.2 Filtering the signal

The filtering operation of the signal is the first thing to do, in order to high-
light the data samples corresponding to the shears.

From the previous analysis on the microphone signal, performed in the
section 5.2, it’s possible to define where the shears are, so we can perform
the filtering process in order to emphasize these shears. The filtering of the
signal involves using a band pass filter that selectively includes only the
frequency components associated with the shearing process.

So a trial and error operation was performed on the extreme values of the
frequency range in order to find the most appropriate ones. At the end, the
best result is provided by using a band pass filter between 550Hz and 650Hz.

57

In particular the piece of Python code that filter the signal is presented below
(code 12), and the results are shown in the figure 5.12.

Code 12

def filter_mine(df_ACC, fsamp): # work with z-axis only

from scipy import signal

cutoff_freq = 550.0 # High pass filter at 550 Hz

filter_order = 8

peak_timeserie_z = df_ACC.T.to_numpy()[3]

b, a = signal.butter(filter_order, cutoff_freq,

’highpass’, fs=fsamp)

hpf_peak_timeserie_z = signal.filtfilt(b, a,

peak_timeserie_z, method="gust")

cutoff_freq = 650.0 # Low pass filter at 650 Hz

filter_order = 8

b, a = signal.butter(filter_order, cutoff_freq,

’lowpass’, fs=fsamp)

filtered_peak_timeserie_z = signal.filtfilt(b, a,

hpf_peak_timeserie_z, method="gust")

return filtered_peak_timeserie_z

Figure 5.12: Comparison between filtered and non-filtered acceleration of
the first duty cycle

The obtained results are quite satisfactory as the shears are effectively
accentuated, making the peak recognition approach feasible.

Before we go on and discuss about the peak recognition function, it’s
important to notice a few things about the function used, in particular about

58

the use of scipy.signal.butter and scipy.signal.filtfilt.
Scipy.signal.butter is the built-in python function that exploit the library

scipy to define the filter parameter got using the Butterworth method.
The Butterworth filter is a digital Infinite Impulse Filter that provides a
smooth frequency response in the passband region, with minimal ripples in
both the passband and stopband.
In particular, Elliptic and Chebyshev-based filters have constant ripple
across their pass bands; while Bessel and Butterworth derived filters have
no ripple in their pass band responses.
The Butterworth filter is defined by two parameter: the cutoff frequency,
which determines the point at which the filter starts attenuating the input
signal, and the filter order, that determines the drop steepness after the
cutoff frequency (as shown in the figure 5.13 from the book Digital Signal
Processing [20]) . Overall, this kind of filter is quite common due to its good
performance and simplicity.

Figure 5.13: Butterworth filter at different filter orders
Source: Douglas F. Elliott. Handbook of Digital Signal Processing Book
(1987)

scipy.signal.filtfilt is a filtering method that apply a zero-phase digital fil-
ter to a signal. In our case the filter used is the Butterworth one.
In general the filtering process is useful in removing unwanted noise or arti-

59

facts from the signal, the filtfilt method has the advantage of not introducing
delay or phase shift to the filtered signal.

In fact, it operates by applying a digital filter twice: once in the forward
direction and then in the reverse direction. This bidirectional filtering can-
cels out any phase distortion introduced during the initial filtering process.
As a result, the filtered signal closely aligns with the original signal in terms
of phase, making the real-time application really effective.

One particular parameter of the filtfilt algorithm is the method property.
It can be "gust" or "pad":

• Using the "gust" method, also known as the Gustafsson method, we
aim to achieve zero-phase filtering;

• using the "pad" method, our aim is to minimize edge effects. It is
possible using a padding strategy that extends the input signal by
adding extra data points before and after the original signal, so to
reduce edge effects due to the filtering process.

The real-time condition is considered to be more important than the
padding one, because we can reduce the edge effects removing the first and
last samples that can be corrupted and not significant due to the inertia of
the filter before it goes to regime.

In fact, we used the gust method and we removed the first and last 12
samples from the computation of the peak recognition algorithm, as shown
in the code 40 in the appendix F. In this way, we can maintain either a
good real-time peak recognition and reduced edge effects. Moreover, that
operation of removing samples will not affect the performance of the peak
recognition algorithm, because we removed a little amount of samples and
we can exploit the FIFO mode to detect the shear in the neighboring samples.

In the next section a more detailed analysis of the peak recognition algo-
rithm will be discussed.

5.3.3 Peak recognition function

The peak recognition process was performed using two different approaches.
Initially, a built-in function called find_peaks from the Python library scipy.signal
was utilized, because it is convenient. But, considering the real-time appli-
cation and the need of deploy the firmware on the board, a hand written

60

custom function was developed. In fact, the firmware had to be written in
C++, which does not have a convenient library or built-in functions for peak
detection.

scipy.signal.find_peaks

The documentation about this built-in function is available for consultation
at [7].
The function requires several inputs, such as the signal itself, the minimum
and maximum amplitude in which the function need to look for peaks, and
the minimum distance between two adjacent peaks.

In order to identify the peaks in the acquired data, the following script
(code 13) is executed.

Code 13

from scipy.signal import find_peaks

peaks_pyth_ACC_shears = find_peaks(

filtered_df_ISM330DHCX_ACC, height=0.8, distance=2048)

The settings for the parameter height as 0.8 is based on the observation on
the filtered signal in the figure 5.12: in fact we can notice that the shears signal
has been highlighted from the filtering process and exhibits an amplitude
higher than 0.8. On the other hand, no punches or noise in the signal reach
such heights.

For what concern the distance parameter, it was set at 2048 to in order to
exclude the decaying peaks of the shear from being considered a different
shear: this ensures that every shear is associated with only one reference
peaks, specifically the highest one, which correspond to the actual instant in
which the shear impacts the sheet of metal to cut its excess of material.

The results of the algorithm are shown in the figure 5.14.
Nevertheless, the shown results do not align with the requirements of

real-time application. In particular, there is the risk that a single peak is
identified multiple times due to the overlapping of consecutive arrays. To
address this issue, modification on how the algorithm will identify the peaks
must be done.

The real-time application of the find_peaks function need to exclude every
peak that has already been identified. The modified algorithm is provided

61

Figure 5.14: Peaks found over the filtered acceleration in z-axis

in the Appendix G, as it is lengthy and cannot be included here.

peakfinder_mine

Considering that the C++ programming language used for writing the
firmware of the STWIN.box does not have the built-in function find_peaks, it
was necessary the development of a custom implementation.

Following best practices, the function was initially written in a simpler
form and later extended in order to incorporate also the parameters of height
and distance, similarly to the built-in find_peaks function.
The initial implementation of the code involves a simple iteration in a for
cycle that compares all the values of the signal with the previous and the
following one; if the current value was found to be higher than both its neigh-
bors, it is identified as s peak and its index was appended to a list. Finally,
the function returned the list of indexes where peaks were detected (code 27).

Afterwards, additional features were incorporated into the algorithm to
account for the height and distance parameters.
The intermediate steps are presented in the code 27 and 28 and 29 in the
appendix H, while here (code 14) only the final version of the custom function
is shown.

Code 14

def peakfinder_mine(ar, lim_min=-100000, lim_max=100000,

action_range=1):

62

peaks = [] # initialize peaks list

if lim_min == -100000:

lim_min = ar.mean() # use mean of the signal as

lower limit by default

i = 0 # i identify the current value under analysis

for num in ar:

if num > lim_min and num < lim_max:

if i<action_range and i+action_range>len(ar)-1:

action_range_arr = ar.copy()

elif i < action_range:

action_range_arr = ar[:i+action_range+1]

elif i+action_range>len(ar)-1 :

action_range_arr = ar[i-action_range:]

else:

action_range_arr = ar[i-action_range:

i+action_range+1]

if num >= max(action_range_arr):

peaks.extend([i])

i = i+1 # move on to the next value

return peaks

Then, the modified version of the function was used in the code 26 (code
in the appendix G). The piece of code (code 15) which originally exploited
the find_peaks function, was replaced with the a different algorithm (code 16)
that implement the custom peak detection algorithm.

Code 15
...

filtered_peak_timeserie_z_realtime, peaks =

filter_and_peakfinder(df_realtime, fsamp)

...

Code 16
...

filtered_peak_timeserie_z_realtime = filter_mine(

df_realtime, fsamp)

peaks_shears = peakfinder_mine(

filtered_peak_timeserie_z_realtime, lim_min=0.8,

63

action_range=2048)

...

The comparison between the two approaches are shown below (figure
5.15).

Figure 5.15: Comparison between built-in function find_peaks and custom
function

The complete code that consider the real-time condition with the custom
functions filter_mine and peakfinder_mine are presented in the appendix F.

In order to improve the accuracy of the shears recognition, the imple-
mentation of a machine learning algorithm is taken into consideration. A
detailed discussion about this topic will be explored in the following section.

5.3.4 Machine learning implementation

Even if the peak recognition function works quite well in detecting the
shears, we want to implement a Machine Learning algorithm in order to
improve the accuracy of the output, and the robustness and flexibility of the
algorithm.

Starting from the fundamentals, in this section we will explore some
aspects of the wide topic of machine learning in order to discriminate which
can be the most suitable one for our application.

64

What is machine learning?

Machine learning is a field of artificial intelligence that focuses on developing
algorithms and models that enable computers to learn from data and make
predictions or decisions without being explicitly programmed. It involves
the use of algorithms to analyze and interpret patterns and relationships in
data.

In particular, the aim of machine learning is to analyze data and classify
them into groups, based on some provided features.
It is evident that certain features can be very significant in order to distin-
guish two different groups, while others may be less influential.
For example, we can consider flowers data and exploit a machine learning
algorithm in order to classify them. Maybe the color of the petals or their
number can be distinguishing features, but the presence of petals is not in-
formative for sure, since all flowers have at least one petal.
This discussion about of how much important is a feature in classification
tasks will be treated in the following sections.

The figure 5.16 shows the relationship between machine learning, artifi-
cial intelligence, and deep learning. In particular, deep learning focuses on
the development of artificial neural networks, which are designed to simu-
late the structure of the human brain in order to get them to autonomously
learn and make decisions.

supervised vs unsupervised

One of the primary classifications of machine learning algorithms is based on
whether they fall into the category of supervised or unsupervised learning.

Those two kind of algorithms have some differences both on the needed
input and on the objectives.
In particular:

• Supervised Learning: these algorithms are designed to learn from
labeled input data, so a target label must be associated to each data
point. This algorithms aim to generalize the patterns and relationships
learned from the labeled training data and make accurate predictions
or classifications on new incoming data.

• Unsupervised Learning: these algorithms operate on unlabeled train-

65

Figure 5.16: Relationship between machine learning, artificial intelligence
and deep learning
Source: https://www.ionos.com/digitalguide/online-marketing/search-
engine-marketing/deep-learning-vs-machine-learning

ing data. As for the supervised learning, these algorithms aim to find
similarities within the data, but the unsupervised algorithm cannot
lean on the correct output.

A third group that is between those exists and it is called Semi-supervised
Learning, and typically is a kind of unsupervised learning with only a few
data that are labeled and can help the machine learning algorithm to find
patterns on the input data.
Nevertheless, this category is of secondary importance, so it will not be ex-
plored in detail.

Overall, the supervised learning algorithms are typically more accurate,
but need for the labeled data, that means needing for more knowledge
about the data. So, it is evident that there is a trade-off between the level of
knowledge about the data and the accuracy of the output returned.
This consideration is crucial in several situation and, in particular, when
the features of the input data are not distinctive and similar features can
correspond to different output. In fact, the unsupervised learning can fail
its task in this condition, as noticeable in the figure 5.17.

The figure 5.17 illustrates the different approach of the two types of al-
gorithms based on whether the correct output labels are given or not. In
particular, (a) and (c) are related to unsupervised learning, while (b) and (d)
are related to supervised learning.

66

Figure 5.17: Machine learning performance on different kind of data
Source: Steven L. Brunton and J. Nathan Kutz. Data Driven Science and
Engineering

In the figure two different conditions are presented: well separated data ((a)
and (b)) , for which both the supervised and unsupervised algorithms return
the output with good accuracy; and overlapping data ((c) and (d)), where the
unsupervised learning often fails to assign the right class to the input data,
and where the supervised learning have some difficulties to find patterns in
the training data.

In conclusion, we can make two important observations.
The first one is that, for well separated data without labeled output, unsuper-
vised algorithms can struggle with classifying the data: they may effectively
group the data, but they may also assign the incorrect labels to the groups.
In fact, running the algorithm multiple times, the group on the right could
be arbitrarily assigned either to the group "0" or to the group "1".
While, the second, and more important observation is that the condition of
well separated data must be met in order to guarantee a good performance
of the algorithm.

So, the features extracted need to be as many as possible in order to
define at least two or three distinctive features that get the data to be well
separated.

67

Feature extraction

As discussed in the previous paragraphs, the features are crucial in order to
guarantee good performances on the machine learning algorithm.

So the extraction of the features from the data need to consider as many
features as possible, in order to have the chance to select the most distinc-
tive ones and provide a well separated set of data features to the machine
learning algorithm.

The features extracted correspond to several statistical characteristics. In
order to simulate the real-time operating condition, it’s important to define
a single feature for each array with length samples_per_window that enters
the board.
For that purpose a custom function called divide_into_windows was devel-
oped. Its definition is shown in the Appendix A and its application is
presented below (code 17).

Code 17

input_dataframe = df_ISM330DHCX_ACC

samples_per_window = 512

frames_reduced = divide_into_windows(input_dataframe,

samples_per_window)

Therefore, it’s possible to extract the features from the time domain ac-
quisitions in all the three axis. In more detail, here are the extracted features:

• Mean, that is the mean of the input

• STD, that is the standard deviation of the signal with respect to the
mean

• RMS, that is the Root Mean Square of the input

• Median, that is the median of the signal, less sensitive to outliers

• Max, that is the maximum value of the input

• Min, that is the minimum value of the input

• Energy, that is the area under the squared magnitude of the considered
signal

68

• q25, q75, that are the first and third quartiles

• ARCoeff, that are the parameters for the autoregressive model that
make predictions about the following values

• skewness, that is the parameter for the asymmetry of the input

• kurtosis, that is the parameter for how often outliers occur

• CF, that is the crest factor of the input signal and it is defined by
Max/RMS

• SNR, that is the signal to noise ratio

• corrCoeff_xy, corrCoeff_xz, corrCoeff_yz, that are the correlation co-
efficient between the acceleration in the different axis

The features extracted from the frequency domain acquisition are sim-
ilar to those extracted from the time domain, but the following additional
features are also considered:

• fEntropy, that is the spectral entropy of the signal and it’s important
to discriminate highly likely event occurs from the unlikely ones;

• fTHD (Total Harmonic Distortion of the power spectrum) is defined
as the ratio of the sum of the powers of all harmonic components to
the power of the fundamental frequency;

• fPS_maxInd, that is the index of the maximum power spectrum am-
plitude;

• bands_energy, that is the area under the power spectrum. In particular
we divided the power spectrum in 14 equal regions and got a value of
bands_energy for each region.

Up to now, many features of the signal have been extracted and put in
an organized dataframe. Therefore, the new goal become the definition of
the most distinguishing features among all the extracted ones.
Some different approaches can be explored:

• brute analysis of all the features, looking at them one compared to
another. In this way, about 10’000 images are generated and quickly
analyzed in order to detect which features can generate a well sepa-
rated set of data;

69

• Principal Components Analysis, or PCA, that is a technique used in
order to reduce the dimension of the features matrix;

• SelectKBest Python built-in function, that create a hierarchical structure
among the features, ranking them based on their distinctiveness.

The first approach was the most demanding one in terms of time, because
the algorithm needs to generate many images and the supervisor needs to
analyze each of them. Some of the generated images are shown in the figure
5.18.

Figure 5.18: Some plots of features, one correlated with each other

It is possible to notice that, even if the shown features in figure 5.18 are
the most significant ones among all the generated images, none of those
shows a clear well separation between the shear data (blue dots) and other
ones (black dots).

However, given the importance of finding features that effectively sepa-
rate the data, we tried another solution: SelectKBest.
The algorithm is implemented easily, thanks to the library sklearn (code 18).

Code 18

from sklearn.feature_selection import SelectKBest, f_classif

selector = SelectKBest(f_classif, k=10)

selector.fit(features_df, labels_supervised_short)

cols_idxs = np.flip(selector.get_support(indices=True))

print(features_df.columns[cols_idxs]) # visualize name of

kbest features

70

The result is a list of ten elements (defined by k=10 in SelectKBest) that
enumerate the most distinguishing features.
They are [bandsEnergy_z_2, bandsEnergy_y_2, bandsEnergy_y_1, fARCo-
eff1_y, fMean_y, tIQR_z, tIQR_y, tEnergy_y, tRMS_y, tSTD_y].
Unfortunately, even with this function, the defined features are not distin-
guishing enough, as it is shown in the figure 5.19.

Figure 5.19: Plots of features identified with SelectKBest, one correlated with
each other

The last chance to get the desired well separated data is the use of the
PCA algorithm (code 19).

In detail, PCA means Principal Component Analysis and it is a dimen-
sional reduction technique that exploit an unsupervised learning algorithm
in order to transform a data-set of possibly correlated variables into a new
set of uncorrelated variables called principal components.
The idea is to identify the directions where the data shows more variations
and project the data onto these directions. In this way, only the more distin-
guishing features are kept.
The main drawback of this approach is that it is very difficult to map the
generated matrix of principal components back into the original features.

Code 19

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler, normalize

X = features_df

Scaling and normalizing X in order to make all the

features comparable

X_scaled = StandardScaler().fit_transform(X)

X_normalized = pd.DataFrame(normalize(X_scaled))

pca = PCA(n_components = 2)

X_principal = pd.DataFrame(pca.fit_transform(X_normalized))

71

X_principal.columns = [’P1’, ’P2’]

Mathematically speaking the steps of PCA are subtraction of the mean
from the data and computation of the covariance matrix, then the principal
component is the eigenvector of B*B corresponding to the largest eigenvalue.
These steps are in the equations 5.1, 5.2, 5.3, 5.4, 5.5, taken from Data Driven
Science [13].

mean of each column x̄ j =
1
n

n∑
i=1

Xi j, (5.1)

mean array X̄ =

∣∣∣∣∣∣∣∣∣∣
1
...

1

∣∣∣∣∣∣∣∣∣∣ x̄, (5.2)

data with mean removed B = X − X̄, (5.3)

covariance matrix C =
1

n − 1
B∗B, (5.4)

first principal component u1 = arg max
||u1||=1

u1
∗B∗Bu1. (5.5)

Since the PCA approach is an unsupervised learning algorithm, it is
impossible to generate a map that can refer the labels to the principal com-
ponents, because they were generated from unlabeled features and cannot
be labeled afterwards due to the struggle in reversing the algorithm.
The unlabeled components are shown in the figure 5.20, and they appear to
be not well separated.

Figure 5.20: PCA analysis of the features matrix

Even without the condition of well separated data, we can try to adopt
some supervised and unsupervised learning algorithm in order to check

72

their performance.

The different kinds of existing algorithms

In addition to the supervised or unsupervised classification, the machine
learning algorithms can be grouped based on the approach they use.
The groups are listed below.

• Hierarchical Based Methods: those methods aim to create a hierar-
chical structure. They can be divided into agglomerative clustering, that
consider each data point as a separate cluster and merges similar clus-
ters together, and divisive clustering, where all data points belongs to a
single cluster which is split into smaller subclusters. Those methods
are useful if a more in-depth understanding of the relationships in the
data is required.

• Partitioning Methods: the goal of these methods is to find a parti-
tioning that maximizes the intra-cluster similarity and minimizes the
inter-cluster similarity. In this category the most important algorithm
is K-means clustering, that starts by randomly initializing K cluster cen-
troids and assigns each data point to the nearest centroid. It then
iteratively updates the centroids based on the mean of the data points
assigned to each cluster until convergence.

• Density-Based Methods: Density-based methods identify clusters
based on the density of data points in the feature space. These methods
consider dense regions of data points as clusters and separate them by
low-density regions. The most common algorithm is called DBSCAN
(Density-Based Spatial Clustering of Applications with Noise): it de-
fines clusters as high-density areas separated by low-density areas. It
can discover clusters of arbitrary shapes and handle noise and outliers.

The machine learning model used

The results of the PCA algorithm in the figure 5.20 are not optimal, but we
can try to use each method in order to find out if it can anyway detect the
shears.

The methods are implemented in Python by means of the library scipy
and the piece of code used is shown in code 20.

73

Code 20

from sklearn.cluster import AgglomerativeClustering, KMeans,

DBSCAN

X = features_df.iloc[2000:3000] # work only in a portion of

the acquisitions

... # find X_principal by means of PCA

ac2 = AgglomerativeClustering(n_clusters = 2)

y_ac2 = ac2.fit_predict(X_principal)

km = KMeans(n_clusters = 2, init = "k-means++")

y_kmeans = km.fit_predict(X_principal)

dbscan = DBSCAN(eps = 0.1, min_samples = 70)

y_dbscan = dbscan.fit_predict(X_principal)

The output of the algorithms, named as y, are a list of labels (one or zero)
that defines the cluster in which each window of 512 samples lies based on
its features.

The results of the application of the machine learning models are shown
in the figures 5.21, 5.22 and 5.23.

(a) PCA data points

(b) Labels compared to filtered timeserie

Figure 5.21: Agglomerative Clustering results

74

(a) PCA data points

(b) Labels compared to filtered timeserie

Figure 5.22: K-Means results

(a) PCA data points

(b) Labels compared to filtered timeserie

Figure 5.23: DBSCAN results

75

Unfortunately, the lack of well separated data is a significant limit and
the performance of each of the machine learning algorithms used are not
enough for our application.

5.3.5 Discussion about the feasibility of a good neural network algo-
rithm

The low performance of the machine learning algorithm bring us to explore
a new tool that can be more powerful than the simple peak recognition func-
tion: the neural network.

Neural networks are algorithms included in the deep learning topic, that
is a sub-topic of machine learning.
They are inspired by the structure and function of the human brain. It
consists of interconnected nodes, called neurons, organized in layers. Each
neuron receives input from multiple neurons in the previous layer, processes
the information, and passes the output to neurons in the next layer.
The figure below (figure 5.24) shows the typical structure of a neural net-
work.

Figure 5.24: Neural network structure

In particular there are an input layer, that includes all the input variables,
one or more hidden layers, that interprets the relationships between the in-

76

put data, and an output layer for the output variables.
The hidden layers are the heart of the neural network structure and they are
composed by several nodes, also called neurons, each including a function
to map the input data.

In detail, each connection between neurons correspond to a weight that
the neural network give to that specific link (in the figure 5.24 the parameter
θ(1)

53 is the weight of the first connection set between the input 3 and the
neurons 5).

Moreover, each node correspond to an activation function that transform
the input data often in a non-linear way.
The activation functions are typically of Sigmoid or ReLU shape (shown in
the figure 5.25), but many other shapes exists too.

Figure 5.25: Sigmoid and ReLU non-linear activation functions

For example, using a ReLU activation function, we can determine the
value exiting from the first node of the first hidden layer with the following
equation:

z(2)
1 = θ

(1)
11 · input1 + θ

(1)
12 · input2 + ...

a(2)
1 = max(0, z(2)

1 + b(2)
1)

The neural network need to be trained in order to define its weights (θ)
and biases (b).
The training process is done using pre-defined target output for the input
data given and the neural network parameters are defined iteratively until
the output converges to the correct one. This process is similar to the super-
vised learning one.

77

For our application, the code showing the algorithm implementation is
shown in the code 21.

Code 21

import sklearn

import tensorflow as tf

labels_nn = np.zeros(len(filtered_df_ISM330DHCX_ACC))

for x in peaks_no_overlap:

labels_nn[x-212:x+812] = 1 # assign pre and post trigger

x = filtered_df_ISM330DHCX_ACC

y = labels_nn # y can be 0 (not shear), or 1 (shear)

X_1, X_2, y_1, y_2 = train_test_split(x, y, test_size=0.25,

shuffle=False)

x_train_NN, y_train_NN = sklearn.utils.shuffle(X_1 , y_1)

y_train_NN = tf.keras.utils.to_categorical(y_train_NN, len(

np.unique(y_train_NN)))

model = tf.keras.Sequential([

tf.keras.Input(shape = 1),

tf.keras.layers.Dense(4, activation="relu"),

tf.keras.layers.Dense(2, activation="relu"),

tf.keras.layers.Dense(len(np.unique(y_train_NN,

axis=0)), activation="softmax")])

model.compile(loss=’categorical_crossentropy’, optimizer=

’adam’, metrics=[’accuracy’])

history = model.fit(x_train_NN, y_train_NN, batch_size=1024,

epochs=10, validation_split=0.25)

x_test_NN = X_2

y_test_NN = y_2

y_test_NN = tf.keras.utils.to_categorical(y_test_NN, len(

np.unique(y_test_NN)))

pred = model.predict(x_test_NN, batch_size=1024) # test on

filtered acceleration signal z-axis, same batch size

used for training (1024)

The neural network model is the most common one: it is called Sequential
and its structure is similar to the one shown in the figure 5.24, but with a
single input neuron, followed by a hidden layer with 4 neurons, another
hidden layer with 2 neurons, and finally, an output layer with 2 neurons, that
classify signals by determining whether they belong to the shear category

78

or not.
The summary of the model is shown in the picture below (figure 5.26) and
the results of the neural network application on a piece corresponding to
the 20% of the acquired signal compared to the expected output value are
shown in the figure 5.27.

Figure 5.26: Summary of the neural network structure

Figure 5.27: Comparison between the predicted label by the model and the
expected one

The performance is quite poor, so the neural network is not suitable
for shear recognition in our application. Maybe the cause of this poor
performance is the difficulty in identifying distinct relationships between
the data associated with punches and those associated with shears, as both
types of signals exhibit impulsiveness.

Moreover, we decide not to go in further details in the neural network
topic, as the peak recognition algorithm seems to work well enough for
our application. Therefore, we shifted our focus towards identifying the
punching operation by means of the peak recognition tool.

79

5.4 Punching recognition

In this section, we will analyze the possibility to identify also the punches
made by the machine on the metal sheet.

The purpose of monitoring also the punching operations is not to assess
the state of health of the punching tools, but to detect some anomalies in the
overall operation, such as power loss or variations in the thickness of the
metal sheet being punched.
In fact, we cannot monitor the health of each individual punching tools be-
cause there are many different tool placed in the machine head and it become
difficult to differentiate and isolate the vibrations generated by each tool.

The detection of the punches can be performed using similar approaches
to the ones used to detect shears.
Therefore, peak recognition and machine learning algorithms can be used
in order to detect them. In the following paragraphs all the approaches will
be treated in detail.

Machine Learning

We tried to implement a machine learning algorithm also to detect the
punches and to distinguish the shears from the punches from the other
machine conditions.
Unfortunately, similarly to the results shown in the section 5.3.4, no machine
learning algorithm is able to separate effectively the data points belonging
to the shears and those belonging to the punches.
In fact, the results are shown in the figure below (figures 5.28 and 5.29).

Considering these results, we need to discard the idea of using a machine
learning algorithm in order to distinguish punches from shears.
So we implemented a new version of the peak recognition algorithm that
can find also the punches.

Peak recognition

As done for the shear recognition, a suitable filtering frequency need to be
identified. After a trial and error operation on the filtering frequency, we
found out that there are no range of frequency where all the punches are
highlighted with respect to the shears (as shown in the figure 5.30)

80

Figure 5.28: Agglomerative Clustering algorithm performed over the ac-
quired signals - data point distribution

Figure 5.29: Agglomerative Clustering algorithm performed over the ac-
quired signals - labels over the acquired signal

Figure 5.30: Pass band filter on the first duty acceleration acquisition

81

Even if some punches can be detected using the 1500-2000Hz band pass
filter, we cannot detect them all. Moreover, for the real-time purpose is better
to avoid performing two different filtering processes on the same acquired
data, because the filtering process is CPU demanding and time consuming,
so there is some risk of data loss.

In the end, the peak recognition function is done on the filtered data
using a band pass filter between 550Hz and 650Hz, that is the same filtered
array used for the shears recognition.
The idea is to consider only a portion of the filtered signal, exploiting the
lim_min and lim_max parameters in the function filter_mine presented in the
code 12.

The results are not satisfactory because also some peaks belonging to the
shears are considered as punches. So, we need to implement a new piece
of code (code 22) that excludes all the piece of signal near to the shears.
It consists in removing all the peaks detected in the neighborhood of 2500
samples of the recognized shear.

Code 22

shears_list = [x.item() for x in peaks_list_notbinary]

punz_list = [x.item() for x in peaks_list_notbinary_punz]

shears_list_long = []

for x in peaks_list_notbinary:

arange_created = np.arange(x-2500,x+2500)

list_to_be_appended = [j.item() for j in arange_created]

shears_list_long.extend(list_to_be_appended)

punz_list_noshear = []

for y in punz_list:

if y not in shears_list_long:

punz_list_noshear.append(y)

The results of the code 22 is shown below (figure 5.31) and they highlight
that the punches can be well distinguished from the shears. Unfortunately
the presented code is working in a non real-time condition, but it can be
implemented if a multi-thread solution is selected, as we will discuss in the
section 7.2.

It is important to recall that the punches recognition algorithm cannot
be directly employed to determine the wear of individual punching tools,
because the machine head includes multiples punching tools and we are not

82

Figure 5.31: Results of the operation of removing shears from punches
recognition

able to differentiate the signal corresponding to each specific tool. How-
ever, this punches recognition technique can be used in order to detect some
anomalies in the overall punching operation.

In order to do that, the power spectrum of the signal corresponding to
the punches can be analyzed. In particular, as shown in the figure 5.32 we
can expect a different behaviour in the frequency region around 1000Hz and
1800Hz if a faulty punching operation is detected.

Figure 5.32: Power spectrum of the stacked recognized punches

Unfortunately, there was no time to investigate further more this part of
the project, because we wanted to go more in the detail about the definition
of the wear level of the shearing tool.

83

5.5 Comparison with a newer punching machine, operating
with a shearing tool at the end of its service life

Since the shears are recognized well by the peak recognition algorithm, it’s
time to get more into detail about the definition of a good and bad state of
health of the shearing tool.

All the acquisitions used to detect the shears were recorded around the
beginning of April and the shearing tool of the punching-shearing center
under exam (S4 1262) had performed about 250’000 shears (figure 5.33).

Figure 5.33: Dashboard of the state of health of the punching and shearing
tool of several punching-shearing center as of 12th April

The maximum useful life for the shearing tool given by the manufacturer
is 1’000’000 shears, so the recorded shearing tool was used for approximately
one-fourth of its expected lifespan. Unfortunately, the shearing tool reaches
its end of life after approximately one year of usage, and, due to the eight-
month duration of my stay at KONE, it was not possible to monitor the
entire lifespan of the shearing tool.

In order to compare the actual state of health of the shearing tool with
a different one, we considered the option of recording the shearing tool of
another punching-shearing center that has a shearing tool at its end of useful
life.
In particular, the S4 1724 punching machine was taken into consideration
because its shearing tool was over 1’100’000 shears old.

Unfortunately the machine is 10 years younger than the S4 1262, so it is
a very different machine.
In detail, we need to check if the collected acquisitions can be useful for a
comparison between the two punching centers.
The collected acquisitions of the accelerations over the machine head of the
punching machine S4 1724 are made with a wear level of the shearing tool

84

as shown in the figure 5.34.

Figure 5.34: Dashboard of the state of health of the punching and shearing
tool of several punching-shearing center as of 22th May

The time domain acquisitions of the accelerations of the S4 1724 in com-
parison with the ones of the S4 1262 are shown in the figure 5.35.
Moreover, they were filtered with a pass band filter between 550Hz and 650
Hz and the results are shown in the figure 5.36: it results that the amplitude
of vibrations of the different machines are quite similar, so the machines are
not extremely different between each other and we can proceed with the
analysis.

Figure 5.35: Comparison between the raw accelerations of the S4 1724 and
those of the S4 1262

Going ahead, it’s possible to detect the shears and analyze them. In
particular, the peakfinder_mine function was exploited.
The identified shears are shown in the figure 5.37.

In order to analyze the response of the machine head to the shearing
impulse, a frequency analysis is performed. In particular two different
approaches are considered: compute the power spectrum of the whole ac-
quired signal (figure 5.38) and compute the power spectrum of only the shear

85

Figure 5.36: Comparison between the filtered accelerations of the S4 1724
and those of the S4 1262

Figure 5.37: Shears identified in the S4 1724 acceleration data

signals isolating them by means of the peakfinder_mine function and taking
also the neighboring data points (figure 5.39). The algorithm exploited in
order to obtain such results is shown in the code 24.

Code 23

find power spectrum of the whole signal

fsamp_1724 = fsampfinder(df_1724)

from scipy.signal import welch

[freqps_1724, ps_1724] = welch(df_1724.T.to_numpy()[3],

nperseg=10000, scaling=’spectrum’)

freqps_1724 = freqps_1724*fsamp_1724

fsamp_1262 = fsampfinder(df_ISM330DHCX_ACC)

86

[freqps_1262, ps_1262] = welch(df_ISM330DHCX_ACC.T.

.to_numpy()[3], nperseg=10000, scaling=’spectrum’)

freqps_1262 = freqps_1262*fsamp_1262

Figure 5.38: Comparison between the PS of S4 1262 and S4 the one of 1724
(whole acquired signal)

Figure 5.39: Comparison between the PS of S4 1262 and S4 the one of 1724
(considering only the signal corresponding to the shears)

Code 24

create array including only the shear signals

fsamp = fsampfinder(df_ISM330DHCX_ACC)

peaks = [x.item() for x in peaks_list_notbinary_shears_rt]

ref_timeserie = np.array(filtered_df_ISM330DHCX_ACC_rt)

matrix_peaks_stacked = []

87

matrix_peaks_stacked_notfilt = []

for i in range(len(peaks)) :

matrix_peaks_stacked.append(ref_timeserie[

peaks[i]-pre_trigger:peaks[i]+post_trigger])

matrix_peaks_stacked_notfilt.append(

df_ISM330DHCX_ACC.T.to_numpy()[3][peaks[i]-

pre_trigger:peaks[i]+post_trigger])

array_shear = matrix_peaks_stacked.flatten()

array_shear_notfilt = matrix_peaks_stacked_notfilt.flatten()

Then use code 23 to find the power spectra

The results shows that there are some differences in the power spectra
of the two shear wear conditions. In particular, the region of the spectrum
related to the shears, which is the one between 550 Hz and 650 Hz, is shifted
to the right in the figure 5.39.

It’s important to notice that the observations made up to now are sons of
a comparison between two distinct machines, so it is possible that the varia-
tions in the power spectrum are due to differences in the machine structures
rather than reflecting the actual response of the structure to varying levels
of wear in the shearing tool.

Nevertheless, in the meanwhile some weeks has passed, and the shearing
tool of the S4 1262 has accumulated additional shears throughout its useful
life. So, a comparison between the two conditions can be finally developed.

5.6 Comparison between different level of shear wear on
the same punching-shearing center

After some weeks, a new recording session was performed on the S4 1262
with an higher shear wear.
The previous recording session was with a shearing tool that was 250’000
shears old; the new acquisitions were made with a shearing tool that was
450’000 shears old (figure 5.40).

After we made some acquisitions at these shear wear, the data collected
were analyzed and compared with the ones already analyzed.

The signal were filtered with a pass band filter between 550Hz and 650Hz
as made for the other acquisitions (figure 5.41), and the custom peak recog-

88

Figure 5.40: Dashboard of the state of health of the punching and shearing
tool of several punching-shearing center as of 06th June

nition algorithm has been utilized (figure 5.42).

Figure 5.41: Comparison between filtered used shearing tool signal and non
filtered one

Once the shear are recognized, it’s possible to isolate them and analyze
only the signal correspond to them. The piece of code used is similar to the
one discussed in the code 24.

Then, as done for the S4 1724 signal in the code 23, the whole array of
shears can be analyzed in the frequency domain. The resulting spectra are
shown in the figures 5.43 and 5.44.

The results presented in figure 5.44 demonstrate that the wear of the
shearing tool can cause some differences in the amplitude of the signal in
the frequency range between 300Hz and 500Hz of the power spectrum and
a slightly shift on the left of the frequency range between 500Hz and 700 Hz.
Unfortunately, this finding contradicts the analysis conducted on the signal

89

Figure 5.42: Shears recognized by the peakfinder_mine function

Figure 5.43: Power spectrum on the whole signals

Figure 5.44: Power spectrum on the shear signals only

of the S4 1724 punching machine.

Anyway, the results of the comparison between different wear level on

90

the same shearing tool is more significant since the analysis is performed on
the same machine structure. So, the observations made in the paragraph 5.5
were discarded and we proceeded with these evidences.

In order to transfer the algorithm into a real-time condition approach, an
analysis of the shears is made using ten shears at the time instead of using
the whole array of stacked shears one after another.
The Python script is here described (code 25) and the results are shown in
the figure 5.45.

Code 25

S4 1262 - 250k

pre_trigger = 128

post_trigger = 512-pre_trigger

fsamp = fsampfinder(df_ISM330DHCX_ACC)

peaks = [x.item() for x in peaks_list_notbinary_shears_rt]

ref_timeserie = np.array(filtered_df_ISM330DHCX_ACC_rt)

peaks_stacked = []

peaks_stacked_notfilt = []

for i in range(10) :

peaks_stacked.append(ref_timeserie[

peaks[i]-pre_trigger:peaks[i]+post_trigger])

peaks_stacked_notfilt.append(

df_ISM330DHCX_ACC.T.to_numpy()[3][

peaks[i]-pre_trigger:peaks[i]+post_trigger])

array_shear_250 = peaks_stacked.

.flatten()

array_shear_notfilt_250 = peaks_stacked_notfilt.flatten()

Similar script for the "S4 1262 - 450k" case

The results are similar to the ones discussed before as expected. Unfortu-
nately my eight-month stay in KONE is not enough to monitor the machine
head during its whole useful life, so we cannot validate the obtained results
using a more worn shearing tool on the S4 1262.

91

Figure 5.45: Power spectrum on the first 10 shear signals only

92

6Side Projects

The main predictive maintenance project led us to explore some additional
collateral projects. Moreover, we carried out some minor supplementary
work for the company, all within the maintenance field.
In particular, there are three side projects that deserves a more detailed
investigation:

• PLC project;

• Main failures on the S4 1262 punching machine;

• TPM smartphone app.

PLC project

While working on the predictive maintenance project based on peak recog-
nition, a side project takes shape.
It consisted in making a simpler predictive maintenance project using the
PLC and some sensors that do not requires demanding performance in terms
of sampling frequency.

Therefore a dashboard similar to the one generated for the visualization
of the anomalies in the SensorTile.box project is created. Its interface is
shown in the figure 6.1.

It is incomplete and the idea is to add some other sensors to the PLC,
such as other temperature sensors, oil level sensors, oil quality sensors that
exploit the particle counter technology, mass flow sensors and others.
Up to now the hardware components are set in a temporary way in the
electrical panel (as shown in the figure 6.3) and only the temperature sensor
is correctly installed, following the wiring scheme presented in the figure
6.2), and it measures the electrical panel internal temperature. This data is
then processed by means of the snap7 library and shown in the dashboard
(figure 6.1).

Overall, this side project taught me many electrical concept and let me
learn something about how to wire a temperature sensor to the PLC system.

93

Figure 6.1: Dashboard related to the data acquired by the PLC system

Figure 6.2: Electrical scheme to install the PT100 temperature sensor into the
PLC system

Main failures on the S4 1262 punching machine

In order to prioritize maintenance efforts and identify components that re-
quire more attention due to their susceptibility to breakdowns, a breakdown
analysis was conducted using Microsoft Excel©.

The breakdown data, obtained from the database, were organized based
on the frequency of breakdowns and the corresponding downtime they
caused.
This analysis provided valuable insights about the criticality of several com-
ponents and helped in determining which require more attentions.

The results of the analysis are shown below (figure 6.4).

As you can see, the most critical components of the production line were

94

Figure 6.3: The PLC system installed in the electrical panel

(a) Downtime caused

(b) Frequency of the breakdown

Figure 6.4: Pareto diagrams from the breakdown analysis

the bending tools of the P4 machine, the labeling system and some software
issues. The main problems concerning the punching-shearing machine were
the manipulator and the shearing tool.

95

The main predictive maintenance project, in fact, analyzed in particular
those components of the S4 1262 machine.

TPM smartphone app

I spent some days in my stay in KONE to develop a simple smartphone
application that can collect the informations of an evaluation of the TPM
work.
Specifically, TPM stands for Total Productive Maintenance, and it consists
in a maintenance approach that aims to maximize the efficiency and effec-
tiveness of production equipment. It focuses on preventive maintenance
practices and it involves the entire organization, including also the produc-
tion operators in the maintenance process.
In fact, an important part of the TPM work is to instruct the operators to do
some autonomous maintenance. Nevertheless, a supervision of the mainte-
nance team is needed, in order to reach a better result.
After that, this routine maintenance tasks have to be evaluated and the eval-
uation data need to be stored in a tidy way.
The evaluation task had been made in a paper form, with a difficult and
untidy storing of the results.

So I made a simple app, using the Microsoft Powerapps© tool in order to
collect all the evaluation data and save them in a database called Microsoft
Sharepoint©.
The figure below (figure 6.5) shows the pages of the smartphone app and in
the figure 6.6 you can observe how the data are collected in the database.

96

Figure 6.5: The different smartphone app screens

Figure 6.6: The database which include all the evaluation results

97

7Conclusions and FutureWorks

In this chapter we can summarize all the obtained results of the project.

7.1 Conclusions

The predictive maintenance project has produced some results concerning
several themes.
The results are listed below, and each of them will be discussed in more
detail afterwards.

• S4 1262 most critical components;

• PLC system and its performance;

• optimal locations for conducting predictive maintenance;

• Machine Learning algorithms for peak recognition;

• wear level definition using the power spectrum analysis.

S4 1262 most critical components

In the Side Project chapter (chapter 6) we have discussed about the per-
formed analysis on the most critical components of the line where the punch-
ing machine is placed. It resulted that the most problematic components of
the entire line in the year 2022 are the bending tools of the Salvagnini P4
bending machine, the labeling system and some issues on communications
between the PC and the operating machines.
Therefore, it’s possible to notice that overall the punching machine is per-
forming quite well.

However, going more in detail into the analysis of the punching ma-
chine alone, the components that have the greatest impact on the number of

99

maintenance interventions and downtime due to maintenance are the ma-
nipulator and the shearing tool.

Furthermore, it is important to consider that there are highly critical
components that would require weeks of machine downtime and significant
production losses if they would fail, such as the oil pumps or the machine
head.
In fact, the project focused in particular on the machine head vibration
analysis.

PLC system and its performance

We found out what a PLC system is and its limitations. In particular, we
discovered that the PLC operates very well for robotic and automation pur-
poses, working mainly with digital signals that can derive from photocells
or other digital proximity sensors like the one used in the section 4.5.2.

Unfortunately it is not capable of performing complex mathematical op-
eration, such as the Fast Fourier Transform, on its own. Additionally, the
data transfer speed to a Python script is not enough for the analysis and
processing of signals that exhibit high-frequency components in the power
spectrum, like acceleration signals.

In conclusion, the PLC system is not suitable for our application, but it
can be exploited using its modular capability and adding many sensors that
can indicate the temperature of some components, such as electric motors,
or the oil level in the tanks or, again, the level of waste bin filling using a
weight sensor.

Optimal locations for conducting predictive maintenance

In order to perform a significant predictive maintenance projects, two factors
need to be taken into consideration: the feasibility of placing the sensor in
specific positions, and the identification of the most critical components in
terms of cost and repair time.

So, we discovered the difficulty to put a sensor on the manipulator com-
ponent and that the three main components to be monitored in the S4 1262

100

punching-shearing center are the manipulator, the machine head and the oil
pumps.

Machine Learning algorithms for peak recognition

The first concept that I linked with the idea of predictive maintenance was
the Machine Learning concept. Honestly, I thought that the Machine Learn-
ing world was simpler, at the contrary it is a large world with many different
approaches that can be applied on the data in order to get the model to find
relationships among the data.

Moreover, the application of a Machine Learning algorithm was not pos-
sible for our application, due to the impulsive nature of the vibrations.

In fact, a peak recognition algorithm was used and an analysis of the
power spectrum of the vibrations generated by the shears was performed.

Wear level definition using the power spectrum analysis

The main concrete results of the project is the definition of the wear level
based on the power spectrum of the response of the machine head structure
to a shear impulse.

In particular, the results obtained shows that if the wear of the shearing
tool increase, we can notice an increment of the amplitude in the frequency
range between 300Hz and 500Hz and an inverse trend in the frequency range
between 500Hz and 700Hz, as shown in the figure 5.44.

Unfortunately, the available dataset is relatively small, limiting the reli-
ability of the observations done. Nevertheless it was impossible to collect a
complete dataset due to the long useful lifetime of the shearing tool.

7.2 Future works

There are several ongoing areas of focus, especially the development of the
predictive maintenance project for the S4 1262 punching-shearing center. In
fact, the observations on the change in the power spectrum based on the level
of wear of the shearing tool need to be validated. Moreover, the algorithm

101

have to be deployed on the STWIN.box sensor for real-time monitoring of
shear wear conditions, exploiting the board’s CPU for edge computing.

Additionally, the PLC project remains open for further development,
with the potential to implement additional sensors to increase the dash-
board’s completeness and to make it provide more informative insights on
the performance of every machine components.

Furthermore, the SensorTile.box project also requires complete develop-
ment and improvement.
Specifically, it is necessary to search for and buy a durable USB cable of
the Olflex© type, capable of sustaining the continuous stresses caused by
manipulator movement.
Additionally, it is possible to study and implement a multi-threaded Python
approach for simultaneous data collection and processing. However, it
should be noted that data processing is time-consuming, and even the multi-
threading solution may not be entirely satisfactory. As an alternative, we
can consider deploying a dedicated firmware on the sensor itself for Maha-
lanobis distance computation; so to use Python only to create a dashboard
and compare the inference Mahalanobis distances found in real-time with
the reference dataset.

102

AAlgorithm that divide the acquired signal
into many batches without overlapping

Code 26

def divide_into_windows(input_dataframe,samples_per_window):

n_samples = input_dataframe.shape[0]

time = input_dataframe[’Time’]

N = int(time.size/samples_per_window)

frames = [input_dataframe.iloc[i*samples_per_window:

(i+1)*samples_per_window].copy() for i in

range(N+1)]

remove last incomplete element

frames_reduced = frames[:-1]

return frames_reduced

103

BSensorTile.box final script to define
dashboard

Code 27 : dashboard generation

import pandas as pd

import numpy as np

import dash

from dash import dcc

from dash import html

from dash import dash_table

import plotly.express as px

import dash_bootstrap_components as dbc

import dash_daq as daq

import base64

DEFINE TIMESTAMP

import datetime

ora = datetime.datetime.now()

timestamp_string = ora.strftime("%d/%m/%Y %H:%M:%S")

OPEN WEBPAGE

import webbrowser

webbrowser.open(’http://127.0.0.1:8000’, new=2)

DEFINE TXT FROM WHICH I NEED TO TAKE CLASSIF DATAS

txt_name = "...\\ Classificazione STwin.txt"

df_csv = pd.read_csv(txt_name, sep=" ")

df = pd.DataFrame({’data’: np.array(df_csv)[:,0],

’ora’: np.array(df_csv)[:,1],

’dev_STOP’: np.array(df_csv[’md_STOP_ref’] -

df_csv[’md_STOP’]),

’dev_MOV’: np.array(df_csv[’md_MOV_ref’] -

105

df_csv[’md_MOV’]),

’tipo’: np.array(df_csv)[:,6]})

DEFINE TXT WHERE I TAKE ACC DATAS

txt_name_acc = "... \\ Acquisition files STwin

\\ism330dhcx_acc.txt"

df_acc = pd.read_csv(txt_name_acc, sep="\t")

df_time = np.array(df_acc)[1:,0]

df_time_label = np.array(df_acc)[0,0]

df_accx = np.array(df_acc)[1:,1]

df_accx_label = np.array(df_acc)[0,1]

df_accy = np.array(df_acc)[1:,2]

df_accy_label = np.array(df_acc)[0,2]

df_accz = np.array(df_acc)[1:,3]

df_accz_label = np.array(df_acc)[0,3]

DEFINE ACCELERATION PLOT

fig_accx = px.line(x=df_time, y=df_accx, title=’Acc_x ultima

acquisizione’)

fig_accx.update_layout(

xaxis_title=’Tempo (sec)’, yaxis_title=’Acc_x (m\s2)’,

margin=dict(l=5, r=20, b=10, t=50, pad=5),

font=dict(size=8),)

fig_accy = px.line(x=df_time, y=df_accy, title=’Acc_y ultima

acquisizione’)

fig_accy.update_layout(

xaxis_title=’Tempo (sec)’, yaxis_title=’Acc_y (m\s2)’,

margin=dict(l=5, r=20, b=10, t=50, pad=5),

font=dict(size=8),)

fig_accz = px.line(x=df_time, y=df_accz, title=’Acc_z ultima

acquisizione’)

fig_accz.update_layout(

xaxis_title=’Tempo (sec)’, yaxis_title=’Acc_z (m\s2)’,

margin=dict(l=5, r=20, b=10, t=50, pad=5),

font=dict(size=8),)

DEFINE SERVER

app1 = dash.Dash(external_stylesheets=[dbc.themes.BOOTSTRAP],

106

update_title=None)

app1.title = "ServerMicroSensoreST"

app1._favicon = ("sensor.ico")

app1.layout = html.Div([

dbc.Row([# the dashboard includes 3 rows

dbc.Row([# first row include KONE logo

dbc.Col([

dbc.Row([# Create timestamp

dcc.Interval(’timestamp-update’,

interval = 500, n_intervals = 0),

html.Div(id=’timestamp’), # Import "logo_kone"

html.Div([

html.Img(

src="...url...",

title="KONE Logo",

alt="KONE Logo",

width=70,

style={’margin’:’auto’, ’display’:’block’}),

], style={’width’:’100%’}),

]), html.Hr(style={’color’:’darkgrey’}),]),]),

dbc.Row([# second row includes plots and history

dcc.Interval(’graph-update’,

interval = 2000, n_intervals = 0),

html.Div([

dbc.Row([

dbc.Col([

Create circular indicator (green\red)

daq.Indicator(

value=True, # initialize as True (green)

color = ’#44D62C’,

id=’classif_indicator1’,

size=30,)

]),

dbc.Col([# Create text box

html.Div(id=’anomaly_string’),]),

]),

dbc.Row([

html.Div([

107

Create image "Plot_md_MOV"

html.Img(id="img_Plot_md_MOV"),

], style={’width’:’50%’}),

html.Div([

Create image "Plot_md_STOP"

html.Img(id="img_Plot_md_STOP"),

], style={’width’:’50%’}),

]),

], style={’width’:’60%’}), # Close Div"

html.Div([

Create header "storico acquisizioni"

html.H6(’Storico acquisizioni’),

Create table

dash_table.DataTable(id = ’table’,

data = df[::-1].to_dict(’records’),

columns=["name": i, "id": i for i in df.columns],

fixed_rows=’headers’: True,

],),

dbc.Row([# third row includes acceleration plots

html.Div([

dcc.Graph(id=’accx_plot’, figure=fig_accx,),

], style={’width’:’30%’, ’margin’:’auto’}),

html.Div([

dcc.Graph(id=’accy_plot’, figure=fig_accy,),

], style={’width’:’30%’, ’margin’:’auto’}),

html.Div([

dcc.Graph(id=’accz_plot’, figure=fig_accz,),

], style={’width’:’30%’, ’margin’:’auto’}),

]),

]),

], style={’background-image’: ’url(...url...)’})

CALLBACK TO UPDATE TABLE "STORICO ACQUISIZIONI"

@app1.callback(
dash.dependencies.Output(’table’,’data’),

[dash.dependencies.Input(’graph-update’, ’n_intervals’)])

def updateTable(n):

df_csv = pd.read_csv(txt_name, sep=" ")

108

df = pd.DataFrame({’data’: np.array(df_csv)[:,0],

’ora’: np.array(df_csv)[:,1],

’dev_STOP’: np.array(round(df_csv[’md_STOP_ref’]

- df_csv[’md_STOP’] , 3)),

’dev_MOV’: np.array(round(df_csv[’md_MOV_ref’] -

df_csv[’md_MOV’] , 3)),

’tipo’: np.array(df_csv)[:,6]})

return df[::-1].to_dict(’records’)

CALLBACK TO UPDATE IMAGES Plot_md_MOV E Plot_md_STOP

@app1.callback(
dash.dependencies.Output(’img_Plot_md_MOV’, ’src’),

dash.dependencies.Output(’img_Plot_md_STOP’, ’src’),

[dash.dependencies.Input(’graph-update’, ’n_intervals’)])

def updateMOVSTOPimg(n):

encoded_img_MOV = base64.b64encode(open(

"...\\ Acquisition files STwin\\ Plot_md_MOV.png",

’rb’)

.read())

encoded_img_STOP = base64.b64encode(open(

"...\\ Acquisition files STwin\\ Plot_md_STOP.png",

’rb’)

.read())

return encoded_img_MOV.decode(),encoded_img_STOP.decode()

CALLBACK TO UPDATE ACC PLOTS

@app1.callback(
dash.dependencies.Output(’accx_plot’, ’figure’),

dash.dependencies.Output(’accy_plot’, ’figure’),

dash.dependencies.Output(’accz_plot’, ’figure’),

[dash.dependencies.Input(’graph-update’, ’n_intervals’)])

def updateAccGraph(n):

df_acc = pd.read_csv(txt_name_acc, sep="�")

df_time = np.array(df_acc)[1:,0]

df_accx = np.array(df_acc)[1:,1]

fig_accx = px.line(x=df_time, y=df_accx)

fig_accx.update_layout(

margin=dict(l=5, r=20, b=10, t=50, pad=5),

109

font=dict(size=8),

pad=dict(l=30)))

df_accy = np.array(df_acc)[1:,2]

fig_accy = px.line(x=df_time, y=df_accy)

fig_accy.update_layout(

margin=dict(l=5, r=20, b=10, t=50, pad=5),

font=dict(size=8),

pad=dict(l=30)))

df_accz = np.array(df_acc)[1:,3]

fig_accz = px.line(x=df_time, y=df_accz)

fig_accz.update_layout(

margin=dict(l=5, r=20, b=10, t=50, pad=5),

font=dict(size=8),

pad=dict(l=30)))

return fig_accx, fig_accy, fig_accz

app1.run_server(port=8000, debug=False)

Code 28 : analysis of the SensorTile.box data

from HSD_link.HSDLink import HSDLink

import time, os

from threading import Thread, Event, main_thread

while True:

hsd_link = HSDLink("stwin_hsd") # OPEN COMMUNICATION

hsd_link.start_log(0)

class SensorAcquisitionThread(Thread):

def __init__(self, event, d_id, s_id, ss_id,

sensor_data_file):

Thread.__init__(self)

self.stopped = event

self.d_id = d_id

self.s_id = s_id

self.ss_id = ss_id

self.sensor_data_file = sensor_data_file

self.data_counter = 0

def run(self):

while not self.stopped.wait(0.1):

110

sensor_data = hsd_link.get_sensor_data(

self.d_id, self.s_id, self.ss_id)

if sensor_data is not None:

res = self.sensor_data_file.write(sensor_data[1])

self.data_counter += sensor_data[0]

sensor_list = hsd_link.get_sub_sensors(d_id = 0)

threads_stop_flags = []

sensor_data_files = []

fold_input = hsd_link.get_acquisition_folder()

path_input=os.path.join("...\\Micro_Sensore_ST",fold_input)

for sensor in sensor_list:

for i, ssd in enumerate(sensor.sensor_descriptor.

.sub_sensor_descriptor):

if sensor.sensor_status.sub_sensor_status[i].is_active:

sensor_data_file_path = os.path.join(fold_input,(

"_.dat".format(sensor.name,ssd.sensor_type)))

sensor_data_file=open(sensor_data_file_path,"wb+")

sensor_data_files.append(sensor_data_file)

stopFlag = Event()

threads_stop_flags.append(stopFlag)

thread = SensorAcquisitionThread(stopFlag, 0,

sensor.id, ssd.id, sensor_data_file)

thread.start()

else:

print("–> (!) Sensor _ is not active".format(

sensor.name,ssd.sensor_type))

time.sleep(10) # ACQUIRE FOR 10 SECONDS

for sf in threads_stop_flags:

sf.set()

for f in sensor_data_files:

f.close()

hsd_link.stop_log(0)

del hsd_link # CLOSE COMMUNICATION

MOVE ACQUISITIONS INTO A SPECIFIC DIRECTORY

import shutil, os

path_output = os.path.join("...\\Micro_Sensore_ST",

"Acquisition files")

111

file_names = os.listdir(path_input)

for file_name in file_names:

shutil.copy(os.path.join(path_input, file_name),

path_output)

shutil.rmtree(path_input)

ANALIZE ACQUIRED DATA

calibrate them

import numpy as np

from HSD.HSDatalog import HSDatalog

hsd = HSDatalog(acquisition_folder=path_output)

g = 9.80665 # standard acceleration of gravity

df_LSM6DSOX_ACC = hsd.get_dataframe("LSM6DSOX", "ACC") * g

df_LSM6DSOX_ACC[’Time’] = np.array(df_LSM6DSOX_ACC)[:,0] / g

extract time and frequency details

n_samples = df_LSM6DSOX_ACC.shape[0]

time = df_LSM6DSOX_ACC[’Time’]

t_max = time[n_samples-1]

t_min = time[0]

dt = (t_max-t_min)/n_samples

fsamp = 1/dt

add absolute acceleration as the column of dataset

import pandas as pd

abs_acc = np.sqrt(np.sum(np.square(

np.array(df_LSM6DSOX_ACC)[:,1:]), axis=1))

A_abs = pd.DataFrame({’A_abs [m\s2]’: abs_acc})

df_LSM6DSOX_ACC = df_LSM6DSOX_ACC.join(A_abs)

divide the dataset in batches of 512 samples each

from FunzioniDataAnalysis import divide_into_windows

input_dataframe = df_LSM6DSOX_ACC

samples_per_window = 512

frames_reduced = divide_into_windows(input_dataframe,

samples_per_window)

extract time features of the signal

from FunzioniDataAnalysis import time_feature_extraction

import time

Burg = 4

[time_features_df, Mean, STD, RMS,

Median, Max, Min, Energy, mag,

112

sma, q25, q75, iqr, Entropy,

ARCoeff, skewness, kurtosis, CF,

SNR, corrCoeff_xy, corrCoeff_xz, corrCoeff_yz] =

time_feature_extraction(frames_reduced, Burg)

find powerspectra of the signal

from FunzioniDataAnalysis import powerspectrum

samples_per_segment = samples_per_window # small nperseg ->

better noise rejection BUT lower frequency resolution

x_lim = [0,fsamp/2]

[SpectralCentroid, freq_PS, PS, PSD] = powerspectrum(

frames_reduced, samples_per_segment, fsamp, x_lim)

spectralCentroid_df = pd.DataFrame({SpectralCentroid})

find frequency features of the signal

from FunzioniDataAnalysis import freq_feature_extraction

[freq_features_df, fMean, fSTD, fRMS,

fMedian, fMax, fMin, fEnergy, fq75,

fq25, fiqr, fEntropy, fARCoeff, fSkewness,

fKurtosis, fCF, fTHD, fSNR, fPS_maxInd] =

freq_feature_extraction(frames_reduced,freq_PS,PS,Burg)

find bandsEnergy of the powerspectra

from FunzioniDataAnalysis import bandsEnergy

band_number = 14 # number of section in which I divide

the frequencies of the power spectrum

bandsEnergy_df = bandsEnergy(frames_reduced,PS,band_number)

final_sec_f = time.time()

get total dataframe (time+freq features)

fin_feature_df = time_features_df.join(spectralCentroid_df)

fina_feature_df = fin_feature_df.join(freq_features_df)

final_features_df = fina_feature_df.join(bandsEnergy_df)

PCA and definition of moving_labels

from sklearn.preprocessing import StandardScaler, normalize

from sklearn.decomposition import PCA

get features dataframe of the pre-recorder files

final_features_df_Dic_Feb = pd.read_csv(

’...\\features_dataframe_ACC.txt’, sep=’\t’)

113

define moving_labels according to the STD value

moving_labels = np.where(final_features_df_Dic_Feb[

’tSTD_x’] > 0.5, 1, 0)

moving_labels_df_Dic_Feb = pd.DataFrame({moving_labels})

features_df_KBEST = features_df.

join(moving_labels_df)

based on moving_labels, define the PCA of the pre-recorded

data

if features_df_KBEST[’moving’].value_counts().get(1) != None:

features_df_MOV = features_df[features_df_KBEST[

’moving’]==1] # working with mov

X_scaled_MOV = StandardScaler().fit_transform(

features_df_MOV)

X_normalized_MOV=pd.DataFrame(normalize(X_scaled_MOV))

reduced_data_MOV = PCA(n_components=2).fit_transform(

X_normalized_MOV)

else:

reduced_data_MOV = [[0],[0]]

if features_df_KBEST[’moving’].value_counts().get(0) != None:

features_df_STOP = features_df[features_df_KBEST[

’moving’]==0] # working with stop

X_scaled_STOP = StandardScaler().fit_transform(

features_df_STOP)

X_normalized_STOP=pd.DataFrame(normalize(X_scaled_STOP

)

reduced_data_STOP = PCA(n_components=2).fit_transform(

X_normalized_STOP)

else:

reduced_data_STOP = [[0],[0]]

X_scaled = StandardScaler().fit_transform(features_df)

working with the whole database

X_normalized = pd.DataFrame(normalize(X_scaled))

reduced_data=PCA(n_components=2).fit_transform(X_normalized)

ACTUAL ACQUISITION

define moving_labels

moving_labels = np.where(features_df[’tSTD_x’] > 0.4, 1, 0)

moving_labels_df = pd.DataFrame({’moving’: moving_labels})

features_df_KBEST = features_df.join(moving_labels_df)

114

define the PCA of the pre-recorded data

based on moving_labels

if 0 in features_df_KBEST[’moving’].values:

features_df_STOP = features_df[features_df_KBEST[

’moving’]==0]

if len(features_df_STOP) > 1:

X_scaled_STOP = StandardScaler().fit_transform(

features_df_STOP)

else:

X_scaled_STOP = np.vstack((np.arange(

features_df_STOP.shape[1])+1,np.array(

features_df_STOP)))

X_normalized_STOP=pd.DataFrame(normalize(X_scaled_STOP))

reduced_data_STOP = PCA(n_components=2).fit_transform(

X_normalized_STOP)

else:

reduced_data_STOP = np.array([[0,0],[0,0]])

if 1 in features_df_KBEST[’moving’].values:

features_df_MOV = features_df[features_df_KBEST[

’moving’]==1]

if len(features_df_MOV) > 1:

X_scaled_MOV = StandardScaler().fit_transform(

features_df_MOV)

else:

X_scaled_MOV = np.vstack((np.arange(

features_df_MOV.shape[1])+1,np.array(

features_df_MOV)))

X_normalized_MOV=pd.DataFrame(normalize(

X_scaled_MOV))

reduced_data_MOV = PCA(n_components=2).

fit_transform(X_normalized_MOV)

else:

reduced_data_MOV = np.array([[0,0],[0,0]])

if len(reduced_data_STOP)>len(reduced_data_MOV): tipo="STOP"

else: tipo="MOV"

Define the ELLIPTIC ENVELOPE

115

MOV database

from sklearn.covariance import EllipticEnvelope

import math

el = EllipticEnvelope(store_precision=True,

assume_centered=False,support_fraction=None,

contamination=0.0075,random_state=0) # contamination

is the quantity of outliers in the reference database

d_MOV = pd.DataFrame(reduced_data_MOV)

el.fit(d_MOV)

el_labels = pd.DataFrame({’Anomaly Y/N’: el.predict(d_MOV)})

d_el_MOV = d_MOV.join(el_labels)

Define the MAHALANOBIS DISTANCE

md_labels_MOV = pd.DataFrame({el.mahalanobis(d_MOV)})

d_md_MOV = d_MOV.join(md_labels_MOV)

Compare Mahalanobis Dist of inference set with reference

d_inference_MOV = pd.DataFrame(reduced_data_MOV)

md_labels_inference_MOV=pd.DataFrame({el.mahalanobis(

d_inference_MOV)})

d_md_inference_MOV = d_inference_MOV.join(

md_labels_inference_MOV)

get mean of the 10% of the max values of inference set

max_md_inference_MOV = np.flip(np.sort(el.mahalanobis(d_

_inference_MOV)))[0:math.ceil(len(d_inference_MOV)/100)]

mean_md_inference_MOV = np.mean(max_md_inference_MOV)

get mean of the 1% of the max values of reference set

max_md_MOV = np.flip(np.sort(el.mahalanobis(d_MOV)))[

0:math.ceil(len(d_MOV)/100)]

mean_md_MOV = np.mean(max_md_MOV)

STOP database

el = EllipticEnvelope(store_precision=True,

assume_centered=False,support_fraction=None,

contamination=0.0075, random_state=0)

d_STOP = pd.DataFrame(reduced_data_STOP)

el.fit(d_STOP)

el_labels=pd.DataFrame({’Anomaly Y/N’: el.predict(d_STOP)})

d_el_STOP = d_STOP.join(el_labels)

Define the MAHALANOBIS DISTANCE

116

md_labels_STOP = pd.DataFrame({el.mahalanobis(d_STOP)})

d_md_STOP = d_STOP.join(md_labels_STOP)

Compare Mahalanobis Dist of inference set with reference

d_inference_STOP = pd.DataFrame(reduced_data_STOP)

md_labels_inference_STOP = pd.DataFrame(

{el.mahalanobis(d_inference_STOP)})

d_md_inference_STOP = d_inference_STOP.join(

md_labels_inference_STOP)

get mean of the 10% of the max values of inference set

max_md_inference_STOP = np.flip(np.sort(el.mahalanobis(d_

_inference_STOP)))[0:ceil(len(d_inference_STOP)/100)]

mean_md_inference_STOP = np.mean(max_md_inference_STOP)

get mean of the 1% of the max values of reference set

max_md_STOP = np.flip(np.sort(el.mahalanobis(d_STOP)))[

0:math.ceil(len(d_STOP)/100)]

mean_md_STOP = np.mean(max_md_STOP)

SET GREEN-YELLOW-RED AREAS BASED ON 33% OF MOST

DISTANT/NEAR POINTS IN REFERENCE DATABASE

from scipy.spatial import ConvexHull

import matplotlib.pyplot as plt

def encircle(x,y, ax=None, **kw):

if not ax: ax=plt.gca()

p = np.c_[x,y]

hull = ConvexHull(p)

poly = plt.Polygon(p[hull.vertices,:], **kw)

STOP database

d_flip = np.array(d_md_STOP)

df_100perc_STOP = d_flip

df_66perc_STOP = d_flip[(d_flip[:,2]>np.percentile(

d_flip[:,2], 0)) & (d_flip[:,2]<=np.percentile(

d_flip[:,2], 66))]

df_33perc_STOP = d_flip[(d_flip[:,2]>np.percentile(

d_flip[:,2], 0)) & (d_flip[:,2]<=np.percentile(

d_flip[:,2], 33))]

plt.figure()

encircle(np.array(df_100perc_STOP)[:,0], np.array(

117

df_100perc_STOP)[:,1], ec="k", fc="red", alpha=1)

encircle(np.array(df_66perc_STOP)[:,0], np.array(

df_66perc_STOP)[:,1], ec="k", fc="yellow", alpha=1)

encircle(np.array(df_33perc_STOP)[:,0], np.array(

df_33perc_STOP)[:,1], ec="k", fc="green", alpha=1)

plt.scatter(np.array(d_md_STOP)[:,0], np.array(

d_md_STOP)[:,1],c=d_md_STOP[’Mahalanobis Distance’],

cmap = ’coolwarm’, s=2)

plt.scatter(d_inference_STOP[0:math.ceil(len(

d_inference_STOP)/10)].mean()[0], d_inference_STOP[

0:math.ceil(len(d_inference_STOP)/10)].mean()[1],

color=’k’, s=50)

plt.title("STOPPED")

plt.savefig("...\\Acquisition files\\Plot_md_STOP.png")

MOV database

d_flip = np.array(d_md_MOV)

df_100perc_MOV = d_flip

df_66perc_MOV = d_flip[(d_flip[:,2]>np.percentile(

d_flip[:,2], 0)) & (d_flip[:,2]<=np.percentile(

d_flip[:,2], 66))]

df_33perc_MOV = d_flip[(d_flip[:,2]>np.percentile(

d_flip[:,2], 0)) & (d_flip[:,2]<=np.percentile(

d_flip[:,2], 33))]

plt.figure()

encircle(np.array(df_100perc_MOV)[:,0], np.array(

df_100perc_MOV)[:,1], ec="k", fc="red", alpha=1)

encircle(np.array(df_66perc_MOV)[:,0], np.array(

df_66perc_MOV)[:,1], ec="k", fc="yellow", alpha=1)

encircle(np.array(df_33perc_MOV)[:,0], np.array(

df_33perc_MOV)[:,1], ec="k", fc="green", alpha=1)

plt.scatter(np.array(d_md_MOV)[:,0], np.array(d_md_MOV)[

:,1],c=d_md_MOV[’Mahalanobis Distance’],

cmap = ’coolwarm’, s=2)

plt.scatter(d_inference_MOV[0:math.ceil(len(

d_inference_MOV)/10)].mean()[0], d_inference_MOV[0:math.

ceil(len(d_inference_MOV)/10)].mean()[1],color=’k’,s=50)

plt.title("MOVING")

118

plt.savefig("...\\Acquisition files\\Plot_md_MOV.png")

define the .txt file read by the datatable "Storico

Acquisizioni" in CreateServer.py

actual_date = time.strftime("%d/%m/%Y", time.time())

actual_time = time.strftime("%H:%M:%S", time.time())

classif_df = pd.DataFrame([’data’: actual_date,

’ora’: actual_time,

’md_STOP’: mean_md_inference_STOP,

’md_STOP_ref’: mean_md_STOP,

’md_MOV’: mean_md_inference_MOV,

’md_MOV_ref’: mean_md_MOV,

’tipo’: tipo])

classif_df_file_path = ’...\\Classificazione.txt’

classif_df.to_csv(classif_df_file_path, mode=’a’,

index=False, header=False, sep=" ")

time.sleep(60) # wait 1 min, then restart while loop

119

CDefine webpage where the variable got with
Python from the PLC is shown

Code 29

Connect with PLC S7 1200

import snap7

import struct

IP = ’192.168.100.1’

RACK = 0

SLOT = 1

DB_NUMBER = 1

START_ADDRESS = 0

SIZE = 2

plc = snap7.client.Client()

plc.connect(IP, RACK, SLOT)

Prepare server importing the necessary libraries

import dash

from dash import dcc, html

import dash_bootstrap_components as dbc

import dash_daq as daq

Define where to get data from, that is a database

in the PLC’s memory

db = plc.db_read(DB_NUMBER, START_ADDRESS, SIZE)

DI = struct.unpack(’?’,db[0:1])[0]

Open webpage

import webbrowser

webbrowser.open(’http://127.0.0.1:8150’, new=1)

Define server and dashboard on webpage

app1 = dash.Dash(external_stylesheets =

121

[dbc.themes.BOOTSTRAP], update_title=None)

app1.layout = html.Div([

declare the dashboard updating time (1000ms)

dcc.Interval(’graph-update’, interval = 1000,

n_intervals = 0),

daq.Indicator(

id=’indicator-1’,

value=DI,

label="object far away",

color="red",

),])

CALLBACK THAT UPDATE INDICATOR

@app1.callback([
dash.dependencies.Output(’indicator-1’, ’label’),

dash.dependencies.Output(’indicator-1’, ’color’)],

[dash.dependencies.Input(’graph-update’,

’n_intervals’)])

def updateTable(n):

db = plc.db_read(DB_NUMBER, START_ADDRESS, SIZE)

DI = struct.unpack(’?’, db[0:1])[0]

if DI == 1:

label = "object near"

color = "green"

else:

label = "object far away"

color = "red"

return label, color

app1.run_server(port=8150, debug=False)

122

DDatalog directly on the PC by means of
Python and a USB cable

Code 30

from HSD_link.HSDLink import HSDLink

from HSD.HSDatalog import HSDatalog

import time, os

while True:

print("———————–\n")

print(" Trying to connect with the STWIN.box\n")

hsd_link = HSDLink().create_hsd_link() ### COMMUNICATION

WITH THE BOARD OPENED

fold_input = hsd_link.get_acquisition_folder()

print("———————–\n")

print(" Successfully connected with the sensor \n")

threads_stop_flags = []

sensor_data_files = []

sensor_list = HSDLink.get_sensor_list(hsd_link,

0, only_active=True)

HSDLink.start_log(hsd_link, 0) ### START THE ACQUISITION

print("———————–\n")

print(" Data acquisition started \n")

for s in sensor_list:

HSDLink.start_sensor_acquisition_thread(hsd_link,

0, s, threads_stop_flags, sensor_data_files,

print_data_cnt = False)

time.sleep(240) ### ACQUIRING FOR 4 MINUTES

for sf in threads_stop_flags:

sf.set()

for f in sensor_data_files:

f.close()

HSDLink.stop_log(hsd_link, 0) ### STOP THE ACQUISITION

123

time.sleep(1) # sleep useful to avoid bug

del hsd_link ### COMMUNICATION WITH THE BOARD CLOSED

print("———————–\n")

print(" Data acquisition finished \n")

124

EReal time peak recognition exploiting the
microphone acquired signal

Code 31 : filter the microphone signal

cutoff_freq = 2000.0 #Hz

filter_order = 2

fsamp_mic = fsampfinder(df_ISM330DHCX_MIC)

b, a = signal.butter(filter_order, cutoff_freq,

btype=’lowpass’, fs=fsamp_mic)

filtered_df_ISM330DHCX_MIC = signal.filtfilt(b, a,

df_ISM330DHCX_MIC.T.to_numpy()[1], method="gust")

Code 32 : trimming the acceleration signal to discard the last incom-
plete bucket

extra_samples = (len(df_ISM330DHCX_ACC) - win_dim) %

(win_dim-overlap)

df_ISM330DHCX_ACC_trim = pd.DataFrame(

df_ISM330DHCX_ACC.to_numpy()[:len(df_ISM330DHCX_ACC) -

extra_samples,:])

len_df = ((len(df_ISM330DHCX_ACC_trim)-win_dim) /

(win_dim-overlap))+1

Code 33 : scale win_dim in order to have same number of buckets in
the microphone signal

win_dim_MIC_float = win_dim*len(filtered_df_ISM330DHCX_MIC)

/ len(df_ISM330DHCX_ACC.T.to_numpy()[3])

overlap_MIC_float = overlap*len(filtered_df_ISM330DHCX_MIC)

/ len(df_ISM330DHCX_ACC.T.to_numpy()[3])

win_dim_mic = int(win_dim_MIC_float)

overlap_mic = int(overlap_MIC_float)

filtered_df_ISM330DHCX_MIC_new = filtered_df_ISM330DHCX_MIC

[0:int(len(df_ISM330DHCX_ACC.T.to_numpy()[3])

125

* win_dim_MIC_float)]

extra_samples_mic = (len(filtered_df_ISM330DHCX_MIC) -

win_dim_mic) % (win_dim_mic-overlap_mic)

df_ISM330DHCX_MIC_trim = pd.DataFrame(

filtered_df_ISM330DHCX_MIC[:len(

filtered_df_ISM330DHCX_MIC)-extra_samples_mic])

len_df_mic = ((len(df_ISM330DHCX_MIC_trim)-win_dim_mic)

/ (win_dim_mic-overlap_mic))+1

win_dim_mic = round(win_dim_MIC_float*len_df_mic/len_df)

overlap_mic = round(overlap_MIC_float*len_df_mic/len_df)+1

Code 34 : define number of buckets that need to be analyzed

filtered_df_ISM330DHCX_MIC_new = filtered_df_ISM330DHCX_MIC[

0:int(len(df_ISM330DHCX_ACC.T.to_numpy()[3]) *

win_dim_MIC_float)]

extra_samples_mic_new = (len(

filtered_df_ISM330DHCX_MIC_new) - win_dim_mic) %

(win_dim_mic-overlap_mic)

df_ISM330DHCX_MIC_trim_new = pd.DataFrame(

filtered_df_ISM330DHCX_MIC_new[:len(

filtered_df_ISM330DHCX_MIC_new) -

extra_samples_mic_new])

len_df_mic_new = ((len(df_ISM330DHCX_MIC_trim_new) -

win_dim_mic) / (win_dim_mic-overlap_mic))+1

len_df_for_iterations = round(len_df * len_df_mic_new

/ len_df_mic)

Code 35 : real-time peak recognition of the pre-filtered microphone
signal

from scipy.signal import find_peaks

peaks_list_divided_mic = []

peaks_list_mic = []

for i in range(int(len_df_for_iterations)):

if i == 0 : # overlap unused in the first bucket

126

begin = i

end = begin + win_dim_mic # simulate real-time

bucket with a length equal to win_dim_mic

df_realtime_mic = df_ISM330DHCX_MIC_trim

[begin:end].T.to_numpy()[0]

peaks_mic, _ = find_peaks(df_realtime_mic,

height=6500, distance=256) # peaks_mic are

the indexes of the peaks found in the bucket

if len(peaks_mic) > 0 :

peaks_list_mic.extend(1*np.ones(win_dim_mic))

peaks_list_divided_mic.append(1*np.ones(

win_dim_mic).astype(int))

else :

peaks_list_mic.extend(0*np.ones(win_dim_mic))

peaks_list_divided_mic.append(0*np.ones(

win_dim_mic).astype(int))

else :

begin = end - overlap_mic

end = begin + win_dim_mic

df_realtime_mic = df_ISM330DHCX_MIC_trim[

begin:end].T.to_numpy()[0]

peaks_mic, _ = find_peaks(df_realtime_mic,

height=6500, distance=256)

peaks_mic = [x for x in peaks_mic if x >

overlap_mic] # remove peaks in the overlap

(already taken in the previous bucket)

if len(peaks_mic) > 0 :

peaks_list_mic.extend(1*np.ones(

win_dim_mic-overlap_mic))

peaks_list_divided_mic.append(1*np.ones(

win_dim_mic-overlap_mic).astype(int))

else :

peaks_list_mic.extend(0*np.ones(

win_dim_mic-overlap_mic))

peaks_list_divided_mic.append(0*np.ones(

win_dim_mic-overlap_mic).astype(int))

127

FDefinitive real time peak recognition
algorithm

Code 36

shears_rt = []

filtered_df_ACC_rt = []

for i in range(int(len_df)):

if i == 0 :

begin = i

end = begin + win_dim

df_realtime = df_ACC_trim.iloc[begin:end]

fsamp = fsampfinder(df_realtime)

filtered_timeserie_z_rt = filter_mine(df_realtime,

fsamp)

filtered_df_ACC_rt.extend(filtered_timeserie_z_rt)

peaks_shears = peakfinder_mine(

filtered_timeserie_z_rt, lim_min=0.8,

action_range=2048)

if len(peaks_shears) > 0 :

shears_rt.extend(peaks_shears)

else :

define overlap with previous window

begin = end - overlap

end = begin + win_dim

df_realtime = df_ACC_trim.iloc[begin:end]

fsamp = fsampfinder(df_realtime)

filtered_timeserie_z_rt = filter_mine(df_realtime,

fsamp)

filtered_timeserie_z_rt = filtered_timeserie_z_rt[

12:-12] # remove corrupted samples due to

filtering process

filtered_df_ACC_rt.extend(filtered_timeserie_z_rt)

129

peaks_shears = peakfinder_mine(

filtered_timeserie_z_rt, lim_min=0.8,

action_range=2048)

peaks_shears=[x if x in peaks_shears if x>overlap]

if len(peaks_shears) > 0 :

shears_rt.extend([x+begin+12 for x in

peaks_shears]) # add the removed samples

in order to synchronize recognized shears

with the signal

130

GReal-time application code using find_peaks

Code 37

overlap = 2048-512 # with this value, only one-fourth of

the array undergoes changes after each cycle.

win_dim = 2048 # bucket dimension

trim the last incomplete bucket of df_ISM330DHCX_ACC

extra_samples = (len(df_ISM330DHCX_ACC) - win_dim) %

(win_dim-overlap)

df_ISM330DHCX_ACC_trim = pd.DataFrame(

df_ISM330DHCX_ACC.to_numpy()[:len(df_ISM330DHCX_ACC) -

extra_samples,:])

len_df = ((len(df_ISM330DHCX_ACC_trim)-win_dim) /

(win_dim-overlap))+1

def fsampfinder(df_ACC):

n_samples = df_ACC.shape[0]

time = np.matrix(df_ACC)[:,0]

t_max = time[n_samples-1]

t_min = time[0]

dt = (t_max-t_min)/n_samples

fsamp = 1/dt

df = 1/t_max

return fsamp

def filter_and_peakfinder(df_ACC, fsamp):

from scipy import signal

cutoff_freq = 550.0 # High pass filter at 550Hz

filter_order = 8

peak_timeserie_z = np.array(df_ACC)[:,3]

b, a = signal.butter(filter_order, cutoff_freq,

’highpass’, fs=fsamp, analog=False)

hpf_peak_timeserie_z = signal.filtfilt(b, a,

131

peak_timeserie_z, method="gust")

cutoff_freq = 650.0 # Low pass filter at 650Hz

filter_order = 8

b, a = signal.butter(filter_order, cutoff_freq,

btype=’lowpass’, fs=fsamp)

filtered_peak_timeserie_z = signal.filtfilt(b, a,

hpf_peak_timeserie_z, method="gust")

from scipy.signal import find_peaks

ref_timeserie = -filtered_peak_timeserie_z # the first

acceleration of the shear is downward,

so i invert the signal to get it

peaks, _ = find_peaks(ref_timeserie, height=0.8,

distance=2048)

return ref_timeserie, peaks

peaks_list_divided = []

peaks_list = []

peaks_list_punz = []

peaks_list_notbinary = []

peaks_list_notbinary_punz = []

filtered_df_ISM330DHCX_ACC = []

for i in range(int(len_df)):

if i == 0 :

don’t use overlap for the first bucket

begin = i

end = begin + win_dim

simulate real-time acquisition with

win_dim=2048 and overlap=512

df_realtime = df_ISM330DHCX_ACC_trim.iloc[

begin:end]

find fsamp

fsamp = fsampfinder(df_realtime)

filter and peak detection

filtered_peak_timeserie_z_realtime, peaks,

= filter_and_peakfinder(df_realtime,fsamp)

filtered_df_ISM330DHCX_ACC.extend(

filtered_peak_timeserie_z_realtime)

if a peak is found, 1*np.ones(win_dim) is

132

added to the peaks list

if len(peaks) > 0 :

peaks_list.extend(1*np.ones(win_dim))

peaks_list_divided.append(1*np.ones(

win_dim).astype(int))

peaks_list_notbinary.extend(peaks)

else :

peaks_list.extend(0*np.ones(win_dim))

peaks_list_divided.append(0*np.ones(

win_dim).astype(int))

else :

add overlap with previous window

begin = end - overlap

end = begin + win_dim

df_realtime = df_ISM330DHCX_ACC_trim.iloc[

begin:end]

fsamp = fsampfinder(df_realtime)

filtered_peak_timeserie_z_realtime, peaks

= filter_and_peakfinder(df_realtime,fsamp)

filtered_df_ISM330DHCX_ACC.extend(filtered_

_peak_timeserie_z_realtime[overlap:])

remove peaks in overlap, I picked them in

the previous window

peaks = [x for x in peaks if x > overlap]

if len(peaks) > 0 :

peaks_list.extend(1*np.ones(

win_dim-overlap))

peaks_list_divided.append(1*np.ones(

win_dim-overlap).astype(int))

peaks_list_notbinary.extend([x+begin for

x in peaks])

else :

peaks_list.extend(0*np.ones(

win_dim-overlap))

peaks_list_divided.append(0*np.ones(

win_dim-overlap).astype(int))

133

HSteps to define peakfinder_mine

• Step 1 : simple code that compares current value with neighbors

Code 38

def mine_peakfinder(ar):

peaks = [] # initialize peaks list

i = 0 # i correspond to the current value

for num in ar:

if i == 0: # analyze first sample

if num > ar[i+1]:

peaks.extend([i])

elif i == len(ar)-1: # analyze last sample

if num > ar[i-1]:

peaks.extend([i])

else :

if num > ar[i+1] and num > ar[i-1]:

peaks.extend([i])

i = i+1 # move on to the next value

return peaks

• Step 2 : add minimum limit, below which every local peak is discarded

Code 39

def mine_peakfinder(ar, lim_min=0):

peaks = []

i = 0

for num in ar:

if num > lim_min: # add minimum limit

if i == 0: # analyze first sample

if num > ar[i+1]:

peaks.extend([i])

elif i == len(ar)-1: # analyze last sample

if num > ar[i-1]:

peaks.extend([i])

135

else :

if num > ar[i+1] and num > ar[i-1]:

peaks.extend([i])

i = i+1

return peaks

• Step 3 : add action range, that defines the interval in which i can obtain
only one local peak

Code 40

def peakfinder_mine(ar, lim_min=-100000, lim_max=100000,

action_range=1):

peaks = []

if lim_min == -100000: # use mean as lim_min by default

lim_min = ar.mean()

i = 0

for num in ar:

work within minimum and maximum limit

if num > lim_min and num < lim_max:

if i < action_range:

action_range_arr = ar[: i+action_range+1]

elif i+action_range>len(ar)-1:

action_range_arr = ar[i-action_range:]

else:

action_range_arr = ar[i-action_range:

i+action_range+1]

compare the current value with the whole

action_range array

if num >= max(action_range_arr):

peaks.extend([i])

i = i+1

return peaks

136

Bibliography

[1] How can i communicate between a siemens s7-1200 and python?
https://stackoverflow.com/questions/10355953/how-can-i-

communicate-between-a-siemens-s7-1200-and-python/27466845#

27466845, December 2015.

[2] Neural networks with gradient descent. https://blog.csdn.net/
liuheng0111/article/details/52521050, September 2016.

[3] Classification algorithms for imbalanced datasets. https:

//www.blockgeni.com/classification-algorithms-for-

imbalanced-datasets/, July 2020.

[4] How to implement a high-pass filter in python. https:

//dsp.stackexchange.com/questions/41184/high-pass-filter-

in-python-scipy, November 2020.

[5] Comprehensive list of activation functions in neural networks.
https://qastack.it/stats/115258/comprehensive-list-of-

activation-functions-in-neural-networks-with-pros-cons,
2021.

[6] Arm education media’s machine learning course. https:

//learning.edx.org/course/course-v1:ArmEducationX+EDARMXML.

6x+2T2022/home, 2022.

[7] Scipy guide on scipy.signal.find_peaks. https://docs.scipy.org/
doc/scipy/reference/generated/scipy.signal.find_peaks.html,
2023.

[8] AltexSoft. Predictive maintenance: The complete guide. https://www.
altexsoft.com/blog/predictive-maintenance/, March 2020.

[9] Saumya Awasthi. Unsupervised learning algorithms. https://

dataaspirant.com/unsupervised-learning-algorithms/, January
2021.

[10] Richard Baraniuk. Signals and systems. https://eng.libretexts.
org/Bookshelves/Electrical_Engineering/Signal_Processing_

137

https://stackoverflow.com/questions/10355953/how-can-i-communicate-between-a-siemens-s7-1200-and-python/27466845#27466845
https://stackoverflow.com/questions/10355953/how-can-i-communicate-between-a-siemens-s7-1200-and-python/27466845#27466845
https://stackoverflow.com/questions/10355953/how-can-i-communicate-between-a-siemens-s7-1200-and-python/27466845#27466845
https://blog.csdn.net/liuheng0111/article/details/52521050
https://blog.csdn.net/liuheng0111/article/details/52521050
https://www.blockgeni.com/classification-algorithms-for-imbalanced-datasets/
https://www.blockgeni.com/classification-algorithms-for-imbalanced-datasets/
https://www.blockgeni.com/classification-algorithms-for-imbalanced-datasets/
https://dsp.stackexchange.com/questions/41184/high-pass-filter-in-python-scipy
https://dsp.stackexchange.com/questions/41184/high-pass-filter-in-python-scipy
https://dsp.stackexchange.com/questions/41184/high-pass-filter-in-python-scipy
https://qastack.it/stats/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
https://qastack.it/stats/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
https://learning.edx.org/course/course-v1:ArmEducationX+EDARMXML.6x+2T2022/home
https://learning.edx.org/course/course-v1:ArmEducationX+EDARMXML.6x+2T2022/home
https://learning.edx.org/course/course-v1:ArmEducationX+EDARMXML.6x+2T2022/home
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
https://www.altexsoft.com/blog/predictive-maintenance/
https://www.altexsoft.com/blog/predictive-maintenance/
https://dataaspirant.com/unsupervised-learning-algorithms/
https://dataaspirant.com/unsupervised-learning-algorithms/
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)

and_Modeling/Signals_and_Systems_(Baraniuk_et_al.), May
2023.

[11] Tim Brown. Predictive maintenance sensors and implementa-
tion. https://www.themanufacturer.com/articles/predictive-

maintenance-sensors-and-implementation-a-solution-

overview-from-dell/, January 2017.

[12] Jason Brownlee. One-class classification algorithms for imbal-
anced datasets. https://machinelearningmastery.com/one-class-
classification-algorithms/, March 2020.

[13] Steven L. Brunton and J. Nathan Kutz. Data driven science and engi-
neering machine learning, dynamical systems, and control, 2017.

[14] Nikhil Buduma and Nicholas Locascio. Fundamentals of deep learning
- designing next-generation machine intelligence algorithms, May 2017.

[15] Lester Cardoz. Fault detection for predictive maintenance in industry
4.0. https://github.com/lestercardoz11/fault-detection-for-

predictive-maintenance-in-industry-4.0, August 2020.

[16] Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla.
Anomaly detection using mahalanobis distance. https://arxiv.org/
abs/1802.06360v2, December 2021.

[17] Limble CMMS. A complete guide to predictive maintenance. https:
//limblecmms.com/predictive-maintenance/, March 2023.

[18] ST Community. Does anyone know how long the battery lasts?
https://community.st.com/s/question/0D53W00001JAja9SAD/im-

working-on-a-sensortilebox-for-the-first-time-id-like-to-

create-an-app-that-records-steps-activity-type-and-axis-

information-gyro-for-three-days-straight-would-appreciate-

any-insight-for-a-newbie-here-questions-below, January 2022.

[19] SensiML Corporation. St sensortile box firmware down-
load guide. https://sensiml.com/documentation/firmware/st-

sensortile-box/st-sensortile-box.html, August 2020.

[20] Douglas F. Elliott. Handbook of digital signal processing, 1987.

138

https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)
https://www.themanufacturer.com/articles/predictive-maintenance-sensors-and-implementation-a-solution-overview-from-dell/
https://www.themanufacturer.com/articles/predictive-maintenance-sensors-and-implementation-a-solution-overview-from-dell/
https://www.themanufacturer.com/articles/predictive-maintenance-sensors-and-implementation-a-solution-overview-from-dell/
https://machinelearningmastery.com/one-class-classification-algorithms/
https://machinelearningmastery.com/one-class-classification-algorithms/
https://github.com/lestercardoz11/fault-detection-for-predictive-maintenance-in-industry-4.0
https://github.com/lestercardoz11/fault-detection-for-predictive-maintenance-in-industry-4.0
https://arxiv.org/abs/1802.06360v2
https://arxiv.org/abs/1802.06360v2
https://limblecmms.com/predictive-maintenance/
https://limblecmms.com/predictive-maintenance/
https://community.st.com/s/question/0D53W00001JAja9SAD/im-working-on-a-sensortilebox-for-the-first-time-id-like-to-create-an-app-that-records-steps-activity-type-and-axis-information-gyro-for-three-days-straight-would-appreciate-any-insight-for-a-newbie-here-questions-below
https://community.st.com/s/question/0D53W00001JAja9SAD/im-working-on-a-sensortilebox-for-the-first-time-id-like-to-create-an-app-that-records-steps-activity-type-and-axis-information-gyro-for-three-days-straight-would-appreciate-any-insight-for-a-newbie-here-questions-below
https://community.st.com/s/question/0D53W00001JAja9SAD/im-working-on-a-sensortilebox-for-the-first-time-id-like-to-create-an-app-that-records-steps-activity-type-and-axis-information-gyro-for-three-days-straight-would-appreciate-any-insight-for-a-newbie-here-questions-below
https://community.st.com/s/question/0D53W00001JAja9SAD/im-working-on-a-sensortilebox-for-the-first-time-id-like-to-create-an-app-that-records-steps-activity-type-and-axis-information-gyro-for-three-days-straight-would-appreciate-any-insight-for-a-newbie-here-questions-below
https://community.st.com/s/question/0D53W00001JAja9SAD/im-working-on-a-sensortilebox-for-the-first-time-id-like-to-create-an-app-that-records-steps-activity-type-and-axis-information-gyro-for-three-days-straight-would-appreciate-any-insight-for-a-newbie-here-questions-below
https://sensiml.com/documentation/firmware/st-sensortile-box/st-sensortile-box.html
https://sensiml.com/documentation/firmware/st-sensortile-box/st-sensortile-box.html

[21] Simone Ferri. Sensors in predictive maintenance for in-
dustry 4.0. https://www.eletimes.com/sensors-in-predictive-

maintenance-for-industry-4-0, March 2022.

[22] KONE Corporation Finland. Kone in brief. https://www.kone.com/
en/company/, March 2023.

[23] Google. Introduction to neural networks. https://developers.

google.com/machine-learning/crash-course/introduction-to-

neural-networks/anatomy?hl=it, 2021.

[24] SPD Group. Predictive maintenance using machine learning. https://
spd.group/machine-learning/predictive-maintenance/, July 2021.

[25] Growthbotics. Predictive maintenance using python and ma-
chine learning. https://growthbotics.medium.com/predictive-

maintenance-using-python-and-b92261d3593b, November 2020.

[26] The MathWorks Inc. Predictive maintenance with matlab.
https://www.mathworks.com/content/dam/mathworks/ebook/

gated/predictive-maintenance-ebook-all-chapters.pdf, 2020.

[27] The MathWorks Inc. predictive maintenance tech talk se-
ries. https://fr.mathworks.com/videos/series/predictive-

maintenance-tech-talk-series.html, September 2022.

[28] The MathWorks Inc. Spectal entropy of signal. https://fr.mathworks.
com/help/signal/ref/pentropy.html, 2023.

[29] Romeo Kienzler. Create neural network anomaly detection. https:
//developer.ibm.com/learningpaths/iot-anomaly-detection-

deep-learning/create-neural-network-anomaly-detection/,
September 2022.

[30] Egor Korneev. Lstm neural networks for anomaly de-
tection. https://medium.datadriveninvestor.com/lstm-neural-

networks-for-anomaly-detection-4328cb9b6e27, January 2022.

[31] Chris McCormick. Mahalanobis distance. https://mccormickml.com/
2014/07/22/mahalanobis-distance/, July 2014.

[32] Alan S. Morris. Measurement and instrumentation principles, 2001.

139

https://www.eletimes.com/sensors-in-predictive-maintenance-for-industry-4-0
https://www.eletimes.com/sensors-in-predictive-maintenance-for-industry-4-0
https://www.kone.com/en/company/
https://www.kone.com/en/company/
https://developers.google.com/machine-learning/crash-course/introduction-to-neural-networks/anatomy?hl=it
https://developers.google.com/machine-learning/crash-course/introduction-to-neural-networks/anatomy?hl=it
https://developers.google.com/machine-learning/crash-course/introduction-to-neural-networks/anatomy?hl=it
https://spd.group/machine-learning/predictive-maintenance/
https://spd.group/machine-learning/predictive-maintenance/
https://growthbotics.medium.com/predictive-maintenance-using-python-and-b92261d3593b
https://growthbotics.medium.com/predictive-maintenance-using-python-and-b92261d3593b
https://www.mathworks.com/content/dam/mathworks/ebook/gated/predictive-maintenance-ebook-all-chapters.pdf
https://www.mathworks.com/content/dam/mathworks/ebook/gated/predictive-maintenance-ebook-all-chapters.pdf
https://fr.mathworks.com/videos/series/predictive-maintenance-tech-talk-series.html
https://fr.mathworks.com/videos/series/predictive-maintenance-tech-talk-series.html
https://fr.mathworks.com/help/signal/ref/pentropy.html
https://fr.mathworks.com/help/signal/ref/pentropy.html
https://developer.ibm.com/learningpaths/iot-anomaly-detection-deep-learning/create-neural-network-anomaly-detection/
https://developer.ibm.com/learningpaths/iot-anomaly-detection-deep-learning/create-neural-network-anomaly-detection/
https://developer.ibm.com/learningpaths/iot-anomaly-detection-deep-learning/create-neural-network-anomaly-detection/
https://medium.datadriveninvestor.com/lstm-neural-networks-for-anomaly-detection-4328cb9b6e27
https://medium.datadriveninvestor.com/lstm-neural-networks-for-anomaly-detection-4328cb9b6e27
https://mccormickml.com/2014/07/22/mahalanobis-distance/
https://mccormickml.com/2014/07/22/mahalanobis-distance/

[33] Chris Murphy. Choosing the most suitable predictive maintenance sen-
sor. https://www.analog.com/en/technical-articles/choosing-

the-most-suitable-predictive-maintenance-sensor.html, Febru-
ary 2023.

[34] Pepperl+Fuchs. Inductive proximity switch data sheet.
https://files.pepperl-fuchs.com/webcat/navi/productInfo/

edb/mdoc4008b.pdf?v=20200316232212, September 2017.

[35] Plotly. Gauge charts in python with plotly. https://plotly.com/
python/gauge-charts/, August 2020.

[36] Everything RF. What are pass band ripples in a fil-
ter? https://www.everythingrf.com/community/what-are-pass-

band-ripples-in-a-filter, April 2021.

[37] Seonghan Ryu, Sangjun Koo, Hwanjo Yu, and Gary Lee. Out-of-
domain detection based on generative adversarial network. https:
//aclanthology.org/D18-1077.pdf, November 2021.

[38] Salvagnini. Salvagnini s4 punching centers. https://www.

salvagnini.com/en/product/punching-centers/s4, June 2015.

[39] Salvagnini. Operating manual - integrated punching and shearing sys-
tem, January 2018.

[40] Siemens. Simatic et 200s im 151-8 pn/dp cpu operating instruc-
tions. https://cache.industry.siemens.com/dl/files/312/

47409312/att_78874/v1/et200s_im151_8_pn_dp_cpu_operating_

instructions_en-US_en-US.pdf, April 2022.

[41] Snap7. Snap7 - step7 ethernet communication suite. https://snap7.
sourceforge.net/, September 2013.

[42] STMicroelectronics. St sensortile box. https://www.st.com/

en/evaluation-tools/steval-mksbox1v1.html#documentation, De-
cember 2019.

[43] STMicroelectronics. Ism330dhcx - inemo inertial module. https:
//www.st.com/en/mems-and-sensors/ism330dhcx.html, November
2020.

[44] STMicroelectronics. St sensortile box data brief. https://www.st.com/
resource/en/data_brief/steval-mksbox1v1.pdf, August 2020.

140

https://www.analog.com/en/technical-articles/choosing-the-most-suitable-predictive-maintenance-sensor.html
https://www.analog.com/en/technical-articles/choosing-the-most-suitable-predictive-maintenance-sensor.html
https://files.pepperl-fuchs.com/webcat/navi/productInfo/edb/mdoc4008b.pdf?v=20200316232212
https://files.pepperl-fuchs.com/webcat/navi/productInfo/edb/mdoc4008b.pdf?v=20200316232212
https://plotly.com/python/gauge-charts/
https://plotly.com/python/gauge-charts/
https://www.everythingrf.com/community/what-are-pass-band-ripples-in-a-filter
https://www.everythingrf.com/community/what-are-pass-band-ripples-in-a-filter
https://aclanthology.org/D18-1077.pdf
https://aclanthology.org/D18-1077.pdf
https://www.salvagnini.com/en/product/punching-centers/s4
https://www.salvagnini.com/en/product/punching-centers/s4
https://cache.industry.siemens.com/dl/files/312/47409312/att_78874/v1/et200s_im151_8_pn_dp_cpu_operating_instructions_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/312/47409312/att_78874/v1/et200s_im151_8_pn_dp_cpu_operating_instructions_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/312/47409312/att_78874/v1/et200s_im151_8_pn_dp_cpu_operating_instructions_en-US_en-US.pdf
https://snap7.sourceforge.net/
https://snap7.sourceforge.net/
https://www.st.com/en/evaluation-tools/steval-mksbox1v1.html#documentation
https://www.st.com/en/evaluation-tools/steval-mksbox1v1.html#documentation
https://www.st.com/en/mems-and-sensors/ism330dhcx.html
https://www.st.com/en/mems-and-sensors/ism330dhcx.html
https://www.st.com/resource/en/data_brief/steval-mksbox1v1.pdf
https://www.st.com/resource/en/data_brief/steval-mksbox1v1.pdf

[45] STMicroelectronics. St sensortile box schematic. https://www.st.
com/content/ccc/resource/technical/layouts_and_diagrams/

schematic_pack/group1/bd/37/07/03/6d/87/40/cd/STEVAL-

MKSBOX1V1_SCHEMATIC/files/steval-mksbox1v1_schematic.pdf/

jcr:content/translations/en.steval-mksbox1v1_schematic.pdf,
December 2020.

[46] STMicroelectronics. How to use the wireless multi-sensor development
kit with customizable app for iot and wearable sensor applications.
https://www.st.com/resource/en/user_manual/um2580-how-

to-use-the-wireless-multi-sensor-development-kit-with-

customizable-app-for-iot-and-wearable-sensor-applications-

stmicroelectronics.pdf, September 2021.

[47] STMicroelectronics. St sensortile box quick start guide. https:

//www.st.com/content/ccc/resource/sales_and_marketing/

presentation/product_presentation/group0/5c/4e/96/c2/a6/98/

4a/7f/FP-SNS-STBOX1_Quick_Start_Guide/files/FP-SNS-STBOX1_

Quick_Start_Guide.pdf/jcr:content/translations/en.FP-SNS-

STBOX1_Quick_Start_Guide.pdf, April 2021.

[48] STMicroelectronics. Stm32 ode function pack: Fp-sns-datalog1.
https://www.st.com/content/st_com/en/products/embedded-

software/mcu-mpu-embedded-software/stm32-embedded-

software/stm32-ode-function-pack-sw/fp-sns-datalog1.html,
February 2021.

[49] STMicroelectronics. Getting started with the stm32cube high-
speed datalog function pack for stwin evaluation kits. https:

//www.st.com/resource/en/user_manual/dm00685314-getting-

started-with-the-stm32cube-high-speed-datalog-function-

pack-for-stwin-evaluation-kits-stmicroelectronics.pdf,
December 2022.

[50] STMicroelectronics. High-speed datalog for stwin and sen-
sortile.box. https://content.st.com/high-speed-datalog-for-

stwin-and-sensortilebox-webinar.html, August 2022.

[51] STMicroelectronics. Vibration detection with lsm6dsox - part
1. https://community.st.com/s/article/Vibration-detection-

with-LSM6DSOX---Part1, March 2022.

141

https://www.st.com/content/ccc/resource/technical/layouts_and_diagrams/schematic_pack/group1/bd/37/07/03/6d/87/40/cd/STEVAL-MKSBOX1V1_SCHEMATIC/files/steval-mksbox1v1_schematic.pdf/jcr:content/translations/en.steval-mksbox1v1_schematic.pdf
https://www.st.com/content/ccc/resource/technical/layouts_and_diagrams/schematic_pack/group1/bd/37/07/03/6d/87/40/cd/STEVAL-MKSBOX1V1_SCHEMATIC/files/steval-mksbox1v1_schematic.pdf/jcr:content/translations/en.steval-mksbox1v1_schematic.pdf
https://www.st.com/content/ccc/resource/technical/layouts_and_diagrams/schematic_pack/group1/bd/37/07/03/6d/87/40/cd/STEVAL-MKSBOX1V1_SCHEMATIC/files/steval-mksbox1v1_schematic.pdf/jcr:content/translations/en.steval-mksbox1v1_schematic.pdf
https://www.st.com/content/ccc/resource/technical/layouts_and_diagrams/schematic_pack/group1/bd/37/07/03/6d/87/40/cd/STEVAL-MKSBOX1V1_SCHEMATIC/files/steval-mksbox1v1_schematic.pdf/jcr:content/translations/en.steval-mksbox1v1_schematic.pdf
https://www.st.com/content/ccc/resource/technical/layouts_and_diagrams/schematic_pack/group1/bd/37/07/03/6d/87/40/cd/STEVAL-MKSBOX1V1_SCHEMATIC/files/steval-mksbox1v1_schematic.pdf/jcr:content/translations/en.steval-mksbox1v1_schematic.pdf
https://www.st.com/resource/en/user_manual/um2580-how-to-use-the-wireless-multi-sensor-development -kit-with-customizable-app-for-iot-and-wearable-sensor -applications-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2580-how-to-use-the-wireless-multi-sensor-development -kit-with-customizable-app-for-iot-and-wearable-sensor -applications-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2580-how-to-use-the-wireless-multi-sensor-development -kit-with-customizable-app-for-iot-and-wearable-sensor -applications-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2580-how-to-use-the-wireless-multi-sensor-development -kit-with-customizable-app-for-iot-and-wearable-sensor -applications-stmicroelectronics.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/presentation/product_presentation/group0/5c/4e/96/c2/a6/98/4a/7f/FP-SNS-STBOX1_Quick_Start_Guide/files/FP-SNS-STBOX1_Quick_Start_Guide.pdf/jcr:content/translations/en.FP-SNS-STBOX1_Quick_Start_Guide.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/presentation/product_presentation/group0/5c/4e/96/c2/a6/98/4a/7f/FP-SNS-STBOX1_Quick_Start_Guide/files/FP-SNS-STBOX1_Quick_Start_Guide.pdf/jcr:content/translations/en.FP-SNS-STBOX1_Quick_Start_Guide.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/presentation/product_presentation/group0/5c/4e/96/c2/a6/98/4a/7f/FP-SNS-STBOX1_Quick_Start_Guide/files/FP-SNS-STBOX1_Quick_Start_Guide.pdf/jcr:content/translations/en.FP-SNS-STBOX1_Quick_Start_Guide.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/presentation/product_presentation/group0/5c/4e/96/c2/a6/98/4a/7f/FP-SNS-STBOX1_Quick_Start_Guide/files/FP-SNS-STBOX1_Quick_Start_Guide.pdf/jcr:content/translations/en.FP-SNS-STBOX1_Quick_Start_Guide.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/presentation/product_presentation/group0/5c/4e/96/c2/a6/98/4a/7f/FP-SNS-STBOX1_Quick_Start_Guide/files/FP-SNS-STBOX1_Quick_Start_Guide.pdf/jcr:content/translations/en.FP-SNS-STBOX1_Quick_Start_Guide.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/presentation/product_presentation/group0/5c/4e/96/c2/a6/98/4a/7f/FP-SNS-STBOX1_Quick_Start_Guide/files/FP-SNS-STBOX1_Quick_Start_Guide.pdf/jcr:content/translations/en.FP-SNS-STBOX1_Quick_Start_Guide.pdf
https://www.st.com/content/st_com/en/products/embedded-software/mcu-mpu-embedded-software/stm32-embedded-software/stm32-ode-function-pack-sw/fp-sns-datalog1.html
https://www.st.com/content/st_com/en/products/embedded-software/mcu-mpu-embedded-software/stm32-embedded-software/stm32-ode-function-pack-sw/fp-sns-datalog1.html
https://www.st.com/content/st_com/en/products/embedded-software/mcu-mpu-embedded-software/stm32-embedded-software/stm32-ode-function-pack-sw/fp-sns-datalog1.html
https://www.st.com/resource/en/user_manual/dm00685314-getting-started-with-the-stm32cube-high-speed -datalog-function-pack-for-stwin-evaluation-kits-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00685314-getting-started-with-the-stm32cube-high-speed -datalog-function-pack-for-stwin-evaluation-kits-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00685314-getting-started-with-the-stm32cube-high-speed -datalog-function-pack-for-stwin-evaluation-kits-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00685314-getting-started-with-the-stm32cube-high-speed -datalog-function-pack-for-stwin-evaluation-kits-stmicroelectronics.pdf
https://content.st.com/high-speed-datalog-for-stwin-and-sensortilebox-webinar.html
https://content.st.com/high-speed-datalog-for-stwin-and-sensortilebox-webinar.html
https://community.st.com/s/article/Vibration-detection-with-LSM6DSOX---Part1
https://community.st.com/s/article/Vibration-detection-with-LSM6DSOX---Part1

[52] STMicroelectronics. Getting started with the steval-stwinbx1 sensortile
wireless industrial node development kit. https://www.st.com/

en/evaluation-tools/steval-stwinbx1.html?rt=um&id=UM2965,
March 2023.

[53] David Tax and Robert Duin. Support vector domain description. http:
//rduin.nl/papers/prl_99_svdd.pdf, February 2014.

[54] Nitish Kumar Thakur. Anomaly detection in python - part 1: Basics,
code, and standard algorithms. https://medium.com/analytics-

vidhya/anomaly-detection-in-python-part-1-basics-code-and-

standard-algorithms-37d022cdbcff, May 2021.

[55] Venelin Valkov. Time series anomaly detection using lstm autoencoder
with pytorch in python. https://curiousily.com/posts/time-

series-anomaly-detection-using-lstm-autoencoder-with-

pytorch-in-python/, March 2020.

[56] A. Vitali. Sensortile box hands-on. https://www.st.com/

content/dam/AME/2019/technology-tour-2019/minneapolis/

presentations/T3S1_Minneapolis_SensorTileBox_HandsOn_A.

Vitali.pdf, September 2021.

[57] Elena Vodovatova. Unsupervised machine learning. https:

//theappsolutions.com/blog/development/unsupervised-

machine-learning/, May 2023.

[58] Abhishek Wasnik. Principal component analysis (pca) exam-
ple. https://www.askpython.com/python/examples/principal-

component-analysis, October 2020.

142

https://www.st.com/en/evaluation-tools/steval-stwinbx1.html?rt=um&id=UM2965
https://www.st.com/en/evaluation-tools/steval-stwinbx1.html?rt=um&id=UM2965
http://rduin.nl/papers/prl_99_svdd.pdf
http://rduin.nl/papers/prl_99_svdd.pdf
https://medium.com/analytics-vidhya/anomaly-detection-in-python-part-1-basics-code-and-standard-algorithms-37d022cdbcff
https://medium.com/analytics-vidhya/anomaly-detection-in-python-part-1-basics-code-and-standard-algorithms-37d022cdbcff
https://medium.com/analytics-vidhya/anomaly-detection-in-python-part-1-basics-code-and-standard-algorithms-37d022cdbcff
https://curiousily.com/posts/time-series-anomaly-detection-using-lstm-autoencoder-with-pytorch-in-python/
https://curiousily.com/posts/time-series-anomaly-detection-using-lstm-autoencoder-with-pytorch-in-python/
https://curiousily.com/posts/time-series-anomaly-detection-using-lstm-autoencoder-with-pytorch-in-python/
https://www.st.com/content/dam/AME/2019/technology-tour-2019/minneapolis/presentations/T3S1_Minneapolis_SensorTileBox_HandsOn_A.Vitali.pdf
https://www.st.com/content/dam/AME/2019/technology-tour-2019/minneapolis/presentations/T3S1_Minneapolis_SensorTileBox_HandsOn_A.Vitali.pdf
https://www.st.com/content/dam/AME/2019/technology-tour-2019/minneapolis/presentations/T3S1_Minneapolis_SensorTileBox_HandsOn_A.Vitali.pdf
https://www.st.com/content/dam/AME/2019/technology-tour-2019/minneapolis/presentations/T3S1_Minneapolis_SensorTileBox_HandsOn_A.Vitali.pdf
https://theappsolutions.com/blog/development/unsupervised-machine-learning/
https://theappsolutions.com/blog/development/unsupervised-machine-learning/
https://theappsolutions.com/blog/development/unsupervised-machine-learning/
https://www.askpython.com/python/examples/principal-component-analysis
https://www.askpython.com/python/examples/principal-component-analysis

	Abstract
	Acknowledgements
	Introduction
	Context
	Thesis outline

	What is predictive maintenance?
	Different maintenance solutions
	The best approach for the punching machine

	Preliminaries and State of the Art
	The punching machine
	The Salvagnini S4 - 1262
	The main components of the machine
	The operations of the machine

	Places where sensors will be installed

	Hardware components installed
	Goals and constraints
	First solution: STWIN
	Fallback solution: SensorTile.box
	The turning point in hardware definition
	The PLC system
	The chosen PLC
	The project implementation into the PLC
	Another obstacle: the communication time

	The definitive solution
	The machine head

	Design and Implementation
	The acquisitions collected by means of STWIN.box
	Shears recognition using the microphone acquisitions
	Shears recognition directly on the accelerometer signal
	Real-time application
	Filtering the signal
	Peak recognition function
	Machine learning implementation
	Discussion about the feasibility of a good neural network algorithm

	Punching recognition
	Comparison with a newer punching machine, operating with a shearing tool at the end of its service life
	Comparison between different level of shear wear on the same punching-shearing center

	Side Projects
	Conclusions and Future Works
	Conclusions
	Future works

	Algorithm that divide the acquired signal into many batches without overlapping
	SensorTile.box final script to define dashboard
	Define webpage where the variable got with Python from the PLC is shown
	Datalog directly on the PC by means of Python and a USB cable
	Real time peak recognition exploiting the microphone acquired signal
	Definitive real time peak recognition algorithm
	Real-time application code using find_peaks
	Steps to define peakfinder_mine
	Bibliography

