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Abstract

Reducing energy consumption and increasing renewable penetration are necessary to mit-
igate climate change and achieve sustainability goals. In the building sector, HVAC
systems (heating ventilation and air conditioning) account for 20% of the primary energy
consumption in developed countries. Furthermore, demand, especially cooling in devel-
oping countries, could increase by up to 50% by 2050. Most of the cooling is carried
out by electrical chillers further straining the power grid. Thermally activated Desiccant
Evaporative Cooling (DEC) systems have become a possible alternative. However, tradi-
tional DEC systems are bulky and not suitable for residential applications. Compact DEC
systems are being developed, but research is still needed. This thesis aims to study and
optimize a compact DEC system named FREESCOO numerically and experimentally.
This specific DEC and in general HVAC systems can benefit from advanced control, since
it can help reduce discomfort, running cost and environmental impact. Advanced control,
including Model Predictive Controllers (MPC) have a large variety of possible formula-
tions even for the same HVAC system. This left a gap in literature on the influence of
each formulation and solver choice. Furthermore, MPC is mainly studied for commercial
buildings because in general it is not economically favorable for residential buildings. The
aim is to analyze common MPC formulations to find the most suitable methodology and
find a way to improve the local controller in a residential scenario using know how coming
from an off-line MPC. The case study analyzed is a two-room apartment in Milan that
uses floor heating coupled with a heat pump for heating and FREESCOO together with a
district heating for cooling. 250 data points were collected for two FREESCOO iterations
and a 2D finite volume model was calibrated and validated with less than 6% NRMSE.
Then, optimizing phases times thermal COP was increased by 20% for the cooling season.
MPC comparisons lead to the conclusion that nonlinear MPCs do not bring benefit at the
cost of longer computational time and more instability in the convergence. Lastly, using
the MPC results pre-on and pre-off parameters were found to deal with floor heating high
thermal inertia reducing by 90% discomfort in the heating season.

Keywords: HVAC, optimal control, DEC, MPC comparison, residential





Sommario

Ridurre il consumo energetico ed aumentare la penetrazione di rinnovabili è necessario
per mitigare il cambiamento climatico e ranggiungere i target di sostenibilità. Gli HVAC
consumano il 20 % dell’energia primaria nei paesi sviluppati. Inoltre, la domanda potrà au-
mentare del 50 % entro il 2050, specialmente di raffrescamento in paesi in via di sviluppo.
La maggior parte del raffrescamento è fatta con condizionatori elettrici che appesantiscono
ulteriormente la rete elettrica. I condizionatori dessicanti evaporativi (DEC) attivati ter-
micamente possono essere un’alternativa. Purtroppo, i DEC tradizionali sono ingombranti
e difficilmente integrabili in realtà residenziali. Si stanno studiando DEC più compatti,
ma ulteriore ricerca è necessaria. La tesi si pone l’obiettivo di studiare ed ottimizzare un
sistema DEC compatto chiamato FREESCOO da un punto di vista numerico e sperimen-
tale. Questi DEC e i sistemi HVAC più in generale beneficiano dal controllo avanzanto,
che permette di ridurre l’impatto ambientale, i consumi ed il discomfort. Ci sono molte
formulazioni per il controllo avanzato e predittivo (MPC) anche per lo stesso HVAC. Per
questo motivo, c’è un vuoto in letteratura sull’influenza di ogni formulazione e scelta di
risolutori. Inoltre, gli MPC sono maggiormente studiati per grossi edifici commerciali. Il
secono obbiettivo è pertanto analizzare diverse formulazioni MPC per trovare la migliore
e in seguito trovare un modo per migliorare la performance del controllore locale utiliz-
zando i risultati di un ottimizzazione offline. Il caso studio scelto è un bilocale a Milano
che utilizza pavimento radiante per riscaldamento accopiato ad una pompa di calore e
FREEESCO con teleriscaldamento per raffrescamento. 250 punti di funzionamento sono
stati raccolti per due iterazioni di FREESCOO e un modello 2D a volumi finiti è stato
validato sperimentalmente con un NRMSE minore del 6 %.Ottimizzando i tempi di ciclo
il COP termico è migliorato del 20 % per la stagione di raffrescamento. Comparando
le diverse formulazioni MPC è emerso che gli MPC non lineari non portano benifici ma
aggiugono tempo computazionale ed instabilità. Si sono ricavati preaccensione e pre-
spegnimento usando i risultati da MPC per minimizzare l’effetto dell’inerzia termica del
pavimeno radiante riducendo il discomfort del 90 % per la stagione di riscaldamento.

Parole chiave: HVAC, controllo predittivo, condizionatore dessicante evaporativo
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1| Introduction

1.1. Energy background

Energy plays a key role in modern society and more is needed to increase
the worldwide standard of living to an acceptable level. However, the
increasing demand for energy is in contrast with the sustainability goals to
mitigate the climate change effect. Therefore, particular focus should be
put on the development of the more energy hungry sectors. The building
sector is one of the largest energy consumers, in particular, heating and
cooling systems account for 20% of primary energy consumption and a
comparable amount of carbon dioxide emissions in Major Economic Forum
(MEF) countries [1]. If no action is taken to improve energy efficiency in
the building sector, energy demand is expected to rise by 50 % by 2050
[2]. Therefore, energy efficiency, net zero energy buildings and low-carbon
technologies will play a crucial role in the energy transition needed to make
the change happen [3].

1.1.1. Cooling issue

A large portion of this energy consumption increase is due to cooling needs
in developing countries and the rise of the average temperature due to
climate change [4]. The majority of the cooling is carried out by vapour
compression systems that run mainly on electricity increasing the strain
on the power grid. Therefore, alternatives that do not run mainly on
electricity are needed.
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In the last decade, Desiccant Evaporative Cooling (DEC) systems have
become a possible alternative to traditional vapour compression based air
conditioning systems, heat pumps, and chillers, as shown by [5]. These
systems are based on the physical principles of evaporative cooling and
desiccant dehumidification of air. In the evaporative part of the system a
stream of air can be cooled by direct or indirect evaporation. In the case
of direct evaporation, the air stream is cooled by water injection. This
adiabatic process will lower the dry bulb temperature while increasing the
relative humidity, so the drier the air stream at the beginning, the more
cooling potential is available. In indirect evaporative cooling, an air to air
heat exchanger is present where one stream is cooled by the direct evapo-
ration process and the other stream is cooled via a heat exchanger. In solid
DEC systems, the dehumidification of air via the adsorption process is usu-
ally carried out using the so called desiccant wheels coated by adsorption
material (e.g. silica gel, lithium chloride) [6]. Two air streams go through
the component at the same time, namely the regeneration and humid air
streams, allowing the device to function continuously. However adsorption
processes realized by means of desiccant rotors have the disadvantage of
the carrying over the adsorption heat, with a consequent negative impact
on the overall system performance. Furthermore, with the desiccant rotor
technology, it is not possible to acquire a high adsorption capacity in the
desiccant materials, since the rotor coating cannot be too thick. Lastly
this kind of system is usually employed for non residential application due
to space constraints. [7] provides an extensive review on the latest devel-
opments for solid DEC systems, highlighting novel concepts using fixed
bed technology. Potentially, fixed bed configurations could be used for
smaller scale buildings and even apartments. However, the compactness of
the fixed beds also makes the heat exchanger work in a transient intermit-
tent operation, which is much harder to properly control with respect to a
traditional rotary system.
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1.1.2. Control issue

These novel DEC systems and HVAC (Heating Ventilation and Air Con-
ditioning) systems in general can benefit from advanced control strategies,
since they can help reduce environmental impact, reduce running costs,
and increase comfort conditions. There are several approaches that can be
defined as advanced control for the building sector. The state of the art
of existing technology consists mostly of Rule Based Controllers (RBC),
based on a set of hysteresis and Proportional Integral Derivative (PID) for
each piece of equipment in the HVAC. Consequently, a custom heuristic
RBC, a fuzzy controller, or an auto-tuning PID can be considered ad-
vanced control for the building sector. However, these are all feedback
controllers that can only act upon a signal coming from the building. This
approach works well when the response of HVAC is quick as for air based
system. However, when considering a concrete core floor heating system,
fairly common in low consumption buildings in Europe because it allows
the use of lower grade heat, the dynamic response can be delayed by hours.
Furthermore, today there is a need to deal with the increasing number of
renewables present in the electrical grid and production demand mismatch.
Buildings can be part of the solution, as they are large energy consumers
and theoretically their thermal mass can be used to shift their demand [8].
However, this is not possible with traditional controllers, a promising ap-
proach to solve all these issues are Model Predictive Controllers (MPC) [9],
since they can help increase renewable penetration by unlocking load flex-
ibility potential in buildings [10, 11] and deal with slow HVAC dynamics
[12, 13]. Model Predictive Controllers (MPC) [14–16], use a model of the
building and its HVAC system together with forecasts of the boundaries
(weather, occupancy, setpoint, ...) in order to estimate the thermal behav-
ior of the building and the HVAC system. Then they can find the most
suitable control trajectory through an optimization process to achieve a
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certain objective that can be comfort, energy reduction, maximization of
local renewable self consumption or apply demand response strategies.

In general a multitude of modeling approaches can be found in literature
for the MPC formulation and numerical implementation even for identical
HVAC systems. One reason is that MPC itself has different theoretical
approaches, such as centralized versus distributed, or stochastic versus de-
terministic. Furthermore, the objective and constraints of the MPC can
be formulated in different ways regarding the quantification, relative im-
portance, and limitations of the performance indicators (e.g., energy use,
carbon emissions, energy cost, load flexibility, thermal comfort).

Then, each component of the HVAC can be modeled in several ways, lead-
ing to a delicate balance between accuracy in the prediction, robustness,
and computational requirements. For example, the COP (Coefficient Of
Performance) of an heat pump is a complex function of at least load ratio,
external, and supply temperatures. So, changing only the COP formulation
from a constant value to a function of external and supply temperature can
increase the accuracy of the prediction at the cost of increasing the non-
linearity of the objective function, which can decrease the robustness to
find an optimal solution and increase computational requirements. Fur-
thermore, physical control inputs (e.g., percent valve position) can be used
as optimal control variables directly, though this could result in a formu-
lation that includes nonlinearity and integer variables, leading to a Mixed
Integer NonLinear Programming (MINLP) problem. On the other hand,
heat flow rates could be selected as optimal control variables. In this case,
the resulting problem could result in a linear or quadratic programming,
which exhibits better mathematical properties (e.g., numerical efficiency
and convexity). However, converting the optimal control trajectory into
useful physical control inputs for the HVAC system becomes more difficult
as the system complexity increases. As a consequence, a significant amount
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of time could be spent iterating to identify the most suitable optimization
formulation for each HVAC system. Lastly, advanced control cannot be
used directly in a small residential case study. The reason is the cost of the
implementation. A potential solution could be the use of a cloud solution,
where all the computations can be implemented. However, a real time
implementation depends on the availability of the web communication and
increases the safety risks [17]. A good compromise could be to extrapolate
useful rules from offline optimization run on the cloud and do a sporadic
re tuning process of the local micro controller that does not strain the
communication system. Furthermore, this solution could be implemented
in a lot more existing households with ease of implementation such as a
firmware update of the micro controller.

1.2. Literature review

This section shows that state of the state of the art of predictive control in
sub section 1.2.1 and shows the application gap that this thesis is trying
to fill. In sub section 1.2.2 is shown a review on the compact DEC sys-
tem FREESCOO and its possible application to a residential case study is
discussed.

1.2.1. Model Predictive Control

A lot of the text in this section belongs to the manuscript [18], where I am
the first author, a draft is attached to Appendix A. [19] does an extensive
review on advanced predictive controllers for building types, highlighting
the benefit of each approach and leading to the conclusion that poten-
tially MPC can have the best performance for commercial buildings where
the economy of scale is sufficient to justify setup and running costs. For
the residential case instead cheaper solutions that require less computa-
tional power and setup time are to be preferred. This aligns with the idea



6 1| Introduction

of implementing a cloud based solution that can be employed for several
houses, increasing the economy of scale and reducing the final implemen-
tation costs. The first step is to identify the correct MPC methodology to
apply to the case study.

[14, 20] provide a comprehensive review on building MPC literature. From
their studies it emerges that a lot of work has been done to try and address
the benefit and applicability of different MPC formulations.

Considering MPC architecture and theoretical approach, [21, 22] com-
pare centralized and distributed MPC architectures, highlighting that dis-
tributed approaches have slightly worse comfort and energy saving per-
formance but better computational time. [23–26] compare deterministic
versus robust or stochastic MPC, showing that stochastic or robust have a
better performance in high uncertainty scenarios and comparable in oth-
ers. Rather than focusing on architecture and theoretical approach, [27, 28]
instead analyse the MPC problem formulation focusing on different cost
function and constraints, assessing which formulations are more robust
and computationally efficient, but limiting their analysis to Linear Pro-
gramming (LP), Quadratic Programming (QP) and Mixed Integer Linear
Programming (MILP).

Considerable effort was also put into analyzing different building envelope
thermal modeling approaches. [29] compared several black box and grey
box model structures for modeling the building envelope systems and con-
cluded that black box models are more computationally efficient for larger
case studies but become less reliable for longer prediction horizons. [30]
analyzed the effects of grey box model order on the performance of MPC
for concrete core activated buildings. [31] also shows that model order has
a strong influence on the model quality. Furthermore, [31] identified seven
factors that play an important role in the building envelope model accu-
racy. [32, 33] show that a purely physical driven white box approach can
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be viable in certain building types.

Less comprehensive work is available on comparison about HVAC modeling
and optimal control variable choice and their impact on the resulting MPC
formulation. [34] performed an extensive analysis on the impact of different
COP formulations in the MPC problem leading to linear programming
and nonlinear programming problems, highlighting the potential benefit
of a nonlinear formulation. [35] compares a linear time invariant MPC, a
linear time variant and a nonlinear MPC in a case study with a heat pump
and domestic hot water. The results show that the nonlinear solution
is the best one, but the linear time variant gets close and remains more
robust. In both [34, 35] cases, binary variables are not taken into account,
avoiding mixed integer nonlinear programming formulations, which arise
fairly commonly when dealing with HVAC systems. Indeed, I did not find
any study comparing MINLP with other formulations, only [36] introduces
a custom MINLP solver comparing with Bonmin [37] for a solar thermal
system. Furthermore, it is especially hard to cross compare different works
due to lack of common case study and common metrics. Therefore, there is
a need of a comprehensive comparison between different formulations even
on the same case study that will allow to choose the most suitable MPC
methodology.

1.2.2. FREESCOO desiccant evaporative cooling system

One of the novel concepts mentioned in [7] is FREESCOO. FREESCOO is
an acronym that stands for FREE Solar COOling [38]. It is a compact solar
powered DEC air conditioning system that can dehumidify, cool, and heat
thermal zones for the residential and commercial sectors. FREESCOO
was developed by Solarinvent, a startup created in Italy at the beginning
of 2014 [39]. [40] highlights the major benefits of fixed bed heat exchangers
and in particular the FREESCOO solution with respect to a traditional
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desiccant rotor based DEC system:

• higher dehumidification rate because the adsorption material is con-
tinuously cooled during adsorption phase;

• higher storage potential thanks to the higher mass of silica gel present
in the device. This allows the system to be used also as an energy
storage, regenerating it at a more convenient time and using it when
the user needs cooling;

• adsorption and regeneration processes occur at different times, allow-
ing more flexibility in tuning the dehumidification rate and heat input
leading to higher thermal COP.

The last version of FREESCOO mentioned in [40] is coupled with a so-
lar thermal panel to get the heat needed for the regeneration of the silica
gel bed. Unfortunately solar thermal installations saw a drop in the last
decade mainly due to the increasing competition of photovoltaic (PV) sys-
tems. One of the main reason is the massive installation of PV systems
that happened after 2006 due subsidies in Europe that contributed to a
fast growth of the technology and a large economy of scale reducing their
price. However, in recent years low temperature district heating systems
are seen as possible alternative to conventional district heating systems
[41]. Working at lower temperatures allows them to integrate the renew-
able energy share of the network, such as solar thermal farms [42], waste
heat [43] and large ground source heat pumps [44]. Furthermore, climate
change caused Summers to be hotter in Norther European countries to the
point where a cooling system is required and district heating systems are
fairly widespread. FREESCOO is an ideal solution for this type of district
network because it is designed to have a low regeneration temperature,
around 60-65 (°C), close to the one of the district and the big mass of the
adsorption bed can be used to conveniently accommodate the energy flexi-



1| Introduction 9

bility required by the district network. Furthermore, it solves a traditional
problem of district heating networks allowing for an extensive use of the
network during the summer, making the district more competitive year
round. Furthermore, decoupling FREESCOO from the local solar thermal
system allows for a more compact device that can be installed in an apart-
ment rather than a single family house and can be more price competitive.
Lastly, an advantage with respect to vapour compression split systems is
that FREESCOO can treat external air, so it can also be used as an Air
Handling Unit (AHU) addressing Indoor Air Quality (IAQ).

1.3. Thesis objectives

To address the points raised in the literature review this PhD thesis has
three main objectives:

1. contribute in developing a new version of FREESCOO device that will
be cheaper, more compact and that works with district heating;

2. compare different MPC formulations to partially fill the literature gap,
while trying to find a general methodology applicable to a wide array
of residential HVACs;

3. find a way to extrapolate useful parameters from the optimization
process that can be used directly in residential micro controllers.

1.3.1. FREESCOO device development

About Objective 1, this thesis work helped Solarinvent with the develop-
ment of a new FREESCOO device. In particular, I focused on modeling
and analysis of the compact cooled adsorption heat exchanger, that is the
core component of the device. The main activities carried out were:

• develop numerical simulation models to address the theoretical per-



10 1| Introduction

formance of the heat exchanger;

• carry out experiments on the heat exchanger to asses the real perfor-
mance and validate the numerical model;

• develop a reduced order model for FREESCOO heat exchanger that
can be used for optimization purposes to improve FREESCOO con-
trol.

1.3.2. MPC comparison and assessment

About Objective 2, this work tries to partially fill the literature gap by
applying a number of MPC optimal control problem formulations and op-
timization solvers to a relatively common building HVAC system as case
study. The idea is to focus on two issues that could cover a broad range
of HVAC systems: 1) nonlinearity arising from the estimation of the heat
pump COP and 2) binary on-off physical control inputs for distribution
circuit valves. Then as an emission system a floor heating system wil
considered. As mentioned in 1.1.2 floor heating systems are beneficial to
increase energy efficiency of the HVAC system. However they can suffer
from high thermal inertia and applying a MPC to mitigate the impact of
floor heating on thermal comfort. This HVAC configuration is present in a
lot of hydronic systems in Europe and the methodology applied to a spe-
cific case study could be extended to similar ones (boiler instead of heat
pump, radiators instead of floor heating).

Depending on the approach to model these two issues, the resulting op-
timization problem formulation can be a QP, Non linear Programming
(NLP), or MINLP. Each formulation encompasses a trade-off between ac-
curacy in the prediction, robustness to find an optimal solution, and com-
putational requirements. With these issues in mind, the goals are:

• show all the challenges faced using different modelling approaches;
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• understand the benefits of increased prediction accuracy from increased
model complexity and compare with the resulting losses in robustness
and added computational requirements;

• survey available optimization solvers of each problem formulation, es-
pecially novel MINLP specific solvers, on a typical building HVAC
optimal control problem;

• deduce which approach is more suitable in terms of Key Performance
Indicators (KPI) and detailed time series analysis.

1.3.3. Rule based controller parameter extrapolation

the objective is to find useful parameters to implement in the respective
micro controllers using the output of the best MPC formulation and the
parametric optimization on the reduced order model for FREESCOO :

• An important characteristic of standard floor heating systems is the
high thermal inertia which causes a delay between the heat supply and
the response in the internal air temperature. For concrete core radiant
floors this has been estimated to be 1 to 3 hours [45].This slow response
can create underheating or overheating issues and consequent discom-
fort and/or waste of energy. The optimal control trajectory found by
the MPC algorithm will take into account the disturbances forecasts
and buildings dynamics to avoid both underheating and overheating.
The objective will be to extrapolate useful parameters from the MPC
optimal control trajectory to increase the comfort conditions, while
keeping a similar energy input and cost;

• FREESCOO is a transient device, where the heat exchanger runs an
adsorption phase followed by a regeneration phase. To guarantee a
continuos operation two heat exchangers are present. The phases
timings affect the average power output of the system. In general
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a higher regeneration time, keeping fixed the adsorption time leads
to an increase in average power output at the cost of lower thermal
COPs. Vice versa a shorter regeneration cycle leads to lower aver-
age power outputs at the benefit of increased thermal COP. The ideal
scenario is to increase the energy performance while keeping comfort.
This means matching the cooling demand from the building with the
average power output of the DEC system. Therefore the work will
focus on tuning FREESCOO cycle times.
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2| General framework

2.1. Framework description

Starting from the objectives stated in Section 1.3, the overall framework
of the thesis work can be summarized in Figure 2.1.

Figure 2.1: General framework of the thesis. Detailed modelling of the building and HVAC
components, optimal control and parameter optimization, Heuristic rule based controller
definition. Solid lines correspond to physical connection (i.e. HVAC components to
building), dashed lines correspond to digital signals exchange

The diagram showed in Figure 2.1 is quite complex and in the bullet points
below each element was addressed.
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• The first element is the reference apartment model to be used for the
whole analysis. This thesis work will consider a residential case study
since one of the objectives is to improve existing micro controllers
using the results of predictive control. The choice of an apartment
instead of a terrace was mostly due to reasoning that district heating
systems are present mostly in urban areas and serve condos.

• The second elements are the emission systems. For heating, a floor
heating system was chosen over a radiator because it can be more prob-
lematic in terms of achieving comfort and control. However, needing
a lower supply temperatures to work properly it makes it easier to
integrate with low temperature district heating, renewables and heat
pumps. Furthermore, the reference MPC formulation obtained at the
end of Chapter 5 can be used also if dealing with a radiator system.
For cooling, one of the objective of the thesis is to develop a novel
compact DEC system so the emission system considered is air based.

• The third elements are the generation systems. For heating an heat
pump was used to carry out the MPC formulation study because of
the increased complexity in the optimization function given by taking
into account the heat pump COP. Furthermore, the MPC formulation
found can be extended to a district heating by changing the electricity
price with the district price and putting the COP ≃ 1. In the same
way it could be extended to a case study with a boiler by switching the
COP for the boiler efficiency η. In regards to cooling the generation
system used is the novel DEC system FREESCOO coupled with low
temperature district heating for the regeneration process.

• The fourth element is the chosen HVAC optimization method to re-
duce consumption, improve comfort and unlock building flexibility
potential. Core elements of the optimization are the reduced order
models of the envelope and HVAC considered, the solver and the post
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processing algorithm that interfaces with the detailed reference apart-
ment model or with an apartment existing in a real building. For the
heating case, the objective of the thesis is to compare several MPC
formulations coupled with different solvers, find the most suitable one
that can be generalized to similar HVAC systems. Then find a way to
indirectly use these results to find key parameter to improve on the
reference apartment baseline controller.

For the cooling case the objective is to optimize FREESCOO key con-
trol parameters, namely the cycle phase times, to adjust the power
output with respect to the demand and maximize he thermal COP.
Applying the same MPC real time methodology would be very im-
practical due to the extremely nonlinear, transient and integer (on-
off) behaviour of FREESCO meaning that the results found would
be far from a theoretical global optimum. Instead by using the re-
duced order model of the FREESCOO heat exchanger, for the sake
of computational time, it is more robust to directly carry out a pa-
rameter optimization of the cycle phases times parameters used in the
FREESCOO device.

• The last element is the assessment of the performance for the Heuristic
Rule Based controller in both heating and cooling scenarios, once the
parameters are determined to assess the performance improvement
with respect to the baseline controllers.

2.2. Simulation and optimization tools

To carry out all the objectives shown in 2.1 careful considerations were
done to assess the best tools to be used in this PhD thesis and that could
be also easily extended to different case studies. The requirements and the
solution found are summarized in Figure 2.2
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Figure 2.2: Summary of simulation and optimization tools assessment in terms of require-
ments and solution identified

The first requirement is that to extend the results of the PhD thesis to
different case studies the simulation tool should allow models to be mod-
ular, easily expandable and customizable. However, the level of detail of
the envelope and HVAC modelling should be similar to the state of the
art modelling software such as E+ [46], TRNSYS and IES – VE [47] [48].
Furthermore, the development and integration of custom models, like for
the FREESCOO device heat exchanger, should be as straightforward as
possible. Both E+ and IES-VE do not satisfy this first requirement, since
the development and integration of custom components is not straight-
forward. TRNSYS allows a more streamline process to develop custom
components called "types", however modifying existing models is not easy
if not impossible such as for the building model Type56b, which for all
intents and purposes can be considered a black box for the user. Further-
more, in all this cases the physical and the numerical simulation models
coincide, meaning that the modeller does not just have to write the math-
ematical equations describing the physical process under analysis, but also
the numerical approach used to solve those equations. In this way if a
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different or new solution algorithm has to be tried, the whole model needs
to be rewritten. This leaves room for more errors, fragmentation of the
same model and more difficulty in implementing faster and more efficient
computational algorithms (i.e. parallelizzation, multi rate solvers). The so-
lution I identified to this problem is the use of object oriented programming
for the handling of cyberphysical systems coupled with symbolic acausal
modelling because it allows to solve both problems at the same time [49].
Firstly by having an object oriented language, different instances of the
same component (i.e. heat pumps) can be derived from a single reference
object making the whole modelling process more robust. Then with the
use of acasual and symbolic modelling the user needs to write only the
system of equations making up the physical object that has to be modelled
[49]. Then the compiler with the user preference will convert the overall
system of equations into its numerical form using different solvers to find
the solution. Among the programming languages implementing this logic
the most successful to date is the Modelica programming language [50],
which implements all the aforementioned features, namely object orienta-
tion, acasual and symbolic modelling. Then, most Modelica tools allow
to use the same models to be used for parameter optimization by leverag-
ing symbolic manipulation and calculating explicit Jacobians, useful in the
Newthon’s method for the calculation of the global optimum. For the cool-
ing case the optimization was carried out using the native interior point
optimizer for parameter optimization of Dymola. Dymola is a commercial
modeling and simulation environment based on the Modelica language.
Lastly, a large open source community using Modelica in the building sec-
tor lead to the development of several Building and HVAC libraries such
as the IBPSA Modelica library [51], the Buildings [52] and the IDEAS [53].
The core components of these libraries will be used in the development on
the case study models for the reference apartment. I actively participated
in the development of some IBPSA models, in particular I developed the
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test suite for the weather BESTEST comparing the weather simulation
performance of several building simulation software [54].

The second requirement is that several MPC formulations and optimization
solvers have to be tested. Therefore the tool used has to be able to easily
couple different solvers to the optimization problem definition. Further-
more, since several formulations need to be implemented the tool should
allow to easily switch between them with minimal changes to guarantee
the robustness of the approach, and than to possibly expand the formula-
tions to different case studies. Several tools are available, however the two
most commonly used up to date are CasaDi [55] and Pyomo [56]. Both
allow to use the standard solver interface AMPL [57], which allows inter-
face the most common solvers. The main differences between CasaDi and
Pyomo are that, the first is implemented with C++ and only recently a
Python interface has been released making it easier to use and co-simulate
with other simulation software. Pyomo instead is natively developed as a
Python interface, furthermore it is structured as an object oriented tool
where each optimization problem can be characterized as an object making
it easier and more robust to apply changes to test different formulations
of the same problem. For this reason Pyomo was chosen to carry out the
MPC formulations comparisons.

The tested solvers are SCIP [58], Baron [59], Bonmin [37] for the MINLP
problem class. These MINLP solvers are among the best performers ac-
cording to [60], which analyzed their performance on a set of 335 convex
MINLP problems and included both open source and commercial solvers.
IPOPT [61] is among the most used NLP solvers and so it was chosen for
the NLP and QP problems.

The last requirement is that the reference apartment developed in Modelica
and the MPC formulations developed in Pyomo have to be coupled in a
co-simulation environment. For this purpose, the tool used must take the
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Modelica models developed and easily interface them with the optimal
control algorithms in terms of input-output. Furthermore it should also
provide consistent boundary conditions forecasts for the optimization and a
result analysis in terms of Key Performance Indicators (KPI). The software
BOPTEST [62], that I helped beta test during a one year exchange period,
responds to all this requirements by wrapping the Modelica models into
an Application Programming Interface (API) that can be easily coupled
via a Python script. Furthermore, it provides as output a standard subset
of KPIs, including thermal discomfort, energy consumption, cost of the
energy and computational time ratio. In this way, it will be possible to
consistently compare all the MPC formulations on the same emulator and
highlight the pros and cons of each approach.A more detailed explanation
of the co-simulation is given in Section 5.3.

2.3. Case study selection

Starting with the building envelope model, the chosen case study is a two
room apartment in the south of Milan. It is part of the European Climate-
KIC co-financed project Merezzate+. It was chosen for the availability
of monitored data for the validation of the building fabric model and for
the availability of a cloud communication infrastructure that allow in fu-
ture works to implement this thesis results in some test apartments micro
controllers. Furthermore, a low temperature 4th generation district heat-
ing and FREESCOO are also part of the project and the final iteration
of the FREESCOO device is installed in some of the apartments. The
low temperature 4th district helps increasing the overall efficiency of the
district [63] by reducing distribution losses and pumping costs of the net-
work for the same energy supplied, FREESCOO is designed to work with
such temperatures. Differently from the actual Merezzate+ case study, the
thesis case study scenario employs an heat pump as generation system for
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heating to carry out the MPC comparison analysis. The reason is that
heat pumps are more complex than a district heating, since the heat pump
COP is a complex function of partial load and external and supply tem-
peratures, providing a wider range of MPC formulations as explained in
the previous section. Furthermore, the results and conclusion can be easily
extended to the case study with only the district heating. So in Figure
2.4 is shown the HVAC scheme for the MPC formulation analysis in the
heating scenario. A summary of the building district, the apartment and
the generation technologies employed is given in Figure 2.3.

Figure 2.3: Merezzate+ district summary, on the left a render of the district, on the right
a summary of Milan weather, apartment consumption and HVAC
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Figure 2.4: Two room apartment HVAC scheme for MPC analysis in heating operation
mode

Despite its simplicity, the case study includes the most common HVAC
hydronic system components, thus allowing the authors to apply several
optimal control models leading to different problem classes to be solved:
QP, NLP and MINLP.

The detailed emulator model for the apartment and the HVAC system
was developed in Modelica using the IBPSA 3.0 (master branch commit
8a0d2372) [51], Buildings 8.0 (master branch commit 69bb7cf6) [52] and
IDEAS 2.1 (master branch commit 5c8f4a93) [53] libraries.

For the cooling case study instead, FREESCOO is used as air conditioner
coupled with the District Heating (DH) for the regeneration as shown in
2.5.
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Figure 2.5: Two room apartment HVAC scheme for FREESCOO analysis in cooling and
dehumidification operation mode

In this case the same Modelica libraries Buildings and IBPSA based enve-
lope model was used. Furthermore, a Modelica library named FREESCOO
was developed throughout the PhD work that includes, a 2-D model of the
FREESCOO heat exchanger, a reduced order model for parameter opti-
mization and a model of the whole FREESCOO device.
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In this chapter the case study of the PhD thesis is layed out in detail. Sec-
tion 3.1 reports the apartment envelope in terms of description, simulation
modelling and calibration. Then the HVAC system used for the heating
case study the heating and cooling cases studied are explained more in
detail.

3.1. Envelope model

The envelope model is described first in terms of physical and geometrical
properties in Sub section 3.1.1. Then in terms of boundary conditions
taken from the Milan typical year weather in Sub section 3.1.2,occupational
schedules and internal gains. Finally a brief showcase of the Modelica
Buildings implementation is shown including a calibration process carried
out from experimental data obtained in Merezzate in Sub section 3.1.3.

3.1.1. Physical and geometrical properties

In Figure 3.1, a schematic of the apartment is presented. In general the
apartment can be considered a well insulated heavy construction. A brief
summary of the physical and geometrical properties is given in Table 3.10.
For a more detailed showcase, the properties of each wall highlighted in
the figure are shown in Table 3.1 for the external wall, 3.2 for the inter-
nal partitions, 3.3 for the elevator separator, 3.5 for the ceiling and 3.6
for the floor properties. All the layers are defined from the external sur-
face to the internal surface. For the nomenclature,N is the layer position,
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Figure 3.1: Case study apartment scheme

x(m) is the thickness of the layer, Description stands for the material type,
k(W/m/K) is the thermal conductivity, c(J/kgK) is the specific heat ca-
pacity, d(kg/m3) is the density, absIR and absSol are the long wave and
short wave absorption coefficients respectively.

Table 3.1: External wall properties

N Description x (m)
k

(W/(mK))
c

(J/kgK)
d

(kg/m3)
absIR

(-)
absSol

(-)

1
Exterior
plaster

0.005 0.3 840 1300 0.9 0.6

2

EPS 120
thermal

insulation
panel

0.1 0.034 1250 23 - -

3
Masonry

brick
0.3 0.207 840 750 - -

4
Gypsum
plaster

0.02 0.57 1000 1300 0.9 0.6
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Table 3.2: Internal partition properties

N Description x (m)
k

(W/(mK))
c

(J/kgK)
d

(kg/m3)
absIR

(-)
absSol

(-)

1
Gyproc
Duragyp

panel
0.0125 0.25 1000 1025 0.9 0.6

2
Plasterboard

panel
0.0125 0.25 1000 710 - -

3
Glass wool
insulation

panel
0.07 0.04 840 40 - -

4
Plasterboard

panel
0.0125 0.25 1000 710 - -

5
Gyproc
Duragyp

panel
0.0125 0.25 1000 1025 0.9 0.6

Table 3.3: Elevator shaft partition properties

N Description x (m)
k

(W/(mK))
c

(J/kgK)
d

(kg/m3)
absIR

(-)
absSol

(-)

1
Gypsum
plaster

0.02 0.57 1000 1300 0.9 0.6

2 Concrete 0.3 2.15 880 2400 - -

3
Glass wool
insulation

panel
0.045 0.038 1030 13 - -

4
Plasterboard

panel
0.0125 0.25 1000 710 - -

5
Gyproc
Duragyp

panel
0.0125 0.25 1000 1025 0.9 0.6
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Table 3.4: Apartments separator wall properties

N Description x (m)
k

(W/(mK))
c

(J/kgK)
d

(kg/m3)
absIR

(-)
absSol

(-)

1
Gyproc
Duragyp

panel
0.0125 0.25 1000 1025 0.9 0.6

2
Plasterboard

panel
0.0125 0.25 1000 710 - -

3
Glass wool
insulation

panel
0.07 0.04 840 40 - -

4
Plasterboard

panel
0.0125 0.25 1000 710 - -

5
Glass wool
insulation

panel
0.07 0.04 840 40 - -

6
Plasterboard

panel
0.0125 0.25 1000 710 - -

7
Gyproc
Duragyp

panel
0.0125 0.25 1000 1025 0.9 0.6

Table 3.5: Ceiling properties

N Description x (m)
k

(W/(mK))
c

(J/kgK)
d

(kg/m3)
absIR

(-)
absSol

(-)
1 Ceramic tiles 0.015 1 840 2300 0.9 0.6

2
Concrete
slab with
additive

0.064 1 880 1800 - -

3
Expanded
polystyrene

0.026 0.034 1300 25 - -

4
Isover

fonasoft
0.006 0.113 2100 450 - -

5
Light

substrate
0.105 0.1 1200 400 - -

6
Reinforced

concrete (1%
steel)

0.23 2.3 1000 2300 - -

7
Gypsum and
sand plaster

0.2 0.8 1000 1600 0.9 0.6
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Table 3.6: Floor properties

N Description x (m)
k

(W/(mK))
c

(J/kgK)
d

(kg/m3)
absIR

(-)
absSol

(-)

1
Gypsum and
sand plaster

0.2 0.8 1000 1600 0.9 0.6

2
Reinforced

concrete (1%
steel)

0.23 2.3 1000 2300 - -

3
Light

substrate
0.105 0.1 1200 400 - -

4
Isover

fonasoft
0.006 0.113 2100 450 - -

5
Expanded
polystyrene

0.026 0.034 1300 25 - -

6
Concrete
slab with
additive

0.064 1 880 1800 - -

7 Ceramic tiles 0.015 1 840 2300 0.9 0.6

For the glazing systems there is one window in each room. They are two
double panel windows and a detailed description of glazing system proper-
ties are reported in Tables 3.7 and 3.8.

Table 3.7: Glazing systems dimensions

Thermal
zone

height (m) length (m)

Living room 2.35 2.5
Bedroom 2.35 1.6

Table 3.8: Glazing systems optical properties

N Descriptionx (m) k
(W/mK)

tauSol
(-)

rhoSol
(-)

tauIR
(-)

absIR
(-)

1 Glass 0.003 1 0.6 0.075 0 0.84
2 Air 0.013 - 0.6 - - -
3 Glass 0.003 1 0.6 0.075 0 0.84

Lastly the floor heating system needs to be characterized. The active
layer of the floor heating is N = 4 in the floor stratigraphy in Table 3.6,
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meaning that it is placed under a concrete layer and can be considered a
high mass floor heating system. Two heating circuits per room are present,
the properties of the circuit pipes are shown in Table 3.9.

Table 3.9: Floor heating pipes properties

Name Value
Outer Diameter (m) 0.017
Inner Diameter (m) 0.015
Roughness (m) 7E-06
Density (kg/m3) 983
Thermal conductivity
(W/mK)

0.4

Circuit pipe distance
(m)

0.1

3.1.2. Boundary conditions

In this section are reported the boundary conditions used for the simula-
tions carried out in most of the heating and cooling scenarios. In terms
of weather a typical year, TMY3, in Milan was considered.In Figures 3.2,
3.3 and 3.4 of the typical year, Milan can be considered a continental tem-
perate humid climate. The maximum TDryBulb is 32 (°C), the minimum is
-7.4 (°C) and the average 11.7 (°C).

The other boundary conditions, including occupation, setpoint schedules
for heating and cooling, sensible heat gains and latent heat gains consid-
ered are summarized in Table 3.10, The setpoint and occupation profile
come from the hypothesis of a two working people that go to work during
the week from 8 a,m, to 20 p.m and stay at home during the weekend.
The internal gains were obtained from the ASHRAE standard 90.1 for low
consumption buildings and the UNI/TS-11300-1:2014.
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Figure 3.2: Dry bulb temperature yearly frequency for Milan typical year weather data

Table 3.10: Apartment properties

Total surface 44.5 (m2)
Total Volume 30.3 (m3)

Total window area 8 (m2)
External surface area to volume ratio 0.25 (1/m)

Average external transmittance 0.46 (W/(m2/K))
heat pump nominal capacity 5 (kW)

Occupation period from 20 p.m. to 8 a.m. for weekdays
and occupied during the weekends

Heating setpoint 21 (°C) Setpoint and 18 (°C) Setback
Cooling setpoint 26 (°C) Setpoint and 28 (°C) Setback

Total sensible loads 300 (W) when occupied
Total latent loads 80 (W) when occupied
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Figure 3.3: Global horizontal radiation yearly frequency for Milan typical year weather
data
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Figure 3.4: Humidity ratio yearly frequency for Milan typical year weather data

3.1.3. Detailed model and calibration

From the available properties and boundary conditions a suitable two ther-
mal zone model was developed using the Modelica Buildings library, a
screenshot of the Buildings Modelica envelope model is shown in Figure
3.5.
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Figure 3.5: Two room apartment modelled using the Modelica Buildings library.On the
left the weather data reader (yellow lines connect the boundaries to the thermal zones)
and on the right the two thermal zones coupled with both a thermal connection between
the shared wall (red line) and an aeraulic connection through the air exchange model
(blue lines).

For more details on the modelling principles behind the Thermal zone
model for the Buildings library the reader can check [64]. The floor heating
model instead comes from TRNSYS 17 model [47]. The two zone apart-
ment model was calibrated and validated using experimental data coming
from a two week free-floating experiment carried out between August and
September 2020 in a two room apartment belonging to the Merezzate+
project. The weather data for the boundary condition comes from a local
Arpa Lombardia weather station, and the radiation and cloud coverage
comes from the CNR weather forecast service. The indoor conditions were
measured using a globo thermometer show in Figure 3.6.
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Figure 3.6: Indoor globo thermometer positioned in the center of the living room. The
two pictures are the two sides of the empty living room. The instrument accuracy is ±
0.23 (°C)

The calibration process involved the tuning of four parameters. The over-
hang shading effect that was approximated as a constant shading of 30 %
from the sun entering the room and hitting the exterior wall, the offset
between the local external temperature and the wind speed with respect
to those available from Arpa Lombardia, namely 1.5 (°C) and 0.5 (m/s)
Lastly the infiltration rate which was increased by 10 % with respect to the
nominal value to reach 0,2 (vol/h) with respect to the total apartment vol-
ume of 30.3 m3. The calibration process was carried out using the Dymola
internal model calibration tool. The comparison between the experimental
data and the simulation data for the living room in a validation period,
not considered during the calibration, are shown in Figure 3.7.
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Figure 3.7: Validation simulation of living room mean radiant temperature where the
globo thermometer was positioned. On x-axis the time and on the y-axis the mean
radiant temperature for a week free floating experiment in September. TSIM corresponds
to the simulation temperature and TEXP corresponds to the experimental measurement
done with a globo thermometer. The dashed lines represent a ± 0.5 (°C), that accounts
for all the possible experimental errors including instrument, forecasts and positioning

As shown in the validation figure, the mean radiant temperature in the
simulations follows pretty well the experimental values with Normalized
Mean Square Error (NRMSE) of 2 %.

3.2. Heating HVAC model

For the heating case the thermal zones are connected to an hydronic system
modeled using Modelica as well. In particular the Buildings and IDEAS
libraries have been used. In Figure 3.8 a diagram view of the Modelica
model is shown.
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Figure 3.8: Diagram view of the hydronic circuit model. The blue lines can be imagined
as physical water pipes connections, then zone valves, junctions, temperature and mass
flow rate sensors are also present.

As mentioned in the Introduction an heat pump was considered instead of
the district heating to give more flexibility and generality to the solution
of the MPC comparison.The heat pump model is a dynamic performance
map model taken from the IDEAS library with the default performance
map and nominal power of 5 (kW). The reference heat pump is a Daikin
Altherma and the performance map is shown in Figure 3.9,
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Figure 3.9: Daikin Altherma performance map. on x-axis the external temperature, on
y-axis the supply temperature. The color indicates the value of the COP

The pump is an ideal constant head pump that provides the nominal flow
rate to each thermal zone when on, that is, 1240 (l/h) for each thermal zone
according to the design values from the apartment drawings. The circuit
valves for the floor heating zone were modeled after the two-way valves
of Modelica Buildings. They can be considered on/off valves without flow
modulation capabilities. In the hydronic circuit are present temperature
sensors, thermometer symbol, and mass flow rate sensors, clock symbol,
also taken from the Modelica Buildings. Lastly, the junctions and pipes are
all considered adiabatic, and the models come from the Modelica Buildings
library. The supply and return ports are connected to the fluid terminals
of the floor heating in their respective thermal zones.

3.3. Cooling HVAC model

For the cooling case the thermal zones air fluid nodes are connected to the
FREESCOO device. In 3.10, a Modelica diagram view of the FREESCOO
device is shown. The highlights are the two heat exchangers described be-
low. The prehumidifier for the evaporative cooling side and the rehumidifier
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to bring the air at the outlet of the adsorption to nominal conditions of RH,
that is, around 60%. The last elements are the air to water heat exchanger
to warm the external air used for regeneration and the hot water coming
from the district heating system modeled as a constant heat source at 60
(°C) since we are dealing with a 4th generation district heating. The two
heat exchanger models are explained in detail in Chapter 4, while all the
other elements are taken from the Modelica Buildings library.

Figure 3.10: Diagram view of the FREESCOO device that includes the two heat exchang-
ers, the humidifier for the evaporation side, the rehumidifier to reach temperature and
humidity setpoints after the adsorption phase and the air to water heat exchanger for
regeneration purposes
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optimization

This Chapter showcases the work carried out in the development of the
latest version of the FREESCOO device with a particular focus on the
indirectly evaporative cooled heat exchanger. Section 4.1 explains the gen-
eral working principle of the FREESCOO device and heat exchanger in
detail. Section 4.2 presents the experimental studies carried out by me
in collaboration with Solarinvent and the ReLab research facility. Section
4.3 shows the post processing and analysis of the experimental data, ad-
dressing the found issues. Section 4.4 presents the physical modeling of the
FREESCOO heat exchanger and the development of a custom Modelica li-
brary, "FREESCOO2D". Section 4.5 shows the calibration and validation
of the FREEESCOO 2-D heat exchanger model based on the experimental
results. Section 4.6 shows the development of a reduced order model of
FREESCOO using the simulation output of the detailed 2D model. Fi-
nally in Section 4.7 the reduced order model is used to run a parametric
optimization on the phases times.

4.1. FREESCOO concept

FREESCOO is a DEC system based on a compact fixed bed so that it
can be installed in smaller spaces with respect to traditional rotary DEC
systems like residential apartments. It works both as an air conditioner
and AHU. The core component of FREESCOO is an air to air heat ex-
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changer, where on one side we have supply air flowing on top a silica gel
adsorption bed and on the other process air getting cooled through a direct
evaporation process. Then this air stream will remove the heat generated
by the adsorption process on the other side of the heat exchanger. When
the adsorption bed is saturated the regeneration process is carried out by
process air heated up by an air to water heat exchanger, where the hot
water comes from the district heating. To guarantee a continuous oper-
ation two of these heat exchanger are used sequentially, while one is in
adsorption phase the other one is in regeneration or precooling. In Figure
4.1 a graphical representation of the various processes is shown.

Figure 4.1: 1) blue quadrant shows the adsorption process 2) red quadrant shows the
regeneration process 3) Right diagram shows transformations of the external and process
moist air on a Mollier moist air psychrometric chart

The various phases shown in Figure 4.1 are described below:

Adsorption:

• (0-5) direct evaporative cooling of the process air. The external air
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(0) passes through a sprinkler system that will bring it close to the
wet bulb temperature (5)

• (5-6) heat exchange of the process air with the supply air, while being
kept at wet bulb temperature by the water flow coming from the
sprinklers and dropping in the evaporator channels until the outltet
(6);

• (1-3) mixing of the supply air (1) with the external air (0) for air
change purposes;

• (3-4) adsorption of the supply air moisture content by the fixed bed
of silica gel and simultaneous heat exchange with the process air;

• (4-2) direct evaporative cooling of the supply air to reach the desired
temperature and humidity levels;

Regeneration:

• (0-7) heating of the external air in an air-to-water heat exchanger
(HX). The required energy for this step can come from solar, geother-
mal or waste heat source or as in this case study from a low temper-
ature district heating;

• (7-8) desorption of the moisture trapped in the silica gel bed.

Precooling:

• (0-6) after the regeneration phase, before a new adsorption phase can
start the heat exchanger is cooled down by turning on only the fan
driving the process air.

Starting from the FREESCOO general concept and previous version of the
heat exchanger coupled with solar thermal I contributed in the testing and
evaluating of three new heat exchanger concepts summarized in Figure 4.2.
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Figure 4.2: Freescoo heat exchanger tested concepts

The evaluation was carried through numerical analysis and experimental
campaigns, at Solar Invent for the first concept and at ReLab [65] for the
remaining two.

1. In the first concept the heat exchanger is composed by a series of bent
aluminium plates so that they can be stacked on top of each other,
while leaving enough space for the air to flow and pack the silica gel.
This configuration is adopted because the final device should be as
flat as possible so that it could be potentially be integrated into a
building facade. The nominal dimension of the exchanger is 750 x
300 x 250 (cm) and the FREESCOO system has two heat exchangers
to guarantee a continuous operation. This means that staking too
many plates on top of each other or making them too thick would be
very expensive and make the device impractically heavy. However,
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this lead to a poor heat transfer between the two side because all the
adsorption heat has to transfer by conduction in the smaller section of
the plates. This lead to a pinch point between the potential wet bulb
temperature and supply air that was on average close to the maximum
cooling potential of the external air given normal summer conditions
in Milan.

2. The first concept was abandoned in favour of a series of polyethylene
panels sandwiched together. The plastic heat exchanger solved most
of the problems of the previous iteration making it cheaper, lighter
and with a much better heat transfer capacity. However, the silica gel
was tightly packed in between the sandwich panels at the point that
the heat exchanger on the supply air side would behave as a porous
media. In fact, the measured pressure losses during experiments were
too high at nominal air flow rates considering the average cooling
power at nominal conditions,namely 1500 (W), with an airflow of 500
(kg/h) and pressure drops up to 250 (Pa).

3. The last and final iteration of the heat exchanger is identical to the
second one. However the supply side of the heat of exchanger was
opened, as shown in Figure 4.2, leaving the air enough space to pass
in a cross flow configuration rather than a counter flow one. This lead
to a drastic reduction in pressure losses at nominal condition, while
the heat transfer capabilities were still between acceptable boundaries.

4.2. Experimental campaign

As explained in Section 4.1, I analyzed the last two iteration of the heat
exchanger in the ReLab facility. The experiments were conducted in ReLab
(www.relab.polimi.it) using the two calorimeters shown in Figure 4.3.
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Figure 4.3: ReLab 50 (kW) calorimeters to simulate external and internal environments

The calorimeters and their measurement instrumentation are certified ac-
cording to the EN 17025. All the instrumentation is connected to the con-
trol panel inside the chambers and then the digital signal travels from the
acquisition system to the computer interface on the left. The acquisition
time step of the calorimeter is 2 (s).

In order to the test the heat exchanger an aluminum test rig was developed
and built around the heat exchanger; they are both shown in Figure 4.4.
The purpose of the test rig is to provide all the necessary components that
normally would be present in the final unit, such as the sprayed cold water
for the evaporative cooling, the air-to-water heat exchanger to warm up
the regeneration air and a system of shutters to redirect the air during the
different phases (adsorption and regeneration).
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Figure 4.4: 1) on the left the test rig that contains the heat exchanger the humidifier and
the air to water heat exchanger, 2) in the center the tested air to air heat exchanger, 3)
on the right the test rig attached to the measuring tubes and the two fans

In order to provide the airflow rate and measure it the test rig was con-
nected via flexible air ducts to the fans. Furthermore, measuring tubes
containing temperature, humidity and pressure probes were placed at all
the outlets of the heat exchanger. A schematic of the connections and all
the measurements points is shown in Figure 4.5.
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Figure 4.5: Test rig configuration in the climatic chambers including measurement points
and sensors

There are redundant measurements of humidity and temperature at almost
every inlet and outlet besides for the internal chamber inlet. For the water
uptake estimation (the amount of water adsorbed by the silica gel bed),
the measurements needed are the air mass flow rate, the inlet and outlet
humidity ratios and the heat exchanger internal temperatures. There is a
total of nine thermal resistors inside the heat exchanger placed along the
height of the heat exchanger and along the flow direction, in Figure 4.6 a
drawing of the position for each thermal resistor is shown.
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Figure 4.6: Thermal resistances positions inside the heat exchanger, view is from a cross
section of the heat exchanger as highlighted by inlets and outlets

The thermal resistances are placed along the x and y direction, while with
respect to z they are placed around the center of the heat exchanger since
we assume that the flow distribution will be equal along the z direction.
Furthermore, they are not all on the same plate to avoid disturbing too
much the air flow. They are glued on the internal surface of the heat
exchanger between the heat exchanger and the silica gel pad.

In Table 4.1 is reported a brief list of all the measurement instruments
needed for the water uptake estimation, in terms of variable measured,
accuracy and response time.
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Table 4.1: Sensors summary

brand Measure Accuracy Response time

Thermal PT100 T (°C) ±(0.15 + 0.002T ) (°C) < 10 (s)with air
flow 1 (m/s)

Capacitive
hygrometer

EE31 RH (%) ±(1.4 + 0.01mv) (%) <15 (s) with air
flow 1 (m/s) and
constant T

chilled mirror OptiDew T (°C) ±0.2 (°C) 1 (°C/s)
chilled mirror S800 T (°C) ±0.1 (°C) 1 (°C/s)
Thermal flux
meter

Proline t-65 ṁ(kg/s) ±1.5(%) <30 (s)

A summary of the experimental campaign is reported in the bullet points
below:

• around 100 tests for the second heat exchanger and 150 for the third
one were conducted. That corresponds to 28 complete cycles for the
second heat exchanger and around 43 cycles for the third heat ex-
changer. Each cycle condition was repeated at least three times to
minimize the influence of the previous cycles since the FREESCOO
system is always in transient condition.

• 3 external conditions to simulate late spring early autumn and summer
Twetbulb = 20, 23, 26(◦C) and Tdrybulb = 28, 30(◦C)

• 3 room conditions Troom = 24, 26, 30(◦C) and RH = 60(%) to simulate
2 comfort condition and a ventilation scenario (all supply air is taken
from external environment)

• 12 combinations of flow Q̇flow = 40, 60, 80, 100(%) of nominal value
550 (kg/h) for ADS and RIG, 360 (kg/h) for EVA

• 3 cycle times for Adsorption (ADS), Regeneration (REG) = 40, 30, 18(min)
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4.3. Data analysis

All the data was post processed using Matlab and Python scripts. Addi-
tional variables were also calculated starting from the available measures
such as humidity ratios x(kgw/kgda) and enthalpies h(kJ/kg) using the
moist air equations available on the ASHRAE handbook [66]. For the
uncertainty analysis of derived measurements the uncertainty was calcu-
lated as follows. Assuming that z (final quantity that we want to esti-
mate) is a function of n quantities x1, x2, ..., xn or written in the form
z = z(x1, x2, ..., xn), the uncertainty of z, that we can call uc can be es-
timated according to the uncertainty propagation principle. Under the
assumption that x1, x2, ..., xn are not correlated between each other uc can
be calculated according to Equation 4.1.

u2c =
n∑

i=1

(
∂z

∂xi
)2u2(xi) (4.1)

The partial derivatives of z with respect to x1, x2, ..., xn represent the sensi-
tivity coefficients that have to be calculated in the operating point for each
xi, while ux1, ux2, ...., uxn are the uncertainties related to x1, x2, ..., xn.
Furthermore, under the assumption that ux1, ux2, ...., uxn are random er-
rors that follow a t-student distribution, the sample size N>60 for station-
ary measurements, while for the dynamic measurements we have just one
sample every 2 (s), considering the time constants of the sensor we could
say that we can take a point ever 10 (s) leading to N=5 and we want a 95
% chance that the real value of z will lie between the mean value of z and
its error band we can estimate the extended uncertainty value Uc = kuc,
where k will be k = 2 for N > 60 and k = 12.706 for N = 1.

From a first analysis of the data and the experimental setup few things
were noticed:



50 4| FREESCOO design and optimization

• the thermocouple at the inlet of the adsorption bed gives a slightly
higher value with respect to the PT100 used at the entrance of the
flexible tube. from spot measurements it does not seem that the air
stream heats up while going through the flexible tube (it’s insulated).
So the sensor measurement was disregarded;

• the thermal resistors used for measuring the internal heat exchanger
temperature were glued between the plastic and the silica gel layer.
This probably affected their deformation capacity, affecting the change
in the resistance value due to temperature changes. So these measures
are to be considered mostly qualitative;

• chilled mirrors are preferred to capacitive hygrometers for humidity
measurements thanks to their higher precision. Furthermore, the ther-
mal inertia of the measuring tube and the sensor metal tip impacted
T and consequently also RH.

In order to use the data to validate the model a study to evaluate the
measurement delay was conducted. In Figure 4.7 all the measuring tubes
previously attached to the test rig were connected to each other. Looking
at the scheme the x-axis coordinate shows the position with respect to the
tube inlet. The designation “xN” tells how many instruments of the same
type are present in the same tube section. The tubes are numbered 1 to 4
from the inlet of the first tube.
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Figure 4.7: 1) the top figure is reported a picture of the experimental setup, 2) the
bottom figure is a scheme with all the measurement points and sensors the xN indicates
the number of that specific instrument.

The climatic chambers are also provided with an absolute barometer used
to adjust for ambient pressure together with the differential pressure sen-
sors. The experiments were designed as a series of step changes between
the conditions of the two rooms. As shown in Figure 4.7, the experimental
setup is installed in climatic Chamber 2. There is a small aperture be-
tween the two chambers where the end of the flexible channel can tightly
fit. Two lab technicians were able to move the flexible end of the tube from
one measuring point in a chamber to the other in around 1 second, while
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also sealing or opening the aperture between the two climatic chambers,
the fan would suck air inside the duct until a steady state is reached. A to-
tal of twelve step change experiments were conducted considering different
relative humidity, temperatures, and flow rate as shown in Table 4.2:

Table 4.2: Sensors delay experiments, 1 and 2 indicate Room 1 and 2 as in Figure 4.7

Name T2 (°C) RH1(%) T1 (°C) RH2(%) ṁ (kg/h)

A (1→2) 20± 0.2 60± 3 20± 0.5 20± 1.5 100± 2

B (2→1) 20± 0.2 60± 3 20± 0.5 20± 1.5 100± 2

C (1→2) 20± 0.2 60± 1.5 20± 0.5 20± 1.5 360± 6

D (2→1) 20± 0.2 60± 1.5 20± 0.5 20± 1.5 360± 6

E (1→2) 20± 0.2 60± 1.5 20± 0.5 20± 1.5 550± 8

F (2→1) 20± 0.2 60± 1.5 20± 0.5 20± 1.5 550± 8

G (1→2) 20± 0.2 20± 1.5 20± 0.5 20± 1.5 130± 2.2

H (2→1) 20± 0.2 20± 1.5 30± 0.5 20± 1.5 100± 2

I (1→2) 20± 0.2 20± 1.5 30± 0.5 20± 1.5 550± 8

L (2→1) 20± 0.2 20± 1.5 30± 0.5 20± 1.5 550± 8

M (1→2) 20± 0.2 20± 1.5 30± 0.5 20± 1.5 360± 6

N (2→1) 20± 0.2 20± 1.5 30± 0.5 20± 1.5 360± 6

The first column indicates the name of the experiment which corresponds to
the capital letter, while i → j corresponds to the direction of the step, the
tube is moved from chamber i to chamber j. The variable values inside the
tables are the mean value of the variable ± two times the standard deviation
for each experiment. Starting from these experimental data an inverted
feedback loop transfer function model, in Figure 4.8, was developed to
reconstruct the delayed signals. For a detailed explanation of the modelling
process I published the results in the manuscript [67], attached to the thesis
in Appendix B, furthermore the figures present in this chapter also come
from the manuscript.
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Figure 4.8: Scheme of the inverted transfer function for signal reconstruction, G is the
transfer function emulating the behaviour of the sensor and G∗ is the inverted transfer
function to reconstruct the signal

u∗(t) corresponds to the measure read by the sensor, y∗(t) is the output of
the feedback loop and corresponds to the reconstructed signal u(t) and G∗

corresponds to the inverted transfer function. In Figure 4.9 is shown the
output of the sensor model G vs experimental data and then the output
of the inverted model G∗.

Figure 4.9: 1) on the left the sensor model that mimics the delayed signal, 2) on the right
the reconstructed signal starting from delayed data.

The inverse model can accurately reconstruct the original data for the step
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change. However, it does introduce some small nonphysical oscillations in
the humidity signal due to noise amplification, which can be filtered out
with a noise rejecting filter such as a moving average or a Savitzky-Golay
filter [68]. Despite the noise introduced the NRMSE for both experiments
are below the sensor tolerance being 0.9 (%) for experiment C and 1.4 (%)
for experiment D. It is also interesting to notice at 255 (s) for experiment
C and 235 (s) for experiment D the fact that if the sensor input presents
some small noise, it will be amplified by the inverse model. This further
confirms the necessity to properly pre-process the data before applying the
inverse model and apply the noise rejection filter afterwards. To show the
capability of the modelling approach let’s consider a synthetic humidity
profile:

RH = 20sin(
π

60
t) + 40±N (0, 4) (%) (4.2)

Where RH is the real relative humidity, t is the time in seconds and N is
a white noise that adds ±2 (%) on the variability of the actual value.

Figure 4.10: 1) On the left the signal reconstruction without filtering, 2) On the right the
reconstructed signal with a Savitzky-Golay filter applied

The figure above shows the importance of filtering the data and also the
choice of the feedback gain K, where a trade off between reconstructing
the signal and sensitivity to measure uncertainty has to be done. In fact
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In this case the RMSE for K = 10 becomes 3.4 (%), 1.06 (%) for K = 40
and 9.6 for K = 1000. The experimental data used for the validation and
calibration of the FREESCOO model were all post processed trying to find
a suitable profile reconstruction.

4.4. FREESCOO 2-D heat exchanger model

Beside the experimental campaign also a 2-D model of the final iteration
of the heat exchanger and then of the whole FREESCOO model were
developed and included in a custom Modelica Library "FREESCOO2D",
that will be published on Github. The reason is to use it to run monthly
simulations for the whole cooling season estimating the performance of the
device in the two room apartment case study. The model should be able to
represent the useful heat rate of the heat exchanger (ADS heat rate) and
the bed dynamics, meaning how much time does it take to fill the silica
gel bed with moisture and then how much time does it take to regenerate
it. The first step is to verify the cross flow and porous media hypothesis.
In order to do so a 3-D Computational Fluid Dynamics (CFD) model of
one of the heat exchanger plates and the metal casing was done using the
software Fluent ®. In Figure 4.11 a screenshot of the velocity contours in
Fluent are shown.
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Figure 4.11: 3-D CFD model of plate and metal casing for heat exchanger. the air enters
from bottom right and goes out from top left.

The heat exchanger was modelled as a porous media where the viscous
resistances were found using as inputs the experimental data where the air
flow and pressure losses for the Ergun equation [69]. The temperature was
considered constant at 40 (°C), so only forced flow dynamics were modelled
with no heat transfer. Then a grid analysis study was conducted to check
that the solution will be invartiant with respect to grid size as shown in
Figure 4.12.

Figure 4.12: 1) maximum speed at outlet of mesh, 2) average speed at the outlet 3)
absolute pressure outlet.

Then a simulation was run verifying that residuals (< 10−6), continuity
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(< 10−4) and mass balance (< 10−8) had reasonable values. A 2-D velocity
profile of the plane cutting the middle section was extracted from Fluent
and post processed in Matlab. In Figure 4.13 is shown the the velocity
profile inside the heat exchanger at the nominal flow rate conditions for
the device 550 (kg/h).

Figure 4.13: velocity profile inside the mid section of the heat exchanger (evaporator air
flow top to bottom and adsoprtion flow left to right).

Looking at the figure above it shows that the vertical component of the
velocity is smaller than the horizontal one meaning that the heat exchanger
will work almost in a cross flow configuration. Under the assumption that
the fluidodynamics are decoupled from the thermodynamics happening in-
side the heat exchanger the velocity profile could be used as input for the
thermal 2-D model of FREESCOO.

The 2-D model of the FREESCOO heat exchanger was developed using
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Modelica so that it could be used together with the two room apartment
model. A specific library called "FREESCOO2D" was developed making
it compatible with the fluid models available in the IBPSA and Buildings
libraries. The following hypothesis were used in the development of the
model:

• the heat transfer, temperature and velocity distribution across the
plates is considered uniform. So only one plate was modelled;

• the heat exchanger is cross flow, no vertical fluxes were assumed along
the vertical axis for the adsorption side;

• there is a continuos stream of water recirculating inside the evaporator
kept at the outlet EVA air wetbulb temperature that allows the air to
remain around the wetbulb temperature and also contributes to the
sensible heat exchange;

• the thermal symmetry is not done considering the half plates because
the silica gel is glued only on one side of the plate. So the control
volume was taken as a full polyethylene panel plus the the space be-
tween two panels that makes the adsorption side and their surfaces
were considered connected for the plate to plate conduction. In Fig-
ure 4.15 a visual representation shows the two sides and how they are
connected.

Below is reported a description of all the components.

FREESCOO heat exchanger
The heat exchanger is modelled as a finite volumes 2-D component that
divides the area in which EVA and ADS airflows exchange heat in a grid of
‘m x n’ elements, where m is the number of nodes in the horizontal or x axis
(flow direction of adsorption) and n is the number of nodes in the vertical
or y axis (flow direction of evaporator). It has an inlet and outlet for both
EVA and ADS sides. The mass flow rate profiles inside are determined by
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a matrix of digital inputs, ADS and EVA have respectively one input for
the velocity on the x-axis and the y-axis. Lastly two heatports to access
the internal temperatures of the heat exchanger are available, a schematic
of the heat exchanger and its internal diagram view are reported in Figure
4.14.
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Figure 4.14: 1) on the left FREESCOO heat exchanger 2-D model wrapper 2)
FREESCOO 2-D model diagram view. This image shows all the components that are
explained throughout the section. As a brief introduction on the top left there is the
evaporator side made up of the control volumes, convection and plate models. In the
middle the conduction model and in the bottom right the adsorption side of the heat
exchanger with air volume, convection and plate models. The light blue lines are fluid
connections (moist air transport equations), the blue lines are are digital exchanged sig-
nals) and the red lines are heat transfer between parts.
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Figure 4.15: Single plate heat transfer connection. Silica gel is present only on one side
of the of the channel, so thermal symmetry is achieved by cutting in half the evaporator
channel. Gin is the trasmittance considering silica gel and plate thickness, while Gout

only considers plate thickness, the total trasmittance Gtot is the equivalent parallel of
Gin and Gout

The components inside the heat exchanger model are:

1. air volumes network, for both EVA and ADS, called ‘airVolNetEva’
and ‘airVolNetAds’, respectively.

2. convection model for the EVA, called ‘convection2DFreescooEva’.

3. convection model for the ADS, called ‘Convection2DFreescooAds’.

4. conduction model between EVA and ADS side for the HX plate, called
‘Conduction2D’.

5. heat exchanger Evaporation plate model, called ‘EvaPlate2D’.

6. heat exchanger Adsorption plate model, called ‘AdsPlate2D’.

Air volumes network model
This component divides the air volume present in the corresponding side
(EVA or ADS) of the HX plate in a m x n grid. In Figure 4.16 are reported
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the icon and diagram view of the air volumes network models.

Figure 4.16: 1) Icon for air volumes model 2) Air volumes model diagram view

As it can be seen in the diagram view, this component has vector flow inlets
(solid blue circles) and outlets (blue border and white interior circles) in the
x and y directions, whose mass flow rates are controlled by the real input
matrices values (dark blue solid triangles) ‘mAirXflow’ and ‘mAirYflow’.
the single humid air volume and imposed mass flow rates models come from
the Modelica Buildings library and use the ASHRAE book of fundamental
equations for the moist air state equations. The connections between the
arrays of single volume models (light blue lines) are made in the textual
view so they are not visible from the diagram view. The air volume net
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component has one more matrix real input value ‘mWatflow’ that connects
an external water mass flow rate evaporating to the air volumes. Further-
more, the latent heat of evaporation related to the water exchange in the
the air volume is added or removed to the air volumes heat ports. The heat
ports are also extended at the boundary of the air volume network model
to allow heat transfer between the air volumes and the respective heat
transfer models. Finally, the mass fraction of water with respect to the
total air XW (kgw/kgtot) is extended as an output to determine the rate of
mass transfer in the plate model. Mass fraction is used instead of humidity
ratio because moist air is treated as a binary fluid mix in Modelica.

Convection model for Evaporator side
The Evaporator (EVA) convection model uses the air mass flow rates at
each volume to determine the local heat and mass transfer coefficients. In
Figure 4.17 is shown the model Icon.

Figure 4.17: Evaporator convection model icon

The real input matrix is the mass flow rate at each volume, from this the
Yovanovich correlation for non circular ducts [70] is used to determine the
local heat transfer coefficient. Then, using Lewis analogy the local mass
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transfer correlation is found and used as output for the model. The two
heat ports connect on one side to the air volume network and on the other
to the EVA plate model. The local heat transfer coefficient correlation is
shown below:

hc =
Nuλa

Deq
(W/m2/K) (4.3)

Nu is the Nusselt number, λa is the air thermal conductivity and Deq =
√
Across is the equivalent diameter and Across is the cross section area of

the channel. The expression for Nu is reported in the equation below:

Nu =
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1/m

(4.4)

where y∗ =
y

DeqRe√APr
is the dimensionless position for the develop-

ing flow. y is the axial coordinate of the flow (y axis for the heat ex-
changer). ϵ = height/length is the aspect ratio of the cross-section.
Re√A is the Reynolds number with respect to Deq. C1 = 3.84 is an ex-
perimental constant under the assumption of uniform flux, C3 = 0.501

is another experimental constant under the assumption of uniform flux.
m = 2.27 + 1.65Pr(1/3) is a correlation parameter. f(Pr) 4.5 is a function
of the Prandtl number.

f(Pr) =
0.886

[
1 + (1.909Pr1/6)9/2

]2/9 (4.5)

f(Re√A) 4.6 is a function of the Reynolds number
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Convection model for Adsorption side

The Modelica structure of the convection model for the Adsorption side
(ADS) is identical with respect to the EVA model, in Figure 4.18 the icon
is shown. However, since the plate on the ADS side behaves like a porous
media the correlation from [71] was implemented.

Figure 4.18: Adsorption convection model icon

The local heat transfer correlation is given by the equation below:

hc
D

λa
= 1 +

4(1− ϵp)

ϵp
+ 0.5(1− ϵp)

0.5Re0.6D Pr0.5 (4.7)

where ReD = (1 − ϵp)Re is the the Reynolds number adjusted for the

particle diameter and ϵp = 1 − D

Z

2

is the porosity, D(m) is the average
particle diameter and Z(m) is the height of the channel.

Evaporator plate model
The Evaporator plate is made up a series of rectangular channels as shown
in 4.15. The EVA plate model has one matrix real inputs with the air
temperature to calculate the saturation condition at air temperature and
one with the humidity ratio and mass transfer coefficient to calculate the
water mass transfer between plate and air volume. The real output is
the vapor flow rate and there is an heat port to connect the plate to the
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convection model. In Figure 4.19 the model Icon is reported.

Figure 4.19: Evaporator plate model icon

The plate as the air volumes is discretized in a 2-D nxm grid. The energy
balance coming out of the spatial discretization is reported below:

C
∂T (x, y)i,j

∂t
= gx(∆T−

x +∆T+
x ) + gy(∆T−

y +∆T+
y )+

Q̇in,i,j + ṁw,i,jhfg + ṁlwcplw(Tw,i−1,j − Ti,j)

(4.8)

where C(kJ/K) is the polyethylene plate heat capacity, gi(W/K) is the

thermal conductance gx = λplatetplate
Y

n
(

X

m+ 1
)−1 and gy = λplatetplate

X

m
(

Y

n+ 1
)−1,

λplate is the thermal conductivity of the plate, tp is the plate thickness, X
and Y are the length and height of the plate. ∆Ti are the temperature
differences ∆T−

x = Ti,j−1 − Ti,j, ∆T+
x = Ti,j+1 − Ti,j,∆T−

y = Ti−1,j − Ti,j,
∆T+

y = Ti+1,j − Ti,j. Q̇in(W ) is the heat balance at the heat port given by
the convection with the EVA air the conduction with the ADS side of the
plate. ṁw(kg/s) is the evaporated or condensed water mass flow rate and
hfg is the water latent heat of evaporation. ṁlw is the liquid water flow
rate in each along the plate, cplw is the liquid water specific heat and Tw,i,j

is the liquid water temperature.

the mass balance is shown below:

ṁw = Awettinghmass,i,j(xair,i,j − xsat,i,j) (4.9)

Where Awetting(m
2) is the wet area with respect to the total plate area,
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which is calculated as the internal surface of the rectangular duct resulting
from the discretization process plus the area of all the channel separators
in between.

Awetting = faw

(
2
XY

mn
+ 2nChan

Y

mn
tp

)
(4.10)

where faw is the ratio between the total area and the wet area, this pa-
rameter will be used to calibrate the model. nChan is the total number
of channels in the plate. ρair is the air density. xair,i,j(kgw/kgda) is the air
humidity ratio and xsat,i,j is the saturation humidity ratio calculated at the
plate temperature.

Adsorption plate model

The adsorption plate Modelica model structure is identical to the EVA
model, in Figure 4.19 the icon of the Modelica model is reported. Differ-
ently from the evaporator side, there are no channels instead the the space
between two plates is filled with silica gel.

Figure 4.20: Evaporator plate model icon.

Below is reported the energy balance for the ADS plate:

C
∂T (x, y)i,j

∂t
= gx(∆T−

x +∆T+
x ) + gy(∆T−

y +∆T+
y )+

Q̇in,i,j + ṁw,i,jqads,i,j

(4.11)

C is the lumped capacity of the polyethylene plate and silica gel. In the
same way gi is the thermal conductance of the plate plus the silica gel.
qads (J/kgw) is the adsorption or desorption specific heat. The value is
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similar to the latent heat of vaporization of water. However, using the
expression from [6] grey box model, it can be modelled as a function of the
silica gel water uptake W (kgw/kgsigel), that is the mass of water contained
in the silica gel. The expression is reported below:

qads(kJ/kgw) =

{
−12400Wi,j + 3500ifW ≤ 0.05

−1400Wi,j + 2950ifW ≥ 0.05
(4.12)

the adsorbed or desorbed water flow rate ṁw(kg/s) is similar to the one on
the evaporation, but instead of having the saturation humidity ratio xsat as
function of the plate there is the equilibrium humidity ratio xeq. xeq is not
only a function of the plate and silica gel temperature but also a function
of the water uptake W . The expression for xeq is taken from ashrae and is:

xeq =
0.622RHeqPvseq

101325−RHeqPvseq

(4.13)

Pvseq is the saturation pressure and is calculated according to the Ashrae
correlation present in the book of fundamentals. Rheq is a function of the
temperature and the water uptake W . In Figure 4.21 the relative humidity
RHeq is plotted against water uptake W for different values of temperature.
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Figure 4.21: Equilibrium relative humidity plotted against the water uptake (adsorption
bed humidity) for different temperatures (°C).

From the data points available in Figure 4.21 a correlation as function of
both temperature and water uptake was calculated:

RHeq,i,j = −a0W
3
i,jTi,j + a1W

2
i,jTi,j + a2Wi,jTi,j

−a3Ti,j + a4W
3
i,j − a5W

2
i,j − a6Wi,j + a7

(4.14)

The last equation needed is to calculate the dynamic balance of the water
uptake W , which is shown below:

ρsigelAwettingtsigel
Wi,j

dt
(4.15)

where ρsigel is the dry silica gel density, Awetting is the active area of silica
gel, it is calculated as the total area multiplied by a calibration factor
fawsigel.

Conduction model
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This model describes the conduction heat transfer between the EVA and
ADS side of the plate. The Modelica Icon is reported in Figure 4.22. This
model has only two heatports that connect on one side to the ADS part of
the plate and on the other to the EVA side.

Figure 4.22: Plates conduction model icon

Looking at 4.15 the conduction phenomena occurs on two sides,the internal
where the silica gel is glued and the external where there is no silica gel.
Therefore the balance equation would be:

Q̇ = (Gint +Gout)Acond(TEV A,i,j − TADS,i,j) (W ) (4.16)

Gint and Gout are considered in parallel and therefore the total trasmit-
tance will be the summation of the two contributions. Gint (W/m2/K) =

1
3tplate
4λplate

+
0.5tsigel − 0.5tplate

λsigel

is the internal conductance, and the exter-

nal conductance Gout =
1

tplate
2λplate

. λi are the thermal conductivities and

Acond = XY (m2) In Figure 4.23 there is a scheme that shows the dis-
cretization used to lump the plate and silica gel masses of the various



4| FREESCOO design and optimization 71

volumes.

Figure 4.23: Plate conduction discretization method, mass lumped in the center of mass

4.5. 2-D heat exchanger calibration and validation

In order to test the response of the model to the conditions that the ex-
perimental heat exchanger was subjected, it was necessary to create a test
scenario in Dymola. The diagram view of the test model is shown in Figure
3.17.

In this test, boundary conditions were added (solid blue vessel icons), to-
gether with temperature (thermometer icons), specific enthalpy, mass flow
rate and mass fraction (all clock-like icons) sensors. Also, timetables that
read the temperature, mass fraction and mass flow rate inputs from the
chosen experimental values and temperature sensors for collecting the HX
plate temperature (2 groups of 9 thermometers) in both sides and in the
same location as the thermal resistors placed in the tested HX. Finally, a
humidifier is added to the inlet of the EVA with a control system that sets
the temperature difference between inlet and outlet of the humidifier to
a fixed value, in order to simulate the direct evaporative cooling that the
corresponding airflow undergoes.
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For the regeneration phase, the RIG flow goes in a direction that is oppo-
site to the one that the ADS flow has to maximize the regeneration process,
so this also had to be considered when creating the timetable input (called
ADSRIG). In this case, the mass flow for the RIG time steps were assigned
a negative value, and the model did not need to be changed since it was
designed for having flow in any direction. Similarly for the boundary con-
ditions, they act as input or output depending on the directions of the
flow. The sensors have the same capabilities of bidirectional flow as the
multimode HX model.

Figure 4.24: diagram view of the test model with heat exchanger and boundary conditions.

Convergence analysis

For the convergence analysis, constant inputs we applied to all the compo-
nents of the model, in terms of temperature, mass fraction and mass flow
rate for 5000 (s). In Table 4.3 below are reported the boundary conditions
tested.
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Table 4.3: Boundary condition grid sesitivity

Parameter Value Units
ADS

Inlet temper-
ature

26.0 (°C)

Inlet water
mass fraction

0.01251 (kgw/kgtot)

Total mass
flow rate

0.0993 (kg/s)

EVA
Inlet temper-
ature

33.8 (°C)

Inlet water
mass fraction

0.01608 (kgw/kgtot)

Starting from this boundary conditions different test at different n and m
values were tried. Table 4.4 reports a summary of the results.

Table 4.4: summary results grid sensitivity

m n Tot. no. of
elements

Size x elem
(cm)

Size y elem
(cm)

Area elem
(cm2)

Simulation
time (s)

3 9 27 7.67 8.33 63.89 25
9 27 243 2.56 2.78 7.10 1600
18 54 972 1.28 1.39 1.77 3600
24 72 1728 0.96 1.04 1.00 8700
27 81 2187 0.85 0.93 0.79 16000
30 90 2700 0.77 0.83 0.64 30000

The grid sensitivity estimation of the model was checked on the tempera-
ture and overall heat and mass exchanged, calculated on inlet and outlet
conditions, at the end of the simulation for both the ADS and EVA. A
summary of all the comparisons is reported in Tables 4.5, 4.6 and 4.7.
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Table 4.5: summary results grid sensitivity TADS and TEV A outlet at the end of simulation

m n TADS out
last (°C)

% ∆ previ-
ous grid

% ∆ 30x90
grid

TEV A out
last (°C)

% ∆ previ-
ous grid

% ∆ 30x90
grid

3 9 24.84 - 6.59 23.29 - 0.77
9 27 25.97 4.56 2.33 23.18 0.49 0.27
18 54 26.33 1.37 0.99 23.14 0.16 0.12
24 72 26.44 0.43 0.57 23.13 0.05 0.07
27 81 26.52 0.33 0.24 23.12 0.04 0.03
30 90 26.59 0.24 - 23.12 0.03 0.03

Table 4.6: summary results grid sensitivity QADS and QEV A outlet at the end of simulation

m n QADS

(kJ)
% ∆ previ-
ous grid

% ∆ 30x90
grid

QEV A

(kJ)
% ∆ previ-
ous grid

% ∆ 30x90
grid

3 9 8810 - 9 -8812 - 9
9 27 9198 4.4 5 -9200 4.41 5
18 54 9489 3 2 -9497 3.16 2
24 72 9650 2.34 0.9 -9653 2.34 0.9
27 81 9710 0.6 0.3 -9715 0.6 0.3
30 90 9739 0.3 - -9745 0.3 -

Table 4.7: summary results grid sensitivity MwADS water and MwEV A outlet at the end
of simulation

m n MwADS

(kg)
% ∆ previ-
ous grid

% ∆ 30x90
grid

MwEV A

(kg)
% ∆ previ-
ous grid

% ∆ 30x90
grid

3 9 -2.271 - 7.30 2.591 - 12.67
9 27 -2.169 4.5 2.48 2.420 6.6 5.23
18 54 -2.139 1.4 1.05 2.368 2.14 2.98
24 72 -2.129 0.44 0.60 2.329 1.64 1.29
27 81 -2.122 0.34 0.26 2.299 1.27 1.29
30 90 -2.117 0.26 - 2.292 0.28 -

The acceptable trade off between computational time, thinking that two of
this models will have to run for a whole month in parallel in the FREESCOO
device, a total number of elements around 1000 was chosen. This will lead
to errors < 1 % for temperature and water balances and <2% for the heat
balances.
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Calibration results

As mentioned in the previous section the 2-D model should be able to catch
the supply heat rate dynamics, meaning the useful cooling effect, and the
silica gel bed dynamics, meaning the water mass flow adsorbed and des-
orbed by the bed. For this reason the calibration process was conducted on
an experiment where a complete adsorption starting from unknown condi-
tions was done, then a complete regeneration and finally another complete
adsorption. Figure 4.25 shows the simulated versus experimental results for
the behaviour of the heat exchanger in terms of cumulative heat for each
phase amd cumulative water mass exchanged. Then also the boundary
conditions in terms of air flow rates, inlet temperatures and inlet humidity
ratios for ADS,RIG and EVA are shown.

Figure 4.25: 1) comparison cumulative water balance RIG and ADS (bed dynamics); 2)
comparison cumulative heat balance ADS (useful heat); 3) inlet temperature boundary
conditions; 4) inlet Humidity Ratios boundary conditions for pre-calibrated model.

Looking at the simulation output before the calibration process the issues
found are reported below. At the beginning of the regeneration phase
the outlet air temperature increased quicker for the simulation than the
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experiment. This is due to the delayed thermal response of the measur-
ing system introduced by the measuring tubes thermal inertia. Using the
process mentioned in the previous section a suitable sensor "model" that
reproduces the thermal inertia was identified and applied to the modelica
model. Furthermore, at the end of the regeneration the outlet temperature
of the simulation is lower than experimental value. Since this is a long com-
plete regeneration in theory the outlet temperature should be very similar
to the inlet temperature and slightly lower due the device thermal losses.
However, the experimental regeneration temperature is 2 (°C) higher with
respect to to the inlet. This suggests that there is an underestimation
in the inlet air temperature, which is probably due to the thermocouple
measuring the air tempererature inside the air to water heat exchanger to
be not properly insulated. By adding a constant temperature offset to the
inlet experimental temperature and the sensor model that takes into ac-
count the thermal dynamics of the measuring tube the chart in Figure 4.26,
shows a much better agreement between the experimental and simulated
values.
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Figure 4.26: outlet regeneration temperature (°C) for simulation (SIM) and experiments
(EXP): 1) Results before calibration process; 2) Results after calibration process.

In Figure 4.28 it can be noticed that the outlet ADS temperature in the
experiment is consistently higher than the simulation. There are multiple
reasons for this. In this simulation the faw parameter was chosen as 0.8,
meaning that 80 % of the heat exchanger area was considered uniformly
wet on the EVA side. However, the final value of the parameter after
calibration was 0.05 meaning that only 5 % of the heat exchanger EVA
surface is actually wet. This stems from the fact that the internal area
of the EVA side is made up of the total area of the channels present in
the polyethylene panel, which is much larger than the actual wet area.
Furthermore, the sprinklers do not wet the whole surface evenly as shown
in Figure 4.27.
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Figure 4.27: showcase on wettability of the EVA side. 1) portion of the EVA channels
after turning on sprinklers; 2) showcase of sprinklers capability.

Then also in this case a sensor model that takes into account the dynamics
of the measuring tube was considered.

Figure 4.28: outlet Adsorption temperature for simulation in blue (sim) and experiments
in orange (exp): 1) results before calibration process, 2) results after calibration process.
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After tuning this parameters using the Dymola calibration toolbox the
calibrated model results are shown in Figure 4.29.

Figure 4.29: 1) comparison cumulative water balance RIG and ADS (bed dynamics); 2)
comparison cumulative heat balance ADS (useful heat); 3) inlet temperature boundary
conditions; 4) inlet humidity ratios boundary conditions for calibrated model;

By looking at 4.29 after the calibration process it can be seen that the
simulation reflects better the experimental values. However, looking at the
first chart and in particular at the regeneration side cumulative water des-
orbed, it can be seen that the simulation still overestimate the value with
respect to the experiment. This is due to the fact that the humidity ratio
for at the outlet of the regeneration was measured using only a relative
humidity sensor. The reason is that the chilled mirror underwent a long
cleaning cycle during the experiment and its data are not usable. There-
fore it is reasonable to assume that the simulation gives a number close
to the actual amount of water regenerated. This hypothesis is reinforced
by the fact that we are considering a complete cycle (complete adsorption,
complete regeneration, complete adsorption) and the total amount of ad-
sorption water matches between simulation and experiment, and is around
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2 (kg). At the same time the amount of water desorbed at the end of the
regeneration phase for the simulation is also around 2 (kg). The couple of
percentage difference can be attributed to the hysteresis effect taking place
in the silica gel.

Validation results

in Figures 4.30 and 4.31 is show the validation of the calibrated models
for different sets of experiments. The initialization of the calibrated model
internal temperatures and water uptakes for the different experiment was
found using the Dymola state estimator.

Figure 4.30: 1) comparison cumulative water balance RIG and ADS (bed dynamics) 2)
comparison cumulative heat balance ADS (useful heat) 3) inlet temperature boundary
conditions 4) inlet humidity ratios boundary conditions.
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Figure 4.31: 1) comparison cumulative water balance RIG and ADS (bed dynamics); 2)
comparison cumulative heat balance ADS (useful heat); 3) inlet temperature boundary
conditions; 4) inlet humidity ratios boundary conditions

Looking at the time series data in Figures in 4.30 and 4.31, the calibrated
model performs well both regarding the cooling heat rate and the water
balance on the bed in different boundary conditions and cycles times. The
average NRMSE on the cumulative cooling heat for all the experiments
conducted is below 5% and for the water loading balance is below 4%.

4.6. Heat exchanger reduced order model

In order to carry out the parameter optimization a suitable low order model
has to be trained using data from the 2-D model. The reason is that the 2-
D model is too complex to be used for a two week parameter optimization.
In Figure 4.32 is shown a figure of the reduced order The reduced order
model equations and variables are explained below:
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Figure 4.32: reduced order model configuration for FREESCOO.

Describing the variables shown in the figure: ue (−) is the control variable,
0 if there is no air flow on the evaporative side, 1 otherwise. uair (−) is the
control variable, 1 when there is adsorption air flow, 0 viceversa. Aeva (m

2)

is the evaporative side heat exchange area. Aads (m
2) is the adsorption side

heat exchange area. hceva (W/m/K) is the convective heat transfer coef-
ficient between evaporative side air stream and plate. hcads(W/m/K) is
the convective heat transfer coefficient between adsorption side air stream
and the silica gel plate node. TWBext (K) is the external wet bulb temper-
ature. Tavg (K) is the average adsorption air temperature between inlet
and outlet. T (K) is the average temperature of plate and silica gel. Ctot

is the combined heat capacity of plate and silica gel. MAir is the mass of
dry air present in the adsoprtion side of the heat exchanger. MsiGel is the
mass of dry silica gel. hmads (W/m2/K) is the mass transfer coefficient
between adsorption air and plate , silica gel node. xavg(kgw/kgdair) is the
average adsorption air humidity ratio, while xsat(kgw/kgdair) is the satura-
tion humidity ratio at the interface. xsat is calculated using an isotherm
taken from the 2-D model. In this model the temperature is assumed to
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be constant at 40 (°C) to simplify the RH isotherm relationship so RH is:

RH = 0.0078− 0.06W + 24W 2 − 124W 3 + 204W 4 (4.17)

Tavg and xavg are calculated instead as linear relationships between air inlet
and outlet conditions:

Tavg = αTAir + (1− α)TAirIn (K)

xavg = βxAir + (1− β)xAirIn (kgw/kgdair)
(4.18)

TAir (K) is the outlet adsorption air temperature, while TAirIn (K) is the
inlet adsorption air temperature. xAirIn (kgw/kgdair) is the inlet adsorp-
tion air humidity ratio, while xAir (kgw/kgdair) is the outlet adsorption air
humidity ratio.

The equations building up the model are reported below:

MsiGel
dW

dt
= uairAadshmads(xAvg − xsat) (kg/s) (4.19)

this equation represent the water mass balance of the silica gel. W (kgw/kgdrysigel)

is the average water load of the whole heat exchanger.

MsiGel
dW

dt
+MAir

dxAir

dt
= ṁAir(xAirin − xAir) (kg/s) (4.20)

This equation shows the overall water balance of the control volume made
up by silica gel node and adsorption air node. MsiGel is the silica gel mass,
Mair is the air node mass and ṁAir is the adsorption air mass flow rate.

Ctot
dT

dt
= ueAevahceva(TWBext − T )+

uarAadshcads(Tavg − T ) + uarAadshmads(xavg − xsat)q̇ads (W )
(4.21)

This equation represent the energy balance for the silica gel and plate node.
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q̇ads (W/kgw) is the latent adsorption heat rate.

Ctot
dT

dt
+ CAir

dhAir

dt
= ueAevahceva(TWBext

−Tavg) + ueAevahceva(TWBext − T ) + ṁAir(hAirIn − hAir) (W )
(4.22)

This equation represent the energy balance for the overall control volume.
CAir (J/kgK) is the adsorption air heat capacity. hAirIn (J/kgK) is the
inlet adsorption air enthalpy, while hAir (J/kgK) is the outlet air enthalpy
calculated as function of T and x via h = cpaT + x(cpvT + δhlat). All
the parameters present in this model were initialized starting from the
available physical and geometric parameters of the heat exchanger. Using
the Dymola calibration toolbox the model was then calibrated using the
2-D model output from the experiment shown in 4.25. The validation was
then carried out using the data from 4.30. The simplified model on the
validation results shows a NRMSE of 16% for the adsorption heat balance
considering an average between all cycles and 15% for the water mass
balance.

4.7. FREESCOO phase times optimization: cooling

scenario

This Section reports the results coming from the simulation of the apart-
ment in the cooling scenario,from 1st of May to 30th of September, using the
detailed heat exchanger model explained in Section 4.4 for the FREESCOO
device, comparing the baseline FREESCOO controller phase times with the
optimal phase times. The optimal phase times were found exchanging the
detailed 2-D FREESCOO heat exchanger model with the reduced order
model explained in Section 4.6 to run the optimization.
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4.7.1. Baseline and parameter optimization

As mentioned in previous sections the FREESCOO device is a transient
DEC system and therefore the useful cooling power when keeping constant
the air flow rates is determined by the adsorption and regeneration cycling
times. Before showing the parameter optimization process in Figure 4.33
the baseline controller implemented in the cooling scenario Modelica model
is shown.

Figure 4.33: Control scheme for the cooling system in the Modelica model.

The baseline controller is made up of two parts. A thermostat for each
thermal zone that has an hysteresis controller with an offset of 0.4 (°C)
and a phase timer for each heat exchanger present in the FREESCOO
device. The phase timer has an internal clock that starts a pre cooling and
adsorption phase once the thermostat in one of the thermal zones requires
a cooling action, after the adsorption time the heat exchanger goes into
regeneration mode. The two heat exchanger are used sequentially to allow
for a continuous cooling operation. In Figure 4.34 is reported the outlet
temperature on the ADS / RIG side of the heat exchanger for a sample cycle
of the FREESCOO heat exchanger starting with a regeneration phase,
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precooling and then adsorption.

Figure 4.34: Typical cycle of the FREESCOO heat exchanger. On the x-axis the time
in hours is shown, on the y-axis the average temperature (°C) of the heat exchanger is
shown. tregeneration is the regeneration time, tprecooling is the precooling time and tadsorption

is the adsorption time.

The default values of the FREESCOO device come from the experiments
conducted on the test bench shown in the previous section and are assumed
as tregeneration = 1800 (s), tprecooling = 160 (s) and tadsorption = 1800 (s). Using
Dymola parameter optimization toolbox coupled with the interior point
solver IPOPT and the reduced order model of FREESCOO developed in
the previous section new phase times parameters tregeneration and tadsorption

were found. The optimization was a multi objective optimization run for
two weeks per month for the whole cooling season from 1st of May to 30th of
September. Two weeks were chosen as a trade off between getting a large
enough number of data points for the optimization and a large enough
amount of validation days afterwards. The optimization objectives were
the minimization of temperature mismatch between setpoint and room air
temperature for both thermal zones, regeneration overall thermal energy
input and overall electrical consumption of the FREESCOO device. The
priority in terms of weighting parameters for the optimization was given
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to the temperature mismatch.

4.7.2. Optimal phase times results

The summary of the monthly new values for the regeneration time tregeneration
and adsorption time tadsorption are reported in Table 4.8, the training period
was from the 10th to the 24th for each month.

Table 4.8: regeneration and adsorption optimized cycle times.

Months tadsorption (s) tregeneration (s)
May 3000 1000
Jun 2200 1100
Jul 1800 1400
Aug 1700 1600
Sep 2600 1050

Looking at Table 4.8 it is clear that in the warmest months the overall cycle
frequency reduces and the difference between regeneration and adsorption
reduces. This is consistent with intuition that making shorter cycles and
longer regenerations leads to a higher mean thermal cooling power needed
to cope with the cooling demand in the hottest months. The opposite can
be said instead for late spring in May or September.

In Table 4.9 are reported the KPI results for the cooling season simulation
in the baseline case and in the case with optimized cycle times. For this
simulation the 2-D calibrated model of the FREESCOO heat exchanger
was used. The KPIs analyzed are the thermal discomfort calculated as
shown in the previous sections. The hygrometric discomfort calculated as
in the number of hours where the humidity ratio is above the threshold
value of 10.5 (gw/kgdair) in the thermal zones. The cooling thermal energy
is the overall cooling energy provide to the thermal zone and calculated as
Qcool =

∫ tf
t0
(ṁads(houtads − hinads))dt, where t0 (s) is the start time of the
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simulation, tf (s) is the stop time, ṁads (kg/s) is the adsorption air flow
rate, houtads (J/kg/K) is the adsorption outlet enthalpy from FREESCOO
and hinads (J/kg/K) is the inlet adsorption air enthalpy. The thermal COP
is calculated as the ratio between the overall cooling energy provided Qcool

divided by the regeneration heat Qreg =
∫ tf
t0
(ṁregcpair(Tinreg − Text))dt,

where ṁreg(kg/s) is the regeneration air flow rate, cpair (J/kg/K) is the
air specific heat, Tinreg (°C) is the inlet regeneration temperature and Text

(°C) is the ambient temperature. The electrical Energy Efficiency Ratio
(EER) is calculated as the ratio between Qcool and the overall electrical
power consumed by FREESCOO. Starting from experimental data and
the fan datasheets the electrical consumption of FREESCOO is calculated
as Pel =

∫ tf
t0
(Pbase + kfan(f(ṁads) + f(ṁreg) + f(ṁeva)))dt, where Pbase is

the baseline electrical consumption when the device is turned on due to
onboard electronics and water pump, kfan is the fan characteristic param-
eter given in the datasheet together with the polynomial function of the
air mass flow rate f(ṁair).

Table 4.9: KPI results for cooling scenario for baseline and in the case of optimized cycling
parameters

Variables baseline improved pars
Temperature mismatch (Kh) 24 26 (+8%)
Humididity ratio mismatch (h) 7 7.6 (+8%)
Cooling thermal energy (kWh) 301 303 (+1%)
Thermal COP (-) 0.63 0.81 (+22%)
Electrical EER (-) 10.2 10 (-2%)

Looking at the KPI results there is a marginal increase in terms of tem-
perature and humidity ratio mismatch, 8% with respect to the baseline.
However, the absolute values remain quite small,less than 0.2 K on aver-
age per occupied hour, meaning that thermal and hygrometric comfort are
achieved for most of the occupied hours. As expected the thermal COP
improves with the new parameters by 22%, while keeping an almost iden-
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tical EER meaning that in general the FREESCOO device was turned on
for the same amount of time in the baseline and improved parameter cases.
This means that passing from the baseline to the improved parameter case
the time the adsorption is carried out for the majority of the time and the
reduction in cooling power does not affect the comfort. Figure 4.35 shows
a sample day in July comparing the baseline solution with respect to the
improved parameter solution.

Figure 4.35: simulation of one day in July for the cooling scenario comparing the
FREESCOO baseline controller and the improved controller. For both plots in the x-axis
is shown the time for the day. The blue line corresponds to the results of the improved
controller, the red to the baseline and the black dashed line to the setpoint. The top chart
shows the air temperature in the living room on the y-axis, while the bottom chart shows
the adsorption cooling heat rate.

Looking at Figure 4.35, it can be seen that the room temperature is always
lower than the setpoint plus the 0.4 (°C) hysteresis and that the average
adsorption heat rate is lower in the improved case. However, it’s also
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clear that a lot of the time FREESCOO cools the internal air below the
setpoint value minus the hysteresis value. There are three main reasons
for this behaviour. The first one is that to avoid to many on and offs of
the FREESCOO device, it will work for a minimum amount of time before
switching off set to 10 (min). The second reason is that the FREESCOO
controller has only an hysteresis controller and the air flow rate is kept
constant at nominal value. The third reason is that the apartment model
was calibrated when empty, meaning that the capacity of the air node is low
and probably the result would be different with the addition of furniture
that would increase the heat capacity of the room.
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extrapolation

This Chapter reports the work carried out that makes the effort to com-
pare different Model Predictive Control (MPC) solvers and formulations
and extrapolate a possible general strategy and solver approach for sim-
ilar HVAC systems. This part of the work was submitted as a separate
journal paper [18], see attached pre-print at the end of the manuscript. In
Section 5.1 are presented the theoretical approaches used to derived the
reduced order model for the optimization. In Section 5.2 are presented all
the formulations used including additional constraints and solver choices.
Finally, in the Results section 5.4 are presented a summary of KPI and de-
tailed time series analysis results. In Section 5.5 the analysis of the MPC
trajectory and parameter extrapolation is reported.

5.1. MPC reduced order model theoretical approaches

The core component of the MPC is the building and HVAC models used
for the prediction, that can range from a purely numerical black-box such
as Artificial Neural Networks (ANN) to detailed physical models called
white box. The advantages of the first approach are that the preliminary
knowledge on the building and HVAC systems does not have to be known a
priory and the model is very lightweight and can be computed very quickly.
The disadvantage is that a lot of good quality data is required to train data
driven black box models and that traditional optimization techniques us-
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ing model derivatives to estimate the optimal control trajectory cannot
be used. The opposite is true for the white box modelling approach. In
this case, more preliminary data is required (e.g. building plans, geometry,
physical properties), but less data are needed for the calibration phase.
However, these models tend to be computationally expensive and too com-
plex to be used directly into an optimization engine. The best of both
worlds is a grey box approach, such as [72] where a Resistance Capaci-
tance (RC) electrical thermal analogy model was used. In these way the
model retains a physical meaning, requiring some preliminary knowledge
on the building and less data for the training process than for a black box
model, whilst being more lightweight and suitable for the optimization
process than a white box model. So, I identified a grey-box model based
on resistance capacitance analogy using the Matlab identification toolbox
[73] to be used within the MPC controller. Different combinations of num-
ber of Resistances (R) and Capacities (C) were tried leading to a 7R3C
scheme that was adopted for each thermal zone (Figure 5.1). The three
capacities are related to the room temperature Tr, wall temperature Tw

and floor temperature Tf . Resistances connect the capacity nodes to each
other and furthermore, two resistances connect Cr and Cw to the external
temperature Text. The wall has a resistance that connects also with the
sky temperature Tsky. The sky temperature allows the low order model
to better treat the radiative heat exchange with the external environment,
especially in the presence or absence of clouds. Lastly, the capacitances of
the rooms are connected to each other as a proxy for air exchange between
the two thermal zones. The solar heat source Φs(W/m2) is the hemispher-
ical global radiation hitting the external walls and windows. It is split
by the coefficients a and c between the wall and the floor and multiplied
respectively by the opaque area Awall and the windows area Awin. a and
c are tuning parameters that can be assumed as proxy of absorptance and
trasmittance. Φint (W ) are the internal gains split in sensible and radia-
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tive thermal power by the parameter b. The sensible part goes to the room
capacitance Cr and radiative goes to the wall capacitance Cw. Lastly,
the heat flow rate on the floor heating system is shown in the figure as
∆Ḣ = Ḣout − Ḣin. It is modelled in four different ways, depending on the
optimization formulation being tested:

1. linear formulation where the optimal control variable for ∆Ḣ is the
heat flow Q̇

2. Linear formulation where the optimal control variable for ∆Ḣ is the
supply temperature Tin with a constant flow rate equal to the nominal
value ṁfnom

3. nonlinear formulation where the optimal control variables for ∆Ḣ are
the valve position ui [0;1] with ui ∈ R multiplied by ṁfnom and the
supply temperature Tin

4. Mixed Integer Nonlinear formulation where the optimal control vari-
ables for ∆Ḣ are the valve position ui [0;1] with ui ∈ Z multiplied by
ṁfnom and the supply temperature Tin

Furthermore, for the formulations using the supply temperature Tin a con-
trol variable, there is a need to estimate the outlet temperature Tout to
calculate the heat flow rate in the floor. Therefore, a linear relationship to
correlate the outlet temperature from the floor heating circuit Tout to the
inlet Tin and floor Tf temperatures is introduced:

Tout = wfTin + (1− wf)Tf (5.1)

The assumption behind this linear relationship is that water mass flow rate
ṁfloor is constant so that the heat transfer coefficients remain constant.
This assumption is valid for this case study since the zones valves can only
be open or closed and do not provide variable flow control.
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Since the training of RC models is not the focus of the present work, the
identification procedure is briefly reported. The capacities and resistances
of the model were trained using two weeks of free floating data, where
the boundary conditions were derived from a synthetic profile obtained
through a Fourier analysis of the typical year data [74]. In this way all
the major frequency components are present. An additional week of data
where the heating system is on is used to find the weighting parameter wf .
The result of the identification leads to a NRMSE of 18% for the whole
heating season, in Milan from the 15th of October to the 15th of April, in
open loop simulation.
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Figure 5.1: Thermal zone reduced order model, the red dots are the temperatures, the
blue parallel lines are the capacitors associated wit the temperature states, the resistances
are the thermal resistances between the temperatures and the red lines indicate a heat
flow into the node.

5.2. MPC used formulations

The reduced order model problem can range from linear to nonlinear mixed
integer thanks to the different formulations for the optimal control vari-
ables. Furthermore, nonlinearity due to additional constraints and objec-
tive function needs to be added to characterize the final MPC problem
class.
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Table 5.1: MPC states and disturbances

Control horizon 24 (h)
Time step 15 (min)

Solution update Every time step
Discretization Direct collocation

Trliv (◦C) : (−∞,+∞)
Tfliv (◦C) : (−∞,+∞)

States (x) Twliv (°C) : (−∞,+∞)
Trbed (◦C) : (−∞,+∞)
Tfbed (◦C) : (−∞,+∞)
Twbed (◦C) : (−∞,+∞)
Text (

◦C) : (−∞,+∞)
Tsky (◦C) : (−∞,+∞)
Tsetliv (◦C) : (−∞,+∞)

Disturbances Tsetbed (°C) : (−∞,+∞)

Q̇rad(kW ) : [0,max]

Q̇intliv(kW ) : [0,max]

Q̇intbed(kW ) : [0,max]
pe(e) : (constant)

Table 5.1 contains all the common elements across the formulations, includ-
ing dynamic states, disturbances and implementation choices. In the table
only the final choice for control horizon and time step is shown. However,
four different control horizons were tried for the optimal control problems
from 6 up to 72 (h). Considering that we are dealing with deterministic
forecasts, in theory the longer the prediction horizon, the better will be the
solution. However, this comes at an increased computational time. The
final choice was 24 (h) since longer times did not show any improvement
on the KPIs. This time aligns with the fact that we are dealing with a
heavy construction and a floor heating with a high thermal inertia. The
suitable time step is also affected by the slow dynamics of the floor heating.
Bringing it below 15 (min) did not give any significant benefits. The MPC
solution is updated at every time step, so every 15 (min). To convert the
optimal control problem into a programming problem, a direct collocation
method [75] was implemented in the Pyomo problem statement. Direct
collocation means that the time dependant optimal control problem was
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Table 5.2: MPC controls, constraints and objectives

u1 δliv,bed (◦C) : (−∞,+∞)
u2 Tin(

◦C) : [Tmix, Tinmax]
u3 uliv,bed(−) : {0, 1} ∈ Z

Control (u) u4 uliv,bed : [0, 1] ∈ R
u5 uliv,bed = 1

u6 Q̇liv,bed(kW ) : [0,max]
Comfort constraint

c1 Tr,liv,bed(t)− Tset,liv,bed(t) + δliv,bed(t) ≥ ε
Maximum heat flow rate

Constraints (c) c2 1/(1− wf )Q̇liv,bed(t) ≤ ṁfcw(Tinmax − Tf,liv,bed(t))
Mixing constraint

c3 Tin ≥ Tmix =
ulivTf,liv + ubedTf,bed

(uliv + ubed)
Objectives (j)

Jtot min(Jtot =
∫ tf
t0

∑N
i=1 kijidt) with 0 ≤ ki ≤ 1

Energy cost QP

j1 Jen = pe
(∆Ḣliv(t) + ∆Ḣbed(t))

COP (Text)(t)
(e)

Energy cost NLP

j2 Jen = pe
∆Ḣliv(t) + ∆Ḣbed(t)

COP (Text, Tin)(t)
(e)

Objective Temperature mismatch
j3 Jcom = δ2(t) (K2h)

function Frequency switching

j4 Jswi =
duliv

dt

2

+
dubed

dt

2

(−)

Binary constraint
j5 Jbin = uliv(1− uliv) + ubed(1− ubed) (−)

discretized into a subset of problems, one for each time step where the
control can be considered constant in my approximation. The six states
include all the temperatures in both thermal zones and the disturbances
are the same as reported in the previous section plus the two room set
points and the energy price pe.

Table 5.2 reports all the control variables, constraints and objectives func-
tions utilized in the different formulations. Each problem formulation will
have a subset of these as shown in Table 5.3. Starting explaining Table
5.2 elements from the optimal control variables, u1 is an auxiliary variable
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that is coupled with the constraint c1 and the objective j3. Looking at
the constraint c1, δ will be higher than zero if the room temperature Tr

is lower than the setpoint temperature Tset, so by including δ2 in the ob-
jective that needs to be minimized, the solver is forced to keep Tr higher
than the setpoint temperature. The other control variables are related to
the heat flow rate in the floor and are explained in section in the previous
section. u2 is the supply temperature and can go from the the maximum
temperature fixed at 45 (°C) to avoid high temperatures in the floor, to
a minimum temperature, defined as the adiabatic mixing temperature in
constraint c3. The formulation of c3 comes from a local energy and mass
balance at the return outlet of the floor heating system under the assump-
tion that the nominal flow rate is the same for all the circuits. Tf,liv,bed

is the floor temperature and uliv,bed is the floor heating circuit valve con-
trol. u3 are the valve controls under the assumption that the valve can
continuously modulate the flow from totally closed to totally opened. u4

are the valve controls under the assumption that the valve can only be
fully closed or fully open like in the case study emulator model. u5 are
the valve controls under the assumption that the valve is kept always open
and the modulation is done only on the supply temperature Tin. Finally,
u6 considers as optimal control variable the heat flow rate directly in the
floor that can go from zero to a maximum value determined by constraint
c2.

The heat flow rate constraint c2 limits the maximum heat flow rate lin-
early with the floor temperature as a function of the maximum supply
temperature Tinmax and the weighting parameter wf . This constraint helps
modelling the behavior of the floor slab, where the higher the floor tem-
perature the lower is the heat rate at constant supply temperature. In the
constraints section of the table are reported c1, c2 and c3 that are coupled
with the relative optimal control variables as explained above.
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In the last section of the table are presented all the objectives that can
make up the the overall objective to be minimized by the solver. The final
objective function Jtot to be minimized is the sum of different objectives
each weighted by a ki parameter, where i corresponds to a specific objective.
The weighting parameters ki are needed to balance the impact of each
objective on the total objective function jtot.To find the best values of ki
several iterations of the parameters were tried to balance the weights, while
giving priority to the comfort constraint. The objectives j1 and j2 are the
energy cost and are calculated as the energy price pe multiplied by the total
heat flow rate provided by the heat pump , ∆Ḣliv(t)+∆Ḣbed(t), divided by
the heat pump COP. The COP is a function of the external temperature
COP(Text) for j1, so the underlying problem remains quadratic. In j2 it
becomes a function of external and supply temperatures COP(Text, Tin) , so
the optimization problem becomes non linear because a control variable is
present in the denominator of a fraction. j3 is the temperature mismatch
between the room temperature Tr and the setpoint Tset and works as a
comfort proxy. The frequency switching objective j4 is the sum of the
squared valve controls derivatives. This objectives serves the purpose of
penalizing undesirable sudden changes in the control variables. The binary
constraint forces uliv and ubed to be either close to 0 or 1 to avoid having
increasing the value of the objective function. The reasoning behind this
constraint is to approximate a mix integer nonlinear problem, while keeping
it continuous nonlinear. However, care should be taken when initializing
this optimization problem because the introduction of the binary constraint
causes a big discontinuity in the solution space.

Starting from Tables 5.1 and 5.2 several MPC formulations can be defined
ranging from linear with a quadratic objective to mixed integer nonlin-
ear. Table 5.3 reports the MPC formulations coupled with the solvers and
relative options used for the study.
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Table 5.3: MPC problem statement.

Tag Formulation Problem
type Solver Tolerance Initialization Post process Subsolvers

MPC1
δliv/bed, Q̇liv/bed,
Ccomf, CQmax,

jCOP,L, jcomf, jswitch

QP IPOPT 10−6 Free-floating Q̇i conversion
into ui and Tin,set

MA57

MPC2

δliv/bed, Tin, uopen,
Ccomf, CTmin,
jCOP,NL, jcomf,

jswitch

NLP IPOPT 10−6 Free-floating
conversion of ui

from Tin and Tin

= Tin,set

MA57

MPC3

δliv/bed, Tin, uR,
Ccomf, CTmin,
jCOP,NL, jcomf,

jswitch

NLP IPOPT 10−6 Free-floating round ui and Tin

= Tin,set
MA57

MPC4

δliv/bed, Tin, uR,
Ccomf, CTmin,
jCOP,NL, jcomf,

jswitch, jB

NLP IPOPT 10−6 Free-floating Tin = Tin,set MA57

MPC5

δliv/bed, Tin, uB,
Ccomf, CTmin,
jCOP,NL, jcomf,

jswitch

MINLP Bonmin-
BB 10−4 MPC3 sol Tin = Tin,set

CBC,
IPOPT

MPC6

δliv/bed, Tin, uB,
Ccomf, CTmin,
jCOP,NL, jcomf

,jswitch, jB

MINLP Bonmin-
BB 10−4 MPC4 sol Tin = Tin,set

CBC,
IPOPT

MPC7

δliv/bed, Tin, uB,
Ccomf, CTmin,
jCOP,NL, jcomf,

jswitch, jB

MINLP Bonmin-
Hyb 10−4 MPC4 sol Tin = Tin,set

CBC,
IPOPT

MPC8

δliv/bed, Tin, uB,
Ccomf, CTmin

,jCOP,NL, jcomf,
jswitch

MINLP Baron 10−4 MPC3 sol Tin = Tin,set
CPLEX,
IPOPT

MPC9

δliv/bed, Tin, uB,
Ccomf, CTmin,
jCOP,NL, jcomf,

jswitch, jB

MINLP Baron 10−4 MPC4 sol Tin = Tin,set
CPLEX,
IPOPT

MPC10

δliv/bed, Tin, uB,
Ccomf,CTmin

,jCOP,NL, jcomf,
jswitch, jB

MINLP SCIP 10−4 MPC4 sol Tin = Tin,set
CPLEX,
IPOPT

Table 5.3 shows ten MPC formulations that were tested. The Tag column
reports the formulation names. The Formulation column shows the cor-
responding optimization variables, constraints and objectives described in
Table 5.2. Note that the auxiliary variable δ, the temperature constraint
Ccomf, the temperature mismatch jcomf, and the switching objective jswitch

are present in all formulations. The Problem Type column reports the
optimization problem type for each MPC formulation, which can be either
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QP, NLP or MINLP. The Solver column shows the solver chosen, including
the MINLP handling algorithm option if present. The Tolerance column
is the solver tolerance which was determined through a parametric study
as a compromise between quality of the solution and computational time
for each solver. The Initialization column defines how the optimization
problem variables were initialized. Free-floating initialization means that
a simulation is run using the reduced order model subject to the same
boundary conditions, as in the forecasts used for the optimal control, with
the floor heat flow rate set to zero. In other formulations, a slightly ran-
domized solution of a different MPC formulation is used as initialization
as indicated. The Post Process column shows the steps needed to convert
the optimal control trajectory into the physical control inputs used in the
emulator model. The Subsolvers column refers to the solvers used by the
solver indicated in the Solver column. Another parameter not included in
the table is the Timeout. It corresponds to the maximum time between
each control horizon optimization and was fixed at two minutes for all
formulations as a compromise between giving the solvers enough time to
converge to a solution and the overall computational time.

Below, a summary for each MPC formulation presented in Table 5.3 is
provided:

• MPC1: This formulation uses heat flow rates directly as optimization
variables Q̇liv/bed, and jCOP,L as the energy objective. In this way the
final constraints are linear in optimization variables, and the objective
function is quadratic, making a QP problem. The solver of choice for
the QP was IPOPT with the linear subsolver MA57. The tolerance
was set to 10−6 from the default value of 10−8 and the timeout time
to 120 [s], and the initialization is free-floating. Some post processing
is required to convert the optimal control trajectory into the physical
control variables used in the emulator. If Q̇liv/bed is higher than a
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threshold value, equivalent to the minimum cutoff power of the heat
pump set as 20 % of the nominal value 800 [W], the valves uliv/bed will
be opened else they remain closed. The supply temperature setpoint
is calculated using the previous step return temperature plus the delta
given by Q̇liv/bed.

• MPC2: This formulation uses the supply temperature as an optimiza-
tion variable Tin, while the circuit valves remain always open uopen,
and jCOP,NL is used for the energy objective. Together with the linear
radiant floor heat modeling approach (see point 2) in Section 5.1, the
final constraints are linear in optimization variables, and nonlinear in
the objective due to the presence of COP as a function of the supply
temperature Tin, making an NLP problem. The solver of choice for the
NLP problem was IPOPT with the linear subsolver MA57. The tol-
erance was set to 10−6 from the default value of 10−8 and the timeout
time to 120 [s], and the initialization is free-floating. A post process
is required to convert the optimal control trajectory into the physical
control variables used in the emulator. If the supply temperature Tin

is higher than a threshold value, the valves uliv/bed will be opened, else
they remain closed.

• MPC3: Compared to MPC2, this MPC does not assume the circuit
valves are fully open. Instead, it relaxes the on/off binary constraints
to a real number set uR as mentioned in the third bullet item in Sec-
tion 5.1 and in Table 5.2. The final problem formulation is nonlinear
in terms of constraints and optimization variables due to the multipli-
cation between supply temperature and valve control. The objective is
also nonlinear due to the presence of COP as a function of the supply
temperature Tin and the multiplication of two optimization variables
in the heat flow rate calculation. The added nonlinearity of MPC3
compared to MPC2 makes the problem nonconvex because the solver
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can change Tin or uR to modulate the heat flow rate, making the pro-
cess of finding a global optimum harder. Solver settings were identical
to MPC2. MPC also needs to convert the optimal control trajectory
into the physical control variables used in the emulator. If the circuit
valve uliv/bed value is higher than a threshold value. the valves uliv/bed
will be opened, else they remain closed.

• MPC4: This formulation is identical to MPC3, apart from the addi-
tion of the binary objective jB. The idea behind jB is to force uR to
be either closed uR = 0, or open uR = 1, by penalizing all solutions
that modulate the flow rate in a continuous manner. This allows for a
smaller control space by reducing the optimal operating range of the
zone valves. This will serve as an NLP approximation of an MINLP
formulation, corresponding to actual physical control variables of the
emulator.

• MPC5: This formulation is the same as MPC3 but replacing the
continuous relaxation (uR) with the binary constraint (uB). In this
way the final problem formulation is mixed integer nonlinear due to
the multiplication between continuous supply temperature and on/off
valve control variables, making a MINLP problem. The additional
complexity of MPC5 compared to the previous QP and NLP for-
mulations requires a dedicated MINLP solver. The solver of choice
for MPC5 was BONMIN-BB. CBC was used as MIQP subsolver and
IPOPT as NLP solver. The tolerance was set to 10−4 from the de-
fault value of 10−6 and the timeout time to 120 [s]. The initialization
is done by taking the solution of MPC3 after rounding the values of
uliv/bed. The MINLP solution can be directly applied to the emulator
with no need for post processing of the solution.

• MPC6: This formulation is identical to MPC5 apart from the addition
of the binary objective jB and the initialization done with MPC4
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solution. The rationale is similar as in the transition from MPC3 to
MPC4. However, instead of a single NLP problem, it is extended to
all subsets of NLP problems generated by the MINLP solver.

• MPC7: This formulation is identical to MPC6, where a different
MINLP algorithm option was used for the Bonmin solver BONMIN-
Hyb.

• MPC8: This formulation is identical to MPC5, where a different
MINLP solver was used named Baron. The MIQP solver is CPLEX
and the NLP solver is IPOPT.

• MPC9: This formulation is identical to MPC8 with the addition of
the binary constraint jB.

• MPC10: This formulation is identical to MPC9 with the difference
that the MINLP solver of choice was SCIP.

5.3. Co-simulation setup.

All the elements shown in previous sections are coupled in a co-simulation.
The optimal control routine runs on the Python toolbox Pyomo [56] and
the detailed emulator model is wrapped in a Docker container using the
BOPTEST software [62]. A schematic representation of the co-simulation
is given in Figure 5.2.

Going more into the details of the co-simulation environment, all the cases
mentioned in Table 5.3 were directly implemented in Python using a con-
crete instance modeling feature of Pyomo. The solvers were compiled ex-
ternally and coupled with Pyomo using the AMPL interface. Finally, the
Kalman filter from [76] was used to update the states of the reduced order
model at each time initialization.

BOPTEST provides an easy to use API interface that allows the optimiza-
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Figure 5.2: co-simulation setup,on the left the optimization environment in Python-
Pyomo, on the right the detailed Modeica building and HVAC models and in the middle
the software BOPTEST that allows the signal exchange, provides forecasts and KPIs

tion scripts to manipulate the control variables of the detailed model, access
sensor data and access forecasts and the KPIs calculated by BOPTEST.
The control variables are the supply temperature setpoint and the zone
valve open or closed signal. The forecasts are the disturbance variables
reported in Table 5.1 and are considered deterministic, meaning that the
same disturbances will also be used in the emulator model. The measure-
ments are the room temperature, the water supply temperature and the
return temperature from each zone, and are used by the Kalman filter to es-
timate the initial value of room, wall and floor temperature for each zone.
To estimate the performance of each MPC formulation, BOPTEST can
calculate many KPIs, though this work considers the thermal discomfort,
computational time ratio and energy cost . Furthermore, three additional
KPIs were used to evaluate the performance of these MPC formulations,
namely the total computational time of the MPC (s) solver, the thermal
energy used, the control arc length and the number of MPC solver time-out
or error events occurred throughout the evaluation period. The equations
and descriptions are reported in Table 5.4, and the description of the vari-
ables is reported below. Only valid solutions are used to update the MPC
control trajectory. Time-out solutions are valid most of the time, a solution
is considered valid if the variables values are within the bounds, however,
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Figure 5.3: On the y-axis is the value of the control variable u and uref is the reference
value kept as constant. On the x-axis is time with the evaluation period taken from t0 to
tf .

it may be not fully converged, meaning that constraints may not be com-
pletely satisfied. Instead, solutions with a error in the solver status are
discarded. In this case the solution at the previous time step is used until
a new valid solution is found. All the simulations were carried out on a
Linux Ubuntu 18 laptop with 16GB of RAM and an Intel(R) Core(TM)
i7-8650U CPU @ 1.90GHz. All the solvers have multi thread capability so
up to 8 threads were used for the simulations.

Table 5.4: BOPTEST and MPC specific KPIs

Name Description Equation Type

Kdis Discomfort
∑N

z=1

∫ tf
t0

max(Tset(t)− Tr(t), 0)dt

N
(Kh/zone) BOPTEST

Ktimr
Computational

time ratio

∑M
k=1

δTk

δtk
M

(-)
BOPTEST

Kcost Energy cost
∫ tf
t0

pel
Q̇tot(t)

COP (t)
dt

Atot

( e /kWh)
BOPTEST

Ken
Thermal energy

supplied

∫ tf
t0

Q̇tot(t)dt

Atot

( kWh /m2)
case study

specific

Kttot

Total
computational

time
(s) case study

specific

Kerr
Solver errors or

time-outs (-) case study
specific

Kconlen
Control arc

length

∫ tf
t0

√
1 + (

du

dt
)2dt

∫ tf
t0

√
1 + (

duref

dt
)2dt

(-)

case study
specific

Regarding Table 5.4: in the discomfort KPI definition (Kdis), Tr (K) is
the room operative temperature and Tset (K) the heating setpoint, N is
the total number of zones, to and tf are the initial and final time of the
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evaluation period; in the computational time ratio KPI definition (Ktimr),
δTk(s) is the MPC computational time at step k, M is the number of
control steps and δtk(s) is the time interval of control step k; in the cost
KPI definition (Kcost), pel (e/kWh) is the electricity price considered as
constant, equal to 20 (€/kWh), Qtot(kWh) is the total energy supplied by
the heat pump and Atot (m2) is the total floor area of the apartment. Qtot

(kWh) is also used to calculate the thermal energy KPI Ken; lastly, a new
KPI is introduced in this manuscript called control arc length (Kconlen).
The goal of the latter KPI is to showcase the amount of frequency switching
for the control system throughout the evaluation period. So, Kconlen is the
ratio between the length of the actual control trajectory versus a fictional
reference trajectory uref that consider the control variable u to be constant
for the evaluation period. A visual representation is given in Figure 5.3.

5.4. Results and conclusions

The evaluation period is the month of January. It is taken as representative
for the whole heating season because similar conclusions can be drawn from
the rest of the heating season. The MPC control trajectory is updated
every time step, 15 (min), while the control horizon considered is 24 (h).
The resulting optimization problem will be calculated for 2976 times and
each iteration has around a 1000 constraints, 600 optimization variables
for the linear problems and 1200 for the nonlinear problems. In the first
Subsection 5.4.1, BOPTEST and custom KPIs are compared to have an
overview of all the different formulations. In the second Subsection 5.4.2, a
detailed analysis on the time series results is carried out to better explain
some of the differences found in the KPIs. In Sub-section 5.4.3 a summary
of the results and a justification for the best MPC formulation are given.
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Figure 5.4: BOPTEST KPIS for the month of January 1) Thermal discomfort Kdis, 2)
Computational time ratio Ktimr in logarithmic scale, 3) Cost Kcost, the KPI description
is presented in 5.4 . The results are shown for all the MPC combinations explained in 5.3

5.4.1. Key Performance Indicators comparison

Figures 5.4 and 5.5 report the KPI results calculated by BOPTEST and
post processing specific to this study as described in Table 5.4.

Looking at the discomfort KPIs Kdis in Figure 5.4 most of the formula-
tions outperform the rule based controller, defined in Section 5.5.1 with
more than 90% decrease in discomfort. The main reason is the ability to
compensate for the delayed response of the floor heating system as shown
in the various time series plots Figures 5.6,5.7 and 5.8. In fact the MPC
turns on the system before the change of setpoint, bottom plot, that leads
to the room temperature being close to the setpoint in the transition time
step, top plot. This is true for most formulations apart from the baseline,
however, the MPC7 solution using Bonmin with the Hybrid method leads
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Figure 5.5: MPC specific for the month of January KPIs: 1) Thermal heating power per
square meter Ken; 2) total computational time in logarithmic scale Kttot; 3) Total number
of solver time out or error status Kerr, the KPI description is presented in 5.4. The results
are shown for all the MPC combinations explained in 5.3.
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to discomfort similar to the baseline controller. I managed to make the
MPC7 formulation work properly, the results are similar to MPC6 and
not shown in the chart, however, it required a lot of manual tuning in the
comfort constraints and solver internal options (MINLP approximation re-
laxation, integer tolerance) to guide the solution. This highlights the fact
that Bonmin-Hyb is probably not robust enough for this type of problem.

Looking at the computational time ratio Ktimr in Figure 5.4 and total com-
putational time Kttot in Figure 5.5 the obtained trend is as expected with
simpler formulations being faster than the more complex ones. However,
all the MPC formulations have a Ktimr value much lower than one, meaning
that in theory they could all be used for a real time application where the
MPC control is updated every 15 (min). Looking at a relative comparison
of the computational time Kttot, MPC1 and MPC2, the QP formulations,
take between 15 and 20 (min), in the chart around 1e03 (s), to run for
all the 2976 optimization iterations, so on average from 0.3 to 0.4 (s) per
control horizon optimization. MPC3 and MPC4, the NLP formulations,
take between 50 and 60 (min), in the chart around 3e03 (s) , so on average
from 1 to 1.3 (s) per control horizon optimization. The remaining MINLP
formulations instead take from 1 (h) 40 (min), in the chart 6e03 (s) up to
2 (d) and 5 (h), in the chart 1.9e05 (s), so on average from 2 (s) to 64
(s) per control horizon optimization. This big variation in computational
time for the MINLP problems, MPC5 to MPC10, shows that each solver or
formulation has a bigger impact on the reliability of the solver-formulation
combination. In fact, as shown in Figure 5.5 MPC5 using Bonmin as solver
but with the formulation without binary objective j5 and MPC10 using j5

in the formulation, but SCIP as solver have longer computational time, due
to having a lot of errors or timeouts in the solutions for around 30 % of the
iterations, meaning that the MINLP solvers are struggling to find a proper
solution. Furthermore, SCIP was not able to find a solution without the j5
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binary objective, and in general all the MINLP solvers benefit from the in-
troduction of j5 in terms of reliability and computational time. This, could
be explained by the fact that by introducing j5, each NLP approximation
of the MINLP is itself an approximation of a MINLP problem.

The last KPIs to look at are the thermal energy (Ken) in Figure 5.5 and
the energy cost (Kcost) in Figure 5.4. About Ken, all the formulations and
the baseline are within 6 % of each other, with MPC2, MPC4, MPC6,
MPC7 and MPC9 being marginally better than the baseline and MPC1,
MPC3, MPC8 and MPC10 being marginally worse. When looking at cost
however, MPC1 is the worst performer with 5 % increase with respect
to the baseline, while MPC2, MPC4, MPC6 and MPC9 show the best
performance with a 13 % decrease in cost with respect to the baseline. The
main difference in performance is due to the fact that MPC1 considers the
COP only as a function of the external temperature because the supply
temperature is not available, while the other formulations use the supply
temperature as a control variable and have a COP also as a function of
the supply temperature, allowing for a more efficient use of the heat pump.
From these KPIs, though, it is not clear why the MPC2, MPC4, MPC6
and MPC9 seem to outperform the other nonlinear formulations. For that,
we must consider a more detailed analysis of time series data, see next
subsection.

5.4.2. Typical day analysis

Looking at the charts in Figures 5.6,5.7 and 5.8, when comparing the ther-
mal power distribution, bottom charts, of MPC2, MPC4, MPC6 and MPC9
with MPC3, MPC5, MPC8 and MPC10 it is clear that the difference is
in the on-off frequency in the latter cases. The frequent on-off cycling of
the system causes an higher discrepancy between the prediction of the low
order model versus the emulator model. The main reason is that the build-
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ings envelope emulator model is made up of hundreds of states while the
reduced order model uses only a handful. The consequence is that the high
frequency components impact the temperature nodes in a different way on
the the emulator and the reduced order models causing an instability in
the MPC and a vicious cyle starts where the MPC continues to change
the control trajectory since it does not converge with the emulator model.
This can also be noticed by the temperature plots,top charts, where MPC3,
MPC5, MPC8 and MPC10 compensate more for an expected steeper drop
of temperature with respect to MPC2, MPC4, MPC6 and MPC9. The ad-
ditional energy leads to an overheating during setback times and explains
the difference in Kcost KPI. Furthermore, when controlling a system, fre-
quent on-off control should be avoided since it increases the wear of the
components.

The newly introduced KPI Kconlen shown in Table 5.4, should summarize all
the content of Figures 5.6,5.7 and 5.8.Calculating the KPI for the overall
thermal power supplied by the HP for the different formulations yields
Figure 5.9. Looking at this bar chart the same conclusion can be drawn
as for the time series analysis since MPC2, MPC4, MPC9 and MPC6
have a control arc length that is half that of MPC3, MPC5, MPC8 and
MPC10, meaning a lot of oscillations and control actions from the latter
MPC formulations.

With the addition of Kconlen KPI is possible to make a comprehensive com-
parison between all the MPC formulations, where the baseline performs
similarly to MPC2, MPC4, MPC9 and MPC6.This make sense since the
baseline controller is properly tuned and turns on and off properly, how-
ever considering discomfort Kdis and cost Kcost the MPC outperforms the
baseline controller. In conclusion, it seems that increasing the complexity
of the problem does not bring any benefit for the chosen case study, but
only adds computational burden, makes the MPC less robust and more
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Figure 5.6: results for a typical day 15th of January for MPC7 that did not converge and
MPC1 that uses Q̇ as control variable: 1) are the temperatures in the living room for
baseline; 2) are the total thermal power supplied by the heat pump to the floor heating
system.
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Figure 5.7: results for a typical day 15th of January for MPC2, linear using supply tem-
perature as optimization variable, MPC4 that uses supply temperature and continuous
valve control, MPC6 and MPC9 uses supply temperature and integer valve control with
the binary constraint: 1) are the temperatures in the living room for baseline; 2) are the
total thermal power supplied by the heat pump to the floor heating system.
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Figure 5.8: Results for a typical day 15th of January for MPC3 and MPC3,using supply
temperature and continuous valve control, MPC8 and MPC10 using supply temperature
and integer valve control. MPC8 without the binary constraint and MPC10 with the
binary constraint 1) are the temperatures in the living room for baseline, 2) are the total
thermal power supplied by the heat pump to the floor heating system.
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Figure 5.9: Power arc length KPI (Kconlen) specific for the month of January KPIs. It
allows to estimate the heat pump frequency switching for the different formulations, the
KPI description is presented in Table 5.4.
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manual tuning is required to find a suitable solution.

5.4.3. Conclusions

This Chapter compared ten combinations of MPC formulations and solvers
as shown in Table 5.3 ranging from a Quadratic Programming (QP) for-
mulation, MPC1, to Non Linear Programming (NLP) formulations, MPC2
to MPC4, and Mixed Integer Nonlinear formulations (MINLP), MPC5 to
MPC10. The conclusions on the desired objectives are reported in the
bullet points below:

• making a linearized formulation of a natively nonlinear problem is a
nontrivial task as shown by the big difference in performance between
MPC1 and MPC2. In MPC1 the thermal power u6 is used to model
the temperature in floor heating, while in MPC2 the supply temper-
ature u2, with the zone valves always open u5. MPC2 allowed for a
more detailed formulation of the heat pump COP leading an overall
better solution. In this sense, a MINLP formulation could be easier to
implement since optimal control variables can correspond to physical
control variables that then can be used to estimate the COP of the
heat pump. However, the tuning process of the MINLP solver in terms
of options, tolerance and initialization to find a suitable solution was
not a trivial process,requiring a previous optimization step where a
NLP solution was used as initialization;

• in the case study analyzed, no substantial benefit was found in using a
more complex formulation in terms of KPIs, since the results are com-
parable apart from a dramatic increase in computational time for the
more complex formulations. Furthermore, as expected, the MINLP
formulations are less stable, leading MPC8 and MPC10 to a time out
or error in the solution for 30% of the iterations in the evaluation
period. The author compared state of the art open source (SCIP,
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Bonmin) and commercial (Baron) solvers. I think they are viable op-
tions to tackle building HVAC optimal control problems. However,
they are not the best solution for the case study under analysis;

• from the overall analysis, it is shown that the initial effort I spent
into finding a suitable linear constraint formulation lead to an iden-
tical performance with respect to the nonlinear counterparts, while
being faster and more robust. In literature there are many examples
on how to properly linearize the HVAC system. For example the ap-
proach showed in this Chapter can be used in most hydronic based
HVAC systems. Therefore, the conclusion is that using a linear for-
mulation for the constraints with a nonlinear objective function and
proper initialization method, such as slightly randomized free floating
solutions, gives a good balance between the accuracy of the prediction,
computational requirements and robustness.

From this analysis the chosen formulation for the parameter extrapolation
is MPC2. MPC2 is a linear formulation using only the supply temperature
as control variable, while the valves are opened when the temperature is
above the minimum HP power in the emulator corresponding to 20% of the
nominal capacity. The solver used is IPOPT and in terms of objectives it
tried to minimize discomfort and energy consumption. So, the optimal con-
trol trajectories shown for the parameter extrapolation analysis discussed
in Section 5.5 are calculated using this formulation.

5.5. MPC derived pre-on and pre-off for floor heating

scenario

In this Section the optimal control trajectories obtain from the optimal
control strategy are used to extrapolate a useful set of pre-on and pre-off
parameters that can be directly used in the apartment micro controller.
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Section 5.5.1 describes the baseline controller and the reference case study.
Section 5.5.2 showcases the general approach used to find the pre-on and
pre-off parameters starting from the optimal control trajectories. Finally,
Section 5.5.3 shows the results of the baseline controller compared with the
results of the improved controller using monthly tuned pre-on and pre-off
parameters.

5.5.1. Baseline description

This Section reports the findings in the accepted article [12], where the I
am first author. A copy of the manuscript is attached to the end of the
manuscript in Appendix C. The goal is to find suitable pre-on and pre-off
parameters for the heating system starting from the MPC solution. Before
looking at the extrapolation methodology, in Figure 5.10 is reported the
control scheme for the heating scenario.

Figure 5.10: control scheme for the heating system in the Modelica model.

The baseline controller is made up of two parts. A thermostat for each
thermal zone that has an hysteresis controller with an offset of 0.4 (°C)
and a Proportional Integral (PI) controller for the modulation of the sup-
ply temperature to the floor heating system. The supply temperature is
modulated with a climatic curve as shown in Figure 5.11.



118 5| MPC comparisons and rules extrapolation

Figure 5.11: Climatic curve used to calculate supply temperature to floor heating system.
On y-axis supply temperature and on x-axis external temperature.

The PI parameters were fine tuned to minimize oscillations, overshooting
and settling time. Furthermore, a different setpoint was used with respect
to the previous section on MPC formulations to increase the variability
of occupancy in the apartment differentiating between the thermal zones.
Before the living room and bed room were occupied at the same time
between 8:00 P.M. and 8 A.M. For the this analysis the setpoint used are
reported in Figure 5.12.

Figure 5.12: New heating setpoint profile for pre on and pre off analysis. Time in hours
for a sample week from Monday to Sunday on x-axis. On y-axis the setpoint temperatures
for Living room (orange) and for Bedroom (blue dashed line)

In this way the Living room and Bedroom have a different setpoint profile
mimicking a working person that comes home at 6 P.M., moves to the
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Bedroom at 10 P.M., wakes up at 6 A.M. and goes out of the house at 8
A.M. during the weekdays. During the weekend instead the time is spent
in the Living room during from 8 A.M to 10 P.M. and in the bedroom
otherwise.

5.5.2. Theoretical approach

The MPC result is a control trajectory that switches on and off the heat
pump to guarantee the thermal comfort of the users. To deal with the
high thermal inertia of the floor heating system and maintain desirable
level of comfort the MPC will turn on the heat pump before a change
from setback to setpoint. In the same way, to avoid overheating it will
switch it off before the change between setpoint and setback. Depending
on the boundary conditions, weather, setpoint and internal gains the time
between the setpoint change and the heat pump turning on or off will be
different. Theoretically each time the setpoint changes the on and off time
will be different. However, to minimize the stress for the network in the
Merezzate+ project the communication between the cloud service running
the MPC and the local controllers has to be kept at a minimum. For this
reason the first try was to find an average pre-on and pre-off parameters for
each month of the heating season in Milan, namely from the 15th of October
to the 15th of April. These monthly averages were obtained starting from
the calculation of the supplied energy to the radiant floor distinguishing
between the pre-on phase QpreheaOPT and the normal operation QheaOPT .
These two variables correspond to the orange and red area in Figure 5.13.
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Figure 5.13: Visualization of pre on ∆ton and pre off ∆toff parameters. On x-axis the time
is plotted in hours. On the left y-axis the zone temperature (solid blue line) and setpoint
(dashed black line). On the right y-axis the heat rate supplied to the floor heating system
is shown (red line). The two highlighted areas are supplied energy to the radiant floor
distinguishing between the pre-on phase QpreheaOPT and the normal operation QheaOPT

The two highlighted areas are equivalent to the rectangles, in which the
heights are Q̇meanOn and Q̇meanOff and the two widths are the pre-on pa-
rameter ∆tOn and difference between the total on time before switching
off and the pre-off parameter ∆ttot − ∆toff . Thus, by simply making the
equivalence between the two areas the equations for the calculations of pre
on and pre off parameters becomes:

Q̇meanOn =
QpreheaOPT

∆tOn

Q̇meanOff =
QheaOPT

∆ttot −∆tOff

(5.2)

5.5.3. Pre-on and pre-off results

Calculating the average QpreheaOPT and QheaOPT for each month the monthly
values of ∆tOn and ∆tOff can be found. In the table below are reported
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the parameters for living room and bedroom:

Table 5.5: average monthly pre on and pre off parameters from 15 of October to 15 of
April for living room and bedroom

Period Pre-on
(h) Living
room

Pre-off
(h) Living
room

Pre-on (h)
bedroom

Pre-off (h)
bedroom

01/01-01/31 1.56 0 4 0.2
02/01-02/28 1.22 0 3.6 0.3
03/01-03/31 0.2 0.2 3 1.7
04/01-04/15 0 1.3 2.2 2.2
10/15-10/31 0 0.6 1 1.9
11/01-11/30 0.8 0.1 2.6 0.8
12/01-12/31 1.4 0.1 3.4 0.2

Looking at Table 5.5 it is interesting to notice how the setpoint difference
between Living room and Bedroom drastically affects the pre-on and pre-
off parameters. This tells us that when applying this methodology on a
real case study several setpoint profiles should be simulated to map the
possible user preferences and average out the possible pre-on and pre-off
parameters depending on user preference.

In Table 5.6 is shown a KPI comparison between the baseline controller
and the controller with the improved parameters:

Table 5.6: KPI results comparison between baseline rule based controller and improved
controller with monthly pre on and off parameters

KPI Baseline Pre on off
Discomfort Living room (K) 1.104 0.191 (-83%)
Discomfort Bedroom (K) 0.155 0.006 (-96%)
Thermal energy supplied (kWh) 1758 1808 (+2.8%)
Electrical energy consumed (kWh) 437 455 (+4.0%)

The KPIs reported in the table are calculated in the same way as the ones
used in BOPTEST described in the MPC section. Looking at Table 5.6 the
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first difference that jumps to the eyes is the relative decrease in discomfort
between the baseline and the improved controller for both Living room and
Bedroom. Looking at the absolute numbers though, the Bedroom only
shows a marginal improvement from an average of 0.155 (K) to almost 0.
The reason is that the two thermal zones are thermally connected to each
other trough the walls and also through a constant air exchange between
them. This makes so that the Bedroom gets naturally preheated by the
floor heating turning on the Living room even in the baseline case with the
exception of particularly cold days. In the Living room instead the change
is big even in absolute value considering that 1.1 (K) is the average value
for the whole heating season, while most of the discomfort occurs in the
first few occupied hours due to underheating. In fact, looking at Figure
5.14 it shows that the underheating that can occur in the baseline is higher
than 1.1 (K).

Figure 5.14: On both charts x-axis is two typical days in January. blue line is the improved
controller and red line is the baseline, dashed black line is the reference setpoint. In the
top chart is plotted the Living room temperature. In the bottom chart is shown the heat
rate supplied to the floor heating system
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Looking at the thermal and electrical consumption of the heat pump, this
did not change too much from the improved control to baseline. This is
consistent with the fact that we are dealing with a new building with a well
insulated envelope with low losses and the COP of the heat pump is also
not particularly affected. Under these conditions the addition of the pre-on
and pre-off parameters can be considered a shift of the energy supplied to
the floor heating system.
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6| Conclusions

This Chapter reports the results obtained by pursuing the objectives stated
in the Introduction section.

• The first objective was to contribute to the development of the latest
iteration of the compact Dessicant Evaporative Cooling (DEC) device
FREESCOO by carrying out experiments and numerical simulations
on the heat exchanger, that is the core component of the device.

– Two versions of the FREESCOO heat exchanger were tested in
the ReLab facility. Around 100 tests for the first heat exchanger
and 150 for the second one were conducted. That corresponds
to 28 complete cycles for the first heat exchanger and around 43
cycles for the second heat exchanger. Each cycle condition was
repeated at least three times to minimize the influence of the pre-
vious cycle since the FREESCOO system is always in transient
condition.3 external conditions to simulate late spring early au-
tumn and summer Twetbulb = 20, 23, 26 (°C) and Tdrybulb =
28,30 (°C). 3 room conditions Troom = 24, 26, 30(°C) and RH =
60(%) to simulate 2 comfort condition and a ventilation scenario
(all supply air is taken from external environment). 12 combina-
tions of flow ṁflow = 40, 60, 80, 100 (%) of the fan nominal value
550 (kg/h) for ADS and RIG, 360 (kg/h) for EVA.3 cycle times
for Adsorption (ADS), Regeneration (REG) = 40, 30, 18 (min).
Then the experimental data were analyzed and processed to be
used for the calibration and validation of the numerical model,
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leading to a publication on the transient response of chilled mir-
rors and capacitive hygrometers.

– A Modelica library for a 2-D model of the latest iteration of the
FREESCOO device was developed and the model calibrated on
the available experimental data leading to a NRMSE below 6%
with respect to experimental data for the useful adsorption heat
and water balance of the silica gel over several cycles in different
boundary and working conditions. Then a model of the whole
device made up of two heat exchanger, humidifiers and air to
water heat exchanger for the regeneration phase was developed
and coupled with the Modelica two room apartment case study
model.

– A reduced order model of FREESCOO for optimization purposes
was identified starting from the 2-D model output and included
in the Modelica library.

In future work, the Modelica library will be used by SolarInvent to
further refine the heat exchanger model and explore new uses for the
heat exchanger in addition to being used in the FREESCOO device.

• The second objective was to compare different MPC formulations to
address the literature gap. This work tried to partially fill the lit-
erature gap by applying a number of MPC optimal control problem
formulations and using different optimization solvers to a relatively
common HVAC system. The idea was to focus on two issues that
could cover a broad range of HVAC systems: 1) nonlinearity aris-
ing from the estimation of the heat pump Coefficient of Performance
(COP) and 2) binary on-off physical control inputs for distribution cir-
cuit valves. Depending on the approach to model these two issues, the
resulting optimization problem formulation can be a QP, Non linear
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Programming (NLP), or MINLP. The conclusions are listed below.

– making a linearized formulation of a natively nonlinear problem
is a nontrivial task as shown by the big difference in performance
between MPC1 and MPC2 as shown in Section 5.2. In MPC1
the thermal power u6 is used to model the heat rate in the floor
heating, while in MPC2 the supply temperature u2, with the zone
valves always open u5. MPC2 allowed for a more detailed formu-
lation of the heat pump COP leading an overall better solution.
In this sense a MINLP formulation could be easier to implement
since the optimal control variables can correspond to the physi-
cal control variables, that then can be used to estimate the COP
of the heat pump. However, the tuning process of the MINLP
solver to find a suitable solution was not a trivial process (toler-
ance and initialization options), requiring a previous optimization
step where a NLP solution was used as initialization;

– in the case study analyzed, no substantial benefit was found in
using a more complex formulation in terms of KPIs, since the
results are comparable apart from a dramatic increase in com-
putational time for more complex formulations. Furthermore, as
expected, the MINLP formulations are less stable, leading MPC8
and MPC10 to a time out or error in the solution for 30% of the
iterations in the evaluation period. The author compared state
of the art open source (SCIP, Bonmin) and commercial (Baron)
solvers. The author thinks that they are viable options to tackle
building HVAC optimal control problems. However, they are not
the best solution for the case study under analysis;

– from the overall analysis, it is shown that the initial effort I put
into finding a suitable linear constraint formulation lead to an
identical performance with respect to the nonlinear counterparts,
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while being faster and more robust. In literature there are many
examples on how to properly linearize the HVAC system, includ-
ing this thesis. Therefore, the author concludes that using a linear
formulation for the constraints with a nonlinear objective function
and proper initialization method, such as slightly randomized free
floating solutions, gives a good balance between the accuracy of
the prediction, computational requirements and robustness.

Future work could include the addition of this test case to the BOPTEST
Github repository together with the MPC framework utilized to fa-
cilitate comparisons and future MPC implementations on similar case
studies.

• The third objective of the thesis was to extrapolate simplified rules
from the optimization process that can improve the rule based con-
troller for the case studies.

– For the cooling case FREESCOO is a fixed bed transient DEC
device that needs to run on an adsorption and regeneration cycle,
where the phases times impact the average power output of the
system. The ideal scenario to increase the energy performance
while keeping comfort would be to match the cooling demand
from the building with the average power output of the DEC sys-
tem. For this reason the adsorption and regeneration cycles times
were optimized monthly for the cooling season, leading to a 20%
increase in the seasonal thermal COP, without reducing the com-
fort or increasing the electrical consumption of FREESCOO. In
future work the focus will be in trying different tuning periods,
such as weekly or daily and also switch the control from an hys-
teresis controller with nominal flow rate to a proportional integral
control that modulates the airflow depending on the error between
setpoint and room temperature. This should mitigate the over-
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coooling action carried out by the current version of FREESCOO.

– For the heating case, the goal was to use the MPC results to
mitigate the impact of floor heating on thermal comfort. Their
high thermal inertia caused underheating or overheating issues
and consequent discomfort and/or waste of energy in the base-
line controller. The optimal control trajectory found by the MPC
algorithm took into account the disturbances and buildings dy-
namics to avoid both underheating and overheating. Using the
MPC trajectory, monthly constant pre on and pre off parame-
ters were obtained leading to a decrease in discomfort of 90%
for the whole heating season, while not increasing the energy de-
mand. For the future development of this work, different feature
extrapolation methods will be considered. Instead of monthly,
the pre-on/pre-off parameters could be updated with a different
frequency. Furthermore, the function used to find the parameters
can be changed from a constant average power to a linear or non-
linear relations. Lastly, depending on the sensors available locally
or cloud forecast different heuristic metrics will be developed and
tested in Merezzate+.
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Nomenclature

Symbols

δ Auxiliary temperature variable [K]

Ḣ Enthalpy flow rate [kW ]

Q̇ Heat flow rate [kW ]

Φ Specific heat rate [kW/m2]

A Flow or surface area [m2]

C Heat Capacity [kJ/K]

pe Electricity price [e]

R Thermal Resistance [kW/K]

T Temperature [K]

ui Control variable [−]

Acronyms

API Application Programming Interface

BOPTEST Building Optimization Performance Test framework

COP Coefficient Of Performance

HVAC Heating, Ventilation and Air Conditioning

I or IP Integer or Integer Programming

KPI Key Performance Indicator

L or LP Linear or Linear Programming

MEF Major Economic Forum

MIL or MILP Mixed Integer Linear or Mixed Integer Linear Programming

MINL or MINLP Mixed Integer Nonlinear or Mixed Inger NonLinear Pro-
gramming

2



MPC Model Predictive Control

NL or NLP Nonlinear or NonLinear Programming

NRMSE Normalized Root Mean Square Error

Q or QP Quadratic or Quadratic Programming

SQP Sequential Quadratic Programming

1. Introduction1

HVAC systems account for 20% of the total primary energy consumption2

in Major Economies Forum (MEF) countries (Metrics, 2015). Therefore,3

advanced controls for those systems can help reduce environmental impact4

as well as help renewable penetration by unlocking load flexibility poten-5

tial in buildings (Roth et al., 2002; del Mar Castilla et al., 2014). For the6

last decades there has been a lot of research on advanced control, includ-7

ing Model Predictive Control (MPC), for the optimal operation of building8

HVAC systems (Drgoňa et al., 2020; Kathirgamanathan et al., 2021; Rockett9

and Hathway, 2017).10

For MPC, the optimal control problem can be formulated mathemati-11

cally in a variety of different ways, even for identical HVAC systems. The12

primary reasons for the variety include:13

• A general optimization problem could have multiple equivalent1 prob-14

lems, e.g., by introducing slack variables, elimination procedure, hard15

or soft constraints and the epigraph problem formulation (Boyd et al.,16

2004).17

• There are various approximation techniques, e.g., the McCormick con-18

vex relaxation of a bilinear function (McCormick, 1976), piecewise lin-19

ear approximation for a nonlinear function, and linear programming20

(LP) relaxation of a mixed integer linear program (MILP), which re-21

laxes the integer constraints.22

• MPC itself has different theoretical approaches, such as centralized23

versus decentralized/distributed or stochastic versus deterministic.24

1Two optimization problems are called equivalent if one solution of a problem is or can
be readily found from the other solution.

3



• The objective and constraints of a MPC can be formulated in different25

ways regarding the quantification, relative importance, and constraints26

on energy use, carbon emissions, energy cost, load flexibility, and ther-27

mal comfort.28

• Each component of an HVAC system can be modeled in several ways,29

which affects the performance of the prediction accuracy, robustness30

and computing time. For example, modelling the Coefficient of Per-31

formance (COP) of an air to water heat pump ranges from the con-32

stant COP approach to the DOE-2 (research group LBL, 1991) like33

performance mapping as a function of part load ratio, outdoor air34

temperature and supply water temperature.35

• The selection of MPC optimization variables is a control design factor.36

For example, one may select either controllable inputs that are the37

same as those of the physical system, such as percent valve position,38

or that are abstracted from the system model, such as heat flow rates.39

In the latter case, a strategy is needed to convert optimal solutions to40

control inputs that are available in the physical system.41

The significance of these variations of MPC formulations is that they42

could change not only the accuracy/physical reliability of a model and com-43

putation time, but also the class of optimization problems (e.g., from convex44

to nonconvex, from NLP to LP or MILP, and vice versa), affecting mathe-45

matical properties of global optimality, feasibility, uniqueness of a solution,46

convergence of numerical optimization algorithms, and MPC closed-loop47

stability. Consequently, it could considerably impact the overall MPC per-48

formance (e.g., energy consumption, comfort, computational time, and the49

rate of change of control inputs). As a consequence, a significant amount50

of time could be spent iterating to identify the most suitable optimization51

formulation for each HVAC system. Despite this importance, there are very52

few well-documented papers that investigate different MPC formulations.53

This is especially true for MINL MPC, which is one of the most natural and54

straightforward ways to formulate optimal control problems for many HVAC55

applications. This paper tries to partially fill this gap in the literature by56

providing comparisons of multiple MPC formulations for an HVAC system57

that has both binary and continuous control variables. In addition, this58

paper investigates the practical applicability of MINL MPC approaches.59

Section 2 reports the case study details, MPC formulations, optimization60

solvers and the co-simulation setup. Section 3 presents the results for the61

4



MPC formulations comparison. Finally, Section 4 reports the main conclu-62

sions of this study.63

1.1. Literature review64

Equivalent formulations for building applications can be found in many65

papers. One example is when peak demand is considered in a control ob-66

jective. This approach replaces the maximum power or demand cost over a67

prediction horizon with linear constraints and a slack variable, namely the68

target peak or demand cost (ASHRAE, 2019, Chapter 43). Depending on69

applications, this approach could convert NLP to LP or MINLP to MILP70

(Kim and Braun, 2018).71

Approximation techniques have also been widely applied to HVAC sys-72

tems. Risbeck et al. (2017) applied a piecewise linearization technique for73

optimal scheduling of operations of chillers, pumps, cooling towers, boil-74

ers and thermal energy storages. The introduced approach approximates75

a nonlinear chiller performance map with a set of piecewise linear models,76

converting MINLP to MILP. Kim et al. (2015) applied a linear program-77

ming relaxation approach that relaxes integer constraints for coordinating78

operations of multiple rooftop units. This approach converts an IP to LP79

for better computation efficiency. Atam and Helsen (2015) applied a con-80

vex relaxation technique to handle the bilinearity that naturally appears81

in thermal energy systems. The proposed method converts a nonconvex82

optimization problem to a convex problem to ensure global optimality.83

Considering MPC architecture and the theoretical approach, Scherer84

et al. (2014); Walker et al. (2017) compared centralized and distributed85

MPC architectures, highlighting that distributed approaches have slightly86

worse KPI performance but better computational time. Oldewurtel et al.87

(2012); Drgoňa et al. (2013); Ma et al. (2014); Maasoumy et al. (2014) com-88

pared deterministic versus robust or stochastic MPC, showing that a robust89

or stochastic MPC performs better in scenarios of high uncertainty and is90

comparable in other cases. Rather than focusing on architecture and theo-91

retical approach, Cigler et al. (2013); Drgona and Kvasnica (2013) instead92

analyzed the formulation of the MPC problem, focusing on different cost93

functions and constraints, assessing which formulations are more robust and94

computationally efficient, but limiting their analysis to LP, QP and MILP.95

Considerable effort was also put into analyzing different building enve-96

lope thermal modeling approaches. Pŕıvara et al. (2013) compared several97

black-box and gray-box model structures to model building envelope systems98

and concluded that black box models are more computationally efficient for99

larger case studies but become less reliable for longer prediction horizons.100

5



Sourbron et al. (2013) analyzed the effects of grey box model order on the101

performance of MPC for concrete core activated buildings. Blum et al.102

(2019) also shows that model order has a strong influence on the model103

quality. Furthermore, Blum et al. (2019) identified seven factors that play104

an important role in the accuracy of the building envelope model. Picard105

et al. (2017, 2016) show that a purely physical driven white box approach106

can be viable in certain building types. Kim et al. (2016, 2018) pointed out107

that a typical identification algorithm with any model structure would likely108

result in a biased model when significant unmeasured disturbances (e.g., un-109

measured internal heat gain, in/exfiltration, door/window openings, zonal110

plug load) presented in a training dataset, and proposed a new identification111

approach for a typical grey box model structure to mitigate this negative112

effect.113

Drgoňa et al. (2020); Serale et al. (2018) provided comprehensive re-114

views on building MPC literature. For the papers that they reviewed, many115

works address the benefit and applicability of their own MPC formulations116

compared with rule-based controls. Less comprehensive work is available117

on comparisons between different HVAC modeling approaches, optimiza-118

tion variable choices, and their impacts on the resulting MPC performance.119

Verhelst et al. (2012) performed an extensive analysis of different COP for-120

mulations in the MPC problem leading to LP and NLP problems, highlight-121

ing the potential benefit of a nonlinear formulation. Pčolka et al. (2016)122

compares a linear time invariant MPC, a linear time variant and a nonlinear123

MPC in a case study for a heat pump and domestic hot water system. It124

reports that the nonlinear solution is the best, but the linear time variant125

gets close and remains more robust. In both studies of Pčolka et al. (2016);126

Verhelst et al. (2012), binary variables were not taken into account to avoid127

MILNP formulations, although MINLP arises fairly naturally when deal-128

ing with HVAC systems. Indeed, very few studies can be found comparing129

MINLP with other formulations. To the authors’ knowledge, only Burger130

et al. (2018) introduces a custom MINLP solver compared with Bonmin131

(Bonami et al., 2008) for a solar thermal system. Furthermore, it is hard to132

cross-compare to different works due to the unique case study system and133

lack of common metrics.134

1.2. Objectives and contributions135

This work aims to partially fill this literature gap by presenting com-136

parisons of ten MPC formulations with a greater focus on MINL MPCs, for137

a relatively common HVAC system that requires control decisions on valve138

on/off and supply water temperature setpoint. The diversity of formulations139

6



is due to two issues that appear in a broad range of HVAC systems: 1) the140

nonlinearity arising from modeling heat pump COP and 2) the binary on-off141

physical control inputs for distribution circuit valves. Depending on mod-142

eling and approximation approaches to handle them, the resulting optimal143

control problem formulations become QP, NLP or MINLP. Each formulation144

encompasses a trade-off between accuracy in the prediction, robustness to145

find an optimal solution, computational requirements, the rate of change of146

control inputs, energy consumption, and comfort violation.147

The contributions of this paper are:148

• Present a well-documented work on how HVAC performance can vary149

with MPC formulations150

• Understand the benefits of increased prediction accuracy from in-151

creased model complexity and the corresponding trade-offs152

• Introduce a new Key Performance Indicator (KPI) to quantify the rate153

of change of a control input154

• Survey, introduce, and test available optimization solvers of each prob-155

lem formulation, especially novel MINLP-specific solvers, that were156

not comprehensively investigated, but could potentially be useful for157

typical building HVAC optimal control problems158

• Share lessons-learned for designing MINL MPC159

2. Methodology160

2.1. Case study description161

The chosen case study is a newly built two-room apartment in Milan,162

Italy. The HVAC system is a two-circuit radiant floor heating system con-163

nected to an air source heat pump. A diagram of the HVAC system is164

presented in Figure 1.165

Each thermal zone is independently controlled via its own on/off valve.166

The pump works with a constant head tuned to provide the nominal water167

mass flow rate to each floor heating circuit when a valve is open. Control168

decisions are the two valves’ statuses and the heat pump supply water set169

point. Despite its simplicity, the case study includes the HVAC hydronic170

system components that allow for several optimal control models, and lead171

to three different optimization problem classes to be solved: QP, NLP, and172

MINLP.173
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Figure 1: Scheme of the case study HVAC.

The emulator model for the apartment and HVAC system was developed174

in Modelica using the IBPSA 3.0 (master branch commit 8a0d237) (Wetter175

et al., 2019), Buildings 8.0 (master branch commit 69bb7cf) (Wetter et al.,176

2014) and IDEAS 2.2.1 (master branch commit 32860ea) (Jorissen et al.,177

2018) libraries. The MPC algorithms were implemented using the Python-178

based optimization modeling language Pyomo (Bynum et al., 2021). Finally179

the various MPC formulations were co-simulated with the emulator model180

thanks to the Application Performance Interfaces (APIs) and run-time en-181

vironment provided by the BOPTEST software framework (Blum et al.,182

2021), which also provides as output a standard subset of KPIs, including183

thermal discomfort, energy consumption, cost of the energy and computa-184

tional time ratio. In this way, it will be possible to consistently compare185

all MPC formulations on the same emulator, highlight the pros and cons186

of each approach, and make the emulator publicly available for continued187

usage and further comparison of control approaches.188

2.2. Introduction of optimization solvers189

Pyomo allows to easily couple different solvers through the AMPL inter-190

face (AMPL, 2003) which is supported by a wide variety of solvers. The QP191

and NLP solver, IPOPT (Wachter, 2002) was chosen due to the popularity192

and widespread usage. The MINLP solvers were chosen by looking at the re-193

sults from (Kronqvist et al., 2019), which analyzed solver performance on a194

set of 335 convex MINLP problems and included both open source and com-195

mercial solvers. The subset of solvers chosen for this study includes some of196

the best performing and most popular choices for open source and commer-197

cial alternatives. BONMIN (Bonami et al., 2008) is an open source project198

belonging to the project COIN-OR foundation (or Foundation, 2006), as199
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does IPOPT, and it is a MINLP solver mainly used for convex MINLP200

problems. MINLP solvers divide the optimization problem into a MILP or201

MIQP problem and NLP sub problems. In our setup, BONMIN uses CBC202

(Forrest and Lougee-Heimer, 2005) as the MIQP subsolver and IPOPT as203

the NLP solver. In particular, two algorithms are tested from BONMIN.204

The first is BONMIN-BB, which uses a variation of the Branch and Bound205

algorithm to convert the problem. The second one is BONMIN-Hyb, which206

is a hybrid approach between Branch and Cut and Outer Approximation207

algorithms, which is faster than BONMIN-BB, but suffers more from the is-208

sue of falling into a local minima when the objective function is not convex.209

As a commercial alternative, Baron (Kılınç and Sahinidis, 2018) was used210

since, differently from BONMIN, it should be able to guarantee a close to211

global optimum even when the objective function is not convex. Baron uses212

a variation of the Branch and Bound algorithm to reduce the MINLP prob-213

lem into a subset of NLP problems and a MIQP problem. The MIQP solver214

is CPLEX and the NLP solver is IPOPT. Lastly an open source alternative215

to Baron, SCIP, is also tested, which is a global solver that uses a variation216

of the Branch and Bound algorithm. In our setup, SCIP uses CBC as the217

MIQP subsolver and IPOPT as the NLP solver.218

2.3. Emulator model219

In Figure 2, a schematic of the apartment is presented, while in Figures220

3 and 4, the yearly frequency plot of the dry bulb temperature and global221

horizontal radiation for the location (Milan, Italy) are shown. Milan can be222

considered a continental temperate humid climate. The maximum TDryBulb223

is 32 [°C], the minimum is -7.4 [°C] and the average 11.7 [°C]. In Figure 5,224

a brief validation of the emulator model is shown, which used experimental225

data coming from a globe thermometer positioned in the center of the living226

room, while the boundary conditions were determined from local weather227

stations and localized forecast services. For an in depth description of the228

envelope, the reader can access the test case (two zone hydronic apartment)229

documentation at the BOPTEST repository Two zone hydronic apartment230

(IBPSA, 2019). In Table 1, a summary of the main features of the case231

study is reported.232

The thermal zones and floor heating system are modelled using the Build-233

ings library. The remainder of the hydronic system is modelled using the234

IBPSA library apart from the heat pump, where a dynamic performance235

map model from the IDEAS library is used. The baseline controller in the236

emulator is an on-off controller with a 1[°C] hysteresis on the room set point237

temperature. The zone valve fully opens when the hysteresis controller gives238
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Figure 2: Case study apartment scheme.

Figure 3: Dry Bulb temperature yearly frequency for Milan typical year weather data.

Figure 4: Global horizontal radiation yearly frequency for Milan typical year weather data.
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Figure 5: Validation of the living room mean radiant temperature for a week free floating
experiment in September. TSIM corresponds to the simulation temperature and TEXP
corresponds to the experimental measurement done with a globe thermometer. The dashed
line ±0.5 (°C)corresponds to an estimation of the error the instrument, namely ±0.25 (°C)
and the other measurements used

Table 1: Apartment properties.

Total floor area 44.5
[
m2
]

Total window area 8
[
m2
]

External surface to volume ratio 0.25 [1/m]

Average external thermal transmittance 0.46
[
W/

(
m2K

)]

heat pump nominal capacity 5 [kW]

Occupation period from 8 p.m. to 8 a.m. for weekdays
and unoccupied during the Weekends

Total sensible internal loads 150 [W/zone] when occupied

Total latent internal loads 40 [W/zone] when occupied

an on signal and remains closed otherwise. Each thermal zone has its own239

thermostat and is controlled independently. The pump works to provide240

a constant head, tuned to provide each floor heating circuit the respective241

nominal water mass flow rate. The heat pump supply water set point tem-242

perature is calculated via a climatic curve that depends on the external243

temperature. The baseline results shown in the Results section 3, refer to244

the emulator running the simulation with this baseline controller. The ex-245

ternal Python-Pyomo based MPC is able to override both the zone valve246

on-off signal, ui, and the heat pump supply water set point Tin,set.247

2.4. Reduced order model248

A grey-box model based on the resistance-capacitance (RC) analogy was249

identified using the Matlab identification toolbox (Ljung and Singh, 2012)250
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for use within the MPC controller. Looking at Table 1, the apartment can251

be considered to be well insulated and with heavy construction. Differ-252

ent combinations of resistors and capacitors were tried, leading to a 3C7R253

scheme that was adopted for each thermal zone. The scheme of the resulting254

RC circuit for each thermal zone is shown in Figure 6. The three capaci-255

ties are related to the room temperature Tr, wall temperature Tw and floor256

temperature Tf . Resistances connect the capacities nodes to each other and257

furthermore, two resistances connect Cr and Cw to the external temperature258

Text. The wall has a resistance that connects also with the sky temperature259

Tsky. The sky temperature allows the low order model to better treat the260

radiative heat exchange with the external environment, especially in the261

presence or absence of clouds. Lastly, the capacitors of the rooms are con-262

nected to each other through a resistor as a proxy for air exchange between263

the two thermal zones.264

The solar heat source Φs[W/m2] is the hemispherical global radiation265

hitting the external wall and window. It is divided between the wall and the266

floor and multiplied respectively by the opaque area Awall and the windows267

area Awin. a and c are tuning parameters that can be assumed as proxy268

of absorptance and trasmittance. Φint[W ] are the internal gains divided269

between sensible and radiative by the parameter b. The sensible part goes270

to the room Cr and radiative goes to the wall Cw. Finally, the heat flow rate271

to the floor heating system is shown in Figure 6 as ∆Ḣ = Ḣin − Ḣout. It is272

modelled in four different ways resulting in different classes of optimization273

problems:274

1. Linear formulation where ∆Ḣ itself is treated as an optimization vari-275

able (in this case, we let ∆Ḣ := Q̇).276

2. Linear formulation where ∆Ḣ is modeled with the supply water tem-277

perature Tin, return water temperature Tout and the nominal value of278

mass flow ṁfnom (in this case ∆Ḣ := ṁfnomcw(Tin − Tout))279

3. Nonlinear formulation where ∆Ḣ is modeled with the energy balance280

in 2., but multiplied by the valve position ui, and with the continuous281

relaxation of the integer constraint, i.e., ui ∈ [0, 1] (in this case ∆Ḣ :=282

uiṁfnomcw(Tin − Tout))283

4. Mixed Integer Nonlinear formulation where ∆Ḣ is modeled as 3. but284

without the continuous relaxation.285

For formulation 1 the optimal control variable will be the thermal power286

provided to the floor heating Q̇. For formulation 2 the optimal control287

variables will be the floor heating inlet temperature Tin. For formulations288
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3-4 the optimal control variables are Tin and the zone valve status ui. For289

the formulations 2-4 using the supply temperature Tin as an optimization290

variable, the return/outlet temperature Tout was modeled with the following291

linear equation to correlate Tout with Tin and floor temperature Tf as shown292

in equation 1 .293

Tout = wfTin + (1− wf )Tf (1)

wf is the weighting factor for the identification process. The rationale behind294

this linear relationship is that the water mass flow rate ṁfloor is constant295

and so if we consider the floor heating system as an heat exchanger wf296

would be equivalent to a constant effectiveness. This equation is valid for297

this case study since the zones valves can only be open or closed and do298

not provide variable flow control. The authors would like to point out that299

this approximation might be more problematic for formulation 3., because300

with the continuous relaxation the valve will be able to modulate the flow301

and could lead to a larger error between the reduced order model and the302

emulator model and instability in the MPC.303

Since the training of RC models is not the focus of the present work,304

the identification procedure is briefly reported. All the reduced order model305

parameters shown in Figure 6, so not including wf , were trained using two306

weeks of free floating data, where the boundary conditions were derived307

from a synthetic profile obtained through a Fourier analysis of the typical308

year data (Smart and Ballinger, 1984). In this way all major frequency309

components are present. After identifying all the model parameters, an310

additional week of data where the heating system is excited by turning311

it on and off is used to find the weighting parameter wf . The result of312

the overall identification process leads to a Normalized Root Mean Square313

Error (NRMSE) goodness of fit of 82%, defined in Equation 2, in open loop314

simulation for the whole heating season which for Milan is from the 15th of315

October to the 15th of April, where the heating system was functional.316

NRMSE goodness of fit = 100

(
1− |ydata − ymodel|

|ydata − ydata)|

)
[%] (2)

2.5. MPC formulations317

Besides the modeling approaches, other constraints and objective func-318

tions were specified to complete MPC problem formulations. In Table 2,319

all formulation elements and MPC implementation parameters that were320

commonly used for the ten different MPCs are shown. Furthermore, Table321
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parallel lines are the capacitors associated with the temperature states, the resistances are
the thermal resistances between the temperatures and the red lines indicate a heat flow
into the node.

3 lists all other optimization variables, constraints and objectives. Finally,322

in Table 4, complete MPC formulations are succinctly summarized with the323

notations of Table 3.324

Table 2: MPC states and disturbances.
Control horizon 24 [h]

Time step 15 [min]
Solution update Every time step
Discretization Direct collocation

Trliv [◦C] : (−∞,+∞)
Tfliv [◦C] : (−∞,+∞)

States (x) Twliv [◦C] : (−∞,+∞)
Trbed [◦C] : (−∞,+∞)
Tfbed [◦C] : (−∞,+∞)
Twbed [◦C] : (−∞,+∞)

Text [
◦C] : (−∞,+∞)

Tsky [◦C] : (−∞,+∞)
Tsetliv [◦C] : (−∞,+∞)

Disturbances Tsetbed [◦C] : (−∞,+∞)

Q̇rad[kW ] : [0,max]

Q̇intliv[kW ] : [0,max]

Q̇intbed[kW ] : [0,max]
pe[e] : [constant]
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Table 3: List of MPC optimization variables, constraints and objectives.

δliv/bed [◦C] (−∞,+∞)

Tin [◦C] [Tmix, Tinmax]

uB [−] uliv/bed : {0, 1} ∈ Z

Variables uR [−] uliv/bed : [0, 1] ∈ R

uopen [−] uliv/bed = 1

Q̇liv/bed [kW ] [0,max]

Comfort constraint

Ccomf Tr,liv/bed(t)− Tset,liv/bed(t) + δliv/bed(t) ≥ 0

Maximum heat flow rate

Constraints CQmax 1/(1− wf )Q̇liv/bed(t) ≤ ṁfcw(Tinmax − Tf,liv/bed(t))

Mixing constraint

CTmin Tin ≥ Tmix =
ulivTf,liv + ubedTf,bed

(uliv + ubed)

Final control objective

Jtot min(Jtot =
∫ tf
t0

∑N
i=1 kiji(t)dt) with 0 ≤ ki ≤ 1

Energy cost QP

jCOP,L Jen = pe
(∆Ḣliv(t) + ∆Ḣbed(t))

COP (Text)(t)
[e]

Energy cost NLP

jCOP,NL Jen = pe
∆Ḣliv(t) + ∆Ḣbed(t)

COP (Text, Tin)(t)
[e]

Objective Temperature mismatch

jcomf Jcom = δ2(t) [K2h]

functions Switching frequency

jswitch Jswi =
duliv
dt

2

+
dubed
dt

2

[−]

Binary constraint

jB Jbin = uliv(1− uliv) + ubed(1− ubed) [−]

Table 2 contains all common elements across the formulations, including325

dynamic states, disturbances and implementation choices. In Table 2, only326

the final choice for control horizon and time step is shown. However, four327

different control horizons were tried for the optimal control problems from 6328

up to 72 [h]. The final choice was 24 [h] since a longer prediction horizon did329
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not show significant improvement on KPIs. This time scale aligns with the330

fact that we are dealing with a heavy construction and a floor heating with a331

high thermal inertia. Another parametric study was carried out to identify332

a suitable time step where a MPC solution updates. Bringing it below 15333

[min] did not give any significant benefits. To convert continuous optimal334

control problems into discrete programming problems, a direct collocation335

method was implemented using the Pyomo problem statement. The six336

states include all temperatures in both thermal zones and the disturbances337

as reported in Section 2.4, plus the two room set points and the energy price338

pe[e] set to 0.20 [e/kWh].339

Table 3 lists all other optimization variables, constraints, and objective340

functions used in different formulations (each MPC formulation is expressed341

with a combination of those in Table 4). δliv/bed is an auxiliary variable342

representing a temperature deviation from a setpoint, and is coupled with343

the constraint Ccomf and the objective jcomf. By looking at the constraint344

Ccomf, the value of δ will be higher than zero if the room temperature Tr is345

lower than the setpoint temperature Tset. In this case, it will be penalized346

by including δ2 in the objective jcomf. This will push the MPC to keep Tr347

higher than the setpoint temperature.348

The other optimization variables, as well as the constraints, are related349

to the floor heat flow rate models explained in Section 2.4. Tin is the sup-350

ply temperature and can go up to the the maximum temperature of 45 [°C]351

to avoid high temperatures in the floor, down to a minimum temperature,352

defined as the adiabatic mixing temperature in constraint CTmin. The for-353

mulation of constraint CTmin comes from a local energy and mass balance354

at the return outlet of the floor heating system under the assumption that355

the nominal flow rate is the same for all circuits. Tf,liv/bed is the floor tem-356

perature and uliv/bed is the floor heating circuit valve control. uR represents357

a continuous relaxation on the valve control, so that the valve can continu-358

ously modulate the flow from totally closed to totally opened. uB indicates359

the valve controls without the relaxation and are consistent with the actual360

system and emulator model. uopen means the valve controls under the as-361

sumption that the valve is always open and the modulation is carried out362

only at the supply temperature Tin. Finally, Q̇liv/bed is used directly as an363

optimization variable when the heat flow rate is not modeled explicitly. It364

can go from zero to a maximum value determined by constraint CQmax. The365

constraint on the heat flow rate CQmax imposes the maximum heat flow rate366

linearly with the floor temperature as a function of the maximum supply367

temperature Tinmax and the weighting parameter wf . This constraint helps368

to model the behavior of the floor slab, where, at constant supply temper-369
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Figure 7: Visual representation of the CQmax constraint. In grey is highlighted the ad-
missible control area with CQmax implemented. It reduces as the floor temperature Tf

since Tinmax is a constant value.

ature, the higher the floor temperature, the lower the heat transfer rate to370

the floor. Figure 7 is given as a visual representation of the idea.371

The last section of Table 4 presents all the components that can make372

up a complete control objective function. The complete objective function373

Jtot to be minimized is the sum of these different objective components374

with some weights, denoted as ki where i corresponds to a specific objective375

component. The weighting parameters ki need to be tuned to balance the376

impact of each objective on the total objective function Jtot. To find the377

best values of ki, several iterative studies were performed for each MPC for-378

mulation and priority was given to the comfort constraint. The objectives379

jCOP,L and jCOP,NL are the energy cost and are calculated as the energy380

price pe multiplied by the total heat flow rate provided by the heat pump ,381

∆Ḣliv(t)+∆Ḣbed(t), divided by the heat pump COP. The COP is a function382

of the external temperature COP (Text) for jCOP,L, so the underlying prob-383

lem remains quadratic. In jCOP,NL, the COP is a function of the external384

and supply temperatures COP (Text, Tin). Here, the optimization problem385

becomes nonlinear because a control variable is present in the denominator386

of a fraction. jcomf is the temperature mismatch between room temperature387

Tr and setpoint Tset and works as a comfort proxy. The switching frequency388

objective jswitch is the sum of the squared valve control derivatives. This389

objectives serves the purpose of penalizing undesirable sudden changes in390

the control variables. Since the derivative is discretized with forward Euler391

in the direct collocation method, there is no difference between the formu-392

lations that use valve control state as integer uB and as continuous uR.393

Finally, the binary constraint, jB, forces uliv and ubed to be close to either 0394

or 1 to avoid having an objective greater than 0. The reasoning behind this395

constraint is to approximate a MINLP as a NLP. However, as was found396

in this study, care should be taken when initializing this optimization prob-397
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lem because the introduction of the binary constraint causes a significant398

discontinuity in the solution space.399

Starting from Tables 2 and 3, several MPC formulations can be defined,400

ranging from QP to MINLP. Table 4 reports the MPC formulations coupled401

with the solvers and relative options used for the study.402

Table 4: MPC problem statement.

Tag Formulation
Problem
type

Solver Tolerance Initialization Post process Subsolvers

MPC1

δliv/bed, Q̇liv/bed,
Ccomf, CQmax,
jCOP,L, jcomf,

jswitch

QP IPOPT 10−6 Free-floating
Q̇i conversion
into ui and

Tin,set

MA57

MPC2

δliv/bed, Tin,
uopen, Ccomf,

CTmin, jCOP,NL,
jcomf, jswitch

NLP IPOPT 10−6 Free-floating

conversion of
ui from Tin

and Tin =
Tin,set

MA57

MPC3

δliv/bed, Tin, uR,
Ccomf, CTmin,
jCOP,NL, jcomf,

jswitch

NLP IPOPT 10−6 Free-floating
round ui and
Tin = Tin,set

MA57

MPC4

δliv/bed, Tin, uR,
Ccomf, CTmin,
jCOP,NL, jcomf,

jswitch, jB

NLP IPOPT 10−6 Free-floating Tin = Tin,set MA57

MPC5

δliv/bed, Tin, uB,
Ccomf, CTmin,
jCOP,NL, jcomf,

jswitch

MINLP
Bonmin-
BB

10−4 MPC3 sol Tin = Tin,set
CBC,
IPOPT

MPC6

δliv/bed, Tin, uB,
Ccomf, CTmin,
jCOP,NL, jcomf

,jswitch, jB

MINLP
Bonmin-
BB

10−4 MPC4 sol Tin = Tin,set
CBC,
IPOPT

MPC7

δliv/bed, Tin, uB,
Ccomf, CTmin,
jCOP,NL, jcomf,

jswitch, jB

MINLP
Bonmin-
Hyb

10−4 MPC4 sol Tin = Tin,set
CBC,
IPOPT

MPC8

δliv/bed, Tin, uB,
Ccomf, CTmin

,jCOP,NL, jcomf,
jswitch

MINLP Baron 10−4 MPC3 sol Tin = Tin,set
CPLEX,
IPOPT

MPC9

δliv/bed, Tin, uB,
Ccomf, CTmin,
jCOP,NL, jcomf,

jswitch, jB

MINLP Baron 10−4 MPC4 sol Tin = Tin,set
CPLEX,
IPOPT

MPC10

δliv/bed, Tin, uB,
Ccomf,CTmin

,jCOP,NL, jcomf,
jswitch, jB

MINLP SCIP 10−4 MPC4 sol Tin = Tin,set
CPLEX,
IPOPT

Table 4 shows the ten MPC formulations that were tested. The Tag403

column reports the formulation names. The Formulation column shows the404
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corresponding optimization variables, constraints, and objectives described405

in Table 3. Note that the auxiliary variable δ, the temperature constraint406

Ccomf, the temperature mismatch jcomf, and the switching objective jswitch407

are present in all formulations, apart from MPC2 where jswitch is not needed408

since there is no valve control. The Problem Type column reports the op-409

timization problem type for each MPC formulation, which can be either410

QP, NLP or MINLP. The Solver column shows the solver chosen, including411

the MINLP handling algorithm option if present. The Tolerance column is412

the solver tolerance which was determined through a parametric study as413

a compromise between quality of the solution and computational time for414

each solver. The Initialization column defines how the optimization problem415

variables were initialized. Free-floating initialization means that a simulation416

runs using the reduced order model subject to the same boundary condi-417

tions, as in the forecasts used for the optimal control, with the floor heat418

flow rate set to zero. In other formulations, a slightly randomized solution419

of a different MPC formulation is used as initialization as indicated. The420

Post Process column shows the steps needed to convert the optimal control421

trajectory into the physical control inputs used in the emulator model. The422

Subsolvers column refers to the solvers used by the solver indicated in the423

Solver column. Another parameter not included in the table is the Time-424

out. It corresponds to the maximum time between each control horizon425

optimization and was fixed at two minutes for all formulations as a compro-426

mise between giving the solvers enough time to converge to a solution and427

the overall computational time.428

Below, a summary for each MPC formulation presented in Table 4 is429

provided:430

• MPC1: This formulation uses heat flow rates directly as optimization431

variables Q̇liv/bed, and jCOP,L as the energy objective. In this way, the432

final constraints are linear in optimization variables, and the objective433

function is quadratic, making a QP problem. The solver of choice for434

QP was IPOPT with the MA57 linear subsolver. The tolerance was435

set to 10−6 from the default value of 10−8 and the timeout time to436

120 [s], and the initialization is free-floating. Some post processing437

is required to convert the optimal control trajectory into the physical438

control variables used in the emulator. If Q̇liv/bed is higher than a439

threshold value, equivalent to the minimum cutoff power of the heat440

pump set as 20 % of the nominal value 800 [W], the valves uliv/bed441

will be opened otherwise they remain closed. The supply temperature442

setpoint is calculated using the previous step return temperature plus443
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the delta given by Q̇liv/bed.444

• MPC2: This formulation uses the supply temperature as an optimiza-445

tion variable Tin, while the circuit valves remain always open uopen,446

and jCOP,NL is used for the energy objective. Together with the linear447

radiant floor heat modeling approach (see point 2.) in Section 2.4, the448

final constraints are linear in optimization variables, and nonlinear in449

the objective due to the presence of COP as a function of the sup-450

ply temperature Tin, making it a NLP problem. The solver of choice451

for the NLP problem was IPOPT with the linear subsolver MA57.452

The tolerance was set to 10−6 from the default value of 10−8 and the453

timeout time to 120 [s], and the initialization is free-floating. A post454

process is required to convert the optimal control trajectory into the455

physical control variables used in the emulator. If the supply tem-456

perature Tin is higher than a threshold value, the valves uliv/bed will457

open; otherwise, they remain closed. The threshold is calculated as458

an estimation of the minimum cutoff power of the heat pump set as459

20 % of the nominal value, 800 [W]. The minimum heat flow rate Q̇460

is calculated using the expression in point 2. Section 2.4. Then Tin is461

used as setpoint supply temperature in the emulator.462

• MPC3: Compared to MPC2, this MPC does not assume that the463

circuit valves are fully open. Instead, it relaxes the on/off binary con-464

straints to a real number set uR as mentioned in 3) in Section 2.4 and465

in Table 3. The final problem formulation is nonlinear in terms of con-466

straints and optimization variables due to the multiplication between467

supply temperature and valve control. The objective is also nonlinear468

due to the presence of COP as a function of the supply temperature469

Tin and the multiplication of two optimization variables in the calcu-470

lation of the heat flow rate ∆Ḣ. The added nonlinearity of MPC3471

compared to MPC2 makes the problem nonconvex because the solver472

can change Tin or uR to modulate the heat flow rate, making the pro-473

cess of finding a global optimum harder. Solver settings were identical474

to MPC2. MPC also needs to convert the optimal control trajectory475

into the physical control variables used in the emulator. If the circuit476

valve uliv/bed value is higher than a threshold value, the most common477

choice would be 0.4. However, the authors found out that playing478

around with this parameter and reducing it to 0.3 lead to a more sta-479

ble solution. So in case the valve control is higher than the threshold480

the valves uliv/bed will be opened, else they remain closed. Then Tin is481
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used as setpoint for the supply temperature in the emulator.482

• MPC4: This formulation is identical to MPC3, apart from the addition483

of the binary objective jB. The idea behind jB is to force uR to be484

either closed uR = 0, or open uR = 1, by penalizing all solutions that485

modulate the flow rate in a continuous manner. This allows for a486

smaller control space by reducing the optimal operating range of the487

zone valves. This will serve as an NLP approximation of a MINLP488

formulation. In this case uliv/bed will be used directly in the emulator,489

because uliv/bed in the raw solution when using jB are very close to 0490

or very close to 1, making the rounding process trivial and Tin is used491

as setpoint for the supply temperature.492

• MPC5: This formulation is the same as MPC3 but replacing the con-493

tinuous relaxation (uR) with the binary constraint (uB). In this way494

the final problem formulation is mixed integer nonlinear due to the495

multiplication between contnious supply temperature and on/off valve496

control variables, making a MINLP problem. The additional com-497

plexity of MPC5 compared to the previous QP and NLP formulations498

requires a dedicated MINLP solver. The solver of choice for MPC5499

was BONMIN-BB. CBC was used as MIQP subsolver and IPOPT as500

NLP solver. The tolerance was set to 10−4 from the default value501

of 10−6 and the timeout time to 120 [s]. The initialization is done502

by taking the solution of MPC3 after rounding the values of uliv/bed.503

The MINLP solution can be directly applied to the emulator with no504

need for post processing of the solution.In this case uliv/bed will be di-505

rectly used in the emulator and Tin is used as setpoint for the supply506

temperature.507

• MPC6: This formulation is identical to MPC5 apart from the addi-508

tion of the binary objective jB and the initialization done with MPC4509

solution. The rationale is similar as in the transition from MPC3 to510

MPC4. However, instead of a single NLP problem, it is extended to511

all subsets of NLP problems generated by the MINLP solver.In this512

case uliv/bed will be directly used in the emulator and Tin is used as513

setpoint for the supply temperature.514

• MPC7: This formulation is identical to MPC6, where a different515

MINLP algorithm option was used for the Bonmin solver BONMIN-516

Hyb. In this case uliv/bed will be directly used in the emulator and Tin517

is used as setpoint for the supply temperature.518
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Figure 8: co-simulation setup.

• MPC8: This formulation is identical to MPC5, where a different519

MINLP solver was used named Baron. The MIQP solver is CPLEX520

and the NLP solver is IPOPT.In this case uliv/bed will be directly used521

in the emulator and Tin is used as setpoint for the supply temperature.522

• MPC9: This formulation is identical to MPC8 with the addition of523

the binary constraint jB.In this case uliv/bed will be directly used in524

the emulator and Tin is used as setpoint for the supply temperature.525

• MPC10: This formulation is identical to MPC9 with the difference526

that the MINLP solver of choice was SCIP.In this case uliv/bed will be527

directly used in the emulator and Tin is used as setpoint for the supply528

temperature.529

2.6. Co-simulation setup530

All elements shown in previous sections are coupled in a co-simulation,531

a graphical representation is given in Figure 8. The optimal control rou-532

tine runs on the Pyomo Python toolbox Pyomo (Bynum et al., 2021) and533

the detailed emulator model is wrapped in a Docker container using the534

BOPTEST software (Blum et al., 2021). all simulations were carried out on535

a Linux Ubuntu 18 laptop with 16GB of RAM and an Intel(R) Core(TM)536

i7-8650U CPU @ 1.90GHz. all solvers have multi thread capability so up to537

8 threads were used for the simulations.538

All cases mentioned in Table 4 were directly implemented in Python539

using a concrete instance modeling feature of Pyomo. The solvers were540

compiled externally and coupled with Pyomo using the AMPL interface.541

Finally the Kalman filter from (Labbe, 2018) was used to update the states542

of the reduced order model at each time initialization.543

BOPTEST provides an easy to use API interface that allows the opti-544

mization scripts to manipulate the control variables of the detailed model,545

access sensor data and access forecasts, and the KPIs calculated by BOPTEST.546
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The control variables are the supply temperature setpoint and the zone valve547

open or closed signal. The forecasts are the disturbance variables reported548

in Table 2 and are considered deterministic, which means that the same549

disturbances will also be used in the emulator model. The measurements550

are the room temperature, the water supply temperature and the return551

temperature from each zone, and are used by the Kalman filter to estimate552

the initial value of room, wall, and floor temperatures for each zone for each553

prediction horizon. To estimate the performance of each MPC formulation,554

BOPTEST can calculate many KPIs, though this paper considers the ther-555

mal discomfort, computational time ratio, and energy cost. Furthermore,556

four additional KPIs were used to evaluate the performance of these MPC557

formulations, namely the total computational time [s] of the MPC solver,558

the thermal energy used [kWh], the control arc length, and the number559

of MPC solver time-out or error events [%] that occurred throughout the560

evaluation period. The equations and descriptions of the KPIs are reported561

in Table 5, and the descriptions of their variables are reported below the562

table. Only valid solutions are used to update the MPC control trajectory.563

Time-out solutions are valid when variables values are within the bounds,564

however, they may be not fully converged, meaning that constraints may not565

be completely satisfied. Time-out solutions are considered invalid if outside566

variables bounds. Solutions with an error in the solver status are discarded.567

When a solution is discarded, the previous solution current time step is used568

until a new valid solution is found.569

In the discomfort KPI Kdis calculation, Tr[K] is the room operative570

temperature and Tr,set[K] the heating setpoint, N is the total number of571

zones, and to and tf are the initial and final time of the evaluation period.572

In the computational time ratio KPI Ktimr δTk[s] is the MPC computational573

time at step k, M is the number of control steps and δtk[s] is the time interval574

of control step k. In the cost KPI Kcost, pel[EUR/kWh] is the electricity575

price considered as constant, Qtot[kWh] is the total energy supplied by the576

heat pump and Atot[m
2] is the total floor area of the apartment. Qtot[kWh]577

is also used to calculate the thermal energy KPI Ken. Kerr is the ratio578

between the number of MPC iterations that had either timeout Ntimeouts or579

errors Nerrors and the total number of iterations Ntotal, 2976, for the period580

considered, the month of January with a timestep of 15 [min]. Lastly, a new581

KPI is introduced in this manuscript called control arc length Kconlen. The582

idea of this KPI is to quantify the frequency of switching for the control583

system throughout the evaluation period. Kconlen is the ratio between the584

length of the actual control trajectory. It is calculated on the total heat flow585

rate provided by the heat pump Q̇hp versus a fictional reference trajectory586
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Table 5: BOPTEST and MPC specific KPIs.

Icon Name Equation Type

Kdis Discomfort

N∑

z=1

∫ tf

t0

max(Tr,set(t)− Tr(t), 0)dt

N
[Kh/zone]

BOPTEST

Ktimr
Computational

time ratio

M∑

k=1

∆Tk

∆tk

M
[−]

BOPTEST

Kcost Energy cost

∫ tf

t0

pel
Q̇tot(t)

COP (t)
dt

Atot
[EUR/m2]

BOPTEST

Ken

Thermal
energy
supplied

∫ tf

t0

Q̇tot(t)dt

Atot
[kWh/m2]

case study
specific

Kttot

Total
computational

time

[s]
case study
specific

Kerr
Solver errors
or timeouts

Nerrors +Ntimeouts

Ntotal
[%]

case study
specific

Kconlen
Control arc

length

∫ tf

t0

√
1 +

(
du

dt

)2

dt

∫ tf

t0

√
1 +

(
duref
dt

)2

dt

case study
specific

uref that consider the control variable u to be constant for the evaluation587

period. A visual representation is given in Figure 9.588

3. Results589

Simulation evaluation results for the month of January are shown be-590

cause similar conclusions were drawn from the rest of the heating season.591

As mentioned, all MPCs were updated for every 15 [min] time step with592

the control horizon of 24 [h]. Each MPC was calculated 2976 times for the593

simulation period and has around 1000 constraints and 600 optimization594

variables for the linear problems and 1200 optimization variables for the595

nonlinear problems.596
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Figure 9: On the y-axis is the value of the control variable u and uref is the reference
value kept as constant. On the x-axis is time with the evaluation period taken from t0 to
tf .

3.1. KPIs Comparison597

Figures 10 and 11 report the KPI results calculated by BOPTEST. From598

the Discomfort KPI Kdis in Figure 10, most of the formulations outperform599

the rule based controller with more than 90% decrease in discomfort. The600

main reason is the ability of MPC to predict the step change in zone heat-601

ing setpoint temperature and compensate for the delayed response of the602

floor heating system. However, the MPC7 solution using Bonmin with the603

Hybrid method led to discomfort similar to the baseline controller. The au-604

thors managed to make MPC7 work properly, not shown in the chart. How-605

ever, it required significant manual tuning effort for the weight on comfort606

constraints and solver internal options (MINLP approximation relaxation,607

integer tolerance) to guide the solution. This highlights that Bonmin-Hyb608

is probably not robust enough for this type of problem.609

Looking at the computational time ratio Ktimr in Figure 10 and total610

computational time Kttot in Figure 11, QP and NLPs (MPC1 - MPC4)611

required less computing time than MINLPs (MPC5-MPC10) as expected.612

However, all MPC formulations have a Ktimr value much lower than one,613

meaning that MINLPs could be used for a real time application from the614

computation perspective. Looking at a relative comparison of Kttot, MPC1615

(QP) and MPC2 (NLP) take between 15 and 20 [min] to run for all 2976616

optimization iterations, so on average from 0.3 to 0.4 [s] per optimization.617

MPC3 (NLP) and MPC4 (NLP) take between 50 and 60 [min], so on aver-618

age from 1 to 1.3 [s] per optimization. The remaining MINLP formulations,619

i.e., MPC5 to MPC10, instead take from 1 [h] 40 [min] up to 2 [d] and 5620

[h], so on average from 2 [s] to 64 [s] per optimization. This big variation621

of computational times shows that MINLP MPCs are sensitive to a formu-622

lation, initialization, and solver selection. In fact, the differences between623

MPC5 and MPC6 are only the initialization approach and the inclusion of624

jB, and the difference between MPC9 and MPC10 is only the solver. How-625
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Figure 10: BOPTEST KPIS for the month of January as thermal discomfort Kdis (top),
computational time ratio Ktimr in logarithmic scale (middle), and energy cost Kcost (bot-
tom). The results are shown for all MPC combinations explained in Table 4.
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square meter Ken (top), total computational time Kttot in logarithmic scale (middle),
Total number of solver time out or error statuses Kerr (bottom), the KPI description is
presented in Table 5 . The results are shown for all MPC combinations explained in Table
4.
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ever, MPC5 and MPC10 result in much longer computational time (a factor626

of 10) caused by a lot of errors or timeouts for around 30 % of the iterations627

(see the last subfigure in Figure 11), meaning that the MINLP solvers are628

struggling to converge. Furthermore, SCIP was not able to find a solution629

without the jB binary objective. It is very interesting that all MINLP solvers630

benefit from the introduction of jB in terms of solver reliability and time,631

because the objective seems to be redundant for integer formulations and632

solvers. This might be explained by the fact that by introducing jB, each633

NLP approximation of the MINLP is itself an approximation of a MINLP634

problem.635

The comparisons of energy cost Kcost and thermal energy Ken are shown636

in Figure 10 and in Figure 11, respectively. ForKen, all formulations and the637

baseline are within 6 % of each other, with MPC2, MPC4, MPC6, MPC7,638

and MPC9 being marginally better than the baseline, and MPC1, MPC3,639

MPC8 and MPC10 being marginally worse. When looking at cost however,640

MPC1 (QP) is the worst performer with 5 % increase with respect to the641

baseline2, while MPC2 (NLP), MPC4 (NLP), MPC6 (MINLP) and MPC9642

(MINLP) show the best performance with a 13 % decrease in cost with643

respect to the baseline. This is due to the fact that MPC1 adopts a simpler644

COP model, while the other formulations use a more precise performance645

map allowing a more efficient use of the heat pump. It is not clear from this646

analysis alone why the MPC2, MPC4, MPC6 and MPC9 seem to outperform647

the other nonlinear formulations for these KPIs. For that, we consider a648

more detailed analysis of time series data in Section 3.2.649

3.2. Typical day analysis650

Figure 12 shows daily temperature and thermal power profiles grouped651

by similar control patterns based on aggressiveness of switching: medium652

(left figures): MPC1 and MPC7 with the baseline, smooth (middle fig-653

ures): MPC2, MPC4, MPC6 and MPC9, aggressive (right figures): MPC3,654

MPC5,MPC8 and MPC10). The aggressive group’s pattern could be ex-655

plained by the convergence issues as indicated in the last panel of Figure 11656

except for MPC3. Although there are cost savings and comfort improve-657

ments for those MPCs (see Figure 10), they may not be applicable in prac-658

tice due to short cycling which increases the wear of components. It is659

also interesting to see the influence of relaxation schemes for integer con-660

2The performance of MPC1 (QP) should not be under-evaluated compared to the
baseline control because of the significant comfort improvement
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straints: The only difference of MPC3 (NLP) compared with MPC2 (LNP)661

and MPC4 (NLP) that are in the smooth group (middle figures) is in round-662

ing the MPC decision to enforce it to either 0 or 1. This rounding clearly663

introduces prediction errors and hence pushes MPC3 to solve an unexpected664

problem at the next time step. The aggressive result of MPC3 indicates that665

nonlinear MPC could be sensitive to prediction errors at least for this case666

study. Lastly, the frequent on-off of the system causes a higher discrepancy667

between the prediction of the low order model versus the emulator model.668

The main reason is that the Buildings envelope model is made up of hun-669

dreds of states while the reduced order model uses only a handful. The670

consequence is that the high frequency components for the aggressive case671

impact the temperature nodes in different ways between the emulator and672

reduced order models, increasing the error of the prediction.673

The newly introduced KPI Kconlen described in Table 5 can compactly674

indicate the level of short cycling. Indeed, from Figure 13, which compares675

Kconlen, the same conclusion from the analysis of Figure 12 can be drawn:676

the smooth group (middle figures: MPC2, MPC4, MPC6 and MPC9) has677

half the control arc length of the aggressive group (right figures: MPC3,678

MPC5, MPC8 and MPC10). However, the difference between baseline and679

MPC1 which use an on-off approach and MPC2,MPC4,MPC6 and MPC9680

which modulate the load more is not highlighted. The reason is that the681

control variable considered is the total heat pump power Q̇, which par-682

tially masks the behavior of separate control variables, water supply setpoint683

Tin,set and valves on-off ui. The authors are aware of this simplification and684

will explore a more comprehensive approach in future work.685

From the comprehensive analysis using KPIs of discomfort Kdis, cost686

Kcost and on-off switching Kconlen, MPC2 (NLP), MPC4 (NLP), MPC6687

(MINLP) and MPC9 (MINLP) that are in the smooth group are superior688

than other MPCs and the baseline, and MPC9 performs the best. However,689

as pointed out in Section 3.1, MINLP MPC formulations are sensitive to for-690

mulations, initialization approaches, solver selections and solver parameters,691

and the incremental savings of MPC9 are insignificant. Overall, we conclude692

that increasing the complexity of MINLP-MPC approaches does not bring693

substantial benefits at least for this case study but only adds computational694

burden, makes the MPC less robust, and requires more manual tuning ef-695

forts. The open-source and commercially available, general purpose MINLP696

solvers are not yet sufficiently reliable for real time MPC applications for697

the HVAC system.698
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Figure 12: Results for a typical day 15th of January, in the top row charts are the tem-
peratures in the living room for the different formulations,in the bottom row charts are
the total thermal power supplied by the heat pump to the floor heating system.
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Figure 13: Control arc length KPI Kconlen specific for the month of January. It allows
for estimating the heat pump switching frequency for the different formulations. The KPI
description is presented in Table 5. In this case the total power supplied by the heat pump
was used to calculate Kconlen

4. Conclusions699

This manuscript compared ten combinations of MPC formulations and700

solvers ranging between a QP formulation (MPC1), NLP formulations (MPC2701

- MPC4), and MINLPs (MPC5 - MPC10) with a high focus on the assess-702

ment of MINLP MPCs for a residential radiant floor heating system. The703

performances were evaluated with a detailed emulator model where all MPCs704

exhibit unmodeled dynamics. The conclusions are summarized as below.705

• MPC1 and MPC2 are both linear approximations, for the constraints,706

of the original MINLP problem. However, there is a large performance707

gap between the two. MPC1 is the most intuitive way to linearize the708

heat flow rate by combining valve and temperature into thermal power709

Q̇. However, in this way, the MPC is not able to accurately estimate710

the heat pump COP as a function of supply temperature, leading to an711

on-off operation of the system. MPC2, instead, used a less intuitive712

approach, keeping the valves always open and modulating only the713

supply temperature in order to maximize COP. Here, the more detailed714

COP formulation led to an overall better solution.715

• MINLPMPC performance is sensitive to formulations, MINLP solvers,716

solver options and tolerances, and the corresponding tuning process717

is not trivial. However, a MINLP formulation is natural and more718

straightforward to implement, since the optimization variables could719

be consistent with the physical controllable variables and modeling720
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approaches for simulations (e.g. the detailed COP model or use of721

physical valve positions as optimization variables).722

• To make MINLP MPC properly work, it often required solving an-723

other, approximated MPC problem. In our case, an NLP MPC was724

solved for initializing an MINLP MPC.725

• For this case study, no substantial benefits of any MINLP MPC formu-726

lation was found over an NLP MPC. Meanwhile, MINLP formulations727

dramatically increased computational time and were less stable, with728

time outs or errors occurring for over 30% of MPC control steps.729

• This paper introduced and compared the state-of-the-art, open source730

MINLP solvers (SCIP, Bonmin) and commercial solver (Baron). They731

could be viable options for building HVAC optimal control problems732

with appropriate tuning, but they were not the best solution for this733

case study.734

• From the overall analysis, it is shown that the initial effort of finding a735

suitable linear constraint formulation or reduce the unwanted control736

space (jB), (in modeling the radiant floor heat transfer) leads to iden-737

tical energy and discomfort performance compared with a very well738

tuned MINLP MPC, while being faster and more robust. Therefore,739

the authors conclude that using a linear formulation for the constraints740

with a nonlinear objective function and proper initialization method,741

such as slightly randomized free floating solutions, gives a good balance742

between the accuracy of the prediction, computational requirements,743

and robustness.744
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Kılınç, M.R., Sahinidis, N.V., 2018. Exploiting integrality in the global831

optimization of mixed-integer nonlinear programming problems with832

BARON. Optimization Methods and Software 33, 540–562. doi:10.1080/833

10556788.2017.1350178.834

Labbe, R.R., 2018. Filterpy documentation.835

https://filterpy.readthedocs.io/en/latest/ .836

research group LBL, S., 1991. Doe-2. https://doe2.com/DOE2/ .837

Ljung, L., Singh, R., 2012. Version 8 of the matlab system identification838

toolbox. IFAC Proceedings Volumes 45, 1826–1831.839
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Abstract 

This manuscript presents the results of an experimental 

study carried out to evaluate the delay of the transient 

responses of five capacitive hygrometers with respect to 

four chilled mirrors. Several experiments were carried out 

changing the values of air flow rate, temperature, and 

relative humidity in the test chambers in the RELAB 

research group facility. The results were used to derive 

different models of the sensors, that can be used to check 

and eventually reconstruct data from transient operation 

of desiccant evaporative cooling heat exchangers.  The 

results show that the chilled mirrors are faster for coupled 

temperature and relative humidity step changes, while for 

just a relative humidity change the two instruments 

perform in a similar fashion. This is due to the inherit 

dependence of relative humidity from dry bulb 

temperature. 

Key Innovations 

• Showcase of the transient response for several 

capacitive hygrometers and chilled mirrors. 

• Implementation of transient signal 

reconstruction for desiccant heat exchanger 

humidity profiles. 

Practical Implications 

This manuscript shows a strategy that can be used to 

reconstruct delayed relative humidity data, due to a slow 

sensor response time. The readers willing to implement 

this methodology must pay particular attention to the 

identification and validation dataset. Furthermore, the 

choice of the gain factor K and the implementation of a 

noise rejecting filter are also very important. 

Introduction 

Desiccant Evaporative Cooling (DEC) systems have seen 

an increased interest in academia (Yang, Cui, and Lan 

2019) and commercial applications (Beccali et al. 2018) 

for Heating, Ventilation and Air Conditioning (HVAC) 

applications. The core components of these systems are 

the direct or indirect evaporative cooler coupled with a 

desiccant component.  Traditionally the process air goes 

through a desiccant wheel made of silica gel or other 

desiccant materials, and after being dehumidified and 

heated up is cooled via the direct or indirect evaporative 

cooler (Wu et al. 2018). However, in the last years 

compact systems that perform the evaporative cooling and 

the desiccant processes at the same time were developed 

as shown in (Ge et al. 2008) (Beccali et al. 2018). These 

new heat exchanger designs do not allow a global steady 

state operation as in the desiccant wheel case; they are 

cyclic transient systems where the silica gel first 

dehumidifies the air moisture until saturation and then it 

is regenerated so that the cycle can repeat. Precisely 

measuring the humidity for these devices is important 

since their energy and water balances rely on this 

property. In a commercial application, where a humidity 

sensor is needed for control and monitoring, capacitive 

hygrometers are commonly employed for cost reasons. 

When switching between the adsorption and regeneration 

phase of the cycle, the humidity and temperature changes 

tend to be faster than the capacitive hygrometers response, 

leading to a delayed measure. Therefore, the objective of 

this manuscript is to evaluate what is the impact of the of 

the delay on the humidity measurement, create a model of 

the humidity sensor and reconstruct the real humidity 

profile.  

In literature there are several examples on high speed 

capacitive hygrometer sensor element modelling (Kang 

and Wise 2000; Tetelin and Pellet 2006) and some 

experimental studies to better calibrate the sensors in 

dynamic conditions (Högström, Salminen, and Heinonen 

2020). However only a handful of examples are available 

on humidity data reconstruction from capacitive 

hygrometers due to delays, for atmospheric data 

(Wildmann, Kaufmann, and Bange 2014),(Dupont 2020) 

and human breathing data (Bellitti et al. 2019). The 

concepts developed in these articles will be applied and 

expanded to the data from experiments carried out at 

RELAB ( Politecnico di Milano)  testing facility. Several 

experiments were carried out for three air flow rates (100-

360-550 kg/h), two values of temperatures (20-30 °C) and 

two (20-60 %) values of relative humidity. Then the data 

processing and model identification were carried out 

using the Matlab ® system identification toolbox to derive 

a suitable model for the humidity sensors. After, the 



model can be inverted to reconstruct the output-input 

relationship.  

Methods 

Experimental setup 

 Two climatic chambers, in Figure 1, were used to provide 

the two different temperature and humidity conditions for 

the tests. 

 

Figure 1: RELAB 50(kW) climatic chambers to simulate 

external and internal environments. 

These climatic chambers and their measurement 

instrumentation are certified according to the EN 17025. 

All the instrumentation is connected to the control panel 

inside the cambers and then the digital signal travels from 

the acquisition system to the computer interface on the left 

of Figure 1. The acquisition time step of each climatic 

chamber is 2 s. 

A total of five capacitive hygrometers and four chilled 

mirrors were tested to measure humidity together with 

several PT1000 thermo resistances and T type 

thermocouples for temperature, one thermo flux meter for 

air flow rate and a differential pressure sensor. One of the 

capacitive hygrometers, position 1 in Figure 3, has a 

lighter metal grid tip, while the others have a heavy-duty 

metal tip. A picture of the tips is shown in Figure 2.   

 

Figure 2: Capacitive hygrometers tips. 

 

In Table 1 a short summary of the characteristics is 

reported: 

Table 1: Instrumentation parameters. 

Instrument Accuracy Response 

time t90 

Thermocouples 

Type T 

±0.5 °C < 3 s 

Thermal 

resistors 

PT1000 

±  

(0.15+0.002*|T/°C|) 

°C 

Air flow 

1m/s 10 s 

Capacitive 

hygrometer 

EE31 

± (1.4 + 1%*mv) % 

RH 

Air flow 

1m/s <25 s 

(Heavy 

sensor tip) 

1m/s <15 s 

(Grid 

sensor tip) 

Chilled mirror 

OptiDew 

Mitchell 

±0.2 Dew Point °C 

T 

1°C/s 

Chilled mirror 

S8000 Mitchell 

±0.1 Dew Point °C 1.5 °C/s 

Thermal flux 

meter Proline t-

mass 65 

± 1.5% Mass flow 

rate (kg/s) 

Step 

change < 

30 s 

KIMO pressure 

sensor 

± 1.5-2% Negligible 

 

Two capacitive hygrometers and PT1000 are used to 

control the conditions in the chamber, the other 

instruments are placed in a 16 (cm) diameter, 4 (m) long 

insulated plastic tube as shown in Figure 3. 

 

Figure 3: Instruments setup schematics  

The x-axis coordinate shows the position with respect to 

the tube inlet. The designation “xN” tells how many 

instruments of the same type are present in the same tube 

section. The tubes are numbered 1 to 4 from the inlet of 

the first tube.   

The climatic chambers are also provided with an absolute 

barometer used to adjust for ambient pressure together 

with the differential pressure sensors.  

Experimental design 

The experiments were designed as a series of step changes 

between the conditions of the two rooms. As shown in 

Figure 3, the experimental setup is installed in climatic 

chamber 2. There is a small aperture between the two 

chambers where the end of the flexible channel can tightly 

fit. Two lab technicians were able to move the flexible end 

of the tube from one measuring point in a chamber to the 

other in around 1 second, while also sealing or opening 

the aperture between the two climatic chambers, the fan 

      

            

               
        

         
          

                 
      

             
     

             
        

    

   

     

      

    

   

    
 

    

    

    

  

   

   

                    

   

   

   

    

    

    

    

  

   

   

   

   

   

   



would suck air inside the duct until a steady state is 

reached. A total of twelve step change experiments were 

conducted considering different relative humidity, 

temperatures, and flow rate as shown in Table 2: 

Table 2: Experiments conducted.  

Name 

N(i→j) 

T2 

(°C) 

RH1 

(%) 

T1 

(°C) 

RH2 

(%) 

�̇�  

(kg/h) 

A(1→2) 20±0.2 60±3 20±0.5 20±1.5 100±2 

B(2→1) 20±0.2 60±3 20±0.5 20±1.5 100±2 

C(1→2) 20±0.2 60±1.5 20±0.5 20±1.5 360±6 

D(2→1) 20±0.2 60±1.5 20±0.5 20±1.5 360±6 

E(1→2) 20±0.2 60±1.5 20±0.5 20±1.5 550±8 

F(2→1) 20±0.2 60±1.5 20±0.5 20±1.5 550±8 

G(1→2) 20±0.2 60±1.5 20±0.5 20±1.5 130±2 

H(2→1) 20±0.2 20±2.5 30±1.1 20±1.5 100±2 

I(1→2) 20±0.2 20±2.5 30±1.1 20±1.5 550±8 

L(2→1) 20±0.2 20±2.5 30±1.1 20±1.5 550±8 

M(1→2) 20±0.2 20±2.5 30±1.1 20±1.5 360±6 

N(2→1) 20±0.2 20±2.5 30±1.1 20±1.5 360±6 

The first column indicates the name of the experiment 

which corresponds to the capital letter, while i→j 

corresponds to the direction of the step, the tube is moved 

from chamber i to chamber j. The variable values inside 

the tables are the mean value of the variable ± two times 

the standard deviation for each experiment. 

 

Dataset processing 

In the first step of the analysis the capacitive hygrometers 

data are compared with the chilled mirror data. This 

analysis shows a relative humidity offset between the 

instruments, Figure 4, even at constant temperature. The 

capacitive hygrometers tend to overestimate the relative 

humidity in very dry conditions (T = 20 °C, RH = 20%), 

while the error gets closer to zero at conditions closer to 

factory calibration (T = 20 °C, RH = 60%). 

 

Figure 4: Humidity ratio plot of experiments C and D, 

dotted lines for the room humidity, dashed lines for the 

capacitive hygrometers (C) and solid lines for the chilled 

mirrors (CM) 

Therefore, a linear correlation to adjust the capacitive 

sensors measurements was introduced, by carrying out a 

linear regression on the mean error in humidity ratio with 

respect to the relative humidity for all the sensors in all 

the available experiments as shown in Figure 5. 

 

 

Figure 5: Humidity ratio error between capacitive 

hygrometer (C) and chilled mirror (CM). The red dots 

are the mean errors for all the experiments, the black 

solid line is the regression curve. 

The RMSE of the linear regression is 0.17538 (g/kg), 

while the R2 is 0.71. The data points between RH = 20% 

and RH = 60% belong to the experiments shown in Table 

2. The other data points were collected in previous 

unrelated experiments with the same set of instruments in 

the same climatic chambers. 

In Figure 6 the regression curve is applied to the RH 

measurements. 

The second factor to consider is the thermal capacity of 

the measuring tubes. In experiments H to N there is a 10°C 

temperature step change, however, the air temperature 

inside the measuring tubes is affected by their thermal 

capacity causing a delay in the step experiment. The delay 

in the temperature change causes an increase in the time 

response of the capacitive hygrometers. To have a fair 

comparison with respect to the case at constant 

temperature, the relative humidity inside the tubes was re-

estimated starting from the humidity ratio and the 

thermocouple temperatures for each part of the tube; 

under the assumption that the thermocouple is fast enough 

to catch the real air temperature inside the tubes.  



 

Figure 6: Relative humidity discrepancy due to tubes 

thermal capacity. RH is the relative humidity measured, 

RHadj is the adjusted value of the relative humidity. 

Looking at Figure 6, once we consider the real relative 

humidity, RHadj, inside the tubes, the t90 time response, 

which is the time that it takes to arrive at 90% of the 

steady state value, of the capacitive hygrometers is similar 

in experiments I and D. Furthermore, RH-TUBE1 time 

response is faster than RH-TUBE2 and RH-TUBE4 

because of the metal grid tip with respect to the heavy-

duty tip. 

Changing the flow rate from 100 to 350 and 550 kg/h, 

which correspond to speeds of 1.1, 4.4 and 6.3 m/s inside 

the tube does not particularly affect the measurements of 

the capacitive hygrometers in the experiments at constant 

temperature A to G, even though for the 100 kg/h 

experiments we must consider 4 seconds delay for all the 

air to be displaced inside the tube. Meanwhile in the 

experiments with a step temperature change, H to N, the 

smaller flow rate affects the heat exchange inside the 

tubes leading to a slower thermal response and slower 

change in the real relative humidity inside the tubes. The 

chilled mirrors instead could be affected by the change in 

flow rate if the opening of the sensor is not changed to 

achieve around ~1 m/s of speed inside the sensor opening. 

Having a smaller aperture would lead to a slower response 

time of the sensor, while having a bigger aperture would 

lead to an initial overshooting of the measurement due to 

the overcompensation in the internal heat control of the 

chilled mirror. 

Finally, the changes in air properties due the pressure drop 

inside the tubes is neglected, this is since even at the 

maximum flowrate, 550 kg/h, the pressure drop is around 

19 Pa and therefore the effect can be considered 

negligible. 

Model identification 

In (Wildmann, Kaufmann, and Bange 2014) the 

capacitive hygrometer is modelled as a porous medium 

where water vapour diffuses using a finite volume 

approach, the capacitance of the sensor is then function of 

the moisture content inside the porous media. The 

equations result in a grey box model where capacitance 

and diffusivity are the tuning parameters. However, in our 

case it was not possible to directly acquire the data of the 

measure capacitance. For this reason, the authors tried 

several black box models running a batch identification 

process. Out of all the models tested State Space models 

(SS) and Autoregressive Regressive eXogeous (ARX) 

polynomial models resulted in the best performance. The 

dataset was divided into identification and validation, 

experiments C, D, M and N were used for validation, a 

sub dataset of all the others was used for training. A 

summary of the results inferred from Figure 7 is reported 

below. 

• The plot reports the results of the identification 

process using different models (empty, filled) 

and datasets (shape and color). The y-axis 

reports the model fitness on the validation 

dataset intended as 100*(1-NRMSE), where 

NRMSE is the Root Mean Square Error 

normalized with respect to the norm of the 

difference between the measured data and the 

mean of the measured data.  

• Higher orders do not improve the accuracy of 

the model, instead they increase the 

autocorrelation residuals and the inverse model 

stability bringing unwanted high frequency 

components. Therefore, low order models such 

as one, two and three will be used for the final 

model. 

•  Models trained with combined step up and 

down datasets perform better than only step up 

or step-down data. The justification is that 

capacitive hygrometers present a small 

hysteresis in the adsorption and desorption of 

water vapour, thus the trained model will 

correspond to a mean model between the two 

phases. 

• Looking at the empty vs filled shapes state space 

models seem to perform better with respect to 

the polynomial models, thus only state space 

models will be used for the final model.  

• Each colour corresponds to a specific 

identification sub dataset. However, it does not 

seem that there is a specific correlation between 

the type of dataset and the quality of the model. 

This shows that the quality of the experiments is 

uniform and comprehensive across the overall 

dataset. However, since capacitive hygrometers 

have a slight correction of the relative humidity 

as a function of temperature outside of the 20 

°C, shown in (1), the authors preferred to use 

only experiments from A to G as identification 

dataset where the temperature is 20 °C, to avoid 

including the correction correlation in the 

model. 

∆𝑅𝐻 = 𝑔𝑅𝐻(𝑇 − 20) (1) 

Where 𝑔 =  −0.003 ± 10%,  𝑅𝐻 is the relative 

humidity measured as a function of the 

capacitance and 𝑇 is the measured temperature. 



 

Figure 7: Model fitness (NormalizedRMSE) vs Model 

order for RH-TUBE2, the colors and shapes correspond 

to the specific identification set from all the available 

experiments. 

Signal reconstruction 

Now a state space model of the form (2-3) can be chosen 

among the models that have a better performance.  

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (2) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (3) 

Where t is the time, x(t) are the states, �̇�(𝑡) their 

derivatives, u(t) are the inputs and A,B,C and D are the 

system matrixes. To reconstruct the original signal, the 

model needs to be inverted to find the relationship output-

input. For convenience, the state space model can be 

converted into a transfer function in the Laplace domain 

as shown in (4-5) for a single-input single-output SISO 

model.  

𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠) (4) 

𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 (5) 

Where s is the result of the Laplace transform, Y(s) and 

U(s) are the system output and input in the new 

coordinates, and I is the identity matrix with the same 

dimensions as A.  

Now the model can be easily inverted according to (6).  

𝑈(𝑠) = 𝐺−1(𝑠)𝑌(𝑠) (6) 

Which corresponds to inverting numerator and 

denominator of the transfer function G. 

However, the authors found that the identified models 

with a good fitting resulted in strictly proper transfer 

functions, meaning that the order of the denominator is 

higher than the order of the numerator. This results in an 

improper inverse transfer function, which cannot be 

converted back into space-state form and therefore it 

cannot be directly simulated using only input, but it would 

require also knowing the derivative of the input 

(Buchholz and Grunhangen 2008). 

There are several ways to avoid estimating the input 

derivatives (Murray-smith 2011; Buchholz and 

Grunhangen 2008), the authors tested two typical 

approaches . 

The first one is to append as many high frequency 

“        g” poles as necessary to make the transfer 

function proper. This roughly corresponds in coupling the 

inverted model to a high frequency pass filter. The 

resulting transfer function, which is the product (7) of the 

inverted model and the high pass filter, introduces 

unwanted fast dynamics that can make the system stiff 

and hard to solve (Murray-smith 2011; Buchholz and 

Grunhangen 2008). 

𝐺∗(𝑠) = 𝐻(𝑠)𝐺−1(𝑠) (7) 

Where H(s)        “        g”                    

The second approach is to invert the original system 

through a conventional feedback loop and choosing a 

reasonably high value for the input gain K, as shown in 

Figure 8. Equation (8) shows the reasoning behind the 

inversion of the feedback loop. 

 

Figure 8: Inverted feedback loop model 

u*(t) corresponds to the humidity read by the sensor, y*(t) 

is the output of the feedback loop and corresponds to the 

reconstructed signal u(t) and G* corresponds to the 

inverted transfer function. 

  

𝐺∗(𝑠) =
𝐾

1 − 𝐾𝐺(𝑠)
=

𝐾

1 + 𝐾
𝑧𝑒𝑟𝑜𝑠
𝑝𝑜𝑙𝑒𝑠

= ⋯ 

                   =
𝐾𝑝𝑜𝑙𝑒𝑠

𝑝𝑜𝑙𝑒𝑠 + 𝐾𝑧𝑒𝑟𝑜𝑠
 

 

(8) 

In this way additional poles are added to the denominator 

making the inverse transfer function proper. This 

approach is computationally more robust than the 

previous one, while leading to similar results. The only 

drawback is the high gain K which makes the inverted 

model very sensitive to noisy data, therefore care should 

be taken in the data pre-processing. 

Results 

From now on all the results will be referred to the 

capacitive hygrometer RH-TUBE2 in position 2 in the 

tubes. The identification and model inversion processes 

are similar for all the humidity sensors.  

Sensor model validation 

The best model resulted to be a state-space model with 

two states, the matrix coefficients are reported in (9). To 

choose this final model the authors screened the models 

from the results showed in Figure 7. Then took the model 

with the lowest residual autocorrelation and highest 

Signal to Noise Ratio (SNR), which where also calculated 

using Matlab Identification Toolbox. 

𝐴 = (
−0.1277 0

0 −0.00256
)  𝐵 = (

0.0019
0

)    

 



𝐶 = (
64.15

−25.66
)  𝐷 = (0)   (9) 

The validation with respect to experiments C and D is 

shown in Figure 9. 

 

Figure 9: RH-TUBE2 model validation 

The plot shows good correspondence between the 

experimental data and the model output in terms of time 

response constant, which is slightly smaller than the 

datasheet value 25 s. The step up and down experiments 

are also in agreeance with the experimental data, having a  

Root Mean Square Error (RMSE) of 0.79 % for 

experiment C and a  RMSE of 0.71 % For 

experiment D, which are well within the instrument 

tolerance. 

Inverse model validation 

Once validated the model, it is then converted to a 

transfer function in accordance to (4-5) and then 

combined with the gain K according to (8) to find the 

final model. The parameter K should be big enough to 

isolate the poles at the denominator, but not too big to 

avoid excessive sensitivity to noisy data. After carrying 

out a sensitivity analysis the gain K was chosen to be 40, 

further increasing the value of K does not bring any 

significant improvement in the results, the impact of K is 

shown in the signal reconstruction example section. In 

Figure 10 the validation for the inverted feedback loop 

model is shown 

 

Figure 10: RH-TUBE2 inverse model validation 

The inverse model can accurately reconstruct the original 

data for the step change. However, it does introduce some 

small nonphysical oscillations in the humidity signal, 

which can be filtered out with a noise rejecting filter such 

as a moving average or a Savitzky-Golay filter. Despite 

the noise introduced the RMSE for both experiments are 

below the sensor tolerance being 0.9 % for experiment C 

and 1.4% for experiment D. It is also interesting to notice 

at 255 s for experiment C and 235 s for experiment D the 

fact that if the sensor input presents some small noise, it 

will be amplified by the inverse model. This further 

confirms the necessity to properly pre-process the data 

before applying the inverse model. 

Signal reconstruction example  

Let us assume that the real humidity profile variation in 

the desiccant heat exchanger cycle is a sinusoidal function 

of the form (10): 

𝑅𝐻 = 20 sin (
𝜋

60
𝑡) + 40 %  (10) 

Where RH is the real relative humidity and t is the time in 

seconds. By using this as input signal for the model 

diagram in Figure 8, we obtain:  

 

 

 



 

Figure 11: Simulating real humidity profile as sinusoid 

and reconstruction at different K gain values. 

The plot in Figure 11shows that the inverse model can 

accurately reconstruct the initial sinusoidal humidity 

signal, the RMSE is 4.2 % for K = 10. 1.2 % for k=40 and 

0.97 % for K = 1000 However, if we add ±2% noise, 

which corresponds to the instrument tolerance, to the real 

signal the plot in Figure 12 is obtained:  

 

Figure 12: Simulating real humidity profile as sinusoid 

and reconstruction at different K gain values including 

±2% random noise. 

 

In this case the RMSE for K = 10 becomes 4.5 %, 3.9 % 

for K = 40 and 4.3 for K = 1000. Finally, a Savitzky-Golay 

filter is added to the noisy signal leading to the final result: 

 

Figure 13: Simulating real humidity profile as sinusoid 

and reconstruction at different K gain values including 

±2% noise and noise rejecting filter. 

In this case the RMSE for K = 10 becomes 3.4 %, 1.06 % 

for K = 40 and 9.6 for K = 1000. 

 

Conclusions 

• A total of twelve step humidity change 

experiments were carried out in the RELAB 

facility, considering three air flow rates (100-

360-550 kg/h), two values of temperatures (20-

30 °C) and two (20-60 %) values of relative 

humidity. A total of five capacitive hygrometers 

and four chilled mirrors were tested. 

• The systematic error of capacitive hygrometers 

was corrected developing a linear correlation 

starting from the chilled mirror data. 

• A suitable state space model for each sensor was 

identified and validated against experimental 

data leading to an average RMSE lower than 1%. 

• A feedback loop inversion strategy was applied 

to reconstruct the original relative humidity 

profile. The resulting inverted model has an 

average RMSE lower than 1.5 %. 

• The inverted model was tested against a 

synthetic humidity profile showing a good 

agreement between the starting profile and the 

reconstructed one with an RMSE of 1% even in 

presence of a ±2% random noise. 

• The sensitivity analysis on the K value shows the 

importance in the careful choice of this 

parameter to balance on one side the quality of 

the model and on the other the sensitivity to 

noisy data. Furthermore, a noise rejecting filter 

is also needed to improve the overall quality of 

the model output and remove most of the noise 

amplification. 

The developed strategy can now be applied to 

capacitive hygrometers that are installed in desiccant 

evaporative air conditioners allowing for an 

improvement in the transient monitoring of these 

systems and a more robust humidity driven control 

without delays. 
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Abstract. Floor heating systems are typically characterized by a relatively high thermal inertia, 
thus they react slowly to setpoint changes. When the system turns on, an under-heating period 
could occur for a relative long period, vice versa when the setpoint is decreased the floor 
thermal inertia could lead to overheating. In residential applications, the users try to avoid 
these discomfort problems by using a constant setpoint, higher than the setback. In this way the 
average energy consumption as well as the user’s bill increases. A smarter solution to mitigate 
this problem is to include a pre-on period parameter, so that the system will turn on a certain 
time before the increase in setpoint to avoid the under-heating period and a pre-off period so 
that it will switch off before overheating. Predictive controllers can be a solution to compensate 
the slow response of the radiant floor system. However, besides the need for more data, the 
computational power goes beyond what is available in heating systems micro controllers for 
residential cases. To avoid these issues, in this paper the optimal control trajectory obtained 
using a Model Predictive Control (MPC) approach is used to identify the pre-on and pre-off 
parameters to be periodically updated in the micro controller (e.g. monthly). A simulation work 
was carried out to compare the performance between a baseline Rule Based Controller (RBC), 
an improved RBC and a MPC in terms of comfort and energy use. The result is a reduction from 
an average of 1.1°C to 0.2°C for the worst thermal zone meaning 80% reduction of the 
discomfort with respect to the baseline and a slight increase of the electrical consumption 
of the heat pump (less than 5%). 

 
Keywords. Radiant floor, model predictive control, feature extrapolation, pre-heating, KPI. 

 

1. Introduction 
HVAC systems account for 20% of the primary 
energy consumption in MEF countries [1]. Within 
the perspective of reducing energy consumption 
and fight climate changes, radiant floor heating 
applications are becoming more and more used [2]. 
An important characteristic of standard radiant 
floor systems is the high thermal inertia which 
causes a delay between the heat supply and the 
response in the internal air temperature. For 
concrete core radiant floors this has been estimated 
to be 1 to 3 hours [3]. This slow response can create 
underheating or overheating issues and consequent 
discomfort and/or waste of energy.  In order to 
assess which are effectively the discomfort periods, 
the standard EN 12098-1:2017 [4] defines the time 
and temperature tolerances to guarantee the 
comfort levels inside the thermal zone.  

A solution to compensate the slow response of the 
radiant floor system and reduce the consequent 
discomfort could be the use of advanced control 
strategies such as Model Predictive Control (MPC). 
The benefit of predictive controllers is that the heat 
supply can be adjusted in advance thanks to heat 
demand forecasts [5]. Even if it was proven that 
MPC can be a good solution to reduce the energy 
consumption of the HVAC systems, as reported in 
[6] most buildings today use rule-based controllers 
to manage the indoor conditions. This is related to 
the fact that there are different challenges that must 
be faced to implement MPC in buildings [7] and one 
of this is the availability of the proper hardware and 
software infrastructure. For example, model 
predictive control requires a high computational 
power that is not available in standard heating 
systems micro controllers for residential buildings. 
As reported in [8], MPC can be adopted for complex 
new commercial buildings while it may not be as 



 

solution for residential buildings because it could be 
too expensive.  

This paper proposes a methodology to extrapolate 
the monthly pre-on and pre-off parameters to be 
implemented on a micro controller, starting from 
the results of an optimization problem. This 
methodology can be deployed as a cloud service, 
where the pre-on and pre-off parameters can be 
updated remotely on the micro controller. 

This work is part of the Merezzate+ project co-
founded by EIT Climate-KIC. The project focuses on 
sustainability issues from a social, environmental, 
and economic point of view, adopting measures in 
the sectors of energy, mobility and circular economy 
that are the ones with the highest impact on climate 
change. The project included the construction of 
around 800 apartments, one of them was chosen as 
a simulation case study for this work. It is in Milan 
and is characterized by two rooms and a bathroom. 
The detailed description is reported in Section 3. 

2. Method 
An optimal control problem was formulated to 
obtain the floor heating pre-on and pre-off 
parameters. In this case, the objective of the 
optimization problem was to find the control 
strategy that allows to maximize the comfort of the 
considered thermal zones. 

Starting from the resulting optimal control 
trajectory, the pre-on and pre-off parameters can be 
estimated and included in the rule-based controller.  

In order to couple the optimization problem with 
the detailed apartment model at the base of this 
study, the BOPTEST framework [9] was chosen. It 
allows to create an API interface between the 
detailed physics-based model we created using the 
Modelica Buildings [10] and IBPSA [11] libraries 
and the optimization problem implemented in a 
Python code using the Pyomo toolbox [12].  

This Section is structured in two sub-sections. In 
Section 2.1 it has been described the optimization 
problem and the feature extrapolation. In Section 
2.2 it is described the co-simulation environment 

2.1 Optimization problem and feature 
extrapolation  

The model predictive control scheme is reported in 
Fig. 1. 

 
Fig. 1 – Model predictive control scheme. 

In order to find the control strategy that allows to 
achieve the goal, it is necessary to create a 
simplified model that can capture the correct 
dynamics of the system. Then, starting from the 
response of this simplified model subjected to 
various disturbances (e.g. weather, setpoints, 
occupation and prices forecasts), the solver 
calculates the best control trajectory to achieve the 
“objective function”, which is shown in eq. 1. In this 
case, the forecast is assumed to be deterministic, 
which means that the forecast adopted during the 
optimization process is identical to the input of the 
detailed model of the building. The optimization 
horizon is 24h and the control signal obtained 
solving the optimization problem is updated in the 
detailed model every 15 minutes.  

The general form of the objective function can be:  

𝒎𝒎𝒎𝒎𝒎𝒎 𝑱𝑱𝒕𝒕𝒕𝒕𝒕𝒕 (𝒕𝒕) = � �𝑘𝑘𝑖𝑖𝐽𝐽𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

𝒅𝒅𝒕𝒕
𝒕𝒕𝒇𝒇

𝒕𝒕0
 0 ≤ 𝑘𝑘𝑖𝑖 ≤ 1 (1) 

 

Where 𝐽𝐽𝑖𝑖(𝑡𝑡) represents the various objectives and 𝑘𝑘𝑖𝑖 
the weighting factor associated with the i-th 
objective. 
In this work, the following combination of objective 
functions has been adopted:  

min� (𝑘𝑘1 𝐽𝐽1(𝑡𝑡) + 𝑘𝑘2 𝐽𝐽2(𝑡𝑡)) 𝒅𝒅𝒕𝒕
𝒕𝒕𝒇𝒇

𝒕𝒕0
 (2) 

𝐽𝐽1(𝑡𝑡) = ��𝑇𝑇𝑟𝑟(𝑡𝑡) − �𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 + 𝛿𝛿��−�2 (3) 

𝐽𝐽2(𝑡𝑡) =
�̇�𝑄ℎ𝑠𝑠(𝑡𝑡)
𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)

 (4) 

Where 𝐽𝐽1(𝑡𝑡) represents the squared difference 
between the room air temperature and its setpoint, 
only in case of under heating. Furthermore, a 
constant offset δ is added to the setpoint to give a 
more robust result that will make the parameters 
work even in a particularly cold day. The value of δ 
is a tuning parameter that depends on how 
frequently the pre-on/off parameters will be 
updated.  The solver will try to minimize the 
differences between these two temperatures to 
improve the thermal comfort of the users. 𝐽𝐽2(𝑡𝑡) 
represents the main electric power needed by the 
heating system, in this case study represented by a 
heat pump.  In order to minimize this objective, the 
solver will try to minimize the thermal power 
�̇�𝑄ℎ𝑠𝑠(𝑡𝑡) but also to maximize the heat pump 
Coefficient of Performance (𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)) shifting the 



 

heat demand from colder to warmer periods and 
working at partial load with a lower supply 
temperature.  

The control strategy adopted in this paper tries to 
maximize the comfort in a specific time interval and 
to extrapolate some simplified rules to be applied 
on the energy management system installed in field. 
The weighting factors adopted in the objective 
function are 𝑘𝑘1 = 1 and 𝑘𝑘2 = 0.05. 

The result of the optimization problem described 
above will be a control that switches on and off the 
heat pump to guarantee the thermal comfort of the 
users. Starting from the results of the optimized 
simulation it is possible to extrapolate some 
simplified rules that allow to find the pre-on and 
pre-off parameters to be implemented on a rule-
based controller in field. In particular, the pre-on 
and pre-off parameters are monthly averages. For 
the months of April and October they take the 
average only of the days that belong to the heating 
season, which are respectively the period from the 
1st to the 15th for April and the days from the 15th to 
the 31st for October. They have been obtained 
starting from the calculation of the supplied energy 
to the radiant floor distinguishing between the pre-
on phase and the normal operation. These two 
values (𝑄𝑄𝑠𝑠𝑟𝑟𝑠𝑠ℎ𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑄𝑄ℎ𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) correspond to the 
orange and red areas in Fig. 2. Then the mean 
supply heat rate was estimated for the two phases 
(�̇�𝑄𝑚𝑚𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠 and �̇�𝑄𝑚𝑚𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑚𝑚𝑚𝑚). The two areas (orange and 
red), underneath the thermal power curve, are 
respectively equal to the areas of the two rectangles, 
in which the two heights are �̇�𝑄𝑚𝑚𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠 and �̇�𝑄𝑚𝑚𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑚𝑚𝑚𝑚  
and the two widths are ∆𝑡𝑡𝑒𝑒𝑠𝑠 and ∆𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 − ∆𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚 .  
Thus, inverting the following formulas, it is possible 
to obtain the two parameters ∆𝑡𝑡𝑒𝑒𝑠𝑠 and ∆𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚: 

�̇�𝑄𝑚𝑚𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠 =
𝑄𝑄𝑠𝑠𝑟𝑟𝑠𝑠ℎ𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

∆𝑡𝑡𝑒𝑒𝑠𝑠
 (5) 

�̇�𝑄𝑚𝑚𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑚𝑚𝑚𝑚 =
𝑄𝑄ℎ𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

∆𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 − ∆𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚
 (6) 

where ∆𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠  is the difference of time between the 
setpoint changes and ∆𝑡𝑡𝑠𝑠𝑚𝑚𝑚𝑚  is the time difference 
between the time at which the power goes below a 
threshold and the lower setpoint change.  

 
Fig. 2 – Visualization of ∆𝑡𝑡𝑒𝑒𝑠𝑠 and ∆𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚 calculation 
procedure. 

In this way, starting from the control trajectory it is 
possible to obtain the two values of ∆𝑡𝑡𝑒𝑒𝑠𝑠 and ∆𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚  
for each pre-on and pre-off and finally calculate the 

average of these values for each month.  

2.2 Implementation 

For this work, the Modelica “Buildings” and “IBPSA” 
libraries were used to develop the detailed model of 
a three-zone apartment with radiant floor described 
in Chapter 3. 

In particular, for the floor heating modelling, the 
model called “SingleCircuitSlab” of the “Buildings” 
library [10] was adopted. It models the radiant slab 
as a thermal resistance network and uses a fictitious 
resistance to compute the temperature of the plane 
that contains the pipes. The same method is 
implemented in TRNSYS 17 [13]. The rule-based 
controller used is a tuned PI controller with 0.4 °C 
hysteresis on the setpoint and a tuned climatic 
curve on the heat pump supply temperature. 
From the detailed model of the building - HVAC 
system a simplified model was derived through an 
identification process performed with the MATLAB 
Identification Toolbox. The simplified model is a 
grey box, where a thermal electrical analogy is used. 
This allows to identify a circuit of resistances and 
thermal capacities (R-C network) to represent the 
most significant temperatures of the building and 
HVAC system (Fig. 3), starting the identification 
from the data contained in the detailed model. The 
methodology followed for the model identification 
is described in [14].  In summary each thermal zone 
has a 7R3C circuit and they are all connected to each 
other. 

 
Fig. 3 – R-C network - in red are the temperature nodes 
T, Gi are the conductances, ∅𝑖𝑖  are the disturbances 
(solar, appliances), Ai are the wall and windows area, �̇�𝐻  
are the inlet and outlet heat flow rate in the floor and 
a,b,c are the tuning constants. 
 
After this phase, the simplified model and the 
optimization problem were implemented in Python 
using the Pyomo toolbox. 

 



 

Fig. 4 – Co-simulation environment, on the left the 
Modelica detailed model and on the right the 
optimization environment in Python-Pyomo. In 
between the BOPTEST software is used as a 
wrapper for the detailed model allowing an API 
input/output exchange with Python 

Finally, the detailed model developed in Modelica 
interfaces with the optimization problem through 
the BOPTEST framework. The BOPTEST framework 
allows a way to easily compile the detailed Modelica 
model and wrap it around a Docker container. In 
this way the model can freely run through an easy-
to-use API interface, that can be used to obtain 
sensor signals from the detailed model and provide 
control trajectories from the optimization routine in 
Python through APIs. 
All these steps are summarized in Fig. 4. 

3. Case study 
The case study chosen for this work is a two rooms 
one bathroom apartment reported in Fig. 5. It is in 
Milan (Italy) and shares two walls with two adjacent 
apartments (in green), a wall with the landing (in 
red) while the rest faces towards outside (in 
yellow).  

 
Fig. 5 – Floor Plan of apartment 
It is equipped with an air source heat pump, a 
radiant floor, a DHW tank and PV panels installed on 
the roof of the building. The heat is used for both 
space heating and DHW production, giving priority 
to the latter. The most important characteristics of 
the above-mentioned system are reported in Tab. 1. 
Tab. 1 – Characteristics of the system. 

Parameter Value and unit 
of measurement 

Floor area 44.45 m2 

Zones height 2.7 m 

Number of occupants 

HP nominal electrical power  

HP nominal thermal power  

PV panels area 

PV panels peak power 

1 

1.33 kW* 

4 kW* 

5.5 m2 

0.8 kWp 

*Nominal conditions (-7°C, 35°C) 
For the simulation of the considered apartment, the 

occupation profiles were arranged as shown in Fig. 
6 and Fig. 7.  The first one is used for all the 
weekdays, while the other is used to simulate the 
weekends.  
The other input data chosen for these simulations 
are function of the above-described occupation 
profiles. In particular, a setpoint temperature of 
20°C has been chosen for occupied periods, while a 
setback temperature of 18°C is applied for the rest 
of the considered day. In the same way the shading 
systems of each room are fully closed when it is 
unoccupied while they are half opened when the 
considered room is occupied.  

 
Fig. 6 – Occupation profile weekdays 
 

 
Fig. 7 – Occupation profile weekend 
In addition, there are the internal gains related to 
the presence of people, appliances, and lighting.  
Specifically, the sensible internal gain due to the 
presence of people is defined per person while the 
others are defined per unit area.  
In this case study the following values have been 
chosen:  

�̇�𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 60
𝑊𝑊
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 (7) 

�̇�𝑄𝑒𝑒𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑒𝑒𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 = 2.5
𝑊𝑊
𝑚𝑚2  

(8) 

�̇�𝑄𝑎𝑎𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝑖𝑖𝑠𝑠𝑙𝑙 = 4
𝑊𝑊
𝑚𝑚2 (9) 

In particular, the sensible heat produced by a 
person respects the standard UNI EN 13779 [15] 
while the other two values are due to specific 
assumptions. In fact, since the apartment is small 
and new, the authors considered to have few and 
efficient appliances. In addition, they chose led 
lamps that emit a thermal power of about 80 W for 
each thermal zone. 
In this case, only one user is present inside the 
apartment as reported in Fig. 6 and Fig. 7. 
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All these contributions are different than zero only 
when the considered thermal zone is occupied. In 
addition, the lighting contribution is set to zero from 
8 a.m. to 5 p.m. thanks to daylight availability.  
 
Finally, the parameters related to the mass 
exchange with the external environment are 
summarized in Tab. 2. In particular, the value of the 
air changes related to infiltrations has been chosen 
considering high quality windows while the value 
related to mechanical ventilation takes into account 
the sanitary regulation of the Municipality of Milan 
[16] which imposes at least 20 m3/h/pers. In this 
case it was chosen to apply 30 m3/h/pers and 24 
m3/h/pers respectively for the DayZone and the 
NightZone. 

Tab. 2 – Infiltration and mechanical ventilation 

4. Results 
For this work, three different simulations were 
performed: a first simulation with a normal rule-
based control (baseline), a second simulation based 
on model predictive control and a final simulation 
with a rule-based control with pre-on and pre-off 
parameters obtained averaging the results of the 
second simulation. 

In Section 4.1 are reported the pre-on and pre-off 
parameters obtained from the calculations 
described in Section 2.1. In section 4.2 it is possible 
to observe which are the effects of the activation of 
the pre-on and pre-off strategies on the air 
temperature and the thermal power delivered by 
the heat pump in the three cases, while in Section 
4.3 are summarized the Key Performance Indicators 
(KPI) of the three simulations.  

4.1 Monthly pre-on and pre-off parameters 

The results of the calculation reported in detail in 
section 2.1 are summarized in Tab. 3 and Tab. 4. In 
particular, in the DayZone (Tab. 3), the pre-on is not 

required for the periods that go respectively from 
the 1st to the 15th of April and from the 15th to the 
31st of October.  

Tab. 3 – Average values for pre-on and pre-off 
parameters in the DayZone 

Period Pre-on [h] Pre-off [h] 

1st-31st Jan 1.56 0.00 

1st-28th Feb 1.22 0.00 

1st -31st Mar 

1st-15th Apr 

15th-31st Oct 

1st-30th Nov 

1st-31st Dec 

0.20 

0.00 

0.00 

0.80 

1.40 

0.20 

1.30 

0.60 

0.10 

0.10 

Tab. 4 – Average values for pre-on and pre-off 
parameters in the NightZone 

Period Pre-on [h] Pre-off [h] 

1st-31st Jan 4.00 0.20 

1st-28th Feb 3.60 0.30 

1st -31st Mar 

1st-15th Apr 

15th-31st Oct 

1st-30th Nov 

1st-31st Dec 

3.00 

2.20 

1.00 

2.60 

3.40 

1.70 

2.20 

1.90 

0.80 

0.20 

4.2 Time series analysis  

To understand the benefits related to the 
application of the pre-on and pre-off strategies, in 
this section a detailed analysis of two days is shown 
(Friday, 19th of January and Saturday, 20th of 
January).  

In Fig. 8 and Fig. 9 are represented the trend of the 
air temperature with respect to the setpoint 
respectively in the DayZone and NightZone, while in 
Fig. 10 is reported the trend of the thermal power 
provided by the heat pump to heat up the two 
thermal zones. 

 

 

Air changes DayZone NightZone 

Infiltrations [1/h] 0.05 0.05 

Mechanical 
ventilation [1/h] 

0.5 0.5 



 

Fig. 8 – DayZone air temperature trend for sample days including weekend 

 
Fig. 9 – NightZone air temperature trend for sample days including weekend 

 

Fig. 10 – Thermal power provided by the heat pump for sample days including weekend 
 

From the first two figures (Fig. 8 and Fig. 9) it can 
be seen that, while with the normal rule-based 
control (represented by the red line) the 
temperature reaches the desired setpoint after 
about 3 hours, the rule-based control with the pre-
on and pre-off parameters (blue curves) is able to 
follow the change of the setpoint, reducing a lot the 
periods of discomfort that occur in the baseline 
case. Finally, from the same graphs it is visible that 
the temperature obtained with the model predictive 
control strategies is consistently higher than the 
setpoint. This is done because the MPC is targeting 
the setpoint temperature plus δ °C to have a more 
conservative result when finding the pre-on and 
pre-off parameters.  The big gap between the rule-
based and the other controllers can be explained by 
the fact that in this simulation the baseline rule-
based controller turns on the heat pump when the 
difference between the room and setpoint 
temperature is lower than minus the hysteresis 
value. This control strategy will inevitably lead to 
underheating. So, what expert users usually do is 
manually insert a pre-on / pre-off parameter based 
on experience. Less expert users instead will keep 
the systems always on, leading to a big waste of 
energy. 

Then, from Fig. 10, it is clearly visible that the 
thermal power provided by the heat pump, in the 

case of application of the pre-on and pre-off strategy 
(blue line), has been anticipated (shifted towards 
left) with respect to the normal rule-based control 
(red line), while MPC keeps the system on for a 
longer period at a lower mean power. This is due to 
the fact that, as reported in eq. 1, the objective 
function not only promote the thermal comfort 
achievement but also tries to reduce the electric 
power consumption. 

4.3 KPIs analysis 

Finally, some Key Performance Indicators (KPI) 
were defined with the aim of evaluating the overall 
performance of the advanced control strategies. 

In particular, the KPI related to the discomfort of the 
i-th thermal zone (𝐷𝐷𝐷𝐷𝑝𝑝𝑒𝑒𝑇𝑇𝑖𝑖) is defined as the integral 
of the difference between the setpoint (𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖,𝑒𝑒𝑇𝑇𝑖𝑖) and 
the room air temperature (𝑇𝑇𝑒𝑒𝑖𝑖𝑟𝑟,𝑖𝑖,𝑒𝑒𝑇𝑇𝑖𝑖) for the heating 
season (from the 15th of October to the 15th of April), 
subdivided for the number of occupied hours 
(𝑛𝑛𝑠𝑠𝑎𝑎𝑎𝑎 ℎ𝑠𝑠𝑜𝑜𝑟𝑟𝑠𝑠) in the same period. The integral at the 
numerator is calculated only in the occupied hours 
of each day and only when the indoor air 
temperature is lower than the setpoint temperature 
minus the hysteresis (ℎ𝑦𝑦𝑝𝑝 = 0.4°𝐶𝐶), as reported 
below:  



 

𝐷𝐷𝐷𝐷𝑝𝑝𝑒𝑒𝑇𝑇𝑖𝑖 =
∫ �𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖,𝑒𝑒𝑇𝑇𝑖𝑖 − ℎ𝑦𝑦𝑝𝑝 − 𝑇𝑇𝑒𝑒𝑖𝑖𝑟𝑟,𝑖𝑖,𝑒𝑒𝑇𝑇𝑖𝑖�

+𝑑𝑑𝑡𝑡𝑠𝑠𝑓𝑓
𝑠𝑠0

𝑛𝑛𝑠𝑠𝑎𝑎𝑎𝑎 ℎ𝑠𝑠𝑜𝑜𝑟𝑟𝑠𝑠
 (10) 

Then it is reported the average air temperature 
(𝑇𝑇𝑒𝑒𝑖𝑖𝑟𝑟𝑎𝑎𝑎𝑎𝑙𝑙,𝑒𝑒𝑇𝑇𝑖𝑖) of each thermal zone calculated 
considering the entire heating season and the 
related thermal energy need (𝐸𝐸𝑠𝑠ℎ,𝑆𝑆𝑆𝑆)  that has to be 
provided by the heat pump in order to maintain 
those conditions inside the various thermal zones. 
They are mathematically expressed as:  

𝑇𝑇𝑒𝑒𝑖𝑖𝑟𝑟𝑎𝑎𝑎𝑎𝑙𝑙,𝑒𝑒𝑇𝑇𝑖𝑖 =
∑ 𝑇𝑇𝑒𝑒𝑖𝑖𝑟𝑟,𝑗𝑗,𝑒𝑒𝑇𝑇𝑖𝑖
𝑁𝑁
𝑗𝑗=1

𝑁𝑁
 (11) 

𝐸𝐸𝑠𝑠ℎ,𝑆𝑆𝑆𝑆 = � �̇�𝑄𝑠𝑠ℎ,𝑆𝑆𝑆𝑆(𝑡𝑡) 𝑑𝑑𝑡𝑡
𝑠𝑠𝑓𝑓

𝑠𝑠0
 (12) 

Where: 

• 𝑇𝑇𝑒𝑒𝑖𝑖𝑟𝑟,𝑗𝑗,𝑒𝑒𝑇𝑇𝑖𝑖  is the air temperature of the 
thermal zone 𝑇𝑇𝑇𝑇𝐷𝐷 registered at the j-th 
time; 

• 𝑁𝑁 is the number of elements of the 
temperature vector during the heating 
season;  

• �̇�𝑄𝑠𝑠ℎ is the thermal power provided by the 
heat pump for space heating at a specific 
time. 

Finally, it is introduced a KPI which describes the 
electrical energy consumption of the heat pump 
(𝐸𝐸𝑠𝑠𝑎𝑎,𝑆𝑆𝑆𝑆)   for providing heat to the radiant floor 
(space heating), that is equal to:  

𝐸𝐸𝐸𝐸𝑎𝑎,𝑆𝑆𝑆𝑆 = � �̇�𝐶𝑠𝑠𝑎𝑎,𝑆𝑆𝑆𝑆(𝑡𝑡) 𝑑𝑑𝑡𝑡
𝑠𝑠𝑓𝑓

𝑠𝑠0
 (13) 

Where: 

• 𝐶𝐶𝑠𝑠𝑎𝑎,𝑆𝑆𝑆𝑆 is the electrical power consumption 
of the heat pump for space heating at a 
specific time. 

The summary of these KPIs is reported in Tab. 5.  

Analysing the values reported in Tab. 5 it appears 
that the value of the discomfort related to the 
DayZone in the Baseline case is equal to 1.104 K, 
which is already a low value, but it is still higher 
than the temperature tolerance, which is fixed to 
±0.5𝐾𝐾, as reported in the standard EN 12098-
1:2017 [4]. Thus, with the use of the optimized 
control (PreOnOff Const and PreOnOff Var), the 
authors were able to respect this tolerance and to 
obtain a strong percentage reduction of the 
discomfort, higher than the 80%. For the NightZone, 
as it is possible to observe from Tab. 5 the Baseline 
was already able to respect the above-mentioned 
tolerance, but the percentage reduction of the 
discomfort is still important.  

In addition, the results in Tab. 5 show that the 
optimized rule-based controller, with constant pre-
on and pre-off parameters (PreOnOff Const), has 

comparable performance with respect to the results 
of the model predictive control (PreOnOff Var). 

Tab. 5 – KPI comparison. 
KPI 

 

Baseline PreOnOff 

Const 

PreOnOff 

Var 

𝐷𝐷𝐷𝐷𝑝𝑝𝐷𝐷𝑒𝑒𝐷𝐷𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠  
[K] 

1.104 0.191      
(-83%) 
 

0.006     
(-99%) 
 

𝐷𝐷𝐷𝐷𝑝𝑝𝑁𝑁𝑖𝑖𝑙𝑙𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠  
[K] 

0.155 0.006      
(-96%) 
 

0.011      
(-93%) 
 

𝑇𝑇𝑒𝑒𝑖𝑖𝑟𝑟𝑎𝑎𝑎𝑎𝑙𝑙,𝐷𝐷𝑒𝑒𝐷𝐷𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠  
[°C] 

19.7 20.0 
(+1.5%) 
 

20.9 
(+6.1%) 
 

𝑇𝑇𝑒𝑒𝑖𝑖𝑟𝑟𝑎𝑎𝑎𝑎𝑙𝑙,𝑁𝑁𝑖𝑖𝑙𝑙𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠  
[°C] 

19.6 

 

19.8 
(+1.0%) 
 

20.4 
(+4.1%) 
 

𝐸𝐸𝑠𝑠ℎ,𝑆𝑆𝑆𝑆  [kWh] 1758 

 

1808 
(+2.8%) 
 

2874 
(+63.5%) 
 

𝐸𝐸𝐸𝐸𝑎𝑎,𝑆𝑆𝑆𝑆 [kWh] 437 455 
(+4.0%) 

672 
(+53.6%) 

The average air temperature increases of the 1-
1.5% in the case with monthly constant parameters 
and of the 4-6% in the case of variable parameters 
(MPC). The increase of temperature obviously leads 
to an increase of the thermal energy needs and 
consequently of the electrical consumptions of the 
heat pump.  

This methodology can be deployed as a cloud 
service, where the pre-on and pre-off parameters 
can be updated remotely. In the Merezzate+ project 
some apartments could be used for testing the 
methodology. In terms of economic feasibility, it can 
be used for large residential complexes where the 
building envelope and HVAC systems can be 
modelled once and tweaked using data, introducing 
an economy of scale. For smaller residential 
buildings archetypes can be built and modelled, 
where the solution may not be optimal but still 
better than the baseline. 

5. Conclusions 
In this paper it is proposed a methodology to extract 
pre-on and pre-off parameters that can be 
implemented in micro-controllers of residential 
buildings. This could help managing the radiant 
floor heating system and solve the problems of 
discomfort that could be caused by its slow 
response.  

From the control trajectory obtained solving the 
optimization problem, some simplified rules were 
extrapolated. They allow to obtain the monthly pre-
on and pre-off parameters to be implemented in the 
energy management system installed in field thanks 
to a cloud service.  



 

Then, three simulation that consider respectively a 
normal rule-based control, model predictive control 
and a rule-based control with monthly pre-on and 
pre-off parameters have been performed. 
Comparing the results of the three simulations it is 
possible to observe that with both the constant and 
variable (MPC) pre-on and pre-off parameters, the 
time in which the air temperature is below the 
setpoint is strongly reduced and this is also 
confirmed by the KPI of the discomfort, that 
undergoes a reduction higher than the 80%. For the 
future development of this work, the authors will 
consider different feature extrapolation methods. 
Instead of monthly, the pre-on/pre-off parameters 
could be updated with a different frequency. 
Furthermore, depending on the sensors available 
locally or cloud forecast different heuristic metrics 
will be developed.  
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