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Abstract

This master thesis deals with the simulation of the six degrees of freedom Delta robot

Fanuc M-1iA/0.5A. A multi-body model was built in Mathworks Matlab Simulink from a

CAD drawing using Simscape Multibody blocks. The robot wrist is considered at constant

orientation, thus the model has only three degrees of freedom. The model was used to

detect the robot workspace, to solve the kinematics problems and to analyse the motor

torques and the forces in the structure. The work contributed with relevant knowledge

about the M-1iA/0.5A and produced a software framework easily adaptable for further

analysis or to other robot models.

Keywords: Fanuc M-1iA, Delta robot, Simulink model, operational characteristics
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Abstract in italiano

Questa tesi di laurea magistrale concerne la simulazione del Delta robot Fanuc M-1iA/0.5A

a sei gradi di libertà. Mathworks Matlab Simulink è stato usato per costruire un modello

multibody con blocchi Simscape Multibody a partire da un disegno CAD del robot. Il

polso robotico è considerato rigido, dunque il modello ha solo tre gradi di libertà. Il mo-

dello è usato per rilevare lo spazio di lavoro, risolvere i problemi cinematici, e analizzare la

coppia fornita dai motori e le forze nella struttura. Il lavoro ha contribuito con conoscenze

importanti sul M-1iA/0.5A e ha prodotto un complesso di software facilmente adattabile

a ulteriori analisi o applicabile ad altri modelli di robot.

Parole chiave: Fanuc M-1iA, Delta robot, modello Simulink, caratteristiche operative
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Introduction

Robots are very commonly used in production systems, and they have di�erent structures

depending on their designed purpose. The Delta robots are a class of parallel kinematics

robot capable of high speed motion and exceptional accelerations. Their main limitations

are the small workspace and the limited payload. For these reasons they are extensively

adopted in assembly lines for pick and place, packaging and labelling of lightweight objects.

Thanks to high sti�ness and precision they recently found use in 3D printing, haptics and

surgery.

The robot manufacturers provide some information about the characteristic of their prod-

ucts, and enable the users to control their robots. In this context, computer simulations

are crucial, and it is hard to design or implement a robot in a production system without

�rst simulating it.

The goal of this work is to delve into the Fanuc M-1iA/0.5A and discover its operational

characteristics. This process is carried out in two steps. Firstly a digital model of the

robot must be created. Then some tests are designed to experiment the hypothetical

traits and limits. Ideally, the information acquired should be validated by reproducing it

on a physical model. Unfortunately this third step was not undergone in this work.

This thesis was developed during an Erasmus+ exchange period in the University of �ilina

in Slovakia, at the Faculty of Mechanical Engineering, Department of Automation and

Production Systems.

Structure of the Document

This document is structured in 8 Chapters. The �rst one is an introduction to robotics.

It presents some elements of robotic theory and describes some core aspects later used

in the work. The �rst Chapter has also speci�c parts focusing on parallel kinematic

structures and on Delta robots. The second Chapter introduces the robot model subject

of this study: the Fanuc M-1iA/0.5A. The next Chapter is dedicated to the Simulink

and Simscape Multibody software. The basics of these software are discussed in a limited

extent, just to give the possibility to understand how the Simscape Multibody model of
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the robot works. Chapter 4 describes how the model was created from a 3D drawing,

and how it can be controlled in Matlab for the purpose of this study. The remainder of

the document presents the results of the analysis undertook. The vast majority of the

work focuses on a simpler model of the robot, with the end-e�ector at constant attitude.

Firstly, the extent of translational workspace was measured. Next, Chapter 6 reports

the results of kinematic analysis, such as the Jacobian, singularities and manipulability.

Chapter 7 tackles how forces are transmitted from the end-e�ector through the structure

and eventually to the motors. The last Chapter contains the conclusions and indications

for possible future work on this topic. The two appendixes at the end of this document

contain some images reporting the results of Chapter 6 and 7.
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1| Introduction to Parallel

Kinematic Robots and

Delta Robots

This Chapter introduces some important elements of robotics. The theory of this Chapter

serves as a basis for the latter part of this document, where some characteristics of the M-

1iA/0.5A are investigated. After presenting core concepts such as kinematics problems,

Jacobian and singularities, the Chapter tackles the parallel kinematics mechanisms and

the Delta robots in particular.

1.1. De�nitions and Basic Theory

A robot is a device composed of many rigid bodies called links, connected to each others

with joints. A joint connects exactly two links. Figure 1.1 shows some of the most common

joints used in the robotic �eld. The joints can also be used to connect the robot to the

ground. A link may feature an end-e�ector used to accomplish speci�c tasks. Some joints

can be actuated, typically by electric motors, thereby moving the robot. The motors can

be mounted on a link or grounded, and might require a transmission mechanism or have

a brake to hold the links in position.

The sequence of links is called kinematic chain. If a chain has a closed loop, it is a closed-

chain mechanism, otherwise it is an open-chain mechanism (or serial mechanism). The

ground can be considered a link closing a loop, therefore a mechanism with at least two

grounded links or joints is closed-chain.

1.1.1. Degrees of Freedom

The position of all the points of the robot is called con�guration or posture, and can be

represented by a few independent parameters. The minimum set of such parameters is

called degrees of freedom (dof) of the robot. The dof are real numbers in a continuous
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Figure 1.1: Some typical joints. [9, �g. 2.3]

Number of dof of joints

Joint type Translational dof Rotational dof Total dof (f)

Revolute (R) - 1 1
Prismatic (P) 1 - 1
Helical (H) - - 1
Cylindrical (C) 1 1 2
Universal (U) - 2 2
Spherical (S) - 3 3

Table 1.1: Number of dof of joints in Figure 1.1. The number of degrees of constraints

is m− f , where m is 3 in the plane and 6 in the space. Only the revolute and prismatic

joints can be used also in the plane.

range. A rigid body has three dof in a plane (two coordinates to specify the position,

and one for the rotation), and six in the space (three for position and three for rotation).

When two bodies are connected by a joint, their number of dof is reduced. This is because

joints constraint some motions, therefore the description of the con�guration requires less

parameters. The sum of the number of degrees of freedom and degrees of constraints of a

joint is always six (or three for rigid bodies in a plane). The number of degrees of freedom

for joints in Figure 1.1 is reported in Table 1.1.

The number of dof of a mechanism with N links (including the ground) and J joints, each

with fi degrees of freedom is given by Grübler's formula [9, eq 2.4] [23, eq. 1.4]:

dof = m (N − 1− J) +
J∑
i=1

fi (1.1)
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Where m is the number of dof of a rigid body (3 or 6).

1.1.2. Workspace

The workspace is the set of all the points that the end-e�ector can reach. It is a volume

in an r-dimensional space called task space, that represents the end-e�ector position and

orientation (or attitude). The workspace is intrinsically related to the geometry of the

links and how and they are connected by joints; it must also consider joint limits and

self-collision of links. The number of variables r to describe the end-e�ector does not

depend on the robot, but on its application. In the most generic case r = 6 (i.e. position

and rotation of a frame in the 3D space), but some tasks may require less coordinates,

for instance r = 3 if only the position and not the orientation is relevant. If a task space

has only the three spatial directions, it coincides with the real world.

The reachable (or maximal) workspace consist in all the points that are reachable by

any robot con�guration, while the dexterous workspace describes only those where all

orientations can be attained. Obviously the latter is a subset of the �rmer. Finally,

the points reachable with a �xed end-e�ector attitude, form the constant-orientation (or

translational) workspace [23] [24].

1.1.3. Direct Kinematics

It is convenient to express the con�guration using the coordinates of the actuated joints,

namely the angle or position of their degrees of freedom. This choice is sensible considering

that the motors can simply feature an encoder to measure their angular position. These

values can be grouped in the joint vector q ∈ Rn, where n is the number of dof. For

every con�guration, represented by a speci�c joint vector, the end-e�ector has a certain

position and orientation, whose coordinates can be collected in the space vector x ∈ Rr.

q and x represent respectively a con�guration in the joint space, and in the task space.

Given the physical meaning of q and x, it must exist a function f : Rn → Rr that maps

a con�guration q into its corresponding task space value x:

x = f(q) (1.2)

It is evident that f disguises the geometry of the links and eventual transmission ratios

of the joints. Nonetheless, it might be impossible to obtain a closed-form expression of f ,

so in some cases a more generic function f(x,q) = 0 must be used.
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The computation of x from a certain known con�guration q is called direct kinematic

problem, or forward kinematic problem.

If n > r there are more actuators than strictly needed to move the end-e�ector in the

task space, and the robot is said to be redundant. Of course, for a di�erent task the same

robot may not be redundant, unless n > 6. In any case, redundancy often translates into

greater dexterity and �exibility rather than clumsiness [23] [31]. If instead n < r the

robot cannot achieve arbitrary motion of the end-e�ector [9].

1.1.4. Jacobian and Di�erential Forward Kinematics

The quantities q and x vary continuously in time: q(t) and x(t). Therefore the di�eren-

tiating Equation 1.2 with respect to time yields:

ẋ =
∂f

∂ q
q̇

=:J(q) q̇

(1.3)

(1.4)

The matrix function J : Rn → Rr×n is called analytic Jacobian, and it relates the joint

velocities q̇ with the velocities of the end-e�ector in the working space [9] [31].

Letting Ji be the i-th column of J(q), and q̇j the j-th element of q̇, Equation 1.4 can be

rewritten to:

ẋ = q̇1 J1 + q̇2 J2 + · · ·+ q̇n Jn (1.5)

Equation 1.5 shows that the working space velocity is a linear combination of the columns

of the Jacobian matrix. Therefore the i-th column of J(q) is the direction in which the

i-th dof moves the end-e�ector.

Similarly to the direct kinematics problem, the di�erential forward kinematics problem

consists in �nding the working space velocities ẋ when the joints are moving with velocities

q̇. Of course, the di�erential problem yields di�erent results in di�erent con�gurations q.

1.1.5. Inverse Kinematics

The inverse kinematics problem is the search of a posture q that places the end-e�ector

in x. The problem is generally di�cult for open-chain mechanisms and easier for closed-

chain mechanisms. Contrary to the forward kinematics, which always has exactly one

solution for closed loops, a solution to the inverse kinematics problem might not exists

or, if exists, there might be multiple or in�nite solutions. In case n > r the robot has dof
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in excess and a point in the working space can be reached by multiple con�gurations. If

instead n < r only n− r working space variables can be controlled, thus a solution might

not exist. Therefore the problem

q = f−1(x) (1.6)

is well-posed only if n = r, which is a necessary condition for f(q) to be invertible. Even

if x belongs to the workspace and a solution q exists, it might not be easy to compute

it analytically through the inversion of f because in general it is a complicated nonlinear

function. Furthermore any solution must also consider geometrical limits, such as limited

joint rotations and self-collisions.

For this reason numerical computation are often implemented in robotic controllers. This

approach also allows to account for link limits and obstacles in the workspace. Moreover,

relying on analytic solutions might provide wrong result in case of geometric imprecision

such as misaligned axis. In this case the analytic solution can be used as the initial guess

in an iterative numerical computation relying solely on f(q) [9].

1.1.6. Di�erential Inverse Kinematics

The di�erential inverse kinematics problem consist of �nding the joint velocity q̇ that

causes the end-e�ector to have a given velocity ẋ. As for the inverse kinematics problem,

solving analytically

q̇ = J−1(q) ẋ (1.7)

is only possible if the Jacobian is square (n = r) and has maximum rank (thus it can be

inverted). Therefore also the di�erential kinematics is conveniently solved with numerical

approaches.

If n 6= r the actuator velocity can be computed exploiting the Moore-Penrose pseudo-

inverse J†:

q̇ = J†(q) ẋ (1.8)

If the Jacobian is fat (namely has more columns than rows, so n > r), J† = JT(JJT)−1

(right pseudo-inverse), and the solution found is the one with minimum speed [9]. If

instead the Jacobian is tall (n < r) an exact solution does not exist; the pseudo-inverse is

J† = (JTJ)−1JT (left pseudo-inverse), and q̇minimizes the distance ‖J(q) q̇− ẋ‖ between
the computed and desired end-e�ector velocity [9]. If n > r, the pseudo-inverse matrix

can be weighted using, for instance, the mass matrix M to reduce the motion of heaviest

links [9]:

J† = M−1JT(JM−1JT)−1 (1.9)
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1.1.7. Statics

When a mechanism is not accelerating, for the law of conservation of power, the power at

the joints equals the power at the end-e�ector:

TT q̇ = FT ẋ (1.10)

Where T ∈ Rn and F ∈ Rr are respectively the generalised forces on the motor and on

the end-e�ector1, in the same order as in vectors q and x.

Equation 1.4 can now be used in (1.10) to compute the n motor torques equivalent to the

force F on the end-e�ector [9, eq. 5.26] [24, eq. 18.9] [31, eq. 3.111]:

TT = FTJ(q)

T = JT(q)F

(1.11)

(1.12)

1.1.8. Singularities

A kinematic singularity (or just singularity) is a con�guration q where the end-e�ector

su�ers an instantaneous loss of mobility in one or more directions.

For the sake of simplicity, in this paragraph it is assumed that n = r.

Considering the interpretation of the Jacobian of Equation 1.5, if the rank of J(q) is

less than r, ẋ cannot have arbitrary values in the Rr task space. Therefore the con-

�gurations q where the Jacobian is rank de�cient (or singular, thus det J(q) = 0) are

singularities [9] [31]. For the rank-nullity theorem:

dim ker J(q) + rank J(q) = n (1.13)

If the rank is not maximum and equal to n, the kernel of J(q) has non null size. The

kernel of the linear transformation ẋ = J(q) q̇ represents the vectors q̇ that map into 0.

This means that in singularity points the end-e�ector can stay still (ẋ = 0) even if some

joints have a so-called internal motion [31].

1Generalised forces are torques or forces. From now on the actuator's generalised forces in vector T
are simply called torques, and the generalised forces on the end-e�ector in vector F are called forces.
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1.1.9. Manipulability

An interesting characteristic of a robot is how the working space velocities translate into

joint space velocities. This is particularly interesting in the neighbourhood of a singular

point. The manipulability and force ellipsoid can help to quantify the ease of motion in

a point, and how close that point is to a singularity.

Velocity Manipulability Ellipsoid

The manipulability ellipsoid is the representation of the working space velocity in every

direction ẋi for all the possible unitary joint speeds. Unitary joint speeds are such that

‖q̇‖ = 1, or equivalently q̇T q̇ = 1; this equation represents an n-dimensional sphere in

the joint velocity space. The corresponding volume in the working velocity space can be

obtained with the following passages, assuming that the Jacobian J is invertible (thus

square and full rank) [9, eq. 5.27] [31, eq. 3.123]:

1 = q̇T q̇

= (J−1 ẋ)T (J−1 ẋ)

= ẋTJ−T J−1 ẋ

= ẋT(J JT)−1 ẋ

=: ẋTA ẋ

(1.14)

(1.15)

The equation ẋTA ẋ = 1 represents an ellipsoid centred in the origin of an r-dimensional

space. Letting λi be the eigenvalues of its inverse JJT ∈ Rr×r, the eigenvalues of A :=

(JJT)−1 are 1/λi. The lengths ai of the principal semi-axis of the ellipsoid are the inverse

of the square root of the eigenvalues of A, and the volume of the ellipsoid is proportional

to the inverse of the square root of the determinant of A [31, eq. 3.124]:

ai =
1√
1/λi

=
√
λi

V ∝ 1√
detA

=
1√

1
λ1

1
λ2
· · · 1

λn

=
√
λ1 λ2 · · ·λ3

=
√

det(JJT) = |det J |

(1.16)

(1.17)

The direction of the principal axes of the ellipsoid corresponds to the eigenvectors of A,

which are the same of JJT = A−1.
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Indexes of Manipulability

Since in a singularity point the motion in at least one direction is not possible, the velocity

in that direction is zero, and consequently the volume of the ellipsoid in the velocity space

is also zero. For this reason the volume (or rather a quantity proportional to the volume

V ) is an index of proximity to a singularity [31]:

v := |det J | (1.18)

Another useful index is the ratio between the longest and the shortest semi-axis of the

ellipsoid:

µ :=
amax

amin

=

√
λmax

λmin

≥ 1 (1.19)

Values of µ close to 1 are a synonym of isotropy of motion, because they indicate a

spherical manipulability ellipsoid, hence it is equally easy to move the end-e�ector in any

direction. µ is just the square root of the condition number of the matrix JJT [9].

Force Ellipsoid

A similar process can be carried out for forces, considering the working space force cor-

responding to a torques vector T of unitary length (TTT = 1). Repeating the passages

from (1.14) to (1.15) using Equation 1.12 yields [31, eq. 3.126]:

1 = FT(JJT)F

=: FTA−1F

(1.20)

(1.21)

The resulting equation is again an ellipsoid, called force ellipsoid. Since the force ellip-

soid matrix A−1 is the inverse of the manipulability matrix, it has the same eigenvalues

but reciprocal eigenvectors. Consequently the force ellipsoid has the same axis as the

manipulability ellipsoid, but the lengths of the semi-axis are the reciprocals, as shown in

Figure 1.2.

Interpretation of Ellipsoids

The reciprocal dimension of the axis of the manipulability and force ellipsoid suggests

that when the end-e�ector can attain high velocity motion in a direction, it can bear

small forces in that direction. And when the end-e�ector struggle to move in a certain

direction, it can resist high loads in the same direction.



1| Introduction to Parallel Kinematic Robots and Delta Robots 11

Figure 1.2: Example of manipulabilty and force ellipsoid. The ellipsoids have the same

axis direction but inverse axis lengths.

Close to a singularity the manipulability ellipsoid is almost degenerated: it is very stretched

in some directions and compressed in others. Since it represents the points in the task ve-

locity space where the joint space speed is 1, end-e�ector velocities in the direction where

the ellipsoid is thinner are converted to very large joint velocities. For the same rea-

son, forces in the directions where the force ellipsoid is thin (and thus the manipulability

ellipsoid is large) require large torques to be balanced.

Extending this argument to a singular con�guration, the direction where the motion is

not possible is the same where unlimited force can be borne (in the sense that it does

not require motor actuation for balancing, but it is still subject to structural limits of the

links and of the joints.), while forces in the other directions can generate in�nite torques

on the actuators.

Nonetheless working near a singularity may be desirable in order to exploit the large

ampli�cation factor between joints and end-e�ector. Some applications are accurate posi-

tioning in a small volume and force sensing in a particular direction as done by [28] with

a Gough-Stewart platform.

1.2. Parallel Kinematics

A parallel kinematics machine (or parallel kinematic structure, or just parallel robot)

is a closed-chain mechanism, in which a link is connected to the ground by multiple

independently actuated chains. Every kinematic chain connected in parallel is called limb

or leg. A parallel robot comprises a base platform and a moving platform connected by
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Figure 1.3: Schematic representation of a Delta robot [24, �g. 18.2]. The bottom platform

has three translational dof, and is actuated by three motors that are grounded and do

not weight on the links.

limbs [9], as visible in the Delta robot and Gough-Stewart platform in Figures 1.3 and 1.4.

On the contrary, single-chain mechanisms are called serial robots. While in serial robots

all joints must be actuated to allow a rigid connection of the end-e�ector to the ground,

a parallel robot might have passive joints, which are unactuated.

1.2.1. Advantages of Parallel Kinematics

Regarding the design, it is relatively easy to scale a parallel robot to build a larger or

smaller version. Furthermore, they can exploit the repetition of identical limbs around

a symmetry axis, which grants some economic perks (simpler design, reduction of the

number of di�erent components, easier assembly, . . . ).

Often parallel robots have higher dynamic performances compared to equivalent serial

robots devoted to similar tasks. The reason is that the unactuated links are free of the

motor mass, and the motors of the �rst link of the limbs can be grounded (like in the

Delta robot, in Figure 1.3), or just slightly moving (like in the Gough-Stewart platform

in Figure 1.4) [24] [23].

The many number of chains in parallel have the advantage of increasing the system sti�-

ness, and allowing motion with great precision. This advantages also the velocity and

acceleration in the working space [24].
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Figure 1.4: Schematic representation of a Gough-Stewart platform [24, �g. 18.1]. The

top platform has six dof, and is moved by six linear motors connected to the grounded

bottom platform.

1.2.2. Disadvantages of Parallel Kinematics

An important disadvantage of parallel kinematics machines is their small workspace (or

small ratio between the usable workspace and the overall machine size), in particular

considering that closed-chain mechanisms are bulky. The workspace has strange shape

and is di�cult to describe, and in particular the rotation limits of the end-e�ector change

depending on its position. Moreover, the workspace frequently contains singularities and

the behaviour in the working volume is highly anisotropic.

1.2.3. Inverse Kinematics

For parallel mechanisms, the inverse kinematics problem is easier than the direct problem

because the joint variables can be simply determined by closure equations [24] [23]. The

inverse kinematics problem is

q = k(x) (1.22)
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If instead the joint space parameters cannot be isolated, the kinematic relation can be

expressed in the more generic form

f(q,x) = 0 (1.23)

1.2.4. Direct Kinematics

The direct kinematics problem of parallel robots is much more di�cult than the inverse

problem. The end-e�ector coordinates can be found solving complicate equations, but

the solution is not unique, as there are several ways to assemble the mechanism given

certain joint variables q. To discriminate the correct con�guration amongst the many

viable, some sensors can be placed on passive joints or between limbs [23].

The computation of direct kinematics relies on numerical iterations.

1.2.5. Singularities

A singularity arises whenever the Jacobian fails to be full rank. If an analytic matrix

function representing the Jacobian is not available, the n closure equations in (1.23) can

be exploited to identify singularities. Di�erentiating Equation 1.23 with respect to time

yields:

0 =
∂f

∂ q
q̇ +

∂f

∂ x
ẋ

=: Jq(q,x) q̇ + Jx(q,x) ẋ

(1.24)

(1.25)

[7] de�nes three types of singularities for closed loop kinematics:

� serial singularity when det Jq(q,x) = 0. The end-e�ector can have zero velocity

when the joints are moving. The end-e�ector loses dof because it is not possible to

prescribe velocities in some directions;

� parallel singularity when det Jx(q,x) = 0. In this singularity point the end-e�ector

can move while the joints have zero velocity, therefore it gains dof which cannot be

controlled;

� both Jq(q,x) and Jx(q,x) are simultaneously singular. This situation corresponds

to a degenerate case of the Equation 1.23. The end-e�ector can undergo �nite

motion when the actuator are locked, or a �nite motion of the actuators does not

move the end-e�ector.
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1.3. Delta Robots

A Delta robot is a three dof a parallel kinematics mechanism whose moving platform has

constant attitude (constant orientation regarding the base in the horizontal plane - the

moving platform is always parallel to the base). The moving platform is connected to

the ground by three legs. Every leg features a motor that actuates the �rst link, and

a parallelogram mounted via universal or spherical joints onto the moving platform and

the �rst link. The parallelograms are the key element to keep the moving platform at

constant orientation. Figure 1.3 represent a schematic Delta robot in which two triangular

platforms are visible: the top one is grounded, and the bottom one is moving parallel to

the �rst.

Because the three actuators can be grounded, the moving parts are relatively light and

thus the Delta robot can achieve very fast motions. It is therefore widespread for assembly,

packaging, and pick and place of lightweight objects. Thanks to its sti�ness and precision,

it has also found applications for additive manufacturing [2, 3, 29], haptics [8, 25�27, 30]

and even in the medical �eld [32].

Some commercial Delta robot are shown in Figure 1.5. All of them feature parallelograms

and links free of motors; the robots in Figure 1.5b and 1.5c have extra rods to rotate the

end-e�ector, thereby having more than three dof.

1.3.1. History

The Delta robot was invented in the early '80s by Professor Reymond Clavel in the

laboratory of the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. The

original version patented in 1990 (shown in Figure 1.7) has the possibility to rotate the

end-e�ector with a fourth motor mounted on the �xed base that transmits the rotation

via a thin rod. It was �rstly produced by the Swiss company Demaurex in 1987 [1].

1.3.2. Workspace

The typical workspace of an industrial Delta robot is a wide cylinder with a short trun-

cated inverted cone on the bottom. Figure 1.6 shows the workspaces of the Delta robot

in Figure 1.5.

As for most of parallel kinematics robots, the workspace is limited compared to the

extension of the mechanism. Further dof that rotate a wrist on the moving platform

allow to have a larger workspace, such as for the ABB IRB 390 in Figure 1.6c.



16 1| Introduction to Parallel Kinematic Robots and Delta Robots

(a) Fanuc DR-3iB (Courtesy of Fanuc,
www.fanuc.co.jp/en/product/robot/model/

dr3ib.html)

(b) Omron 17201-45604 (Courtesy of Omron,
industrial.omron.eu/en/products/

17201-45604)

(c) ABB IRB 390 (Courtesy of ABB,
new.abb.com/products/robotics/

industrial-robots/irb-390)

(d) Kuka KR 3 D1200 HM (Courtesy of Kuka,
www.kuka.com/en-gb/products/

robotics-systems/industrial-robots/

kr-delta-robot-hm)

Figure 1.5: Some commercial Delta robots.

www.fanuc.co.jp/en/product/robot/model/dr3ib.html
www.fanuc.co.jp/en/product/robot/model/dr3ib.html
industrial.omron.eu/en/products/17201-45604
industrial.omron.eu/en/products/17201-45604
new.abb.com/products/robotics/industrial-robots/irb-390
new.abb.com/products/robotics/industrial-robots/irb-390
www.kuka.com/en-gb/products/robotics-systems/industrial-robots/kr-delta-robot-hm
www.kuka.com/en-gb/products/robotics-systems/industrial-robots/kr-delta-robot-hm
www.kuka.com/en-gb/products/robotics-systems/industrial-robots/kr-delta-robot-hm
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(a) Fanuc DR-3iB (Courtesy of Fanuc,
www.fanuc.co.jp/en/product/robot/model/

dr3ib.html)

(b) Omron 17201-45604 (Courtesy of Omron,
industrial.omron.eu/en/products/

17201-45604)

(c) ABB IRB 390 (Courtesy of ABB,
new.abb.com/products/robotics/

industrial-robots/irb-390

(d) Kuka KR 3 D1200 HM (Courtesy of Kuka,
www.kuka.com/en-gb/products/

robotics-systems/industrial-robots/

kr-delta-robot-hm)

Figure 1.6: Workspaces of the robots in Figure 1.5.

www.fanuc.co.jp/en/product/robot/model/dr3ib.html
www.fanuc.co.jp/en/product/robot/model/dr3ib.html
industrial.omron.eu/en/products/17201-45604
industrial.omron.eu/en/products/17201-45604
new.abb.com/products/robotics/industrial-robots/irb-390
new.abb.com/products/robotics/industrial-robots/irb-390
www.kuka.com/en-gb/products/robotics-systems/industrial-robots/kr-delta-robot-hm
www.kuka.com/en-gb/products/robotics-systems/industrial-robots/kr-delta-robot-hm
www.kuka.com/en-gb/products/robotics-systems/industrial-robots/kr-delta-robot-hm
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Figure 1.7: Clavel's Delta robot [4, �g. 1].
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2| Introduction to Fanuc

M-1iA/0.5A

Fanuc produces four families of Delta robots: M-1iA, M-2iA, M-3iA and DR-3iB. The

M-1iA version has 6 models, which are the combination of short or large motion range

and di�erent number of axes. The models of the series M-1iA are collected in Table 2.1

The repeatability for all the M1-iA products is ±0.02 mm [5, 6].

A six dof M-1iA/0.5A is shown in Figure 2.1, in which are recognisable the three limbs

with a parallelogram with spherical joints that connect the moving platform to the base.

The moving platform is a three dof Wrist actuated by the rotation of three links departing

from the Base.

2.1. Kinematic Chain

The M-1iA Delta robots feature an unusual link con�guration, di�erent from the one

used in most of the commercial Delta robot (for instance, those in Figure 1.5). Figure 2.2

shows a drawing of the M-1iA/0.5A under the Cover. The kinematic chain is based on

the swing of two semi-rotary arms connected by tie rods. The primary arm (Arm 3 in

Models of Fanuc M-1iA

Axes

6 4 3

Motion
range

S
m
al
l

� 280 mm
H 100 mm

M-1iA/0.5A
(0.5)

M-1iA/0.5S
(0.5)

M-1iA/1H
(1)

L
ar
ge � 420 mm

H 150 mm
M-1iA/0.5AL

(0.5)
M-1iA/0.5SL

(0.5)
M-1iA/1HL

(1)

Table 2.1: Models names and payloads in kg (in round brackets) of the Fanuc robot series

M-1iA [6].
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Figure 2.1: Fanuc M-1iA/0.5A. (Courtesy of Fanuc, fanuc.co.jp/en/product/robot/

f_r_genkotu.html)

fanuc.co.jp/en/product/robot/f_r_genkotu.html
fanuc.co.jp/en/product/robot/f_r_genkotu.html
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Figure 2.3) is linked to the parallelogram, while the secondary arm (Arm 1) is connected to

the motor. This con�guration allows to move the drive units into the top Cover, thereby

freeing space in the area between the primary rotary joints (points B in Figure 2.3). The

free area is needed to accommodate the three links that drive the Wrist dof, and at the

same time to eliminate some of the possible collisions states.

The translation in space of the end-e�ector is actuated by the �rst three dof, called J1,

J2 and J3, which move Leg 1, Leg 2 and Leg 3 respectively by rotating the Arm 1 of the

kinematic chain shown in Figure 2.3.

The three Legs are placed at 120 deg around the central axis of the workspace. All the

Legs have identical Arm 1 and Arm 2. Moreover, the distances BD and BE of Arm 3 (see

Figure 2.3) are the same for all the Legs.

The other three dof J4, J5 and J6 are responsible for the rotation of the Wrist, and are

actuated by three motors mounted in the . The rotation is transmitted via three rods

mounted on prismatic joints to accommodate di�erent distances to the end-e�ector as it

moves in the workspace. The product datasheet claims that J4, J5 and J6 can rotate at

up to 1440 deg/s [5, 6].

2.2. Workspace

The workspace of the M-1iA/0.5A is shown in Figure 2.4. It was obtained from the Fanuc

Roboguide software and imported into PTC Creo Parametric. Figure 2.4 contains also

the world origin frame of the robot, which was adopted throughout this work.

The workspace is the union of a cylinder and two frustums (truncated cones). Their axis

are aligned with the z world axis.
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Leg 2

Leg 3

Leg 1

Wrist

Cover

Base

Figure 2.2: Side view of the M-1iA/0.5A with the nomenclature used in this document.

The Base and Cover are sectioned to show inside. The motors, the transmission gears and

the components other than links are not shown. The robot is in the zero con�guration.
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Arm 1

Arm 2

Arm 3

Rod

A

C

D

B

E

a

c2

c1

(a) Kinematic chain of Leg 1. Arm 1 is tilted of
50 deg below the horizontal plane, so that the Arm 3

of all Legs have the same inclination.

Arm 1

Arm 2

Arm 3

Rod

A

B

C

D

E

a

c1

c2

(b) Kinematic chain of Leg 2, identical to Leg

3.

Figure 2.3: Links of Leg 1 and Leg 2 of the M-1iA/0.5A, along with the nomenclature

used further in this document. The kinematic chain shown here is from the motor (not

shown) to the Rods constituting the parallelogram, represented in the zero con�guration.

a = 50 mm, c1 = 50 mm and c2 = 100 mm for all the Legs.
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z

x

Figure 2.4: Workspace of the M-1iA/0.5A obtained from the Fanuc Roboguide software.

The frame depicted represents the world coordinate system.
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3| Introduction to Matlab

Simulink and Simscape

Multibody

This Chapter introduces the core concepts of Simscape Multibody and some features used

for the creation of the robot model. After a brief explanation of Simulink , the fundamental

blocks of Simscape Multibody and their most important characteristics are presented.

Next, it is discussed how to simulate the model and in particular in which way to control

it and how to collect the results.

3.1. Simulink and Simscape

Simulink is a software to create and simulate continuous or discreet models using a block

diagram logic. It is smoothly integrated with the Matlab software platform [13]. Simulink

automatically converts the block diagram to a set of equations (algebraic and/or di�er-

ential) that are solved in a speci�ed time range.

Simscape is a Simulink extension used to create models of physical systems within Simulink .

Simscape has a basic so-called Foundation Library containing blocks for sources, sensor

and broad modellings in various physical �elds: electrical, gas, hydraulic, magnetic, me-

chanical, thermal, . . . [15]. Simscape can be further extend to create detailed models of

complex physical system, by using one or more of the four di�erent extensions [14]:

� Simscape Electrical for electronic and electrical power systems;

� Simscape Driveline for transmission systems;

� Simscape Multibody for 3D multibody systems;

� Simscape Fluids for �uid systems.

The four Simscape realms and the Simulink blocks integrate and work together, therefore

a system of engineering interest spanning multiple physical domains can be modelled,
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controlled and tested in Simulink .

3.2. Simscape Multibody blocks

Simscape Multibody works in the same fashion as any Simulink block diagram. The most

common blocks used to build Simscape Multibody models are of four types [16]:

body to de�ne objects;

transform to translate and rotate coordinate frames;

joint to connect two di�erent bodies;

force to exert a force upon a frame.

The general idea is to connect bodies by joints in positions speci�ed using transform

blocks.

Furthermore, a model usually requires the following blocks [16]:

World Frame to create an inertial reference frame for the model,

Mechanism Con�guration to introduce gravitational forces in the model,

Solver Con�guration to set Simscape solver options.

3.2.1. Bodies

Bodies represent an object with a mass. Normally they are rigid and with constant

mass, but Simscape Multibody has the capability to de�ne �exible bodies and variable

mass bodies. A body has information about its geometry, its inertia and its graphical

representation.

Simscape Multibody o�ers some elementary body geometry with customizable parameters:

brick, cylinder, sphere, ellipsoid, and point (eventually including inertia). In alternative,

the user can specify a cross-section and build a geometry by extrusion or revolution, or

can import a custom CAD �le to represent the geometry of a body.

The inertia information comprises the mass, the centre of mass and the inertia matrix.

For any type of geometry, the inertial properties can be either automatically evaluated or

manually speci�ed. In the �rmer case only the density or the mass is required.

The numerical values speci�ed in Simscape Multibody must have units, that can be chosen

with a drop-down list.
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Figure 3.1: Settings of the Cylindrical Solid block, including a preview of the body.

The graphic parameters specify how the solid should be represented in the Mechanics

Explorer . Apart from the simple colour and transparency, more sophisticate settings can

be speci�ed, such as the specular colour, emissivity colour, shininess, and more.

Finally, every object has a default reference frame R corresponding to the body origin. If

needed, more reference frames can be de�ned based on the geometry de�nition. Another

common way to create reference frames is to use Rigid Transform blocks connected to the

R frame.

Figure 3.1 shows the interface to edit a Cylindrical Solid block; other body blocks are

analogous.

3.2.2. Transforms

Coordinate systems (or frames) consist of a point called origin, and three perpendicular

axes (x, y, and z) with direction, intersecting in the origin [17]. The Rigid Transform
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Figure 3.2: Settings of the Rigid Transform block.

blocks are used to perform a coordinate change by translating the origin and rotating the

axes. The reference frame upon which transformations are applied is called base frame

B, and the resulting frame is the follower frame F .

Translations can be expressed in Cartesian or cylindrical coordinates. Rotations are

de�ned with respect to the standard x y z axes, a speci�ed axis, using a rotation matrix

or using a rotation sequence.

Figure 3.2 shows the interface to edit a Rigid Transform block.

3.2.3. Joints

Joints create kinematic constraints between two frames: the Base frame and the Follower

frame. The Table 3.1 summarizes all the joint types and the dof they have with respect

to translation and rotation about the standard x y z axis, called joint primitives [12]. In

this contest, joint primitive is a synonym of dof.

Consider, for instance, the Revolute Joint: it allows rotation between the z axis of the

base and follower frame. This implies that both frames must have collinear z axis, and

coincident origins. On the contrary, the Cylindrical Joint allows rotation and translation
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Joint types

Joint block name
Translation Rotation

x y z x y z S

6-DOF • • • · · · •
Bearing ◦ ◦ • • • • ·
Bushing • • • • • • ·
Cartesian • • • ◦ ◦ ◦ ◦
Constant Velocity∗

Cylindrical ◦ ◦ • ◦ ◦ • ·
Gimbal ◦ ◦ ◦ • • • ·
Leadscrew∗

Pin Slot • ◦ ◦ ◦ ◦ • ·
Planar • • ◦ ◦ ◦ • ·
Prismatic ◦ ◦ • ◦ ◦ ◦ ◦
Rectangular • • ◦ ◦ ◦ ◦ ◦
Revolute ◦ ◦ ◦ ◦ ◦ • ·
Spherical ◦ ◦ ◦ · · · •
Telescoping ◦ ◦ • · · · •
Universal ◦ ◦ ◦ • • ◦ ·
Weld ◦ ◦ ◦ ◦ ◦ ◦ ◦

The joints marked with ∗ cannot be simpli�ed in terms of joint primitives.

Table 3.1: The 17 types of joints and their dof. The full dot (•) represents a dof along

which motion is allowed, an empty dot (◦) represents a constraint. The column S is used

when the joint exploits a spherical primitive instead of the three revolute primitive to

eliminate the risk of gimbal lock using a quaternion representation of the rotation. The

two representations are mutually exclusive, hence the use of · [18].
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Figure 3.3: Settings of the Revolute Joint block.

about the z axis, therefore the base and follower must have collinear z axis, but the origin

of the follower can lye anywhere on the base's z axis.

Some important settings of the Revolute Joint block are illustrated in Figure 3.3. Of

particular importance are the sections: State Target, Actuation and Sensing for the only

dof of this block: the Z Revolute Primitive (Rz). Joints with more dofs have the same

options for all their dofs.

State Target

State Target is used to de�ne an optional starting position and velocity of a joint con�gu-

ration. The user can also decide with which Priority the initial conditions of the assembly
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Joint actuation modes

Motion

Provided by Input Automatically Computed

T
or
qu
e

F
or
ce

None Unactuated Motion Passive

Provided by Input Fully Speci�ed Forward Dynamics

Automatically Computed Inverse Dynamics Fully Computed

Table 3.2: Possible combinations of actuation modes for a dof that can be used to achieve

di�erent control modes [12].

should be satis�ed: High or Low. It may happen that a model has many valid legal con�g-

urations (for instance the so-called lefty and righty poses of a SCARA robot [9]), in such

case it is crucial to specify initial conditions that allow the correct assembly of model.

Actuation

The Actuation settings is used to actuate the joint either by specifying a Torque (or

Force for translation primitives) or a Motion. The possible combinations and their use

are summarised in Table 3.2 [12].

When selecting Provided by Input, the joint block o�ers the possibility to connect an-

other block with the motion or torque signal. The signal must be a physical signal, the

unit should be speci�ed (otherwise they are inferred), and it must also include the �rst

and second derivative. These three requirements can be satis�ed using the Simulink-PS

Converter block, which can be set to automatically compute derivatives if needed [21].

Sensing

The Sensing section is used to specify outputs of the joint blocks. These are the position,

velocity and acceleration and force of the dof. If needed, also the constraint forces can be

sensed using the Composite Force/Torque Sensing section. The output can be converted

to a Simulink signal by using the PS-Simulink Converter block.

Figure 3.4 shows how to impose a motion and compute the corresponding torque (Inverse

Dynamics).
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Figure 3.4: A simple mechanical system with two bodies connected by an actuated Revo-

lute Joint which outputs the torque required to accomplish the motion to a To Workspace

block. The motion law is given by a Ramp source converted to radiants and derived with

the Simulink-PS Converter block.

3.2.4. Forces

The blocks of type force are used to introduce forces and torques in the model. Forces

can either be an internal or external force. The internal forces are exerted between two

frames: the Base frame and the Follower frame. These are: Gravitational Field, Internal

Force, Inverse Square Law Force, Spatial Contact Force, and Spring and Damper Force. The

external forces can be introduced using the block External Force and Torque, which requires

only the follower frame.

For instance, Figure 3.5 shows a sample use of the force blocks.

3.3. Mechanics Explorer

A Simscape Multibody model can be visualized in Matlab using the Mechanics Explorer

interactive window. It o�ers the capabilities to select an object (a body, joint, transform

or force) and view its frames, to hide bodies, and to review the block parameters. Of

course, it can show the animation of the computed motion.

3.4. Principles of Simulation

Once the model is correctly assembled the user should decide how to actuate the model,

which input to use and what are the valuable outputs to save. The two main ways to

control a multibody model are direct dynamics (and kinematics) and inverse dynamics
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Figure 3.5: A simple mechanical models of an oscillator. A Cylindrical Solid can move

vertically due to the Prismatic Joint (the z axis of the World Frame and of R are aligned).

On the frame F1, on the top surface of the cylinder, is acting a vertical harmonic external

force generated with a Sine Wave and converted into a physical signal by the Simulink-PS

Converter block. The motion of the body is damped by the Spring and Damper Force

connected in parallel with the joint.

(and kinematics).

A simulation can be run until a speci�ed Stop Time (and, if needed, from a certain Start

Time), or inde�nitely by setting the Stop Time parameter to inf.

3.5. Input and Outputs of the Model

It is clear that the position and the force of joints can be easily imposed or read by using

the Actuation and Sensing sections of the joint block. To measure the position and the

force of a body (or rather, of one of its frames) a simple workaround can be implemented.

A 6-DOF Joint block can be used to measure or impose the relative position, orientation

and forces between the base and the follower frames. Therefore using a 6-DOF Joint to

connect a body frame to the World Frame allows one to actuate the body and measure

its position and forces. Of course, this joint does not generate any constraints (hence the

name), therefore can be added anywhere in the model without compromising the physical

behaviour. Figure 3.6 shows an example of this usage.

3.5.1. Input

Simulink o�ers many built-in signal sources, such as Constant, Ramp, Step, Sine Wave,

waveforms (with the blocks Waveform Generator or Signal Generator), and random se-
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Figure 3.6: A simple mechanical model using the 6-DOF Joint block to impose the a force

and a torque on a frame of the Brick Solid, and measure its angular position with respect

to the World Frame. The force is generated by a Random Number block, the torque is

obtained by a From Workspace block, and the output is saved using To Workspace.

quences. For more complex input signal, it might be convenient to create a signal using

the Signal Builder, or to import the data from the Matlab workspace (From Workspace

block), from a Matlab .mat �le (From File), or from a spreadsheet (From Spreadsheet).

The From Workspace and From File blocks can import signals represented in di�erent ways:

a so-calledMatlab timeseries format, a matrix and a struct. The easiest and most versatile

is to format the input in a 2D matrix. The �rst column must contain the timestamp, and

the other column must contain a signal each [19]. Thus every row has a timestamp ti and

a vector (ai, bi, ci, . . . ):

t1 a1 b1 c1 . . .

t2 a2 b2 c2
...

tn an bn cn

Simulink can interpolate linearly the values of the vector between timestamps. If the

simulation time is longer than the last timestamp (tn in the above example), the signal

can be extrapolated linearly, set to zero, held to the �nal value, or repeated cyclically.

3.5.2. Output

The output of a multibody simulation consists typically of position and force values of

one or more joints. For instance, when simulating a robot with inverse dynamics, the
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desired output might be the positions and torques history of the motor joints.

A signal history can be saved using the To File or To Workspace Simulink blocks. The

output format is analogous to the input format: a timeseries, a matrix or a struct. When

using the To Workspace block, the outputs are saved into the Matlab workspace, or in the

workspace of the callee if the simulation is run programmatically using the sim command.
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4| Generation of the Model

This Chapter presents how a 3D model of the M-1iA/0.5A was used to create a Simscape

Multibody model. The setup of the Simscape Multibody model is paramount to correctly

simulate the robot. The robot can be actuated in direct and inverse kinematics and

dynamics thanks to the use of the 6-DOF Joint, and can be conveniently controlled from

Matlab.

The main goal of this thesis is to simulate some of the working characteristics of the

M-1iA/0.5A using the resulting model in Matlab. The main characteristics pursued are:

workspace de�nition, veri�cation of theoretical and usable workspace, envelope;

kinematics computation (direct and inverse);

force and torques on individual elements of the kinematic chain.

4.1. Simpli�ed Model and Full Model

This work mainly deals with the Wrist kept at constant attitude. For this reason it was

chosen to simplify the model by inhibiting the three dof associated with the rotation. Such

model retains the three dofs J1, J2 and J3 that control the translation of the end-e�ector,

while the joints J4, J5 and J6 are �xed in their zero position.

4.2. CAD Drawing

The Computed Aided Design (CAD) drawing of the M-1iA/0.5A was created by Ing. Michal

Barto², a doctoral student at the University of �ilina. The drawing is an assembly made

using the CAD software PTC Creo Parametric. It is a mechanism, meaning that it in-

cludes the information about the connection and the relative motion between all the parts

that compose the kinematic chain.
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Material densities

Material Density [kg/m3]

Steel Medium carbon 7850
Aluminium Al-Si-Cu alloy 2680

Table 4.1: Density of the material used to model the M-1iA/0.5A parts.

4.2.1. Export Pre-processing

The Simulink model can be created from the CAD drawing using the Simscape Multibody

Link plug-in for PTC Creo Parametric [11]. It allows to export the robot structure from

a CAD assembly drawing to a Simscape Multibody model. This process preserves the

robot mechanism by substituting assembly constraints with equivalent joints in Simscape

Multibody.

Before exporting the CAD drawing to Simulink , some pre-processing operations were

carried out. In particular: the units and the material were checked, the position of the

origin was updated to match the manufacturer's one, some parts were removed to simplify

the model, and some others were joined into a single object.

The six Rods are made of aluminium, while all the other relevant components are made

of steel. The moving platform contains a gearbox to actuate the three dof J4, J5 and J6

of the Wrist. To account for the internal cavity, it was supposed that 50% of its volume

is empty. The values used for the densities are listed in Table 4.1.

The components removed were the twelve (four for each of the three parallelograms) plates

joining the Rods in pairs to form four-bar mechanisms. They have only a mechanical

support role, and are irrelevant from a kinematic point of view. But since all the Rods are

constrained at both ends only by spherical connections, it is now necessary to prevent the

rotation along their longitudinal axis. The solution adopted was to include one �ctitious

plane coincidence constraints between the Rods of each pair, as shown in Figure 4.1.

Finally, all the grounded and immobile parts where joined together to ease the export and

prevent unnecessary clutter in the Simulink model. These consist mainly in the robot case

and support structure, and the shafts on which the Arm 3 hinge. The aforementioned parts

were removed from the assembly and substituted by the new single part. The assembly

constraints lost were recreated identical to the original ones. The �nal simpli�ed assembly

is shown in Figure 4.2.
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(a) Original four-bar mechanism with two
connecting Links (in red).

(b) Coincidence constraint introduced in PTC

Creo Parametric to prevent free axial rotation
of the Rods.

Figure 4.1: Link of four-bar mechanism replaced with planar constraint.

Figure 4.2: Simpli�ed assembly in PTC Creo Parametric. The Links are removed (cf.

Figure 2.2). The top part of the Cover is hidden. The robot is shown in the zero position.
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4.2.2. Export to Simscape

The Simscape Multibody Link plug-in for PTC Creo Parametric stores the data required to

build the Simulink model in an .xml �le containing information regarding the parts, their

masses and volumes, and the position and type of joints connecting them. Furthermore,

every part of the assembly is converted into STEP format in order to visualize the model

in the Mechanics Explorer (3.3).

The geometry in the .step �les are only used only for visual representation and animation,

and the computations do not rely on them. To ease the burden of the graphical work, all

the drawing �les have been modi�ed with SolidWorks to remove unnecessary features (like

chamfers), and reduce the number of points of the geometry, while keeping an acceptable

level of details.

Finally, the Simscape Multibody model was generated in Matlab with the command

smimport. This produced a Simulink model .slx �le resembling the mechanism in the

CAD drawing. Some of the constants used in the blocks of the models are collected in a

Matlab script executed before every simulation.

4.3. Simscape Multibody Model

The blocks of the Simscape Multibody model and their connection were thoroughly checked.

Particular attention was given to the masses of the bodies and the transforms blocks. The

gravity force was disabled as it was not required in the simulations.

4.3.1. Import Post-processing

Some extra Rigid Transform blocks were added in order to move and rotate some frames.

This allowed to measure angles between parts more easily. Furthermore, in this way the

angular displacement and the zero con�guration correspond in the Simulink , model, in

the CAD mechanism and in the physical robot.

Some frames were also added to reference interesting positions, such as the end-e�ector

and the central axis of the workspace.

To guide the assembly of the model to the only desired position amongst the many kine-

matically valid, the initial condition of the some joint parameters were set by specifying

the State Target position and priority for some the joint blocks (3.2.3) [10, 12]. In par-

ticular, the three motor angles were set to 0 deg with high priority, and three of the

bottom spherical joints (one per kinematic chain) were set to their value at import with
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(a) Whole robot in default pose. (b) Close up of the spherical joints that connect
the end-e�ector to the parallelogram Rods.

Figure 4.3: View in the Mechanics Explorer of the robot in the default con�guration. The

joints whose initial position was set are indicated by arrows.

low priority (Figure 4.3). The zero pose is shown in Figure 4.2.

4.3.2. Comparison of Simscape Model with CAD Mechanism

Figure 4.4 shows a comparison of the newly built Simscape Multibody model and the CAD

assembly.

4.3.3. Measuring and Actuation

Some of the most important parameters of this analysis are the motor angles and torques.

For this reason the Revolute Joint blocks representing the motors were set to output the

angular position and the torque. This data was converted and collected by a To Workspace

block (3.5), as visible in Figure 4.5.

In order to measure and actuate of the end-e�ector, a 6-DOF Joint block was added

between the World Frame and the end-e�ector (3.5), as shown in Figure 4.6.
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end-e�ector

(tool center point (TCP))

Wrist

Rod

Arm 3

Arm 2

Arm 1

Base and Cover

H

E

D

C

B

A

Figure 4.4: Comparison Leg 1 in Simulink model (left) and CAD model (exploded view)

(right). The port F of the Base block is connected to the World Frame.
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Figure 4.5: To Workspace blocks collecting torques and positions of the motors.

4.4. Control of the model

The model can be controlled by prescribing a motion to the joint blocks, according to their

speci�c constraints. To actuate a Simscape Multibody joint, the Actuation Motion and

Actuation Torque (or Force) settings must be set to Provided by Input or Automatically

Computed, depending on the desired type of kinematic and dynamic motion (3.2.3)

In this model the joints representing the motors and the 6-DOF Joint connecting the

end-e�ector to the World Frame should be actuated. All the other non-actuated joints

are passive: the Actuation Torque is None, and the Actuation Motion is Automatically

Computed.

4.4.1. Control of the Model from Matlab

The input variables required by the From Workspace blocks of the Simulink model can

be created in the Matlab Workspace, and the simulation can be run from the Simulink

interface or with the command sim from the Command Window, a script or a function

(3.5).

Most of the simulations required inverse kinematics analysis. Therefore the motion law of

the end-e�ector had to be saved into theWorkspace in matrix form prior to the simulation.
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Figure 4.6: On the top part are visible the three kinematic chains of the Legs connecting

the Base to the rigid Wrist (e�ector). On the bottom, the 6-DOF Joint connects the World

Frame and the end-e�ector; actuation inputs are connected on its left, and sensor outputs

on the right.
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The simulation outputs generated from the To Workspace blocks could be read after the

job, along with the vector of discrete time instants at which the model was evaluated.
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5| Workspace

In this and the following Chapters the results of the analysis on the simpli�ed model will

be reported. Despite not representing the real robot, this information is still useful for

some scenarios of operation, for instance when the attitude is kept constant or if the task

requires only translations. Moreover, similar methods could be used for other product of

the M-1iA series, like the three dof M-1iA/1H (see Table 2.1).

The workspace is a very important characteristic for industrial robot. Since the end-

e�ector is bounded to be inside it, it is of primary importance to identify the workspace of

the M-1iA/0.5A. The results shown here are obtained with the Wrist in the zero position.

The same still holds valid for other Wrist orientations: the resulting workspaces will be

equivalent but translated.

5.1. Preliminary Assumptions on the Workspace

Due to the symmetry of the M-1iA/0.5A, it is reasonable to assume that the workspace

also has some type of symmetry (radial (also called rotational) or axial) about a vertical

axis. Given the dimensional equivalence of the three links (as discussed in 2.1), there is not

a preferential direction where the end-e�ector could move farther, thus the workspace axis

is assumed coincident with the end-e�ector endpoint in the zero con�guration; namely,

passing through the point (x = 42.6, y = 0) mm.

5.2. Procedure for Evaluation of the Workspace

The core idea of the test was to de�ne a blatantly larger potential workspace, and �nd

which of its points can be actually reached. These shall be used to build the robot

workspace.
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Figure 5.1: Spiral motion prescribed to the end-e�ector for a generic layer z = zi.

5.2.1. First Potential Workspace

The potential workspace initially considered was a cylinder with radius of 400 mm and

height of 300 mm, from z = −500 mm to z = −200 mm (cf. Figure 2.4). It was sliced

into 60 layers every 5 mm. At each layer a simulation was run, prescribing a spiral motion

to the end-e�ector (or rather, a straight-segments approximation of a spiral). The spiral

centre was coincident with the workspace axis ((x = 42.6, y = 0) mm), and the distance

between consecutive loops was 10 mm. The prescribed motion for a generic layer is

depicted in Figure 5.1. The so-built workspace will have a vertical resolution of 5 mm

and a radial resolution of 10 mm.

To prevent assembly errors, all the simulations started from the zero position of the robot,

then the end-e�ector was moved to the desired z plane, and ultimately the spiral motion

could begin.

The many simulations were carried out in parallel using parsim. A simulation would stop

if any of the following condition would arise:

� the model cannot be assembled, because the pose is physically unreachable;

� any of the arms collide another part.

The �rst condition is veri�ed automatically by the Simscape Multibody assembler. The

second condition arises whenever a motor angle (J1, J2 or J3) is outside the range

]−66,+72 [ deg, therefore can be enforced by using a Stop Simulation block. Figure 5.2

shows how the stop logic was implemented. The aforementioned range was chosen by
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Figure 5.2: The motor angles in output from the Revolute Joint corresponding to the J1,

J2 and J3 motors are compared to hardcoded boundaries. If at least one is out of range,

the simulation halts.

rounding towards zero (truncating) the maximum angles at which Arm 1 can move. Those

angles were measured in PTC Creo Parametric by placing the three Arm 1 in contact with

the frame, and are the same for J1, J2 and J3.

5.2.2. First Result

To account for singularities, a force approach was used. It is known that in proximity

of a singular position the motion is limited and the torques can reach very high values

(1.1.8). Therefore also in the Simscape Multibody model, when the motion approaches a

singularity, the motor torques are extremely large. To be able to detect these points, it

was necessary to have non-zero static torques on all three motors, therefore a load of 10 N

in x, y and z direction was applied to the end-e�ector. This resulted in motor torques

within 5 Nm (in absolute value) in most of the tested points. The points were any of

the motors experienced a torque greater than 10 Nm (in absolute value) were considered

singular points, and were excluded from the workspace. The remainder of the points are

considered legal. Finally, a preliminary workspace was built using only the legal points.
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Figure 5.3: Tridimensional (left) and Frontal (right) views of workspace obtained by all

legal points.

5.2.3. Second Potential Workspace

To have greater spatial resolution, a second batch of simulations was run. The vertical

layers were at a distance of 1 mm, and the distance between consecutive spiral loop was

also 1 mm. This time the potential workspace was a smaller hollow cylinder: the height

was reduced to include just the preliminary workspace plus 5 mm on top and bottom (the

vertical resolution of the preliminary workspace), and the minimum radius of the spirals

was at the closest singular point minus 10 mm (the radial resolution).

5.3. Results

Similarly as done before, the singular points were eliminated considering where the torque

in any of the motor was greater than 10 Nm. The resulting workspace is bowl-shaped

with three hemispherical carving on the top. Figure 5.3 shows the boundary of the points

of the workspace.

The largest motion range in the xy plane is at z = −312 mm, where the maximum distance

from the workspace axis is 202 mm, but some point in this plane are unreachable. The

largest circle constituted of only legal points is at z = −342 mm, and has a diameter of

177 mm. In the layers shown in Figure 5.4 is clearly visible the third-order rotational

symmetry about the vertical axis passing through the end-e�ector at zero position. The

workspace distortions are placed at 120 deg, and coincide with the position of the joints.
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Figure 5.4: Legal points on the spirals travelled by the end-e�ector in di�erent z planes.
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Figure 5.5: Tridimensional (left) and Frontal (right) views of the simpli�ed workspace

obtained by revolution of the minimum legal radius.

Nonetheless, most of the workspace has axial symmetry, therefore its de�nition can be

greatly simpli�ed by discarding some points and expressing the radius as a function of z.

5.4. Geometric Simpli�cation of the Workspace

For simplicity's sake the workspace can be approximated to an axisymmetric volume

obtained by revolution of the curve R(z) representing the distance from the revolution

axis. At each layer zi the radiusR(zi) must be the largest containing only legal points. The

curve R(z) is shown in Figure 5.6. In this way the radial symmetry is lost (because there

might be farther reachable points), and of course the volume of the workspace is reduced.

Figure 5.5 shows the approximated axisymmetric workspace obtained by revolution.

An even simpler geometry is similar to those of the Delta robots in Figure 1.6, and with

the nominal workspace in Figure 2.4. It consists in a cylinder with two di�erent cone

trunks on its bases. This geometry can be obtained by revolution of the curve shown in

Figure 5.6. The �nal workspace volume is shown in Figure 5.7.

The latter simpli�ed workspace will be used for all the forthcoming work.

5.5. Comparison with the 6dof Nominal Workspace

The nominal workspace of the M-1iA/0.5A was obtained from the Fanuc Roboguide soft-

ware. Figure 5.8 shows it along with the simpli�ed workspace computed for the rigid wrist
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Figure 5.6: Radii used for the simpli�ed workspaces. Blue: �rst approximation. Orange:

second approximation, using straight lines.

Figure 5.7: Tridimensional (left) and Frontal (right) views of the second simpli�ed

workspace obtained by revolution of straight lines in Figure 5.6.
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Figure 5.8: Tridimensional (left) and Side view (right) of the nominal workspace of the

M-1iA/0.5A (blue) and the simpli�ed workspace for the rigid wrist simpli�ed model (red).

model. The �rmer is much larger than the latter due to the greater range of mobility

granted by the rotation of theWrist. Nonetheless, the latter develops partly outside of the

nominal workspace. This might be simply due to the fact that the robot manufacturer

declare a nominal workspace smaller than that considered legal in this analysis. Finally,

as expected the workspaces are not coaxial: the small workspace is centred in the end-

e�ector centre in the zero position, while the large workspace is centred in theWrist center

in the zero position.
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6| Direct and Inverse Kinematics

Once a workspace for the rigid Wrist model was available, it was possible to undertake

some analysis of the behaviour of the robot. The inverse kinematics and the di�erential

inverse kinematics are of paramount importance for the use of any robot, as long as the

direct problems. Therefore the model was used �rst to derive the relation between points

in the workspace and the corresponding positions in the joint space; then to compute the

Jacobian. The Jacobian was used to solve the di�erential kinematics problems, to �nd

singularities and to compute the manipulability indexes.

6.1. Simulation

The end-e�ector was moved to n = 17 981 points forming a grid within the workspace.

The distance between two consecutive points in the z direction was 4 mm, while the

resolution in the x and y direction was 8 mm. These values were chosen in order to divide

the workspace into approximately 25 to 35 slices in each direction. A simulation with a

�ner resolution would have been extremely time consuming.

These points were collected in a n× 4 matrix (one column for the time, three for the posi-

tion) used by the From Workspace block to control position of the end-e�ector. Figure 6.1

shows the workspace and the corresponding points in the joint space.

6.2. Direct and Inverse Kinematics Problems

The output of the simulation consisted of two matrices with the actual position of the

end-e�ector and the corresponding con�guration, namely the angles of the motor joints.

These two matrices can be used to solve both the direct and inverse kinematics problem

by using them as lookup tables. In particular, letting E and Q be the working space and
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Figure 6.1: Workspace (left) and Joint space (right). Three planes are highlighted: on the

top images they correspond to the end-e�ector in the planes: z = −340 mm (blue), z =

−380 mm (orange) and y = 0 mm (red). On the bottom images the planes corresponds

to the zero position of J1 (blue), J2 (red) and J3 (orange).
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the joint space matrices1, the Matlab command2

interp3(E(:,1), E(:,2), E(:,3), Q(:,k), x, y, z)

returns the motor angle of joint k to place the end-e�ector in the point (x, y, z), thus

solving the inverse problem corresponding to Equation 1.6. While

interp3(Q(:,1), Q(:,2), Q(:,3), E(:,k), q1, q2, q3)

returns the position end-e�ector in direction k corresponding to the motors in con�gura-

tion (q1, q2, q3), thus solving the direct kinematics problem (1.2).

6.3. Jacobian and Di�erential Kinematics

The di�erential inverse kinematic problem can be solved by computing the Jacobian

matrix. The Jacobian is also useful for detecting singular points and evaluate the manip-

ulability in the workspace.

6.3.1. Computation of Jacobian

The end-e�ector position was interpolated across a three-dimensional grid in the joint

space, yielding three three-dimensional matrix: Ex, Ey and Ez for the position in x, y

and z respectively. The grid ranged from the minimum to maximum value for each motor

angle, with a step between each point of ∆q = 1 deg. For all the three joints the limits

were approximately −58.6 and +51.2 deg.

These matrices Ei are three-dimensional because each of them represents the direct kine-

matic function fi : R3 → R:

Ex(q1, q2, q3) ≈ fx(q1, q2, q3) = x

Ey(q1, q2, q3) ≈ fy(q1, q2, q3) = y

Ez(q1, q2, q3) ≈ fz(q1, q2, q3) = z

(6.1)

Subsequently, the gradient for each of the three Ei matrices was computed, yielding nine

three-dimensional matrices, corresponding to the nine elements of the Jacobian matrix
1E and Q have three columns. Every row of E is a point (x, y, z) in the working space, while every

row of Q is a point (q1, q2, q3) in the joint space. The command E(:,1) selects the �rst column of E,
thus the x coordinate of all points in the working space.

2Other commands such as scatteredInterpolant and griddata can also be used, and should be
preferred if the query points are matrices.
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function, where Jij : R3 → R:

∆Ei(q1, q2, q3)

∆qj
≈ Jij(q1, q2, q3) =

∂fi(q1, q2, q3)

∂qj
(6.2)

Finally the Jacobian elements were reshaped in the canonical form:

J(q1, q2, q3) =

Jx1(q1, q2, q2) Jx2(. . . ) Jx3(. . . )

Jy1(. . . ) Jy2(. . . ) Jy3(. . . )

Jz1(. . . ) Jz2(. . . ) Jz3(. . . )

 (6.3)

It must be noticed that not all points of the grid in the joint space can be reached by

the robot. Consequently, the unreachable points do not have a direct kinematic solution,

and the corresponding value in the Ei matrices is NaN (Not A Number). Any arithmetic

operation on a NaN returns NaN, therefore the Jacobian on the border of the workspace has

all or some NaN elements. These matrices are discarded in the subsequent computations.

6.3.2. Di�erential Kinematics Problems

To solve the forward kinematics problem, the Jacobian matrix function computed can be

used as in Equation 1.4 to obtain the velocities of the end-e�ector:ẋẏ
ż

 = J(q1, q2, q3)

q̇1q̇2
q̇3

 (6.4)

Since J(q1, q2, q3) is a 3×3 matrix, it can be easily inverted to solve the inverse kinematic

problem as per Equation 1.7: q̇1q̇2
q̇3

 = J−1(q1, q2, q3)

ẋẏ
ż

 (6.5)

J can be inverted only if it is full rank and its conditioning number is low.

6.4. Singularities

A singularity arises where the Jacobian fails to be full rank (1.1.9). The Jacobians com-

puted have rank equal to 3 in every point of the workspace, thus this workspace is free of
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Figure 6.2: Tridimensional (left) and Frontal (right) views of the points of the workspace

where the condition number of the Jacobian is greater than 103.

singularities.

Despite the Jacobians are full rank in every point, they are ill-conditioned in some regions

of the workspace. A very high condition number is an indicator of near-singularity of a

matrix. The condition number is equivalent µ2, as de�ned in Equation 1.19. The points

for which the Jacobian is ill-conditioned are shown in Figure 6.2. The location of ill-

conditioned Jacobians suggests to increase the minimum position of the workspace and

reduce the amplitude of the bottom cone.

6.5. Manipulability Ellipsoids

The velocity or force manipulability ellipsoid can be simply built from the Jacobian matrix

as shown in 1.1.9.

Once the Jacobian matrix J(q1, q2, q3) was known for every point of the workspace, the

eigenvalues and eigenvectors of JJT were computed. Finally, the volume index v and the

isotropy index µ were evaluated as per Equations 1.18 and 1.19. Before analysing the

results, the outliers were removed from v and µ3.

These indexes are di�cult to visualize from bidimensional images. Nonetheless, the Ap-

pendix A contains some �gure to show their value in the workspace. The pictures show a

large volume index in most of the workspace, which quickly decreases towards the bottom

of the bowl. The isotropy index changes linearly from nearly 1 on the top to a maximum

of 5.58.
3A value was considered an outlier if it is more than three scaled median absolute deviations. This is

the default method of the Matlab function rmoutliers [22].
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Figure 6.3: Comparison of the two proposed simpli�ed workspace. In red: workspace

obtained by revolution of the curve R(z) with the minimum legal radii. In blue: workspace

obtained by revolution of three straight segments.

The fact that the workspace is close to singularity in the bottom but not in the top, is

due to the last simpli�cation of the workspace operated in 5.4, which removed a lot of

volume from the top. This suggests that the top cone trunk can be safely extended to

increase the workspace. Figure 6.3 shows both the simpli�ed workspaces proposed in 5.4,

and depicted in the Figures 5.5 and 5.7.

As illustrated in 1.1.9, where µ� 1 the ellipsoids are compressed in a direction in which

the end-e�ector moves slowly but can withstand high forces. Instead, in the direction

of largest elongation the end-e�ector can move quickly, but has poor ability to bear

forces. These two directions are represented respectively by the eigenvectors of JJT with

lowest and highest associated eigenvalue. Figure 6.4 shows the aforementioned directions

for some ellipsoids in an horizontal plane close to the bottom of the workspace. It is

clear that the end-e�ector can easily move horizontally, but struggles to move vertically,

especially in the outer border, where µ is largest.
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Figure 6.4: Contour of ellipsoid isotropicity, and the longest and shortest directions of the

manipulability ellipsoids when the end-e�ector lies in the plane z = −415 mm.
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This analysis concerns how the forces acting on the end-e�ector are distributed across the

motors loads, and what is the load on the links. Since this work eschews any particular

trajectory planning, the investigation will regard only static forces, thus without inertia

due to accelerations.

When using a robot, the forces on the end-e�ector may have components in any of the

three directions. Therefore three simulations were run, in each a unitary force was exerted

on the end-e�ector in only one of the three directions.

Due to the well-known symmetry of the workspace (as discussed in 5.3), a cylindrical

coordinate system was used. The three directions were: radial (r), tangential (t) and

vertical (z), with the cylinder axis (r = 0) corresponding to the workspace axis.

The unitary forces were chosen under the assumption that the torque is a linear combi-

nation of the forces when the end-e�ector dwells in a certain pose. For example if the

force F1 applied in a certain point causes a torque T1, and the force F2 in the same point

causes T2, then αF1 + β F2 yields a response torque αT1 + βT2.

The motor torques are computed by Simulink using the inverse dynamic model of the

robot. Analytical formulas for structural forces were computed with a simple static equi-

librium balance, and were implemented in the Simulink model using appropriate blocks.

7.1. Static Equilibrium Analysis

Figure 7.1 shows an exploded view of Leg 2, identical to Leg 3. On the Figure are sketched

the force vectors acting on the joints in the plane where the Arms lye. The other forces

due to non-coplanarity of the Rods are supported by the reactions in A and B.

M is the torque on the motor in response to the loads on the end-e�ector, and the only

unknowns are the compression F of Arm 2, and the compression G of the Rod. They can

be obtained by a simple static equilibrium equation of Arm 1 and Arm 3:
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Figure 7.1: Exploded view of the components of Leg 2 or Leg 3 and the Wrist, with

the force vectors at the joint points. The forces outside the plane of the paper are not

represented. The compression of the Rod is 2G because there are two Rod elements per

Leg (only one is visible here).
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(a) (b)

Figure 7.2: Subsystems to compute forces F (left) and G (right) according to (7.3) and

(7.5). The input of the Divide blocks are vectors (on per Leg ), and it performs element-

wise division.

Torque balance of Arm 1 in A
M + ~a× ~F = 0

(7.1)
M − a sinαF = 0

Torque balance of Arm 3 in B
~c1 × ~F + ~c2 × 2~G = 0

(7.2)
c1 sinαF − c2 sin β 2G = 0

Where a, c1 and c2 are the distances between the hinges (in A and B) and the forces

application points, as per Figure 2.3. Their values are: a = 50 mm, c1 = 50 mm and

c2 = 100 mm independently of the Leg.

Therefore the forces are:

F =
M

a sinα

G =
1

2

c1
c2

sinα

sin β
F

=
1

2

c1
c2

M

a sin β

(7.3)

(7.4)

(7.5)

The result for Leg 1 is analogous and yields the same formulas.

The equations 7.3 and 7.5 were implemented in the Simulink model with the block logic

in Figure 7.2, and their result was saved by a To Workspace block.
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7.2. Measuring Procedure

The end-e�ector was moved across all the workspace using the direct dynamics model

setup. The points in workspace and joint space were the same used for the kinematic

analysis of Chapter 6. The points where the measures were undertook formed a 3D grid

in the workspace with a resolution of 4 mm in the z direction and of 8 mm in the x and

y direction. Three separate simulations were run, each with a force of 1 N in one of the

three directions.

To measure forces without accelerations, the motors were ordered to remain in the pre-

scribed position by specifying it twice in a row in the input matrix. In this way the From

Input interpolation algorithm did not interfere by moving the motors continuously. As

usual, the starting position of all the simulations was the zero con�guration. The matrix

containing the joint angles used in the From Workspace block had the following fashion:

0 ϕ0 ϑ0 γ0

t ϕ1 ϑ1 γ1

2 t ϕ1 ϑ1 γ1

3 t ϕ2 ϑ2 γ2

4 t ϕ2 ϑ2 γ2

5 t ϕ3 ϑ3 γ3

6 t ϕ3 ϑ3 γ3
...

(2n− 1) t ϕN ϑN γN

2n t ϕN ϑN γN

Where t = 0.1 s is the time resolution used, n = 17 981 is the number of points analysed,

and the subscript 0 denotes the stating position.

The matrix of forces acting on the end-e�ector was di�erent for every simulation, de-

pending on the direction engaged. The �rst column contained the initial and �nal time,

while the following three columns hosted respectively the force in radial, tangential and

vertical direction. These three forces would be later converted during the simulation into

the Cartesian components used by the model. Since the force is constant across all the

workspace, there are only two rows with the same force values, therefore any interpolation

returns the same force vector1. For clarity's sake the three force input matrices are here

reported:
1Actually a single row would have produced the same result, because values can be hold constant by

Simulink after the last timestamp (3.5.1). But the approach undertook here was deemed more logic and
robust.
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Figure 7.3: Blocks used to convert forces on the end-e�ector in cylindrical coordinate

system to Cartesian coordinate system. As visible, the Transform Sensor shares the same

follower with the 6-DOF Joint, but has a di�erent base, namely a point on the central axis

of the cylindrical reference frame.

0 1 0 0

2n t 1 0 0

0 0 1 0

2n t 0 1 0

0 0 0 1

2n t 0 0 1

Radial force Tangential force Vertical force

7.2.1. Conversion of Cylindrical to Cartesian Coordinates

The conversion of force components from cylindrical to Cartesian coordinates is, of course,

dependant on the position of the end-e�ector with respect to the axis of the cylindrical

frame (r = 0). The change of coordinate system can be simply performed by a rotation

in the xy plane using the following rotation matrix:FxFy
Fz

 =

cosϑ − sinϑ 0

sinϑ cosϑ 0

0 0 1


FrFt
Fz

 (7.6)

Where ϑ is the azimuth angle between a frame coincident with the cylinder axis and the

end-e�ector, as shown in Figure 7.4. It can be computed as the four-quadrant arctangent

(atan2) of the distance in y and x between the end-e�ector and the workspace axis.

The described conversion was implemented in the Simulink model using a Transform

Sensor to measure the distances, a Trigonometric Function to compute ϑ, and an Interpreted

MATLAB Function block to create the rotation matrix that multiplies the From Workspace

input. The blocks are shown in Figure 7.3. The base and follower frames used by the

Transform Sensor are visible in Figure 7.4.

Using the Azimuth output of the Transform Sensor would have been a more straightforward



68 7| Static Forces

ϑ

J1

J2

J3

Fr

Ft

Figure 7.4: Top view of the robot in the Mechanics Explorer, in which the base and

follower frames used by the Transform Sensor are shown. The angle ϑ between the frames

is the azimuth angle. Radial and Tangential forces act in the directions shown. The

position represented is (J1 = +8, J2 = −29, J3 = +11) deg.
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approach, but the block throws an error that stops the simulation when the base and

follower frames coincide. Instead, the atan2 algorithm implemented in the Trigonometric

Function block returns 0 when the frames are coincident.

7.2.2. Angle Measurement

The equations 7.3 and 7.5 require the knowledge of the angle α between Arm 1 and Arm 2,

and the angle β between Arm 3 and the Rod projected in the plane where the Arms lye.

α can be simply measured using the Position output of the Revolute Joint blocks in the

point C.

The measure of β is not straightforward due to the Spherical Joint in E, which allows

rotations of the follower frame about all axis of the base frame. The base frame belongs

to Arm 3, and the follower frame belongs to the Rod. Figure 7.5 shows the position and

orientation of the two frames. β is only the rotation in the plane of the paper, thus

about the y axis of the base frame. The Spherical Joint exploits the spherical primitive

joint, thus its sensor output is a quaternion representation of the rotation. To obtain

β, the quaternion has to be converted to a rotation sequence whose �rst axis is y. This

procedure is conveniently performed by a Quaternions to Rotation Angles block from the

Aerospace Blockset add-on [20]. The rotation sequence used was yxz. Since the angle β

is the same for both Rods in the parallelogram mechanism, it is measured for only one

of them. Figure 7.6 shows how the computation of β was implemented in the Simulink

model for J1.

It is worth to notice that the e�ort of smartly aligning reference frames in the post-

processing of the imported model (4.3.1) was now compensated.

7.2.3. Isolation of Static Results

The output of the simulation consisted in N×3 matrices with the position in the working

space, position in the joint space, motor torques, and forces F and G for each Leg . Every

matrix had three version: one per each force direction.

Before the analysis, the simulation output was �ltered to remove non-static points. In

particular, the following constraints had to be satis�ed:

� norm of acceleration in the joint space: ‖q̈‖ < 10−6 rad/s2 ;

� norm of velocity in the joint space: ‖q̇‖ < 10−4 rad/s ;
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(a) (b)

(c) (d)

Figure 7.5: Orientation of the frames of the Spherical Joint for J1: base (on the left-hand

side) and follower (on the right-hand side), seen from the side (top pictures) and from the

front (bottom pictures). The position represented is (J1 = −27, J2 = −39, J3 = +17) deg.
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Figure 7.6: Conversion of the quaternion rotation of the Spherical Joint connecting Arm 3

and Rod into angle β.

� L1 distance2 of consecutive points in working space: ‖∆x‖1 < 10−2 mm;

� L1 distance of consecutive torques: ‖∆T‖1 < 10−4 Nm.

The threshold values were decided based on empirical experience. Only approximately

35% of the point acquired proved to be static according to the above constraints.

The values preserved after the �lter were clustered in groups with constant values, which

were then averaged into a single element. Figure 7.7 shows the data before and after

�ltering.

7.3. Results

7.3.1. Motor torques

The extreme values of motor torques are reported in Table 7.1. While it is evident the

similarity of J2 and J3 in the case of tangential and vertical load, the same does not hold for

the radial load. By comparing the values of the table vertically, it appears that J2 behaves

di�erently. This is also clear by confronting the contour plot of J2 and J3 in Figure B.2,

or the histograms ofM . J2 and J3 have overlapping histograms for tangential and vertical

force (Figures B.7 and B.13), but not for the force in radial direction (Figure B.1). A

possible reason is a slight misalignment of the workspace axis with respect to the actual

centre between the Legs. A more likely reason could be an accidental mistake in the code

used to post-process the simulation output.
2The L1 distance (or L1 norm, or Manhattan distance) is ‖∆x‖1 = ∆x + ∆y + ∆z, while the norm

refers to the L2 distance (or L2 norm, or Euclidean norm) (‖q‖ ≡ ‖q‖2 =
√
q21 + q22 + q23).
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Figure 7.7: Sample of output data before and after �ltering: the straight thin lines

represent original values, and the points represents �ltered values. These �ltered values

create well separated regions whose mean value is shown by coloured stars (?). The ◦ and
× symbols on the zero axis designate respectively the begin and end of a region. Only the

position in working space and torque are shown here, but the same process was applied

to all the outputs.

Max and Min Torques

M

J1 [Nm] J2 [Nm] J3 [Nm]

Radial load
max 0.44 0.48 0.35
min −0.12 −0.19 0.00

Tangential load
max 0.47 0.41 0.41
min −0.23 −0.04 −0.04

Vertical load
max 0.29 0.29 0.29
min −0.08 −0.05 −0.05

Table 7.1: Extreme value of the motor torques in response to unitary load in the three

directions.
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Max and Min Forces

F G

J1 [N] J2 [N] J3 [N] J1 [N] J2 [N] J3 [N]

Radial load
max 11.25 13.92 9.50 2.22 2.42 1.82
min −4.55 −5.95 −0.11 −1.06 −1.47 −0.03

Tangential load
max 13.32 10.46 10.48 2.41 2.06 2.08
min −7.90 −1.43 −1.44 −1.80 −0.36 −0.36

Vertical load
max 8.31 8.91 8.86 1.50 1.49 1.49
min −3.35 −1.96 −1.96 −0.76 −0.48 −0.48

Table 7.2: Extreme value of the forces F and G in response to unitary load in the three

directions.

The motor torques in response to a unitary force are six-dimensional data structures. An

easy way to visualize them is to consider just the points on a plane of the workspace, and

show the corresponding torques as three surfaces. The Appendix B contains some �gures

that show the motor response to loads on the end-e�ector.

As one could expect, the three Legs have similar behaviour, and in particular J2 and J3

are specular. The contour plots of max |Mi| in Appendix B show a minimum value slightly

on the −y direction from the centre of the workspace. This is likely due to the o�set of

the translational workspace used for this analysis and the nominal workspace.

7.3.2. Distribution of Forces on the Structure

The extreme values of forces F and G are reported in Table 7.2. As for the motor torques

in Table 7.1, J2 and J3 shares similar values except for the radial load due to inconsistent

values of forces in J2.

The value of the forces across the workspace for di�erent loads is illustrated in the �gures

of the second part of Appendix B.
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8| Conclusions and future

developments

In this thesis the Fanuc M-1iA/0.5A robot was modelled in Simulink and some of its

operational characteristics were analysed. In particular the work focused on determining

the workspace of the robot with �xed-attitude Wrist, solving the kinematics problems by

building lookup tables, and computing the motor torques and structural forces.

The analysis of the workspace revealed that it could be larger than the nominal workspace

declared by the manufacturer. The largest possible translational workspace has a complex

shape with a third-order radial symmetry, thus two simpli�ed version of the workspace

were proposed. The end-e�ector has decent manipulability in a vast area.

The model Simscape Multibody assembler was exploited to solve the inverse kinematic

problem, and ultimately to build lookup tables useful to solve the forward and inverse

problems by interpolation. At the same time, the result were used to visualize the joint

space and its range. It was found that the limits of a joint motion depends on the position

of the other joints. The Jacobian was evaluated in every point of the joint space in order

to solve the di�erential kinematics problems. The Jacobian is always full-rank, but in

some point on the workspace border it is ill-conditioned, thus close to singularity.

A static equilibrium analysis of the robot Legs was used to identify how forces transmit in

the structure from the end-e�ector to the motors. The motor torque, and the compression

forces of the components were evaluated in three load scenarios: radial, tangential or

vertical force with respect to the Wrist central axis. This analysis did not account for

inertial forces. The result shows how the aforementioned forces vary in the workspace in

the three scenarios. It was found that J2 and J3, which are geometrically identical, have

specular response, except for radial loads. As regarding J1, it supports most of the load,

and has larger extreme values, both in positive and negative direction.

The results of this thesis advanced the academic knowledge about the Fanuc M-1iA

robots. Another important achievement was the creation of a framework to study the
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robot operational characteristics from a CAD drawing. The same analysis can be under-

taken on di�erent models with minor edits, or can be scaled to more than three dof. The

framework could also be expanded to analyse more characteristics of the robot.

Future works on this topic could expand this study by analysing more characteristic, such

as dynamic performances. The Simulink model has some possibility of improvement:

for instance sti�ness, damping and friction of the joints could be modelled. A great

improvement would be represented by modelling also the Wrist rotation. Finally, future

work may focus on co-simulation to validate the results here presented.
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A| Manipulability

In this section of the document are reported some images to show the spatial distribution

of the isotropy index µ and the volume index v of the manipulability ellipsoids, as well

as the directions of the longest and shortest ellipsoid semi-axes. The �rst part shows

tridimensional contour plot, while the second has some 2D contour plot in some planes.

The planes used for slicing the workspace are shown in Figure A.1.

The contour plot of isotropy features vectors representing some of the eigenvector with

the largest and smallest associated eigenvalue. The vectors are scaled by their eigenvalue,

therefore the two vectors departing from a point where µ ≈ 1 have the same length.

Despite the three dimensional vector are not representable in the image, there are clearly

distinguishable patterns in eigenvectors direction.
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(a) Plane x = 42.6 mm. (b) Plane y = 0 mm.

(c) Plane z = −340 mm. (d) Plane z = −400 mm.

Figure A.1: Cutting planes used to visualise isotropy and volume in the workspace.
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Figure A.2: Tridimensional contour of the ellipsoid isotropy index µ.

Figure A.3: Tridimensional contour of the ellipsoid volume index v.

Figure A.4: Isotropy index µ and volume v on the plane x = 42.6 mm.
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Figure A.5: Isotropy index µ and volume v on the plane y = 0 mm.

Figure A.6: Isotropy index µ and volume v on the plane z = −340 mm.
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Figure A.7: Isotropy index µ and volume v on the plane z = −400 mm.
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B| Torques and Forces

In this Chapter the result on the static force analysis are presented. The e�ect of radial,

tangential and vertical load is presented separately. Every section has an histogram, a

tridimensional contour plot, and a curve and contour plot representing speci�c planes of

the workspace. These planes are the same used in Appendix A, shown in Figure A.1.

B.1. Motor torques

B.1.1. Radial Load

Figure B.1: Histogram of motor torques with radial unitary load.
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Figure B.2: Volumetric contour plot of torque in response to a radial unitary load on the

end-e�ector.

(a) Torque curves (b) Torque contours

Figure B.3: Motor torque in response to a radial unitary load when the end-e�ector is in

the plane x = 42.6 mm.
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(a) Torque curves (b) Torque contours

Figure B.4: Motor torque in response to a radial unitary load when the end-e�ector is in

the plane y = 0 mm.

(a) Torque curves (b) Torque contours

Figure B.5: Motor torque in response to a radial unitary load when the end-e�ector is in

the plane z = −340 mm.
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(a) Torque curves (b) Torque contours

Figure B.6: Motor torque in response to a radial unitary load when the end-e�ector is in

the plane z = −400 mm.
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B.1.2. Tangential Load

Figure B.7: Histogram of motor torques with tangential unitary load.

Figure B.8: Volumetric contour plot of torque in response to a tangential unitary load on

the end-e�ector.
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(a) Torque curves (b) Torque contours

Figure B.9: Motor torque in response to a tangential unitary load when the end-e�ector

is in the plane x = 42.6 mm.

(a) Torque curves (b) Torque contours

Figure B.10: Motor torque in response to a tangential unitary load when the end-e�ector

is in the plane y = 0 mm.
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(a) Torque curves (b) Torque contours

Figure B.11: Motor torque in response to a tangential unitary load when the end-e�ector

is in the plane z = −340 mm.

(a) Torque curves (b) Torque contours

Figure B.12: Motor torque in response to a tangential unitary load when the end-e�ector

is in the plane z = −400 mm.
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B.1.3. Vertical Load

Figure B.13: Histogram of motor torques with vertical unitary load.

Figure B.14: Volumetric contour plot of torque in response to a vertical unitary load on

the end-e�ector.



B| Torques and Forces 95

(a) Torque curves (b) Torque contours

Figure B.15: Motor torque in response to a vertical unitary load when the end-e�ector is

in the plane x = 42.6 mm.

(a) Torque curves (b) Torque contours

Figure B.16: Motor torque in response to a vertical unitary load when the end-e�ector is

in the plane y = 0 mm.
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(a) Torque curves (b) Torque contours

Figure B.17: Motor torque in response to a vertical unitary load when the end-e�ector is

in the plane z = −340 mm.

(a) Torque curves (b) Torque contours

Figure B.18: Motor torque in response to a vertical unitary load when the end-e�ector is

in the plane z = −400 mm.
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B.2. Structural Forces

B.2.1. Radial Load

Figure B.19: Histogram of F (left) and G (right) with radial unitary load on the end-

e�ector.
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Figure B.20: Volumetric contour plot of F (left) and G (right) with a radial unitary load

on the end-e�ector.
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(a) Force F curves (b) Force F contours

(c) Force G curves (d) Force G contours

Figure B.21: Forces F and G with a radial unitary load when the end-e�ector is in the

plane x = 42.6 mm.



100 B| Torques and Forces

(a) Force F curves (b) Force F contours

(c) Force G curves (d) Force G contours

Figure B.22: Forces F and G with a radial unitary load when the end-e�ector is in the

plane y = 0 mm.
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(a) Force F curves (b) Force F contours

(c) Force G curves (d) Force G contours

Figure B.23: Forces F and G with a radial unitary load when the end-e�ector is in the

plane z = −340 mm.
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(a) Force F curves (b) Force F contours

(c) Force G curves (d) Force G contours

Figure B.24: Forces F and G with a radial unitary load when the end-e�ector is in the

plane z = −400 mm.
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B.2.2. Tangential Load

Figure B.25: Histogram of F (left) and G (right) with tangential unitary load on the

end-e�ector.
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Figure B.26: Volumetric contour plot of F (left) and G (right) with a tangential unitary

load on the end-e�ector.
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(a) Force F curves (b) Force F contours

(c) Force G curves (d) Force G contours

Figure B.27: Forces F and G with a tangential unitary load when the end-e�ector is in

the plane x = 42.6 mm.
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(a) Force F curves (b) Force F contours

(c) Force G curves (d) Force G contours

Figure B.28: Forces F and G with a tangential unitary load when the end-e�ector is in

the plane y = 0 mm.
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(a) Force F curves (b) Force F contours

(c) Force G curves (d) Force G contours

Figure B.29: Forces F and G with a tangential unitary load when the end-e�ector is in

the plane z = −340 mm.
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(a) Force F curves (b) Force F contours

(c) Force G curves (d) Force G contours

Figure B.30: Forces F and G with a tangential unitary load when the end-e�ector is in

the plane z = −400 mm.
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B.2.3. Vertical Load

Figure B.31: Histogram of F (left) and G (right) with vertical unitary load on the end-

e�ector.
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Figure B.32: Volumetric contour plot of F (left) and G (right) with a vertical unitary

load on the end-e�ector.
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(a) Force F curves (b) Force F contours

(c) Force G curves (d) Force G contours

Figure B.33: Forces F and G with a vertical unitary load when the end-e�ector is in the

plane x = 42.6 mm.
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(a) Force F curves (b) Force F contours

(c) Force G curves (d) Force G contours

Figure B.34: Forces F and G with a vertical unitary load when the end-e�ector is in the

plane y = 0 mm.
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(a) Force F curves (b) Force F contours

(c) Force G curves (d) Force G contours

Figure B.35: Forces F and G with a vertical unitary load when the end-e�ector is in the

plane z = −340 mm.
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(a) Force F curves (b) Force F contours

(c) Force G curves (d) Force G contours

Figure B.36: Forces F and G with a vertical unitary load when the end-e�ector is in the

plane z = −400 mm.
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