POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE

E DELLINFORMAZIONE

EXECUTIVE SUMMARY OF THE THESIS

A Transfer-learning enabled Transformer for time-series prediction

LAUREA MAGISTRALE IN COMPUTER SCIENCE - INGEGNERIA INFORMATICA

Author: DiEco Riva
Advisor: PrRorFr. MANUEL ROVERI
Co-advisor: ALESSANDRO FALCETTA

Academic year: 2020-2021

1. Introduction

Thanks to the availability of large collections of
data and an increasing interest on the task, the
Time Series forecasting problem became a key
aspect inside a lot of realities like in economics,
finance, production, advertising, and social poli-
cies.

Deep Neural Networks (DNNs) are some of the
most recently introduced techniques in the Ma-
chine Learning field. These models brought
great results in time series analysis, performing
particularly well when a large enough amount of
data is available.

Among these, te last innovation is an attention
based model: the Tranformer. It has been devel-
oped to perform Natural Language Processing
(NLP) tasks, in which, it represents the current
state of the art.

The first objective of this work is to implement a
Transformer-based model able to effectively in-
crease the performance in the Time Series pre-
diction task in different domains.

Moreover, still there are a lot of cases where
training data is expensive or difficult to collect.
Therefore, we tested how a transfer learning ap-
proach can improve the results when the tar-
get dataset has a low number of samples but we
have at our disposal a larger correlated dataset

on which perform the training, and then, a fine-
tuning of the model.

2. Background

A collection of data ordered by timestamp is de-
fined as time series: for example the temperature
of the previous days, the COVID-19 spreading
or economic indicators. We are going to train a
model able to find patterns that allows to pre-
dict the next value of a time series. It is, given
X = [X1,...,Xyn], an ordered set of real values,
we want to obtain the best possible predictor
for X411, i.e. Xn_,_l.

Historically, this task has been performed by sta-
tistical models, among which one of the most
common is the Autoregressive Integrated Moving
Average (ARIMA) model. The three modules
of which it is composed (Autoregression, Inte-
gration, Moving Average) allow to handle non-
stationary time series, thanks to the differenc-
ing step, and then to interpret samples based
on their relationship between the past obser-
vation and their moving average. During the
90’s with the spreading of the Artificial Intel-
ligence (AI) and the coming of Deep Learning
(DL), Recurrent Neural Networks (RNNs) [11]
have been an important focus of research and
development for processing sequence of values.

In RNNs each output is the result of a function
applied on the previous output with the same
rule, such that we can create a cyclic graph in
which the actual value of a variable influence
the future value of the same variable. It general-
izes the auto-regressive concept of ARIMA mod-
els, using distributed hidden layers that store
information with non-linear dynamics. How-
ever, to train an RNN on long sequences, we
must run it over many time steps making the
RNN a very deep network resulting in vanish-
ing gradient problems. To mitigate this draw-
back, Long Short Term Memories (LSTM) |[§]
introduce self-loops to produce paths where the
gradient can flow. More specifically, each cell is
composed by four main layers:

e a tanh activation that receives the input
and the previous state.

e forget gate: controls which part of the pre-
vious long-term state can be erased.

e input gate: controls which part of the main
layer output should be added to the long-
term state.

e output gate: controls which part of the
long-term state should be read and output
at the current time step.

This model has been so successful in a mul-
titude of applications like power consumption
[9], trajectory prediction [1]|, traffic forecast
[15].financial time series forecasting [5] or in
medical fields [6]. However it still has an hard
time learning long-term patterns in which a data
information have to be carried over many steps.
The last innovation in DL field is the attention
mechanism introduced in [3]: it focuses on the
appropriate part of the time series at each time
step, thus reducing the path from an input to
its dependencies, such that the short term mem-
ory limitations of RNNs have much less impact.
Initially applied in neural machine translation
(NMT), this mechanism become a fundamental
operation in a sequence to sequence architecture,
allowing the decoder module to receive not only
the last encoder hidden state, but also all of its
inputs. This will make the decoder determine
which part of the time series to focus each time
step.

In 2017, Vaswani et al. [12] proposed a
sequence-to-sequence architecture called Trans-
former which improved the state of the art in
NMT without using any recurrent or convolu-

tional layers, just the attention mechanism. The
main advantages are that this architecture is
faster to train and easy to parallelize, but in-
troducing a space complexity problem with re-
spect to the input size. Since its release, initially
designed to handle NLP problems, the Trans-
former model has been subject of a series of fur-
ther studies that increased performances and ex-
plored applications on new tasks and fields: in
[10] the authors proposed a convolutional self-
attention to further improve the accuracy and a
sparse attention mechanism to reduce the space
complexity; recently [4] a Longformer model has
been introduced to address the problem of the
space complexity: it scales linearly with the se-
quence length. It is a drop-in replacement for
the standard self-attention and combines a lo-
cal windowed attention with a task motivated
global attention obtaining state of the art results
on document tasks; [14] applied the Transformer
model as case-study in a time series prediction
task underlying how this model can be a promis-
ing alternative to the previous state of the art
reached by LSTM.

2.1. Transfer learning

The idea is to store the knowledge about a spe-
cific task in a model that will be reused for an-
other task, different but similar to the previous
one. The main advantage is that in this way
it is possible to perform tasks on small datasets
by exploiting the inner dependence between two
similar dataset. This kind of approach had a
great success in the image classification and in
the NLP tasks: in [7], the authors demonstrate
the effectiveness of self-supervised pretraining
on a large corpus, using a transformer-like ar-
chitecture. Furthermore recent study of San-
dra Wankmuller [13] analysed transformer-based
models for transfer learning in the classification
task. However, the majority of studies underline
how important is the correct choice of the train-
ing dataset: choose a dataset that is not corre-
lated enought with our target will likely bring
to worse results with respect to training directly
on the target one, since the model would not
be able to correctly interpret patterns and use
the knowledge acquired by the training dataset.
Our aim is to proceed in this direction, evalu-
ating how a transformer model can benefit from
transfer learning in a time series prediction task.

3. The model

Our transformer model is based on the origi-
nal transformer proposed by [12| composed by
an embedding, an encoder and a decoder layers

(Fig.1).

Terony)
Embedding Embedding

Ent

']
L — Token)
Embedding

[

~ Token))
Embedding

Figure 1: Proposed Transformer-based model
Representation of the proposed model with input
and output sequences.

3.1. Embedding

Initially, the raw input sequence needs to be
transformed in a vector with size equal to the
model’s dimension. Our aim is not only to con-
sider the positional dependencies, but also to be
able to catch temporal dependencies that varies
from a specific application case to another. To
achieve this behaviour, we have defined the Em-
bedding Layer as the sum of three main compo-
nents:

e Token Embedding: it is a 1D-convolution
(or temporal convolution) that takes the in-
put vector over a single temporal dimen-
sion to produce a tensor in output with size
equal to the dimension of the model.

e Positional Embedding: it is a Dense layer
that encodes the position of a word in a
sentence in a unique value, such that the
model is able to take into consideration the
order of the feature’s values.

e Temporal Embedding: it encodes the times-
tamp value of the input couple feature-
timestamp, and returns a vector of float val-
ues that can be used to help the model to
catch temporal patterns. Our implemen-
tation allows two different configurations:
the Fized configuration, that return a dense
vector of fixed and unique values for each
value in the input sequence; it is depen-

dent by the position, so the same position
in input will have the same codification.
And the Dynamic configuration in which
the dense vector is no more dependent by
the input position but only by the date
value.

3.2. Encoder

The Encoder layer is the component of our
model that has to understand the context of
the current input. In our work it means that it
should figure out the environment, from which
the last observation has been generated, look-
ing at the past values. As in the literature it is
composed of 4 modules stacked as follow:

e multi-head self attention module: this is

the most relevant component on which the
model is based on. One of the weakness
of the canonical attention mechanism is its
limit to catch local context, that makes the
model more vulnerable to anomalies [10].
So, in this work, we compare the perfor-
mances in terms of loss between the original
matrix multiplication, with a convolution of
kernel size k and stride 1.
The input pass through each head in paral-
lel, to output a series of attention matrices
that are first concatenated and then linearly
transformed by a fully connected layer.

e dropout and normalization layers.

e feed forward layer: it is a functional layer
whose weights are learned during training
and the same matrix is applied to each to-
ken’s position. It processes the output of
the previous module to better fit the next
attention layer.

e dropout and normalization layers.

By construction, it is possible to stuck N en-
coder layers in series (in our setting we choose
N =1).

3.3. Decoder

The Decoder receives both the Encoder output
and the portion of the input sequence that con-
tains the last observation. The Decoder is com-
posed by a stack of the layers already described
in the previous subsection. In the implemen-
tation we adopted the same strategies and de-
cisions analyzed before. After the embedding
transformation, the Decoder input sequence is
passed into the first multi-head attention mod-

ule. After the canonical dropout and normal-
ization layers, there is another Multi-Head At-
tention layer that receives the outputs of the
Encoder and the previous Attention that are
mapped together to find out the relation be-
tween the context and the current observation.
Finally the resulting tensor is fed into the last
fully connected layer that produces the output of
the model that will be post-processed to return
in the source domain.

4. Data and training

We used three different dataset to catch the per-
formances of the model in different kind of do-
mains:

e Covid-19 cases: it is a dataset of small
size that registers the number of new daily
cases.

e Stock exchanges: it is a dataset with time
series that involves some major stocks that
come in the S&P500 ETF. In our study we
will consider the "closing daily price" as fea-
ture to analyze.

The datasets are initially differenced with a lag
of s steps, where s changes based on the case
study. Then the from the resulting sequence
we construct a tensor of shape (batch size, in-
put_length, feature_size). Then the model’s in-
put is a window of that tensor with length equal
to the input length hyperparameter and is com-
posed by couples (T3, ts;): Ty is the feature’s
value at time t, while ts; is the timestamp cor-
responding to the observation at time ¢.

Since this choice would involve to be in a multi-
variate problem, we set a first embedding phase
that produces a codified float value representing
the timestamp. This one will be then summed
up with the other feature to incorporate the
timestamp inside the feature value as a one-
dimensional problem.

During learning the original dataset is divided in
two consecutive subsets A and B. Since we are
going to compare our prediction metrics with
those of an our previous work [2], we set the
learning and prediction phases works as follow:

1. initialize the model

2. train on A.

3. the trained model predict the next time
step.

4. the prediction is evaluated against the
known value from B.

5. the known value is then included in A, up-
dating mean and standard deviation on A
to adjust the standardization.

6. the process is repeated until A coincides
with the original dataset.

In a typical training setup we want to predict the
next value, considering the 28 previous steps as
in (fig 2): given the encoder input [X;...X22] and
decoder input [Xs;...X2s] the model will predict
Xog.

T(enkt) | Tehk) | Tiehks1) Tent) | Tem | Tensen (1) T T(=1)

fsfthket) | tstihk) [fs(bhoket) fsiht) | tsh) | ts{thet) tsi1) ts(t) ts(t1)

Input
sequence

Figure 2: Input window
In the figure the input of our model: the se-
quence length is a window of size k+h-1 that
flows over the time series step by step. We have
that k is the length of the Encoder input while
h is the length of the Decoder one.

Lastly, our aim is also to test how the model
performs in a transfer learning scenario. What
we do is to perform a Dynamic Time Warping
algorithm over multiple datasets to calculate the
distance measure between them. It produces a
similarity metric able to minimize the effects of
shifting and distortion in time by allowing “elas-
tic” transformation of time series in order to de-
tect similar shapes with different phases.

This kind of approach allow us to test how the
difference between two time series affect the per-
formances of transfer learning following the con-
siderations made in the paragraph 2.1.

In this work, then, we perform and compare
three different scenarios:

e train the model on the original dataset.

e train the model on the original dataset and
then use this model to predict another time
series.

e train the model on the original dataset and
then fine tuning only the Decoder module
over another time series.

5. Results

In this section we present the performances of
our algorithm in the various configurations that
we have mentioned in the previous sections.
First of all in Table.1 we report Mean Abso-
lute Error (MAE) of our transformer’s predic-

COVID-19 ITA AAPL
range 7224 43.65 - 143.16
TS length 495 1250
transformer 364.12 0.7266
TIMEX-prophet 489.05 2.5586
TIMEX-exp.smooth 380.33 1.3221
Persistence model / 0.7749

Table 1: Prediction results
On the rows the models used for the comparison over the three chosen dataset: the Persistence
Model has been tested only in the stock dataset due to its relevance in this case study. To
measure our accuracy we calculate a Mean Absolute Error (MAE) over the prediction and the

ground truth.

COVID-19: ITA
BRA \ GBR
range 115128 54183
length rate 30 50 30 | 50
TL no fine tuning | 20344.2 | 18939.0 | 2985.6 | 2230.8
TL with fine tuning | 8662.4 | 5595.9 | 2152.9 | 2346.4
no TL 7154.4 | 3905.5 | 2625.7 | 2051.6

Table 2: Transfer Learning COVID-19

In the table the results of the transformer model over a portion of the target dataset which length
is expressed in 1. The values in cells are the MAE in the three different analyzed situations.

tions over the two datasets, in comparison with
the performance of the Prophet and Exponential
Smoothing models analyzed in an our previous
study [2].

The model produces performances similar to
our benchmark on the COVID-19 dataset while
it outperforms the other models on the AAPL
time series. This behaviour id probably due to
the restrict number of sample in the COVID-19
dataset that limits the performance of a complex
model.

Then we tested how the Transformer can exploit
the transfer learning task, which results follows
in Table.2. The DTW test returns that the GBR
and AMZN are the most similar target datasets
to the ITA and AAPL sources respectively, while
BRA and ORCL are the most different. This as-
pect is fundamental to interpret the results since
in both cases the results of transfer learning with
fine tuning is the best performer when size of the
target dataset and the DTW distance are very
small. The opposite happens when the source

and target datasets are dissimilar or the length
of the last one is big enough to allow the ad-hoc
model to reach better results.
Finally, to validate our proposed Transformer,
we tested two main variants:

e Convolutional attention mechanism: in-
stead to use the typical Dense layer to rep-
resent the "value", "query" and "key", we
use a one dimensional convolution.

e Remove the Temporal Embedding Layer:
one of the major components of the model
is the embedding layer that prepares the in-
put to be given to the Encoder. It’s rule is
to include the timestamp information inside
the sequence, evidencing time patterns that
could represent time dependencies.

Results follows in Table.4 and points out how
the two variants behave in a different way in
the two analyzed datasets but maintaining sta-
ble the overall performances. We can’t prove
their effectiveness in a general manner but their
use is dependant by the case study and the in-

stock: AAPL

AMZN | ORCL

range 1189.2 - 3471.3 | 46.63 - 80.270

length rate 30

|

50 30 [50

TL no fine tuning | 64.187

58.674 | 2.1395 | 2.1277

TL with fine tuning | 29.776

27.331 | 0.7746 | 0.8032

no TL 41.330

30.543 | 0.6743 | 0.5409

Table 3: Transfer learning stocks
In the table the results of the transformer model over a portion of the target dataset which length
is expressed in 1. The values in cells are the MAE in the three different analyzed situations.

COVID-19: ITA | stock: AAPL

Original Transformer

Convolutional

No-Temporal embedding

364.12 0.7266
342.76 0.8364
347.53 0.7944

Table 4: Model variants MAE

trinsic characteristic of the time series.

6. Conclusions

In this thesis we presented a Transformer model
adapted to handle the time series prediction
task. We tested its performances in comparison
with a benchmark obtaining promising results,
mostly when we used a large dataset.

Then, we tested how this kind of architecture
is able to generalize the problem enough to be
employed in a transfer learning approach. Also
in this application, the model seems to provide
interesting results, especially when the source
dataset is large enough to allow a solid gener-
alization, and when there is a strong similarity
between source and target dataset. Finally we
examined some variants of the proposed model:
the use of convolutional attention, instead of the
original fully connected attention, seems to work
better when we want to penalize outliers but it
risks to introduce an error when the dataset is
very fluctuating. We also analyzed the effective-
ness of our Temporal Encoding that embeds the
timestamp (when available) in the sequence: in
this case, the dataset that present a shape that
does not highlight any particular time patterns
seems to benefit more from this strategy, with re-
spect to a dataset that may already have strong
time patterns that is not necessary to accentuate

more.

In conclusion we have proved that the Trans-
former, originally applied to NLP task, is a
model that can find its application also in the
time series prediction task providing competi-
tive performances in various domains and when
adopted in strategies like transfer learning. In
this prospect it would be interesting to test the
proposed model on larger datasets and in other
case studies to validate this work. Moreover,
a limit was represented by the chosen training
strategy that optimizes the performances but in-
troduces an heavy computational cost: it could
be interesting to analyze how a training win-
dow over the dataset, or strategies that avoid the
continuous retrain of the model, can impact the
time cost and the performances. Finally, more
tests need to be made for the temporal embed-
ding, to understand when it is beneficial and if it
could be applied in time series that have missing
values to attenuate the lack of information.

7. Acknowledgements

Here you might want to acknowledge someone.

References

[1] Alexandre Alahi, Kratarth Goel, Vignesh
Ramanathan, Alexandre Robicquet, Li Fei-
Fei, and Silvio Savarese. Social Istm:

2]

13l

4]

[5]

[6]

7]

18]

19]

[10]

Human trajectory prediction in crowded
spaces. In Proceedings of the IEEE confer-
ence on computer vision and pattern recog-
nition, pages 961-971, 2016.

Falcetta Alessandro and Roveri Manuel.
TIMEX. https://github.com/AlexMV12/
TIMEX, 2021.

Dzmitry Bahdanau, Kyunghyun Cho, and
Yoshua Bengio. Neural machine translation
by jointly learning to align and translate.
arXiw preprint arXiv:1409.0473, 2014.

Iz Beltagy, Matthew E Peters, and Ar-
man Cohan. Longformer: The long-

document transformer. arXiv preprint
arXiw:2004.05150, 2020.

Jian Cao, Zhi Li, and Jian Li. Finan-
cial time series forecasting model based on
ceemdan and lstm. Physica A: Statistical
Mechanics and its Applications, 519:127—

139, 2019.

Vinay Kumar Reddy Chimmula and Lei
Zhang. Time series forecasting of covid-
19 transmission in canada using Istm
networks. Chaos, Solitons € Fractals,
135:109864, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton
Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers
for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Sepp Hochreiter and Jiirgen Schmidhuber.
Long short-term memory. Neural computa-
tion, 9(8):1735-1780, 1997.

Weicong Kong, Zhao Yang Dong, Youwei
Jia, David J Hill, Yan Xu, and Yuan
Zhang. Short-term residential load fore-
casting based on lstm recurrent neural net-
work. IEEE Transactions on Smart Grid,
10(1):841-851, 2017.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou
Zhou, Wenhu Chen, Yu-Xiang Wang, and
Xifeng Yan. Enhancing the locality and
breaking the memory bottleneck of trans-
former on time series forecasting. Advances
i Neural Information Processing Systems,
32:5243-5253, 2019.

[11]

[12]

[13]

[14]

[15]

David E Rumelhart, Geoffrey E Hinton,
and Ronald J Williams. Learning represen-

tations by back-propagating errors. nature,
323(6088):533-536, 1986.

Ashish Vaswani, Noam Shazeer, Niki Par-
mar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, tukasz Kaiser, and Illia Polo-
sukhin. Attention is all you need. In

Advances in neural information processing
systems, pages 5998-6008, 2017.

Sandra Wankmiiller. Neural transfer learn-
ing with transformers for social science text
analysis. arXiw preprint arXiw:2102.02111,
2021.

Neo Wu, Bradley Green, Xue Ben, and
Shawn O’Banion. Deep transformer mod-
els for time series forecasting: The in-

fluenza prevalence case. arXiv preprint
arXw:2001.08317, 2020.

Zheng Zhao, Weihai Chen, Xingming Wu,
Peter CY Chen, and Jingmeng Liu. Lstm
network: a deep learning approach for
short-term traffic forecast. IET Intelligent
Transport Systems, 11(2):68-75, 2017.

https://github.com/AlexMV12/TIMEX
https://github.com/AlexMV12/TIMEX

	Introduction
	Background
	Transfer learning

	The model
	Embedding
	Encoder
	Decoder

	Data and training
	Results
	Conclusions
	Acknowledgements

