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Abstract

Nowadays is essential to able to respond to a new spreading
disease in a brief time. For this reason, a conventional approach
is not responsive enough.

Drug Repurposing is the investigation of existing drugs on the
pharmaceutical market for new therapeutic purposes; drug repur-
posing reduces the time and cost of clinical trial steps, saving
years, and billions of dollars in Research and Development (R&D)
and can be also used to find a treatment for a rare disease that
could have not a market for the high cost of R&D. In such a way
drug repurposing represents a solution to a disease in a shorter
time.

Identifying new diseases on which a drug can be effective is
a complex problem: our approach leverages Knowledge Graph
(KG), networks composed of many types of entities and relations,
on which embedding and graph completion techniques can be ap-
plied to infer insights and analyses. Our KG is built from well-
known databases such as DrugBank, UniProt, and CTD and con-
tains over one million relationships between more than 70K bio-
logical and pharmaceutical entities like diseases, genes, proteins,
and drugs. In this work, we research the applicability of knowl-
edge graph completion techniques, such as link prediction (and
triple classification) using a various number of different embed-
ding models from different families: matrix factorization, geomet-
ric and Deep learning. Using these models is possible to infer new
drug-disease relationships on our KG, and identify novel drug re-
purposing candidates.

Results are encouraging and show how state-of-the-art ma-
chine learning models, combined with the ever-growing amount of
biological data freely available to the research community, could
significantly improve the field of drug repurposing. In our evalua-
tion is used H@10, that is the proportion of true triples respect to
the top 10 predictions of the embedding model, as a measurement
of accuracy. A score of H@10 around 0.5 means that the model
is learning information from the dataset and it has significantly
improved a random baseline based on guessing that achieves less
than 0.002 on the same measure. In addition to this result, us-
ing more complex embedding models and more data improves the
quality of results. Achieving a score of 0.5 is a good result due to
the complexity of the problem.
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It should be underlined that these techniques can produce
these result, from the generation of the knowledge graph to the
prediction, in just a few hours, and, for this reason, is capable
of reducing the dimensional complexity of the problem in a very
short time since the deep inspect of potential candidates for a
disease can start from a small subset.

Finally, can be observed that starting from the generation of
the network from biological expertise, and, using machine learning
techniques, the model generates a piece of new biological knowl-
edge, not only in the specific case of drug-disease links but provides
a better understanding of the interactions and their importance
between all the entities and relationships that are present in our
knowledge graph.

This work is organized as follows:

• Chapter 1 provides an explanation of what is drug repurpos-
ing and knowledge graph embedding, showing an overview
of current techniques on drug discovery. It also presents an
overview of the main challenges and the solution proposed.

• Chapter 2 provides the necessary theoretical background on
knowledge graph, knowledge graph embedding and comple-
tion and a presentation of the dataset that is used to perform
drug repurposing.

• Chapter 3 offers an overview on existing state-of-the-art com-
putational drug repurposing techniques and embedding mod-
els, and on the methodologies that have been proposed over
the years.

• Chapter 4 discusses how has been implemented, which design
choices have been made, and how it can be configured for
different study cases.

• Chapter 5 reports results obtained running on different sce-
nario, data-sets with a thorough comparison to other ap-
proaches available in the state-of-the-art.

• Chapter 6 discusses the results, and future works.
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Sommario

Oggigiorno è fondamentale poter saper rispondere in breve
tempo a una nuova malattia che si diffonde. Per questo motivo,
un approccio convenzionale non è sufficientemente reattivo.

Drug Repurposing è lo studio di farmaci esistenti sul mercato
farmaceutico per nuovi scopi terapeutici; il riutilizzo dei farma-
ci riduce i tempi e i costi delle fasi della sperimentazione clinica,
risparmiando anni e miliardi di dollari in Research and Develop-
ment (R&D) e può essere utilizzato anche per trovare una cura per
una malattia rara che potrebbe non avere un mercato per l’alto
costo di R&D. In tal modo la riconversione di farmaci rappresenta
una soluzione a una malattia in breve tempo.

Identificare nuove malattie su cui un farmaco può essere ef-
ficace è un problema complesso: il nostro approccio fa leva su
Knowledge Graph (KG), è un network composto da molti tipi di
entità e relazioni, su cui è possibile applicare tecniche di embed-
ding e completamento di grafi per dedurre nuovi collegamenti e
per analisi. Il nostro KG è costruito partendo da informazioni
contenute in database ben noti come DrugBank, UniProt e CTD
e contiene oltre un milione di relazioni tra più di 70,000 entità bio-
logiche e farmaceutiche come malattie, geni, proteine e farmaci.
In questo lavoro, ricerchiamo l’applicabilità delle tecniche di com-
pletamento del knowledge graph, come la previsione di un nuovo
collegamento, link prediction (e la triple classification), utilizzan-
do diversi modelli di embedding provenienti da famiglie differenti:
fattorizzazione della matrice, geometrica e deep learning. Utiliz-
zando questi modelli è possibile dedurre nuove relazioni farmaco-
malattia sul nostro KG ed identificare nuovi candidati per il drug
repurposing.

I risultati sono incoraggianti e mostrano come i modelli di
embedding siano all’avanguardia, che, combinati con la quantità
sempre crescente di dati biomedici liberamente disponibili per la
comunità di ricerca, potrebbero migliorare in modo significativo il
campo del drug repurposing. Per poter valutare la precisione di
queste predizioni, viene utilizzato H@10, ovvero la proporzione di
triple vere rispetto alle prime 10 previsioni del modello di embed-
ding. Un punteggio di H@10 intorno a 0,5 significa che il modello
sta apprendendo informazioni dal set di dati e ha migliorato si-
gnificativamente una baseline basata sulla predizione casuale di
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un collegamento che raggiunge meno di 0,002 sulla stessa misu-
ra. Oltre a questo risultato, l’utilizzo di modelli di embedding più
complessi ed il maggior numnero di dati migliora la qualità dei
risultati. Raggiungendo un punteggio di 0,5 è un buon risultato
considerando la complessità del problema.

Va sottolineato che questo approccio è in grado di produrre
questi risultati, dalla generazione del knowledge graph alla predi-
zione, in poche ore, e, per questo motivo, è in grado di ridurre la
complessità dimensionale del problema in tempi brevissimi, ridu-
cendo il numero dei potenziali candidati per una malattia da cui
può successivamente iniziare uno studio più approfondito.

Infine, si può osservare che, a partire dalla generazione della
rete costituita di conoscenze biologiche e, utilizzando tecniche di
machine learning, il modello genera una nuova conoscenza biolo-
gica, non solo nel caso specifico dei legami farmaco-malattia ma
fornisce una migliore comprensione delle interazioni e della loro
importanza tra tutte le entità e le relazioni che sono presenti nel
nostro knowledge graph.

Questo lavoro è organizzato come segue:

• Chapter 1 fornisce una spiegazione di ciò che sono il drug
repurposing ed il knowledge graph embedding, mostrando
una panoramica delle attuali tecniche sullo sviluppo di nuovi
farmaci. Presenta inoltre una panoramica delle principali
sfide e della soluzione proposta.

• Chapter 2 fornisce il background teorico necessario per il
knowledge graph, l’embedding e il completamento dello stes-
so e una presentazione del set di dati che vengono utilizzati
per eseguire il repurposing dei farmaci.

• Chapter 3 offre una panoramica sulle tecniche computazio-
nali per il drug repurposing, sui modelli di embedding, e sulle
metodologie che sono state proposte nel corso degli anni.

• Chapter 4 discute come è stato implementato, quali scelte
progettuali sono state fatte e come può essere configurato
per diversi casi di studio.

• Chapter 5 riporta i risultati ottenuti nei diversi scenari e
set di dati con un confronto approfondito con altri approcci
disponibili presentati nello stato dell’arte.

• Chapter 6 discute i risultati e i lavori futuri.
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Introduction and motivations 1

La bellezza non é una
qualitá delle cose stesse:
essa esiste soltanto nella
mente che le contempla
ed ogni mente percepisce
una diversa bellezza.

This chapter explains the context of this research and presents the
objective of our work. Starting from the problem description, the or-
dinary computational and pharmaceutical approaches for drug repur-
posing are presented. Afterwards, a powerful machine learning tool is
introduced to be applied to a custom biomedical knowledge graph. In
particular, section 1.1 outlines the problem in the current scenario of
drug discovery, where the current paradigm is actually expensive and
slow with respect to the need of the population and the responsiveness
to a new spreading disease. Then, section 1.2 focuses on the current tech-
niques of drug repurposing that try to overcome the issues of the high
cost and slow development of a new drug using different approaches. Fol-
lowing on, section 1.3 suggests a way to represent the problem domain
in a way that is more understandable to a computer so that it can infer
new knowledge. This is possible using embedding techniques. Finally,
section 1.4 outlines the proposed solution, its main guidelines, and its
evaluation.

1.1 Drug Discovery

New drugs are continuously required by the healthcare systems to ad-
dress unmet medical needs across diverse therapeutic areas, and phar-
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1. Introduction and motivations

maceutical industries primarily strive to deliver new drugs to the market
through the complex activities of drug discovery and development [42].

Drug Development is a high cost and very time-consuming process.
To better understand this procedure Food and Drug Administration
(FDA) has proposed a timeline regarding the step that is necessary to
deliver a new drug.

• The first stage is the discovery and development of a new drug.
Typically, researchers discover new drugs through new insights into
a disease process that allow the design of a product to stop or re-
verse the effects of the disease. Otherwise, they can try to identify
some tests of molecular compounds to find beneficial effects against
a large number of diseases or using new technologies to manipu-
late genetic material or target specific sites within the body. The
number of possible approaches to discover a potential candidate is
massive and in the past and in recent years a lot of new one are
born [10]. At this stage of the process, thousands of compounds
may be potential candidates for the next stage of development to
be medical treatment. After early testing, however, only a small
number of compounds look promising and call for further study.
Once researchers identify a promising compound for development,
they conduct experiments to gather information on the dosage,
the way in which the body can metabolize it, its effectiveness etc..
As expected this stage with all its exploration phase is very time
consuming and in average it takes around 6.5 years [52].

• The next stage is the preclinical research: it aims to identify possi-
ble toxicity of the compounds. The number of tests is not so large
but should be sufficient to provide enough information to the re-
searcher whether they want to proceed to human testing. Usually,
this stage takes some months [52].

• Then there is the clinical stage where the drug is tested on humans
to know the effectiveness and possible side effects. Usually, this
stage is split into sub-stage where a number of increasing volunteers
participate in the test and correspondingly a number of decreasing
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drug goes to the next stage. The amount of time that is necessary
to do all these clinical steps is the order of 5 years [52].

• Finally, all the collections of the clinical trials from the pharma-
ceutic company are submitted to FDA that decide if the study is
sufficient and the drug is safe for commercialization and so can
decide to approve it or not. FDA, in case of an approval, will con-
tinue to monitor the new drug to have a complete picture, and in
some case can, for example, change the indication of the drug or
the dosage.

In the current situation, all processes are time-consuming and expen-
sive and the industry is under pressure owing to the extremely stringent
regulatory requirements, environmental concerns, and reduced incomes
due to patent expiration. These issues have had an adverse bearing on
the R&D productivity in recent years, hence there is a need for inno-
vative approaches as well as increased collaboration between industry,
academia, and governmental research institutions, with a common ob-
jective of constantly delivering quality medicines [42].

1.2 Drug Repurposing

This section introduces Drug Repurposing, a technique central to effi-
ciently develop new drugs. After a brief discussion about the benefits
of drug repurposing in Section 1.2.1 is introduced the classic approach
for drug repurposing. Then, section 1.2.2 introduces the main computa-
tional techniques that are expanded in chapter 3.

As said before, drug discovery is research, and being such, it has no
guarantee of success. For this reason, it is a high risk, slow, and expensive
process [52]. The hazard is due to the fact that the pharmaceutical sector
is highly competitive and finding a drug for a disease is, therefore, a race
against time for both health and economic needs [47].

Eastern Research Group (ERG) published a report that shows only
2% of new molecular succeed and the order of time needs to develop is
10-15 years [52]. Moreover, the yearly amount of investments reported
by PhRMA in United States of America (USA) w.r.t the number of drugs
approved by the FDA, shows that, while investments are increasing year
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Figure 1.1: The amount of investment in drug development by Phar-
maceutical Research and Manufacturers of America (PhRMA) member
companies and the number of approved drugs by the FDA from 1995 to
2015. Figure from Xue et al. [52].

after year, the fewer and fewer drugs are being approved, as shown in
fig. 1.1 [52].

Clearly, the global trend over the year is a constant increase regarding
the number of investments and the decreasing number of approved drugs.
That is translated into an increased cost of development of each new
drug.

So, finding a treatment for a rare disease, that doesn’t have a big
share market, it is a too high-risk process since the number of the possible
customers is limited and the volume of medical information on which the
researcher can rely is narrow.

Drug repurposing is a valid solution: in section 1.1 are defined the
five stages that are necessary to develop a new drug, instead of in drug
repurposing there are only four that are faster fig. 1.2. Doing so, it is
possible to save up to half of the time and billions of dollars in R&D re-
ducing at the same time the risk to fail since the drug is already approved
and declaring a new indication for a drug is easier [52].
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Figure 1.2: The contrast of traditional drug development and drug repo-
sitioning. A) Flowchart of the traditional drug development process. B)
Flowchart of drug repositioning. Figure from Xue et al. [52]

1.2.1 Experimental Approach

In the past the idea of drug repurposing or drug repositioning has been
largely opportunistic and serendipitous; a drug is a good candidate for
a repurposed drug and be used for a different commercial exploitation
when is discovered that it has some off-target effect that can be used or a
new one. In any case, the most successful examples of drug repurposing
so far have not involved a systematic approach but the opposite. Two ex-
amples are widely known: the repurposing of sildenafil citrate for erectile
dysfunction relied on retrospective clinical experience, and repurposing
of thalidomide for erythema nodosum leprosum and multiple myeloma
was based on serendipity. Following these successes have brought en-
couragement in defining a more systematic approach to identify possible
repurposable compounds leaving a marginal space to a serendipitous dis-
covery. These approaches have resulted in the identification of a number
of promising candidate drugs, some of which are in advanced stages of
clinical trials, with the potential for use in the treatment of both com-
mon and rare diseases, giving a chance to develop drugs that otherwise
are out of the market [39].

There are mainly two experimental approaches for the investigation
of a possible candidate for a drug repurposing. Proteomic techniques
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such as affinity chromatography and mass spectrometry have been used
as approaches to identify binding partners, so in this case, these meth-
ods are looking for a structural matching. In an era of chemical biology
for target validation, analyses of the targets and off-targets of drugs and
drug repurposing have become a normal procedure because allows you
to collect more information also for future research [39]. Phenotypic
screening can identify compounds that show disease-relevant effects in
model systems without prior knowledge of the target. In the context
of drug repurposing, if the compounds screened are approved or inves-
tigational drugs, this may indicate repurposing opportunities that can
readily be pursued [39].

1.2.2 Computational Approach

A computational approach to the problem is cheaper and faster, and is
some case also extendable to another target without spending so much
effort. A possible categorization of the computational approaches can
be done over the biological network that is used. This section follows
the drug repurposing methods based on the types of approach proposed
by Xue et al. [52].

1.2.2.1 Network-based cluster approaches

Network-based method are currently widely used due to their ability
to integrate in a simple way multiple sources of data. In the specific
case, the idea of using cluster is based on the observation that similar
diseases have similar drugs because they share comparable biological
characteristics. For these reason, creating cluster in the network based
on its topology can be used to infer novel relation inside the network.
To do that it is possible to compute a comprehensive similarity between
drugs and diseases or extract drug-disease sub network or using a bi-
random walk algorithm [52].

1.2.2.2 Network-based propagation approaches

In this method, the idea is to propagate prior information from the source
node to all network nodes. There are several different ways to propa-
gate the information but mainly there are two types. Local propagation
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methods only take into consideration a small amount of information on
the network. On the other hand, global approaches try to propagate
all the information to all the nodes that belong to the network or to its
subnetwork. A global approach is more precise than the local one but is
more computationally expensive. In any case, these kinds of approaches
are easily extendable and have good results [52].

1.2.2.3 Text mining-based approaches

One of the main problems with the conventional approach to drug repur-
posing is the big amount of information that a scientist should be able
to process. Due to the fact that the amount of literature produced in the
medical and pharmaceutical field is remarkable since, for example, the
study of the same phenomenon but on a different group of people, could
bring new results. For this reason, it is often difficult to extricate oneself
and to be able to process all previous knowledge and contribute effec-
tively without having neglected the evidence already identified. Text
mining is a solution to this problem that can be applied in the specific
case of drug repurposing. Analyzing scientific texts, the idea is to ex-
trapolate possible drug-disease connections that did not previously exist
simply by connecting information from different sources. If the idea is
clear and simple, its automated implementation is much more complex.
The process mainly involves 4 steps: the Information Retrieval (IR) is
in charge of the collection of relevant documents from the literature.
Then these documents are filtered to extract useful concepts. Biolog-
ical Name Entity Recognition (BNER) extract the entities in the text
and then Biological Information Extraction (BIE) and Biological knowl-
edge discovery (BKD) try to derive the concepts between entities. This
process is necessary since it is difficult to automate the extraction of
concepts from a human language. The results are good and with the
advancement of Natural Language Processing (NLP) techniques, they
are increasingly complete and precise [52].

1.2.2.4 Semantics-based approaches

The semantic approach is used in many areas, from image recognition
to retrieval information. The method generally involves three steps: the
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first is the extraction of large quantities of information from databases,
after which a semantic network is built where in the last phase it will be
possible to apply techniques for extracting new information [52].

1.3 Knowledge Graph Completion

A Knowledge Graph (KG) is a way of representing a domain in a graph.
This mode of representation is more schematic and is based on connect-
ing entities by means of relationships. These simple concepts are widely
used in computer science and for this reason, they are easy to interpret,
manipulate and extend. Following this idea can easily build a graph
made up of tens of thousands of entities for a total of millions of connec-
tions. Given its simplicity and applicability, they are also widely used
in the industrial field as in the case of Microsoft and Google.

Once a KG is ready, it is feasible to apply on it a set of techniques
called Knowledge Acquisition (KA). These methodologies are, for exam-
ple, Knowledge Graph Completion (KGC) that wants to complete an
existing knowledge graph, or regarding the extraction of relation and
entities. Therefore, KG can be used as a sort of database to be inter-
rogated to understand with which other entities a subject relates, or
to complete the graph, in terms of entities or relation using inference
techniques [21].

To be able to complete the KG, one of the most used techniques is
that of Knowledge Graph Embedding (KGE). KGE is a vector repre-
sentation of the entities and relations present within the graph but in
a dimensional space of reduced size. There are several families of mod-
els that generally differ in their specialization in better representing a
feature, a property of the graphic designer, however, often increasing
the complexity of the representation. The representation of the graph
corresponds to a matrix, called the embedding matrix. Exploiting this
representation of the original KG, it is possible to deduce new connec-
tions inside. With the Link Prediction (LP) activity, in particular, a
triple element of KG is damaged and is replaced with all or with a spe-
cific subset of elements. For each of these, the score is calculated and
a ranking is formed, based on the highest score obtained. To assess the
quality of embedding is measured the number of times a truly existing
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triple in the dataset is present in a number of main predictions. Another
similar task that is often associated with LP is Triple Classification (TC).
TC is to determine whether facts are correct in testing data, which is
typically regarded as a binary classification problem. The decision rule
is based on the scoring function with a specific threshold [21].

1.4 Proposed solution

Our solution aims to combine biological expertise with machine learn-
ing. Using information regarding genes, proteins, drugs, and diseases,
it is possible to create a KG having approximately 180k triples between
70k different entities using 70 different relationships. Then, applying
KGE algorithms, is generated an embedded representation of the graph
in order to use inference techniques to identify possible new relation-
ships in the graph that was not previously there. To measure the results
obtained, following the previous literature, is used, as the measure of
accuracy, the one proposed by Stanford [17] on an unknown part of the
dataset. After that, is carried out a series of technical and semantic anal-
yses to check which are the best parameters for the embedding model
and applying downsampling or supersampling techniques to deduce bio-
logical conclusions such as the importance of gene’s presence in the KG
to infer new links between drug and disease. In this way, in addition
to generating new links in the graph, it may be to better understand
the importance of entities and relationships within the graph in relation
to biomedical or topological motivations. So starting from a biomedical
knowledge of the problem provided by the database, through the use of
machine learning algorithms, it is probable to generate new evidence.

1.5 Challenges

The main challenges that have been faced during the writing of this
thesis are of two types: the first of a semantic character, the second of
a technical nature.

The semantic problems encountered during the course of this project
concern the availability of data, the completeness of the graph, and its
quality. In order to create a KG that was large enough to well represent
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the reality and able to learn from previous information, it was neces-
sary to integrate information from different databases that are public
or with an academic license. In our case, DrugBank1, CTD2, UniProt3,
and OMIM4 have been used. The data-sets that are used in this thesis
are frequently used even by international authorities and major phar-
maceutical company since they are, often, manually cured by difference
no-profit organizations that are involved in biomedical research. For this
reason, is feasible to think that this KG is in line with the quality stan-
dards of the other graphs used in computational biology. In any case,
the approach to the problem is completely generic, and this means that
it is possible to replace, extend, or change the starting KG very simply.

As regards the technical problems, there were mainly two: the first
one is a computational challenge and the second one is qualitative con-
cerning the KGE. Working with an embedded representation of a KG
of thousands of entities is very expensive, and consequently is necessary
to develop some procedure to reduce the cost and deliver a solution in
very short time respect to the previous procedure. Reducing the amount
of time to generate an embedded solution on a big KG make it possi-
ble to do a larger number of test on the KGE representation to better
understand the pros and cons of this technique. The second problem,
concerning the KGE, was to face and verify what the previous literature
proposed. Nowadays there are many embedding models available, each
of which aims to significantly improve some specific features. However,
rightly, these measures were taken using KG, complete, large, and pre-
cise, which often, however, do not represent the reality in which it is
not always possible to verify the quality of a graph created from hetero-
geneous data. In any case, it should be emphasized, that the LP task
applied to drugs and disease is a more complex task than the LP of other
types of relationships for the simple fact that the number of interactions
available is much lower than, for example, protein-protein interactions
as presented in chapter 5.

Drug repurposing has already proved a notable success but this

1https://www.drugbank.ca
2http://ctdbase.org
3https://www.uniprot.org
4https://omim.org
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method has itself some challenge: repurposing does not always succeed;
most of the selected drug candidates for repurposing failed to encounter
a problem in the later stage of the process. Therefore, although a com-
putational approach is a low cost, the results of these cannot necessarily
guarantee good results from a pharmaceutical point of view as in the
usual process of drug discovery. However, repurposing a new drug does
not have only challenges from a research point of view, but also from a
bureaucratic one such as patent considerations, organizational obstacles
and regulatory concern [39].
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La conoscenza é un’arma.
Munisciti bene prima di
andare in battaglia.

This chapter introduces fundamental concepts of the knowledge graph,
knowledge graph embedding, and the notation that will be used in this
work to denote it and the tools to apply link prediction. The definitions
follow the one used by Rossi et al. [21].

It is also provided with an explanation of the operation of the embed-
ding model which is used to generate the representation of Knowledge
Graph (KG) and to be able to use the Link Prediction (LP).

2.1 Knowledge Graph

Definition 1. Knowledge Graph
Knowledge Graph (KG) is defined as G = {E,R, F}, where E, R

and F are sets of entities, relations and facts, respectively. A fact is
denoted as a triple (h, r, t) ∈ F where h stands for ’Head’, r stands
for ’Relation’ and t for ’Tail’. Another notation that is often used in
literature is < head, relation, tail >.

So a KG can be denoted as a multi-relational graph composed of
entities and relations which are regarded as nodes and different types of
edges, respectively. Over time the concept of KG has evolved accord-
ing to the research directions and the applications and today there are
mainly four different paths of research [21]:

• Temporal Knowledge Graphs, are KG which in addition to trying
to represent the information also trying to trace their evolution on
a temporal basis.
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• Knowledge-aware Applications, on the other hand, are KG in which
knowledge is injected to provide a series of downstream applica-
tions that can improve tasks such as recommend systems or Ques-
tion and Answer (Q&A).

• Knowledge Representation Learning (KRL) deals with how to go
to represent a KG in another space.

• Knowledge Acquisition (KA) concerns the extraction of informa-
tion from the starting KG or its subsequent representation. In
particular, KA deals with the completion of KG, extraction or
identification of entities and relationships.

2.2 Knowledge Graph Embedding

Knowledge Representation Learning (KRL) is also known as Knowledge
Graph Embedding (KGE) and the main differences between them are
due to the representation space, the scoring function, encoding models
and any other information that can be incorporated into the embedding.

The central point of embedding is to represent something in the
space of a smaller dimension. The types of dimensional spaces that
are commonly used are: pointwise, complex, Gaussian distribution and
manifold.

Point-wise Euclidean space is widely used and bases its idea pro-
jecting relations and entities into a vector or matrix space. The main
difference between the various types of embedding models is how space
is built and consequently, what is the projection method of the triple
Knowledge Graph (KG) elements. For example, at the expense of com-
putational costs, one can decide to project relations and entities in dif-
ferent dimensional spaces, in order to better enhance the characteristics
of the relations, as in the case of TransR. Or with TransA instead, one
choose to approximate the entity closest to a point in space with an
ellipse instead of a circle, just to solve the ambiguity introduced by it.
With TransM, on the other hand, the embedding of the elements of the
graph is calculated, taking care to maintain the one to many and many
to many relationships also in the representation of the embedding by
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using a specific parameter. Ultimately the ways in which the embed-
ding matrices are repeatedly improved do not differ much as explained
in section 2.4.1. Each model introduces only additional parameters that
deal with improving the representation of a given graph property.

Complex vector space instead, as the name suggests, use a complex
space to represent entities and relationships. For this reason, each ele-
ment of the graph has a complex and real representation which improves
embedding in the case of symmetric and anti-symmetric relation, for ex-
ample.

With Gaussian word embedding, the goal is to seek a multi-dimensional
Gaussian distribution in such a way that the mean value of the distribu-
tion represents the entity or the relationship and the variance represents
the uncertainty of this representation.

Finally, the approach of using manifolds and groups is very similar
to Point-wise Euclidean space. A manifold is a topological space which
could be defined as a set of points with neighbourhoods by the set the-
ory, while the group is algebraic structures defined in abstract algebra.
So in Point-wise Euclidean space, the embeddings are restricted in an
overstrict geometric form even in some methods with subspace projec-
tion instead now they must not be in a well-defined geometric space but
rather in a mathematical space. Manifold space has an advantage over
point-wise Euclidean space by relaxing the point-wise embedding [21].

The second element that characterizes an embedding model is its
score function. The score function is used to measure the plausibility of
a triple and must be designed in such a way that a positive triple has a
higher score than a negative triple.

There are two typical types of scoring functions to measure the
likelihood of a triple: distance-based and similarity-based functions.
Distance-based scoring function measures the plausibility of facts by
calculating the distance between entities that depends on the space of
representation, where addictive translation with relations as eq. (2.1):

h+ r = t (2.1)

eq. (2.1) is widely used for example. So the goal is to find an embed-
ded representation of the head h and the relation r such that their vector
sum equals to the embedding of the tail t. Instead, semantic similarity
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bases its scoring measurement on the likelihood of a triple with semantic
matching, this implies finding a multiplicative matrix that depends on
the relationship, which is able to transform the head into the tail in the
representation space, i.e., eq. (2.2) [21].

hTMr = tT (2.2)

Encoding Models takes care of the interactions of entities and re-
lations through different types of model architectures. The most com-
monly used are linear/bilinear models, factorization models, and neural
networks. Linear models formulate relations as a linear or bilinear map-
ping by projecting head entities into a representation space close to tail
entities. Factorization aims to decompose relational data into low-rank
matrices for representation learning. Neural networks encode relational
data with non-linear neural activation and more complex network struc-
tures [21].

Finally, the last element that characterizes an embedding model is
the ability to encode additional features to the entity or relationship em-
bedding. This additional information can be textual information, type
constraints or attributes that enrich embedding. Additional information
is used when the loss function is calculated. An example of additional
textual information can be a label that categorizes the type of entity
helping in the calculation of embedding. In general, is defined an ad-
ditional loss function on information and improve embedding by mini-
mizing a loss function which is given by the sum of the loss to represent
entities and relation and the loss for additional information [40].

The most commonly used representation space is the Euclidean point-
based space by embedding entities in vector space and modelling inter-
actions via vectors, matrices or tensors. Ultimately, it is difficult to
determine which combination of these features is best for the applica-
tion domain. From time to time there is to evaluate the characteristics of
the available KG, the type of relationships and properties that are need
to represented and above all to establish a trade-off between the com-
pleteness of representation and its complexity in relation to the resources
available [21].
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2.3 Knowledge Acquisition

Knowledge acquisition tries to construct knowledge graphs from unstruc-
tured text such as in our case, complete an existing knowledge graph
inferring new entities or relation for example, and recognize entities
and relations based on some characteristics. The advantages of using
a Knowledge Graph (KG) are obvious: it allows to organize the vision
of the domain in a logical, synthetic and above all semantic way. In
doing so, the information contained in each triple do not know in their
own right but they are part of a wider context. Their applications can
be very broad and can make many context-aware applications. However,
in the creation phase of the KG it is not always possible to represent
the domain in a complete way, due to lack of data for example. Knowl-
edge Graph Completion (KGC) helps with this task. Typical subtasks
include Link Prediction (LP), entity prediction and relation prediction.
The triple classification, on the other hand, defines a classifier that re-
sults in providing an indicator if a triple is correct.

A formal definition of these tasks can be provided as follows defini-
tion 2.

Definition 2. Knowledge Graph Completion Given an incomplete
knowledge graph G = (E,R), KGC infers missing triples
T = {(h, r, t) | (h, r, t) /∈ G}.

There are various ways to implement the Knowledge Graph Comple-
tion (KGC) but the most common is based on the use of the embedded
representation of the Knowledge Graph (KG) and is called embedding-
based methods. However, this type of method fails to recognize multi-
step relationships where methods such as relation path inference and
rule-based reasoning are more effective.

Rule-based Reasoning uses a set of rules to be applied to the KG
to infer new elements in the graph. For example, if one considers a
KG that represents the relationships between people and one can have,
< Bob, isSonOf, John >, < John, hasChild, 1 >, then, if not present,
can be formulated rules so that if a person has children, and a child
"recognizes" the father then one can infer the triple in which the father
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recognizes the son by using a different type of relationship and creating
a new triple < John, isFatherOf,Bob >.

Relation path reasoning wants to leverage path information over the
graph structure. To do so random walk inference has been used, instead,
in the case of Path Ranking Algorithm (PRA), that chooses relational
path under a combination of path constraints, and conducts maximum-
likelihood classification. To improve the quality of path search is possible
to add other information such a textual content to increase the similarity
[21].

2.3.1 Calibration

Once the embedding matrix is available it is possible to use these values,
together with the score function, to derive a probability of the existence
of a triple in the graph. However, this probability is not said to have
a probabilistic sense, since the expressed probability value may not cor-
respond to the frequency of the events that are actually observed. In
order for the predicted probability to make sense, it is necessary to cal-
ibrate the results. Ideally, one would like a predicted result with 90%

confidence to be true in 90% of cases. So using a dataset not used in
the training phase, the probability of each prediction is calculated and
compared if this result is found in reality: the calibration tries to match
these values in such a way that the estimated probability value respects
reality. For example, a result predicted at 90% but which is actually
true few times will undergo a greater calibration and will have a final
probability value lower than a predicted result at 80% but which occurs
hundreds of times after it also undergoes a calibration. Calibration is
crucial in high-stakes scenarios such as drug-target discovery from bi-
ological networks, where end-users need trustworthy and interpretable
decisions [46].

Definition 3. Calibration Given a knowledge graph embedding model
identified by its scoring function fm, with fm(t) = p, where p is the
estimated confidence level that a triple t = (s, p, o) is true, we define fm
to be calibrated if p represents a true probability [46].

There are two popular calibration methods: Platt’s scaling and iso-
tonic regression. Platt’s scaling amounts to training a logistic regression
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model on the classifier outputs with respect to the true class labels. The
second popular method of calibrating is isotonic regression. The idea
is to fit a piecewise-constant non-decreasing function instead of logistic
regression.

Calibration is a topic in which there is great interest in recent years
and among the most recent progress: Tabacof et al propose a calibration
technique in the event that in the dataset used for calibration there is no
triple for which a probability value is associated. The non-existence of
this triple in the dataset does not necessarily imply that the probability
associated with the predicted triple does not reflect the reality [46].

2.3.2 Evaluation metrics

As been said in the chapter 1, in the case of the knowledge graph, the
drug repurposing task translates into the link prediction task to predict
possible new links between drug and disease.

Definition 4. Link Prediction Given a training set G that includes
only positive triples, the goal of Link Prediction (LP) is assigning a
score f(t) ∈ R proportional to the likelihood that each unlabeled triple
t included in a held-out set S is true. Note S does not have ground truth
positives or negatives [46].

The task of learning from a Knowledge Graph (KG) is connected to
the rank task. The score function forms the embedding model provides
a way to get a score from a general triple. This score, rank, is used to
measure the performance of the embedding model. The metrics that
are often used in these kinds of projects are Mean Rank (MR), Mean
Reciprocal Rank (MRR) and Hits@N.

Although the definition of metrics is very clear, special attention
should be paid to how they are used. It is not a simple thing, working
with entities that together with relationships represent complex con-
cepts, to evaluate the work of embedding. For example, using metrics
between entities of a different type of which have not been observed in
the training phase would mean going to verify the existence of a link with
a new entity and not a simple link between already existing entities.
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Definition 5. Mean Rank Mean Rank (MR) is a measure to evaluate
systems that return a ranked list of answers to queries. Equation 2.3
express the formula to compute a Mean Reciprocal Rank (MRR) over a
set of queries Q. ranki is the rank of the i-th query [7].

MR =
1

|Q|

|Q|∑
i=1

ranki (2.3)

Lower is better. The range is from 1 to |E|, where |E| is the number
of entities in the Knowledge Graph (KG).

Definition 6. Mean Reciprocal Rank MRR is a measure to evaluate
systems that return a ranked list of answers to queries. Equation 2.4
express the formula to compute a MRR over a set of queries Q. ranki
is the rank of the i-th query [7].

MRR =
1

|Q|

|Q∑
i=1

| 1

ranki
(2.4)

Higher is better. The range is from 0 to 1.

Definition 7. Hits@N Hits@N is the proportion of the original correct
entity to the top N predictions. It is the count of how many positive
triples are ranked in the top-n positions against a bunch of negative
triples. So the idea is to evaluate the ranking of the positive triple
compared to a set of negative triples and see how the positive triple
compares to the others. In this way, one can have an idea of when the
Knowledge Graph (KG) embedding is accurate and how accurate future
forecasts are. The value N, therefore, indicates the observation range
in which the ranking of the positive triple must fall to have a hit or
vice versa a miss. The more other the value of N is, the more likely the
positive triple is in the prediction N prime. Equation 2.5 express the
definition of Hits@N in formula [7].

Hits@N =
1

|Q|

|Q|∑
i=1

{
1 if rank(h,r,t)i ≤ N
0 Otherwise

(2.5)

Where Q is a set of triples and (h, r, t) ∈ Q.
Higher is better. The range is from 0 to 1.
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Definition 8. Corruption Corruption is carried out both during the
model training phase and during the evaluation phase, in which the
above mentioned metrics are calculated. Corruption of a triple that is
present in the data-set i.e. a positive triple, involves the replacement
of one or more elements at a time in order to create a new triple, i.e
a negative triple. So can be chosen to corrupt or just the head or just
the tail or both of the triple and replace them with random elements or
with specific elements. In this way, negative sampling is done during the
training phase. For each positive triple, it is decided how many negative
triples must be generated in order to provide more information to the
model on which to train. This method avoids the problem of vanishing
gradient and thus obtain better performance [55]. Similarly, during the
evaluation phase, to calculate the accuracy of embedding, given a triple
positive, in the case of link prediction, the head or tail or both with
other entities are corrupted and their ranking is calculated. By doing
this, one is able to establish whether, the ranking deriving from the score
function, is higher in the case of the positive triple, or rather of the true
triple and lower in the others.

Definition 9. Type Constraint Type Constraint is used in the corrup-
tion stages. Once established which elements of the triple to corrupt, it
is necessary to decide with which entities to replace the element in ques-
tion. Replacing it with a random entity opens a line of research on how
to go to extract another entity but it is always good to extract it from a
subset of all possible entities since these constraints impose prior beliefs
upon the structure of the embedding space, without negative impacts on
efficiency or scalability [55, 11]. It is often chosen as a set to replace an
entity with all other entities that appear in the data set with the same
relationships.

Definition 10. Raw Raw is an evaluation setting that ranks the scores
in ascending order, then can get the rank of the original correct triplet to
compute the evaluation metrics. Then, the same procedure, is repeated
removing the tail t instead of the head h of a triple [51]. So valid entities
outscoring the target one are considered as mistakes. In equation 2.6 is
presented the rank of target tail, t, given a triple (h, r, t) ∈ Q
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rt = |{e ∈ E\{t} : fm(h, r, e) > fm(h, r, t)}|+ 1 (2.6)

The raw rank in head prediction can be computed analogously.

Definition 11. Filter

Definition While corrupted triplets that appear in the train/valid/test
sets (except the original correct one) may underestimate the metrics, are
filtered out those corrupted triplets before getting the rank of each test-
ing triplet and this process is called Filter [51]. So valid entities outscor-
ing the target one are not considered mistakes but they are skipped when
computing the rank. Both the raw and the filter configuration can be
combined with the use of type constraints. In equation 2.7 is presented
the rank of target tail, t, given a triple (h, r, t) ∈ Q

rt = |{e ∈ E\{t} : fm(h, r, e) > fm(h, r, t∧ < h, r, t >/∈ Q)}|+ 1 (2.7)

The raw rank in head prediction can be computed analogously.

Definition 12. Tie A tie is an event when the target entity obtains the
same score as other ones. This event can be handled as follows [40]:

• min: the target is given the lowest rank among entities in tie

• average: the target is given the average rank among entities in
tie

• random: the target is given a random rank among entities in tie

• ordinal: the entities in tie are given ranks based on the order in
which they have been passed to the model

• max: the target is given the highest (worst) rank among the enti-
ties in tie
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2.4. Embedding Model

2.4 Embedding Model

Following the definition of Knowledge Graph Embedding (KGE) in sec-
tion 2.2, now is possible to define a Knowledge graph embedding models.
These are neural architectures that encode concepts from a Knowledge
Graph (KG) G that is composed by a set of entities E and relations R,
into low-dimensional, continuous vectors ∈ Rk that is the embedding of
dimension k. Embedded representation of KG elements are learned by
training a neural architecture over G, that represents the input to the
neural network. Although such architectures vary from model to model,
the training phase always consists in minimizing a loss function L that
includes a scoring function fm, i.e. a model-specific function that as-
signs a score to a triple t = (h, r, t). The score function takes as input
the embedding of the subject, the head h, the relation or predicate r
and the tail or object t. The final goal of the optimization procedure is
learning optimal embeddings, such that the scoring function fm assigns
high scores to positive triples t+ and low scores to triples unlikely to be
true t− [46].

Since there are many embedding models, which as been have ex-
plained above differ in their characteristics, after a preliminary analysis
that is going to be explained in chapter 5, have been chosen to use TransE
[4] and ComplEx [49] as embedding models which represent an excellent
trade-off between completeness, accuracy and computational cost in re-
lation to this project which aims to explore this research technique in
this new sector.

2.4.1 TransE

TransE is a canonical model which is easy to train, contains a reduced
number of parameters and can scale up to very large databases. TransE
is able to model relationships by interpreting them as translations op-
erating on the low-dimensional embeddings of the entities. Despite its
simplicity, this assumption proves to be powerful since extensive exper-
iments show that TransE significantly outperforms the state-of-the-art
[4].

The main idea behind the concept of translations in the embedding
space, as show in fig. 2.1, is that if (h, r, t) holds, so it is a positive triple
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He
ad

Relation

Tail

Figure 2.1: Translations in the embedding space of TransE. The vec-
tor representation of the head plus the vector representation of the tail
should have as result the vector representation of the tail of the triple.

from the training set, then the embedding of the tail entity t should
be close to the embedding of the head entity h plus some vector that
depends on the relationship r. Our approach relies on a reduced set of
parameters as it learns only one low-dimensional vector for each entity
and each relationship [4].

The main motivation behind this translation-based parameteriza-
tion is that hierarchical relationships are extremely common in KG and
translations are the natural transformations for representing them [4].

In section 2.4.1 is presented the pseudo-code of TransE regarding
the input, the initialization and the training procedure [4]. The training
phase stops when a certain accuracy, according to the a type of measure-
ments is achieved on the validation set. This code wants to represent
the backbone of the embedding model but is not complete: for example
are missing techniques of negative sampling or specific corruptions using
type constraints.

Given a training set S, i.e. a subset of the original KG of triplets
(h, r, t), where each triple is composed of two entities h, t ∈ E (the set
of entities) and a relationship r ∈ R (the set of relationships). The goal
of the training phase is to learn the embedded representation of entities
and relations. The embedded representation is a vector of dimension k,
that is a hyperparameter that represents the dimension of the embed-
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Algorithm 1 TransE
Require: Training set S = (h, r, t)
Require: Entities and relation sets E and R
Require: Margin γ
Require: Embedding dimension k
Ensure: r ← uniform(− 6√

k
, 6√

k
) ∀r ∈ R

Ensure: r ← r
||r|| ∀r ∈ R

Ensure: e← uniform(− 6√
k
, 6√

k
) ∀e ∈ E

1: loop
2: e← e

||e|| ∀e ∈ E
3: Sbatch ← sample(S, b) {Sample a batch of size b}
4: Tbatch ← ∅ {Initialize the set of pairs of triplets}
5: for (h, r, t) ∈ Sbatch do
6: (h′, r′, t′)← sample(S′(h,r,t)) {Sample a corrupt triple}
7: Tbatch ← Tbatch ∪ {((h, r, t), (h′, r′, t′))}
8: end for
9: Update Embedding w.r.t.

10:
∑

((h,r,t),(h′,r′,t′))∈Tbatch
∇[γ + d(h+ r, t)− d(h′ + r, t′)]+

11: end loop

ding. The embeddings values are denoted with the same letters but in
boldface characters. The basic idea behind TransE is that the functional
relation induced by the r-labelled edges corresponds to a translation of
the embeddings, i.e. we want that h + r = t when (h, r, t) is a positive
triple (t should be the nearest neighbour of h+ r), while h+ r should
be far away from t if it is a negative triple. This corresponds, in the
flat case, to a simple sum of vectors. The sum of the head vector plus
the relation vector must result in the tail vector for each triple present
in the training set. Using an energy-based framework, the energy of a
triplet is equal to d(h+ r, t) for some dissimilarity measured, which is
taken to be either the L1 or the L2 norm [4].

To learn such embedding, for each batch, for each triple is computed
a loss function 2.8, where is minimize a margin-based ranking criterion
over the training set [4].

∑
(h,r,t)∈S

∑
(h′,r′,t′)∈S′

∇[γ + d(h+ r, t)− d(h′ + r, t′)]+ (2.8)
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where γ > 0 is a margin and [x]+ stands for the positive part of x.
Following the snipped of code in ??: first of all embeddings for en-

tities and relationships are first initialized following a random sampling
that depends on the dimension of the embedding. Then for each main
iteration of the TransE algorithm, the embedding vectors of the enti-
ties are first normalized. Later, a subset of triplets is sampled from the
training set and will serve as the training triplets of the batch. Usually,
the dimension of the batch is chosen according to the capabilities of the
machine, a good practice is to use a value for the batch size that is able
to fit all the data in the volatile memory.

Therefore, following the algorithm, each triple of the batch is cor-
rupted in the following way: following the equation 2.9 it is possible to
understand that the corrupt triple will be constituted by a new entity
instead of the head or tail but not both, maintaining the same relation-
ship. As it was designed, the loss function, which is an energy function,
will favour lower values for positive triples than for corrupt ones [3].

S′(h,r,t) = {(h
′, r, t) ∈ E} ∪ {(h, r, t′) ∈ E} (2.9)

Note that for a given entity, its embedding vector is the same when
the entity appears as the head or as the tail of a triplet [4].

So the parameters are then updated by taking a gradient step with
constant learning rate. Usually, the optimization is carried out by stochas-
tic gradient descent over the possible h, l and t, with the additional
constraints that the L2 norm of the embeddings of the entities is 1 [4].
This constraint is important because it prevents the training process to
trivially minimize the loss function by artificially increasing entity em-
beddings norms [3]. Instead, by constraining the size of the embedding,
one can force the model to learn the embedding instead of memorizing
the values by simply increasing the norm.

TransE has been tested by its authors on Wordnet 1 and Freebase
2. It was subsequently used as a baseline for all models developed in
the future and for this reason, it is widely tested. The results in terms
of accuracy are very good in relation to the complexity in terms of the
number of parameters to be trained θ(nek + nrk).

1https://wordnet.princeton.edu
2http://www.freebase.com
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2.4.2 ComplEx

ComplEx is a model embedding technique and it is presented as an
arguably simple approach to matrix and tensor factorization for link
prediction data that uses vectors with complex values and retains the
mathematical definition of the dot product, as it only uses the Hermi-
tian dot product, the complex counterpart of the standard dot product
between real vectors. In this way, using a composition of complex embed-
dings one can handle a large variety of binary relations, like symmetric
and antisymmetric relations. ComplEx is scalable to large datasets as
it remains linear in both space and time respect the dimension of the
embedding K, O(K) [49].

As always the objective of link prediction is to find an automatic to
discover inference triples using the existing one. However, many rela-
tions are non-deterministic and the way a human reason is so far away
from an embedded representation, that means a simple connection of
facts, or in our case of triple, could not be so obvious. To address this
problem, over the years a lot of solutions have been proposed, one of
them focuses on the tensor completion problem, where each slice is the
adjacency matrix of one relation type in the knowledge graph. A par-
tially observed matrix or tensor is decomposed into a product of embed-
ding matrices with a much smaller rank, resulting in fixed-dimensional
vector representations for each entity and relation in the database [49].
As can be noticed in the real world, there are a lot of possible types
of relations like symmetry, antisymmetry or transitivity. Dot products
of embeddings scale well and can naturally handle both symmetry and
antisymmetry of relations and using an appropriate loss function even
enables transitivity. Looking to the past literature, dealing with anti-
symmetric relations has so far almost always implied a huge number of
parameters, making models prone to overfitting. ComplEx presents the
dot product between embeddings as a very effective composition func-
tion. Instead of using embeddings containing real numbers, ComplEx
demonstrate the capabilities of complex embeddings. Dealing with com-
plex vectors, the dot product is called the Hermitian dot product, as it
involves the conjugate-transpose of one of the two vectors. As matter
of fact, the dot product is not symmetric any more since it involves a
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conjugate and a transposition, and in this way, the order of presenting
entities in the triples matter, therefore the antisymmetric relations can
receive different scores. In such a way complex vectors can effectively
capture antisymmetric relations while retaining the efficiency benefits of
the dot product, which is linearity in both space and time complexity
[49].

The loss function used in the model is presented in eq. (2.10). In
bold the embedding of the head, tail and relation. K is the dimension
of the embedding.

φ(h, r, t) = Re(
K∑
k=1

r ∗ h ∗ t) (2.10)

2.4.3 Hyperparameters

Since in order to learn the embedding of a KG a training procedure is
necessary, it is good to indicate which are the main parameters that can
be modified.

1. Epochs : Number of epochs is the number of times the whole
training data is shown to the network while training.

2. K: is the embedding dimension. Each entity and relation will be
represented with a vector of Rk

3. η: is the negative sampling rate, control how many negative sam-
ples are generated. for each positive sample.

4. Lr: The learning rate defines how quickly a network updates its
parameters. For each batch of the training a score function is
computed. Base on this score the goal is to minimize the loss. To
do so a gradient is computed that indicates the direction of the
minimum of the loss function. The learning rate tells how much
big the step should be in the direction of the gradient

5. optimizer: is the optimizer of the model such that SGD [41],
ADAM [26] or ADAGRAD [12]. Specify how should be performed
the optimization procedure after the loss function is computed.
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6. Batch Count: the training set will be divided is in such a way the
number of batches correspond to the batch count

7. Model Family: is type of embedding model family to train the KG

8. Others: other parameters such as early stopping, adaptive learning
rate, normalization

2.5 Knowledge Graph Creation

In order to be able to do drug repurposing, first of all, it is necessary
to go to represent the domain. In our case, the application domain
was built starting from databases concerning genes, proteins, drugs and
disease. It was necessary to combine multiple databases from different
sources to have a good number of triples to work with and above all
because there is no cured biomedical database that contains all this
different information and also to connect the different identified ones
used in the various databases. In our specific case, DrugBank, CTD,
OMIM and UniProt have been used. They are widely used research and
industrial databases that have an internationally recognized and have a
public access or academic license option.

The figure 2.2 shows the general structure of the domain that is used
in this project, indicating the entities and the relationships that connect
them. Our KG uses proteins, genes, diseases and drugs as entities. The
main connections that are formed are: A gene encodes a protein. A
protein interacts with another protein or itself. A protein is involved
in the illness. A protein has different types of interactions with a drug.
And a drug is used to treat a disease. The disease is part of a typology,
therefore it has a parental relationship with another disease.

After extracting millions of information from databases, parsing and
filtering the data is built a KG having about 180k triples among 60k
entities using about 70 different relationships. The KG built in this
way is not a cornerstone for its size but it means that it is possible to
integrate information already present in a not too elaborate way, and
therefore this approach is easily improved, replaceable and extensible.

The pie chart in the fig. 2.3 represents the percentage of entities of
each type with respect to the total of entities present.
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Figure 2.2: The domain under analysis for drug repurposing represented
with a KG with the different types of entities and the main relations
between them.

Figure 2.3: Pie chart representation of the % of all different types of
entities that belongs to the knowledge graph used for drug repurposing.
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Figure 2.4: Bar chart that represent the main types of relation with the
percentage w.r.t. the total amount of triple present on the KG for this
research.

In the bar chart in fig. 2.4, on the other hand, the most frequent
relationships are represented in percentage with respect to the totality of
triples in the KG. Can be observed that the four most frequent relations
in KG constitute about 90 % of the triples present in the graph.

Finally, we want to give, with the next sections, a quick presentation
of the databases used to make up the KG.

2.5.1 DrugBank

DrugBank is a web-enabled database containing comprehensive molec-
ular information about drugs, their mechanisms, their interactions and
their targets. It is a unique bioinformatics and cheminformatics resource
that combines detailed drug data with comprehensive drug target infor-
mation. First described in 2006, DrugBank has continued to evolve over
the past 12 years in response to marked improvements to web standards
and changing needs for drug research and development [50].

The latest release of DrugBank at the current version 5.1.7 of 2020-
07-02 contains 13,604 drug entries.

Each entry contains more than 200 data fields with half of the infor-
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mation being devoted to drug/chemical data and the other half devoted
to drug target or protein data. DrugBank is widely used by the drug
industry, medicinal chemists, pharmacists, physicians, students and the
general public. Its extensive drug and drug-target data have enabled the
discovery and repurposing of a number of existing drugs to treat rare
and newly identified illnesses [50].

2.5.2 CTD

Comparative Toxicogenomics Database (CTD) is a database that is
widely used from an companies and public medical authority, it is a
publicly available database that aims to advance understanding about
how environmental exposures affect human health. It provides manually
curated information about chemical-gene/protein interactions, chemical-
disease and gene-disease relationships so that’s the reason why is a cor-
nerstone in the field of biomedical databases. The initial release of CTD
was on November 12, 2004. CTD has various entities in the database
such as drugs, diseases, genes, protein, GO and pathways. Regarding
the chemical, it integrates a drug subset of the Medical Subject Headings
(MESH), the hierarchical vocabulary from the U.S. National Library of
Medicine. CTD’s MEDIC disease vocabulary is a modified subset of
descriptors from the Diseases category of the U.S. National Library of
Medicine (NLM) MESH, combined with genetic disorders from the On-
line Mendelian Inheritance in Man (OMIM) database. CTD biocurators
mapped OMIM diseases to terms within the hierarchical MESH disease
vocabulary to expand our disease representation just to overline the im-
portance of manual curation of this database. The CTD gene vocabulary
(symbols, names, and synonyms), instead is a derivation from the Gene
database at the National Center for Biotechnology Information (NCBI).
CTD contains curated and inferred gene-disease or chemical-disease as-
sociations. These types of associations are extracted from the published
literature by CTD biocurators, or are derived from the OMIM database
using the mim2gene file from the NCBI Gene database. Inferred as-
sociations, instead are established via CTD-curated chemical-gene or
disease-gene interactions [8].
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2.5.3 UniProt

The Universal Protein Resource or UniProt is a collection of sequences
and annotations for over 120 million proteins across all branches of life.
Detailed annotations extracted from the literature by expert curators
have been collected for over half a million of these proteins. Our inter-
est is in this subset of this database called "Swiss-Prot" that contains
around 20k different humans proteins with all their interactions. These
annotations are supplemented by annotations provided by rule-based
automated systems, and those imported from other resources [6].

2.5.4 OMIM

OMIM is a comprehensive, authoritative compendium of human genes
and genetic phenotypes. The consultation is free under academic license
and is constantly updated. The entire collection contains information on
all known mendelian disorders and over 15,000 genes. It focuses on the
relationship between phenotype and genotype [15]. The main purpose of
these database for this project is to complete a vocabulary for diseases
to connect some fields of the other database used for the construction of
the KG.

2.6 Biomedical Vocabulary

Often in the literature and in this thesis, terms related to the biomedical
world that are not in the common vocabulary can be used. It is therefore
good to try to give an intuitive definition of the meaning of each of them.

• Gene. A gene is the basic physical and functional unit of hered-
ity. Genes are made up of DeoxyriboNucleic Acid (DNA). Some
genes act as instructions to make molecules called proteins. How-
ever, many genes do not code for proteins. Every person has two
copies of each gene, one inherited from each parent. Most genes
are the same in all people, but a small number of genes (less than
1 percent of the total) are slightly different between people. Sci-
entists keep track of genes by giving them unique names. Because
gene names can be long, genes are also assigned symbols, which
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are short combinations of letters (and sometimes numbers) that
represent an abbreviated version of the gene name [U.S. National
library of medicine (NLM)].

• Protein. Proteins are large molecules composed of one or more
chains of amino acids in a specific order determined by the base
sequence of nucleotides in the DNA coding (gene) for the pro-
tein. The complex structures of different proteins give them unique
properties. Proteins are very important for the structure, function,
and regulation of the body’s cells, tissues, and organs. Enzymes
are proteins that speed up biochemical reactions in cells that oth-
erwise take so much longer and life could not be possible.

• Pathway. Pathways are a collection of manually drawn pathway
maps representing our knowledge on the molecular interaction, re-
action and relation networks for human diseases, drug develop-
ment, gene information, metabolism etc. [23].

• Gene Ontology. An ontology is a representation of something we
know about. "Ontologies" consist of representations of things that
are detectable or directly observable and the relationships between
those things. The Gene Ontology project provides an ontology of
defined terms representing gene product properties [5].

• Side effects. A side effect is a secondary, typically undesirable
effect of a drug or medical treatment.
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Ogni progresso é dovuto
agli scontenti.
Le persone contente
non desiderano alcun
cambiamento.

In this chapter, the state-of-the-art work that is of interest for this
thesis is presented. In the first place, is given an introduction about the
current expertise in the subject of drug repurposing from a medical and
pharmaceutical point of view, then is presented the main Knowledge
Graph (KG) embedding techniques. Later is offered an overview of sim-
ilar works that are already present in literature and finally is presented a
similar biomedical knowledge graph that is built from several databases.

First of all, is provided with a brief overview of the pharmaceutical
techniques used for drug repurposing highlighting the drawbacks and
the importance of this study.

Once it is clear what the objective of this research is and what ad-
vantages it introduces, has been investigated in section 3.1 the state of
the art regarding the main computational techniques applied to the field
of drug repurposing.

Subsequently, is presented the most advanced techniques concerning
the embedding of KGs in section 3.2, to then analyze the previous lit-
erature, in section 3.3, which used this machine learning technique to
make an inference of biomedical links in KG.

In the end, in section 3.4, is introduced the main knowledge graphs
in the biomedical field used for purposes similar to that of this thesis.
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3.1 Drug Repurposing

Over time, scientific research techniques, still valid and used today, have
left room for computational research techniques, allowing in a shorter
time, at a lower cost, a higher number of experiments. Furthermore,
these techniques can be easily and quickly applied to different targets,
so they represent a general approach to solving the problem [47].

For this reason, computational approaches are largely used but they
are data-driven. That means they need for a large number of informa-
tions that are not always available. A computational approach uses a
systematic analysis of data of any type such as chemical structure, phe-
notypes, genotypes, gene expression, protein interaction and so on and
so forth. All this kind of data can bring enough information that then
leads to the formulation of repurposing hypotheses.

After presenting the main families of approaches to the drug repur-
posing problem in chapter 1, we now want to present the main compu-
tational techniques following the survey of [39].

3.1.1 Signature Matching

Signature matching, as the name suggests, try to compare unique char-
acteristics of the drug or disease to see if there is some sort of relation
between them [25]. The signature of a drug could be derived from three
general types of data: transcriptomic such as RNA, metabolomic or pro-
teomic information; adverse event profiles or chemical structures [39].
Matching transcriptomic signatures can be used to estimate the simi-
larity between a drug and a disease or between two drugs. To measure
the similarity between a drug and a disease first is needed to collect the
signature of the drug: to do so, one can derive the signature by checking
if the gene expression of a biological element such as a cell is changed
after the treatment with the drug under investigation. The difference in
gene expression between before and after the treatment is the signature
of the drug. Once the signature is available, one can compare it with the
expression profile of a disease that is obtained with a similar procedure
but now is compared to the healthy stage with the ill stage [39]. The
Signature Reversion Principle (SRP) supports this approach: if a drug
can reverse the expression pattern of a given set of genes that are char-
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acteristic for a particular disease phenotype during the treatment, then
that drug might be able to revert the disease phenotype itself [19]. Re-
garding the comparison of a drug with another drug to derive a similarity
between them, means that looking for a way to identify shared mecha-
nisms of action. To have a shared therapeutic application, and so shared
potential off-target effects, the drugs have to share the transcriptomic
signature [18]. Both approaches that use transcriptomic signatures rely
on the gene expression to derive their signature, which implies the need
to access a valid and huge amount of data to analyze and process.

The second type of signature matching used in drug repurposing is
based on chemical structures that are used to understand the biological
effects, hence if two drugs share a similar chemical structure, likely they
share a biological activity. In order to do that, is necessary to identify a
set of properties of the drug that are an expression of its structure and
build a network based on shared chemical features [39].

Another strategy is to use side effects to identify the possible similar
drug. This approach is base on the fact that two drugs that cause the
same adverse effects may be acting on a shared target or protein or on
the same pathway [39].

3.1.2 Genome-wide association studies

In the last years, the cost of the mapping of human DNA is going down.
This is possible thanks to the lower price of technologies, called geno-
typing technology, but also is due to a large increase in the number of
Genome-wide Association Studies (GWAS). A project leader in this field
is the Human Genome Project that has brought to the whole field of re-
search dwindling genotyping costs. The purpose of GWAS is to identify
genetic variants associated with common diseases and thereby provide
insights into the biology of diseases: the data obtained may also help
identify novel targets, some of which could be shared between diseases
treated by drugs and disease phenotypes studied by GWAS and thereby
lead to repurposing of drugs. The drawbacks of this approach are the
lack of information on the direction of effect of the gene variant and
every time one needs to study a new effect of a gene is needed an entire
functional study that implies time and money.
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3.1.3 Computational molecular docking

The idea behind molecular docking is to leverage prior knowledge of
a receptor target that is involved in a disease. It is a structure-based
computational strategy to predict binding site complementary between
a ligand, a drug, that tries to attach itself to a target, a receptor, in
the docking site so it could stop or start a particular behaviour that
is able to counterbalance the disease. So molecular docking, that is
a structure-based computational strategy, interrogates multiple drugs
against a particular target. Viceversa, parsing drug libraries we could
explore target receptors to identify novel interactions, i.e inverse docking,
that can be taken forward for repurposing. The main problems of such
an approach are: structures for some protein targets of interest may
not be available and there are no well-curated macromolecular target
databases that provide accurate structural information [39].

3.1.4 Pathway or network mapping

The pathway-based or network-based approach is another way to find
possible candidates for drug repurposing. There several different ways
to find a possible drug target but doesn’t mean that this information
could be immediately used because we don’t have the certainty that the
drug will attach in a specific target for example. In such circumstances,
a pathway-based strategy may provide information on genes that are
either upstream or downstream for the gene-disease association. Hence,
a network analysis that consists of the construction of a drug or disease
networks based on gene expression patterns, disease pathology, protein
interactions to help in the identification of repurposing candidates [39].

3.1.5 Retrospective clinical analysis

Once a novel drug is available on the market, its research study doesn’t
stop there. As we explained in chapter 1, the drug is constantly under
observation even after the start of commercialization. During the stage
is not rare that some other side-effects could appear, even if they don’t
hazard the health of the patient. For this reason, since now the drug is
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Figure 3.1: Taxonomy representation of embedding models. Dotted
arrows indicate that the target method builds on the source method by
either generalizing or specializing the definition of its scoring function.
Figure from Rossi et al. [40].

consumed by a larger set, can be studied deeper and hence we can find
another purpose to it [39].

3.2 Knowledge Graph Embedding

Rossi et al. [40] has proposed a novel taxonomy where it defines three
main families of models with its subfamilies. In its survey, [40] decided to
include the most valid representative models. The selection is based on
the importance of the paper and the performance achieved by the model,
preferring the model with a public implementation and ordering them
by year of publication. In the end, 16 models are discussed, analyzed
and tested for comparative analysis. In figure 3.1 is represented the
taxonomy of the models for embedding as proposed by [40].

3.2.1 Tensor Decomposition Models

Embedding models that are based on tensor representation imagine the
KG as a 3D adjacency matrix. This matrix, that should tell us all the
connection in the domain, actually is incomplete. The embeddings of
entities and relationship are just a decomposition of such matrix and to
compute the score of a fact, a triple, we should combine the embedding
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of elements involved. The model learns the embedded representation op-
timizing the score function, and since, usually, the number of parameters
involved is low, this makes them particularly light and easy to train.

3.2.1.1 Bilinear Models

These type of models use as scoring function the following equation
where k is the dimension of the embedding, the symbol × is the matrix
product.

φ(h, r, t) = h× r × t, h ∈ Rk, r ∈ Rk×k, h ∈ Rk (3.1)

The difference between these kind of models is on the way they learn
the embedded representation using different constraints.

DistMult [53] The embedded representation of relation are diagonal
matrices, in that way it simplify the number of parameters to be
learn but force all the relation to be symmetric.

ComplEx [49] As discussed in 2.4.2, it uses the Hermitian instead of
bilinear product, make possible the representation of asymmetric
relation even if it uses the same structure as DistMult.

Analogy [28] It aims at modeling analogical reasoning. Impose that
the matrices of relation are normal matrices and their composition
has to be commutative.

SimplE [24] Uses the same idea as DistMult but it learn two embedding
for each entities, one when they are used as head, the other when
used as tail and also the relations have two diagonal embedding
two represent the relation in the reagular and into the inverse use.
In this way overcome the problem of symmetric relation.

3.2.1.2 Non-bilinear Models

They don’t use the biliniar product to compute the score function.

HolE [38] The idea is to use the circular correlation instead of the prod-
uct that is less expensive between head and tail, then it performs
a matrix multiplication with the relation.
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TruckER [1] Tucker decomposition can decompose a matrix in a set
of vector with a shared core. This core is learned, and since it is
shared is less expensive to learn. Trucker doesn’t constraint the
relation and entities to have the same size.

3.2.2 Geometric Models

Geometric models use the vector representation of entities and relation
to project them into a geometric space using a transformation τ , in such
a way, using a distance function δ, between the head and the relation
with the tail is minimal. The equation for the score function is presented
in 3.2

φ(h, r, t) = δ(τ(h, r), t) (3.2)

The models are different from each other by the definition of geometric
space.

3.2.2.1 Pure Translational Models

They use a simple translation, i.e the embedding of the head is added to
the embedding of the relation to gain the embedding of the tail. 2.4.1 is
an example.

3.2.2.2 Translational models with Additional Embeddings

These kind of models associate to each element of the KG more than
one embedding to learn specific relation or entities to be more specific.
They use more paramaters rather than the other models.

STransE [37] To solve the issues of TransE to represent 1 to many,
many to 1 and many to many relation, it uses a double embedding
for the relation that helps to solve this problem and to be more
relation specific.

CrossE [54] It use an additional relation specific embedding for each
relation and then use the dot product, an element wise product,
that allow to gain a triple-specific embeddings.
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3.2.2.3 Roto-Translational Models

As the name suggest, instead of just perform a translation in the geo-
metric space, they perform a combination of rotation and translation.

TorusE [13] TransE forces the entity embedding to lay into an hyper-
sphere, here they use a torus to address this problem.

RotatE [45] The particularity of this approach is to use a relation that
represents a rotation in the complex space. The relation embed-
ding is a pure complex number that achieve a very good repre-
sentation of symmetric and anti-symmetric relation, inversion and
composition.

3.2.3 Deep Learning Models

Deep Learning Models use deep neural networks to learn the representa-
tion of the KG. In the literature, have been done an investigation about
the types of layer, the activation function, the use of the bias and so
on and so forth, but this study is out of the scope of this project, and
for this reason we follow a simple presentation by [40]. In any case
we should take in consideration that deep neural network are prone to
recognize pattern but since KG embeddings are usually learned jointly
with the weights and biases of the layers, makes the learning procedure
potentially heavier, and more prone to overfitting.

3.2.3.1 Convolutional Neural Networks

These models use one or multiple convolutional layers that produce lower
dimensional data from the input. The result is used to compute the score
function.

ConvE [9] To compute the score of a triple first combine the head
and relation embedding and reshape the result and it is used to
feed a convolutional filter. The result is combined with the tail
embedding to have the score of the fact.

ConvKB [36] The main difference from ConvE is that at the begging
it combines head, realtion and tail into a matrix that is used as
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input to a convolution layer to derive the feature map. Finally,
this is used with a dense layer with one neuron to guess the score
function.

ConvR [22] Uses different dimension for the embedding of the entities
and the relations. Due to this fact during the neural network is
necessary a reshaping of the matrices

3.2.3.2 Others

Capsule Neural Networks Capsule networks are composed of groups
of neurons, called capsules, that encode specific features of the input.
Each capsule sends its output to higher order ones, with connections
decided by a dynamic routing process. The probability of a capsule
detecting the feature is given by the length of its output vector. An
example is CapsE [35]

Recurrent Neural Networks They use recurrent layers to extract
information from the training set as in the case of RSN [14].

3.2.4 Efficiency

For the sake of completeness, is reported the training times of the models
mentioned above in relation to the results in terms of accuracy collected
by [40]. This information is important since allows to understand which
is the best embedding model to apply a biomedical knowledge graph.

In fig. 3.2 shows the training time of the model respect to the same
amount of epoch for training.

Instead in table 3.1, is presented the ranking of accuracy of such
model using as metric H@10.
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Figure 3.2: Training time of the model respect to FB15k, WN18, FB15k-
237, WN18RR and YAGO3-10 databases. Figure from [40].

Model FB15k WN18 FB15k-237 WN18RR YAGO3-10

DistMult 86.32 94.61 49.01 50.22 66.12
ComplEx 90.53 95.50 52.97 52.12 70.35
ANALOGY 83.74 94.42 35.38 38.00 45.65
SimplE 83.63 94.58 34.35 42.65 63.16
HolE 86.78 94.94 47.64 48.79 65.19
TuckER 88.88 95.80 53.61 51.40 68.09

TransE 84.73 94.87 49.65 49.52 67.39
STransE 79.60 93.45 49.56 42.21 7.35
CrossE 86.23 95.03 47.05 44.99 65.45
TorusE 83.98 95.44 44.71 53.35 47.44
RotatE 88.10 96.02 53.06 57.35 67.07

ConvE 84.94 95.68 47.62 50.75 65.75
ConvKB 40.83 94.89 41.46 52.50 60.47
ConvR 88.55 95.85 52.63 52.68 67.33
CapsE 21.78 95.08 35.60 55.98 0.00
RSN 87.01 95.10 44.44 48.34 66.43

Table 3.1: H@10 results for all Link Prediction (LP) models on each
dataset. The best results of each metric for each dataset are marked in
bold and underlined. Table from Rossi et al. [40]

The database that are used by [40] for this test are FB15k 1, WN182

1https://www.microsoft.com/en-us/download/details.aspx?id=52312
2shorturl.at/bfx78
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FB15k-237, WN18RR a subset of FB15k and WN18 and YAGO3-10 3.
These databases are going to be presented in chapter 4.

Can be observed that ComplEx is a very good model in a various
number of different data-sets. Instead TransE represents a good model
compared to its computational cost. Regarding convolutional neural
network models, even if they are so much expensive compared to the
other models and sometimes they need as input a pre-trained network,
are not able to achieve decent results.

3.3 Leveraging Knowledge Graph

In recent months there has been a growing interest in the field of knowl-
edge graph applied to drug repurposing with the consequent increase in
the production of academic articles. However, the field is still wide and
the questions to be investigated are still many. In this section, to the
best of our knowledge, we are going to present the main works on this
topic ordered by publication date. Finally, we briefly summarize the
current state-of-the-art of the topic.

3.3.1 Drug-Target

Mohamed et al. [32, 33] 4, between 2019 and 2020 presents an ap-
plication of the Knowledge Graph Embedding (KGE) to complete KG
by identifying new drug-target interactions and, therefore, the research
aims to quickly identify new promising or unintended effects of drugs.
In this way, identifying new drug-target relation is possible to operate
on generic similarities of drug structure and protein sequence, therefore
they can provide efficient predictions on new chemicals. They build a
new biomedical knowledge database using the currently available dataset
such as DrugBank [50], KEGG 5 [23] , Uniprot [6], InterPro 6 to create
a novel KG composed by entities that are connected to both drugs and
their potential targets. Regarding the completion task, in [32] they use
ComplEx [49] model embedding for the task of KGE, but in [33] they

3https://github.com/yago-naga/yago3
4http://hdl.handle.net/10379/16048
5https://www.kegg.jp
6https://www.ebi.ac.uk/interpro/
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develop a new knowledge graph embedding model, called TriModel, to
learn vector representaions for all drugs and targets in the created knowl-
edge graph that is combination of ComplEx [49] and DistMult [53] and is
able to predict in a better way drug-target interactions. Combining these
two approaches allow to achieve a scalable predictions of large volumes
of drug-target interactions as it uses linear training time and constant
prediction time. The results in the term of accuracy are very good but
the project has limitations: the predictive capabilities are best suited
to finding new associations between well-studied drugs and targets, but
whether is needed to a prediction for a new drug, then the models that
utilize drug structure and target sequence similarities will likely deliver
better results [33].

3.3.2 Rare Disease

Natural Language Processing (NLP) is a field of computer science that
concerns the interaction between machines and human languages such
that a computer is able to process and analyze speeches and texts. In
recent years, has been a rapid improvement in this field: such processes
are now scalable and more precise. Applying NLP to PubMed abstracts,
that is around 29 million of publications, one is able to create a graph of
connection, relationship between the entities that NLP has recognized
such as drugs, genes, proteins and diseases. The KG that is formed is
called Global Network of Biomedical Relationships (GNBR).

The idea is to use GNBR to extract relevant information for rare dis-
eases coming from disparate sources of knowledge to hypotheses some
drug repurposing and mapping them directly back to the literature.
GNBR contains edges or links between two entities from among the
set of a gene, drug, disease and a support score (normalized between 0
and 1) representing the literature-derived confidence of the relationships
between those two entities.

The main goal of this research was to find a repurposed drug for a rare
disease. For this reason, they have been ranked based on the quantity
and quality of information related to them deriving from the KG. In
addition, these diseases are connected also to the current treatment.
After that has been used a KGE that produces treatment hypotheses
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with strong evidence in the literature and evaluates our results using
gold-standard drug indications. The same thing is been but for drug
repurposing [43].

3.3.3 Knowledge-driven drug repurposing

Recent work by Zhu et al. introduce an approach to knowledge-driven
drug repurposing based on a comprehensive drug knowledge graph. They
build a drug-centric property graph model that is able to capture the
general and essential information, revealing multiple aspects of the drug
and its interaction with other biomedical entities. Due to the drug-
centric property graph model, they were able to systematically extract
and integrate data of six drug knowledge bases and construct the drug
knowledge graph. In this research has been used path- and embedding-
based data representation methods of transforming information in the
drug knowledge graph into valuable inputs to allow machine learning
models to predict drug repurposing candidates.

The path-based data representation method was able to provide lo-
cal, yet very intensive information about interactions between drugs and
diseases, while the embedding-based data representation method pro-
vided global and comprehensive information. Both methods applied to
the drug knowledge graph produced high predictive results on diabetes
mellitus treatments with certain machine learning models, while only
using treatment information of other diseases.

The limitations of this study are related to not publish the KG due
to license restrictions, they don’t any negative samples in the test set
and the evaluation is focused only on one disease [56].

3.4 Biomedical Knowledge Graph

The ogbl-biokg dataset is KG inside Open Graph Benchmark (OGB),
which has been created using data from a large number of biomedi-
cal data repositories. It contains 5 types of entities: diseases, proteins,
drugs, side effects, and protein functions. There are 51 types of directed
relations connecting two types of entities, including 39 kinds of drug-
drug interactions, 8 kinds of protein-protein interaction, as well as drug-
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protein, drug-side effect, drug-protein, function-function relations. All
relations are modelled as directed edges, among which the relations con-
necting the same entity types (e.g., protein-protein, drug-drug, function-
function) are always symmetric, i.e., the edges are bi-directional. This
dataset is relevant to both biomedical and fundamental ML research. On
the biomedical side, the dataset allows to get better insights into human
biology and generate predictions that can guide downstream biomedical
research. On the fundamental ML side, the dataset presents challenges
in handling a noisy, incomplete KG with possible contradictory obser-
vations. This is because the ogbl-biokg dataset involves heterogeneous
interactions that span from the molecular scale (e.g., protein-protein in-
teractions within a cell) to whole populations (e.g., reports of unwanted
side effects experienced by patients in a particular country). Further,
triplets in the KG come from sources with a variety of confidence lev-
els, including experimental readouts, human-curated annotations, and
automatically extracted metadata.

After the machine learning task, the prediction task of new triplets
given the training triplets is performed. The evaluation protocol use
type constraints to rank against entities of the same type and just a
random subset of 500 entities is used to rank it. [17]

In table 3.2 is shown the details about the type of entities present in
the ogbl-biokg.

Entity Quantity %

Diseases 10,687 11.19
Proteins 17,499 18.66
Drugs 10,533 11.23
Side effects 9,969 10.63
Protein functions 45,085 48.07

Total 93,773 100

Table 3.2: Summary of the characteristics of entities’ OGB knowledge
graph. The number of entities for each type with their percentage respect
to the total.
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Se non posso fare grandi
cose
posso fare piccole cose
in un modo fantastico

This chapter presents the architecture of Knowledge Graph Embed-
ding (KGE) applied to Drug Repurposing, together with design choices
and the implementation of each component.

First, it is explained how to create a Knowledge Graph (KG) starting
from heterogeneous dataset (section 4.1) and how to set up the environ-
ment to infer information from the KG(section 4.2.2). Then, it is pre-
sented the baseline to compare with our results (section 4.3), and how to
split the dataset for training and validation (section 4.4). To validate the
result, and compare it with other baselines, it is shown how to measure
the accuracy (section 4.6) and the role of constraint (section 4.5) in this
procedure. The last section, section 4.7, explains it is shown possible to
deal with a huge graph to perform a consuming operation.

4.1 Knowledge Graph Creation

Section 2.5 presents the databases that are used to build the KG that has
been proposed in this project. In this section, is presented the extraction
methods used in each database and the triples produced by it.

To summarize for what are used each data-set:

• DrugBank

– Drug Vocabulary

– Drug-Protein interaction
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– Drug-Disease interaction

• UniProt

– Protein-Gene interaction

– Protein-Protein interaction

– Protein-Disease interaction

– Protein-Drug interaction

• CTD

– Chemical Vocabulary

– Gene Vocabulary

– Disease Vocabulary

– Chemical-Disease interaction

– Gene-Disease interaction

• OMIM

– Drug Vocabulary

4.1.1 DrugBank

As has been explained in section 2.5.1, DrugBank is one of the largest
and most comprehensive collections of pharmacological data. Each entry
in the database contains more than 200 data fields with half of the infor-
mation being devoted to drug/chemical data and the other half devoted
to drug target or protein data [50]. All the information is collected in
an XML file, the overall scheme of which is expensive to report entirely
4.1 1, for this reason only the portion of the scheme that is used during
the extraction is reported.

Listing 4.1: Schema structure of XML DrugBank Database
1 <?xml version="1.0" encoding="UTF -8"?>
2 <xs:schema >
3 <xs:element name="drugbank" type="drugbank -type"></

xs:element >

1https://www.drugbank.ca/docs/drugbank.xsd
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4 <xs:complexType name="drugbank -type">
5 <xs:sequence >
6 <xs:element name="drug" type="drug -type"

maxOccurs="unbounded"/>
7 </xs:sequence >
8 </xs:attribute >
9 </xs:complexType >

10
11 <xs:complexType name="drug -type">
12 <xs:sequence >
13 <xs:element maxOccurs="unbounded" minOccurs=

"1" name="drugbank -id"
14 type="drugbank -drug -salt -id-type"> </

xs:element >
15 <xs:element name="name" type="xs:string"/>
16 <xs:element name="indication" type="

xs:string"/>
17 <xs:element name="synonyms" type="synonym -

list -type"/>
18 <xs:element name="products" type="product -

list -type"/>
19 <xs:element name="targets" type="target -list

-type"/>
20 </xs:sequence >
21 </xs:complexType >
22
23 <xs:complexType name="synonym -list -type">
24 <xs:sequence >
25 <xs:element maxOccurs="unbounded" minOccurs=

"0" name="synonym" type="synonym -type"/>
26 </xs:sequence >
27 </xs:complexType >
28
29 <xs:complexType name="synonym -type">
30 <xs:simpleContent >
31 <xs:extension base="xs:string"></

xs:extension >
32 </xs:simpleContent >
33 </xs:complexType >
34
35 <xs:complexType name="product -list -type">
36 <xs:sequence >
37 <xs:element maxOccurs="unbounded" minOccurs=

"0" name="product" type="product -type"/>
38 </xs:sequence >
39 </xs:complexType >
40
41 <xs:complexType name="product -type">
42 <xs:sequence >
43 <xs:element name="name" type="xs:string"/>
44 </xs:sequence >
45 </xs:complexType >
46
47 <xs:group name="interactant -group">

51



4. Implementation

48 <xs:sequence >
49 <xs:element maxOccurs="unbounded" minOccurs=

"0" name="polypeptide"
50 type="polypeptide -type"/>
51 </xs:sequence >
52 </xs:group >
53
54 <xs:complexType name="target -list -type">
55 <xs:sequence >
56 <xs:element maxOccurs="unbounded" minOccurs=

"0" name="target" type="target -type"/>
57 </xs:sequence >
58 </xs:complexType >
59
60 <xs:complexType name="target -type">
61 <xs:sequence >
62 <xs:group ref="interactant -group"/>
63 </xs:sequence >
64 <xs:attribute name="position" type="xs:integer"

use="optional"/>
65 </xs:complexType >
66
67 </xs:schema >

From DrugBank database are extracted three files deriving from
three different kinds of information: the first one is the vocabulary, then
is extracted the drug-protein interaction and finally the information if a
drug is used to treat a disease.

4.1.1.1 Vocabulary

Using the information about the drug-id is possible to built a vocab-
ulary of drugs. It associates the drug-id with the commercial name
and all its synonymous. This dictionary is useful for the next steps be-
cause helps us to identify uniquely a drug with its different commercial
names that are used in different countries. This kind of information is
extracted from the tag <synonym> under <synonyms> and <name> under
<product>.

4.1.1.2 Drug-Protein

There are a different kind of interaction between a drug and a protein.
This kind of relations is reported in the tag <target>. One of the
components of this tag is the type of action or interaction with the target
in the object. The object, often, could be a protein, that under the tag
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<polypeptide> is named with the Uniprot ID, otherwise could be a
more complex concept like DNA, RNA etc. The last option is that the
target is a drug itself, but here is reported with the commercial name, for
this reason, the dictionary of drugs is helpful. Even if a target is present
but no action is registered, then this information is not complete and for
this reason, it is discarded.

4.1.1.3 Drug-Disease

The tag <indication> is very powerful information for our work since
connects drugs to diseases. The problem with this information that is
textual. It is a phrase that describes the therapeutic use for the drug.
To extract the name of a disease from a text in an automatic way is
used a Named-Entity Recognition (NER). NER is a task that wants to
locate and classify named entities mentioned in unstructured text into
pre-defined categories [34]. To solve this task one can use SpaCy 2, a
library for advanced Natural Language Processing (NLP) in Python and
Cython. SpaCy offers pre-trained models such us "en_ner_bc5cdr_md"
that is trained to recognize disease and chemicals. For each entity that
SpaCy is able to recognize in the "indication" field is translated into its
Medical Subject Headings (MESH) or Online Mendelian Inheritance in
Man (OMIM) ID. The result is a triple with the relation "TREAT" and
the DrugBank ID of the drug with the ID of the disease.

4.1.2 UniProt

section 2.5.3 describes the idea of UniProt [6] and tells us that the invest-
ment of resources behind this project makes understand the importance
of the role of proteins in life and consequently the non-marginal role
they have in our KG. Swiss-Prot is an open database that allows ex-
tracting a lot of information in a personalized way. Among the many
fields available, those of interest for the KG are: Protein, gene, involve-
ment in disease, interacts with and pharmaceutical use. This information
creates four different types of triples: Protein-Protein, Protein-Disease,
Protein-Gene and Protein-Drug.

2https://spacy.io
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Protein ID Gene ID Involvement in disease Interacts with Pharmaceutical use

Q99598 TSNAX ... Q12904 ...
Q9H489 TSPY26P ... O95257 ...
P49815 TSC2 Sclerosis P62136 ...

Table 4.1: Structure of UniProt database

4.1.2.1 Protein-Protein

A protein can interact with other proteins. This type of interactions
is deeply studied. UniProt through the "Interacts with" field reports a
list of proteins, using a UniProt ID. In the list, one can also find the
words "itself". In this case, it indicates that the protein interacts with
itself. For each element of the list, a triple is created with the protein in
question with the wording "INTERACTWITH".

4.1.2.2 Protein-Disease

In the "Involvement in disease" field of UniProt, it is possible to find
information that links proteins to the disease. If the content of that field
is not a disease identifier, it may contain a PubMed code that identifies
the scientific publication. Using this information one can build a triple
that links a protein with a disease using the relation "ISINVOLVED".

4.1.2.3 Protein-Gene

Each protein is encoded by a gene, hence the Gene ID field. It reports the
code and more synonyms for the gene, but since the protein is encoded
by only one gene, it is sufficient to keep only the first name on the list
and discard the remaining synonyms. For each gene-protein association,
a triple is created with the relationship "ISENCODED".

4.1.2.4 Protein-Drug

To know which is the relation between a Protein and a drug the "phar-
maceutical use" field helps. As in the case of DrugBank, it is textual
information and for this reason is necessary to apply a ner to extract the
drug name. Once one knows the commercial name of drug associates to
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a protein, the dictionary built from DrugBank is used to translate the
name into a DrugBank ID. If the operation of finding the commercial
name in the dictionary succeed, a triple with the relation "USEDIN" is
created.

4.1.3 CTD

Comparative Toxicogenomics Database (CTD) wants to illustrate how
chemicals affect human health as explain in section 2.5.2. CTD of-
fers several databases but to build the knowledge graph are used only
five of them: Chemical vocabulary, gene vocabulary, disease vocabulary,
Chemical-Disease and Gene-Disease.

4.1.3.1 Chemical vocabulary

Chemical vocabulary is useful to increase the knowledge about drugs.
It used in the following database to translate the ID used for drugs by
CTD, that is a MESH code, to DrugBank ID, table 4.2. The translation
from MESH ID to DrugBankID is made using the commercial name of the
drug.

ChemicalID MESH ID

methoxyaffinisine C467068
succinoylryanodol C481699
hydroxypalmatine C549168

Table 4.2: Example of the structure of chemical vocabulary of CTD

4.1.3.2 Gene Vocabulary

Using this CTD file, the conversion between a literal name of a gene to
a unique code is easier as in table 4.3. This dictionary is also useful for
the completion and connection of another databases rather than CTD.
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GeneSymbol GeneID

AAW62_GT12 24251922
AA854_GT01 24287966
A9L33_GT15 27923927

Table 4.3: Example of the structure of gene vocabulary of CTD

4.1.3.3 Disease Vocabulary

Disease vocabulary is very helpful in two tasks table 4.4. The first one,
using the fields DiseaseName and DiseaseID, the total disease dictionary
can be improved and subsequently the extraction of information from
other fields can be more consistent. The second task is the relationship
between disease and another one. The CTD uses to identify disease a
MESH or OMIM identifier. The structure of MESH representation is
hierarchical, for this reason is possible to infer a parent relation. Given
a disease is possible to create for each parent a triple using the relation
"ISPARENTOF".

DiseaseID DiseaseName AltDiseaseIDs ParentIDs

C535484 Deletion Syndrome D002872 D025063
C567575 Hermaphroditism D050090 D058490
D058186 Kidney Injury C567006 D050398

Table 4.4: Example of the structure of disease vocabulary of CTD

4.1.3.4 Chemical-Disease

CTD offers a chemical-disease database that connects drugs to disease
along with an inference score, like presented in table 4.5. The score
represents the likelihood of that link exists. If the score is not present,
means that the relation is manually curated and for this reason is certain.

Definition A percentile (or a centile) is a measure used in statistics
indicating the value below which a given percentage of observations
in a group of observations falls.
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From this dataset is possible to create triple between chemical and
disease using the relation "TREAT". One keeps only the information
above the 90th percentile. The inference score is calculated as the log-
transformed product of two common-neighbour statistics used to assess
the functional relationships between proteins in a protein-protein inter-
action network. The first statistic takes into account the connectivity of
the chemical and disease along with the number of genes used to make
the inference. The second statistic takes into account the connectivity
of each of the genes used to make the inference [8].

ChemicalID DiseaseID InferenceScore

C534883 D077192 4.67
C534422 D003924 9.94
C476756 D001249 13.51

Table 4.5: Example of the structure of chemical-disease file of CTD

4.1.3.5 Gene-Disease

As for chemical and disease, Gene-Disease is another database from CTD
that connects gene with disease specifying a score for the existence of
that link as in table 4.6. Hence can be created a triple among the
relation "ISASSOCIATED" if the score is above the 90th percentile. The
inference score is calculated as the logarithmic product of two common-
neighbour statistics used to assess the functional associations between
proteins in a protein-protein interaction network. The first statistic takes
into account the connectivity of the gene and disease along with the
number of chemicals used to make the inference. The second statistic
takes into account the connectivity of each of the chemicals used to make
the inference [8].
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MIM Number Preferred Title symbol Alternative Title symbol

100070 Aneurysm AAA1 Abdomin. Aneurysm AAA

Table 4.7: Example of the structure of mimTitles file in OMIM database

GeneID DiseaseID InferenceScore

100174880 D000740 4.24
100528489 D007333 3.90
548848 D004412 4.75

Table 4.6: Example of the structure of gene-disease file of CTD

4.1.4 OMIM

In section 2.5.4 is presented OMIM that helps in the creation of a dic-
tionary of disease connecting the OMIM identification number with all
possible name of a disease. In table 4.7 is reported the structure of
mimTitles file in OMIM database. For each OMIM code is shown all
possible names, alternative names and symbols of a disease.

4.1.5 Biomedical Knowledge Graph

Collecting and processing all this information from different databases
results in the creation of a KG containing 62,800 different entities that
are connected between 69 relations among 183,029 triple. Table 4.8
shows the quantity for different kind of entities, instead, table 4.9 shows
the eight most frequent relations in the dataset with their percentage
respect to the total amount of triples.
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Entity Quantity %

Drug 4,596 7.32
Disease 13,945 22.21
Gene 20,017 31.87
Protein 24,242 38.6

Total 62,800 100

Table 4.8: Summary of the characteristics of entities’ knowledge graph

Relation Quantity %

TREAT 72,976 39.87
INTERACTWITH 55,521 30.33
ISPARENTOF 21,913 11.97
ISENCODED 20,219 11.05
ISINVOLVED 4,399 2.4
INHIBITOR 2,774 1.52
ANTAGONIST 1,748 0.96
AGONIST 1,180 0.64

Table 4.9: Summary of the characteristics most frequent relations’
knowledge graph out 69 relations

4.2 Knowledge Graph Embedding

A fundamental part of this work was the choice and identification of
a framework that would provide the necessary implementations to be
able to create an embedding starting from one kg. On the internet,
there are implementations, often provided by the authors themselves, of
some embedding models but OpenKE [16] and Ampligraph [7] represent
libraries capable of providing a wider selection of embedding models to
choose from. Key features for our selection were: availability, a wide
choice of model family, extensibility, ease of use and documentation. In
addition to this, the training time is a fundamental requirement, and for
this reason the Machine Learning (ML) tools such as Keras, TensorFlow
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(TF) or Pytorch, could offer a faster Graphics Processing Unit (GPU)
implementation in addition to the one in Central Processing Unit (CPU).

4.2.1 OpenKE

OpenKE is an open-source framework for knowledge embedding orga-
nized by the Natural Language Processing Lab at Tsinghua University
(THUNLP). OpenKE is presented as an efficient implementation based
on PyTorch for Knowledge Representation Learning (KRL). To do so,
they use a layer in C++ to implement some underlying operations such
as data preprocessing and negative sampling. For each specific model, it
is implemented by PyTorch with Python interfaces so that there is a con-
venient platform to run models on GPUs. OpenKE is composed mainly
of two repositories: The first one is based on PyTorch, the most devel-
oped and TF. In reality, the TF-based implementation is not optimized
in C++ and contains fewer templates than the versions in Pytorch. For
this reason, has been chosen to opt for this second version. The Pytorch
version of the framework offered as embedding models:

1. RESCAL

2. DistMult [53], ComplEx [49], Analogy [28]

3. TransE [4], TransH [t], TransR [27], TransD [20]

4. SimplE [24]

5. RotatE [45]

However, since this framework is not flexible for user extensions, af-
ter a preliminary analysis of the various models, this framework has been
abandoned. The main problems encountered were due to the implemen-
tation part of C++. This did not allow easy extensions or modifications
of some parts also because of the library that is used to interface C++
to Python.

4.2.2 Ampligraph

AmpliGraph is a suite of neural machine learning models for relational
Learning. AmpliGraph’s machine learning models generate knowledge
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graph embeddings that are a vector representation of concepts in a met-
ric space, for this reason, is feasible to discover new knowledge from an
existing knowledge graph, complete large knowledge graphs with miss-
ing statements, or generate stand-alone knowledge graph embeddings.
It then combines embeddings with model-specific scoring functions to
predict unseen and novel links. Through its Application Program Inter-
face (API) is easy to use and easily extensible and it is GPU-ready since
is developed over TF, moreover, it has very good documentation with
reference to papers to justify implementation.

AmpliGraph is composed of four modules:

1. Datasets: it helps to download a state-of-art dataset, load a custom
one and offer several options to elaborate the dataset such as the
splitting.

2. Models: it is a collection of knowledge graph embedding models.
AmpliGraph contains TransE [4], DistMult [53], ComplEx [49],
HolE [38], ConvE [9], ConvKB [36]

3. Evaluation: to measure the quality of embedding implementing
different metrics.

4. Discovery: API for knowledge discovery, such as facts, cluster en-
tities or predict near duplicates.

For each model, AmpliGraph includes the following components:

Scoring Function is given by the specific model.

Loss function has to be minimized during the training to learn the
embedding. The loss functions are passed to models as hyper-
parameters, and they can be thus used during model selection.
Ampligraph implemented Pairwise max-margin loss, absolute mar-
gin max-margin loss, self adversarial sampling loss, negative log-
likelihood loss, multiclass null loss and Binary Cross-Entropy Loss.

Optimization The next component is the optimization step. The goal
of the optimization procedure is learning optimal embeddings, such
that the scoring function is able to assign high scores to posi-
tive statements and low scores to statements unlikely to be true.
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Ampligraph provides, through TF implementation of Adam, Ada-
Grad, momentum and SGD.

Negatives generation The corruption strategy to adopt during the
training, definition 8.

In addition to these features, the model supports L1, L2 and L3 reg-
ularization and various strategy to initialize the embedding parameters.

4.2.2.1 Fork

Although Ampligraph provided many more tools than OpenKE, the fact
that it is easily extensible has allowed us to implement additional fea-
tures that help us to better monitor the entire training phase. For this
reason, has been necessary to start a fork from this project and imple-
ment the validation loss, early stopping, callbacks and visualization in
TensorBoard. The implementation of these components was inspired by
the Keras framework. They help to track more metrics during train-
ing and more arbitrary events, callbacks, which activated according to
a certain criterion can, for example, save, validate or change some pa-
rameters of the model during training. Their implementation burdened
the workload but allowed to divide an entire training into sub-parts by
monitoring them more accurately.

4.3 Random Baseline

In order to understand if through embedding the model was really learn-
ing a meaningful representation of the KG, has been decided to imple-
ment a baseline to compare the results. The purpose of the baseline is to
verify which results in terms of accuracy can be obtained in a validation
set in which has been corrupted one of the two entities and measure the
H@N score.

Ampligraph [7] provides a baseline implementation which is however
unsuitable for the task of Drug Repurposing. Ampligraph randomly
assigns a score from a uniform distribution. Once the score was available,
the ranking calculation part had to be implemented. This approach was
not chosen for the simple fact that the scores do not follow a uniform
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distribution, but in reality, they are a consequence of the energy function
they represent. This energy function or score function will be similar
for similar triples, and therefore the distribution is not uniform. Since
the representations of the various ones in the embedding tend to form
clusters and the embedding values sometimes assume a mono or bi-
modal distribution, it would have been more appropriate to choose a
different distribution. Another alternative would have been to initialize
the embedding values, and then use these to calculate the score function.

Since choosing the right distribution is a rather difficult task, has
been decided to approach the problem differently. H@N represents the
proportion of triples corrected in the first N predictions. Following this
idea, has been given N attempts in which the corruption of the triple
can be the positive triple under observation from the validation set. In
section 4.3 is shown the pseudo-code for our baseline.

One must provide the algorithm with a validation set, a relationship,
which in our case will be "TREAT" since it represents the link between
drug and disease, the H@N value that we want to calculate and the
possibility of using the Type Constraints. If one wants to use the Type
Constraints, is necessary to create a set of entities that are present in
the validation set and are involved through the relationship taken as
input. Otherwise, this set will consist of all possible entities. Again, the
problem is relaxed, since are considered all the entities involved in the
whole dataset and not just in the validation. However, this does not
represent a problem since it results in an overestimation: by restricting
the number of entities involved, the probability that the exact entity
will be extracted is higher, increasing the value of H@N, thus showing
a better baseline compared to a real one. After that, either only the
head or only the tail of the triple gets corrupted randomly. This entity
is replaced by another randomly chosen from the previously created set.
The substitution occurs N times, in accordance with the index of H@N,
if in the N substitution one gets the positive triple back then is registered
a hit otherwise the prediction has failed and can not increase the index.
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4.4 DataSet Split

Once a dataset has been created, it must be prepared for parameter
training. Therefore, has been divided the dataset into several parts in
such a way as to use each one for different purposes without overfitting
the dataset. The largest part of the split concerns the training set, about
60% of the triples end up here, instead 20% in the validation set and
the remaining 20% in the test set. These last two splits are used to fine-
tune the parameters and to check the quality of the training on data
not yet seen. To split the dataset one can use a function defined by
Ampligraph. This function 4.2 carves out a test set that contains only
entities and relations which also occur in the training set. In this way
has been ensured that in the validation set and in the test set there are
only entities that are already been seen in the training set, otherwise,
is possible to evaluate the accuracy of the model on completely new
entities, without their representation embedding matrix in the training
set. Since our dataset contains many entities but is not particularly
large, we have chosen to use the "allow_duplication" flag which allow
to replicate triples both in the training set and in the validation set in
order to complete the split respecting the constraint expressed by the
"test_size" parameter. This variable indicates how many triples there
must be in the validation set. The variable "X" instead is the input data
set to be divided and "seed" is the seed for the random numbers which
will then be used for the random split.

Listing 4.2: Signature of split function
1 from ampligraph.evaluation import

train_test_split_no_unseen
2
3 train_test_split_no_unseen(X, test_size =100, seed=0,

allow_duplication=False)

4.5 Type Constraint

Type constraints allow us to evaluate the quality of embedding in a more
pertinent way. During corruption, instead of replacing the entities of a
triple with a random one already seen during the training set, one can
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replace it with an entity that has a link with the relationship involved.
Following the listing 4.3: given in input a list of triples, "dataset", a
list of constraints, "list_constraints" and the "corruption_side" a list of
entities will be returned that will respect the corruption side expressed
by the variable and the relationship of the triple must be present among
one of those indicated in the list. The corruption side is important
in the case of non-symmetrical relationships: let’s consider a KG in
which is represented a parental relationships. They are not symmetrical
with respect to the relationship, and therefore corruption must also be
done with criteria in order not to incur completely meaningless scores by
replacing entities that are present in that type of relationship but that
maintain the correct role in the triple.

Listing 4.3: Implementation of type constraint extraction
1 def extract_type_constraint(dataset , corrupt_side ,

list_constraints =["TREAT"]):
2
3 type_constrain = set ([])
4
5 for triple in dataset:
6 if triple [1] in list_constraints:
7 if corrupt_side == "s+o" or corrupt_side ==

"s,o":
8 type_constrain.add(triple [0])
9 type_constrain.add(triple [2])

10 elif corrupt_side == "s":
11 type_constrain.add(triple [0])
12 elif corrupt_side == "o":
13 type_constrain.add(triple [2])
14
15 return list(type_constrain)

4.6 Accuracy & Validation

Accuracy is the measure of how well our model can predict correctly.
In our specific case, it is a question of having removed from the original
dataset some drug-disease triples, the validation set, which therefore was
not observed during the training and verifying whether the model is able
to correctly reconstruct the triple. This procedure is called validation or
evaluation. Validation is important in order to understand how training
is going on a different dataset than the training one and to measure
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accuracy. This procedure is usually carried out cyclically, every tot
epoch of training: in our case, it occurs approximately every 100 epoch.
The frequency of this operation is dictated by the complexity and time
required to carry it out. In our case, measuring accuracy metrics is not
an indifferent expense in terms of time, if taken individually, in the order
of tens of minutes.

The evaluation procedure follows the idea of [evaluation]. The idea
of the paper is that of:

1. Artificially generate negative triples by corrupting first the subject
and then the object.

2. Remove the positive triples.

3. Rank each test triple against all remaining triples.

In other words, the procedure consists of: Considering a triple, first
corrupt the head and then the tail separately, remove the positive triple
from the set of triples (Filtered solution), replace the corrupted entity
with all the other entities. The entity that constitutes the positive triple,
if the model always predicts perfectly, should always obtain the highest
ranking compared to the other entities, which translates into a higher
score of the score function. In the definition of AmpliGraph evaluation
function 4.4 it is possible to see which parameters are required for the
input. With "X" id indicated the list of triples on which to measure the
accuracy. "model" is the trained model with the parameters that will
be used to calculate the accuracy. "corrupt_side" indicates which side
to bribe during the evaluation. "entities_subset" is the set of entities
with which it is possible to replace the corrupt entity in the triple. "fil-
ter_unseen" is a flag that allows to check if the entities involved in the
test set have been observed during the training, otherwise, it skips the
triple.

Our accuracy evaluation implementation is slightly different from
that proposed by [17]. Since is better to have a more precise, realistic
accuracy of the model as far as drug-disease predictions are concerned
and their relationship that connects them, "TREAT". Therefore the
validation set will consist of triples that only admit this relation. We
use the function defined by Ampligraph in a different way to calculate
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it: First we evaluate first only on the subject or head and then on the
object or tail. Then we use the concept of Type Constraint either only
of the subject or only of the object. From this list of entities deriving
from the Type Constraints, following the indications of [17], randomly
are choosen 500 entities. To overcome the randomness in the extraction
of these entities, an average is made over several iterations of the same
procedure as can be observed in listing 4.5.

Listing 4.4: Signature of evaluation function
1 def evaluate_performance(
2 X,
3 model ,
4 filter_triples=None ,
5 verbose=False ,
6 filter_unseen=True ,
7 entities_subset=None ,
8 corrupt_side=’s,o’,
9 use_default_protocol=False)

Listing 4.5: Definition of accuracy procedure
1 hit_N = []
2 number_of_trials = 10
3
4 # Subject
5 for _ in range(number_of_trials):
6 ranks = evaluate_performance(
7 dataset ,
8 model=model ,
9 filter_triples=positive_filter ,

10 corrupt_side=’s’,
11 entities_subset=random.sample(

corruption_entities_subject , dim),
12 filter_unseen=True ,
13 verbose=False)
14
15 hit_N.append(hits_at_n_score(ranks , n=N))
16
17 # Object
18 for _ in range(number_of_trials):
19 ranks = evaluate_performance(
20 dataset ,
21 model=model ,
22 filter_triples=positive_filter ,
23 corrupt_side=’o’,
24 entities_subset=random.sample(

corruption_entities_object , dim),
25 filter_unseen=True ,
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26 verbose=False)
27
28 hit_N.append(hits_at_n_score(ranks , n=N))
29
30 hits_50 = statistics.mean(rank_50)

4.7 Technical Workaround

One of the main challenges that are emerged during this project was
computational resources. In the simple case of an embedding with a few
thousand entities, it is necessary to work with an embedding matrix that
has as many columns as there are entities and as many rows as the size
of the embedding. It is not difficult to arrive at dimensions that are not
easily managed in memory. The situation becomes complicated when
it is necessary to carry out the evaluation. In this case, in addition to
the embedding matrix, it is also necessary to have in memory the entire
validation set with the rankings of each triple. In this way, the available
memory runs out quickly, also due to a problem related to TF [30] which
does not manage well in these situations the release of resources no longer
needed. The idea to force TF to release the memory no longer needed
is to divide the overall training into more chunks after at the end of
each the model is saved and a new one is reinitialized starting from the
previous weights but on a different process.
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Algorithm 2 BaseLine
Require: Validation set V = (h, r, t)
Require: Relation R
Require: TypeConstraint
Require: H@N
1: Create Type Constraint C set
2: C ⊂ E,E = {h, t|h, t ∈ V }
3: for t = (h, r, t) ∈ V do
4: if r == R ∧ TypeConstraint then
5: C ← C ∪ h ∪ t
6: end if
7: end for
8: if ¬TypeConstraint then
9: C ← E

10: end if
11: hit← 0
12: for i <= N do
13:
14: for t = (h, r, t) ∈ V do
15:
16: Pside = rand(h, t)
17: if Pside == h then
18: tcorrupt = (hnew, r, t), hnew ∈ C
19: else
20: tcorrupt = (h, r, tnew), tnew ∈ C
21: end if
22: Compute H@N
23: if t == tcorrupt then
24: hit← hit+ 1
25: else
26: break
27: end if
28: end for
29: end for
30: H@N ← hit

|V |
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Qualcuno di noi
fa le cose bene,
qualcun’altro no,
ma tutti assieme
verremo giudicati
da una cosa soltanto:
il risultato.

This chapter presents the results achieved during this thesis: First,
in section 5.1, is described as the characteristics of other data-sets are
used in our evaluation. In section 4.3 is shown the result of the baseline.
Section 5.3 describes how the metrics are used to evaluate the perfor-
mance of the system. Section 5.4 explains which family of models are
chosen for the future steps of evaluation. In section 5.5 is presented
the hyper-parameters selection of the embedding model. Techniques of
down-sampling are presented in section 5.6. In section 5.7.1 is analyzed
instead ogbl-biokg. Final comments about the overall results are given
in section 5.8.

5.1 Data-Sets

In this work, to evaluate the performance of the Knowledge Graph Em-
bedding (KGE) over a biomedical Knowledge Graph (KG) to detect a
possible new link between drug and disease, first is necessary to reduce
the complexity of the problem cutting down same problems that are re-
lated to the model selection. In order to do so, are used a variety of
non-medical data-sets, with different characteristics in terms of content,
links and therefore different in terms of entities and relations. Those
data-sets are commonly used, publicly available, in literature in the task

71



5. Experimental results

of Link Prediction (LP) using KGE and have been used to compare to
the state-of-the-art.

In table 5.1 are reported the details about the data-sets that are used
in this project.

Name Entities Relations Triples

FB15K 14,541 1,345 592,213
FB15K-237 14,541 237 310,116
WN18 40,943 18 151,442
WN18RR 40,943 11 93,003
YAGO3-10 123,182 37 1,089,040

Table 5.1: Description of the data-sets, including name, number of enti-
ties, relation and triples.

5.1.1 FB15K

The FB15K dataset was introduced in TransE work in 2013 [4]. It is a
subset of Freebase which contains about 14,951 entities with 1,345 dif-
ferent relations. Freebase was a large collaborative knowledge base, now
dismissed, consisting of data composed mainly by its community mem-
bers and for this reason was constantly growing. It was an online col-
lection of structured and maintained data harvested from many sources,
including individual, user-submitted wiki contributions. Freebase aimed
to create a global resource that allowed people (and machines) to access
common information more effectively [2]. The project was bought by
Google which made it a part on which to build the Google knowledge
graph. Freebase contains around 1.2 billion triplets and more than 80
million entities. From this huge data-set, Freebase, is created FB15K,
which contains the entities that are present in Wikilinks database and
have at least 100 mentions in Freebase. From this subset has been re-
moved also relationship where the head and the tail of it can be switched.
This resulted in 592,213 triplets with 14,951 entities, from here the name
’15k’ and 1,345 relationships [4].

72



5.1. Data-Sets

5.1.2 WN18

The WN18 knowledge graph is designed to produce an intuitively us-
able dictionary and thesaurus, and sup- port automatic text analysis.
Its entities (termed synsets) correspond to word senses and relation-
ships define lexical relations between them. This data-set is built from
WordNet and presented with TransE embedding model [4], it includes
the full 18 relations scraps from WordNet for roughly 41,000 synsets.
WordNet is a large lexical database of English. Nouns, verbs, adjec-
tives and adverbs are grouped into sets of cognitive synonyms (synsets),
each expressing a distinct concept. Synsets are interlinked by means
of conceptual-semantic and lexical relations. The resulting network of
meaningfully related words and concepts can be navigated with the
browser. WordNet is also freely and publicly available for download.
WordNet’s structure makes it a useful tool for computational linguistics
and natural language processing [31].

5.1.3 FB15K-237

FB15K-237 1 is a subset of FB15K where are filtered out highly redun-
dant relations. The FB15K dataset was found to suffer from major test
leakage through inverse relations and a large number of test triples can
be obtained simply by inverting triples in the training set [48].

5.1.4 WN18RR

Similar to FB15K, WN18 dataset was found to suffer from test leakage,
for this reason, was introduced WN18RR. As a way to overcome this
problem, WN18 is filtered, such that only 11 relations are left, no pair
of which is reciprocal [9].

5.1.5 YAGO3-10

YAGO2 is a knowledge base that contains both entities and relations
between these entities. YAGO contains more than 50 million entities
and 2 billion facts or triples. YAGO arranges its entities into classes that

1https://www.microsoft.com/en-us/download/details.aspx?id=52312
2https://yago-knowledge.org
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are organized in a taxonomy. In such a way, a type of relationship can
be used only between a specific couple of entities that belong to a couple
of classes. The definition of these relations, together with the taxonomy
is called the ontology [44]. YAGO combines two great resources:

• Wikidata is the largest general-purpose knowledge base on the
Semantic Web. It is a great repository of entities, but it has a
difficult taxonomy and no human-readable entity identifiers.

• Schema.org is a standard ontology of classes and relations, which is
maintained by Google and others, but it does not have any entities
for example.

YAGO combines these two resources, thus getting the best from both
worlds: a huge repository of facts, together with an ontology that is
simple and used as a standard by a large community. In addition, all
identifiers in YAGO are human-readable, all entities belong to at least
one class, and only classes and properties with enough instances are
kept. To this, YAGO adds a system of logical constraints. These do not
just keep the data clean, but also allow for reasoning on the data [29].

As of 2019, YAGO version 3 has knowledge of more than 10 million
entities and contains more than 120 million facts about these entities
[29].

5.2 Baseline

To understand if the embedding model was learning when applied to
a biomedical KG, a baseline was created to compare the results: in
section 4.3 has been presented the implementation idea behind for the
baseline and now are shown the results. These results are an average
over multiple execution and represent the score of H@N ,
N ∈ {1, 2, 3, 5, 10, 20, 50, 100, 150, 200, 500, 1k, 2k, 3k}. The baseline mea-
sures only the accuracy of random guessing using constraint over the
drug-disease relationship. The value of N stops at 3k because, in our
split of the data-set between train, validation and test are present 4123
drugs and 3050 diseases. Using values of N greater than the number of
different entities of drug and disease bring an insignificant accuracy of
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1.0 since the random sample of entities picks up all the entities exclud-
ing the guessing factor. Table 5.2 shows the results for each value of N.
Increasing the value of N, increases the accuracy because the baseline
test has more chance to pick up the right entity from the set specified
by the type constraint.

N H@N Type Constraint H@N No Type Constraint

1 0.0001 0.0
2 0.00093 0.0
3 0.00104 0.0
5 0.00166 0.0
10 0.0029 0.0001
20 0.00663 0.00021
50 0.01564 0.00083
100 0.02952 0.00155
150 0.03998 0.00249
200 0.055 0.00311
500 0.14345 0.00808
1,000 0.28721 0.01709
2,000 0.56624 0.02993
3,000 0.84578 0.0464

Table 5.2: H@N results of baseline over different values of N using type
constraint and only the subject or the object of the relation are corrupted
at the same time with reasonable entities (First column). H@N results
of baseline over different values of N without using type constraint and
regardless the side of corruption (Second column).

In table 5.2 is also reported the analysis of the baseline without using
type constraint over the relation drug-disease, and regardless of the side
of corruption, subject or object. The accuracy is lower than in the
previous case due to the higher number of possible entities from which
the random sample can pick up. In this case, there are 62,671 entities.

5.3 Accuracy cycle

Stanford proposed a simple procedure to measure the accuracy for LP,
in KG as explained in section 4.6 [17]. For each triple in the test set,
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is corrupted only the subject or the object, but not both at the same
type. The corrupted entity is substituted with another entity from a
subset of according type constraint. The dimension of this subset is 500.
Between this subset is computed the ranking of the entities and check
if the correct one is in the first N position to get the H@N score. Since
the number of entities in case of drug and disease is much more than
500, and to be more precise in the delivery of a score is better to do
an average of K execution of the evaluation procedure over a different
random subset of the type constraint. A higher k-value results in a
corresponding preciser accuracy value as the evaluation is performed k
times on different subsets, reducing the randomness and luck factor.
However, a higher value takes many more runs and therefore a long
time. To decide which value of k is a faithful representation, several
tests were carried out on the KG presented in this work, using TransE
as an embedding model and keeping the same embedded representation
over all the tests after 500 epoch and comparing the results using H@10.

In table 5.3 is reported the mean values of H@10, MRR and MR over
a different number of iteration K. Computing the mean value, median
and the variance of these results, K=10 is chosen as a reliable parame-
ter and a good tread off between precision and cost since the standard
deviation, median and the mean value of the measurements are close to
the result of K=10. In average, on a Graphics Processing Unit (GPU)
GeForce GTX 960, it takes 40 seconds for each iteration.

5.4 Pre-model selection

In the chapter 3 various embedding families have been presented that
can be applied to KG. Finding the most suitable embedding model is not
easy: each model has its own characteristics that translate into better
representing certain properties but understanding if certain character-
istics are a salient aspect of the domain in question is a difficult task.
For this reason, choosing a model that is very precise on a specific fea-
ture can be reductive in a general case. In addition to this problem, the
embedding of one kg strongly depends on the hyper-parameters and for
this reason, it is necessary to reduce the complexity of the problem.

With this idea, we use databases that have been used in the litera-
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K H@10 MRR MR

1 0.48739 0.24667 32.97328
2 0.48413 0.24402 35.15942
3 0.47238 0.23889 34.94864
5 0.47706 0.24174 35.35604
10 0.48191 0.24374 35.23929
15 0.47914 0.24667 32.97328
20 0.48739 0.24513 35.06560
25 0.48149 0.24507 34.62349
50 0.47956 0.24370 35.25633
75 0.47874 0.24283 35.22018
100 0.48090 0.24439 34.79608
125 0.47862 0.24280 35.12275
150 0.47839 0.24321 35.20228

Average 0.48054 0.24375 34.76435
Stdev 0.00411 0.00205 35.12275
Median 0.47956 0.24374 35.22018

Table 5.3: Mean values of H@10, MRR and MR over different number
of iterations K. The last three rows report the average, median and
standard deviation of H@10, MRR and MR. In bold the best results.

ture, presented in section 5.1, to get an initial idea of the performance
of the embedding models and then apply a selection of these to the
biomedical KG.

5.4.1 Ampligraph

Ampligraph is a versatile framework written in python that provides
several embedding models and data-bases ready to use. By applying
these models to FB15K we obtain the results proposed in table 5.5,
FB15K-237 in table 5.4, WN18 in table 5.6, WN18RR in table 5.7 and
YAGO3-10 in table 5.8.

In the section 4.1.5, the biomedical KG created from different data-
sets available on the internet for this project of drug repurposing was
presented. By characteristics, this KG, in terms of entity, relations and
number of triples, is similar to WN18RR and FB18K237. In both cases,
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looking to the performance table, the best performing embedding models
are TransE and ComplEx, respect to H@10 score.

As for the convolution-based embedding models, such as ConvE and
ConvKB, generally, in practice, they are the worst-performing ones, al-
though they require a higher amount of computational resources than
the other models.

As for HolE and DistMult, they manage to get results in line with
ComplEx and TransE without major differences, but since both Com-
plEx and TransE are simpler and less expensive, they were chosen at this
preliminary stage. In addition, these two models are two representations
of different embedding model families and for this reason [40], they are
a better choice than the other two.

Model MR MRR H@1 H@3 H@10

TransE 208 0.31 0.22 0.35 0.50
DistMult 199 0.31 0.22 0.35 0.49
ComplEx 184 0.32 0.23 0.35 0.50
HolE 184 0.31 0.22 0.34 0.49
ConvKB 327 0.23 0.15 0.25 0.40
ConvE 1060 0.26 0.19 0.28 0.38

Table 5.4: MR, MRR, H@1, H@3 and H@10 score for FB15K237 using
different emebedding model from Ampligraph framework. In bold the
best results.

Model MR MRR H@1 H@3 H@10

TransE 44 0.63 0.50 0.73 0.85
DistMult 179 0.78 0.74 0.82 0.86
ComplEx 184 0.80 0.76 0.82 0.86
HolE 216 0.80 0.76 0.83 0.87
ConvKB 331 0.65 0.55 0.71 0.82
ConvE 385 0.50 0.42 0.52 0.66

Table 5.5: MR, MRR, H@1, H@3 and H@10 score for FB15K using
different emebedding model from Ampligraph framework. In bold the
best results.

78



5.4. Pre-model selection

Model MR MRR H@1 H@3 H@10

TransE 260 0.66 0.44 0.88 0.95
DistMult 675 0.82 0.73 0.92 0.95
ComplEx 726 0.94 0.94 0.95 0.95
HolE 665 0.94 0.93 0.94 0.95
ConvKB 331 0.80 0.69 0.90 0.94
ConvE 492 0.93 0.91 0.94 0.95

Table 5.6: MR, MRR, H@1, H@3 and H@10 score for WN18 using
different emebedding model from Ampligraph framework. In bold the
best results.

Model MR MRR H@1 H@3 H@10

TransE 2692 0.22 0.03 0.37 0.54
DistMult 5531 0.47 0.43 0.48 0.53
ComplEx 4177 0.51 0.46 0.53 0.58
HolE 7028 0.47 0.44 0.48 0.53
ConvKB 3652 0.39 0.33 0.42 0.48
ConvE 5346 0.45 0.42 0.47 0.52

Table 5.7: MR, MRR, H@1, H@3 and H@10 score for WN18RR using
different emebedding model from Ampligraph framework. In bold the
best results.

5.4.2 Biomedical Knowledge Graph

Once the preliminary results of the models were obtained on other data-
sets, their performance was measured on the biomedical data-set which
will then be used for drug repurposing.

From the analysis made previously, the models that use convolu-
tion were excluded, for the remaining ones, TransE, DistMult, Com-
plEx and HolE, are used the hyper-parameters specified by Ampligraph
for WN18NN, which is the most similar in terms of structure, to the
biomedical graph proposed in this thesis. The parameters indicated by
Ampligraph are optimal ones found after a tuning phase.

In table 5.9 are presented the hyper-parameters in details. The ta-
ble specifies the dimension of embedding, the number of epoch for the
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Model MR MRR H@1 H@3 H@10

TransE 1264 0.51 0.41 0.57 0.67
DistMult 1107 0.50 0.41 0.55 0.66
ComplEx 1227 0.49 0.40 0.54 0.66
HolE 6776 0.50 0.42 0.56 0.65
ConvKB 2820 0.30 0.21 0.34 0.50
ConvE 6063 0.40 0.33 0.42 0.53

Table 5.8: MR, MRR, H@1, H@3 and H@10 score for YAGO3-10 using
different emebedding model from Ampligraph framework. In bold the
best results.

training phase, the number of the negative samples generated for each
positive sample (eta), the type of loss, the type of optimizer for the score
function, the learning rate (lr), the number of batches in which the train
data-set should be divided and the type of regularization.

HP TransE DistMult ComplEx HolE

Dim. Emb. 350 350 200 200
Epoch 4,000 4,000 4,000 4,000
Eta 30 30 20 20
Loss multiclass multiclass multiclass multiclass
Optimizer adam adam adam adam
Lr 1e-4 1e-4 5e-4 5e-4
Batch # 150 100 10 50
Regularizer LP LP LP LP

Table 5.9: Hyperparameters that are used by Ampligraph for WN18RR
for TransE, DistMult, ComplEx and Hole. The table specifies the dimen-
sion of embedding, the number of epoch and nagative sampling (eta),
the type of loss and optimizer, the learning rate (lr), the batch count
and the type of regularization.

In fig. 5.1 are shown the accuracy of the models in terms of H@10
score (y-axis) respect to the number of epochs (x-axis). TransE, in dark
orange, has the absolute better result, then ComplEx, in blue is the
second one. DistMult is the third-best score. HolE, in light orange,
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doesn’t learn anything, for this reason, is possible that the model has
a bug in the implementation of Ampligraph. The models run for a
different number of epochs because the velocity of overfitting is different
for model by model as shown in fig. 5.3.

Figure 5.1: Accuracy H@10 on vertical axis, number of epochs on hori-
zontal axis on WN18RR. TransE: Dark Orange. ComplEx: Blue. Dist-
Mult: Heavenly. HolE: Light Orange.

In fig. 5.2 is presented the train loss over the number of epoch of the
models.

Figure 5.2: Train Loss on vertical axis, number of epochs on horizontal
axis on WN18RR. TransE: Dark Orange. ComplEx: Blue. DistMult:
Heavenly. HolE: Light Orange.

In fig. 5.3 is presented the validation loss over the number of the
epoch of the models. The loss is computed in the same way as to train
loss but on a different data-set. This data-set is not used to train the
model. TransE and ComplEx are the first that start to overfitting, in-
stead DistMult requires more epochs.
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Figure 5.3: Validation Loss on vertical axis, number of epochs on hori-
zontal axis on WN18RR. TransE: Dark Orange. ComplEx: Blue. Dist-
Mult: Heavenly. HolE: Light Orange.

From the collected data we can understand that the best models for
the biomedical KG are ComplEx and TransE also in this case. They
belong to two different families of models and they achieve better result
respect to the other in a shorter time, i.e. less number of epochs, and so
are less expensive to train.

5.5 Hyper-parameters

A substantial part of the knowledge graph embedding is choosing the
parameters for training. In this section, we discuss the main parameters
for the model such as the dimension of the embedding, the negative
sampling, the type of optimizer, and its learning rate. Both TransE
and ComplEx are tested but here for simplicity are reported just the
numerical results of TransE. ComplEx’s results don’t differ so much from
TransE and have the same trends.

5.5.1 Embedding Dimension

The embedding of a graph strongly depends on the size of the embed-
ding. A larger embedding implies more ability to learn but too large a
size is expensive and does not allow you to learn the embedding but to
memorize it. To test this, TransE is trained with the default parameters
presented in section 5.4.2, but with a different dimension of embedding:
10 (In orange), 50 (In grey), 100 (In green), 150 (In fuchsia), 200 (In red
purple) and 500 (In heavenly). The number of epochs is fixed to 500.
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In fig. 5.4 are presented the results. H@10 is used to measure the ac-
curacy and to understand which is the best dimension of embedding for
the biomedical knowledge graph built for this thesis. The figure shows
that 150 (In fuchsia) as dimension is the best result and a bigger size
doesn’t bring any benefits but only a heavier computation. Instead, if
a small dimension is used, like 10 (In orange), the model loses perfor-
mances.

Figure 5.4: H@10 accuracy of TransE with different dimension on
biomedical knowledge graph for drug repurposing: 10 (In orange), 50
(In grey), 100 (In green), 150 (In fuchsia), 200 (In red purple) and 500
(In heavenly)

In fig. 5.5 is shown the train loss over different dimension of embed-
ding. A smaller size implies a smoother convergence.

Figure 5.5: Train loss of TransE with different dimension on biomedical
knowledge graph for drug repurposing: 10 (In orange), 50 (In grey), 100
(In green), 150 (In fuchsia), 200 (In red purple) and 500 (In heavenly)

In fig. 5.6 is shown the validation loss over different dimension of
embedding. A bigger size implies faster overfitting reducing the number
of epochs that are necessary to achieve the best absolute result.
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Figure 5.6: Validation loss of TransE with different dimension on
biomedical knowledge graph for drug repurposing: 10 (In orange), 50
(In grey), 100 (In green), 150 (In fuchsia), 200 (In red purple) and 500
(In heavenly)

After this analysis, the dimension of 128 is chosen as a default di-
mension for the embedding. It guarantees good performance, fast con-
vergence and it is less computationally expensive.

5.5.2 Optimizer

The optimizer in a machine learning algorithm is an important choice
to make. It can affect the final results in terms of accuracy or the speed
of convergence and therefore it is necessary to choose this parameter
as correctly as possible. Ampligraph, through its implementation in
Keras, provides three types of optimizers as we talked about in chap-
ter 4: Adam, AdaGrad and SGD. In this section, we take all three
methodologies and examine to establish which is the best optimization
algorithm using TransE as embedding model and 128 as embedding size,
applied to biomedical KG. Similar results and conclusions were obtained
for ComplEx. In reality, the search for this parameter was more complex
as the variables we took into consideration at the same time were two:
the optimization algorithm and the learning rate. Now are compared
the best results for each optimizer and then are analyzed, in the next
section, the importance of the learning rate for the best optimizer found.

In fig. 5.8 are reported the H@10 scores for different optimizer: In
blu SGD, in orange ADAM and in green Adagrad. The best result is
achieved by ADAM around the 200th epoch. The second-best result
is Adagrad followed by SGD. The best learning rate associated with
ADAM is 1e-04, instead of for Adagrad is 1e-01 and for SGD is 1e-03.
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(a) (b)

Figure 5.7: (a) Training loss and (b) validation loss for TransE with dim.
emb. of 128 for different optimizer on biomedical knowledge graph for
drug repurposing: in blu SGD, in orange ADAM and in green AdaGrad.
On x-axis the number of epoch.

In fig. 5.7a can be observed that ADAM is capable of minimizing in
less epoch the training loss. SGD, instead, is the slower and its curve is
smoother.

Finally, in fig. 5.7b is shown the validation loss of the model on a
different data-set. Can be observed that ADAM is the first to start
overfitting the data-set around the 150th epoch, instead, between the
400-600 epoch, AdaGrad starts to overfitting. Regarding SGD, it is per-
formed an in-depth analysis: we specifically extended the test, adding
thousands of epoch to see where the model overfits. SGD starts over-
fitting around the 3k epoch without improving significantly the H@10
score.

With this analysis can be concluded that the best optimizer is ADAM
with learning rate 1e-04. The optimizer gives the model the property to
learn in very few epochs without the need of long training phase.

5.5.3 Learning Rate

In this subsection are studied the effects and the importance of a cor-
rect learning rate associated with an optimizer. In this case, is used as
optimizer ADAM e are sampled some learning rate: 1e-01 in fuchsia,
1e-02 in heavenly, 1e-03 in purple red and 1e-04 in orange. TransE is
used as embedding model on the biomedical KG. The dimension of the
embedding is 128. Similar results are obtained also for ComplEx.
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Figure 5.8: H@10 accuracy for TransE with dim. emb. of 128 for dif-
ferent optimizer on biomedical knowledge graph for drug repurposing:
in blu SGD, in orange ADAM and in green AdaGrad. On x-axis the
number of epoch.

In fig. 5.9 is presented the H@10 accuracy of the model using different
learning rate for ADAM optimizer. A more aggressive learning rate
brings the worst results, instead a more calm learning rate is rewarded
with a better score. The waves in the plot for the fuchsia learning rate
are not related to the model but are due to the restoration of the training
in more phases to overcome the limits of the hardware. The number of
epochs is equal for all learning rates because is related to the validation
loss and its overfitting.

A higher learning rate is not capable of minimizing the training loss
of the model, a lower learning rate, instead, can minimize the loss in
fewer passages fig. 5.10b.

In fig. 5.10a is presented the validation loss for this test. The valida-
tion loss for 1e-01 and 1e-02 is random with up and down and without
any decreasing trend. Instead, with a lower learning rate, the loss goes
down and the start to overfitting. In case of the learning rate equals to
1e-03, the model start to overfitting immediately after the first epochs.

With this inspection are shown the pitfalls of using a bad learning
rate and its high impact on the accuracy of the model. From now on,
1e-04 is used as learning rate with ADAM optimizer.
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Figure 5.9: Accuracy score of H@10m regarding TransE with dim. 128
and optimizer ADAM with different learning rate on biomedical knowl-
edge graph for drug repurposing: 1e-01 in fuchsia, 1e-02 in heavenly,
1e-03 in purple red and 1e-04 in orange. On x-axis the number of epoch.

(a) (b)

Figure 5.10: (a) Training loss and (b) validation loss for TransE with
dim. 128 and optimizer ADAM with different learning rate on biomed-
ical knowledge graph for drug repurposing: 1e-01 in fuchsia, 1e-02 in
heavenly, 1e-03 in purple red and 1e-04 in orange. On x-axis the number
of epoch.

5.5.4 Negative Sampling

The negative sampling parameter that is denoted in short, eta, represent
the number of negative triples that should be generated for each positive
triple of the training set. In this subsection is studied the effect of
different values for this parameter in case of a TransE model applied to
a biomedical data-set using ADAM with learning rate 1e-04 as optimizer
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Figure 5.11: Accuracy H@10 of TransE with Dim 128, Optimizer ADAM
and learning rate 1e-04 with different values for the negative sampling
(eta) on biomedical knowledge graph for drug repurposing: 10 in Heav-
enly, 30 in orange, 60 in Green and 100 in Grey. The steep v-shape in
the green plot is due to a start-stop of the training phase. The number
of epoch for the orange plot is bigger to highlight the overfitting.

and 128 as the dimension of embedding.

In fig. 5.11 is presented the H@10 accuracy score: even using different
eta values with an order of difference is not easy to observe a difference
in the results. More or less the results are overlapped and a bigger value
does not guarantee a better result.

Regarding the training loss, there is the slight difference using dif-
ferent values for the negative sampling. A bigger value implies a slower
a less steep convergence as in fig. 5.12a.

In case of the validation loss, fig. 5.12b, the results are pretty similar
to the training loss. There is no steep behaviour and a bigger value
start overfitting before the others. The order in that sense is respected
according to the value of the negative sampling.

At the end of this analysis can be deduced that negative sampling
is an important parameter but does not affect the accuracy as the other
parameters analyzed before. Since there is no benefit using a bigger
value of eta that implies a more expensive computation, from now on is
used 30 as value for the negative sampling.
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(a) (b)

Figure 5.12: (a) Training loss and (b) validation loss for TransE with
Dim 128, Optimizer ADAM and learning rate 1e-04 with different values
for the negative sampling (eta) on biomedical knowledge graph for drug
repurposing: 10 in Heavenly, 30 in orange, 60 in Green and 100 in Grey
100.

5.6 Size Reducing

To evaluate how much the quality of the KG created for this project
impacts the accuracy in the predictions, a series of analyzes were pre-
pared with the aim of analyzing the reduction or removal of some parts
of the graph. In particular, three cases were analyzed: the first involves
the training of only triple drug-disease, the second concerns the exclu-
sion of genes from the KG and the last case analyzes the behaviour of
predictions in case of the removal of drug-drug relationships.

The training parameters that were used are those that were found
in the previous section to be optimal. Since the graph is different, it is
not guaranteed that the parameters are optimal also in this case. How-
ever, as we have seen, the parameters that have been chosen guarantee,
in most cases, an analogous behaviour at other values, reducing the
computational cost. For example, the size of the embedding, unless an
extreme reduction, does not significantly impact the results in terms of
accuracy but only from a computational point of view. So overestimat-
ing some of these parameters can be considered a risk-free procedure
from an accuracy point of view but not from a training cost point of
view.

Ultimately, the same configuration was used for these analyzes. TransE
with size 128, a learning rate of 1e-04 and ADAM as an optimizer, 30 as
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Figure 5.13: Accuracy of TransE with 128 as dimension of embedding,
ADAM with 1e-04 as optimizer and 30 for the negative sampling on
biomedical knowledge graph for drug repurposing. In Grey the training
set is only composed by drug-disease triple, in orange the entire training-
set.

a negative sampling value, was used as the embedding model. Similar
results obtained with ComplEx.

5.6.1 Drug-Disease

In the drug-disease reduction are considered part of the data-set, and
consequently of the training and validation set, just the triples from the
biomedical knowledge graph that involve drug and disease.

The goal of this experiment is to find out which is the importance of
the other entities in the KG and see whether is possible to infer a new
link base on just the facts that a drug can treat more disease.

In fig. 5.13 is presented the H@10 score on the validation set, of this
experiment in grey, against the base KG in red. There is a significant
difference in using more information to build the embedding of the do-
main. On the x-axis, there is a number of epochs. The difference in
terms of epochs is due to the fact that the loss both on the validation
set, fig. 5.14b, and on the training set, fig. 5.14a shows that the sub-
model has a very slow convergence. Increasing the number of epochs
in the case of the drug-disease data-set brings an improvement but it
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is very slow compared to the initial jump in the accuracy of the base
model.

(a) (b)

Figure 5.14: (a) Training loss and (b) validation loss for TransE with
128 as dimension of embedding, ADAM with 1e-04 as optimizer and
30 for the negative sampling on biomedical knowledge graph for drug
repurposing. In Grey the training set is only composed by drug-disease
triple, in orange the entire training-set.

5.6.2 No Gene

In this case, are excluded from the training set the gene entities and the
triples where they are involved. In table 4.8 can be observed that genes
represent around the 30% of entities involved in the KG and with these
entities, are composed around the 10& of triples, table 4.9. The object
of this reduction is to know whether an important part of the data-set
really matters for our purpose of drug repurposing.

In fig. 5.15 is presented the H@10 score of the embedding model over
the validation set against the number of training epoch. In the plot are
compared the accuracy of the base data-set, in orange and the reduce
KG, without gene entities in red. The difference in term of accuracy is
very thin, and for this reason, means that the information provided by
the genes is not so much useful. The benefit coming from this type of
entity is not worth an heavier computational cost. This trend is con-
firmed by the validation and training loss that are very similar fig. 5.16a
fig. 5.16b.
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Figure 5.15: H@10 accuracy of TransE with 128 as dimension of embed-
ding, ADAM with 1e-04 as optimizer and 30 for the negative sampling
on biomedical knowledge graph for drug repurposing. In red, from the
training set are excluded the gene entities and their relation, in orange
the entire training-set.

5.6.3 No Parent

Another test that is conducted is to remove from the data-set the re-
lation that connects a disease to another one. This kind of relation
expresses a hierarchy between diseases: a disease can be classified based
on its specification but they belong to a more generic family group. This
information can be helpful because is very likely that a drug that treats
a disease could bring some benefits to a similar drug that belongs to the
same family.

This idea is confirmed by the results of the H@10 score on the val-
idation set fig. 5.17. If the disease-disease relation is removed from the
training set, is registered a decrease in the accuracy of 0.05 - 0.1 points.
So it represents a 10% percentage of information loss. Since the com-
putational cost of using this information is not so heavy, around 10% of
the total triples is worth using it compared to the benefits.

In fig. 5.18a and fig. 5.18b are plotted the training and validation
loss of this experiment. Removing the disease-disease relations implies
a slower convergence and for this reason, has been extended the number
of epochs in this case.
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(a) (b)

Figure 5.16: (a) Training loss and (b) validation loss for TransE with
128 as dimension of embedding, ADAM with 1e-04 as optimizer and
30 for the negative sampling on biomedical knowledge graph for drug
repurposing. In red, from the training set are excluded the gene entities
and their relation, in orange the entire training-set.

5.6.4 50%

In this scenario has been reduced the training set cutting of randomly
the 50% of triples. Everything else is kept as in the previous cases. The
goal of this study is to clarify if an increasing number of information in
the KG helps to improve the accuracy of the model.

The results are encouraging. In fig. 5.19 is shown the accuracy of
the model based on this sub-set of the KG. Increasing the number of
information in the KG improves the significantly the accuracy of the
model even if the score is not proportional to the dimension of the graph.

5.7 OGB

Hu et al. [17] measured the performance on LP of ogbl-biokg over differ-
ent embedding models such as TransE, DistMult, ComplEx and RotatE.
In this case, TransE is the worst model, instead ComplEx and RotatE
are the better. An explanation behind this behaviour is the fact that
TransE is not able to extract symmetric and asymmetric relations, in
case all there results over these models are good, table 5.10. Using ogbl-
biokg from Stanford university is possible to compare the quality of the
biomedical KG presented in this work. To do so has been analyzed the
prediction performances of the Stanford KG in the specific: every rela-
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Figure 5.17: H@10 accuracy of TransE with 128 as dimension of embed-
ding, ADAM with 1e-04 as optimizer and 30 for the negative sampling
on biomedical knowledge graph for drug repurposing. In orange, from
the training set are excluded the drug-drug relation, in blue the entire
training-set.

tion that involves a drug is considered by itself to measure its accuracy
of prediction using the corresponding type constraint. In table 5.11 is
reported the results, relation by relation, excluding the relation with less
than 500 occurrences except for drug-disease relation.

In the case of drug-disease relation, the accuracy that has been mea-
sured in terms of H@10 is 0.28, but only using 321 triples fig. 5.20. This
table helps also to understand, based on how the KG is built, some tasks
of LP are harder than others.

Model Test MRR Validation MRR

TransE 0.8095 0.8105
DistMult 0.8043 0.8055
ComplEx 0.7989 0.7997
RotatE 0.7452 0.7456

Table 5.10: MRR scores for Open Graph Benchmark (OGB) on valida-
tion and test set, using as embedding model Transe, DistMult, ComplEx
and RotatE. Result by Hu et al. [17]. In bold the best results.
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(a) (b)

Figure 5.18: (a) Training loss and (b) validation loss for TransE with
128 as dimension of embedding, ADAM with 1e-04 as optimizer and
30 for the negative sampling on biomedical knowledge graph for drug
repurposing. In orange, from the training set are excluded the drug-
drug relation, in blue the entire training-set.

Figure 5.19: Validation loss of TransE with 128 as dimension of embed-
ding, ADAM with 1e-04 as optimizer and 30 for the negative sampling on
biomedical knowledge graph for drug repurposing. In orange, from the
training set are excluded 50% of triples, in blue the entire training-set.

5.7.1 Drug-Disease Extension

Can be observed from table 3.2 and table 4.9 that the difference between
the two KG in terms of triples between a drug and a disease is not
negligible. For this reason, has been transferred the "TREAT" triple
from the biomedical knowledge graph for this thesis to ogbl-biokg. To
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Figure 5.20: H@10 accuracy drug-disease relation of ogbl-biokg using
TransE as embedding model on ogbl-biokg.

do so has been necessary a detailed work of vocabularies, trying to find
a way to connect the two KG that use different IDs.

In fig. 5.21 is shown the result of this experiment: can be observed
that the H@10 accuracy has significantly improved respect to the base
case. That implies a better KG built around a specific goal like drug
repurposing can achieve better results.

5.8 Overall Results

To sum up, in fig. 5.22 is presented the overall results of the experiment
for drug repurposing applied to the biomedical knowledge graph. In
our case ComplEx and TransE are the best models in terms of H@10
accuracy. The convergence of TransE is slower than ComplEx that has
the best absolute result. It is very important to build an excellent KG
rather than spend time on other tasks because it has a bigger impact in
the performance: adding genes to the KG that are not deeply connect to
the other entities of the graph does not bring better results, instead of
removing an important relation such as drug-drug implies worst results.
Finally, in fig. 5.22 in green, is possible to see the ogbl-biokg extended
that does not perform well as the KG proposed in this thesis.
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Figure 5.21: H@10 accuracy drug-disease relation of ogbl-biokg using
TransE as embedding model in orange. In green the extended version,
including in ogbl-biokg the "TREAT" triples from the biomedical KG
of this thesis.

Figure 5.22: Biomedical knowledge graph embedding for drug repurpos-
ing using TransE as embedding model in orange, ComplEx in heavenly.
In fuchsia, is TransE without the gene entities in the training set. In
green is represented the extended version of OGB using TransE as model.
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Relation H@10 H@3 H@1 # Triples

Dg-disease 0.28 0.16 0.08 321
Dg-Dg.acquired.metabolic.disease 0.20 0.06 0.0 4,716
Dg-Dg.bacterial.infectious.disease 0.11 0.03 0.0 1,340
Dg-Dg.benign.neoplasm 0.15 0.04 0.0 2,292
Dg-Dg.cancer 0.19 0.05 0.0 3,632
Dg-Dg.cardiovascular.system.disease 0.33 0.09 0.0 6,994
Dg-Dg.cognitive.disorder 0.66 0.27 0.09 2,556
Dg-Dg.disorder.of.mental.health 0.61 0.21 0.06 1,074
Dg-Dg.endocrine.system.disease 0.85 0.41 0.16 4,131
Dg-Dg.fungal.infectious.disease 0.79 0.35 0.13 2,653
Dg-Dg.gastrointestinal.system.disease 0.96 0.60 0.25 6,248
Dg-Dg.hematopoietic.system.disease 0.94 0.54 0.21 5,962
Dg-Dg.immune.system.disease 0.74 0.31 0.10 2,512
Dg-Dg.inherited.metabolic.disorder 0.76 0.34 0.12 2,754
Dg-Dg.integumentary.system.disease 0.95 0.54 0.20 5,560
Dg-Dg.irritable.bowel.syndrome 0.51 0.20 0.07 608
Dg-Dg.musculoskeletal.system.disease 0.91 0.53 0.22 4,240
Dg-Dg.nervous.system.disease 0.96 0.57 0.23 5,888
Dg-Dg.reproductive.system.disease 0.71 0.35 0.14 1,279
Dg-Dg.respiratory.system.disease 0.94 0.53 0.20 6,031
Dg-Dg.sleep.disorder 0.72 0.29 0.09 1,967
Dg-Dg.struct.sim 0.96 0.88 0.16 962
Dg-Dg.urinary.system.disease 0.91 0.53 0.21 4,983
Dg-Dg.viral.infectious.disease 0.81 0.42 0.18 2,876

Table 5.11: H@1, H@3 and H@10 score for OGB’s relations with the
number of triples that use a certain relationship in the knowledge graph.
Only the relations that involve a drug with more than 500 occurrences
are displayed except for drug-disease relation. Dg stands for Drug.
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La conclusione é
il punto
dove ti sei stufato
di pensare.

This final chapter reviews the work that has been done within this
thesis and draws conclusions from what has been presented. The con-
tributions of our work are summarized in section 6.1, while section 6.2
discusses current limitations. Finally, section 6.3 introduces future di-
rections of research.

6.1 Contributions

The major contributions brought by this work are mainly four.
The first concerns the creation of the Knowledge Graph (KG). Start-

ing from resources freely available online, it is possible to have enough
information to be able to create a biomedical knowledge graph that
is able to compete with other KG created for similar purposes. The
problems that are often encountered in the creation of a biomedical KG
are due to the availability of the KG as a whole due to the limitations
imposed by the databases that compose it and the fact that the same
entity can be identified through multiple IDs. For this reason, creating
this biomedical KG was confirmed to be a feasible procedure, and cre-
ating one specifically for drug repurposing brought better results than a
generic one. To do this it was necessary to create a series of vocabularies
that mapped the various entities used in different databases.

The second-largest contribution of this work is related to the Knowl-
edge Graph Embedding (KGE). There are dozens of embedding models,
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each specific for a specific task promising to significantly improve the
results in terms of accuracy compared to the previous ones. In this, a
summary of the characteristics of the main models was made by ana-
lyzing, in practice, their behaviour in a real situation and not building
an ad-hoc scenario. Often, applying an embedding method that has
excellent results on complete, well-constructed graphs is different than
applying it to a different, incomplete domain where the link prediction
task is therefore much more difficult. For this reason, simple, general
models in this kind of more real situations are often better than other
models that instead refer to certain characteristics of the graph.

The last major contribution of this work is related to the actual
feasibility in applying machine learning techniques, such as KGE, to
complete a domain or generate a new biomedical knowledge that allows,
for example, to better understand the importance of some entities in the
graph and of some relationships. The results in terms of accuracy for
drug repurposing are very good and considering the fact that the time
needed to generate them is a few hours, it allows us to imagine applying
this method as initial filtering to more traditional drug repurposing tech-
niques, reducing the complexity of the problem. Furthermore, as it has
been shown, enriching the KG involves an improvement in performance
and for this reason, the results are very encouraging since this approach
is easily extendable by aggregating other databases.

6.2 Limits of the present work

The limitations of this work are mainly two. These limitations are pos-
terior observations and no shortcomings with respect to the state of the
art at the start of the project since it was a pioneering research project
in its approach and domain.

The first limitation is due to the impossibility of really checking
the quality of the predictions. The accuracy results were obtained by
removing true triples from the training set and verifying if the embedding
model is able to predict them correctly. However, there is no way to
verify if any new predictions are at least viable.

The second limitation is due to the use of embedding models that
are not specific for these applications or for this domain which could
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instead bring benefits in the accuracy of the predictions.

6.3 Future work

In the future, there is the intention to further improve this project. This
research was an exploratory project in all its phases: from the creation
of the knowledge graph, through the use of embedding to the predictions
for drug repurposing. For this reason, in the coming months, there is a
desire to improve this project in all three of its main aspects.

First, it will be necessary to improve the KG that represents our
starting domain. Some ideas to do this can concern the integration of
other entities from other databases such as gene ontology, side effects,
etc.. Besides, it would be good to apply the filtering techniques of the
KG before using it in the following steps. It may be that some parts
of KG or some entities, for some reason, stand on their own, and not
be connected in any way to the rest of the entities. These situations
do not bring additional information but only computational heaviness.
This idea has already been used with databases like WN [31] and FB
[48] where there have been versions with elements that have at least
thousands of links.

The second step to improve this project is to develop, on the basis
of the previous models, an ad-hoc model that is able to learn better the
biomedical connections. An example above all could be to introduce
weighted links in entities since some triples are not manually curated
but are also inferred by other links.

Finally, another step to improve this research is to introduce a method
to evaluate the quality of the new predictions. To do this we could take
up an idea already discussed previously: finding links, and therefore
studies, between the drug and the disease in the medical-scientific lit-
erature such as PubMed. Another valid alternative could be to involve
industry experts in order to get feedback on the best predictions.

6.4 Final considerations

In conclusion, this thesis illustrated the challenges of creating a good
system able to help in finding a treatment for a disease.
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The new knowledge graph that has been built for this project repre-
sents an extensible tool to represent a biomedical domain that provides
better prediction respect to other biomedical databases if measured on
the task of drug repurposing.

In general, the combination of a knowledge graph and a graph embed-
ding model can represent a different approach to solve a generic problem
on which there is a complex amount of data to analyze and is necessary
to infer a new link between the entities in the KG.

Still, there exist many improvements that could be made, either as
extensions to the domain or as improvements to the core machine learn-
ing part, as presented in section 6.3. As of today, the field of drug
repurposing is under the highlight due to the promise of reducing cost
and time in drug development. However, no single approach managed to
become the de facto standard in the field. Many challenges are still open,
and in the following years, we will most certainly see great advancements
in computational techniques for drug repurposing.
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