
Time-delay estimation on identified
model of a quadrotor UAV

Tesi di Laurea Magistrale in
Aeronautical Engineering - Ingegneria Aeronautica

Author: Marco Guzzon

Student ID: 953034
Advisor: Prof. Marco Lovera
Academic Year: 2021-22

i

Abstract

This study proposes a selection of discrete-time time delay identification methods imple-
mented in MATLAB® environment with a flexible choice of sample time and adapted
to work with MIMO systems, such as the UAV model adopted by my department and
described in the first chapter of this thesis.

The aforementioned UAV model is illustrated with its underlying hypotheses, as is the
identification process used to find the values of the model parameters, then the results
and the model are adapted to the discrete-time MATLAB® environment, they form the
system from which the data necessary to estimate the time delays are extracted.

Four methods are then presented, specifically two related to the maximization of the cross-
correlation between input and output quantities: the thresholding method, as described
by S. Björklund, and the criterion functions proposed in an article by J. Kekalainen;
one founded on the least-squares minimization of a cost function built using the state
dynamics of the system, by R. Waschburger and R. K. H. Galvão; the last, also described
by S. Björklund and called oestruc, being built on the estimation of an output-error
model of the analysed system. Their theoretical bases are explored and then they are
adapted to the discrete-time MATLAB® environment.

Each method has been tested for 90 times, 30 for each chosen input, on each dynamics
(lateral, longitudinal, directional and vertical) of the UAV model. The results have been
compared and conclusions regarding the performance of each method have been drawn,
outlining which inputs and use cases each method is most suitable fir, how reliable their
estimates are and how long they take to yield said estimates. Special attention has been
paid to compare the difference in behaviour of each delay estimation method with a stable
or with an unstable system.

Keywords: time delay estimation, discrete time, MATLAB, PBSID, UAV

Abstract in lingua italiana

Questo studio propone una selezione di metodi di identificazione, in tempo discreto, di
ritardi di tempo implementati in ambiente MATLAB® con flessibilità sulla scelta del
tempo di campionamento e adattati per l’uso con sistemi MIMO, come il modello di UAV
adottato dal mio dipartimento e descritto nel primo capitolo di questa tesi.

Il modello di UAV menzionato è illustrato con le ipotesi su cui si fonda, così come il pro-
cesso di identificatione usato per trovare i valori dei parametri del modello, questi risultati
e il modello sono poi adattati all’ambiente MATLAB® in tempo discreto e formano il sis-
tema da cui sono estrapolati i dati necessari alla stima dei ritardi di tempo.

Sono poi presentati quattro metodi, in particolare due legati alla massimizzazione della
correlazione incrociata delle quantità in ingresso e in uscita: il metodo di thresholding,
descritto da S. Björklund, e le funzioni criterio proposte in un articolo di J. Kekalainen;
un altro metodo, di R. Waschburger e R. K. H. Galvão, è fondato sull’ottimizzazione ai
minimi quadrati di una funzione di costo costruita a partire dalla dinamica degli stati del
sistema; l’ultimo metodo, anche questo descritto da S. Björklund e chiamato oestruc,
è costruito sulla stima di un modello output-error del sistema analizzato. Le loro basi
teoriche sono spiegate e, in seguito, i metodi sono stati adattati all’ambiente MATLAB®.

Ogni metodo è stato provato 90 volte, 30 per ciascun tipo di ingresso scelto, e per ciascuna
dinamica (laterale, longitudinale, direzionale e verticale) del modello di UAV. I risultati
sono stati paragonati tra loro e sono state tratte conclusioni sulle prestazioni di ogni
metodo, illustrando per quali ingressi e casi d’uso ogni metodo è più adatto, quanto sono
affidabili le loro stime e quanto tempo è stato impiegato per ricavare queste stime. Si è
posta attenzione a confrontare le differenze tra l’applicazione di ogni metodo a un sistema
stabile e a un sistema instabile.

Parole chiave: stima ritardo di tempo, tempo discreto, MATLAB, PBSID, UAV

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 UAV model 3
1.1 Description of the system and major hypotheses 3

1.1.1 Configuration of the UAV . 3
1.1.2 Main hypotheses affecting the model 3

1.2 LTI model of the UAV . 4
1.2.1 Framework of the model . 4
1.2.2 LTI state space model . 6

1.3 Identification of the parameters . 8
1.3.1 PBSIDopt optimization . 8
1.3.2 H∞ norm model matching . 9
1.3.3 Identification results . 11

1.4 Manipulation of the results . 12

2 Time-delay estimation methods 15
2.1 Criterion functions . 16
2.2 Thresholding methods . 18
2.3 One-step explicit methods . 19
2.4 Least-squares minimization of a cost function 20
2.5 Choice of methods . 22

3 Adaptation of methods to MIMO models in MATLAB 25
3.1 Thresholding algorithm . 25

3.2 oestruc algorithm . 29
3.3 Least-squares time-delay ID algorithm . 32

4 Analysis and comparison of methods 37
4.1 Simulation settings . 37

4.1.1 Common settings . 37
4.1.2 Inputs . 38
4.1.3 Settings of the methods . 40

4.2 Simulation results . 41
4.2.1 Results from two-ramps input . 42
4.2.2 Impulse input results . 45
4.2.3 RBS input results . 47

5 Conclusions and future developments 51

Bibliography 53

List of Figures 55

List of Tables 57

List of Symbols 59

1

Introduction

Among the many aspects of dynamic models, whether linear or non-linear, of physical
systems, there is delay associated to the dynamics, an aspect that is sometimes overlooked
during identification procedures, with the estimation of parameters usually being given
precedence. These two problems are different from each other, as such they are studied
and described in literature separately.

There are innumerable methods to identify the parameters of a model, both in continuous
and in discrete time and, parallel to them, run the methods to estimate the time-delays
affecting the model under study.

There are works that describe model identification methods capable of yielding a model
that has physical meaning, such as the PBSIDopt-H∞ method illustrated in Giovanni
Fumai’s master degree thesis ([4]), a method that initially performs black-box identification
of a state space model through the Predictor-Based Subspace Identification method, then
forces the parameters to fit into a known model structure through model matching by
using the minimization of the H∞ of a cost function.

The model obtained this way constitutes the basis of this study: different discrete-time
time-delay identification methods will be applied to it in MATLAB® environment, in
order to extract results needed to compare the methods to each other and understand the
strength and weaknesses of each estimation method.

The objective of this study is to select at least one time-delay estimation method that is
compatible with the aforementioned parameters estimation technique, and to apply it to
the identification of the dynamics of a quadrotor UAV.

The chosen methods have been elaborated in a time span of about two decades, some
are from the early 2000s, others have been published less than a decade ago, the under-
lying route during the choice of methods was choosing methods that were not similar to
each other, in terms of necessary data, of reliability, of scenarios they are suited to, of
computational time, and according to these characteristics they will be judged.

2 | Introduction

The structure of this thesis is as follows:

• Chapter 1 is a brief overview of the relevant sections of G. Fumai’s thesis ([4]),
illustrating the main hypotheses, the structure of the model, how the parameter
identification was performed, its results and how they have been manipulated to fit
into the MATLAB® environment.

• Chapter 2 describes the theoretical foundations of the four chosen time-delay es-
timation methods, the categories they belong to and then explains why precisely
those four methods have been chosen.

• Chapter 3 illustrates how the chosen methods have been adapted to work with
MIMO systems, flexble choice of sample time and in the MATLAB® environment.

• Chapter 4 presents how the tests were carried out, the chosen inputs, how each
method was set up. Then, the results are shown, divided by input that generated
them, and commented, comparing the methods with each other according to the
different situations they were used in.

• The last chapter, chapter 5, is a summary of the observations and conclusions drawn
in the preceding chapter, and finally it suggests how this work can be expanded on
in the future.

3

1| UAV model

This chapter outlines the physical model, in state space form, of a simple quadrotor UAV,
briefly explaining the major hypotheses upon which the model is built, and what the
components of the model indicate. Next, a method, namely a Predictor-based Subspace
Identification method augmented by model matching with H∞ norm optimization, to
identify the state space model will be presented, along with all its steps and the results
stemming from experimental activities carried out on a quadrotor drone. These results
make up the sets providing information vital to work with the chosen discrete time delay
estimation methods, in order to compare them to each other in a setting relevant to real
applications.

1.1. Description of the system and major hypotheses

1.1.1. Configuration of the UAV

The system that has been taken as reference is an X or + shaped UAV with four rotors,
one for each arm of the X.

A generic quadrotor UAV, with all four rotors pointing in the same direction, is an under-
actuated system: the number of independent control inputs is lower than the six degrees
of freedom allowed.

The rotors are divided in two couples, one spinning in clockwise motion, while the other
counterclockwise, each couple is made up of two diametrally opposed rotors. Pitch and
roll controls are obtained by varying the rotation speed of the rotors on each side of the
aircraft, so that two rotors on one side spin faster than those on the other side. Altitude
control is simply given by collectively varying the speed of all rotors.

1.1.2. Main hypotheses affecting the model

The main assumptions adopted in [4] to create the aforementioned physical model are the
following:

4 1| UAV model

• Rigid frame. Vibrational modes are not taken into account as they are assumed
to be faster than rotor-induced actions and it is also assumed that deformations of
the UAV structure do not affect the rotor aerodynamics.

• Aeroelasticity of propellers not modeled. Drag induced by translational ve-
locity is included in steady-state aerodynamic damping. This approximation is,
according to [4], valid only for low operating velocities in an indoor environment,
such an environment is considered to have no wind of any kind.

• Ground effect is neglected.

• Gyroscopic effect is neglected. It can be safely neglected only on small scale
UAVs that are not piloted in ways that do not combine yawing with pitching or
with rolling.

• Fixed configuration. The rotors cannot tilt, there are no lifting surfaces nor flight
control surfaces on the drone.

• Electrodynamics of servomotors are neglected. These dynamics are much
faster than rotor dynamics, thus they can be assumed to not influence the latter
ones.

1.2. LTI model of the UAV

The procedure that leads to the linear time-invariant structured model can be found in
[4], SEZ 1.2, here the major steps that pave the way to the model will be briefly outlined
and the model itself will then be presented.

1.2.1. Framework of the model

The model is based on the equation linear and angular motion and aerodynamic forces
and moments, the latter two depend on the following variables:

• Reynolds number, Re

• Mach number, Ma

• Velocity of the aircraft, VG

• Angular speeds vector of the aircraft, ω

• Control inputs vector, δ

1| UAV model 5

ω =
[
r q r

]
is the vector of angular velocities in body-axes, respectively around x, y

and z.

The last variable from the list is a vector of four components: δ =
[
δver δdir δlat δlon

]
,

they are dimensionless and express the intensity of the manoeuvres described in Section
1.1.1:

• δver For collective thrust

• δdir For changes in direction

• δlat For rolling and lateral motions

• δlon For pitching and longitudinal motions

The equations are linearized around a reference steady-flight condition. In [4] the choice
of reference condition falls upon the trim condition, that is when the flight trajectory such
that “the linear and angular velocity (sic) remain constant for a constant input: linear
and angular accelerations must be zero”, leading to equations (1.1) and (1.2):

0 =

 0

0

mg

+ Faero(0, 0, δ0,Re,Ma) (1.1)

0 =Maero(0, 0, δ0,Re,Ma) (1.2)

where δ0 is the value of δ that makes (1.1) and (1.2) true: δ0 =
[
0 0 0 δhold

]
, the last

component being the intensity of vertical command needed to keep a constant altitude.
The solution of the perturbed equations is approximated by first order terms of the Taylor
expansion. The results are the equations from Equation 1.3 to Equation 1.8 :

m∆u̇ = −mg∆θ + ∂X

∂δlon
∆δlon +

∂X

∂u
∆u+

∂X

∂q
∆q (1.3)

m∆v̇ = mg∆ϕ+
∂Y

∂δlat
∆δlat +

∂Y

∂v
∆v +

∂Y

∂p
∆p (1.4)

m∆ẇ =
∂Z

∂δver
∆δver +

∂Z

∂w
∆w (1.5)

Jxx∆ṗ =
∂L
∂δlat

∆δlat +
∂L
∂v

∆v +
∂L
∂p

∆p (1.6)

Jyy∆q̇ =
∂M
∂δlon

∆δlon +
∂M
∂u

∆u+
∂M
∂q

∆q (1.7)

6 1| UAV model

Jzz∆ṙ =
∂L
∂δdir

∆δdir +
∂N
∂r

∆r (1.8)

1.2.2. LTI state space model

The linearized equations presented at the end of Section 1.2.1 are recast into a continuous
time, linear time-invariant state space form such as:{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

If the perturbed terms of the previous equations have a null reference value in the hovering
condition, they are cast out in favour of analogous actual quantities, by doing so the input
and state vectors are obtained:

u :=
[
δlat δlon δdir ∆δvert

]T
x :=

[
v p ϕ u q θ r ∆ψ w

]T
The outputs have been chosen by the author of [4] to be variables measured by on-board
sensors (namely Inertial Measurement Units):

y :=
[
p ay q ax r az + g

]T
The first equation of the state space form, is derived from the linearized equations, from
Equation 1.3 to Equation 1.8, by dividing each by m or by their inertia term Jij (with
appropriate values for i and j) and the matrices A and B are built as follows:

A =

Yv Yp g 0 0 0 0 0 0

Lv Lp 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 Xu Xq −g 0 0 0

0 0 0 Mu Mq 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 Nr 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 Zw

(1.9)

1| UAV model 7

B =

Yδ 0 0 0

Lδ 0 0 0

0 0 0 0

0 Xδ 0 0

0 Mδ 0 0

0 0 0 0

0 0 Nδ 0

0 0 0 0

0 0 0 Zδ

(1.10)

with, for example, Yv = ∂Y
m∂v

.

Due to A having a clear block diagonal structure, it can be easily understood that the
four dynamics (respectively lateral, longitudinal, directional and vertical) are decoupled
from each other.

Moreover, some initial observations regarding the open-loop stability of these four dy-
namics are also given in [4]:

• Lateral and longitudinal dynamics are unstable: the UAV departs the hov-
ering condition if a lateral or longitudinal input is given, even if the command is
restored to zero and if any acceleration and angular motions are assumed to have
been dissipated by aerodynamic damping.

• Directional and vertical dynamics are stable: aerodynamic damping coun-
teracts any yawing motion and, as soon as the command is released, it starts to
reduce the influence of that motion, slowing it down while maintaining the UAV in
hovering condition; the vertical command is brought back to the hovering condition
value from a different value, the UAV is brought back in hovering condition.

The output equation is based on the equations that model how the measurements are
taken:

ax := u̇+ g sin(θ0 +∆θ) ≈ u̇+ g∆θ = Xuu+Xqq +Xδδlon (1.11a)

ay := v̇ − g cos(θ0 +∆θ) sin(ϕ0 +∆ϕ) ≈ v̇ − g∆ϕ = Yvv + Ypp+ Yδδlat (1.11b)

az := ẇ − g cos(θ0 +∆θ) cos(ϕ0 +∆ϕ) ≈ ẇ − g = Zww − g + Zδ∆δver (1.11c)

8 1| UAV model

The previous equations (Equations 1.11) lead to these structures for matrices C and D:

C =

0 1 0 0 0 0 0 0 0

Yv Yp 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 Xu Xq 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 Zw

(1.12)

D =

0 0 0 0

Yδ 0 0 0

0 0 0 0

0 Xδ 0 0

0 0 0 0

0 0 0 Zδ

(1.13)

1.3. Identification of the parameters

The state space identification of the model performed in [4] is performed in two main
phases:

1. A predictor-based subspace identification (PBSIDopt), driven using discrete-time
sequences of inputs and outputs. The result is a discrete-time state space model
that does not necessarily have physical meaning, it is not the structured state space
model presented in Section 1.2.2, hence why the second phase exists.

2. The identified black-box model is forced to match the structured model through:

min
θ
||Gidentified,unstructured(s)−Gstrcutured(s, θ)||∞

which is the H∞ norm of the difference of the two transfer functions, one of the
identified model, the other of the structured model; θ is the symbol indicating the
parameters of the structured model (the non-null components of the state space
matrices) and it is the variable over which the minimization is carried out.

1.3.1. PBSIDopt optimization

The first phase has been carried out through the PBSID Toolbox, developed by Technische
Universiteit Delft, in works such as [5], [6], [11] and other works found at [7] with the

1| UAV model 9

Toolbox itself, which allows to apply PBSID estimation in the MATLAB® environment.
The theoretical elaboration of the method is explained in [4], just the two flows followed
in that thesis are presented in this document, beginning with Figure 1.1.

The upper flow only uses function from the aforementioned PBSID Toolbox, obtaining the
non-structured state space matrices from a reduced order state sequence, then proceeds to
build the asymptotic variance of frequency response magnitude. The lower flow exploits
other toolboxes for the last steps, instead of going through all the necessary steps with
PBSID Toolbox :

• mvnrnd comes from Statistics and Machine Learning Toolbox of MATLAB®. Using
the Monte Carlo method, it generates random matrices A, B, C, D, K for the
unstructured state space model according to the asymptotic covariance matrix of
the elements of the state space matrices.

• frd comes from Control System Toolbox. It produces the frequency response data
model over a set of frequencies represented, in fig. 1.1, by the green "discrete fre-
quencies" input. Its inputs are the set of frequencies and the sets of inputs and
outputs at those frequencies, these latter two sets are obtained by simulating the
many models produced by the Monte Carlo method.

1.3.2. H∞ norm model matching

The generic framework for this second phase is based around the usage of invariants of
the dynamic systems, specifically, in this case, the transfer functions of the identified
unstructured model and of the structured model. A cost function having a lower cost
the closer the two transfer functions are is thus created: it is the one presented at the
beginning of section 1.3. This choice of cost function carries some advantages:

• There is no need for an explicit similarity transformation, so the only optimization
variables are the state space parameters and their number is independent from the
dimension of the model class.

• The optimization variables, that is to say the state space parameters, are physical
parameters, some of their characteristics might already be available.

• This method can be applied to all model classes for which the H∞ can be computed,
even time-varying models.

The non-smooth optimization of H∞ norm, the type of optimization this method belongs
to, is implemented in the MATLAB® Robust Control Toolbox as the function hinfstruct.

10 1| UAV model

Figure 1.1: Two possible routes to implement PBSID in MATLAB, as adopted in [4]

1| UAV model 11

The algorithm contained in the aforementioned function guarantees convergence to a
local minimum, even if it does not converge to a global minimum. The preprocessor for
hinfstruct, which is the function systune, allows to:

• Remove the stability constraint on the optimization scheme, which is useless during
model matching,

• Focus the optimization on a given bandwidth.

1.3.3. Identification results

The identified parameters are collected in the following Tables, 1.1 to 1.4, respecting the
order of the dynamics in the state space matrices.

Parameter Value and unit
Yv −0.211 1/s
Yp 0 m/(s rad)
Lv −3.613 (s rad)/m
Lp 0 s
Yδ 9.379 m/s2

Lδ 851.287 rad/m2

Table 1.1: Identified parameters for lateral dynamics

Parameter Value and unit
Xu −0.282 1/s
Xq 0 m/(s rad)
Mu 6.297 (s rad)/m
Mq 0 s
Xδ −8.758 m/s2

Mδ 473.061 rad/s2

Table 1.2: Identified parameters for longitudinal dynamics

Parameter Value and unit
Nr −8.178 s
Nδ 255.590 m/s2

Table 1.3: Identified parameters for directional dynamics

Tables 1.1 and 1.2 have the derivatives in p and in q, respectively, set to 0 according to
how the results were presented in [4]. The reason behind the imposition of a null value in
those positions is that the results were not deemed accurate enough for further analyses,

12 1| UAV model

Parameter Value and unit
Zw −0.731 1/s
Zδ −34.35 m/s2

Table 1.4: Identified parameters for vertical dynamics

especially Xq and Mq, as their standard deviations from the nominal values are reported
to be 96.3% and 111.6%, respectively.

The newly introduced constraint allowed the author of [4] to search for more accurate
solutions during optimization, on the other hand, for the purposes of this thesis, it does
not allow to work with a complete set of identification results. This shortcoming should
be addressed, should further study on this subject be started.

1.4. Manipulation of the results

The objective of the present study is to estimate the time delay (given that the UAV is a
MIMO system, delays is the more accurate form) affecting the discrete-time model of the
UAV previously described in Section 1.1.

The first major issue encountered, even more pressing than choosing the methods that
shall be exploited to identify the time delays, is that the final result of the PBSID-H∞

identification is expressed in continuous time.

Working around this issue is fairly straight-forward using MATLAB®, specifically its
Control System Toolbox and System Identification Toolbox.

The former toolbox provides the function ss, which yields a state space model by receiving
the matrices A, B, C, D as the first four inputs. The function can yield either continuous-
or discrete-time models, depending on whether a sample time is given as fifth input: if
only four inputs are given or the fifth is null, then the resulting model is a continuous-time
one.

The results presented in Section 1.3.3 are the non-null components of the identified A, B,
C, D matrices, and they are set into the matrices according to their description given in
Section 1.2.2. As previously explained the identified matrices have been forced, through
model matching, to have the same shape as those of the model described in Section 1.2.2.

The function ss is used to produce a continuous-time state space model by using such
matrices.

The System Identification Toolbox provides the function c2d, thouroughly described in [9],

1| UAV model 13

which is used to convert a continuous-time model into a discrete-time one with specified
sample time.

Six methods to perform the conversion are available:

• Zero-Order Hold (ZOH). It provides an exact match between the continuous- and
discrete-time systems in the time domain for staircase inputs. The relation between
continuous- and discrete-time input signals is as follows:

u(t) = u[k] kTs ≤ t(k + 1) ≤ Ts

• First-Order Hold (FOH). This method matches exactly the continuous- and discrete-
time systems in the time domain for piecewise linear inputs. For this method, the
relation between continuous- and discrete-time input signals is presented just below:

u(t) = u[k] +
t− kTs
Ts

(u[k + 1]− u[k]), kTs ≤ t(k + 1) ≤ Ts

The MATLAB® documentation states that this second method is more accurate
than ZOH for smooth inputs.

• Impulse-Invariant Mapping produces a discrete-time model with the same impulse
response as that of the continuous-time system.

• Tustin Approximation. It operates in the frequency domain, as opposed to ZOH
and FOH. What follows is the discretization Hd(z) of the continuous-time transfer
function H(s) in c2d:

Hd(z) = H(s′), s′ =
2(z − 1)

Ts(z + 1)
(1.14)

It is very important to understand that the states are not preserved during this
conversion, they depend on state-space matrices and on the presence of time delay.

Estimation of time delay on inputs is still possible.

• Zero-Pole Matching Equivalents. Unsuitable for MIMO systems, thus it cannot be
used on the model at hand, which is indeed MIMO.

• Least Squares. As the one above, the least squares method is unsuitable for MIMO
systems.

To keep the highest level of generality and not be forced to switch from one conversion
method to the other according to the inputs at hand, Tustin’s approximation has been

14 1| UAV model

preliminary chosen to convert the identified continuous-time state space model into its
discrete-time counterpart.

The manipulated results of the identification process will be used in the subsequent chap-
ters.

The manipulated identified model, henceforth simply called "the model", will be split
into its different dynamics (the longitudinal, the later, the directional and the vertical
dynamics), then input sequences suitable for each of the methods chosen in the next
chapter will be applied to the model to generate output and state time sequences. Finally,
the time sequences will be used to study the chosen methods.

Knowledge of the model matrices (or of the transfer functions) might be necessary, de-
pending on the method chosen, but this is the subject explored in the next chapter,
dedicated to describing some time-delay estimation methods and choosing them.

15

2| Time-delay estimation methods

The time delay estimation can be performed by a plethora of methods, greatly varying in
domain, data needed, range of systems to which the methods can be applied.

Svante Björklund compiled a list of time delay estimation methods in 2003, see [1], which
was used as groundwork for the study presented in this thesis.

In [1] the methods are divided in four major categories:

• Time-delay approximation methods, comprising those methods where the time-delay
is not an explicit parameter of the model; this category is further divided into three
subcategories, according to domain of the respective methods:

– Time domain approximation methods, usually based around finding when the
impulse response becomes non-zero. This subcategory contains all those meth-
ods related to finding the maximum cross-correlation between input and out-
put.

– Frequency domain approximation methods, in the frequency domain a time-
delay becomes a phase shift, thus these methods revolve around estimating
phase shifts like e−iωTd .

– Laguerre domain approximation methods, these methods estimate the time-
delay from a relation, expressed in Laguerre functions, between input and
output.

• Explicit time-delay parameter methods, this category is subdivided in three parts:

– One-step explicit methods, which estimate time delay and all the other pa-
rameters of the model simultaneously, these methods are divided in those that
work in continuous time and those that are used in discrete time.

– Two-step explicit methods, which alternate between estimating the time delay
and estimating all the other parameters.

– Sampling methods

16 2| Time-delay estimation methods

• Area and moment methods, relations between areas above (or below) the step re-
sponse or moments of the impulse response form the core of these methods, they do
require knowledge or, at least, an estime of these responses to be applied.

• Higher order statistics methods, these methods allow to eliminate noises with sym-
metric probability density function. Their main issue is that, if the signal has a
symmetric probability density as welll, it might disappear.

Deeper analyses of these methods are presented in other documents by the same author:
in [2] the time domain approximation methods are further explained and examined, and
in [3] a more thorough comparison of the three one-step explicit methods is carried out.

Another method, related to the time domain approximation methods from [1], is presented
in [10]. This method, suitable for discrete time models, compares the time differences
of the time sequences of two different channels collecting data, it is different from the
traditional cross-correlation methods in that the latter use as data the magnitudes values
of time functions, while the method from [10] uses the time differences.

A third method, quite different from all those already presented so far is illustrated in
[12], it is applied to discrete time state space models and it can be applied as is to MIMO
systems such as the one this thesis aims to examine.

This method is based on the minimization of a quadratic cost function related to the
prediction error of the state variables over a given time frame. It is needed that the
system inputs are known and that noisy measurements of the states are available. No
measurements of the outputs are needed, thus actually only a part of a state space model
must be known, the part that revolves around the matrices A and B. The following
sections, from Section 2.1 to Section 2.4, will explor in greater detail the theoretical
foundations of these four methods, while Section 2.5 will explain the reasons behind the
choice of the aforementioned quartet of methods.

2.1. Criterion functions

According to [10], this method is useful to determine the time delay between the detection
of a measurable quantity by one sensor and the detection of the same quantity by another
sensor.

"Any criterion function that is able to utilise that statistical similarity between the channel
signals and to fix the time elements corresponding each other in sequences t and T"
(quoted from [10]) is a valid criterion.

2| Time-delay estimation methods 17

The two sequences are, respectively, the input and the output, or the first and the second
measurements.

The two measurements must have a significant statistical similarity, that is, correlation,
and each criterion function yields the best estimate for the time delay only "within the
meaning of that criterion" (again, quoting [10]).

All criteria have a handful of common characteristics as foundational elements:

• two time sequences:

– t, the input time sequence,

– T , the output time sequence

• the two sequences compose the ∆(i+ k, i) = T (i+ k)− t(i) difference,

• the brackets ⟨ ⟩ indicate taking the sample mean of whatever quantity is inside,

• the difference ∆T (i + k) = T (i + k) − T (i + k − 1) and its counterpart for t,
∆t(i) = t(i)− t(i− 1),

• vâr{∆T} = ⟨∆T 2(i+ k)⟩ − ⟨∆T (i+ k)⟩2

Specifically, in [10] four different criterion functions are illustrated, in order of appearance:

• minimum value of the sample variance delay function, Equation 2.1,

• minimum value of the sample average delay difference function, Equation 2.2,

• minimum value of the sample variance delay difference function, Equation 2.3,

• the maximum value of the correlation coefficient, Equation 2.4. This last criterion is
equivalent to the maximisation of the cross-correlation function and, in stationary
sequences, to the minimization of the quadratic delay difference function, shown in
Equation 2.5.

The time index k that minimizes (or maximizes, in the case of the fourth function) the
criterion functions is the estimate for the delay value.

min
k

{êvd(k)} = min
k

{⟨∆2(i+ k, i)⟩ − ⟨∆(i+ k, i)⟩2} (2.1)

min
k

{êadd(k)} = min
k

{⟨|∆(i+ k, i)−∆(i+ k − 1, i− 1)|⟩} (2.2)

18 2| Time-delay estimation methods

min
k

{êadd(k)} = min
k

{E − F} (2.3)

with:
E = ⟨|∆(i+ k, i)−∆(i+ k − 1, i− 1)|2⟩

F = ⟨|∆(i+ k, i)−∆(i+ k − 1, i− 1)|⟩2

max
k

{êcor(k)} = max
k

{
⟨∆T (i+ k)∆t(i)⟩ − ⟨∆T 2(i+ k)⟩⟨∆t(i)⟩√

vâr{∆T}vâr{∆t}

}
(2.4)

mink{êqdd(k)} = mink{⟨|∆T (i+ k)−∆t(i)|2⟩} (2.5)

2.2. Thresholding methods

This class of methods, presented in [1] and elaborated on in [2], is a type of cross-
correlation methods. It consists in estimating the impulse or step response of a system
(with or without noise) and comparing it to a threshold, so that the time from t0, the time
when sampling begins, to the moment when the chosen response oversteps the threshold
is the estimate for the time delay.

The adopted method uses the impulse response, estimated using the MATLAB® System
Identification Toolbox arx function, from [8], and the coefficients suggested in [2].

The chosen threshold, as suggested in [2] and presented in Equation 2.6, is h(t):

h(t) = hstdŷstd(t) (2.6)

where ŷstd(t) "is the vector of the estimated standard deviations of the estimated impulse
response coefficients and hstd is a constant chosen by the user", to quote [2].

Given that the MATLAB® functions involved in the methods only accept SISO-derived
input and output time sequences, a MIMO transfer function must be examined component
by component, yielding a matrix of estimated time delay values, this concept will be
further explored in Chapter 3

The MIMO version of this method can be structured to work by using either a polynomial
transfer function representation or a state space representation, with no need to switch
from one to the other, ensuring greater flexibility in its input arguments.

2| Time-delay estimation methods 19

2.3. One-step explicit methods

[1] and [3] describe three methods in this class: arxstruc, oestruc and met1struc. A
common characteristic is casting the system, of which the delay must be estimated, into
a polynomial form, simulating this form for a set of delay values and choosing the value
associated with the polynomial form with the lowest loss function.

arxstruc estimates many Autoregressive models with Exogenous variable (ARX), this
variable being the input. All these models have the structure presented in the following
Equation 2.7:

A(q)y(t) = B(q)u(t− nk) + e(t) (2.7)

and they differ from one to the other only in the value of the time delay nk.

The MATLAB® function arx produces a structure containing a large amount of data,
including loss function and fit percentage for the estimated ARX model, which are used
to identify the best estimate out of the set of produced estimates and how fitting is the
estimate to the original system.

In [3] an analysis is carried out to identify the best combination of degrees for the A and
B polynomials, the results reported in the fourth chapter state that na = 10 as degree for
A(q), nb = 3 as degree for B(q) is the best combination, as it is the combination with the
lowest root mean square (RMS) error, although the author subsequently adopted na = 10,
nb = 5 as values because it led to better results in two tests.

The same framework is the basis for oestruc, the striking difference being that the
model(s) have a different form, an output-error (OE) model is estimated instead of and
ARX one.

A generic OE model shape is illustrated below, in Equation 2.8:

y(t) =
B(q)

F (q)
u(t) + e(t) (2.8)

All OE models created for oestruc have the same values for the two degrees while the
third value, the one related to time delay, is different from model to model.

The values for the degrees of the polynomials F (q) and B(q), nf and nb, respectively,
suggested in [3] have been chosen following the same logic as those for arxstruc: those
that yield the lowest RMS error. These are nf = 2 and nb = 1.

In both arxstruc and oestruc there has been no prewhitening, because the RMS error

20 2| Time-delay estimation methods

has been observed to increase with prewhitening compared to without, while keeping the
optimal orders in both cases.

2.4. Least-squares minimization of a cost function

This method is presented in [12], it was chosen because it did not rely on input and output
sequences, but on input and states sequences to compute a cost function. The method
also requires the system to be set in state space representation, it cannot work by directly
operating with a polynomial transfer function representation of the system.

To create the cost function, the input and state time sequences are needed. The output
sequence, although usually available (especially as it is needed to perform black-box esti-
mation, such as with the PBSID method adopted in [4]) is not needed to estimate time
delay using this method.

Admissible values of time-delay τj on the j-th input are collected in a set {τj,max, ..., τj,min}
ordered in sequence going from the greatest admissible delay value to the lowest admissible
delay value.

The data making up the input sequence must be collected starting from t ≤ −τmax, so
that the earliest necessary element of the input sequence is u(t = −τmax), differently from
the other methods that employ u(t = 0) as earliest element of the input time sequence.

Thus, by collecting input data at every sampling moment, the input time sequence u(t)

with t = −τmax,−(τmax − 1), ..., 0, 1, 2, ..., N is created. uj(t) indicates the j-th input
variable at time t.

This method relies on the states being measurable. If the states are measurable, then they
must be measured at the same moments and rates as the inputs and the state sequence
is created using x(t = 0) as its first element and then the other elements are x(t) with
t = 1, 2, ..., N

Other data needed are the matrices A and B of the state space representation.

Given p inputs, k as the discrete time variable, k = N as the last sampling moment, the
following equation is the cost function. The value of τ̂j that minimizes it is the optimal
estimate of time delay for the j-th input.

J(τ̂1, τ̂2, ..., τ̂p) =
N−1∑
k=0

[x(k + 1)− x̂(k + 1)]T [x(k + 1)− x̂(k + 1)] (2.9)

2| Time-delay estimation methods 21

Equation 2.9 is subject to:

x̂(k + 1) = Ax̂(k) +

p∑
j=1

Bjuj(k − τ̂j) (k = 1, ..., N − 1) (2.10)

with Bj being the column of state space matrix B related to the j-th input.

This last equation, Equation 2.10, is the estimated form of the following Equation 2.11,
which describes a discrete time state space system with input delays.

x(k + 1) = Ax(k) +

p∑
j=1

(Bjuj(k − τj)) (k = 1, 2, ..., N − 1) (2.11)

In order to reduce the workload, a new quantity, γ, is introduced, and it is the set of γi,j
presented in Equation 2.12:

γi,j :=

1, ti,j = τj

0 otherwise
(2.12)

In Equation 2.12, ti,j is the i-th value of admissible time delay on the j-th input. All tij
with different index i but same j compose the set {ti,j, i = 1, 2, ...,Mj}, which is another
form of the admissible delay values set, with Mj representing the quantity of admissible
delay values for the j-th input.

The quantity ti,j respects the relationship outlined by Equation 2.13:

τj =

Mj∏
i=1

γi,jti,j (2.13)

So the state variables propagation is rewritten as Equation 2.14:

x(k + 1) = Ax(k) +

p∑
j=1

Mj∑
i=1

γi,jBjuj(k − ti,j) (k = 1, ..., N − 1) (2.14)

The cost function variable becomes the estimate of γ and is rewritten using the new
quantities of Equation 2.15 and Equation 2.16:

z(k) := x(k + 1)− Ax(k) (2.15)

22 2| Time-delay estimation methods

Φ(k) = [B1u1(k − t1,1) B1u1(k − t2,1) ... B1u1(k − tM1,1) ...

B2u2(k − t1,2) B2u2(k − t2,2) ... Bpup(k − tMp,p)]
(2.16)

Yielding Equation 2.17

J(γ̂) =
N−1∑
k=0

[z(k)− Φ(k)γ̂]T [z(k)− Φ(k)γ̂] (2.17)

The minimum of J(γ̂) can finally be recovered from the imposition of ∇J(γ̂) = 0, which
is related to Equation 2.18 for what concerns finding the optimal estimate of γ:

γ̂∗ =
(N−1∑

k=0

ΦT (k)Φ(k)
)−1(N−1∑

k=0

ΦT (k)z(k)
)

(2.18)

And thus the estimated tau can be computed as illustrated by Equation 2.19:

τ̂ ∗j =

Mj∏
i=1

γ̂∗i,jti,j (j = 1, 2, ..., p) (2.19)

One important condition for this method to work is that the input sequence must be
“sufficiently rich so that the matrix inverse exists”, implying that a step or, even worse,
an impulse input are usually not suitable for this method.

The value of γ does not depend on N , as long as N allows the matrix inverted in Equation
2.18 to actually be invertible.

2.5. Choice of methods

The methods to test and compare at our disposal have initially been reduced to four
methods, the rationale being having representatives of different categories of methods to
compare to each other.

Chosen methods are those presented in [10] and [12], plus two shown in [1]: oestruc,
a one-step explicit method, and simple thresholding on both impulse and step response,
two variants of a time domain approximation method.

The last method has been chosen because it is, conceptually, the simplest of all, thus test-
ing would reveal if the difference in theoretical concepts underlying each method translated
into a performance difference upon application on various models, both SISO and MIMO,
chief among them the model of a four-rotor drone that has been described previously. The

2| Time-delay estimation methods 23

second to last model has been chosen because it comes from the second best described
category of methods in [1] and, given that the four-rotor drone model has already been
identified, there is no need to have a more complex identification section of the model,
given that the focus of this thesis is time-delay estimation.

Of the three methods composing the one-step explicit time-delay parameter category,
oestruc is the slowest, from a computational time point of view, but the most reliable,
this is the reason why it has been chosen over arxstruc and met1struc.

The method illustrated in [12] and Section 2.4 has been chosen due to its quirks, chiefly
needing knowledge about the states time sequence instead of the output time sequences
and the altogether very different approach to the problem, compared to the other methods
chosen.

The criteria proposed in [10] and shown in Section 2.1 cannot actually be applied to the
estimation of time delay of a system such as that illustrated in Chapter 1 because the
input and output vectors have different dimensions and units of measure, which means
they are incompatible and cannot be compared to each other, which is instead what should
happen between two time sequences with in the criteria from Section 2.1.

25

3| Adaptation of methods to

MIMO models in MATLAB

This chapter is dedicated to integrating the methods chosen at the end of Chapter 2
into the MATLAB® environment, starting from what is suggested in the sources and
then developing the MATLAB® algorithm into versions suited for discrete-time MIMO
systems and with a sample time that might be different from 1 second.

The real system was not available to measure the necessary data, such as outputs or
states, thus the identified parameters have been used to build a state space system, its
shape being the same as that described in Chapter 1. This system has been used either to
directly obtain outputs and states through the MATLAB® System Identification Toolbox
function lsim, or to be converted into the corresponding transfer function G(s).

G(s) has never been used as-is, it has always been used split into the sub-transfer functions
relating a single input signal to a single output signal.

3.1. Thresholding algorithm

This method, as introduced in Chapter 2, cannot directly operate with MIMO systems:
if a MIMO system is directly used as-is in the estimation the only delays that can be
estimated are the shortest for each output, all other delays contributing to each output
might not be detectable. Thus, whether a state space or a polynomial transfer function is
used, each input-output combination must be analyzed on its own, so that the time delay
specific to each combination can be estimated.

The method adapted for MIMO systems still follows, for each input-output couple, the
original method presented in [1] and [2], meaning that the impulse response of each input-
output combination is estimated using the arx command from the MATLAB® System

Identification Toolbox, as computed by Algorithm 3.1.

A y_est is the set of output time sequences collected as a matrix, its first index is the

26 3| Adaptation of methods to MIMO models in MATLAB

Algorithm 3.1 Impulse response estimation using arx

data = iddata(y_est(:,idx_y),u_est(:,idx_u),ts);
arxsys = arx(data,[0 71 0]);
imp_resp(:,idx_y,idx_u) = sim(arxsys,[1;zeros(length(t)-1,1)]);

time index, indicating when the value was sampled.

The same is true for the input counterpart of y_est: u_est. The idx_u and idx_y

indices are integers, respectively indicating the idx_u-th input and the idx_y-th output
time sequences used to estimate the impulse response.

The function iddata combines an input sequence, an output sequence and a value of time
delay to create a dataset that will be fed to the function arx.

The value ts is the sample time used to estimate the discrete-time impulse response, it
must be the same as the sample time used to define the space state system or polynomial
transfer function (either can be input in the position indicated by sys) from the idx_u-th
input to the idx_y-th output.

The vector [0 71 0] used in the function arx has been derived from suggestions present
in [2].

u_est and y_est are an input sequence and an output sequence, respectively, generated
for the sole purpose of estimating the impulse response of the system through the arx

command. The output sequence is generated by exciting, with the u_est input sequence,
the subsystem related to the the idx_u-th input and the idx_y-th output combination.

The whole algorithm is then cycled over all values of idx_y and of idx_u, leading to an
impulse response array (indicated as imp_resp(idx_t,idx_y,idx_u)) with three indices:

• The first is the time index, indicating the time when the impulse response value has
been sampled. The value of this index is related to the corresponding sample time
instant throught to the formula t = (timeindex − 1)tsample, where t indicates the
sample time instant, in the same units as the sample time.

• The second is the output index, its value indicates which output the corresponding
impulse response value is related to.

• The third is the input index, indicating which input generated the impulse response
value.

arxsys contains information about the variance of the ARX systems coefficients, which is

3| Adaptation of methods to MIMO models in MATLAB 27

needed to build the threshold, as explained in [2]. The threshold varies over time because
at each time instant the standard deviation is different thus, for each input-output couple
a 71-components vector of time-varying standard deviations is generated as:

y_std = sqrt(diag(arxsys.Report.Parameters.FreeParCovariance));

The threshold time sequence for each input-output combination is then created as:

h_t(:,idx_y,idx_u) = y_std.*h_std_imp;

The last factor is a dimensionless number used to increase or decrease the threshold as
needed, it might be time-varying or fixed, [2] states that a value of 3 for this factor is
suitable for most estimation procedures.

In some cases, chiefly when the system is simply stable, the algorithm to compute the
impulse response might yield unsatisfactory results in either the response itself or in the
standard deviation. To solve this issue, for each input-output combination and for the
same time interval, various impulse responses are estimated:

Algorithm 3.2 Averaged impulse response and threshold

for idx_1=1:idx_1_max

data= iddata(y_est(:,idx_y,idx_1),u_est(:,idx_u,idx_1),ts);

arxsys=arx(data,[0 71 0]);

imp_resp2(:,idx_y,idx_u,idx_1)=...
sim(arxsys, [1;zeros(length(t)-1,1)]);

y_std3(:,idx_y,idx_u,idx_1)=...
sqrt(diag(arxsys.Report.Parameters.FreeParCovariance));

end

y_std(:,idx_y,idx_u) = mean(y_std3(:,idx_y,idx_u,:),4);
imp_resp(:,idx_y,idx_u) = mean(imp_resp2(:,idx_y,idx_u,:),4);
h_t(:,idx_y,idx_u) = (y_std(1:71,idx_y,idx_u)).*h_std_imp;

A new index (idx_1) had to be added to create the new for cycle, in turn needed
to estimate many (whatever value for idx_1_max is chosen) impulse responses for a set
combination of input and output over a defined time interval, thus producing the following
lines from Algorithm 3.2:

28 3| Adaptation of methods to MIMO models in MATLAB

imp_resp2(:,idx_y,idx_u,idx_1) = sim(arxsys,[1;zeros(length(t)-1,1)]);

y_std3(:,idx_y,idx_u,idx_1) =...

sqrt(diag(arxsys.Report.Parameters.FreeParCovariance));

that compute idx_1-th impulse response and standard deviation related to the idx_y-th
output and idx_u-th input couple. Having computed an idx_1_max amount of impulse
responses, all the resulting imp_resp2 are then averaged over the fourth index to obtain
imp_resp(:,idx_y,idx_u), this will be used as illustrated in the initial Algorithm 3.1.

The same is performed to obtain the standard deviation over time, an auxiliary vector
y_std3(:,idx_y,idx_u,idx_1) is built for each estimation of the impulse response, its
fourth index the same as that in imp_resp2, and again paralleling what happens to
imp_resp2, once the for cycle over the fourth index is over, the results are all averaged
over that index. These two procedures are listed below in MATLAB® code and, in fact,
are the third and second to last lines of Algorithm 3.2:

imp_resp(:,idx_y,idx_u) = mean(imp_resp2(:,idx_y,idx_u,:),4);

y_std(:,idx_y,idx_u) = mean(y_std3(:,idx_y,idx_u,:),4);

The vector y_std is then used to build the thresholding sequence by inserting it into
Algorithm 3.1.

To estimate delay, the estimated impulse responses for each input-output combination are
compared to the threshold sequences for the same combinations, the process is straight-
forward: a for cycle is started on the first value of the time index and stopped whenever
the impulse response is first detected overstepping the threshold. The time index is then
manipulated to obtain the true time instant. The resulting estimate is placed into a
matrix (tau_imp(idx_y,idx_u)) where the row index indicates the output the delay is
related to, while the column index indicates the input. The following algorithm shows
how the delay for one input-output combination is estimated: Everything presented so

Algorithm 3.3 Identification of time delay for one input-output couple

for idx_t = 1:ts:71
if abs(imp_resp(idx_t,idx_y,idx_u)) > h_t(idx_t,idx_y,idx_u)

tau_imp(idx_y,idx_u) = (idx_t-1).*ts;
break

else
tau_imp(idx_y,idx_u) = -1;

end
end

3| Adaptation of methods to MIMO models in MATLAB 29

far must be cycled over the output (idx_y) and input (idx_u) indices to fill in the matrix
tau_imp.

If the threshold is never exceeded then −1 is returned as delay estimate, given that −1 can
never be a delay, the user can easily understand that, for the idx_y-th output, idx_u-th
input combination, the impulse response was always lower than the threshold.

A relevant issue of this method, when applied to discrete-time systems, is that the delay
estimate tau_imp(idx_y,idx_u) includes the difference between the denominator and
numerator degrees of the polynomial transfer function between the idx_y-th output and
the idx_u-th input. This polynomial transfer function, usually identified in the scripts as
G(idx_y,idx_u), is a component of the polynomial transfer function G, describing the
greater MIMO system being analyzed.

An example of this issue is a stable system with degree 1 numerator, degree 3 denominator
and input delay of 3 times the sample time: even if the method correctly estimated
the input delay, it would yield a result of τ = 5tsample instead of τ = 3tsample because
∆(degree) = 2.

3.2. oestruc algorithm

The oestruc method shares one important similarity with the chosen thresholding method:
both have MATLAB® estimate a model through built-in functions that take as input ar-
guments the input and output time sequences of a simulation of the system. This similarity
leads to oestruc needing an adaptation for it to be applicable to MIMO systems, such
as the one studied in this document. The similarity ends here because oestruc needs the
built-in oe MATLAB function to estimate an output-error model of the original system,
whereas the thresholding method uses the built-in arx function to estimate the impulse
response of the system.

Another similarity is the issue presented at the end of Section 3.1, related to the degrees
of the denominator and numerator polynomials.

An initial MATLAB® code for SISO oestruc is presented in [1] and is adopted as frame-
work to support the construction of the variable sample time MIMO version of oestruc:

data is a collection of input and output sequences, nf, nb and nkVec are the coefficients
of the output error model, and only one component of the last coefficient is taken at every
iteration of the method. As previously illustrated in Section 2.3, the third coefficient

30 3| Adaptation of methods to MIMO models in MATLAB

Algorithm 3.4 Basic oestruc

function dtEst = oestructd(data,nkVec_max)

nf = 2;
nb = 1;
nkVec = 1:nkVec_max;
for nnn = 1:length(nkVec)

model = oe(data,[nb nf nkVec(nnn)], 'Covariance','None');
lossFunc(nnn) = model.NoiseVariance;

end
[minVal, nnnmin] = min(lossFunc);
dtEst = nkVec(nnnmin);

(nk, or nk in MATLAB® code) is the one relaying information about the delay: its value
corresponds to the number of sample time intervals of input delay affecting the system,
e.g. nk= 3 means an input delay long 3 times the sample time.

In order to apply oestruc to MIMO systems, two for cycles, one nested into the other,
are needed, one cycles over the number of outputs, the other over the number of inputs,
just like it happens in the MATLAB® realization of the thresholding method.

The function will require:

• the input sequence u, it must be fed as column(s) vector,

• the output sequence y, it must be fed as column(s) vector as well,

• the transfer function G,

• the sample time ts.

The method must be usable with a flexible choice of sample time, while the original, from
[2] forces the user to adopt a sample time of 1 s, to this end a few notable changes and
additions have been made:

• The time sequence used to obtain the output sequence now depends on the sam-
ple time: t_oe(1,:) = 0:ts:(ts.*(length(u_oe)-1)); it is a vector that starts
from zero, is as long as the input sequence is and its i-th value is its (i− 1)-th value
plus the sample time,

• The best time delay estimate is multiplied by the sample time, recall that the delay
estimate is not a time but rather an number of sampling intervals, the two only
coincide if ts = 1.

The final MATLAB® form of the method is presented as Algorithm 3.5:

3| Adaptation of methods to MIMO models in MATLAB 31

Algorithm 3.5 Extended oestruc

function tau_oe = oestructd(u_oe,y_oe,G,ts,nkVec_max)

t_oe(1,:) = 0:ts:(ts.*(length(u_oe)-1));

[n_y,n_u] = size(G);

nf = 2;
nb = 1;
nkVec = (0:nkVec_max);

tau_oe = zeros(n_y,n_u);

for idx_y = 1:n_y

for idx_u = 1:n_u

z = [y_oe(:,idx_y),u_oe(:,idx_u)];

for nnn = 1:length(nkVec)
nk = nkVec(nnn) ;
model = oe(z,[nb nf nk], 'Covariance','None');
lossFunc(nnn,:) = model.NoiseVariance;

end

[minVal, nnnmin] = min(lossFunc);
tau_oe(idx_y,idx_u) = ts.*nkVec(nnnmin);

end
end

In order to avoid manually transposing the input and output sequences, so that either row
or column vectors can be used, the following lines of code (listed as Algorithm 3.6 and
Algorithm 3.7) can be inserted in the function presented in Algorithm 3.5, just before the
main body of the method; it is important to note that these additions only work if the
number of inputs, or outputs (in Algorithm 3.7), is lower than the number of sampling
moments:

A very similar procedure can be employed to obtain the suitable shape of the output
matrix (or vector), as illustrated in Algorithm 3.7.

32 3| Adaptation of methods to MIMO models in MATLAB

Algorithm 3.6 Adaptation to accept both row- and column-shaped inputs

[d1u, d2u]=size(u_oe);
if d1u<d2u

u_oe = u_oe.';
else

u_oe;
end

Algorithm 3.7 Adaptation to accept both row- and column-shaped outputs

[d1y, d2y]=size(y_oe);
if d1y<d2y

y_oe = y_oe.';
else

y_oe;
end

3.3. Least-squares time-delay ID algorithm

Transcribing this method in MATLAB® requires little modifications, and once tran-
scribed it is capable of operating with SISO and MIMO systems. As stated in Section
2.4, the method requires:

• the state space form matrices A and B,

• rich (e.g. no impulse nor step) input time sequences uj(t) ranging from t = −(τj,max),
the maximum admissible delay value for the j-th input, to t = N−1, the penultimate
sampled instant,

• the state time sequences from t = 0 to t = N .

The MATLAB® implementation of the method requires the admissible delay values to be
set in a matrix T , each of its columns being the set of delay values for the corresponding
j-th input.

For ease of composing the script all the columns of T , that is all the sets of admissible
delays, must be the same; if the minimum admissible delay value for one input widely
differs from the maximum admissible value on another input the columns of T will be
quite long.

Given as a two input system defined in state space form through MATLAB®, a simple
(two inputs) example of data initialization for this method is presented as Algorithm 3.8.

3| Adaptation of methods to MIMO models in MATLAB 33

Algorithm 3.8 Example of initialization of data for LS_noiseless

[n_x, n_u] = size(sys.B);
t = t_start:ts:t_end;

for idx_u = 1:n_u
T(:,idx_u) = (Tmin:Tmax).*ts;

end

u0 = zeros(n_u,1);
u(1,:) = sin(2.5.*(ts:ts:t_end).*0.5.*pi);
u(2,:) = sin(1.25.*0.5.*(ts:ts:t_end).*pi);
u_neg = zeros(n_u, max(T(:,1))./ts);
x0 = zeros(n_x,1);

u_mod1 =[u0, u];
u_mod =[u_neg, u_mod1];

u_neg is the matrix containing all input values from t=-ts to, going backwards in time,
t = -max(T(:,1)), n_u is the number of inputs, n_x is the number of state variables,
ts is the degree time, max(T(:,1))./ts is used to gather the index corresponding to the
max(T(:,1)) degree time.

The states vector evolution over time should be that of the system being analysed, but
in order to gather data without the actual system, here it is obtained by simulating the
system through the MATLAB® function lsim, having also specified the input to use (the
same that has been defined during the initialization), the time interval and the initial
state vector, defined as x0 during the initialization:

[y,t_out,x]=lsim(sys,u_mod1.',t,x0.');

Some inputs of lsim have been transposed to allow the function to accept the vectors and
matrices. The only output of this function needed to the method is the third, the state
vector x which includes the previously defined x_0. The method is fully implemented by
the following MATLAB® function, accepting as inputs, in order as they appear on the
function syntax:

• the state vector at t = 0,

• the state vector time history without the values at t = 0,

34 3| Adaptation of methods to MIMO models in MATLAB

• the input time history from t = −(τj,max) to t = N ,

• the state space form matrices A and B,

• the matrix T containing the sets of the admissible time delay values for all inputs,

• the sample time ts (written as ts in MATLAB® code)

Algorithm 3.9 Core of LS_noiseless algorithm

function [gamma,tau] = LS_noiseless(x0,x,u_mod,A,B,T,ts)

x_mod = [x0, x];

[n_u, n_t_u] = size(u_mod);
[n_x,n_t_x] = size(x_mod);
[L_T,n_T] = size(T);

for k = 1:n_t_x-1
z(:,k) = x_mod(:,k+1) - A*x_mod(:,k);
phi(:,:,k) = phi_k_creator(n_u,u_mod,L_T,T,B,k,ts);
R(:,k) = (phi(:,:,k).') *z(:,k);
W(:,:,k) = (phi(:,:,k).') *(phi(:,:,k));

end

R1 = sum(R,2);
W1 = sum(W,3);
gamma = (W1)\R1;

gamma_reshaped = reshape(gamma,L_T,n_u);

for idx = 1:n_u
tau(:,idx) = max(gamma_reshaped(:,idx).*T(:,idx));

end

Here k is used as time index, just as in the method presented in [12].

The function phi_k_creator(n_u,u_mod,L_T,T,B,k,ts), illustrated in Algorithm 3.10,
yields the quantity Φ(k), described in 2.4 and in [12], for all inputs and admissible delay
values.

The part round((max(T(:,1)) -T(h,j))./ts)) has been used to have the function
work even for sample times different from 1 second, it is analogous to what happens
to max(T(:,1)) during the data initialization: retrieving the time index corresponding
to the time instant itself.

The matrices R and W from the script are related to two matrices presented in Section

3| Adaptation of methods to MIMO models in MATLAB 35

Algorithm 3.10 phi_k_creator algorithm

function phi_k = phi_k_creator(n_u,u,dim_1_T,T,B,k,ts)

phi_k=[];

for j = 1:n_u % taking inputs one by one
u_j = u(j,:);
for h = 1:dim_1_T

phi_column = B(:,j)*u_j(k+...
round((max(T(:,1)) -T(h,j))./ts));

phi_k = [phi_k, phi_column];
end

end

end

2.4:

W =
(N−1∑

k=0

ΦT (k)Φ(k)
)

(3.1)

R =
(N−1∑

k=0

ΦT (k)z(k)
)

(3.2)

The quantity gamma, corresponding to γ from 2.4 (where it is obtained as a solution of a
system of equations) is initially obtained as a simple vector using the backslash (\) solver
in MATLAB® because it is less computationally demanding than solving the system by
inverting W1 over R1.

This gamma vector has to be reworked into a matrix, with as many rows as admissible
time delay values and with columns such that the j-th column is the vector γj related
to the j-th input. Each of its columns should have all null components except one, this
component being equal to 1 and corresponding to a component of the j-th column of T ,
the relevant set of admissible delay values; the value of that component is the estimated
delay for the input.

One key issue with the least-squares minimization method is that it only identifies
the shortest time-delay: if some inputs have a longer delay they cannot be detected
and will go unnoticed.

The four identified dynamics, as presented in Chapter 1, are completely separable, mean-
ing they can be analysed one by one. The main effect of the separability is that, for each
method, each subsystem is of lower order than the complete, four-dynamics system, which
leads to easier estimation by oestruc and by thresholding methods, given that the orders

36 3| Adaptation of methods to MIMO models in MATLAB

of the estimated OE and ARX models, are quite low as one may recall from Chapter 2.

37

4| Analysis and comparison of

methods

Before comparing results obtained in MATLAB® environment, some considerations have
to be made about the expected results and behaviour of the methods:

• All dynamics have state space matrix D with at least one non-zero component, this
leads to expecting absence of input delays on every dynamics, whether the analysed
dynamics is unstable or stable and regardless of its order.

• Given that the thresholding method, as implemented in Chapter 3, and oestruc

produce an estimate biased by the difference between the degrees of denominator
and numerator of the transfer function under scrutiny, it is expected to see this bias
in the delay estimate of, at least, the stable directional and vertical dynamics.

• The thresholding method, as explained in Chapter 3, might fail: the threshold might
never be overstepped during the estimation, which would lead to −1 as estimated
time delay.

If thresholding were to fail, the mean and standard deviation of its results would not take
into account any failed attempt but they would be computed from the rest of the available
data, albeit by using a reduced dataset. Furthermore, the times thresholding has failed
have been be counted and will be presented as data, in order to show how the dataset
size has been affected.

4.1. Simulation settings

4.1.1. Common settings

This section presents values and settings that have used across most tests.

Every simulation lasts 150 times the sample time, which has been set, initially, to tsample =

0.1 s. Given the state space models under study, the correct input delay would be null,

38 4| Analysis and comparison of methods

thus a lower sample time is not expected to carry any benefit, compared to tsample = 0.1

s.

Every simulation is sampled from t0 = 0, and that is the first input value that starts
affecting the models is u = u(t0).

The states vector has been set to zero as starting value and then split into four parts,
each related to a different dynamics:

x(t0) = [xlat(t0) xlon(t0) xdir(t0) xver(t0)]
T

xlat(t0) = [0 0 0]

xlon(t0) = [0 0 0]

xdir(t0) = [0 0]

xver(t0) = 0

Least-squares minimization and oestruc methods maximum admissible delay values have
been set to t = 35tsample.

Every possible combination of type of input sequence, time conversion method, time-delay
estimation method and model dynamics has been run 10 times, thus giving a set of 10
values of identified time-delay for each combination.

All 10-values sets had their mean values and standard deviations computed using the
MATLAB® functions mean and std, these form the core of results presented in Section
4.2.

4.1.2. Inputs

This brief section is dedicated to illustrate what types of inputs were applied to the models
in order to study their delays.

Every dynamics is, at most, SIMO (Single Input Multiple Output) thus there has been no
reason not to use the same inputs from the model of a dynamics to the model of another.

The first type of input is an increasing and then decreasing succession of two ramps, in
total lasting t = 40tsample, starting at t = 0, created by Algorithm 4.1. The rest of the
simulation, from t = 40tsample to t = 150tsample, the input is constantly null, which is why
Figure 4.1 illustrates the input only up until t = 5 s (having set tsample = 0.1 s).

The impulse with amplitude 0.01 has also been adopted as input during the tests, it is

4| Analysis and comparison of methods 39

Algorithm 4.1 First type of input

uaav=[];
for k=0:20

u_aa=0+(k*0.0005);
u_aav=[uaav,uaa];

end
u_ab=max(uaav);
for k=1:20

uaa=uab-(k*0.0005);
uaav=[uaav,uaa];

end
u=[uaav, zeros(1,length(t)-length(uaav))];

Figure 4.1: Two-ramps input, with tsample = 0.1 s

40 4| Analysis and comparison of methods

Figure 4.2: RBS input, with tsample = 0.1 s

built such that:
u(t = 0) = 0.01

u(t < 0, t > 0) = 0

The last type of input is a Random Binary Signal (RBS), generated through the MATLAB®

System Identification Toolbox function idinput as follows, one example of such kind of
signal is depicted in Figure 4.2:

u=0.01.*idinput(length(t),'rbs').';

with t being the time sequence vector, defined as t = [0, 0.1 , 0.2, ... 15], and with 0.01 as
amplitude, to keep it similar to the other two inputs.

The RBS has been chosen because it yields a "rich" input sequence while still being
relatively simple: it is a signal that, at any time can assume one of two possible values
and, by default in MATLAB®, these are 1 and −1, which are then scaled down to 0.01

and −0.01. What value appears at what time instant is the randomised part of the signal.

4.1.3. Settings of the methods

The results presented in Section 4.2 have been produced using the three chosen methods,
a basic form of thresholding, oestruc and the least-squares minimization of a suitable

4| Analysis and comparison of methods 41

cost function.

Each of the methods implies the conversion of a continuous-time model to discrete-time,
the model being that of the dynamics under analysis, as reported in Section 1.4, and for
completeness’s sake the tests performed not only compared the three time-delay identifi-
cation methods but, for each of these, also compared the Tustin, First-Order Hold and
Impulse-Invariant Mapping methods of continuous- to discrete-time conversion.

The time-delay identification methods have also been used in a comparison between the
unstable and stable forms of the lateral and longitudinal dynamics.

Stabilizing the two models has been performed after the conversion from continuous-
to discrete-time in order to better create a simulation environment as close as possible
to one that does not rely on that conversion: a simulation environment working with
discrete-time systems that do not derive from such convsersion.

The stabilization has been achieved by using the MATLAB® Control System Toolbox
function dlqr, which creates the optimal gain matrixK of a discrete-time Linear Quadratic
Regulator, given the state space matrices A and B and the cost weighing matrices Q (for
the states) and R (for the inputs, do not mistake it for the R matrix of Section 3.3).

The rest of the outputs of dlqr have not been used and so has not the option to declare
a cross term matrix N as input for the function.

The weighing matrices for dlqr have been set with unitary weights because they did not
seem to matter for the model at hand.

The thresholding method has been adopted in its simplest form, without the internal
averaging.

4.2. Simulation results

In this section, results will be presented and commented, each subsection will deal with
one type of input presented in Section 4.1.2, in the order they have been presented there.

All units of measurement in the following tables, unless specified otherwise, are seconds.

oestruc and thresholding methods yield a vector of time-delay estimates, each component
corresponding to a different output, they will be presented in that form.

42 4| Analysis and comparison of methods

4.2.1. Results from two-ramps input

Table 4.1 shows the mean values and standard deviations of the lateral dynamics accord-
ing to what method has been used to perform the time conversion and to whether the
system has been stabilized or not. It is divided into three parts, one for each time-delay
identification method.

Time conversion method Type Value, stable system Value, unstable system
Least-squares minimization

Tustin mean 2.0689× 10−12 7.9119× 10−12

std dev 0 1.7030× 10−27

FOH mean 2.1658× 10−12 1.0801× 10−11

std dev 0 1.7030× 10−27

Impulse mean 3.6533× 10−12 4.0242× 10−12

std dev 8.5149× 10−28 0
oestruc

Tustin mean [0, 0.1] [0.6, 0.4]
std dev [0, 0] [1.1703, 0.5851]× 10−16

FOH mean [0, 0.1] [0.5, 2.4]
std dev [0, 1.4628]× 10−17 [0, 0.4868]× 10−16

Impulse mean [0.5, 0.1] [1.6, 0.3]
std dev [0, 1.4628]× 10−17 [2.3406, 0.5851]× 10−16

thresholding
Tustin mean failed failed

std dev failed failed
FOH mean failed failed

std dev failed failed
Impulse mean failed failed

std dev failed failed

Table 4.1: Lateral dynamics results

One very noteworthy phenomenon is that many means are smaller than 10−10, although
the sample time is tsample = 0.1 s, and thus the time-delay estimates should not be
anything but multiples of tsample.

The reason behind this phenomenon is related to unavoidable approximation errors born
from the way the identification methods have been adapted to accept values of tsample

different from 1 s, such as the function round used in Algorithm 3.10.

It is also immediately noticeable that many standard deviations are very small, less than
10−15 s, this happens for the same reason some means are lower than 10−10 s but are
not null, given that the set used to compute the standard deviations is afflicted by the
aforementioned approximation issue.

4| Analysis and comparison of methods 43

In the next tables such results, both means and standard deviations, will be directly given
as 0 s.

It is very important to point out that thresholding failed, meaning it yielded τ = −1 both
when applied on the unstable model and on the stable model, the reason for this event is
that the function arx could not work reliably with the assigned input and the resulting
outputs, due to some matrix, computed during usage, being singular. This behaviour is
repeated in the next table, Table 4.2.

In Table 4.2 the results have been adjusted, giving a cleaner overview of means and
standard deviations.

Time conversion method Type Value, stable system Value, unstable system
Least-squares minimization

Tustin mean 0 0
std dev 0 0

FOH mean 0 0
std dev 0 0

Impulse mean 0 0
std dev 0 0

oestruc
Tustin mean [0, 0.1] [0.6, 1.2]

std dev [0, 0] [0, 0]
FOH mean [0, 0.1] [0.52, 0.19]

std dev [0, 0] [0, 0]
Impulse mean [3.1, 0.1] [0.37, 0.14]

std dev [0, 0] [0, 0]
thresholding

Tustin mean failed failed
std dev failed failed

FOH mean failed failed
std dev failed failed

Impulse mean failed failed
std dev failed failed

Table 4.2: Longitudinal dynamics results

During the test of the longitudinal dynamics, the thresholding method failed twice on the
first input with Tustin time conversion and once on the second input with Impulse time
conversion.

Table 4.3 and Table 4.4 present the results of directional and vertical dynamics.

They are slightly different tables, compared to 4.1 and to 4.2, in that there is not "Unstable

44 4| Analysis and comparison of methods

system" column, because the directional and vertical dynamics are stable in continuous
time, and, upon conversion to discrete time, they are still stable.

The other difference is that each of these two models only has one output, hence the
oestruc and thresholding parts will not have two-component vectors, instead a single
value will be presented.

Time conversion method Type Value
Least-squares minimization
Tustin mean 0

std dev 0
FOH mean 0

std dev 0
Impulse mean 0

std dev 0
oestruc

Tustin mean 0
std dev 0

FOH mean 0
std dev 0

Impulse mean 0
std dev 0

thresholding
Tustin mean failed

std dev failed
FOH mean failed

std dev failed
Impulse mean failed

std dev failed

Table 4.3: Directional dynamics results

By looking at Table 4.3 and Table 4.4 of the two first-order dynamics, no conclusive
argument can be drawn in favour of either oestruc or the least-squares minimization,
furthermore, thresholding is plagued by issues in the arx function as much as it happened
with the longitudinal and lateral dynamics.

In general, a better comparison between the three delay identification methods is drawn
by observing either the lateral or the longitudinal dynamics from Table 4.1 and Table 4.2.

The only method that, with the first input described in Section 4.1.2, consistently achieves
a correct or close (1 or 2tsample away from the expected result) to correct estimate is
the least-squares minimization, with oestruc and thresholding being as reliable only for
stabilized models.

4| Analysis and comparison of methods 45

Time conversion method Type Value
Least-squares minimization
Tustin mean 0

std dev 0
FOH mean 0

std dev 0
Impulse mean 0

std dev 0
oestruc

Tustin mean 0
std dev 0

FOH mean 0
std dev 0

Impulse mean 0
std dev 0

thresholding
Tustin mean failed

std dev failed
FOH mean failed

std dev failed
Impulse mean failed

std dev failed

Table 4.4: Vertical dynamics results

oestruc is more consistent than thresholding over the ten attempts on the unstabilized
models but, while not as imprecise as thresholding, it still cannot estimate well enough
the delays.

It can also be noticed that the Impulse method of continuous- to discrete-time conversion
seems to yield less accurate results compared to the other two methods, especially when
used in conjunction with oestruc.

4.2.2. Impulse input results

The results derived from stimulation of the models through the impulse input of Section
4.1.2 are described in this section.

Only the lateral, directional and vertical dynamics will be described, the longitudinal will
be skipped due to its similarity with the lateral one.

The underlying aim of this second analysis is to understand which identification method
is better suited to identify delays using impulse inputs.

46 4| Analysis and comparison of methods

The thresholding method is not expected to perform well because, as described in Chapter
3, it uses input and output data to create an ARX model of the impulse response from
which the thresholding is derived, the impulse input and its response should not give
enough elements to the method for a reliable ARX modelisation.

oestruc is expected to have estimation issues due to the same reason as thresholding: it
is expected to have difficulties creating its underlying model and, as a consequence, fail
to correctly identify the delay.

It must be noted that oestruc does not have a "failure mode" like thresholding does
by yielding −1, so, the only ways to understand if the estimation process encountered
problems are to check for warnings in the MATLAB® command line, or to check how
close the estimated delay is to the maximum admissible value, if it is much closer to that
than to the expected result then oestruc has encountered issues.

Time conversion method Type Value, stable system Value, unstable system
Least-squares minimization

Tustin mean 0 0
std dev 0 0

FOH mean 0 0
std dev 0 0

Impulse mean 0 0
std dev 0 0

oestruc
Tustin mean [0.2, 0.2] [3.2, 3.4]

std dev [0, 0] [0, 0]
FOH mean [0.2, 0.2] [3.1, 3.3]

std dev [0, 0] [0, 0]
Impulse mean [0.2, 0.2] [3.1, 3.3]

std dev [0, 0] [0, 0]
thresholding

Tustin mean failed failed
std dev failed failed

FOH mean failed failed
std dev failed failed

Impulse mean failed failed
std dev failed failed

Table 4.5: Lateral dynamics results with impulse input

The three Tables, 4.5, 4.6 and 4.7, indeed show results mostly in line with those expected
that were stated at the beginning of Section 4.2.2:

• Least squares minimization performance has not been degraded by the lower quality

4| Analysis and comparison of methods 47

Time conversion method Type Value
Least-squares minimization
Tustin mean 0

std dev 0
FOH mean 0

std dev 0
Impulse mean 0

std dev 0
oestruc

Tustin mean 3.1
std dev 0

FOH mean 3.3
std dev 0

Impulse mean 2.9
std dev 0

thresholding
Tustin mean failed

std dev failed
FOH mean failed

std dev failed
Impulse mean failed

std dev failed

Table 4.6: Directional dynamics results with impulse input

and less "rich" input sequence.

• Thresholding has, as expected, encountered issues during the construction of the
ARX model, thus has failed every estimation problem.

• oestruc only performed well on the identification problem of the stabilised lateral
dynamics, and even then it didn’t perform as well as it did in Section 4.2.1. The other
results are mostly τ > 3 s, regardless of the dynamics or the time conversion method,
indicating failure to achieve a reasonable estimate, given that τmax admissible = 3.5 s
and that τexpected = 0 s.

4.2.3. RBS input results

The set of results presented in Table 4.8, in the current subsection, will present results
obtained by using an RBS input, which has been described in Section 4.1.2. An important
difference compared to Section 4.2.2 and most of Section 4.2.1 is that the means and
standard deviations are not approximated to 0 s.

48 4| Analysis and comparison of methods

Time conversion method Type Value
Least-squares minimization
Tustin mean 0

std dev 0
FOH mean 0

std dev 0
Impulse mean 0

std dev 0
oestruc

Tustin mean 1.7
std dev 0

FOH mean 1.6
std dev 0

Impulse mean 3.1
std dev 0

thresholding
Tustin mean failed

std dev failed
FOH mean failed

std dev failed
Impulse mean failed

std dev failed

Table 4.7: Vertical dynamics results with impulse input

The reason for abandoning the approximation is that in this case it does not hold anymore:
every time the simulation for a given combination of continuous- to discrete-time method
and time-delay estimation method is restarted, a new RBS is generated.

The time-delay estimation methods have to work with a slightly different input every
time a simulation is started for every combination of methods, so the greatest source of
discrepancies is not MATLAB® approximating results, which is of no interest, but is the
effect of using a new signal for every single function call, and it is important to see how
the methods react over 10 runs for each combination.

The most noticeable change brought by the use of RBS input is that thresholding method
has been successful in its estimation process, yielding precise estimates for the stabilized
model.

oestruc and thresholding still do not work well with unstable systems:

• oestruc has yielded estimates in excess of τ = 3 s 5 times out of 30 runs among all
continuous- to discrete-time conversion methods,

4| Analysis and comparison of methods 49

Time conversion method Type Value, stable system Value, unstable system
Least-squares minimization

Tustin mean 0 3.35× 10−8

std dev 0 1.22× 10−8

FOH mean 0 3.88× 10−8

std dev 0 3.57× 10−8

Impulse mean 0 6.59× 10−8

std dev 0 2.21× 10−8

oestruc
Tustin mean [0, 0.01] [0.1889, 0.7778]

std dev [0, 0.0316] [0.0333, 0.7311]
FOH mean [0, 0] [0.4667, 0.64]

std dev [0, 0] [0.35, 0.7975]
Impulse mean [0, 0.1] [0.3222, 0.5222]

std dev [0, 10−17] [0.6852, 0.7032]
thresholding

Tustin mean [0, 0] [0.4250, 1.005]
std dev [0, 0] [0.2053, 0.6790]

FOH mean [0, 0] [0.0857, 0.3]
std dev [0, 0] [0.1464, 0.5333]

Impulse mean [0, 0] [0.5444, 0.36]
std dev [0, 0] [0.8002, 0.4248]

Table 4.8: Lateral dynamics results for RBS input

• thresholding has failed 6 times in total, meaning it either yielded τ = −1 (twice)
or yielded τ > 3 s (four times), once, using the Impulse time conversion method, it
gave a result as high as 6.5 s.

The standard deviations might seem still high, even though values of −1 or greater than 3

s have been discarded, the reason of this is because, while most of the remaining estimates
are clumped together, some outliers like τ = 2.5 s have not been discarded.

The undiscarded outliers have been kept because they were not as close to τ = 3.5 s, which
is the maximum admissible delay value for oestruc. Previously a "region" between 3 s
and 3.5 s had been set as the sets of results from oestruc that indicated a failure to reach
a plausible estimate, this reasoning has been extended to thresholding, so that a better
comparison could be carried out.

This set of results from oestruc have also another important difference compared to
the sets from Section 4.2.1 and Section 4.2.2: their standard deviation is not null or
approximable to null, but this is expected given the nature of the RBS input, as stated
at the beginning of Section 4.2.3. The other dynamics were not analysed, given their

50 4| Analysis and comparison of methods

similarity to the one studied in the current subsection or their stability.

51

5| Conclusions and future

developments

From the results presented and described in Section 4.2.1, Section 4.2.3 and Section 4.2.3,
the primary conclusion is that, of the three methods under study, the least squares-
minimization is the most reliable for this precise model of UAV, but, in general, it has the
great downside of being able to identify just the shortest input delay, and it is not able to
detect the relationship between each output and each input as oestruc and thresholding
do.

Another relevant downside of the least squares-minimization method is that it requires
knowledge of the relationship between states and inputs and also of the states themselves,
rendering impossible to use this method if these data are unavailable, for instance when
the states are not measurable.

oestruc is not without downsides either, it is much slower than least-squares minimiza-
tion: computational time, gathered using the function cputime, for oestruc is 2 to 3

orders of magnitude (seconds or tens of seconds, compared to hundredths of seconds)
greater than the time employed by the least-squares minimization.

The comparison on computational times has been led using the time-delay estimation
methods on the lateral dynamics, using both stabilized and unstable models, oestruc
takes longer if the model is stabilized.

Most importantly, oestruc can’t reliably compute the time-delay of the analysed models
if they are unstable and/or the input sequence is not "rich" enough. The "richness" of
the input sequence in general is an issue also for the least-squares minimization, so much
so that the source [12] explicitly states it, but it does not seem to affect the particular set
of models examined in this study.

Thresholding worked well only with RBS inputs but it achieved good results during that
set of simulations nonetheless, being comparable with oestruc, in terms of means, of
standard deviations and of number of failed attempts (5 for oestruc, 6 for thresholding)

52 5| Conclusions and future developments

for what concerns applications on an unstable system.

Good results were also achieved by thresholding when applied to the stabilized system,
always yielding the correct estimate.

Thresholding method is thus deemed suitable for stable systems with just certain kinds
of inputs, limiting the extent of its applicability. On the other hand, it is faster than
oestruc by at least an order of magnitude: most measured runs of thresholding on a
stabilized system needed between 0.1 s and 0.2 s, only 16.667% of 30 runs needed more
than 2 s.

Thresholding seems suited for all the situations where the system under study:

• is stable or has been stabilized,

• can be excited by a suitable input like Random Binary Signals,

• is MIMO and estimating the delay between every input and every output is impor-
tant,

• has expected time delay(s) already known or hypothesised, in order to skim the
outliers out of the results.

Further study should be undertaken to better understand the limits of these methods,
regardless of the models they are applied to. The main areas that should receive further
attention are:

• whether there are types of unstable models of which the delay can be estimated by
oestruc without being stabilized,

• where the "richness" of the input starts to matter for the least-squares minimization
and for oestruc,

• testing more complicated forms of thresholding methods to gather a deeper under-
standing of their possible application and their limits.

53

Bibliography

[1] S. Björklund. A Survey and Comparison of Time-Delay Estimation Methods in Lin-
ear Systems. PhD thesis, Linköpings universitet, Department of Electrical Engineer-
ing, 2003. Thesis No. 1061.

[2] S. Björklund. Experimental evaluation of some cross correlation methods for time-
delay estimation in linear systems. Technical report, Linköpings universitet, Depart-
ment of Electrical Engineering, April 2003.

[3] S. Björklund. A study of the choice of model orders in arxstruc-type methods for
open-loop time-delay estimation in linear systems. Technical report, Linköpings uni-
versitet, Department of Electrical Engineering, August 2003.

[4] G. Fumai. Accuracy analysis of PBSIDopt − H∞ for multirotor uavs model identifi-
cation. Master’s thesis, Politecnico di Milano, 2019-2020.

[5] I. Houtzager, J. W. van Wingerden, and M. Verhaegen. Fast-array recursive closed-
loop subspace model identification. In Proceedings of the 15th IFAC symposium on
system identification, Saint Malo, France, July 2009. IFAC.

[6] I. Houtzager, J. W. van Wingerden, and M. Verhaegen. Varmax-based closed-loop
subspace model identification. In Proceedings of the 48th IEEE Conference on Deci-
sion and Control, Shanghai, China, December 2009. IEEE.

[7] I. Houtzager, J. W. van Wingerden, M. Verhaegen, and F. Felici. PB-
SID Toolbox website. https://www.dcsc.tudelft.nl/~jwvanwingerden/pbsid/

pbsidtoolbox_product_page.html, 2009.

[8] T. M. Inc. Matlab® System Identification Toolbox documentation on arx function.
https://it.mathworks.com/help/ident/ref/arx.html?s_tid=doc_ta, .

[9] T. M. Inc. Matlab® System Identification Toolbox documentation on c2d function.
https://it.mathworks.com/help/ident/ref/lti.c2d.html?s_tid=doc_ta, .

[10] J. Kekalainen. A discrete time domain approach on time delay estimation. Acta
IMEKO, 8(1):77–86, March 2019.

https://www.dcsc.tudelft.nl/~jwvanwingerden/pbsid/pbsidtoolbox_product_page.html
https://www.dcsc.tudelft.nl/~jwvanwingerden/pbsid/pbsidtoolbox_product_page.html
https://it.mathworks.com/help/ident/ref/arx.html?s_tid=doc_ta
https://it.mathworks.com/help/ident/ref/lti.c2d.html?s_tid=doc_ta

54 5| BIBLIOGRAPHY

[11] J. W. van Wingerden and M. Verhaegen. Subspace identification of bilinear and lpv
systems for open and closed loop data. Automatica, 45(2):372–381, 2009.

[12] R. Waschburger and R. K. H. Galvão. Time delay estimation in discrete-time state-
space models. Signal Processing, (93):904–912, 2013.

55

List of Figures

1.1 Two possible routes to implement PBSID in MATLAB, as adopted in [4] . 10

4.1 Two-ramps input, with tsample = 0.1 s . 39
4.2 RBS input, with tsample = 0.1 s . 40

57

List of Tables

1.1 Identified parameters for lateral dynamics 11
1.2 Identified parameters for longitudinal dynamics 11
1.3 Identified parameters for directional dynamics 11
1.4 Identified parameters for vertical dynamics 12

4.1 Lateral dynamics results . 42
4.2 Longitudinal dynamics results . 43
4.3 Directional dynamics results . 44
4.4 Vertical dynamics results . 45
4.5 Lateral dynamics results with impulse input 46
4.6 Directional dynamics results with impulse input 47
4.7 Vertical dynamics results with impulse input 48
4.8 Lateral dynamics results for RBS input . 49

59

List of Symbols

Variable Description SI unit

Faero vector of aerodynamic forces N

g gravity acceleration m/s2

Jij inertia moment referred to i, j axes kg m2

L aerodynamic moment around x-body-axis Nm

Maero vector of aerodynamic moments Nm

M aerodynamic moment around y-body-axis Nm

N aerodynamic moment around z-body-axis Nm

p angular velocity around the x body-axis rad/s

q angular velocity around the y body-axis rad/s

r angular velocity around the z body-axis rad/s

u velocity along the x body-axis m/s

v velocity along the y body-axis m/s

VG Velocity of centre of mass m/s

w velocity along the z body-axis m/s

τ time-delay s

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	UAV model
	Description of the system and major hypotheses
	Configuration of the UAV
	Main hypotheses affecting the model

	LTI model of the UAV
	Framework of the model
	LTI state space model

	Identification of the parameters
	PBSIDopt optimization
	H norm model matching
	Identification results

	Manipulation of the results

	Time-delay estimation methods
	Criterion functions
	Thresholding methods
	One-step explicit methods
	Least-squares minimization of a cost function
	Choice of methods

	Adaptation of methods to MIMO models in MATLAB
	Thresholding algorithm
	oestruc algorithm
	Least-squares time-delay ID algorithm

	Analysis and comparison of methods
	Simulation settings
	Common settings
	Inputs
	Settings of the methods

	Simulation results
	Results from two-ramps input
	Impulse input results
	RBS input results

	Conclusions and future developments
	Bibliography
	List of Figures
	List of Tables
	List of Symbols

