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1. Introduction 

With the emergence of large sensor networks, there 

is a growing need for algorithms that can decide, 

for specific objectives, which sensors in a large 

network of sensors should be used at each time 

step. Regarding linear time-invariant systems that 

are under the measurement of large sensor 

networks, such sensors should grant observability 

and, at the same time, should minimize the state 

estimation error covariance. In the literature, most 

works are concerned with the minimization of the 

error covariance. This work aims to establish the 

foundation necessary to investigate the 

observability of such systems. When different 

sensors are selected at different time steps, the 

system measurement vector is time-variant. Thus, 

we are dealing with systems under time-variant 

measurement schemes. Therefore, we first attempt 

to extend the concept of observability to the case of 

linear systems with time-variant measurement. 

Then, we investigate conditions that allow the 

existence of observable sensor schedules first 

presented in [1]. We mainly focus on a theorem on 

the existence of observable schedules, and we try 

to restructure and simplify it by introducing new 

definitions and lemmas. As a result, an algorithm 

is introduced. This algorithm can find a subset of 

sensors in a set of available sensors that can be used 

to construct an observable sensor schedule. The 

algorithm is then numerically implemented. The 

results of the numerical implementation of the 

algorithm support the claim of the theorem and 

provide further insights on the structure of the 

observable sensor schedule. 

2. Observability for linear 

discrete-time systems with 

time-variant measurements 

Observability is a condition that determines if it is 

possible to infer the state of a system from the 

knowledge of system outputs over a finite period. 

This concept was introduced by [2, 3]. 



Executive summary Amin Biglary Makvand 

 

2 

Consider the following state equation, where 𝐶 ∈

ℝ𝑛𝑐×𝑛, 

 
 𝑥(𝑘 + 1) =  𝐴𝑥(𝑘), (2.1) 

 𝑦(𝑘) = 𝐶𝑘𝑥(𝑘).  

 

From now on, we denote by 𝑘0 the initial time 

instant.  

 

Definition 2.1. (Measurement Time Horizon). The 

Measurement time horizon 𝑇𝑁 is defined as a 

sequence of time steps {𝑘0, 𝑘0 + 1, ..., 𝑘0 + 𝑁 − 1} in 

which the system is under measurement.               ∎ 

 

Definition 2.2. (𝑁-horizon Observability). Given the 

state equation (2.1), a state 𝑥0  ∈ ℝ𝑛 is unobservable 

over a measurement time horizon 𝑇𝑁 = {𝑘0, 𝑘0 +

1, . . . , 𝑘0 + 𝑁 − 1}  if setting 𝑥(𝑘0) =  𝑥0 as the initial 

state,  𝑦(𝑘) ≡ 0 for all 𝑘 ∈ 𝑇𝑁. The state equation is 

𝑁-horizon observable if the zero vector 0 ∈ ℝ𝑛 is 

the only unobservable state.                                     ∎ 

 

Theorem 2.1. The proposed linear system (2.1) is 

𝑁-horizon observable over the measurement time 

horizon 𝑇𝑁 = {𝑘0, 𝑘0 + 1, . . . , 𝑘0 + 𝑁 − 1}  if and 

only if rank(𝜙𝑁) = 𝑛, where  
 

𝜙𝑁 =

[
 
 
 
 

𝐶𝑘0

𝐶𝑘0+1𝐴

𝐶𝑘0+2𝐴
2

…
𝐶𝑘0+𝑁−1𝐴

𝑁−1
]
 
 
 
 

.  

3. Existence of an observable 

schedule 

In this section, we first define the concept of sensor 

schedule and its observability properties. Then, we 

explore the conditions that allow for the existence 

of an observable sensor schedule for a discrete-

time linear system with time variant 

measurements. An algorithm drawn from [1] is 

proposed. If specific conditions discussed below 

are met, this algorithm can be used to construct an 

observable sensor schedule. A theorem introduced 

in [1] on the existence of observable schedules is 

restructured here and used as the basis of the 

proposed algorithm. 

3.1. Problem formulation 

The problem is formulated borrowing terms and 

notations from [4]. Consider the following linear 

system: 

 
𝑥(𝑘 + 1) =  𝐴𝑥(𝑘) (3.1) 

where 𝑥(𝑘) ∈  ℝ𝑛 is the state of the system. 

Consider the ordered set 𝑆 = {𝑆[0], 𝑆[1], … , 𝑆[𝑝 −

1]}, where 𝑆[𝑖] ∈  ℝ𝑛 is a sensor vector that can be 

used to measure the system state. Each element of 

the set 𝑆 represents one sensor.  

 

Definition 3.1 (Sensor Schedule). A sensor schedule 

Σ over an ordered sensor set 𝑆 is defined as a set of 

elements 𝜎𝑘 ∈ {0, … , 𝑝 − 1} where 𝜎𝑘 = 𝑖 denotes 

the usage of sensor 𝑆[𝜎𝑘] ∈ 𝑆 at time 𝑘.                  ∎ 

 

Definition 3.2 (𝑁-horizon Sensor Schedule). Let 𝑇𝑁 be 

the measurement time horizon (see Definition 2.3). 

Denote by Σ𝑁 = {𝜎𝑘0
, 𝜎𝑘0+1, … , 𝜎𝑘0+𝑁−1}, 𝜎𝑘 ∈

{0, … , 𝑝 − 1} a 𝑁-horizon sensor schedule.              ∎ 

 

To measure the system state, only one sensor is 

allowed to operate at each time step. Under a given 

schedule Σ𝑁, the scheduled measurement at each 

time step is  

 𝑦(𝑘) = 𝑆[𝜎𝑘]
𝑇𝑥(𝑘),       

∀ 𝑘 ∈ {𝑘0, 𝑘0 + 1,… , 𝑘0 + 𝑁 − 1}. 

 

3.2. Observable sensor schedule 

Definition 3.3 (Observable 𝑁-horizon Sensor 

Schedule). A 𝑁-horizon sensor schedule with an 

observability matrix 𝜙𝑁 of rank 𝑛 is called an 

observable 𝑁-horizon sensor schedule (see 

Theorem 2.1).                                                                                   ∎ 

 

The following definitions are required to define 

conditions for 𝑁-horizon observability and the 

definition of observable 𝑁-horizon sensor 

schedules. 

 

Definition 3.4 (Cover Set). Let 𝛼 =

[𝒸0 … 𝒸𝑛−1]
𝑇 , 𝒸𝑖 ∈ ℝ  be the coordinate vector of 

vector 𝑣 ∈ ℝ𝑛, with respect to a basis 𝐺 =

{𝑔0, … , 𝑔𝑛−1} spanning vector space ℝ𝑛. The cover 

set of vector 𝑣 with respect to the basis 𝐺, denoted 

by 𝛽, is the set of all basis elements 𝑔𝑖 ∈ 𝐺 with an 

associated 𝒸𝑖 ≠ 0.                                                        ∎ 
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Definition 3.5 (Basis Coverage). A vector set 𝑉 =

{𝑣0, 𝑣1, … , 𝑣𝑛𝑣−1}, 𝑣𝑖 ∈ ℝ𝑛𝑣   covers the basis 𝐺 when 

 𝑔𝑖 ∈ ⋃𝑙=0
𝑛𝑣−1

𝛽𝑙 , ∀ 𝑔𝑖 ∈ 𝐺,  

where each 𝛽𝑙 is the cover set of its corresponding 

vector 𝑣𝑙 , with respect to the basis 𝐺.                              ∎ 

Definition 3.6 (Non-common Element). A set 𝛽𝑎 has 

a non-common element with respect to a set 𝛽𝑏, if 

there exists a 𝑔𝑖 ∈ 𝐺 such that 𝑔𝑖 ∈ 𝛽𝑎 and 𝑔𝑖 ∉ 𝛽𝑏. 

𝑔𝑖 is called a non-common element of 𝛽𝑎 with 

respect to 𝛽𝑏.                                                                      ∎ 

3.3. Algorithm and theorem 

What follows next is an algorithm that can be used 

to find a specific subset of 𝑆, denoted by 𝑆𝑜. Later 

in Theorem 3.1, it is indicated that elements of 𝑆𝑜 

under certain conditions, can be used to construct 

an observable sensor schedule. To proceed, 

consider the following assumption. 

 

Assumption 3.1. Matrix 𝐴 is nonsingular with 

distinct eigenvalues.                                                         ∎ 

 

Consistently with Assumption 3.1, matrix A has 𝑛 

linearly independent eigenvectors. These 

eigenvectors are used as the elements of basis 𝐺 =

{𝑔0, … , 𝑔𝑛−1}. More specifically vectors 𝑔𝑖 ∈ ℝ𝑛 are 

the left eigenvectors of 𝐴. 

As mentioned, the proposed algorithm accepts 

ordered set 𝑆 and returns the subset 𝑆𝑜. Here we 

repeat a short explanation of its main rational. The 

algorithm initializes a set 𝑆𝑟  with 𝑆 (line 1), then at 

each iteration, it selects a sensor vector from the set 

𝑆𝑟 , removes it from 𝑆𝑟  (line 28) and adds it to 𝑆𝑜 

(line 24). To do so, the algorithm looks at the cover 

sets of every sensor vector that has in 𝑆𝑟  (15 to 22). 

And selects the sensor vector (denoted 𝛣𝑜
0) with the 

largest set (denoted 𝛣𝑜
1)  of non-common elements 

(see Definition 3.6) with respect to the union of 

previously chosen sets of non-common elements 

(lines 15 to 23). The algorithm then adds the largest 

set of the non-common elements 𝛣𝑜
1 to the set 𝛣ℳ  

(line 26), removes it from 𝛾𝑟 (line 27) and adds its 

corresponding sensor vector 𝛣𝑜
0 to 𝑆𝑜. The 

algorithm continues this process until one of two 

conditions is met: either there are no sensors left to 

check, corresponding to 𝑆𝑟 = ∅, or there are no non-

common elements left, corresponding to 𝛾𝑟 = ∅. 

Note that the elements in the cover sets are the 

vectors of basis 𝐺. 

 

Algorithm 3.1 (Sensor Set Observability Filter) 

1: ordered set 𝑆𝑟 ← 𝑆 

2: ordered set 𝛾𝑟 ← 𝐺  

3: ordered set 𝑆𝑜 ← ∅ 

4: ordered set 𝑁𝑜 ← ∅ 

5: ordered set 𝑧 ← ∅ 

6: ordered set 𝛣ℳ ← ∅ 

7: ordered set 𝛽𝑠𝑢𝑏 ← ∅ 

8: ordered set 𝛣𝑝 ← ∅ 

9: ordered set 𝛣𝑜
0 ← ∅ 

10: ordered set 𝛣𝑜
1 ← ∅ 

11: integer 𝑙 ← 0 

12: integer 𝜁 ← 0 

13: while  𝛾𝑟 ≠ ∅ or  𝑆𝑟 ≠ ∅ 

14:  𝑙 ← 0 

15:  while 𝑙 <n(𝑆𝑟) 

16:            if 𝛣ℳ = ∅ 

17:                      𝛽𝑠𝑢𝑏 ← Cover(𝑆𝑟[𝑙], 𝐺) 

18:                      𝛣𝑝 ← Append(𝛣𝑝 , (𝛽𝑠𝑢𝑏 , 𝑆𝑟[𝑙])) 

19:            else 

20: 
                     𝛽𝑠𝑢𝑏 ←Cover(𝑆𝑟[𝑙], 𝐺)/ 

                     ((∪𝑘=0
𝐧(𝛣ℳ)−1

𝛣ℳ[𝑘]) ∩ 𝐂𝐨𝐯𝐞𝐫(𝑆𝑟[𝑙], 𝐺)) 

21:                      𝛣𝑝 ← Append(𝛣𝑝 , (𝛽𝑠𝑢𝑏 , 𝑆𝑟[𝑙])) 

22:            𝑙 ← 𝑙 + 1 

23:  (𝛣𝑜
0, 𝛣𝑜

1) ← Max(𝛣𝑝) 

24:  𝑆𝑜 ←Append(𝑆𝑜, 𝛣𝑜
1) 

25:  𝑁𝑜 ← Append(𝑁𝑜 , n(𝛣𝑜
0)) 

26:  𝛣ℳ ←Append(𝛣ℳ , 𝛣𝑜
0) 

27:  𝛾𝑟  ← 𝛾𝑟/𝛣𝑜
0 

28:  𝑆𝑟 ←  𝑆𝑟/𝛣𝑜
1 

29:  𝜁 ← 𝜁 + n(𝛣𝑜
0) 

30:  𝑧 ←Append(𝑧, 𝜁) 

31:  𝛣𝑝 ← ∅ 

32: return 𝑆𝑜, 𝑁𝑜 , 𝛣ℳ , 𝛾𝑟 , 𝑧 

 

Assumption 3.2. Integer 𝜃 is equal to 1 + the 

number of elements in returned sets 𝑆𝑜, 𝑁𝑜, 𝛣ℳ  and 

𝑧 when the algorithm terminates under the 

condition 𝛾𝑟 = ∅.                                                        ∎ 
 

The following theorem can be proved, providing a 

fundamental result for defining observable sensor 

schedules. 

 

Theorem 3.1. If 𝑆 covers basis 𝐺 (see Definition 3.5), 

then there exists an observable 𝑛-horizon sensor 

schedule Σ𝑛 = {𝜎𝑘0
, 𝜎𝑘0+1, … , 𝜎𝑘0+𝑛−1} over sensor 

set 𝑆𝑜 (see Definition 3.2), with the following 

structure: 
 𝜎𝑘0

= 0,  

 ⋮  

 𝜎𝑘0+𝑧[0]−1 = 0,  

 𝜎𝑘0+𝑧[0] = 1,  

 ⋮  

 𝜎𝑘0+𝑧[1]−1 = 1,  
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 ⋮  

 𝜎𝑘0+𝑧[𝜃−1] = 𝜃,  

 ⋮  

 𝜎𝑘0+𝑧[𝜃]−1 = 𝜃,  

Such that 𝑧[𝜃] = 𝑛.                                                     ∎ 

In this schedule, every sensor vector in the 

returned ordered set 𝑆𝑜 is used. Each sensor is used 

𝑧[𝑖] − 𝑧[𝑖 − 1] number of times. Note that z is an 

ordered set with integer elements where each 

element 𝑧[𝑚] =  ∑ 𝑛(𝛣ℳ[𝑖]𝑚
𝑖=0 ). Consider 𝑧[−1] =

0.  

4. Algorithm numerical 

implementation 

In this section, the proposed algorithm is 

implemented, and numerical examples are 

provided to verify the theoretical results of the 

previous section. The algorithm is implemented in 

Python language.  

The code accepts the system matrix 𝐴, left 

eigenvectors of 𝐴, and the desired set of sensor 

vectors and returns several values. A Boolean 

value indicating whether the sensor set covers the 

basis; a list of sensor vectors corresponding to 𝑆𝑜; a 

list of integers 𝑁𝑜 indicating the number of times 

the sensors of 𝑆𝑜 should be repeated in the 

proposed schedule of Theorem 3.1 and finally, the 

rank of the observability matrix of the schedule of 

Theorem 3.1. 

4.1. Examples 

Let 𝐴 be an arbitrary matrix that follows 

Assumption 3.1. Thus, it has 𝑛 linearly 

independent eigenvectors, 
 

𝐴 =

[
 
 
 
 
1 0 0 0 0
2 11 0 0 0
4 4 −8 0 0
5 8 0 7 0
7 7 3 0 6

 

]
 
 
 
 

.  

Consider basis 𝐺 with left eigenvectors of 𝐴 as its 

elements. 
𝐺 = 

{[1 0 0 0 0]𝑇 , [
−68

171
  
−4

19
  1  0  0]𝑇 , [

33

35
  
−11

7
  

3

14
  0  1]𝑇 ,  

[
1

6
 − 2 0 1 0]𝑇 , [

1

5
 1 0 0 6]𝑇}. 

Now consider the following examples. In each 

example, sensor set 𝑆 is intentionally designed to 

cover different scenarios. 

 

Example 4.1. Consider the following sensor vector 

set 𝑆, where 𝑆 covers the basis 𝐺. 
𝑆 = {𝑆[0] = [3.0332, −5.1353, 2.6428, 0, 3]𝑇 ,  

𝑆[1] = [5.1047, −22.2857, 0.8571, 8, 4]𝑇 , 
 𝑆[2] = [0.6, 3, 0, 0, 0]𝑇 ,  

𝑆[3] = [1.1666, −14, 0, 7, 0]𝑇 , 
 𝑆[4] = [1.2, 6, 0, 0, 0]𝑇 

 𝑆[5] = [2.5784,−6.9172, 3.8571, 0, 4]} 

In the sensor set 𝑆, no sensor alone covers the basis 

𝐺. Table 4.1 shows that no 𝑛-horizon observable 

sensor schedules can be constructed with only one 

sensor. 

 

 𝝈𝟎 𝝈𝟏 𝝈𝟐 𝝈𝟑 𝝈𝟒 𝐫𝐚𝐧𝐤(𝝓𝐧) 

𝚺𝒏,𝟏 0 0 0 0 0 3 

𝚺𝒏,𝟐 1 1 1 1 1 2 

𝚺𝒏,𝟑 2 2 2 2 2 1 

𝚺𝒏,𝟒 3 3 3 3 3 1 

𝚺𝒏,𝟓 4 4 4 4 4 1 

𝚺𝒏,𝟔 5 5 5 5 5 2 

Table 4.1: 𝑛-horizon sensor schedules over set 𝑆, 

involving only one sensor. 

The schedule integer values in Table 4.1 refer to the 

indices of the ordered set 𝑆.  

Tables 4.2 and 4.3 present the outputs of numerical 

implementation of the algorithm where different 

combinations of sensors are used to construct 

sensor schedules. 

 

𝑺𝒐 𝜶𝒊 𝑵𝒐 

𝑺𝒐[𝟎] = 

[3.0332,−5.1353, 2.6428, 0, 3]𝑇 

𝛼1 = 

[1,2,3,0,0]𝑇 
3 

𝑺𝒐[𝟏] = 

[5.1047,−22.2857, 0.8571, 8, 4]𝑇 

𝛼2 = 

[0,0,4,8,0]𝑇 
1 

𝑺𝒐[𝟐] = 

[0.6, 3, 0, 0, 0]𝑇 

𝛼3 = 

[0,0,0,0,3]𝑇 
1 

Table 4.2: Sensor vectors of the set 𝑆𝑜 and their 

corresponding coordinate vector 𝛼𝑖. 

 𝝈𝟎 𝝈𝟏 𝝈𝟐 𝝈𝟑 𝝈𝟒 𝐫𝐚𝐧𝐤(𝝓𝐧) 

𝚺𝒏,𝟏 0 0 0 1 2 5 

𝚺𝒏,𝟐 1 2 0 0 0 5 

𝚺𝒏,𝟑 0 1 0 0 2 5 

𝚺𝒏,𝟒 2 1 0 0 0 5 

𝚺𝒏,𝟓 0 0 1 1 2 5 

𝚺𝒏,𝟔 0 1 0 1 2 5 

𝚺𝒏,𝟕 0 2 0 1 1 5 
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𝚺𝒏,𝟖 1 2 1 0 0 5 

𝚺𝒏,𝟗 1 2 0 1 2 4 

𝚺𝒏,𝟏𝟎 2 0 2 1 2 3 

𝚺𝒏,𝟏𝟏 2 0 1 1 2 4 

Table 4.3: 𝑛-horizon sensor schedules over the set 

𝑆𝑜 and their corresponding observability matrix 

rank. 

Note that the schedule integer values in Table 4.3 

refer to the indices of the ordered set 𝑆𝑜.  

 

Example 4.2. Consider the following sensor set 𝑆, 

where 𝑆 does not cover the basis 𝐺.  
𝑆 = {𝑆[0] = [−0.7953, −0.4210, 2, 0, 0]𝑇 , 

𝑆[1] = [1.3333, −16, 0, 8, 0]𝑇 , 
𝑆[2] =  [1.1, −3, 0, 3, 0]𝑇 ,  

𝑆[3] = [1.1666, −14, 0, 7, 0]𝑇 , 
𝑆[4] = [1.2, 6, 0, 0, 0]𝑇 ,  

𝑆[5] = [−1.1929, −0.6315, 3, 0, 0]𝑇}. 

Table 4.4 shows that no 𝑛-horizon observable 

sensor schedules can be constructed with only one 

sensor. 

 

 𝝈𝟎 𝝈𝟏 𝝈𝟐 𝝈𝟑 𝝈𝟒 𝐫𝐚𝐧𝐤(𝝓𝐧) 

       

𝚺𝒏,𝟏 0 0 0 0 0 1 

𝚺𝒏,𝟐 1 1 1 1 1 1 

𝚺𝒏,𝟑 2 2 2 2 2 2 

𝚺𝒏,𝟒 3 3 3 3 3 1 

𝚺𝒏,𝟓 4 4 4 4 4 1 

𝚺𝒏,𝟔 5 5 5 5 5 1 

Table 4.4: 𝑛-horizon sensor schedules over the set 

𝑆 involving only one sensor. 

Note that the schedule integer values in Table 4.4 

refer to the indices of the ordered set 𝑆.   

Tables 4.5 and 4.6 present the outputs of numerical 

implementation of the algorithm where different 

combinations of sensors are used to construct 

sensor schedules. 

 

𝑺𝒐 𝜶𝒊 𝑵𝒐 

𝑺𝒐[𝟎] = 

[1.1,−3, 0, 3, 0]𝑇  

𝛼0 =
[0,0,0,3,3]

𝑇

 2 

𝑺𝒐[𝟏] = 

[−0.7953,−0.4210, 2, 0, 0]𝑇 

𝛼1 =
[0,2,0,0,0]

𝑇

 1 

𝑺𝒐[𝟐] = 

[1.3333,−16, 0, 8, 0]𝑇 

𝛼2 =
[0,0,0,8,0]

𝑇

 0 

𝑺𝒐[𝟑] = 

[1.1666,−14, 0, 7, 0]𝑇 

𝛼3 =
[0,0,0,7,0]

𝑇

 0 

𝑺𝒐[𝟒] = 

[1.2, 6, 0, 0, 0]𝑇  

𝛼4 =
[0,0,0,0,6]

𝑇

 0 

𝑺𝒐[𝟓] = 

[−1.1929,−0.6315, 3, 0, 0]𝑇 

𝛼5 =
[0,3,0,0,0]

𝑇

 0 

Table 4.5: Sensor vectors of the set 𝑆𝑜 and their 

corresponding coordinate vector 𝛼𝑖 

 𝝈𝟎 𝝈𝟏 𝝈𝟐 𝝈𝟑 𝝈𝟒 𝐫𝐚𝐧𝐤(𝝓𝐧) 

𝚺𝒏,𝟏 0 0 1 2 3 3 

𝚺𝒏,𝟐 0 0 1 3 4 3 

𝚺𝒏,𝟑 0 0 1 4 5 3 

𝚺𝒏,𝟒 0 0 1 5 6 3 

𝚺𝒏,𝟓 5 0 2 4 3 3 

𝚺𝒏,𝟔 3 4 2 0 3 2 

𝚺𝒏,𝟕 5 5 1 3 3 2 

𝚺𝒏,𝟖 2 1 1 4 2 3 

𝚺𝒏,𝟗 2 0 4 0 3 2 

Table 4.6: 𝑛-horizon sensor schedules and their 

corresponding observability matrix rank. 

Note that each integer value in Table 4.6 refers to 

an index of the ordered set 𝑆𝑜.  

4.2. Discussion and verification 

We can see that schedule  Σ𝑛,1 of Table 4.3 supports 

the main result. Building a schedule using sensors 

vectors of 𝑆𝑜 and following the proposed schedule 

structure of Theorem 3.1, a full rank observability 

matrix for schedule Σ𝑛,1 is obtained. 

Looking at the rest of the schedules in Table 4.3, the 

first thing that we notice is that the proposed 

schedule structure of Theorem 3.1 is not the only 

schedule structure that can provide observability. 

This can be seen in schedules Σ𝑛,5, Σ𝑛,6, Σ𝑛,7 and Σ𝑛,8 

in Table 4.3, which may suggest that there is a more 

general schedule structure that can determine 

observable schedules. The second noticeable 

behavior is the change of time steps. It seems that 

if a schedule is observable, changing the time steps 

of the sensors or in other words rotating the 

schedule elements does not disrupt the 

observability. This behavior can be seen in 

schedules Σ𝑛,1 to Σ𝑛,4 and Σ𝑛,5 to Σ𝑛,8 of Table 4.3.  

Schedules Σ𝑛,9 to Σ𝑛,11 in Table 4.3 show that even 

if all sensors of  𝑆𝑜 are used in the schedule, there 

is no guarantee that the schedule will provide 
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observability unless the proposed schedule 

structure of Theorem 3.1 is used. 

Concerning Example 4.2, Table 4.6 suggests that, 

regardless of what combination of sensors is used, 

there is no combination of sensors that can provide 

an observable 𝑛-horizon schedule. In this specific 

example, the condition considered in Theorem 3.1 

turns out to be also necessary for the existence of a 

𝑛-horizon sensor schedule. This remark raises a 

point that will be the subject of future 

investigation. 

5. Conclusion and future 

developments 

In this thesis, the concept of sensor scheduling was 

introduced. The observability of systems under 

scheduled measurements was investigated, 

resulting in the introduction of the concept of 

measurement time horizon and extension of the 

definition of observability to the case of linear 

discrete-time systems with time-variant 

measurements. 

The conditions guaranteeing the existence of an 

observable schedule were investigated, and new 

definitions and results were introduced to provide 

a simplified proof of the theorem in [1] and a 

clearer characterization of the proposed theorem 

for the definition of an observable sensor schedule. 

In particular, an algorithm was devised capable of 

defining a set of sensors that constitute an 

observable sensor schedule of a specific structure.  

The algorithm was numerically implemented. The 

numerical results suggest that a more general 

structure of an observable schedule could exist. 

This can be a subject of future development. 

In this work, all conditions were investigated for 

sensors with 1 × 𝑛 measurement matrices. A future 

development of this work can also consist in 

including conditions supporting the existence of 

observable schedules for sensors with 

measurement matrices with a higher dimension.  

Another topic for future work can be the 

application of a Kalman filtering approach with 

scheduled measurements. To do so, we need to 

develop algorithms that take into consideration 

both the observability and estimation error in the 

optimization problem. When developing these 

algorithms, the computational costs of these 

algorithms are an important factor to take into 

consideration. For example, the offline 

determination of the sensor set and identification 

of all observable sensor subsets can be considered 

as the first step for the development of this 

approach, then the choice between observable 

sensor schedules can be taken (possibly online) 

based on the criterion of minimizing the variance 

of the estimation error. 
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