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Abstract

Within the running community, coaches and sport scientists often find themselves in dis-
agreement on what are the best strategies to follow for the preparation of their athletes.
At the same time, more and more non-professional runners are becoming increasingly
interested in trying to optimize their training performance autonomously. In this con-
text, with the recent advent of platforms dedicated to the storage and analysis of sport
activities, the amount of data relative to the routine training sessions of amateurs has
drastically increased. The scope of this thesis is to exploit such availability of information
to perform an analysis on the running habits employed by this type of athletes. To achieve
this, we developed a framework able to process all the data relative to the workout ses-
sions and extract the main features characterizing them. In particular, we utilized several
methods to estimate some physiological parameters of the athletes, by exclusively relying
on workouts that are in no way the result of controlled experiments, so that we could
generate a totally personalized and high-level view of their individual activities. Starting
from this information, we then carried out a series of experiments to compare the train-
ing methods popular among different groups of runners. The results we obtained show a
promising potential in this type of approach, however they also highlight a necessity to
improve some aspects related to the data processing itself.
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Sommario

Nel mondo della corsa, spesso allenatori e scienziati dello sport si trovano in disaccordo
su quale sia il metodo migliore da seguire per la preparazione dei propri atleti. Allo stesso
tempo, sempre più corridori non professionisti sono interessati ad ottimizzare i propri
allenamenti in maniera totalmente autonoma. In questo contesto, con il recente avvento
di piattaforme dedicate all’archiviazione e analisi di attività sportive, la quantità di dati
relativi alle sedute di allenamento provenienti da amatori è aumentata drasticamente. Lo
scopo di questa tesi è quello di sfruttare tale disponibilità di informazioni per svolgere
un’analisi sulle abitudini di corsa adottate da questa tipologia di atleti. Per fare ciò, ab-
biamo sviluppato un sistema in grado di processare i dati relativi alle sessioni e ricavare
da esse gli elementi principali che le caratterizzano. In particolare, abbiamo utilizzato di-
versi metodi per stimare alcuni parametri fisiologici degli atleti, basandoci esclusivamente
su allenamenti in nessun modo derivanti da esperimenti controllati, in modo da poter
poi costruire una visione personalizzata e ad alto livello di ogni loro attività. A partire
da queste informazioni, abbiamo poi eseguito una serie di esperimenti per confrontare le
modalità di allenamento utilizzate da diversi gruppi di podisti. I risultati ottenuti mo-
strano delle potenzialità promettenti in questo tipo di approccio, anche se evidenziano
una necessità di miglioramento per quanto riguarda alcuni aspetti legati all’elaborazione
dei dati stessa.
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Chapter 1

Introduction

Over the years, both research scientists and running coaches have focused their efforts
on trying to understand the secrets behind training for performance maximization. The
two sides, however, have always been in contrast on most of the major subjects central
to the debate, as pointed out by Magness in his book [23]. On one hand trainers almost
solely base their knowledge on actual field experience, on the other hand researchers seem
only interested in finding the optimal workout that works well in all situations. As a con-
sequence, each diverging point of view always seems to fail considering some important
aspects of the problem itself. In particular, scientists often rely on overly supervised and
short-term studies that have limited practical use in a real environment. On the contrary,
it’s hard to find coaches willing to experiment training methods different from the ones
they have been traditionally taught.
In this context, lately it has become increasingly widespread the need among amateur
runners to optimize their training routines in order to obtain more satisfactory results.
Thanks to the recent advances in technology and with the introduction of affordable
activity tracking devices, this possibility has now turned into a reality. The accessible
monitoring of physiological parameters such as heart rate, in fact, has allowed these ath-
letes with no access to professional coaching to start gaining some advanced insights on
the quality of their workout sessions. Following this trend, the past few years have seen
the birth of a multitude of platforms offering tools to the single runners willing to analyze
their training data.
This phenomenon has led to an increasing availability of information that consequently
opened up the possibility to apply several data-driven approaches for the analysis of
training habits. Particularly, by combining the theoretical concepts with a considerable
amount of practical data, it has became possible to extend, in a way, the scientific exper-
imentation far beyond its conventional restricted scope.

1.1 Scope of the thesis

In this thesis, we focus our attention on amateur endurance runners and try to understand
their training habits by performing a large scale analysis that includes athletes coming
from different parts of the world. For this purpose, we develop a framework able to
directly process extensive amounts of raw workout data, without the need of additional
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information outside of the running sessions themselves. In order to extract the various
aspects characterizing a possible training routine, within this architecture we test different
approaches that deal with the unreliable and/or incomplete information provided. In
particular, great attention is given to the personalized estimation of the physiological
parameters and to the creation of an high level view for each running activity. This
allows us to introduce several functions that utilize the in-depth knowledge generated
from the low level activities to describe in detail the training patterns present among the
workouts. Finally, we design a set of experiments to search for the influence of several
factors on the training habits observed in the dataset. Namely, the effect of the athletes’
nationality and the seasonality of training are considered by analyzing the weekly workout
routines of the runners in exam.

1.2 Thesis structure

The thesis is structured as follows.
In Chapter 2, we introduce the main concepts related to running and the theory behind
its training, along with an overview of the approaches employed by companies and re-
searchers aiming to provide useful tools to the athletes.
In Chapter 3, we describe the framework developed in order to process the runners workout
data for analysis purposes. Particularly, the individual athlete’s parameters estimations
and high level activities view are here explained in detail.
In Chapter 4, we illustrate the design phase of our experimental analysis including a de-
scription of the data collection process, the choices relative to the methodologies employed
and the statistical workflow used for the final tests.
In Chapter 5, we present and comment the results obtained from the experiments exe-
cuted during the analysis.
In Chapter 6, we draw the conclusions of our work and propose some future developments.

2



Chapter 2

Background

In this chapter, we will introduce the theoretical aspects related to the sport of running
and its training, as well as the modern approaches employed by companies and researchers
of this field. First, some base concepts and definitions will be addressed by also considering
the tools available nowadays to athletes. Then, we will present the theory behind training
optimization and how it evolved historically through the work of several sport scientists
and coaches. Lastly, we will give a general overview on how these concepts are actually
implemented in the most popular fitness tracking platforms and what efforts have been
made to take advantage of the huge amount of data available.

2.1 Preliminary concepts about running

When considering a specific running activity, or running in general, there are many terms
that are commonly used in order to point out its various aspects. The majority of this
vocabulary is related to what can be objectively measured during the course of an effort
and, depending on the metrics used, multiple vocables may refer to the same concepts.
Therefore, before tackling more advanced notions associated to running and its training,
it’s necessary to first introduce the definitions and terminology that will be used in the
current and following chapters.

2.1.1 Physiological measurements

Modern activity trackers offer a lot of functionalities when it comes to sampling and
processing running data. This information is often stored and subsequently analyzed in
order to gain insights on the quality of training on a short and long term period. At the
level of single activity several parameters can be measured to get an objective view of
the actual effort. Here follows an account of some of the most important ones along with
their relative metrics.

Duration and distance

The most simple and intuitive concepts in this context are the ones referring to the
duration and distance of a run.
Whilst the total time of a running session can be universally represented by means of
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seconds/minutes/hours time spans, distance is usually expressed either in kilometers or
miles, depending on the unit of measure adopted by the specific athlete.
To track the evolution of these parameters during an activity, most devices make use of
an internal clock along with a dedicated GPS 1 functionality, which is consistently able
to pinpoint the runner location inside a geographical map. This setup allows for a quick
calculation of the instantaneous traveled distance that can consequently be employed for
both live tracking and a posteriori analysis purposes.
In addition to the basic concept referred to a single running effort, when considering
multiple days or activities, the term volume is also used in order to indicate the amount
of distance covered in total (e.g. a weekly volume of 30 miles). As we will see later,
tracking training volume over time can be a good strategy when trying to understand
the impact of one’s workout routine on the body. Therefore, it’s a fundamental tool that
should be available to every type of running athlete.

Speed and pace

Running speed is one of the main objective indicators of effort during a run, with a stan-
dard unit of measure that is commonly denoted either in km/h (kilometers per hour),
mph (miles per hour) or m/s (meters per second).
As usual, using activity tracking devices, we can get an estimate of its instantaneous
values thanks to the automatic GPS calculations that are executed at each instant.
In general, runners are mostly concerned with the statistics related to the speed main-
tained throughout their training sessions (e.g. average or peak speed). However, with
the advent of live tracking, this real-time information can be also used to follow a specific
target velocity required by the workout at hand.
As an alternative way of expressing the same concept, running pace can be used in place
or jointly with the notion of speed. This metric is as widely, if not more, utilized since
it can be considered more intuitive for an athlete, being generally defined as the number
of minutes it takes to cover a mile or kilometer. Having said that, obviously one can
always convert a value between these two metrics if necessary, given that they are in fact
interchangeable.
Finally, by taking in consideration the speed (or pace) characterizing a specific effort, is
also possible to distinguish the different categories of running styles that typically range
from easy jogging all the way to sprinting.

Heart Rate

Thanks to the recent advances in affordable and portable technology, heart rate monitor-
ing has gained popularity among runners and scientists.
The aim of this measurement is centered around the study of the beating rate at which
the heart muscle operates during different types of efforts. As a consequence, when dis-
cussing the relative sampling results, an HR value is always expressed in bpm (beats per
minute).
Athletes typically keep track of heart rate values in order to estimate the intensity of a
workout, since it can be considered a good indicator of the actual strain experienced by

1https://en.wikipedia.org/wiki/Global_Positioning_System
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the organism. Intuitively, when the body is subject to increasing physical demands, the
heart starts beating faster to provide the oxygen needed by the entire muscular system
for its function. On the contrary, as the intensity lowers, we can observe that this rate
decreases down to its resting value.
This relationship between heart rate and effort can therefore be used to gain useful in-
sight on the quality of training. However, for a correct personalized analysis, some of the
following individual parameters must be first measured by the single athlete:

� Resting Heart Rate (HR rest): how fast the heart beats when not executing any
physical activity (usually measured sitting or laying down).

� Orthostatic Heart Rate (HR orth): slightly higher than HR rest represents the heart
rate when an individual is standing.

� Maximum Heart Rate (HR max): the fastest rate an individual’s heart can beat
(must be tested in a maximal effort).

� Heart Rate Reserve (HRR): difference between HR max and HR rest (or HR orth).
Can give a better idea of exercise intensity as it considers the personal range of bpm
values.

Modern devices allow HR measurements to be taken continuously and at each instant,
achieving an acceptable accuracy even when utilizing the cheaper wrist based monitors.

Cadence

Another critical aspect of running, referred as cadence, relates to the time that elapses
between each ground contact of the feet. To determine its value, we count the number of
steps, or alternatively strides (considering one foot), taken in one minute.
The study of this parameter has been the focus of a certain number of studies among
the sport science community. In particular, researchers have often tried to understand
the impact of cadence on running form and injury prevention [21]. In general, it turns
out that an optimal rate for most people can be considered around 90 strides/minute (or
180 steps/minute), which is slightly higher than what is observed in the typical amateur
runner.
Nowadays, aside from manual counting, most running trackers offer a cadence monitoring
feature that can provide fairly reliable estimates either using an internal accelerometer or
a sensor placed in the athlete’s shoe.

2.1.2 Running on different terrains

Depending on the type of terrain where an activity performed, different aspects need to
be taken in consideration and some specific metrics are used.

Altitude, cumulative elevation gain and incline

When running on flat ground the parameters described in section 2.1.1 are more than
enough to get a good idea on the quality of an activity. However, in reality there can
be a considerable amount of training performed outside of controlled environments (such
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as tracks), especially with amateur runners. For this reason, in the recent years a need
to track efforts on hilly or uneven terrain has gained interest among fitness enthusiasts.
Thanks to modern activity trackers and their integrated sensors 2 3, it’s possible to acquire
elevation data in order to quantify these aspects easily and with remarkable precision.

Altitude (or elevation) is the distance, commonly expressed in meters, from the Earth’s
sea level and can be estimated essentially with two different approaches. The most reli-
able method, if correctly calibrated, requires using a barometric altimeter sensor which
measures the changes in air pressure in order to determine elevation. In the absence of
a barometer, trackers can rely on GPS data gathered during the activity and elevation
plots of the surrounding area.
From altitude other metrics can be derived such as cumulative elevation gain, which is
defined as the sum of every gain in altitude registered during the activity (elevation losses
are not included in the count). This measure comes in very handy when trying to quan-
tify the effort of a run because, by not considering descent, can clearly differentiate a flat
course from a one with comparable up/down hill which would result in a zero value if
subtracted.
Finally, incline (also referred as slope or grade) is computed as the ratio of change in
altitude over the distance traveled and is indicated by a percentage. In the case of a
negative incline, we usually refer to it as decline.

Treadmill running

Indoor running can be achieved by means of machines such as exercise treadmills. These
can be valid alternatives to outdoor running, for example in case of adverse weather.
They offer some advantages such as options to set a constant pace or incline but, when
it comes to tracking the activity, can pose some problems. In fact, unless the tread-
mill comes equipped with an integrated tracker, measurements taken with a GPS watch
rely on using the accelerometer to estimate the distance covered and the speed reached.
Some alternatives require the use of pedometers4 or foot pods5 to get better estimates
comparable to the outdoor ones.

2.1.3 Activity as a collection of data streams

With all the metrics in sections 2.1.1 and 2.1.2 introduced, is now possible to give an
informal definition of running activity based on its measurable variables.
If during a run we sample the available data in a more or less regular fashion, we can
consider the running activity simply as the collection of these data streams. Because of
this, in the next sections these signals will often just be referred as ”streams”.
Naturally the possible time series representing any given run can be many and some
metrics have been omitted for simplicity (e.g. temperature). Nonetheless, the general
concept of data streams, in relation to a running activity, should now be clear to the
reader.

2https://support.garmin.com/en-US/?faq=dRY70Lc6yv2oY3eam1ZWxA
3https://support.polar.com/us-en/support/altitude_measurement
4https://en.wikipedia.org/wiki/Pedometer
5https://en.wikipedia.org/wiki/Inertial_footpod
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2.2 Fundamentals of training theory

In this section we will provide an overview on the most important theoretical concepts
related to the training theory behind the sport of running. Since all this information will
be used in the next chapters, knowing its details it will help understanding the decision
made when developing our own framework for this thesis.

2.2.1 Stress and adaptation

The building block on which all the training theory concepts are based, is the notion of
how the body reacts when presented with a stressing stimulus and how it consequently
adapts to it. Exercise training, indeed, has the only objective of continuously provoking
these adaptations in order to accustom the physique to increasingly difficult efforts by
reaching new levels of fitness.
This basic principle, often referred in the literature as supercompensation [3], is the basis
of progressive overload and can be applied to many different sports (e.g. weight training).
The process can be easily summarized by looking at Fig. 2.1.

Figure 2.1: Supercompensation phases after a training session (from [3]).

First off, a training stimulus is applied resulting in decreased fitness with respect to the
initial baseline (Phase I). This is due to the fact that a state of fatigue is induced which,
in turn, reduces the functional capacity of the body. At this point a phase of compensa-
tion slowly returns the athlete to a recovered state until it reaches the previous baseline
(Phase II). Following this phase, if recovery is sufficient, supercompensation brings the
performance further up into a new increased level, thus employing adaptation (Phase III).
Finally, if the time between two consecutive stimuli is too long, the performance will start
to fade leading to involution (Phase IV).
By repeating this process, one can progressively reach ever increasing levels of fitness.
However, if the recovery phase is not consistent enough, the body cannot reach a state
of supercompensation and might even start decreasing fitness in the worst cases. This
phenomenon is called overtraining.
As a side note, is important to consider that the amount of stimulus and recovery needed
in order to correctly apply this process changes from one individual to another. Thus, as
we will see, training individualization is of fundamental importance.
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2.2.2 Athlete performance parameters

When running, various body systems react in different ways to the increasing levels of
stress posed by the effort. Several biological parameters affect the performance of an
athlete and, as a consequence, are critical aspects to be considered when trying to optimize
training. In fact, by considering these features, it’s possible to get an idea on the potentials
of a specific athlete and accordingly tailor individual training intensities and adaptations.
Listed below are some of the most important concepts related to this matter.

VO2max

Maximal oxygen consumption, in short VȮ2 max (the dot over V indicates per unit of
time), refers to the maximum rate of oxygen consumption attainable during incremental
exercise and it’s expressed in mL

(kg·min) (milliliters of oxygen per kilogram of body mass per

minute). This is considered one of the most important indicators of endurance perfor-
mance since it represents the athlete’s aerobic ability (the capacity of creating energy in
presence of oxygen) and high values of this parameter have been observed among world-
class athletes. In order to measure it, the athlete is set up on a treadmill while wearing a
mask to capture the inhaled and exhaled air. Then the intensity is progressively increased
until maximum effort is reached. Observing the data, one can typically see that the oxy-
gen consumption increases with intensity and eventually reaches a maximum, although
the workload is still increasing. This happens because the body has reached its maximum
aerobic capacity and has to utilize other means (anaerobic systems) to fulfill the energy
needs. This parameter has gained a big popularity in the past thanks to its measurability
and some studies [25] were made specifically to find a way to maximize it. In reality, as
Magness states in his book [23], there has been a lot of research discrediting the use of
this variable to estimate an athlete’s performance. For example, it has been observed that
in many elite athletes VȮ2 max does not change, even with performance improvements.
This is a consequence of the fact that, in reality, there are many more variables involved
with the process of oxygen to energy transformation. Nonetheless, some approached based
on VȮ2 max can still be of interest as we will see shortly.

Anaerobic/Lactate Threshold

Historically, lactate (or lactic acid) was considered the main cause of fatigue during anaer-
obic exercises. However, in the recent years researchers revealed that lactate concentration
is not actually at source of the problem. Instead, it’s the buildup of by-products created
during intense effort that is causing this condition and lactate concentration just happens
to be highly correlated with it (as also stated in [23]). Despite this discovery, scientists
have found great interest in studying a particular moment in the process of lactate ac-
cumulation. This point, which corresponds with a substantial rise in blood lactate, has
been given various names, but most notably among runners it’s known as Anaerobic or
Lactate Threshold. Put in other words, it can be expressed as the transition stage that
marks the passage of body mechanisms from a mainly aerobic energy production to an
heavily anaerobic one.
Monitoring this parameter in athletes has proven very useful when trying to estimate
running performance and is often considered to be a better predictor than VȮ2 max. In
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fact, the faster is speed when reaching the anaerobic threshold, the better will be the
athlete’s running ability, given than an effort around or above this point can be usually
sustained for about an hour maximum.
Considering the importance of this variable, several methods for determining the threshold
point have been developed. We will focus on one method in particular that has the main
advantage of not needing specific equipment for blood lactate detection: the Conconi test.

In 1982 Prof. Francesco Conconi published a paper [6], later refined in 1996 [7], where
he described a test able to determine the anaerobic threshold of an athlete without inva-
sive laboratory procedures. The test is based on the idea that, by monitoring heart rate
during an effort of incremental intensity, a change in relationship between speed an heart
rate occurs when the anaerobic threshold is reached. In fact, as shown in the example of
Fig. 2.2 present in the first paper, initially heart rate grows linearly with speed, but at
some point there is a deflection that seems to almost precisely coincide with the sharp
accumulation of blood lactate.

Figure 2.2: Speed and heart rate relationship compared with blood lactate levels (from [6]).

The hypothesis advanced by Conconi is that this deflection is caused by the activation of
the anaerobic lactacid mechanism which, as we have seen, marks the lactate threshold.
Despite the wide success of this test in the running community and among scientists,
some studies such as [8] have questioned the validity of this finding and is still considered
a controversial topic by many.

Tightly connected to the concept of lactate threshold there is a measure that is often
referred as functional threshold pace. It’s defined as the maximal running pace that an
individual can sustain for an effort of 45 to 60 minutes. In other terms, this is just a
more practical approach to the problem we have been discussing and, considering what
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we previously said about the maximum duration of an anaerobic activity, can be easily
approximated with the speed observed at the point of anaerobic threshold.

Running Economy

There is a third interesting component that can heavily influence running ability and is
associated to the athlete’s efficiency.
Running Economy measures the utilization of available energy during an aerobic running
effort at sub-max speeds [9]. Traditionally, in order to estimate this parameter several
values of maximum oxygen consumption (V O2) are sampled at different constant speeds.
If two athletes are compared, the one with better running economy will have a smaller
consumption when considering the same velocity.
Unfortunately, this approach seems flawed as it doesn’t account for all the variables in-
volved in the process but instead merely reflects their consequences. In this regard, Mag-
ness [23] proposes a three factor idea of running economy by considering bio-mechanical,
neural and metabolic efficiency. The first component refers to anything that can impact
the mechanical cost of running such as cadence, foot strike, body structure or elastic
energy. Neural efficiency, instead, focuses on the communication between the nervous
system and the muscles by taking in consideration factors that improve signaling and
contraction. Lastly, metabolic efficiency deals with how oxygen is delivered and utilized
as well as how energy resources are used during short and prolonged efforts.
As a practical mean of measuring running efficiency, the ratio between speed (output)
and heart rate (input) is often used to track running economy over time. Intuitively, a
lower heart rate for the same pace or a faster speed at the same heart rate indicates an
increased efficiency when observed consistently over time. It should be noted, though,
that no ideal value exists when considering this parameter as it should only be used to
track progress relative to one’s historical data.
As a final remark, it’s worth mentioning that this relationship is sometimes also utilized to
detect the phenomenon of heart rate drift 6 that shows an increased heart rate as exercise
progresses due to the body getting fatigued.

2.2.3 Training Intensity

Running workouts are usually performed at various intensities in order to target the dif-
ferent physiological systems that contribute to improved running performance. Balancing
these stimuli is key for a successful progression and researchers have spent a lot of effort
in trying to understand their effect on the important parameters involved in running per-
formance.
Here are presented the different approaches commonly adopted when trying to assess the
intensity of a running workout.

Zones approach

One of the most practical and utilized ways of expressing the intensity of a run is to
simply divide pace or heart rate values into different zones and then consider the time
passed in each one during the activity.

6https://fellrnr.com/wiki/Heart_Rate_Drift
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In order to do this a set of zones is created, by using percentages of a certain athlete’s
parameter (e.g. max heart rate, speed at VȮ2 max, etc.), in a way that tries to separate
the distinct energy systems involved at different intensities. In practice, most of these
divisions consider some broad intensity categories that can be usually summarized as:

1. Sub-Maximal

2. Lactate Threshold

3. VȮ2 max

4. Supra-Maximal

The first one refers to all the exertions that are characterized by a mainly aerobic contri-
bution. Often, this general zone can be further divided in low and moderate sub-zones
but, in general, refers to all low intensity efforts that can potentially last several hours.
A moderate intensity area, instead, is found around the Lactate Threshold point where,
as we have seen previously, the body starts to transition towards anaerobic energy re-
sources. Since this is a very important phase, sometimes the zones are actually specified
as a percentage of LT heart rate or pace.
Lastly, VȮ2 max and supra-maximal zones represent the high intensity spectrum of the
scale. Activities of this intensity span from very hard to maximal efforts and can be only
sustained for few minutes.
Obviously, this general configuration is not fixed and many zone based models adopt
slightly different conventions. For example, heart rate is often divided in five zones by
considering percentages of either maximum or lactate threshold heart rate.
When available, pace and heart rate can also be used in conjunction in order to have a
better final estimation of the effort. In fact, both have some advantages and disadvan-
tages depending on the type of workout performed. Pace has the advantage of being an
objective measure but it can be difficult to follow in practice, especially in low intensity
runs, as it’s often viewed as something to exceed rather than respect. Heart rate, on the
other hand, can have problems when applied to high intensity workouts that have a lot of
speed variations. This is due to the phenomenon of cardiac lag which consists in a delay
between pace changes and corresponding heart rate variations.

Despite being very popular, this approach based on zones is not exempt from prob-
lems considering that, intuitively, the real mechanisms behind the efficacy of training are
never isolated and cannot really be divided into precise boundaries. As we will se in the
Periodization section, sometimes training intensities should just be expressed by taking
into account a precise goal pace and deriving their specificity in relation to it.

Jack Daniels’ VDOT

An interesting take on training intensity estimation is given by the popular VDOT tables
of world famous coach Jack Daniels.
In 1979 with the help of Jimmy Gilbert he published a book [10] that contained a series
of tables predicting all-out racing times for a multitude of distances. This was achieved
by measuring both the oxygen demands at various velocities and the aerobic capacity
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of many runners of different abilities. From this data, knowing their best performance
at different competitive distances, they derived two regression equations. The first one,
whose curve is shown in Fig. 2.3a, relates VȮ2 (not the maximum value) to running
velocity by assuming an average economy for all runners. The second equation instead,
illustrated in Fig. 2.3b, describes what percent of an individual aerobic capacity (VȮ2
max) the runner is capable of working at and for how long.

(a) Relationship between velocity and oxygen cost given an
average economy. vVȮ2 max represents the velocity at max-
imum oxygen consumption.

(b) Relation of race times and fractions of VȮ2
max.

Figure 2.3: Daniels regression curves (from [9]).

Given these two equations and knowing a runner race performance (all-out effort) is possi-
ble to then estimate their VȮ2 max with a value that Daniels calls VDOT. Consequently,
race times can be predicted for set distances starting from the personal VDOT index of
the athlete, as demonstrated by the tables provided by Daniels.
It’s important to highlight that the VDOT value does not necessarily correspond to the
real value as measured by a laboratory test. This is also stressed by the author himself
but it’s not a problem since, as we have seen, real race performance is a better indicator
than the actual VȮ2 max.

From the VDOT value Daniels then uses a similar approach, as we have seen previously,
that creates several intensity zones by expressing them as percentages of the personal
VDOT index [9]. These pace zones are: Easy, Marathon, Threshold, Interval and Repe-
tition.

Rating of Perceived Exertion

A totally different approach to the problem is based on using the subjective perception
of the athlete, rather than objective data, in order to quantify the intensity of a given
workout.
The RPE scale, developed by Gunnar Borg [4], is a widely employed method in sports
and medicine used to monitor an individual effort during a physical exercise. As shown
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in Fig. 2.4, it utilizes a numerical scale from 6 to 20 (or the alternative 0-10) to assign
points based on the athlete’s answer on how hard the workout felt.

(a) Original scale. (b) CR10 scale.

Figure 2.4: Borg rating of perceived exertion scales (from [4]).

Using RPE can have several advantages, compared to objective approaches, because of its
ability to detect any factor that affects the body that might not be otherwise measurable
(e.g. sleep quality, stress). However, a downside of this method, apart from the fact that
it needs time to be familiarized with, is that the rating can be influenced by fatigue when
used on longer workouts.

2.2.4 Training Load

As we have seen in section 2.2.1, the objective of training revolves around the concept of
stressing the body and, through recovery, cause it to get stronger. Other than assessing
the intensity of a workout, it’s then of fundamental importance being able to quantify
the amount of strain placed on the athlete’s body. For this purpose, various measures of
either external (e.g. distance) or internal (e.g. heart rate) load have been proposed over
the years.
In general, load (or effort) can be expressed as the interaction between intensity and
volume (typically duration) of training. As a matter of fact, two workouts can have totally
different intensities but create the same amount of stress depending on their duration.
By tracking training load over time, it’s also possible to gain insights on the runner
personal response to specific sessions, avoid risk of injury and make sure enough stimuli
are applied to the body in order to make progress.

Banister TRIMP

Dr Eric Banister developed the training impulse model (TRIMP) [2] with the objective
of trying to measure the internal load of an activity by considering as inputs heart rate
responses and duration. The method is computed using the following equation weighted
based on the relationship between heart rate and blood lactate:

TRIMP = D · (a ·∆HRratio · eb·∆HRratio) (2.1)
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With a = 0.64, b = 1.92 for men and a = 0.86, b = 1.67 for women. D = duration (in
minutes) of the session and ∆HRratio computed as:

∆HRratio = (HRex −HRrest)/(HRmax −HRrest) (2.2)

In which HRex is average heart rate of the session, HRrest is resting heart rate and
HRmax is maximum heart rate.
The main limitation to this approach is given by the fact that there is a separation only
between males and females, which is obviously not the only factor of difference in athletes.

Edwards TRIMP

A second very popular method, known as Edwards TRIMP [13], is based on the idea of
dividing heart rate into zones based on percentages of HRmax and then multiply the time
passed in each zone by an arbitrary coefficient. The proposed zones, each of 10% width,
are shown in Table 2.1 along with their respective coefficients.

% of HRmax coefficient

50-60% 1

60-70% 2

70-80% 3

80-90% 4

90-100% 5

Table 2.1: Edward’s TRIMP zones and coefficients.

At this point, the total load of an activity is expressed as:

TRIMP = Dzone1 · 1 +Dzone2 · 2 +Dzone3 · 3 +Dzone4 · 4 +Dzone5 · 5 (2.3)

Where Dzonek is time passed (minutes) in each of the five zones.
Despite its success, the coefficients and boundaries used in this method are not supported
by some particular phenomenon or neither have been validated on the basis of known
physiological responses. Additionally, small changes in the boundary points between
each zone can lead to big variations of scores. These problems, coupled with the fact
that scaling factors are linear, have made the use of this approach questionable for some
scientists.

Lucia TRIMP

In 2003 Lucia et al. [22] proposed a modified version of Edwards method that utilizes
only three zones demarcated by two ventilatory thresholds. The first point that separates
low from medium intensity is found right around the lactate threshold. Instead, medium
and hard zones are separated by the respiratory-compensation threshold (where breathing
rate changes to address abnormal blood pH). If Dzonek is the time passed in each zone
(low, medium, high), Lucia TRIMP score is defined as:

TRIMP = Dzone1 · 1 +Dzone2 · 2 +Dzone3 · 3 (2.4)
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Again, these coefficients are not based on scientific evidence (like in the Edwards case)
but this time the zones boundaries have a significance, at least in principle, with respect
to some physiological factors.

Other measures

Aside from the aforementioned measures, several other TRIMP modifications exist and, as
we will see later, some platforms have even developed their own algorithms by exploiting
this theory. Some methods, for instance, try to capture the individualization of athletes
by weighting the score based on group or personal blood lactate response curves [29] [24].
Daniels, in his book [9], provides a point based system to quantify load by assigning scores
depending on intensities expressed as percentages of VȮ2 max.
Finally, as an alternative to heart rate based methods, Session-RPE [16] applies the RPE
philosophy to the training load domain by simply expressing the total effort of an activity
as RPE ·minutes.

Load Balancing

The usefulness of training load metrics is not limited to the single workout domain. In
fact, when Banister introduced the original impulse-response model [5], his main objective
was being able to predict the changes induced by training load over time. In order to do
this, he modeled training as a series of negative (fatigue) and positive (fitness) impulses
whose relationship represents performance. In this paradigm, whilst fatigue initially gen-
erates a negative effect, over a longer time frame it is outweighed by an increase in fitness.
Consequentially, in any moment is possible to compute the difference between fitness and
fatigue to determine the training stress balance. The idea is that, by manipulating load,
is then possible to balance this relationship and improve in the long term.
Building on this concepts, the index of acute: chronic workload ratio (ACWR) was re-
cently introduced by Gabbett and colleagues [19].
Here, the acute workload represents fatigue and is typically computed by taking the 7-day
rolling average daily load. The chronic workload (fitness) instead is created considering
a longer period of time (usually 21 or 28 days). The exact calculation of these values can
be performed in different ways but often the exponentially weighted moving average [33]
is preferred since it better captures the decaying nature of fitness. Given these two values
then ACWR at any time is simply computed as:

ACWR =
Acute Load

Chronic Load
(2.5)

Several studies [11] have found interest in analyzing the relationship between this measure
and the risk of injury in different sports. Fig. 2.5 shows the ranges of values that have
been found correlating the most with under, optimal and over training.
This shows, for example, that a ’sweet spot’ has been found approximately around values
of 0.8-1.3. However, it’s important to notice that these ranges should be used carefully
and may not reflect all individuals or disciplines.
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Figure 2.5: Relationship between ACWR and injury risk (from [17]).

2.2.5 Workout types

When it comes to putting into practice the theory concepts we have seen until now,
different types of runs can be used in order to create and execute a successful training
program. Although it’s difficult to categorize every single type of activity, a collection of
universally recognized and practiced workouts exists. In his book [23], Magness provides
a traditional classification that also considers the different physiological effects involved in
each type of session. In a similar fashion, here are illustrated some of the most important
classes of workouts available to runners.

Mileage and recovery runs

According to coaches and sport scientists, the runs belonging to this category are at the
base of general training and should ideally make up the majority of total volume (about
80% [15]). Nonetheless, often amateur runners struggle to follow this ratio and easily
underestimate the importance of low intensity running. Here, for convenience, these ac-
tivities are summarized as distance, recovery and long runs.

A ’standard’ distance run is simply a workout performed at easy to steady pace. Its
main function is to increase aerobic capacity and accustom the body to the bio-mechanics
of running. Despite its simplicity, it plays a major role in every athlete preparation since
it can be considered the main source of the general endurance required to face more dif-
ficult workouts.
At an intensity step below, the recovery run embodies what can be thought as an active
approach aimed at enhancing the phase between or after harder sessions. In order to
have the desired effect, this type of activities must be performed at a slower pace than
normal and typically for a short amount of time. The stress applied to the body should
be minimal so that a quicker adaptation occurs without impairing the supercompensation
effect. Sometimes, these recovery runs can also be split throughout the day to increase
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the beneficial effects and lower their individual stress.
By prolonging a standard run in distance and time, it’s possible to obtain some stim-
uli that are otherwise absent when dealing with a shorter effort. This popular workout,
known as long run, is considered by many a fundamental part of distance running and it’s
an essential tool for the preparation of longer races like marathons. The main adaptations
brought by such an activity are relative to structural and fuel changes along with muscle
fiber activation. In fact, if initially the easiest fibers are used, at some point they become
fatigued and are necessarily replaced by the less used ones. Additionally, during a long
run the body is forced to employ all the available fuel resources and adapt the joints to
a continuous and extended stress.

Tempo/Threshold Running

This category refers to all the workouts characterized by a longer sustained effort. Al-
though the intensity can vary, the typical speed of these runs lies between marathon
and anaerobic threshold pace. The idea behind this type of training is to let the athlete
familiarize with a comfortably hard pace which, however, should be not extreme and
unsustainable. Among the physiological benefits brought by these workouts, typically
there is an increment in speed at threshold (caused by an increased efficiency at clearing
exercise byproducts) and a better overall running economy.

Interval/Repeat workouts

Another important class of workouts is the one referring to activities that alternate high
intensity efforts with rest or low to moderate recovery periods. This type of sessions,
often referred as interval training or repeats, are usually divided in sets where each set
is composed by a number of same distance repetitions (e.g. 2 sets of 4x800m). Since
the pace during a repetition can be rather challenging, in between each effort there is
a phase of recovery that can be either static or dynamic. In the first case, the athlete
waits a certain amount of time standing or sitting. In the other case, the recovery time is
spent walking or jogging. Depending on intensity, rest periods, number of repetitions and
pace changes the effect of this training can be varied. For example, other than speed and
anaerobic development is possible to elicit adaptations in the aerobic system by keeping
the interval distance short at an intensity that is higher than normal aerobic runs.
Another way of manipulating repeat workouts is through alternations where, instead of
a rest phase, high an low efforts are alternated in such a way that full recovery is not
possible.
Lastly, sprints can be seen as a particular type of repeat training where intensity is
maximum and distances are kept short. Some benefits of these workouts include better
running mechanics, explosive power and increased strength. Moreover, by executing them
on hills instead of flat terrain one can obtain approximately the same effects at slower
and safer speeds.

Workouts additions

Several elements can be added on top of the base workouts we have seen until now.
For instance, is very common to precede a moderate or intense session with a warm-up
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stage to let the body prepare for the subsequent effort. Similarly, an hard workout is
often followed by a cool-down phase where a slow pace is held in order to enhance future
recovery.
However, other than these extensions solely aimed at enhancing a given workout, there
are some actual additions that can be inserted during the session to change its resulting
adaptations.
Strides, for example, are short repeats that can be added at the end of a normal workout
to include a speed component and work on bio-mechanics while recruiting muscles in a
semi fatigued state. If these repeats are added in the middle of a run instead (surges),
they can help the body adapt to transitions between paces and get it used to utilize lactate
as fuel for the slower parts of the activity. Sometimes, especially if the speed changes are
arbitrary, this is referred as fartlek training (speed play).
Finally, progressions are a very popular way of enhancing the stimulus of a standard run.
They are carried out by gradually increasing the intensity of an activity so that different
systems of the body are employed during the entirety of the workout. These runs can
be broken up in several ways to produce distinct effects (e.g. thirds). If the progression
happens only at the very end of a run in the form of a fast finish, the workout is usually
called pickup.
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2.3 State of the Art

2.3.1 Tracking hardware and suites

Nowadays a wide range of hardware solutions is available to athletes and fitness enthu-
siasts willing to track their running activity. Beginners can take advantage of modern
smartphones which include several integrated sensors and benefit from a rich app envi-
ronment. For more advanced users, however, it’s generally worth investing in dedicated
devices such as GPS watches and heart rate monitors. These specialized equipment al-
lows for a detailed data collection and often provides an included software suite that gives
access to some kind of training analysis (e.g. Polar Flow 7, Garmin Connect 8, etc).
More recently, foot pods (sensors placed in the runner shoe) like Stryd 9 have gained pop-
ularity as well thanks to their vastly increasing accuracy compared to traditional watches.
These devices can offer fairly precise estimations by analyzing the foot movement during
the course of a run. Also, since a GPS signal is not required, it’s always possible to collect
their data, even in adverse conditions.

2.3.2 Activity tracking platforms

The availability of training data has given birth to a myriad of online platforms offer-
ing tracking and data analysis capabilities to their users. These services allow athletes
to upload their training activity by interfacing with the most popular fitness devices.
Users can keep a log of their past workouts and get some insights on the quality of their
progress thanks to advanced visualizations and statistics. Sometimes these platforms also
incorporate some social network features such as the ability to share training activities
publicly or with friends. This often results in the creation of communities that can be a
source of increased motivation for athletes that want to better themselves and show off
their improvements. However, getting too competitive when comparing performance with
others can occasionally result in a negative impact on training quality.
With more than 75 million users, Strava 10 is one of the most popular digital services
occupying a place in the fitness tracking industry. The platform has a main focus towards
cycling and running but also supports plenty of other sports. Among its main features,
it offers the possibility to upload or record activity directly from the proprietary app and
share it with a follower base. Fitness goals are promoted through monthly challenges and
it’s possible to join clubs or take part in sponsored races. Each workout is analyzed in
detail by means of data graphs showing speed, heart rate and other useful visualizations
of effort and training progress. Additionally, performance can be tracked considering seg-
ments which are portions of user created routes where athletes can compare their times
with past efforts or other members in a ranking leaderboard. That being said, in order to
access some of the advanced features like training load stats and segments, the payment
of a subscription fee is required.
Less concerned with the social aspects and more focused towards analysis, Training-

7https://flow.polar.com
8https://connect.garmin.com
9https://www.stryd.com

10https://www.strava.com
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Peaks 11 strongest suit resides in a rich support for training plans, powerful data analysis
and coaching capability. This platform, in fact, provides several workout plans that can
be purchased and followed by all free users along with the possibility of investing in a real
coach who can monitor and create custom training plans. Additionally, a paid version
exists where a broader set of short and long term analysis tool is given directly to the
athlete.
As a final note, other noteworthy online tracking services include Final Surge 12, En-
domondo 13 and Today’s Plan 14.

2.3.3 Proprietary algorithms

Some of the aforementioned platforms have developed a few proprietary algorithms that
have also been implemented in several other tracking services. In particular, we consider
the work done to estimate the equivalent flat pace on a hilly surface and some proposed
training load metrics.

Pace adjustments with inclines

When dealing with irregular terrain, pace can be influenced by the grade of incline present
during the activity. This results, given an equal running effort, in a slower or faster speed
(depending if the grade is positive or negative) compared to what would be in absence of
incline. For this reason, sometimes it can be useful to have an idea of the equivalent flat
speed when dealing with uphill and downhill segments. Moreover, having this estimate is
fundamental in the case that pace is used as a measure of intensity to compute training
load.
The approach used by Strava to provide a grade adjusted pace (GAP) has changed
substantially over the years. Initially it was based on the work of Minetti et al. [26]
and relied on the measurement of metabolic energy cost observed in a group of elite
athletes running at different inclines. More recently, however, the platform exploited
a huge amount of their athletes data in order to build a model using the principle of
equivalent heart rate [12]. In short this means that GAP represents the pace obtainable
by an athlete at the same heart rate while running on level ground. According to the
Strava engineers this model seems to have significantly increased accuracy, especially in
the downhill portions of activities (see Fig. 2.6).
To solve the same problem TrainingPeaks uses a different measure called normalized
graded pace (NGP) [31].

11https://www.trainingpeaks.com
12https://www.finalsurge.com
13https://www.endomondo.com
14https://www.todaysplan.com.au
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Figure 2.6: Comparison between Minetti and Strava grade adjusted pace (from [12]).

Training load scores

In most training load metrics, such as the ones introduced in Section 2.2.4, heart rate is
used to estimate exercise intensity and consequently assess load. This approach can have
some disadvantages since heart rate sometimes has problems reflecting the real intensity
of a workout.
For this reason, some alternative scores have been created and, in particular, a very
popular one called running training stress score (rTSS) was developed for TrainingPeaks
by considering the work of Skiba [27] as described in [30]. This metric considers pace
related to an individual’s current lactate threshold in order to represent the intensity and
stress of a workout. Furthermore, normalized graded pace is used to ensure that uneven
terrain is accounted for during the calculation.
The rTSS formula is the following:

rTSS =
s ·NGP · IF
FTP · 3600

· 100 (2.6)

Where s is the time in seconds of the activity, NGP refers to the normalized graded pace,
IF is the intensity factor (NGP

FTP ) and FTP is the athlete’s functional threshold pace (speed
in m/s at lactate threshold). Note that by definition and effort of one hour at theoretical
maximum intensity (FTP) corresponds to an rTSS score of 100.
This metric is then used by TrainingPeaks to compute some indices relative to the training
load balance. In fact, from daily rTSS is possible to derive chronic training load (CTL),
acute training load (ATL) and training stress balance (TSB).
In Strava, instead, the load of an activity is expressed with the Relative Effort score.
This model is based on the concept introduced by heart rate zones TRIMP but with the
coefficients of each zone computed in a data driven way. To do this, Strava confronted
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a large subset of 10km running races to compare different all-out activities and tuned
the zones weights to minimize the variance of scores for equivalent efforts [32]. Simi-
larly to TrainingPeaks, relative effort is likewise used to compute the fitness and fatigue
parameters of the impulse-response model (load balance).
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Chapter 3

Framework

In this chapter, we will outline the architecture developed in order to process training
data for our experimental analysis. The design choices and relative implementation will
be discussed in detail starting from a low level view of running activity. Next, we will
present the work done to estimate the athlete’s parameters and consequently build an
high level representation of each run. Finally, we will move away from the single entity
domain of an individual activity, considering the relationship between multiple training
sessions in the context of a broader time period.

3.1 Architecture summary

Before addressing each part singularly, an high level summary of the whole framework is
given in Fig. 3.1.

Activity Accessor

JSON

Athlete

High Level Activity

High Level
Activity ....... .......

Athlete Calendar

High Level
Activity

High Level
Activity

Activities Information

activity_id date

Calendar Window

Figure 3.1: Sketch of the framework for a single run (left) and multiple activities (right).

As shown, a single running activity is represented on the left by an High Level Activity
object which is composed of two further elements. The Activity Accessor constitutes the
low level interface that communicates with a JSON file containing the raw measurements
of the run. The Athlete object instead, gives access to some known athlete’s parameters
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available at the time of the training session. Together, these components allow us to
characterize the activity efforts, taking into account the physical condition of the indi-
vidual with respect to the objective data observed. This method gives access to a set of
features that can provide more advanced insights on the quality of training such as load
assessment and workout classification.
On the right, instead, we can see the Athlete Calendar object, representing a collection
of runs (and potentially other kind of activities) belonging to the same athlete. Since in
our analysis multiple training sessions are gathered for each runner, this structure allows
us to easily store them and eventually access the date information relative to their exe-
cution. Among other things, this framework is responsible for the correct estimation of
the athlete’s parameters in time and the High Level Activity objects creation for each
run. Additionally, it also provides an interface for the extraction of date-based windows
(calendar windows) with the possibility to compute interesting statistics on the activities
contained inside them for short and long term analysis.

Architectural requirements

When designing the whole framework, we based all our choices around the idea of being
able to process workout activities directly coming from online tracking platforms (partic-
ularly Strava). For this reason, we had to take some measures in order to deal with a
number of problems related to the uncontrolled nature of this data, which is not compa-
rable with the one typically obtained in a laboratory setting.
First off, we could not count on a consistent quality of the information present among the
different athletes analyzed. In fact, depending on the hardware used by the runners (e.g.
heart rate monitors), we had to manage more or less precise data readings, potentially
containing a considerable amount of errors. Moreover, given that all the activity pro-
cessed was the result of amateur routine training (not performed with analysis purposes
in mind), we were forced to work with runs including pauses and other arbitrary behaviors
that would be normally avoided when executing any kind of experiment. In this regard,
sometimes as far as entire activities tuned out to be completely erroneous and therefore
had to be discarded. Lastly, due to the limited information available, we had to estimate
all of the athletes parameters only using past workout sessions. This aspect in particular
generated a series of issues since, as mentioned earlier, we obviously did not have control
on the type of activity performed and consequently used inside the estimation process
itself.
All of these aspects and more ultimately pushed us towards building an architecture
capable of exploiting as little (and inconsistent) knowledge as possible, to allow for a
generalized study that could be extended to most of the workout data available.
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3.2 Low level running activity

As we have stated previously in Section 2.1.3, for our purposes a running activity can be
considered as a collection of data streams. Typically, data is sampled every few seconds
during a run resulting in a bunch of measurements that are not always equidistant in
time.
In our case, each activity comes in the form of a JSON file containing these streams
as same-length arrays, among which time is the most important one. In fact, inside it
are contained all the actual timestamps of the activity for which data measurements are
available. This configuration allows for a quick mapping between sensors readings and
their corresponding time with respect to the start of the activity.
For example, if we consider Fig. 3.2, we can see that each heart rate value corresponds
to a precise second of the run (instant 0 → 134 bpm, instant 1 → 137 bpm, instant 4 →
140 bpm and so on...).

"time": [0, 1, 4, 7, 9, 15, 17, 18, 20, 21, 25, 28, 30, 32, 38, 43, 51, 59, 63, 70, ...]

"heartrate": [134, 137, 140, 136, 136, 139, 143, 142, 139, 136, 140, 143, 140, 140,
141, 144, 143, 143, 142, 144, ...]

Figure 3.2: Mapping between heart rate values and time in a running activity.

Sometimes, however, activities can be manually paused by the athlete resulting in the
presence of another important array called timer time. Differently from the time stream,
the instants here are referred to the seconds of actual activity excluding the time passed
with the run paused. By considering either time or timer time is thus possible to include
or skip the manual pauses present in these running activities.
Depending on the device utilized and the sensors available, activities may not all have
the same number and type of data streams. Table 3.1 shows all the different arrays that
can be found in the JSON of a running activity along with a short description and the
datatype of their elements.

The Activity Accessor

In order to work with an activity and easily visualize it, we created a low level interface
that encapsulates the previously mentioned arrays and automatically provides values for
each second of the run.
This object, called ActivityAccessor, gives access to all the available streams by correctly
assigning each data value to the corresponding timestamp and interpolating the missing
values between the points. In addition to this, some simple information can be requested
such as total time of the activity or total distance covered. If the run was paused manually,
it’s always possible to switch between a representation with and without pauses (if kept
a fill value for each stream can be specified). Finally, the interface offers the possibility
to check if a run can be considered mostly flat or if it was performed on a treadmill (by
looking for the presence of geographical coordinates).
As a visual example, some streams of a sample run are displayed in Fig. 3.3.
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Stream Name Description Element Type

time
Contains all the timestamps that have data
with respect to the true elapsed time from
the activity start

Integer that rep-
resents a times-
tamp

timer time

Contains all the timestamps that have data
with respect to device time (pauses ex-
cluded). Only found when manual pauses are
present

Integer that rep-
resents a times-
tamp

altitude
Contains the altitude measurements at each
timestamp

Float expressed in
meters

total elevation
Contains the cumulative elevation gained at
each timestamp (as seen in 2.1.2)

Float expressed in
meters

grade smooth
Contains the terrain grade of incline at each
timestamp (as seen in 2.1.2)

Float expressed in
percentage of in-
cline

latlng
Contains the geographical coordinates at
each timestamp

List with two
float values (lati-
tude, longitude)

distance
Contains the cumulative distance covered at
each timestamp

Float expressed in
meters

velocity smooth
Contains the instantaneous speed at each
timestamp

Float expressed in
m/s

grade adjusted
speed

Contains the instantaneous speed adjusted
w.r.t. grade of incline at each timestamp (as
seen in 2.3.3)

Float expressed in
m/s

heartrate
Contains the heart rate reading at each
timestamp

Integer expressed
in bpm (beats per
minute)

cadence Contains the cadence at each timestamp
Integer expressed
in strides/minute
(one foot)

temp Contains the temperature at each timestamp
Integer expressed
in °C (Celsius)

Table 3.1: Streams that can be found in the JSON of a running activity.
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Figure 3.3: Speed/Grade Adjusted Speed (blue/purple), altitude (green), cumulative elevation gain
(orange) and heart rate (red) of a running activity.
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3.3 Athlete representation

In Section 2.2 we discussed the importance of planning training intensities and loads
based on the individual athlete performance parameters. For this reason, when we want
to characterize and understand a specific running activity, we need to consider the runner
physical condition at the time of the effort.
In order to apply this in our case, we decided to create an Athlete entity for each low
level activity to represent the athlete’s status at the time of each session. This object
exhibits several values that denote the physiological variables of the runner and can be
subsequently used to create an high level view of each activity, as we will see in the next
section.
All the parameters of interest are estimated by exclusively using training data composed
of real workouts with no need to perform any laboratory test. This approach allows us
to easily carry out a large scale analysis by requiring very little information and involve-
ment of the athletes in the process. Furthermore, it offers the advantage of using real
performance data observed during training as opposed to measures of variables that are
supposed to reflect it (e.g. VȮ2 max).
It should be noted, however, that the quality of the estimates is heavily dependent on the
kind of data provided by the athletes. As a consequence, the available equipment and
workout diversity play a very important role in the accuracy of the results and, sometimes,
can even preclude a successful estimation. Having said that, we provided the ability to
rely on multiple parameters for intensity estimation in order to offer a more robust overall
outcome.
We will now present the solutions adopted to obtain an estimate of the most important
physiological parameters for running performance.

3.3.1 Maximum heart rate

Having an approximate value of the athlete’s maximum heart rate can be a significant
advantage when trying to assess training intensity or load of a given set of running activ-
ities. As a matter of fact, we have seen that many zone based methods actually utilize
HRmax as a reference value to express the intensity regions during an effort (e.g. Edwards
TRIMP as described in 2.2.4).
Typically, this parameter is estimated using some formulas that take into account solely
the age of the athlete. This comes from the fact that it has been consistently observed
that, in general, the HRmax value decreases proportionally to the age of a person. For
this reason, many formulas have been developed in this sense and have gained a huge
popularity due to their ease of computation [28].
For example, in the following list we mention some of the most used ones:

� Fox formula: 220−Age (the original one)

� HUNT formula: 211− (0.64 ·Age) (suggested for active people)

� Tanaka formula: 208− (0.7 ·Age) (for people over 40)

The problem with this whole approach is that the only factor of diversity considered
between individuals is the age itself. This obviously can result in a poor estimate in some
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particular cases since, actually, the parameter mostly depends the individual genetic make
up (before the age factor). However, despite this problem, these formulas are still used
nowadays by a lot of amateur and professional athletes.
A much better way of finding this value involves a field test where the runner performs
bouts of increasing effort while monitoring the highest heart rate observed. This method
has the advantage of providing a totally personalized and quite precise result (based on
the actual performance, not some general statistic like before) but can be challenging to
execute, especially for beginner athletes.

Our approach

Our approach for the estimation of HRmax consists in finding the highest heart rate
consistently reached by the athlete, considering all the available past workouts.
Since we do not control the kind of runs provided, we can’t count on the presence of any
HRmax field tests in the data. Neither we can assume that the athlete ever reached the
true max value in any run. Because of this, we decided to make use of all the sessions
available, knowing that the resulting estimate would still reflect the max effort exerted.
The main problem faced with this method, was relative to the noisy nature of the heart
rate measurements observed during the activities. For this reason, we adopted a number
of steps in order to reduce as much as possible the anomalous values.
A pseudo-code of the methodology used is provided below, followed by an explanation of
all the stages involved (the values used in our configuration are shown in Table 3.2).

Algorithm 1: Maximum heart rate estimation

Input: A list activities, where each element is an ActivityAccessor.
Output: Integer that represents HRmax.
initialize an array that will contain (speed, hr) samples;
for a in activities do

gap ma ← moving average of the grade adjusted speed stream in a;
hr ma ← moving average of the heart rate stream in a;
divide hr ma in multiple windows based on variance;
discard the windows below a certain minimum window size;
for window in remaining windows do

create a number of samples equal to window size by taking the median
value of the window on gap ma;

create a number of samples equal to window size by taking the median
value of the window on hr ma;

end
save the samples created in the initial array;

end
filter out samples (speed, hr) under a minimum and over an high percentile of
speed;

return the value corresponding to an high percentile of all remaining hr points;
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Parameter Value used

moving avg. window 30 seconds

windows variance thr. 5

minimum window 60 seconds

minimum speed (filter) 2 m/s

maximum speed (filter) 99th percentile

final value (HRmax) 99th percentile

Table 3.2: Chosen values for the parameters used during the estimation of HRmax.

First of all, a set of activities containing heart rate information is given as input in the
form of an ActivityAccessor objects list. For each activity, a moving average of both the
grade adjusted speed and heart rate streams is computed in order to smooth the signals
in the attempt to partially reduce noise.
Next, the smoothed HR stream is divided in a number of windows created by setting a
threshold variance for the values allowed in each window. This a very important step
because, given a properly set threshold, the result will show small windows in correspon-
dence of high heart rate fluctuations.
A this point, the shorter windows are discarded to get rid of unstable measurements and
focus on the consistent intervals remaining. Then, for each window n identical samples
(where n is the window size) are created by taking the median of the actual values. This
is done for both the GAP and the HR stream resulting in n two-dimensional samples for
each window.
Once all the activities are processed, an additional filtering is done on the final samples.
The ones with speed under a selected minimum value or over a percentile of all the speeds
are removed (in general different outlier detection methods could be used at this point).
Finally, the value corresponding to an high percentile of the remaining HR points (as
shown in Fig. 3.4) is returned as the actual HRmax estimate.

Figure 3.4: Resulting samples after a HRmax estimation process. Speed is expressed in m/s, heart
rate in bpm.
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3.3.2 Anaerobic threshold estimation

The importance of having an estimate of the athlete’s anaerobic/lactate threshold (AT)
was already emphasized in Section 2.2.2. Particularly, we mentioned that for intensity
and load estimation is considered a better predictor with respect to other parameters such
as VȮ2 max or even HRmax.
As we saw, one approach for the estimation of this value that stands out for simplicity
and ease of execution is found in the test conceived by Prof. Conconi. In fact, the main
advantage of this method comes from the fact that it’s based on the conduct of a practical
field test as it does not require any laboratory testing, which is ideal especially in our
case. However, because in our analysis we needed to work with past running data, we
had to come up with a way to apply the same principles introduced in the original work
with the absence of a proper incremental test for each athlete.
Instead of trying to understand the relationship between speed and heart rate from a single
increasingly difficult effort (such as the real Conconi test), we exploited the availability
of multiple workouts data in order to map the relation of these two variables and look for
a change as observed by Conconi. Moreover, we used a segmented regression analysis to
model and automatically detect the presence of the eventual deflection point in the data.
The whole procedure is covered in detail below with the help of some examples and a
discussion on the limitations present.

Our approach

The main difficulties we had to overcome when approaching this estimation method were
relative to the nature of the data considered during the process. In fact, having to deal
with all kind of workout sessions, made us confront with a series of issues that would
not normally be present when conducting the original test. Indeed, heart rate response
to fatigue involves many variables that contribute to its variation (w.r.t. a controlled
incremental test). For this reason, we worked to provide a processing pipeline that tries to
address as much as possible these problems, before even searching for the actual deflection
observed by Conconi.
The approach followed in our framework for the estimation of AT can be divided in four
main phases:

1. Samples extraction from activities with heart rate data

2. Samples cleaning

3. Distribution estimation and new samples generation

4. Deflection point modeling and validation

In the paragraphs below we present each one of these steps together with some motivations
behind the choices we made and the issues we encountered along the way (the values used
in the final configuration are shown in Table 3.3).
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Parameter Value used Phase

moving avg. window 30 seconds n.1

windows size 20 seconds n.1

minimum window 5 seconds n.1

speed drop threshold 0.2 m/s n.1

speed drop interval 30 seconds n.1

minimum speed (filter) 2 m/s and 5th percentile n.2

speed intervals sizes 0.2 m/s each n.3

speed intervals n. samples 100 each n.3

breakpoint speed and HR
boundaries

min 30th, max 95th per-
centile

n.4

breakpoint first slope angle
boundaries

0 < slope angle < 90 n.4

Table 3.3: Chosen values for the parameters used during the estimation of Anaerobic Threshold.

In the first step, a set of two-dimensional samples (speed, hr) is collected from a series
of low level activities by using an approach very similar to what we saw in the HRmax

estimation. The main difference is that here the windows are created with a fixed size
since during testing we found out that this configuration worked better compared to the
dynamic one (based on variance). In this context, grade adjusted speed is used when
available, in order to partially compensate the inclines effect which might skew the values
of some samples (for example high HR at low speed during an ascent). In addition to
deleting the resulting small windows to remove some fluctuations, in this case we also
discard the ones present inside a certain time interval after a significant drop in speed.
This is done to avoid ending up with some low speed samples that exhibit high heart
rates due to the effort just exerted.

Before moving to the next steps of the process, a cleaning of the samples is done to
ensure that no particularly anomalous data point influences the analysis results. First,
samples with a speed under a set minimum threshold (not considered running) are deleted.
Then, the remaining data is trimmed by considering percentiles to remove extreme speed
values. Finally, some additional outliers are identified and filtered by considering the
distribution of the ratio between HR and speed.
As a side note, we also experimented but eventually avoided DBSCAN clustering [14]
which presented some issues since, as we will mention shortly, the imbalance in speed
distribution of our data was causing the removal of some important samples.

After the cleaning procedure, we initially moved directly to the segmented regression
analysis in order to detect the Conconi deflection (if present). However, we noticed that
many tests where failing due to a severe imbalance in the number of samples at differ-
ent speed points. In practice, most cases showed a greater concentration of data points
towards the middle speeds with respect to the outer zones. Since the deflection point
is usually found near the higher paces, this issue was compromising the work of the re-
gression model we used. Clearly this was a problem caused by the fact that most of the
activities considered for each test rarely showed speeds constantly greater than the actual
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anaerobic threshold. Despite that, by plotting a set of heat maps on some speed intervals,
we could intuitively detect a deflection on the majority of the cases (as shown in Fig. 3.5).
Given that, we decided to include an additional step in our process to compensate for
this problem. In particular, after dividing of the original samples in consecutive groups
of increasing speed intervals, for each interval we estimate a Gaussian distribution us-
ing the real HR values observed. Then, for every interval we generate a fixed identical
number of new samples with an arbitrary speed (inside the interval) and an HR value
randomly extracted from the relative estimated distribution. This allows us to obtain a
balanced sequence of data points covering all the speed domain reached by the activities
analyzed. After their generation, these new samples are then passed into the next step of
the algorithm in place of the original ones.

Figure 3.5: Heat maps showing the distribution of samples used for the anaerobic threshold estimation
(the interval values of each map are shown at the bottom in m/s).

In the last phase, a two segments piece-wise linear regression model [20] is fit in order
to find the point in which the speed/hr relationship changes. This model looks for a
breakpoint separating the speed domain in two intervals where an abrupt change in the
heart rate increase can be observed. To do so, it tries to fit separately the two segments
that make up the segmented line while simultaneously guessing the location of the critical
point. Because we are looking for a deflection, the first slope should be positive and greater
than the second one. To ensure this, in case an increase in slope is found instead, the model
is refitted by removing the points preceding the breakpoint. This can happen sometimes
since we have observed that, especially in the low values of speed, there can be an initial
positive inflection probably due to noise or other physiological aspects. As a matter of
fact, we eventually found out that in some cases more than one slope can be present in this
relationship (before the actual one in correspondence with the threshold). For this reason,
we also tried fitting models with three separate segments to capture these cases. However,
given the inconsistent results and the added complexity, we ultimately decided to keep
the two segment models and instead work on the removal of these additional slopes. As
a last step, the model found is validated by comparing it to a simple one degree linear
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regression and by checking some boundaries on the position of the found breakpoint and
the resulting slopes. If the conditions are not all satisfied, we cannot conclude that a
deflection point exists so a threshold estimation is not made. Otherwise, the speed and
heart rate in proximity of the critical break point are labeled as the anaerobic/lactate
threshold ones (Fig. 3.6 shows a successful example).

2.5 3.0 3.5 4.0 4.5

100

120

140

160

180

Figure 3.6: Deflection point modeling example for the estimation of anaerobic threshold. The piece-
wise linear regression model (green) is presented against a standard one degree linear model (orange).

Limitations and drawbacks

The lack of individuation of a suitable deflection can be the result of different factors,
both related to the Conconi test itself and our subsequent implementation, given the data
available.
As we anticipated in Section 2.2.2, the approach devised by Conconi presents some prob-
lems and limitations that do not always ensure a successful anaerobic threshold estimation.
In this regard, a recent study [18] found that a certain percentage of tests do not offer
an unambiguous way of finding a deflection point and identified different HR response
variants to increased speed in individuals. For this reason, even in perfect conditions
and with all the data needed available, the presence of a deflection point in the speed/hr
relationship cannot be taken for granted.
In addition to these intrinsic issues, in our implementation we sometimes have to deal
with insufficient and/or noisy data that also includes efforts on irregular terrains. These
problems can compromise the determination of a correct threshold even when it would be
observable in ideal conditions. Furthermore, differently from the original test, to make an
estimate we are forced to consider multiple sessions that can cover a time span of various
days. Even though we make sure to do not include too wide intervals, it can happen that
in the window of activities considered the athlete’s anaerobic threshold slightly changes
rendering its identification more challenging.
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3.3.3 VDOT

The VDOT score, as introduced in Section 2.2.3, is another parameter that we try to
compute whenever is possible. It can be a useful piece of information to have when trying
to estimate training intensity and is also used to compare multiple athletes based on real
performance results.
The default way to obtain this value consists in using a race or all-out effort in order to
estimate the percentage of VȮ2 max utilized in the session and consequently compute the
theoretical maximum. This is accomplished using the two equations provided by Daniels
[10], based on the regression lines established with data observed in a number of different
athletes. First, the activity duration is used to calculate the percentage VȮ2 max that can
be technically sustained for the given time. Then, the oxygen cost is estimated considering
the velocity maintained during the effort. Finally, the cost is divided by the percentage
resulting in the desired VDOT value.
With a collection of past workouts like in our case, however, it’s not always possible to
count on the presence of races or similar activities. Because of this, we arrive to a VDOT
value starting from the knowledge of an athlete’s functional threshold pace (ftp) which, as
discussed in Section 2.2.2, can be practically approximated with the speed at the point of
anaerobic threshold (found with the approach described in the last paragraph). Since ftp
can be maintained for about an hour, we simply reuse the two-equations method above
by simulating an effort of 60 minutes at threshold speed. This way, as long as we have
recent workout data, we can provide an estimation even if we don’t know any actual race
result.
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3.4 High level view

As we anticipated earlier, one main challenge we had to face when designing the process-
ing architecture was finding a way to generate an high level view of our running activities.
The framework and solutions adopted will now be presented in detail following a short
introduction of the basic concepts.
In order to understand how an high level activity is created, we need to combine the two
main framework elements introduced thus far. On one side, we have the ActivityAccessor
object, which represents the low level interface to the activity and provides the objec-
tive measurements in the form of data streams. On the other side, the known athlete’s
physiological parameters (at the time of the run) are represented by means of an Athlete
object. By joining these components together, is possible to consider a running activity
in a way that takes into account the athlete perspective and, consequently, characterizes
all efforts with respect to the runner personal physical condition.
Thanks to this approach, we gain the possibility to perform more advanced data analysis
and better understand the real impact of each session on the individual athlete perfor-
mance. For this reason, failing to capture these aspects, can leave us with an incomplete
picture of the actual training effort and is therefore a fundamental step in our processing
phase.
The practical implementation of this construct requires the introduction of a new object,
that in the proposed architecture is denoted as HighLevelActivity. This interface is used
whenever we need to access some high level information, without having to be concerned
with the underlying low level details of a run. To initialize it, an ActivityAccessor and
Athlete are provided during creation in order to allow the subsequent construction of the
HighLevelStream objects.
These high level streams are the key to access a number of functionalities that will be
described in more detail in the following dedicated subsections. Among these features
we include: customized intensity zones mapping for speed and heart rate, training load
measures and workout classification through activity blocks.

3.4.1 Intensity zones and labeled streams

When we take a look at low level activities, we are presented with a multitude of data
that describes quite precisely each session in all its measurable aspects. These streams,
however, lack information about the actual relative effort and thus can be of limited use
when trying to understand an athlete’s training habits.
For example, if we take two runners of substantially different performance levels, an activ-
ity ran at the same identical pace could be considered an easy run for one but a threshold
run for the other. Similarly, when extrapolated from the context of a single athlete, heart
rate values can’t assume any particular meaning since the individual genetics, along with
other factors, make all comparisons pointless.
Because of these considerations, we needed to find a way to represent some of the relevant
streams of our running activities as a sequence of specific efforts, by considering the values
observed with respect to some known parameters of the athlete executing it.
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The HighLevelStream object

In our specific case, the streams for which we build an high level view are the ones con-
taining speed and heart rate measurements. As we have seen in Section 2.2.3, this data is
often used to quantify training intensity since it’s really easy to divide it into zones once
some athlete’s parameters are known. Furthermore, it can give a reasonably good idea of
the actual intensity while being relatively accessible in terms of acquisition.
For this purpose, inside the HighLevelActivity object we create an HighLevelStream for
both the speed (also grade adjusted if available) and heart rate streams. These resulting
objects are noting more than containers holding a sequence of windows created by slicing
each stream based on a measure of variance. Every one of these windows includes the
original values but can also return some information on that specific interval of the activ-
ity, such as duration or distance.
Once the high level streams are generated, is then possible to query the activity object
in order to obtain multiple intensity mappings of these items. To do so, the windows
inside each HighLevelStream are individually labeled by considering the given zone map
and the parameters contained in the Athlete object. In the returned stream all windows
display a label that corresponds to the intensity zone reached by the window reference
value (usually the median). Additionally, the zone shifts between adjacent windows are
computed with reference to the specific zone order and a summary is provided of the time
spent in each zone during the whole activity. As an example, some windows of a labeled
HighLevelStream are shown in Fig. 3.7.

High Level WIndow

Seconds pct: 4.62%
Meters: 422 m
Reference value: 2.7 m/s
Zone: easy
Zone shift: +0

Low Level Window

High Level WIndow
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Meters: 1123 m
Reference value: 3.6 m/s
Zone: marathon
Zone shift: +1
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Figure 3.7: High level windows in an labeled HighLevelStream of speed (using Jack Daniels intensity
zones).

Using this approach that separates the objective data from the intensity partitioning
method, allows us to easily obtain different views of speed and heart rate efforts, according
to the zone mapping provided. This can be of real importance, since sometimes a single
perspective is not sufficient to fully understand all the aspects of a running workout
session. We will also see that the other features available inside the HighLevelActivity
object make an heavy use of these high level streams information in order to deliver more
interesting representations of the single run.

High level sliding window

An additional tool that we developed in order to work with the high level streams of an
activity, is given by the high level sliding window function.
When we consider a labeled HighLevelStream, the sequence of windows inside it can
often display multiple short intensity zones variations that result in an oscillation of
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labels in some points of the run. These brief changes, however, do not always represent
an actual zone shift that is then protracted consistently for a substantial percentage
of the activity. Instead, the fluctuations can be the result of noisy measurements or,
in general, sudden intensity variations that only span short intervals of time. Since in
our architecture we wanted to distinguish between consistent and inconsistent changes
in intensity, we developed a method to able to exclusively detect the points in which a
true zone change occurs, whilst ignoring eventual false shifts encountered in the process.
This exact functionality is embodied by the high level sliding window algorithm, which
implements the change points search on a given HighLevelStream object. In addition to
this basic feature, this tool also offers the possibility to configure custom zones boundaries
and other constraints for the research of particular change points that respect a given set
of conditions.

Figure 3.8: Change points detection on a labeled speed stream. The colored bands represent the
various intensity zone boundaries (Jack Daniels VDOT zones). The raw stream (blue) along with the
windows reference values (orange) is plotted w.r.t activity time. The vertical red lines show the found
change points.

The practical implementation of this function includes two different execution modes.
In the ”infinite change points” mode the high level stream is analyzed to find an arbitrary
number of zone shift points inside the whole activity. Every time a point is found, the
windows preceding it are divided from the remaining ones. This results in a final con-
tainer that exhibits the sequence of sections created by this slicing, where each section is
given by the group of high level windows between two change points. Fig. 3.8 shows an
example where this is process applied to an activity speed stream.
In the other execution mode instead, the user has to specify the number of points to
look for and some conditions that must be respected in the sections before them. If the
constrains are violated in this scenario the algorithm fails, meaning that the requested
zone shift points could not be found. Otherwise, the resulting outcome is returned in the
form of sections, implying that all the demands were met. In practice, this feature is used
whenever we are looking for any particular behavior inside an activity.
In any case, the logic behind the detection of a change point is exactly the same in all the
execution modes mentioned above. To achieve it, the high level windows of the stream
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are processed one by one in an incremental fashion. At the start of a new section (or
initially at the start of the stream), a set of zone boundaries is defined. If we are not in
the algorithm’s infinite points mode, the user boundaries are applied. Otherwise, they
are created dynamically by sampling a number of windows that make up a certain time
percentage of the activity (lower and upper boundary are both given by the prevalent zone
contained in these objects). Every time a new window is added to the processed ones,
the composition of some ”recent” windows belonging to the current section is inspected.
If a certain high percentage of the values inside them is either above or below the actual
boundaries, these windows are separated from the previous ones (change point) and a new
section is initialized with them. The algorithm then continues its execution repeating the
steps above until the end of the stream is reached or, in the case of custom boundaries
mode, either all conditions are satisfied or a violation occurs.

Essentially, the whole approach relies on the fact that, in order to trigger a change point,
there must be a somewhat consecutive number of efforts strictly below or above the given
boundaries. By considering only the recent windows, past fluctuations are ignored re-
sulting in a overall more robust approach that can be easily tuned changing the various
percentage parameters, depending on how sensitive we need it to be for the task at hand.
It must be noted, however, that the result highly depends on the intensity zone mapping
chosen for the high level stream labeling.
Either way, the use of this tool allow us to further analyze the athlete’s sequential efforts
by capturing some aspects that would be otherwise ignored or overlooked. In particular,
all the features of this function are employed in our framework to help with the workout
classification procedure that will be presented later in this section.

3.4.2 Activity training load

An important element that we wanted to capture, when considering a running activity,
is the stress brought by the workout on the specific athlete.
In Section 2.2.4 we introduced the concept of training load and we saw that multiple
methods exist in order to compute the total amount built up during a session. Later, in
Section 2.3.3, we also considered some proprietary metrics developed by some of the most
famous tracking platforms for this purpose.
In our framework, the HighLevelActivity object includes the possibility to compute a
number of different load scores, depending on the data available in the individual run and
inside the associated Athlete object. If the activity allows it, several metrics based on
both speed and heart rate can be simultaneously used to obtain a more reliable estimate
of the actual training load.
While some of the original formulations utilize the average value observed in the whole
session, our implementation leverages the HighLevelStream objects capability to provide
a more precise result, especially in non-constant runs. For example, if we consider a short
interval training activity, it should be immediately clear that the average speed is not a
good indicator of the effort. In fact, since also the recovery phases are included in the
computation, the resulting average will be rather low. This can make a big difference
in the load estimation of some workout types, therefore we decided to use the high level
streams to cut the run in smaller windows for the calculation.
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As a final note, whenever pace is employed as a measure of training load, the grade
adjusted pace is used in place of the real observed speed to account for the eventual
inclines present during the session.
The load scores implemented in our framework are shown in Table 3.4.

Name Description Formula

rTSS

TrainingPeaks running training
stress score. Based on time spent
at speeds relative to the athlete’s
functional threshold pace.

∑N
w=1 rTSS(w)

Where each w is one of the N windows
composing the grade adjusted high level
speed stream. rTSS is computed as in Sec-
tion 2.3.3 given the reference speed and
duration of each w.

edwards
Edwards TRIMP score. Based
on time spent in the five differ-
ent heart rate zones.

∑5
z=1 coefz ·minsz

Where the summary of minutes passed in
each zone comes from the reference values
in the HR stream high level windows.

daniels
Jack Daniels score. Based on
time spent at speeds relative to
the athlete’s VDOT.

∑N
w=1Daniels(w)

Where each w is one of the N windows
composing the grade adjusted high level
speed stream. Daniels assigns a certain
amount of points per minute depending
on the percentage of VDOT ([9]) given the
reference speed and duration of each w.

Table 3.4: Training load scores available inside an high level running activity.

3.4.3 Workout classification

With the tools presented so far, it’s possible to generate an high level view of a run that
can characterize quite well an athlete’s effort, considering a number of different aspects.
In our analysis, however, we wanted to gain a more in-depth understanding of the runners
habits by also considering the different types of workouts adopted during training.
Unfortunately, activity tracking platforms don’t provide this kind of data or, at least,
not in a structured and homogeneous way. In fact, the users of these services are usually
equipped simply with the ability to comment their activities or assign some general labels
to them. For example, Strava only offers four different sub-categories to choose from
within the running activity type (Run, Race, Long Run, Workout).
In the case of these platforms, this approach makes sense considering that the main aim of
the services is to give the capability to track training activity, hence it’s the athlete that
should provide this specific information in the first place. In our case, on the other hand,
it’s impossible to perform an analysis based on this fragmentary data since, by leaving the
classification directly to the users, the result might contain incomplete, uninterpretable
or erroneous knowledge.
For this reason, we couldn’t count on a precise description of the workouts coming directly
from the source. Therefore, in order to overcome this problem, we thought it would be
interesting to attempt a classification of the available runs based entirely on the activity
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data provided as input to our framework.
In practice, this proved to be quite a difficult challenge, given that a number of problems
arise when tackling this approach in an unsupervised way, as we will discuss shortly.
Perhaps, this is also a reason why the tracking platforms delegate the task to the users
without trying to automatically produce a classification for the provided runs.

Developing a classification approach

Given that we can already count on a set of available tools inside an high level activity,
a first naive approach would be to leverage the summary of time spent in each intensity
zone (for the relevant high level streams) in order to perform a rough classification of
a specific activity. For instance, if we consider the labeled speed stream of a run, some
boundaries can be indicatively set on the existing zones to detect if the session was mostly
executed at some speeds that can be considered specific for a certain workout class (e.g.
threshold run, recovery run, etc.).
Unfortunately, this solution works only if the activity exhibits a constant effort, since it
does not account for any sequential aspects characterizing the workout. This is particu-
larly evident if we take in consideration an interval training session where maybe most
of the time is given by the recovery portions between each repetition. In this case, the
zones summary does not give much information on the workout category itself, thus it’s
not really a feasible approach for this kind of activities.
In Section 2.2.5 we presented a categorization that divides the possible workouts in a
number of definite classes. In reality, however, we need to understand that an athlete
does not necessarily follow this division and can customize the actual sessions in many
different ways. Furthermore, it should not be ignored the fact that each training could be
preceded and followed by a warm-up and cool-down phase respectively, which can inter-
fere with the classification task. All these issues render the act of classifying an activity
in its entirety an ill-posed problem.
Because of these considerations, we decided to instead follow an approach that first tries
to break down a running activity in a sequence of ”blocks” representing the various phases
making up the training session as a whole (e.g. warm-up, intervals, etc.). These blocks are
identified by employing some heuristics that look for a set of characterizing elements con-
tained in the run data. Once divided into these components, is then possible (if needed)
to perform a classification that considers the blocks characteristics and their position.
This modular approach has the advantage of supporting all kinds of workouts, without the
need to forcefully include each one of them in some predefined class if not required. More-
over, it offers the possibility to analyze in more detail the activities by creating an high
level representation of its internal components (e.g. checking the presence of warm-up in
a collection of runs).

Heuristics for blocks individuation

During the execution of a running activity, pace is the main parameter that an athlete
can control in order to determine and modify the type of workout performed. As a con-
sequence, by observing the evolution of this variable in time, is often possible to notice
some patterns that can reveal the nature of the training session from a classification point
of view.
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In an effort to decompose a run in several meaningful blocks, we identified a few char-
acterizing aspects that can be usually located by analyzing the high level speed stream
of a given activity. These components can provide us with the ability to distinguish the
phases constituting all kinds of possible workouts, thus allowing us to perform the division
mentioned earlier.
To pinpoint these elements, we make use of a number of functions that check their ex-
istence by utilizing a series of custom defined heuristics on either the whole workout or
some parts of it.
In particular, we try to locate the potential presence of the following patterns:

� Intensity peaks sequences (intervals)

� Warm-up phases

� Cool-down phases

� Pace zone changes

The advantage of basing this search on the speed alone is that, theoretically, there is no
need for heart rate data in our classification method (if we already know the athlete’s
parameters). Additionally, this approach avoids the problems of dealing with cardiac lag,
which can really impair the detection of quick intensity changes due the intrinsic nature
of the heart rate responses.
A disadvantage of this procedure, however, resides in the fact that often the run is not
performed on a level surface. Because of this, the actual observed speed can be influenced
by the terrain changes and consequently render the block individuation more challenging.
In fact, even when using grade adjusted pace, we ran in some issues (both coming from the
adjusted estimation and our method) that sometimes impair the correct determination of
the searched features. For this reason, in our analysis hilly activities might present more
problems that their flat counterpart.
As a final note, it must be also mentioned that in all the following we assume that the
activity segments containing manual pauses are not considered part of the workout and
hence are skipped.
In the next paragraphs we will now explain in detail the logic behind the detection of all
the elements involved in the activity blocks creation.

Intensity peaks sequences represent abrupt changes in speed that result in several re-
peated higher intensity efforts (peaks) alternated with recovery time periods in-between.
These components are the building blocks of any interval/repeats workout and, conse-
quently, constitute a fundamental pattern for a successful block extraction.
In order to detect their presence and divide an activity accordingly, we perform a number
of processing steps that, starting from the entire high level speed stream, look for the
existence of one or more peak sequences. These phases can be summarized in four main
stages:

1. Peaks detection from the reference high level speed stream signal

2. Mapping of found peaks and recovery intervals to high level windows
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3. Research of peaks sequences and division of the activity in sections of high level
windows

4. Check of conditions and eventual elimination of erroneous peaks sequence sections.

In the first step, we check the speed stream for the presence of any signal peaks with the
help of Scipy’s find peaks function 1. Since the peaks we are looking for must respect a
series of conditions in order to be considered part of some interval workouts, we adopt
some measures to filter out the eventual false positive generated by the search. Rather
than providing the base speed stream as input to the function, we exploit the reference
stream (given by all the reference values contained in the high level windows) to create a
step function representing the whole activity. This has the effect of ignoring most short
or single value peaks while preserving the larger ones. Additionally, we make use of the
find peaks parameters by specifying a minimum and maximum peak width along with
the minimal required prominence 2 for the detection of the interesting peaks (example
in Fig.3.9). Still, it can happen that some false peaks are identified during this phase
because, for example, the athlete suddenly decreased speed creating a downward spike
that influences the adjacent values. This usually can give rise to a number of problems,
but we will see shortly that for most of them we adopted several filtering solutions in
the last step of the procedure listed above. At the end of this stage, the properties of
the found peaks are returned by the Scipy function. If either none or a single peak is
discovered the whole process ends, since we did not find a peak sequence. Otherwise, the
information acquired until now is passed into the next phase.
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Figure 3.9: Peak detection example on the reference values speed stream of a running activity. Each
peak found by the Scipy function is highlighted with an orange cross.

The second step of the operation is used to map the peaks and recovery intervals identified
on the time stream into the corresponding high level windows. To do this, each window
contained in the stream is given one of the following labels: ”peak”, ”recovery”, ”pre-
sequence”, ”post-sequence”. For every peak, we extract the start and end timestamps

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
2https://en.wikipedia.org/wiki/Topographic_prominence
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(boundaries) from the properties within the Scipy function result. All the high level win-
dows contained partially or totally inside the boundaries of a found peak are assigned the
”peak” label. Conversely, to those that are located between each pair of peaks is given
the ”recovery” label. Finally, all the windows preceding the first peak or following the
last one are labeled as ”pre-sequence” and ”post-sequence” respectively. The final result
is a collection of lists where for each found peak (and recovery in-between) we have the
corresponding windows along with the ones before and after the very first and last repeat
of the session.
The third step involves the activity division in windows sections to delimit the peak se-
quences identified from the rest of the run. Since in our task we are not looking for
multiple detached single peaks, but instead sequences of them, there is also a need to
check the distance between each spike and eventually exclude the isolated ones while
aggregating one ore multiple groups of closely spaced peaks. Because of this, we set a
maximum length in percentage of the session time, after which the recovery is considered
too big and a sequence is consequently split. A the start of this phase, pre and post
sequence windows are separated in their own two sections at the activity edges. Next,
peak and recovery windows are processed in an alternate fashion following the session
order. If a recovery interval between two peaks is too wide, a new section containing it
is created to signify a separation of the single peak sequence in two different ones. This
process can generate some isolated peaks that are accordingly merged to the non peak
sequence sections. When the procedure terminates, we end up with a container of ordered
sections that are either labeled as peak sequences or not. At this point, we check if at
least one sequence is found, otherwise we state that no peaks sequences exist.
The fourth and last step is only executed when at least a peaks sequence section is found
inside the activity. In this case we need to make sure that the results found are appro-
priate given our definition of intervals/repeats in the context of a run. In particular,
two conditions are checked to ensure that the erroneous intervals sections are reduced to
a minimum: total repeats length (in time) w.r.t. the whole activity and intensity zone
increase during repeats. The first one intuitively sets a minimum threshold that must
be passed so that the peaks sequences can be considered a relevant part of the session.
The second one instead confronts the intensity zones of the peaks/non-peaks sections to
verify that there was a consistent increment in effort between the two. For example, speed
oscillations and peaks can also happen due regular terrain changes (e.g. hills laps) which
create the typical repeats shape but do not exhibit a significant variation in intensity.
For this reason, peaks sequences that do not positively change zone are excluded and
eliminated. As a consequence, an activity must pass both these checks to be considered
a run that contains sections of repeats.

Warm-up and cool-down phases can be often found inside many high intensity and in-
terval workouts (but in general all kind of workouts). Their essential purpose is to allow
the athlete to perform a gradual transition to and from a challenging bout of effort. For
this reason, we can identify them as relatively short low intensity time periods that are
located at the start (warm-up) and at the end (cool-down) of a running activity.
Aside from the intrinsic value of their discovery, detecting their presence inside a training
session can generally simplify the extraction of other types of blocks and generate an
overall better classification result. Consequently, we always make an effort to spot this
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kind of behavior whenever we are dealing with a given activity.
In an attempt to extract these patterns, we look for areas of low intensity speed at the
edges of a run that are separated from the central portion by a significant change of in-
tensity zone. This task can be accomplished by exploiting the already introduced high
level sliding window function in its custom boundaries mode. Thanks to this approach,
we can specify the properties that our warm-up or cool-down segment should respect and
then search for a change point separating it from the rest of the activity.
In the warm-up case, first we decide what intensity zones of the current mapping can
be considered acceptable as low intensity (for our purpose). Then, we set a minimum
and maximum length (in percentage of the activity) for the segment itself. Finally, we
provide as input to the function the labeled high level speed stream of the activity. All
these parameters result in the search for a single change point that must be preceded by
an area complying with the given specifications. If the boundaries are not respected or
no change point is found, the algorithm signals that no warm-up is present. Otherwise,
the high level windows before the change point are separated from the rest of the run to
display the actual activity partition.

Figure 3.10: Warm-up and cool-down individuation inside an interval workout. The two vertical lines
represent the found transition points that separate warm-up (red) and cool-down (green) from the rest
of the activity.

The logic behind cool-down detection is almost identical to what we already considered
in the previous case. In fact, the only difference is that, in this instance, the sequence of
high level windows composing the stream are reversed before being given as input to the
sliding window function. This allows us to reuse the same kind of change point search
simply starting from the end of the activity instead of the beginning. Obviously, also in
this case there can be either a failure or a success depending on the presence of a suitable
cool-down phase. Consequently, when a positive result is returned, the windows order is
restored before the activity is partitioned in the two resulting sections.
During both warm-up and cool-down identification, sometimes it can happen that a true
pace change that, however, is not really prolonged in time (e.g. peak) accidentally triggers
a false detection. Because of this, in the case of positive individuation we always make
sure that the majority of the remaining activity (after warm-up or before cool-down) is
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of an increased intensity, otherwise a negative result is returned instead.
As a visual example of the process described so far, in the high level speed stream por-
trayed in Fig. 3.10 the detection of both warm-up and cool-down is shown when consid-
ering the second zone from the bottom as upper boundary.

Pace zone changes and their absence constitute the last characterizing element that we
take in consideration with the objective of building the block view of a workout.
Until now, we have dealt with some activity patterns (e.g. peaks) that can be quite easily
spotted when looking at the speed stream of a session. However, for a correct identifi-
cation of all workouts components, we also need to be able to detect more subtle pace
changes that cannot be considered equivalent to a constant effort. This is mainly done
to distinguish the sections of a run executed at uniform pace from the ones with different
kind of pace changes (e.g. progression). Moreover, it allows us to cover all the parts of
an activity that do not consist of the other elements discussed already.
In order to perform this search, we once again take advantage of the features available
in the high level sliding window function. Only this time, instead of specifying partic-
ular boundaries, we utilize the ”infinite change points” mode, since the number of zone
changes in this case is unknown. The high level speed stream of the activity (or a part of
it) is hence given as input to the function, which returns one or more sections depending
on the change points located.
If a single section is returned, we assume that it was a uniform pace effort (no change
points detected). Otherwise, we analyze some characteristics of all the resulting sections,
such as their composition and size, to check if some actual consistent intensity changes
are present or not.

Blocks extraction from activity

The heuristics presented so far are at the base of our activity decomposition process. For
the actual block extraction procedure, however, we needed to devise a method able to turn
the complete running activity into an ordered sequence of Block objects representing the
workout phases contained in the individual training session. In this context, we created
an algorithm capable of correctly employing all the available heuristics in order to identify
the characteristic patterns and manage their proper extraction, following a precise logic
that starts from the high level grade adjusted speed stream of a given run.
The algorithm is composed of a series of functions that call each other in a predefined
sequential manner. Each function, given a part of the activity, is responsible for the
individuation and creation of a certain type of Block object. Depending on what was
found, it then delegates the rest of its remaining windows to some other functions, waiting
for their results in order to merge them. To do this, all the sections that are not yet blocks
are given as input to the following procedures. Eventually, a catch-all function returns a
single Block without making any further call.
This process produces a gradual transformation of different activity sections into Block
objects, where each one contains the corresponding sequence of high level windows. When
no unassigned windows are left, the result is merged to create a container only made of
the final blocks constituting the whole activity. A general sketch of the intuitive idea
behind the block extraction process is shown in Fig. 3.11.
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Figure 3.11: General process of block extraction from a running activity.

All the possible types of resulting blocks are presented in Table 3.5 along with a brief
explanation of what they represent and the function that creates them.

Starting from the high level stream, the order adopted by the extraction procedure in-
volves the following phases: first the individuation of peak sequences, then warm-up and
cool-down search, finally the creation of uniform or non-uniform blocks.
The reason why it’s done this way, is to ensure that no block extraction interferes with
the other ones during the entire algorithm execution. For example, we have observed that
by separating warm-up or cool-down first instead, the function for peak detection has
some problems finding the first and last peaks due to the windows cut off by the removal
of those two patterns. Because of this, we first extract the eventual peak sequences and
only after that all the remaining blocks are created.
A problem of this approach, however, is that sometimes warm-up and cool-down must be
identified inside a partial activity which can lack the change point we are looking for in
the original heuristic. This is easily solved by also testing the whole section as a potential
warm-up or cool-down (if the pace change is absent) with a check on the boundaries that
are normally used for the search of these patterns.
The logic of all the functions involved in the process is presented by the pseudo-code in
the next few pages.
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Block Name Description Creator Function

PeaksSequence

Represents a sequence of higher intensity
interval efforts with recovery phases in-
between. It’s possible to find multiple
objects of this type inside a single activ-
ity (different interval phases).

extract peaks sequences()

Warmup

Represents the warm-up phase at the
start of an activity. Can be found at
most once and is always the first block
in the resulting sequence (if present).

extract warmup()

CoolDown

Represents the cool-down phase at the
end of an activity. Can be found at most
once and is always the last block in the
resulting sequence (if present).

extract cool down()

UniformBlock

Represents a phase where no significant
pace intensity zone changes are present.
Can be found zero or multiple times in-
side a single activity.

extract standard block()

NonUniformBlock

Represents a phase where there are one
or more changes in pace intensity (e.g.
progression). Can be found zero or mul-
tiple times inside a single activity.

extract standard block()

Table 3.5: Types of Block objects that an activity can be composed of.
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Algorithm 2: Block extraction procedure

function extract blocks(high level activity):
/* starting point of the whole extraction process */

get the high level stream of grade adjusted speed inside the high level activity ;
call the extract peaks sequences func. on the labeled h.l. stream;
return the flattened sequence given as result of the previous call;

end

function extract peaks sequences(high level windows :list):
use heuristic to check for peak sequences presence;
if present then

create PeakSequence objects for each section with a peak sequence;

for the other sections check position and act accordingly;
if first section of activity then

call extract warmup func. on this section;
else if last section of activity then

call extract cool down func. on this section;
else

call extract standard block func. on this section;
end
return all the resulting sections (in order);

else
call the extract warmup func. on the high level windows (whole activity);
return the result of the previous call;

end

end

function extract warmup(high level windows :list):
use heuristic to check if warm-up is present (via change point);
if present create a Warmup object with the first section;

if it’s whole activity then
call the extract cool down func.;
return the result of the previous call (preceded by Warmup if present);

else
if warm-up not present check if whole section can be considered it and
create the Warmup object if True;

call extract standard block func. on all the sections that are not block
objects;

return all the resulting sections (in order);

end
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Algorithm 3: Block extraction procedure (continue)

function extract cool down(high level windows :list):
use heuristic to check if cool-down is present (via change point);
if present create a CoolDown object with the last section;
if cool-down not present and not whole activity then

check if whole section can be considered it and create the CoolDown
object if True;

end
call extract standard block func. on all the sections that are not block
objects;

return all the resulting sections (in order);

end

function extract standard block(high level windows :list):
use heuristic to check if there are pace zone changes;
compute prevalent zone for each resulting section;
if no changes or all prevalent zones equal then

return a UniformBlock object;
else

return a NonUniformBlock object;
end

end

Base workout classification

As anticipated earlier, once a running activity is divided in the block view we have pre-
sented so far, is then possible to utilize this information (along with the other high level
aspects of the run) to perform any kind of classification partition needed for the specific
task at hand.
For analysis purposes, we came up with a number of workout classes (based on the ones
introduced in Section 2.2.5) that, in our opinion, cover the majority of the most commonly
adopted workout types among runners. In particular, these mutually exclusive classes can
be summarized with the following labels: race, base, long, recovery, threshold, anaerobic,
interval, surges/strides, progression, fartlek.

Of all these classes, races are the most straightforward ones to discriminate since we
simply trust the runner labeling and consequently assign to this class all the runs that are
marked as race. In any other case, we start checking the blocks distribution to initially
divide the uniform effort runs from the others.
If only UniformBlock or Warmup and CoolDown objects are found (so it’s uniform), we
need to determine if the session was either a base, long, recovery, threshold or anaerobic
run. To do this, both the grade adjusted speed and heart rate (if present) labeled high
level streams are considered to verify if the majority of time was passed around, below
or above the personal lactate threshold. Consequently, to the efforts located around or
above this parameter the threshold and anaerobic labels are assigned respectively.
Conversely, in the case of a distribution mainly concerning the intensity below the anaer-
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obic threshold, we differentiate base, long and recovery runs by considering their duration
and distance with respect to the average ones of the relatively recent past workouts. In
this context, the recovery label is associated to the ones significantly shorter than usual
(<=0.5 times), while the long label is given to the ones that are considerably longer than
the norm (>=1.5 times). In any other case the base label is assigned by default.
When the running activity instead presents some PeaksSequence objects, we know that
some kind of interval efforts were present during the session. In this instance, the total
time (w.r.t. whole run) passed inside repetitions intervals is weighted against the rest of
the activity (warm-up and cool-down excluded). If the majority was given by the peaks
sections we label it as interval, otherwise as surges/strides.
Lastly, if all the other conditions fail, we end up with a workout that clearly exhibits some
intensity changes (not comparable to intervals) that surely result in a NonUniformBlock
object. If in this case the changes create an effort of increasing intensity (composed by
at least two sections) and appropriate duration (minimum 10% of the run if last section,
20% otherwise), the run is labeled as progression. Alternatively, the fartlek label is used
on all the remaining activities.
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3.5 Activities calendar

Up until now, we have only focused our attention in the domain of a single running ac-
tivity, ignoring its relation with time or eventual other activities of the same athlete. In
our analysis, however, we also wanted to understand the runners training habits by con-
sidering short and long term periods of time including several workout sessions.
In order to do this, we need to take into account the fact that some physiological param-
eters of our athletes can change over the time-span considered. This is why, earlier, we
introduced the concept of assigning a different Athlete object to each activity, represent-
ing the athlete’s status in the moment of the actual effort. If in the previous sections we
took for granted the correct computation of these objects that are assigned to each high
level activity, now we must spend some time to discuss the issues that arise when trying
to implement the parameters estimation procedures in the real domain.
For each athlete considered in our study, we typically collect a bunch of activities that
are included inside a precise date interval that can span several months. For this reason,
aside from storing the actual JSON files of each run, we utilize a database in order to
map each activity with the corresponding date in which it was performed. Following this
approach allows us to easily create a sort of calendar that contains the history of past
workout activities, thus empowering us with the ability to associate a temporal meaning
to every run examined during the analysis process. This data, however, is not limited to
running workouts alone. As we will see, some minimal information is also collected on
the training sessions that make up other kind of sports (cross-training).
In the context of this input data, we developed an architecture to be able to correctly
manage the creation of each HighLevelActivity object and, consequently, perform other
analysis tasks on the collection of available activities. The main element of this framework
is given by the AthleteCalendar object, which is responsible for a series of important steps
required in this context. Particularly, given a database of activities and the corresponding
files for each run, it provides the following features:

� Estimation of the athlete’s physiological parameters and their evolution in the time-
frame considered (using the available runs)

� Creation of the HighLevelActivity objects for each run in the database (with the
relative Athlete objects)

� Possibility to divide the calendar in multiple windows composed of a fixed number
of days to compute some statistics

� Calculation of training load balance parameters

With the subsections below, we will now present the details of all the single aspects
characterizing the implementation of these capabilities.

3.5.1 Athlete parameters evolution and estimation

As we have stated earlier, some of the physiological parameters used for the assessment
of training intensity can change over time, provided that we consider a large enough
interval. Because of this, it’s important that we track those changes in order to correctly
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characterize all the running activities examined in our analysis.
The initialization phase of the AthleteCalendar object conveniently includes a step where
we make sure to have the correct estimate of a number of these parameters. If we don’t
have access to this kind of information, a dedicated process is called and the results are
then saved in a file for future use. In particular, to be able to create the needed high level
activities, we focus on the estimation methods of two variables that we have presented
earlier in Section 3.3: HRmax (maximum heart rate) and AT (anaerobic threshold).

Maximum heart rate

For the purpose of our study, HRmax can be considered as a fixed parameter, since the
time period taken into account does not include several years of activities. In fact, we
have seen that this value generally decreases as the age of the athlete advances, so treating
it like a constant shouldn’t make much difference given the relatively short scope of our
analysis.
To estimate it, we simply provide as input to the algorithm described in Section 3.3.1 all
the available runs with heart rate data that are contained in the calendar database. Since,
in our case, we perform all the processing after the entire data collection is completed,
we usually have access to a decent number of runs with HR measurements for this part
of the estimation. However, this same exact method can be also used in the case of a
dynamic analysis (live after every new activity), just by making sure that enough suitable
past data is present in the database.
When a final estimation of the HRmax values is available, we save it in the dedicated
file for the current athlete so that it will be possible to utilize it later in the high level
activities creation.

Anaerobic threshold

Contrary to maximum heart rate, we have already seen that the anaerobic threshold value
for a single athlete can change in a reasonably short amount of time when following a
long-term training plan. In general, as the performance increases due to an appropriate
workout regime, it’s often possible to observe a gain in threshold speed that reflects the
runner’s improved preparation. In contrast, decreasing or impairing training effectiveness
leads to the deterioration of this parameter over time.
Having said that, in this context it would not make any sense to adopt the same strategy
used for HRmax where more data is favored over less. As a matter of fact, utilizing a too
wide date range of activities could only render more difficult the threshold individuation
process (as seen in Section 3.3.2) since the various deflection points would be overlapping.
For this reason, we opted for a windowed approach that, instead, computes multiple
estimations by considering several groups of consecutive runs over the course of the time
period examined.
Ideally, we should perform a new estimate for every running activity in the calendar that
includes all the workouts close to it. In practice, however, this could be computationally
intensive in some instances and, in reality, it wouldn’t make much difference since many
runs would basically have the same threshold value. Because of these considerations, we
divide the calendar in a series of fixed activity windows, whose estimations are then used
when assigning the values to each run in a way that we will see later.
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In order to create the slicing of the calendar in windows, we initially considered using
the activities dates to generate one month windows with a step of two weeks to better
account for the transition periods between two consecutive estimations. However, we
quickly found out that this approach presents some problems, mostly related to the fact
that it doesn’t ensure that a certain amount of suitable data is collected in each window.
This often results in threshold estimations that lack sufficient data points due to a low
number of activities with heart rate measurements inside some windows.
To solve this issue, we decided to instead base the window slicing on the cumulative hours
of heart rate data present among the running activities in the calendar (ordered by date).
This way, we make sure that each window contains at least a fixed amount of HR data,
thus allowing a better overall estimate in every instance. Moreover, also in this case we
use a step (now in hours of HR activity) after which a window is recomputed so that we
end up with a more fine grained sequence of estimations.
To achieve this, the calendar is sequentially sliced in n step-sized windows that contain at
least the number of HR hours that is required by each step (except for the last one). Since
a final window must reach a certain amount of HR hours that is a multiple of the step
ones, a sliding window is used to group the steps into a series of window-sized windows
to guarantee the minimal final window length (an example of this division can be seen in
Fig. 3.12). If this process is performed in a dynamic fashion, is possible to use this same
logic by waiting every time for a step amount of new data to be collected before creating
a new window that uses this data together with the past steps (to reach a window size).

Final window n°1

Final window n°2

Final window n°3

Final window n°4 Final window n°6

Final window n°5

Step-sized
slice (in HR

hours)

Step-sized
slice (in HR

hours)

Step-sized
slice (in HR

hours)

Step-sized
slice (in HR

hours)

Step-sized
slice (in HR

hours)

Step-sized
slice (in HR

hours)

Step-sized
slice (in HR

hours)

calendar time

Figure 3.12: Slicing of the calendar w.r.t. cumulative HR hours. In this case a final window is composed
by two steps (each step is represented with a different width because it can include a diverse number
of activities and dates to reach step hours).

One disadvantage of this approach is that the runs inside a single window span different
periods of time depending on how often the athlete trained. This aspect can result in some
wide windows (if some intervals with a low number of workouts are present in the calendar)
that can still in part exhibit the overlapping threshold issue mentioned before. However,
this problem is partially mitigated by imposing a maximum threshold (in terms of days)
after which the window is considered too big and consequently discarded. Moreover, as
we will se shortly during the values assignments, some additional measures are employed
to prevent the influence of a single erroneous value on the other estimates.
When the slicing of activities is completed, we simply use the algorithm for AT estimation
introduced in Section 3.3.2 to compute all the thresholds using the runs with HR data
in each window. The resulting values are then saved in the appropriate file (like with
HRmax), only this time we obtain a list of values along with the specification of windows
and step size used for the computation.
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3.5.2 High level activities creation

In order to perform more advanced tasks on the athlete calendar such as statistics or load
balancing calculations, all the running activities in the database need to have a reference
to their respective HighLevelActivity objects. As a consequence, when an AthleteCaledar
is first initialized, this mapping is established by following a procedure that creates each
required object taking into account the athlete’s parameters in time.
We already know that for the successful generation of an high level activity two partic-
ular elements need to be provided: the ActivityAccessor and Athlete objects. For this
reason, in the initialization phase of the AthleteCalendar, both these aspects are taken in
consideration and consequently managed by a specific function that, as a result, returns
the aforementioned mapping.
For each run in the calendar, the ActivityAccessor is easily retrieved by recovering all the
relevant JSON files and providing them as input to each accessor object. This is quite a
simple operation, therefore no particular problems need to be discussed in this regards.
The creation of each single Athlete object, instead, involves a few more steps, thus we
will now spend some words on its relative implementation details.
In the first step of this process, we make sure that the athlete’s parameters have already
been estimated by checking the relative file where they are usually stored. If this is not
the case, the whole procedure presented in Section 3.5.1 is called before moving on with
the rest of the operation. Once all parameters are readily available, an empty Athlete
object is created for each running activity in the calendar.
At this point, two different types of parameters need to be correctly assigned to each
relevant object. First, the time-invariant ones (e.g HRmax) along with some basic in-
formation on the athlete (e.g. sex) are provided as input to all the objects considered
(no one excluded). This makes sense since they should be equal by definition for all the
runs examined in the chosen time period. Next, the various values of the time-variant
parameters must be attached to the corresponding Athlete objects considering the logic
of their computation.

Anaerobic threshold assignments

For the correct assignment of all the threshold estimated on the calendar, both the values
and the performed slicing specifications need to be retrieved from the relative parameter
file.
Since the estimations were made on a series of windows, each value is referred to a specific
group of running activities, that in this case is given by the sequence of step-sized slices
composing the entire calendar.
In order to preserve the possibility to perform this computation dynamically (not a poste-
riori), each step-sized window can only use the values computed in the past. This means
that all the Athlete objects of the runs in a step slice receive as threshold estimation the
one calculated on the previous final window. However, considering that sometimes the
algorithm used for the threshold search can fail, in practice we actually take the median
of a number of successful past estimates instead of relying on the single precedent one.
This allows us to avoid placing too much weight on a potentially wrong value that might
otherwise skew the results.
Having said that, it can still happen that, for some reason, a few Athlete objects are not
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able to get a threshold value estimation. For example, this is always the case for the first
slices in the calendar that do not have a previous final window. In such circumstances,
we create the HighLevelActivity anyways by assigning to the relative runs an incomplete
athlete representation.

3.5.3 Calendar windows and statistics

After the AthleteCalendar initialization and the consequent creation of all the High-
LevelActivity objects, we end up with an handy mapping that links the time-related
information of each activity in the calendar to its appropriate high level representation
(except for cross-training activities).
This framework allows us to potentially perform all kind of analysis tasks that can exploit
all the features we introduced so far when presenting the single running activity archi-
tecture. In particular, being interested in the runners training habits over some definite
time periods, we implemented the capability to divide the calendar of a given athlete in a
collection of fixed length (in days) windows in order to compute some statistics on them.
This feature is provided through a dedicated function present inside the AthleteCalendar
object which only requires two input parameters (one of them is optional). By specify-
ing the length in days of the desired windows and, optionally, a precise start date, the
whole calendar is partitioned into a sequence of windows starting from the given date
(if not specified, from the first day of the calendar). All resulting windows refer to their
respective date interval and can include both running and non-running activities. In some
cases, however, if no workouts were registered in a particular range of dates, the relative
windows can also turn out to be empty.
In order to provide a consistent structure every time a calendar slicing is executed, the
whole operation returns a list of CalendarWindow objects, where each one of them is a
container that represents a specific window by giving access to its activities and some
information on the slice itself.
Given a single CalendarWindow, we then created a collection of statistics that can be
applied to this type of objects with the purpose of delivering some interesting insights on
the low and high level characteristics of the workouts contained in it (all these functions
only require a calendar window object to work).
In tables 3.6, 3.7, 3.8, 3.9 and 3.10 we list all the functions used during our analysis.

56



CHAPTER 3. FRAMEWORK 3.5. ACTIVITIES CALENDAR

Function Name Description

n of training days()
Returns the number of days in the window that have at least
one type of training (run or cross-training).

n of days with runs()
Returns the number of days in the window that have at least
one running workout.

n of rest days()
Returns the number of days in the window that have no work-
outs (neither runs nor cross-training).

avg daily runs()
Returns the average runs per day. Only days with runs are
included.

max runs per day()
Returns the maximum runs observed in a single day considering
all days of the window.

n of running work-
outs()

Returns the number of runs in the window.

n of cross training
workouts()

Returns the number of cross-training workouts in the window.

n of flat runs()
Returns the number of runs in the window that can be consid-
ered flat.

Table 3.6: Window statistic functions concerned with temporal training aspects.
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Function Name Description

running time() Returns the total seconds of running activities in the window.

cross training time()
Returns the total seconds of cross training activities in the win-
dow.

running volume()
Returns the total meters covered considering all the runs in the
window.

elevation gained()
Returns the total elevation gained (in meters) considering all the
runs in the window. Treadmill runs are excluded since have 0
elevation gain by definition (no way to know incline if present).

avg run duration()
Returns the average duration (in seconds) of a run considering
all the runs in the window.

avg run volume()
Returns the average volume (in meters) of a run considering all
the runs in the window.

avg speed()
Returns the average speed (in m/s) considering the time of all
the runs in the window.

avg grade adjusted
speed()

Returns the average grade adjusted speed (in m/s) considering
the time of all the runs in the window.

avg heart rate()
Returns the average bpm considering the time of all the runs in
the window. Runs without heart rate are excluded.

avg altitude()
Returns the average altitude (in meters) considering the time of
all the runs in the window. Treadmill runs are excluded.

avg elevation gain()
Returns the average elevation gained (in meters) considering all
the runs in the window. Treadmill runs are excluded.

avg incline grade()
Returns the average incline grade considering the time of all the
runs in the window. Treadmill runs are excluded because of lack
of incline information.

Table 3.7: Window statistic functions concerned with low level runs characteristics.
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Function Name Description

n of low intensity runs()
Returns the number of runs in the window that can be con-
sidered of low intensity. Only the runs with a lactate thresh-
old estimation are considered.

n of medium intensity
runs()

Returns the number of runs in the window that can be con-
sidered of medium intensity. Only the runs with a lactate
threshold estimation are considered.

n of high intensity
runs()

Returns the number of runs in the window that can be
considered of high intensity. Only the runs with a lactate
threshold estimation are considered.

time at low intensity()
Returns the seconds passed at low intensity considering the
time of all the runs in the window that have a lactate thresh-
old estimation.

time at medium inten-
sity()

Returns the seconds passed at medium intensity considering
the time of all the runs in the window that have a lactate
threshold estimation.

time at high intensity()
Returns the seconds passed at high intensity considering the
time of all the runs in the window that have a lactate thresh-
old estimation.

time at low intensity
pct()

Returns the time in percentage passed at low intensity con-
sidering the time of all the runs in the window that have a
lactate threshold estimation.

time at medium inten-
sity pct()

Returns the time in percentage passed at medium intensity
considering the time of all the runs in the window that have
a lactate threshold estimation.

time at high intensity
pct()

Returns the time in percentage passed at high intensity con-
sidering the time of all the runs in the window that have a
lactate threshold estimation.

Table 3.8: Window statistic functions concerned with running intensity distribution.
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Function Name Description

running load rtss()
Returns the total training load (rTSS) considering all the
runs in the window that have a functional threshold pace
estimation.

max run load rtss()
Returns the maximum training load (rTSS) observed con-
sidering all the runs in the window that have a functional
threshold pace estimation.

avg run load rtss()
Returns the average training load (rTSS) considering all the
runs in the window that have a functional threshold pace
estimation.

running load edwards()
Returns the total training load (Edwards TRIMP) consid-
ering all the runs in the window that have heart rate and a
max HR estimation.

max run load edwards()
Returns the maximum training load (Edwards TRIMP) ob-
served considering all the runs in the window that have heart
rate and a max HR estimation.

avg run load edwards()
Returns the average training load (Edwards TRIMP) con-
sidering all the runs in the window that have heart rate and
a max HR estimation.

avg volume acwr()
Returns the average ’Acute:Chronic Workload Ratio’ value
of the days contained in the window.

max volume acwr()
Returns the maximum ’Acute:Chronic Workload Ratio’
value of the days contained in the window.

Table 3.9: Window statistic functions concerned with training load distribution and balancing.
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Function Name Description

n of races() Returns the number of runs labeled as ’Race’ in the window.

n of base runs()

Returns the number of base runs (uniform, low intensity and
with duration and distance close to the average one) contained
in the window. Only the runs with a lactate threshold estima-
tion are considered.

n of long runs()

Returns the number of long runs (uniform, low intensity and
with duration and distance significantly greater than the aver-
age one) contained in the window. Only the runs with a lactate
threshold estimation are considered.

n of recovery runs()

Returns the number of recovery runs (uniform, low intensity
and with duration and distance significantly lower than the
average one) contained in the window. Only the runs with a
lactate threshold estimation are considered.

n of threshold runs()

Returns the number of threshold runs (uniform and mainly
performed around lactate threshold) contained in the window.
Only the runs with a lactate threshold estimation are consid-
ered.

n of anaerobic runs()

Returns the number of anaerobic runs (uniform and mainly
performed above lactate threshold) contained in the window.
Only the runs with a lactate threshold estimation are consid-
ered.

n of interval runs()

Returns the number of interval runs (with one or more se-
quences of intensity peaks that span over the majority of the
session) contained in the window. Only the runs with a lactate
threshold estimation are considered.

n of surges strides
runs()

Returns the number of surges/strides runs (with one or more
sequences of intensity peaks that do not span over the majority
of the session) contained in the window. Only the runs with a
lactate threshold estimation are considered.

n of progression
runs()

Returns the number of progression runs (that exhibit a signif-
icant progression in intensity during the session) contained in
the window. Only the runs with a lactate threshold estimation
are considered.

n of fartlek runs()

Returns the number of fartlek runs (that are not uniform in
intensity but do not follow a progression) contained in the win-
dow. Only the runs with a lactate threshold estimation are
considered.

Table 3.10: Window statistic functions concerned with classification of running workouts.
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3.5.4 Training load balance parameters

Since in the AthleteCalendar each activity is associated with a precise date, inside this
object is also possible to analyze the trend of several time-dependent parameters such as
the training load balance ones.
In our specific case, we implemented the computation of the acute: chronic workload ratio
index (as described in Section 2.2.4) by considering the daily distance volumes present
in the calendar of runs and consequently estimating fitness, fatigue and ACWR itself in
order to assign their appropriate values to each day in the time period considered. In
particular, to perform the calculation we used an exponentially weighted moving average
with a span of 28 and 7 days for fitness and fatigue respectively.
Fig. 3.13 shows an example of the results obtained in a one-year time frame of activities.

Figure 3.13: Daily training volumes (in red) and ACWR index evolution (in blue).

Once the evolution of these parameters has been computed entirely, the indices and the
respective dates associated to them are saved inside the AthleteCalendar for future use.
Whenever a CalendarWindow is created, the relevant portion of this database is then
passed to each window so that an analysis regarding this aspect can be performed by
means of some particular statistics functions.
This feature allows us to potentially gain insights on the training load distribution habits
of the athletes considered and, additionally, can give us hint on the best or worst strategies
adopted by amateur runners in this sense.
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Chapter 4

Experimental Design

In this chapter, we will describe the design steps followed when preparing for the experi-
mental analysis to be performed on the athletes data. First, we will provide an overview
of the data collection process and the resulting dataset creation. After that, we will
discuss the motivations and preparation stages behind the methodologies adopted in the
experiments. Finally, we will give some background information on the statistical tools
utilized and the workflow we employed during testing.

4.1 Data collection

Before addressing the methodologies utilized in our experimental data analysis, we first
focus our attention on the decisions made during the data collection process. Specifically,
regarding the quantity and nature of the information gathered in this crucial phase.
In particular, in this section we will delineate the scope taken into account during the
acquisition stage (concerning both the athletes and the training horizon considered) along
with the actual detailed information saved for each single runner and activity. After
that, we will shortly deal with the data cleaning problems confronted at the end of this
operation. Finally, a brief description and visualization of the data obtained will be given
in order to provide a clear picture of the dataset used in the next steps of the analysis.
All the data gathered in this phase was collected from the Strava platform 1.

4.1.1 Athletes and training activity considered

For both athletes and their respective training history an initial selection process was
designed by keeping in mind the aim of our various analysis investigations requirements.
Because of this, a number of constraints were set for purpose of obtaining only strictly
relevant data from the individuals representing adequately our target.

Athletes selection

Since in our work we wanted to focus mainly on amateur runners, to generate our analysis
data we decided to extract a random sample of athletes by just requiring a minimum
amount of training data consistency to discard extremely casual runners or individuals

1https://www.strava.com
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just approaching the sport (which might not be even considered of amateur level). This
was done to ensure that all the athletes involved in the study would, in fact, represent
a typical non-professional runner, equipped with some decent training experience and
an active workout history that contained at least a fair amount of consecutive running
sessions.
Next, given that most of our processing (as seen in the previous chapter) requires heart
rate data to function properly, of all these individuals only the ones having the majority
of running data with this information available were kept.
Finally, in addition to these general constraints, we further based our selection criterion
on the nationality of each subject. In fact, we made sure to create a balanced dataset
containing a similar number of athletes for every country taken in consideration (i.e.
Italy, Belgium, Japan, United States).
The reason why we performed this specific selection was to eventually implement some
experiments based on the influence of the nationality aspect on training habits. In any
case, the details of this choice will be discussed more in depth inside Section 4.2.

Workout activity selection

For what concerns the time-horizon and category of workout data collected, we chose to
adopt the same exact strategy for every athlete selected in the previous step.
In particular, a time period of 12 months (from Sept. 2018 to Sept. 2019) was
considered for the extraction of all the workout activities present in the training log of
the amateur runners.
Among the reasons of this decision, we were driven by the need to exploit a large enough
interval (for medium to long term analysis) that, however, needed to be before the SARS-
CoV-2 pandemic outbreak at the end of 2019. Indeed, we all know that this incident
profoundly changed the lifestyle of all the people around the world. Consequently, also
the training habits of all sort of sports changed after this event (e.g. due to lock-downs
and restrictions). For this reason, we decided to avoid this particular period since it was
not the intended focus of our analysis.
In regard to the activity type selection, instead, we obviously had to include all running
activities contained inside this time period for each athlete. However, also the non-running
sessions were additionally collected in the form of ”cross-training” workouts. Specifically,
this was done to perform further analysis inquiries regarding the impact of multiple sport
training in addition to running, as we will see later.

4.1.2 Information gathered for each athlete and activity

So far we mentioned the extent of our research in terms of all the high level information
retrieved when considering the available athletes and their workouts. Conversely, we will
now proceed towards presenting in more detail the structure of the actual data that was
gathered in practice during the entire sampling process.

First off, before the collection of all the activities information, some essential data on
each athlete was identified and saved in our database for later use. Particularly, the sex
and nationality of all the individuals was extracted at this point and associated to its
specific runner. Following, a dataset of all the workout activities inside the time interval
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considered was generated by specifying some important summary information for each
one of them (the whole collection of attributes is presented in Table 4.1).
In the case of cross-training activities, however, only a limited number of these details
were saved, since we were not interested in many of the in-depth aspects of this kind of
training sessions. Because of this, just the date and duration of these efforts were kept
in order to have at least the possibility to consider them in relation to the runs and to
analyze their impact on them.

Name Description

UTC Time
Date and timestamp (in Coordinated Universal Time) in which
the activity started.

Local Time
Date and timestamp (in local time) in which the activity
started.

Duration Duration of the whole activity.

Distance
Distance covered in the running activity. (this field is left empty
in non-running activities)

Label
Optional label assigned to the activity. It’s used to mark special
workout sessions as races.

IsRunningActivity
Flag

Attribute signaling if this activity was a running or a non-
running one.

Table 4.1: Summary attributes saved for each activity in an athlete’s training log.

While for the cross-training activities this brief summary was enough from an analysis
point of view, for each run in the dataset we also had to save the actual data streams com-
posing the activity in all its sensor measurements. Consequently, every running workout
was also associated to a related JSON file containing these exact streams (for a detailed
description of the content of each file refer to Section 3.2).

The information gathered with this particular data structure (for athletes and activi-
ties) was crucial in order to perform all the processing steps described in the previous
chapter, starting from the single low level activities up to the athletes calendars pre-
sented earlier. Notably, the combined use of the summary attributes (specifically the
timestamps) and the streams included in the files allowed for the implementation of all
the AthleteCalendar features illustrated in Section 3.5. Nonetheless, since we designed
our processing architecture to be able to deal with as little information as possible, we
could exploit most of the input data, given that the requirements were minimal.

4.1.3 Data cleaning operations

Before being able to use the workout data collected, we had to perform some cleaning
and preparation steps on the raw observations in order to limit the presence of erroneous
samples in our dataset.
Multiple activities presented empty, missing or faulty streams that rendered their use
impossible. For this reason, we identified and eliminated these categories of activities:

� Runs with empty or missing values for any essential stream (e.g. speed, distance)
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� Runs with duration or distance of a few seconds

� Cross-training activities with a duration lower than 5 minutes

� Immediately evident outlier activities (with obviously wrong values)

At the end of the whole cleaning process a total of 3878 activities were deleted from the
initial data.

4.1.4 Collected data

After the data collection and cleaning processes we obtained the dataset that is described
in the following subsections.

Athletes

A total of 398 athletes were gathered with a distribution of nationality and sex as shown
in Fig. 4.1 and 4.2.

Figure 4.1: Number of athletes collected from Italy (98), Japan (101), USA (100) and Belgium (99).

Figure 4.2: Number of female (37) and male (361) athletes collected.
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In particular, we can see that the representatives of each nation are almost identical in
number (design choice) while there is a substantial majority of male runners compared to
the female counterpart (not a design choice).
However it must be noted that, since our athletes selection was not based in any way on
the sex attribute, this gap was not intentional but merely the result of a random selection.
In any case, this found disparity was not relevant for our specific analysis purposes.

Activities

For each one of these athletes above an entire year of workouts was then collected with a
total amount of 79536 activities.
A breakdown of the ratio between runs and cross-training sessions is present in Fig.
4.3, along with the distribution of all these activities inside the time-interval specified
previously (in Fig. 4.4).

Figure 4.3: Running (72048) vs. non-running (7488) activities collected.

Since we selected amateur athletes whose main sport is running, it does not surprise that
the vast majority of workouts gathered was of this particular type (with respect to cross-
training). Having said that, there is still a relevant number of non-running sessions that
we were able to utilize during our analysis.
A visualization of all the running activities is given in Fig. 4.5 where for each run the
distance and duration is shown. Additionally, for all the runs labeled as race by the
athletes a different symbol is adopted.
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Figure 4.4: Distribution of running and non-running activities inside the time-period where they were
collected.

Figure 4.5: Running activities expressed as distance (in Km) and duration (in hours). The runs labeled
as races by the athletes are highlighted in the plot.
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4.2 Analysis methodologies

With the aforementioned data collection process presented, we now move to the explana-
tion of actual experiment design and all the related methodologies we decided to involve
in our investigations.

The main objective of our study was aimed at understanding the training habits of am-
ateur runners around the world. For this reason, in order to gain in-depth insights, we
developed the entire processing framework structure to be a able to provide both low
and high level information on the workout routines of each single athlete considered in
our analysis (given a large enough amount of training data available). Together with a
targeted data collection, these tools then gave us the possibility to come up with a series
of questions that could be answered by performing some statistic evaluations on a con-
siderable quantity of subjects.
This method ultimately allowed us to carry out the analysis task that are described in
detail in the following sections.

4.2.1 Impact of nationality on training habits

The fist study subject we wanted to address was relative the possibly existing geographical
difference among amateur runners with regards to the philosophy of training and the
diverse workout consequently adopted in these nations.

Motivations

It’s undeniable that different schools of thought exist when it comes to coaching or training
in general for the sport of running. In particular, these differences are usually more evident
when considering various areas around the world and, especially, some nations that have
a rooted history in this discipline. Because of these reasons, we decided to set up an
experiment to understand if the athletes nationality actually impacted on the training
methods used when performing the usual workout activity.
As we anticipated in the data collection section, the nations chosen for this study were
Italy, Japan, USA and Belgium. The motive behind this decision was mainly due to the
fact that we wanted to consider countries both geographically and traditionally distant.
Furthermore, with this choice, we also wished to cover most of the continents in order
to extend as much as possible the analysis scope. Unfortunately, however, we were also
limited by the data and computational resources available. Therefore we had to exclude
some parts of the world and limit our research to these few states.

Experiment setup

Since a training plan is usually defined and carried out on a weekly basis, in order to
understand the characterizing aspects regarding each athlete’s workout habits we opted
for an analysis of the single weeks composing the 12 months of activities present for every
runner. This way, we aimed to discover if some considerable differences were present on
the methods used to manage this important building block of training among the nations
taken into account.

69



CHAPTER 4. EXPERIMENTAL DESIGN 4.2. ANALYSIS METHODOLOGIES

For the execution of this experiment we exploited the data of all the athletes available in
our dataset. Specifically, all the weeks (Monday to Sunday) starting from Septem-
ber the 3rd 2018 until August the 25th 2019 were sampled for every individual
athlete to subsequently compute some statistics on them.
To achieve this, for each runner involved the relative AthleteCalendar object was initial-
ized generating the entire collection of high level activities (in the 12 months) after the
correct estimation of all the personal physiological parameters. Next, using the calen-
dar window functionality described in Section 3.5.3, the workout sessions were divided
in 7-days windows (the weeks) starting from the date mentioned above. Finally, all the
statistics functions in tables 3.6, 3.7, 3.8, 3.9 and 3.10 were computed on each single
generated week to extract a number of interesting features describing them.
The result of this operation was the generation of a collection of weeks samples each
representing the respective country (of the athlete that performed it) along with the out-
comes of the statistics (features) and some combination of the latter. In addition to this
information, to each sample we also associated several flags (listed in Table 4.2) to have
the possibility to eventually exclude some of them from different analysis configurations.
In fact, we already mentioned when describing each statistic function that some of them
only consider the runs that have certain crucial information (e.g. heart rate or lactate
threshold estimation) to compute their results. Therefore we signaled the eventual lack of
this knowledge in the samples to try different trade-offs using less or more data depending
on how precise we wanted our weekly features to be.

Flag Name Description

has empty runs
Checks if in the sample week there were no running workouts.
Used to eventually exclude empty weeks from the analysis
since they might not be considered part of a training plan.

all runs with hr
Checks if all the runs in the sample week contain heart rate
information.

all runs with lactate
threshold

Checks if all the runs in the sample week contain a lactate
threshold estimation.

Table 4.2: Flags associated to each sample week generated during the analysis of the impact of
nationality on training habits.

Being in possess of this data coming from all the different countries considered, the idea of
the experiment was then to perform multiple ANOVA tests in order to detect if a statistical
significant difference was present between the groups (countries) on at least some of the
weekly features observed among the athletes. In particular, a one-way ANOVA test was
performed for each statistic in examination, as we will see in the next section. Before
executing each test, however, all the available weeks were grouped by athlete to generate
a representation their typical weekly routines. Consequently, the runners appearing in
any given experiment on nationality were each only represented by a single week averaging
all their other individual ones.
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4.2.2 Seasonality of training

Another aspect that we considered during our analysis was the one related to training
seasonality. Namely, we were interested in how seasons during the year affect the training
habits of amateur runners.

Motivations

Intuitively, we know that meteorological conditions can affect outdoor sports such as
running. In particular, both extreme temperatures and adverse weather have a negative
impact on performance and can consequently influence the outcome of a workout session.
Because of these reasons, many amateurs tend to follow a training plan that is usually
centered around the main seasons constituting the whole year. For athletes competing
in races, however, the entire preparation can also be obviously dependent on the dates
of local competitions. Either way, generally speaking the two things are often connected
and correlated.
In our analysis we were interested in finding these and potentially other variations among
the runners considered, therefore we decided to perform some experiments dividing the
activity collected for each athlete in the four main seasons.

Experiment setup

The preparation for this experiment was very similar to the one we presented in the case
of nationality. As a matter of fact, we reused exactly the same week samples generated
with the previous method, only this time we assigned to all of them a label indicating the
corresponding season. In order to determine the correct one for each week, we utilized
the meteorological definition of season (for the Northern Hemisphere) which considers
as beginning date the first day of the months that include the equinoxes and solstices.
However, for convenience, we adapted this rule in our case by using instead the first week
starting inside the corresponding months. Consequently, the weeks available were divided
as shown in Table 4.3 (the last week of summer is missing since we did not have the
relative data).

Season Date interval

Autumn 3/09/2018 - 2/12/2018

Winter 3/12/2018 - 3/03/2019

Spring 4/03/2019 - 2/06/2019

Summer 3/06/2019 - 25/08/2019

Table 4.3: Date interval for each season used in the seasonality of training analysis.

Also in this case, we then executed a number of experiments using the ANOVA frame-
work to detect differences in the weekly statistics between the various seasons considered.
Only this time we grouped the weeks by considering both athlete and season in order to
generate four samples for each runner (one per season). The practical details regarding
the experiment implementation are described in the next section.
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4.3 ANOVA tests format

All the experiments executed during our tests follow the same format, which is relative to
the functioning of ANOVA. Depending on the task, we used two different configurations
in order to obtain the desired results. In particular, we will now define all the steps
constituting both one-way and two-way ANOVA as implemented in our analysis.

4.3.1 One-way ANOVA

The ANOVA test [1] is typically used to detect whether a statistical difference exists
between multiple groups of samples on a particular outcome variable mean. In this first
case, only a single factor (e.g. nationality) is considered as the independent variable on
which the grouping is made. By producing a test statistic that considers the ratio of
variances among means and within samples, the null hypothesis of equal means among
groups can then be rejected if some conditions are satisfied.
The sequence of actions below represents the implementation of this test adapted to the
specific needs of our experiments:

1. Selection of the independent (factor) and outcome variable

2. Samples generation and optional filtering

3. One-way ANOVA test

4. Eventual assumptions check

5. Eventual post-hoc analysis

In the first step of the process, both the independent (factor) and dependent variable
(outcome) chosen for the single experiment are specified. In this context, the categorical
values of the independent variable are used to divide the data into the groups we want to
analyze.
After this initial phase, in the second step we decide which samples will be used during
the test (in our case the weeks). Depending on the outcome variable we are considering,
some of these samples can be discarded to avoid including in the analysis unreliable data
that might skew the results (e.g. outliers). At the end of this selection procedure, we
group the resulting weeks by athlete and/or season to generate the final data points that
will be utilized in the actual test.
In the third step, the One-way ANOVA test itself is executed using the statsmodels library
implementation 2 and, consequently, a table with all the results information is generated
(see Table 4.4). If we succeed in rejecting the null hypothesis (at least one group is
different from the others) the experiment continues with the remaining steps. In any
other case, the process stops as we were not able to determine a significant difference
among the groups (nothing can be said).
If a positive result is found, the fourth step serves the purpose of checking that all the
ANOVA assumptions were respected in order to consider the outcome valid. Particularly,
the following elements are tested:

2https://www.statsmodels.org/stable/anova.html
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� The dependent variable must be approximately normally distributed in each group

� The groups must have equal variance

� The observations must be random and the samples taken from the populations must
be independent of each other (depends on experiment design)

In our case, normality is verified with both the Shapiro-Wilk test and the probability
plot. While homogeneity of variance is checked with either Bartlett’s or Levene’s tests
along with the groups boxplots (all tests use the Scipy library implementation 3 4 5 6).
Since ANOVA is an omnibus test (it checks for a difference overall between all groups),
if a statistically significant and valid result is found we are not able to tell which groups
are different from the others. For this reason, in the last step of the process post-hoc
testing is performed in order to determine the pairwise differences among all groups. To
achieve this the following methods are used: Tukey Honestly Significant Difference (HSD),
Bonferroni Correction, Dunn-Sidak Correction (as implemented in 7).

Term Meaning

sum sq Sum of squares

df Degrees of freedom

mean sq Mean square

F F statistic value for significance

PR(>F) P-value for significance

eta sq η2 effect size

omega sq ω2 effect size

Table 4.4: Results information generated after the execution a One-way ANOVA test.

4.3.2 Two-way ANOVA

In addition to the experiments done to detect the influence of a single factor (i.e. nation-
ality or seasonality) on some dependent variable (e.g. weekly volume), during our analysis
we also tested the effect of an interaction between the two factors considered. That is,
if the outcome variable depends on the influence of one factor on the other. In order
to do this, we used the two-way ANOVA configuration (two factors) by also including
the interaction term inside the corresponding model. The steps followed for this type of
experiments are exactly the same ones that we already discussed in the one-way case,
except for the test itself that this time considers both independent variables simultane-
ously. In these instances the weeks used as samples were grouped in the same way as in
the seasonality case.

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html
4https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html
5https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bartlett.html
6https://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.stats.levene.html
7https://www.statsmodels.org/devel/generated/statsmodels.sandbox.stats.multicomp.

MultiComparison.html
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Chapter 5

Experimental Results

In this chapter, we will present the results obtained during the experimental analysis.
For each category of tests, a table with all the configurations relative to the successful
experiments will be provided, along with a brief discussion of the single results and some
additional summary comments.

5.1 Weekly training pattern

Week attribute Weeks excluded
Outliers
removed

Grouping
operation

Factor

n of days with runs without runs - mean nation

avg daily runs without runs 245 weeks mean nation

n of running workouts without runs 125 weeks mean nation

Table 5.1: Experiments configurations for weekly training pattern analysis.

Number of days with running activities

These experiments tested for a difference between groups of athletes on the average num-
ber of days (in a week) where running activities are performed.
When using nation as factor (Fig. 5.1), a statistically significant difference among the
groups was found with an overall medium effect size. In particular, after a post-hoc anal-
ysis, it was revealed that the United States mean is significantly greater than both Italy
and Belgium, while for the other pairwise comparisons the null hypothesis could not be
rejected. We can see, however, that Japan seems to show a reasonably higher mean than
the lower pair of countries.
The experiment on seasonality didn’t show a statistically significant difference between
the group means. No remarkable interaction effect of nationality and seasonality was
found either.
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Average runs on training day

The aim of these experiments was to test for a variation in average number of runs per
training day (in a week) between groups. It must be noted that in this case for each
week only the days with a run were considered, hence excluding all the off days. This was
done because we wanted to understand which athletes preferred to do multiple runs a day
or just a single one in their typical training week. In any case, after the elimination of
outlier weeks we obtained as input to our tests just one or two avg. runs per-day samples
(reasonable).
Testing nationality (Fig. 5.2) ANOVA found a statistically significant difference among
the means, albeit with a small effect size. However, with the help of post-hoc analysis, we
were only able to find a distinction between Japan and Belgium, where the former turned
out to have a higher value of mean daily runs than the latter.
With season as independent variable, we were not able to reject the null hypothesis
of equal means. Furthermore, the two-way ANOVA analysis didn’t find an interaction
between the factors.

Number of running workouts

These experiments were executed to test for a difference in the average number of running
workouts performed during the typical week. Differently from the number of days with
runs, this analysis focuses on the actual amount of run sessions regardless of the days in
which they were carried out. Nonetheless, we will see that most results were similar since
the two things are obviously highly correlated.
Considering the nations (Fig. 5.3), as with the number of days with runs experiment,
the ANOVA test returned a low enough p-value with a medium effect size. This time,
however, the post-hoc testing revealed two separated groups of countries. A statistically
significant difference was found between the Italy/Belgium group and the Japan/USA one
with the second presenting higher values. Additionally, this time Japan was separated
from the lower two nations as well, which partially confirms the uncertain results obtained
in the first test.
Using the seasons as factor instead, ANOVA didn’t find a meaningful difference among
the groups. The same happened for the interaction test as well.

Comments

At the end of this first set of experiments on the influence of nationality we can say that
a quite noticeable difference in terms of runs distribution can be observed between the
countries in analysis. Particularly, these can at least be divided in two main groups:
Italy/Belgium and Japan/USA. The first one presents overall less training sessions both
in terms of total and daily average. The Japanese and American runners, instead, seem
to display a similar pattern, except that the first ones utilize a slightly less number of
training days in exchange for more daily workouts.
Unfortunately, with respect to seasonality we couldn’t obtain interesting results as no
immediate difference was found in the means examined. This fact might hint at the pos-
sibility that the number of weekly training days of these athletes is kept constant during
the year. As a final note, we saw that no particular interaction of the two factors was
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identified which further support this speculation. However, it would be interesting to
repeat this analysis with a greater amount of data points and see if a distinction appears.
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Figure 5.1: Boxplots for n of days with runs experiment (nationality).
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Figure 5.2: Boxplots for avg daily runs experiment (nationality).
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Figure 5.3: Boxplots for n of running workouts experiment (nationality).

5.2 Running duration and volume

Week attribute Weeks excluded
Outliers
removed

Grouping
operation

Factor

running time without runs 226 weeks mean nation

avg run duration without runs 228 weeks mean nation

running volume without runs 180 weeks mean nation

avg run volume without runs 214 weeks mean nation

running volume without runs - median season

avg run volume without runs - median season

Table 5.2: Experiments configurations for running duration and volume analysis.

Total running time

In these tests we confronted the mean total running time (in seconds) given by the sum
of all the running activities present inside a typical week.
In the nationality experiment (Fig. 5.4) the ANOVA results showed a statistically signif-
icant difference among groups with a low effect size. In particular, the post-hoc testing
showed a difference between the Italy group and both Japan and USA athletes, where
the latter two demonstrated an higher overall weekly running time.
The experiment on seasonality and interaction between the two independent variables
returned inconclusive results.

Average run duration

Differently from the total running time, with these experiments we wanted to compare
the average single run duration (in seconds) inside a typical training week.
With the nationality factor (Fig. 5.5) ANOVA found a statistically significant difference
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with a low effect size. Moreover, the post-hoc analysis revealed a that both Japan and
Belgium show a considerable higher avg. run duration w.r.t. the USA counterpart.
No statistically significant results were found in the seasonality and two-way tests.

Total running volume

These experiments tested for a difference in total weekly running volume (in meters) given
by the sum of all the running activities.
In the nationality case (Fig. 5.6), the ANOVA output showed no significant difference
but in the post-hoc analysis Japan turned out to have a significant greater volume w.r.t.
Italy.
Concerning seasonality (Fig. 5.8), a statistically significant difference was found, however
with a small effect size. After post-hoc, autumn and summer were separated from spring
with the latter having more volume.
In this case, the interaction among factors was not considered significant.

Average run volume

For this experiment we focused on testing the average run volume (in meters) inside a
typical training week.
In the nationality evaluation (Fig. 5.7) a statistically significant difference was found with
a medium effect size. Interestingly, in this case, the only marked difference detected in
the post-hoc test saw USA with a lower avg. run volume w.r.t. all the other countries.
Meanwhile, seasonality (Fig. 5.9) showed a difference but with a low effect size. This
time the post-hoc analysis revealed a difference between summer (lower run volume) and
winter/spring with autumn in the middle (could not be isolated).
Here no remarkable factor interaction was discovered.

Comments

The overall results of the nationality experiment batch highlight some interesting aspects,
especially in relation some considerations we previously made. In fact, although inevitably
the absolute number of workouts influences the total running time and volume of the week,
we can see that some nations show different strategies w.r.t. the single run planning.
Specifically, Belgium in some way makes up for the smaller number of sessions with an
higher duration and volume per activity, unlike USA which shows the completely opposite
behavior. Conversely, Japan appears to maintain quite long sessions despite the higher
number of weekly workouts.
Although the seasonality analysis regarding running duration didn’t display particular
results, with volume we found out consistently lower values for summer in comparison
with winter and, especially, the spring season. This gives the idea that for most of the
amateur athletes we analyzed, summer seems to be considered as an off season as opposed
to the other two we mentioned.
Concerning the interaction between the two independent variables, nothing can be said
since we didn’t observe any noteworthy phenomenon.
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Figure 5.4: Boxplots for running time experiment (nationality).
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Figure 5.5: Boxplots for avg run duration experiment (nationality).
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Figure 5.6: Boxplots for running volume experiment (nationality).
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Figure 5.7: Boxplots for avg run volume experiment (nationality).
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Figure 5.8: Boxplots for running volume experiment (seasonality).
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Figure 5.9: Boxplots for avg run volume experiment (seasonality).
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5.3 Cross-training integration

Week attribute Weeks excluded
Outliers
removed

Grouping
operation

Factor

pct time running vs
cross

without runs - mean nation

pct time running vs
cross

without runs - mean season

pct time running vs
cross

without runs - mean two-way

Table 5.3: Experiments configurations for cross-training integration analysis.

Weekly running time vs cross-training time

We prepared these tests in order to understand if a difference in the use of cross-training
activities (i.e. workout sessions that are not running) was present among the athletes
of the different groups considered. In particular, for every athlete’s week we computed
a statistic that extracts the percentage of time passed in running activities w.r.t non-
running ones.
Regarding the nationality factor (Fig. 5.10), a substantial difference between the groups
was found with a total medium effect size. Furthermore, the post-hoc testing revealed
Japan as the one integrating less weekly cross-training (compared to running) w.r.t. all
the other nations.
In the seasonality experiment (Fig. 5.11) the difference found was also significant but
with a low effect size. After the post-hoc analysis summer was separated from the other
seasons as it showed a considerable higher cross-training integration.
When testing for the two factors interaction (Fig, 5.12), we found a statistically significant
result. Particularly, based on the nationality we noticed that the disparity in cross-training
adoption between summer (partially also spring) and winter/autumn changed moderately.
In fact, the Belgian athletes presented the highest variation followed by Italy and USA.
On the contrary, Japan showed only a minor fluctuation among the seasons.

Comments

Concerning the difference between countries, based on the test presented and given
that some other experiments we performed showed very similar results, it appears that
Japanese athletes are the ones complementing the least their main running workouts with
other sports. Considering that we have seen a big volume and duration of the Japan runs
in previous analysis, this lack of cross-training integration could be related to an already
packed training week that doesn’t allow for the addition of further exercise activity.
On the other hand, with seasonality we discovered that during summer many athletes
seem to supplement their main running workouts with other types of activities. Possibly
we think that this could be related to a more favorable whether combined with a reduced
overall training, as we have seen and will be seeing with other experiments. In any case,
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with this test we observed a considerable skew of the values towards no cross-training
(many athletes do not per form it) which conflicts with the ANOVA assumptions. Con-
sequently, we believe that in this regard a different kind of statistic test could give us a
more reliable output.
Testing the interaction between nationality and seasonality we saw that Japan, in addi-
tion to being the country that uses less cross-training overall, is also the one that keeps
its usage essentially constant throughout the year. Instead, Belgian athletes in particular
tend to change their behavior quite a lot.
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Figure 5.10: Boxplots for pct time running vs cross experiment (nationality).
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Figure 5.11: Boxplots for pct time running vs cross experiment (seasonality).
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Figure 5.12: Boxplots for pct time running vs cross experiment (nationality/seasonality).

5.4 Elevation gain and hill running

Week attribute Weeks excluded
Outliers
removed

Grouping
operation

Factor

elevation gained without runs - median nation

avg incline grade without runs - median nation

Table 5.4: Experiments configurations for elevation gain and hill running analysis.

Total elevation gained

The objective of these experiments was to test for a difference in the total elevation
gained (in meters) during a typical training week among the groups of runners considered.
Since this result might be highly dependent on the geography, we expected to find some
interesting findings confirming and adding to this theory.
The ANOVA test results for the nationality factor (Fig. 5.13) discovered a statistically
significant difference between the means of the countries analyzed with a medium to high
effect size. Particularly, after the Tukey HSD post-hoc test, Japan showed the highest
mean elevation gain followed by Italy, which was separated positively also from Belgium.
The USA athletes, instead, only exhibited a meaningful lower value w.r.t. Japan. Using
the Bonferroni post-hoc test, however, we were able to divide all the nations in three
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distinct groups (of increasing mean elevation gain): Belgium → USA/Italy → Japan.
Concerning the seasonality and two-way analysis, the tests showed no apparent difference
that allowed for the null hypothesis rejection.

Average incline grade

With these other experiments we wanted to analyze the eventual difference in the average
incline grade observed during the runs of a typical training week for the different groups
considered. In comparison to the total elevation gain (that can be influenced by run
duration and distance), this measure is focused on the actual inclines present in the
running activities and, consequently, considers a different aspect regarding the workouts
nature.
In the nationality case (Fig. 5.14), the ANOVA test result showed the presence of a
statistically significant difference among the groups, though with a low effect size. After
post-hoc analysis, however, the only highly relevant separation placed Italy ahead of
Belgium and USA (the latter was not found in Bonferroni and Sidak tests) in terms of
mean incline grade.
Using season as factor instead, it was not possible to determine a large enough difference
between the groups. Similarly, the interaction test didn’t return significant results.

Comments

From the results of both nationality experiments we can see that Belgian runners are the
ones that include less inclines overall in their training, which is to be expected given that
the country is mostly composed by flat land. For similar reasons, it also appears that the
other three nations resort to a good amount of hill running, with Japan leading on the
total elevation gained per week. Given that, we know that the reason of this difference
depends at least partially on the higher volumes utilized by Japanese athletes.
The inconclusive results concerning elevation gain and seasonality lead us to believe that
no particularly big difference in means exists among the seasons of the year. Moreover,
the absence of a notable interaction between both factors doesn’t hint at some hidden
pattern.
However, in these experiments we observed a modest amount of outlier runners in each
group which might have influenced the ANOVA score. In any case, the boxplots we
obtained during testing (not shown) didn’t highlight any evident distinction either.
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Figure 5.13: Boxplots for elevation gained experiment (nationality).
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Figure 5.14: Boxplots for avg incline grade experiment (nationality).
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5.5 Training intensity distribution

Week attribute Weeks excluded
Outliers
removed

Grouping
operation

Factor

time at low intensity
pct

without runs, with-
out HR, without LT

- median nation

time at medium in-
tensity pct

without runs, with-
out HR, without LT

- median nation

time at high intensity
pct

without runs, with-
out HR, without LT

- median nation

time at low intensity
pct

without runs, with-
out HR, without LT

- median season

time at high intensity
pct

without runs, with-
out LT

- median season

Table 5.5: Experiments configurations for training intensity distribution analysis.

Percentage of running time at different intensities

This set of experiments was aimed at verifying the distribution of running intensity during
the entire training time of a typical week. In order to do that, we decided to only consider
three main intensity classes: low, medium and high. In particular, all these zones were
built around the intensity at lactate threshold, which is represented by the central one.
Whereas the first and last zone refer respectively to all efforts reasonably lower or greater
than LT.
In all three experiments on nationality (Fig. 5.15, 5.16, 5.17) ANOVA found a statisti-
cally significant difference between the groups means (with medium effect size). In the
first test, the post-hoc analysis separated all countries in the following three groups of
increasing low intensity usage: Italy→ USA→ Japan/Belgium. With respect to medium
intensity Italy resulted the one with highest percentage while the other separations were
rejected except for Japan (lower) and USA (higher). Finally, at high intensity Belgium
showed an overall lower percentage compared to all the others.
With respect to seasonality (Fig. 5.18, 5.19), the ANOVA tests could only find a signifi-
cant difference in the low and high intensity case. In both experiments, however, the effect
size turned out to be low. After the post-hoc analysis we obtained a separation between
summer (with an higher low intensity percentage) and winter/autumn. While the spring
mean could no be differentiated from the other ones. Concerning the high intensity test
instead, only the means of summer (lower) and autumn (higher) were able to be divided.
The two-way ANOVA tests on the interaction between both independent variables unfor-
tunately didn’t find significant results.

Comments

From the nationality outcomes we can see that each country seems to use different ra-
tios when it comes to intensity balancing. Runners in Belgium spend only a minimum
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amount of time at high intensities and are among the ones with highest low zone per-
centage. Japan is slightly more polarized (with a greater high intensity mean), however
showing still most of its time at low/medium effort. Italian athletes appear to be largely
concentrated around the medium zone and, in particular, are the ones that avoid low in-
tensity the most. Finally, USA appears to devote the majority of training to medium and
(partially) low intensity with a mean that is somewhere in between all the other countries
for most of the experiments.
Regarding seasonality, the results we found are consistent with the apparent fact that
during summer the athletes seem to prefer performing lower intensity runs. Nonetheless,
the outcomes obtained for high and medium intensity usage don’t really say anything new
in this respect. Having said that, we have some doubts on the validity of the autumn
results (in all cases), since we know they might be influenced by the weeks without LT
that we had to discard in order to compute the intensity zones.
In any case, as no significant interaction was detected between the factors, it looks like
the two main separate influences are the only relevant ones present in this instance.
On a final note, it’s interesting to notice that the mean percentage of time passed at low
intensity in all experiments hardly exceeded the 50%. This particular result emphasizes
the belief that most amateur runners indeed lie far from the 80/20 ratio proposed by
Fitzgerald in his book ([15]).
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Figure 5.15: Boxplots for time at low intensity pct experiment (nationality).
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Figure 5.16: Boxplots for time at medium intensity pct experiment (nationality).
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Figure 5.17: Boxplots for time at high intensity pct experiment (nationality).
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Figure 5.18: Boxplots for time at low intensity pct experiment (seasonality).
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Figure 5.19: Boxplots for time at high intensity pct experiment (seasonality).

5.6 Training load and balancing

Week attribute Weeks excluded
Outliers
removed

Grouping
operation

Factor

running load rtss
without runs, with-
out HR, without LT

- median nation

avg volume acwr
without runs, with-
out LT

- median nation

running load rtss
without runs, with-
out HR, without LT

- median season

running load edwards
without runs, with-
out HR

- median season

avg volume acwr
without runs, with-
out LT

- median season

avg volume acwr
without runs, with-
out LT

181 weeks median two-way

Table 5.6: Experiments configurations for training load and balancing analysis.

Total running load

In these experiments we tested for a difference in the mean total weekly training load
using Edwards TRIMP and rTSS (TrainingPeaks) formulas for each run.
Using nation as factor (Fig. 5.20), the test with rTSS didn’t find a statistically significant
difference among the different countries means. Similarly, no possible separation was
identified after the post-hoc analysis, although a slight higher mean could be observed for
USA and Japan. Using the Edwards approach we obtained the same inconclusive results
(not shown).
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Concerning seasonality, we performed two separate tests using rTSS and Edwards TRIMP
(Fig. 5.22, 5.23) in order to address the problem of weeks without a lactate threshold
estimation (Edwards doesn’t need it). In both cases ANOVA found a significant difference
between the seasons with a low effect size. However, employing rTSS only summer was
separated from the other seasons (minor load). In the other case instead, both summer
and autumn showed a lower value w.r.t. spring.
When testing for the interaction of the two factors, no significant result was encountered.

Average volume ACWR

These experiments were based on the analysis of mean daily Acute:Chronic Workload Ra-
tio index (see Section 2.2.4) observed in a typical training week. In order to generate this
statistic, we assigned to each day of the week an ACWR value (computed using distance
volume for training load) and subsequently extracted the mean for every week.
The ANOVA test results for nationality (Fig. 5.21) showed a statistically significant dif-
ference with a medium effect size between all the countries in analysis. More specifically,
thanks to post-hoc testing, we were able to separate Japan (with a lower mean ACWR)
from the rest of the nations.
Repeating the same experiment with season as factor (Fig. 5.24), the results showed a
change among the groups with a low effect size. Furthermore, with post-hoc testing we
were able to separate them in this sequence of increasing mean value: autumn → spring
→ winter (summer could not be differentiated from the last two). In this case, including
weeks without LT produced no variation with respect to the separations observed previ-
ously (although autumn presented a lower mean).
In the two-way analysis we discovered a meaningful interaction between factors on the
resulting means. Namely, the observations regarding USA runners suggested an higher
total divergence of the ACWR value depending on the season of the year.

Comments

As far as total running load and nationality, only a slight difference between the groups
USA/Japan and Italy/Belgium can be observed, although not statistically significant (the
same inconclusive results were found using the Edwards TRIMP formula). However, this
suggests that maybe with more data we would be able to see a distinction. On the other
hand, the ACWR experiment highlights that the Japanese athletes are the most conser-
vative ones when it comes to the fatigue/fitness balance, at least in therms of volumes.
Considering load and seasonality, we saw that the two distinct tests provided two fairly
different results. In particular, by working with Edwards, autumn showed a significantly
lower mean than with rTSS such that it was separated from spring (reaching values com-
parable to summer). We think that this was due to the fact that, since with rTSS we
had to ignore weeks without a LT estimation, a lot of early autumn weeks were not taken
in consideration, thus increasing the overall mean value of the season. Therefore, we
presume that the Edwards result represents a more accurate picture of the real situation
as it did not cause an imbalance between the seasons. If this was true, it would make
sense to some extent, as we have seen that for many other aspects in these two seasons
the runners seem to reduce their training overall. Concerning ACWR instead, the re-
sults found were rather interesting, as we observed some peculiar separations among the
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seasons. Particularly, the reason why athletes in spring are more conservative is perhaps
caused by the preparation undertaken for the eventual races, which requires some periods
of rest in order to avoid accumulating fatigue. Likewise, the autumn results might be
influenced by the difference in load we discovered with the other experiments.
Lastly, it’s interesting to see the highly polarized strategy that is highlighted in the USA
two-way case that, otherwise, we wouldn’t have noticed analyzing the main factors only.
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Figure 5.20: Boxplots for running load rtss experiment (nationality).
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Figure 5.21: Boxplots for avg volume acwr experiment (nationality).
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Figure 5.22: Boxplots for running load rtss experiment (seasonality).
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Figure 5.23: Boxplots for running load edwards experiment (seasonality).
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Figure 5.24: Boxplots for avg volume acwr experiment (seasonality).
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Figure 5.25: Boxplots for avg volume acwr experiment (nationality/seasonality).

5.7 Workout classes usage

Week attribute Weeks excluded
Outliers
removed

Grouping
operation

Factor

pct of uniform runs
without runs, with-
out HR, without LT

- mean nation

pct of long runs
without runs, with-
out HR, without LT

- mean nation

pct of progression runs
without runs, with-
out HR, without LT

- mean nation

pct of peaks runs
without runs, with-
out HR, without LT

- mean nation

pct of recovery runs
without runs, with-
out HR, without LT

- mean nation

pct of uniform runs
without runs, with-
out LT

- mean season

pct of uniform under lt
runs

without runs, with-
out LT

- mean season

Table 5.7: Experiments configurations for workout classes usage analysis.
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Percentage of different workout classes

With the help of the following experiments we wanted to test for a difference in the usage
of various workout classes inside a typical training week. Below we report the tests that
returned interesting results, using nation and then season as factors.

The first test on nationality (Fig. 5.26) found a statistically significant difference (with a
low effect size) between the mean percentages of uniform runs executed during a week by
the different countries. In particular, the post-hoc tests placed Italy as the one with the
lowest mean w.r.t. all others.
Next, when investigating long runs usage (Fig. 5.27), the ANOVA results discovered a
significant difference among the groups with a medium effect size. After the post-hoc
analysis, the following groups (in increasing order of percentage) were formed: Italy →
USA → Japan. Meanwhile Belgium could not be separated from neither Italy nor USA.
Concerning progression runs (Fig. 5.28), the dedicated experiment successfully found a
significant mean difference with a medium to high effect size. Following the post-hoc anal-
ysis, these increasing percentage groups were found: Belgium → USA → Italy. Whereas
Japan, being between the highest two, could only be differentiated from Belgium.
The test results for runs containing intervals (Fig. 5.29) revealed a distinction between
the nations with a medium effect size. In post-hoc testing, however, only the Belgian
runners mean was considered significantly greater than the other countries.
Lastly, for recovery runs (Fig. 5.30) the null hypothesis was rejected as well with a low
effect size. Specifically, after post-hoc analysis, USA and Japan runners were found hav-
ing higher means than Italy and, in case of Japan, also of Belgium.

With seasonality the test involving uniform runs (Fig. 5.31) identified a statistically
significant difference among the seasons with a low effect size. However, Post-hoc testing
was only able to separate summer (higher percentage) from autumn.
Considering only uniform runs under the lactate threshold (Fig. 5.32), the difference was
also significant with a low effect size. Similarly, the post-hoc analysis identified the same
separation between the two previously mentioned seasons.

Of all the two-way tests performed no one determined the presence of a noteworthy
interaction between nation and season on the usage of different workout classes.

Comments

Looking at the overall results obtained when analyzing the influence of nationality on the
types of workout adopted, we can see that they seem to be coherent with most of the find-
ings already discussed in the other categories of tests. Particularly, the Japanese runners
appear to make use of a considerable amount of uniform runs that are often low intensity
(e.g. recovery) and fairly long in distance. As a consequence, their percentage of weekly
interval or progression runs is shown to be lower with respect to some other countries. On
the contrary, athletes in Italy can be seen avoiding the most all sort of consistent runs in
favor of medium to high intensity efforts such as progressions. In Belgium there seems to
be a preference for uniform and interval runs as opposed to progressive exercises. Finally,
the results on USA athletes suggest a varied workout classes usage with less homogeneity
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than Japan and more time dedicated to other kinds of non-uniform runs.
When considering season as the independent variable, we were not able to find many
interesting results. In fact, the only aspect that is somewhat evident confirms the popu-
larity of uniform runs (especially low intensity) during the summer period. However, this
difference is not well marked and, in particular, can assume a certain validity only against
the autumn results. Maybe these findings suggest that no big variation exists over the
course of the year for what concerns the types of workouts performed. Still, nothing much
can be said about all the inconclusive outcomes.
In conclusion, the absence of notable interactions between the two factors analyzed doesn’t
surprise us much given what we just said about seasonality.
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Figure 5.26: Boxplots for pct of uniform runs experiment (nationality).
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Figure 5.27: Boxplots for pct of long runs experiment (nationality).
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Figure 5.28: Boxplots for pct of progression runs experiment (nationality).
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Figure 5.29: Boxplots for pct of peaks runs experiment (nationality).
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Figure 5.30: Boxplots for pct of recovery runs experiment (nationality).
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Figure 5.31: Boxplots for pct of uniform runs experiment (seasonality).
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Figure 5.32: Boxplots for pct of uniform under lt runs experiment (seasonality).
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5.8 Main findings

Considering all the results obtained during the analysis, we can quite confidently say that
some patterns exist in the training habits of the different groups of athletes considered. In
particular, we have seen that the runner’s nationality shows an higher impact compared to
the seasonality of training during the year. In fact, for the first one we could clearly iden-
tify distinct strategies adopted by the countries that were also mutually coherent between
the categories of experiments executed. For example, the Japanese athletes presented a
typical routine composed of high weekly volumes spread across multiple sessions with a
large amount of time spent at low intensities and, consequently, a considerable number
of long and uniform runs (w.r.t. intervals for instance). Moreover, they we the ones with
less cross-training and overall more consistency throughout the seasons. Conversely, the
results on Italy suggested an higher usage of medium intensity runs (e.g. progressions)
coupled with a good amount of hill running. Regarding Belgian runners instead, their
training habits indicated high volume runs performed at low intensity but also a signif-
icant number of interval efforts, flat running and cross-training integration (especially
during summer) compared to the other countries. Finally, considering USA we observed
more weekly training sessions (but shorter) fairly balanced across the various categories
together with an highly emphasized training load periodization (ACWR).
In terms of seasonality the most consistently relevant difference was related to summer.
In fact, we saw that in this period the volumes appear to be reduced with a lower intensity
and accumulated fatigue along with an higher integration of cross-training activities. In
this context, autumn can be seen as a sort of transition phase towards the main training
seasons comprising winter and spring, where the latter is often dedicated to the compe-
titions preparation.
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Chapter 6

Conclusions and Future Work

In this thesis, we performed an analysis on the training habits observed in a group of
amateur endurance runners. In order to carry out this study, we had to first design an
adequate framework to process all the data and consequently extract various features
starting from the most basic activity information. In particular, our aim was to generate
for each run an high level view showing the quality of the effort exerted in a totally per-
sonalized manner (based on the athlete performances). To implement it, we experimented
with some strategies in order to estimate the physiological parameters of a given runner
from data. Specifically, the assessment of HRmax and Anaerobic Threshold were at the
center of our approach. For the latter, we designed a method built on the principles of
the Conconi Test that, despite some limitations, proved to be rather successful. Having
obtained an estimate of these performance parameters, we then moved to the actual cre-
ation of the high level activities. Notably, many efforts were spent aiming to achieve a
totally autonomous classification of the running workouts based on the data streams of
the single sessions. For this purpose, we developed a process that breaks up each activity
in a sequence of logic blocks that are subsequently used for the final classes assignment.
As the last part of the framework, we eventually tackled the problem concerning the
physiological parameters evolution in time and the consequent generation of the high
level activities calendar for every athlete.
After the architecture completion, we carried out a data collection process in prepara-
tion for the main experimental analysis. At this stage, we selected a number of amateur
runners (collecting a year of their training activity) representing the countries of Italy,
Japan, Belgium and USA. Following a cleaning and preparation of this data, we then
executed a series of experiments designed to study the training habits present among
these athletes. Particularly, for each runner we generated a selection of samples that,
with the help of some custom functions, were processed in order to represent the various
weekly training routines characteristics. Next, considering both nationality and seasonal-
ity, we conducted a number of statistical tests (ANOVA) in order to determine the single
and combined influence of these factors on the training habits observed. By analyzing
the experiments results we could identify some interesting distinctions in the individual
categories of tests, especially regarding the nationality aspect. In fact, thanks to these
experiments, we were able spot the specific training strategies adopted by each country
such as the high-volume/low-intensity one of the Japanese athletes. With seasonality
instead, we only managed to detect weak differences except for the summer season. In all
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cases, however, the workout classes analysis was the most problematic one.
In conclusion, the fact that for the majority of the results we could find a plausible ex-
planation and a some direct correlation with multiple tests, in our opinion shows that
this kind of analysis is indeed feasible, even when using data that is not the outcome of
a controlled study.

6.1 Future Work

Despite the encouraging results we obtained, there are many aspects of our approach that
could be improved.
Starting from the processing framework itself, the estimation procedures related to the
performance parameters highlighted several problems that may be partially solvable by
exploring different strategies. For instance, the process for the evaluation of Anaerobic
Threshold still struggles in the precise individuation of the breakpoints due to the noisy
and inconsistent nature of the data. Therefore, it could probably use the help of more
advanced and custom designed outlier detection methods or regression models to increase
its robustness. Alternatively, a totally different approach could be focused on detecting
the highest speeds consistently observed during training in windows of approximately one
hour, thus directly estimating the functional threshold pace.
Concerning the classification of runs, additional work should be done to more precisely
compute and utilize the activity blocks information provided. For example, the whole
approach could be extended to the use of multiple streams (instead of only speed) to-
gether with an improved detection of the characterizing elements contained inside the
runs. In particular, the identification of intervals showed an high false positive problem
that forced us to be more conservative and maybe discard some real peaks present in the
data. On this matter, some approaches based on time series pattern extraction should
maybe explored in order to also possibly find more sophisticated features inside the runs.
Additionally, the blocks resulting from the classification process could be used to perform
a clustering of the activities to aid with the final class labeling.
With respect to the experimental analysis itself, more data and wider time periods should
be investigated to support our findings. Moreover, different methodologies could be
adopted to search for other interesting patterns in amateur runners such as the ones
related to performance or injury prevention.
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Appendix A

Experiments Additional Output

A.1 Nationality

nation N Mean SD Interval

Belgium 99 3.1381 0.7251 3.2827

Italy 98 3.1453 0.6815 3.2819

Japan 101 3.4313 0.9405 3.617

United States 100 3.7332 0.9927 3.9301

test statistic p-value

Levene s Test: 4.401687 0.004626

Bartlett's Test: 20.070951 0.000164

Figure A.1: Samples and variances assumption check for n of days with runs experiment.
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test statistic p-value

Shapiro-Wilk Test: 0.977808 9e-06
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Figure A.2: Normality assumption check for n of days with runs experiment.

index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 23.8279 3.0 7.9426 11.0741 1e-06 0.0778 0.0706

Residual 282.5868 394.0 0.7172 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy 0.0072 0.9 -0.3042 0.3185 False

Belgium Japan 0.2933 0.07 -0.0158 0.6023 False

Belgium United States 0.5951 0.001 0.2853 0.9049 True

Italy Japan 0.2861 0.0823 -0.0237 0.5959 False

Italy United States 0.5879 0.001 0.2773 0.8985 True

Japan United States 0.3018 0.0575 -0.0064 0.6101 False

3.0 3.2 3.4 3.6 3.8
Score Difference

Belgium

Italy

Japan

United States

na
tio

n

Multiple Comparisons Between All Pairs (Tukey)

Figure A.3: ANOVA results for n of days with runs experiment.
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nation N Mean SD Interval

Belgium 99 1.0713 0.0822 1.0877

Italy 98 1.0973 0.1397 1.1253

Japan 100 1.1316 0.1374 1.1589

United States 100 1.1138 0.1057 1.1347

test statistic p-value

Levene s Test: 3.755203 0.011088

Bartlett's Test: 33.818405 0.0

Figure A.4: Samples and variances assumption check for avg daily runs experiment.
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Figure A.5: Normality assumption check for avg daily runs experiment.
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index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 0.1959 3.0 0.0653 4.6401 0.003348 0.0342 0.0268

Residual 5.5301 393.0 0.0141 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy 0.026 0.4176 -0.0176 0.0696 False

Belgium Japan 0.0603 0.0021 0.0169 0.1037 True

Belgium United States 0.0424 0.0579 -0.001 0.0858 False

Italy Japan 0.0343 0.1769 -0.0092 0.0778 False

Italy United States 0.0165 0.7377 -0.027 0.06 False

Japan United States -0.0179 0.688 -0.0611 0.0254 False

1.04 1.06 1.08 1.10 1.12 1.14 1.16
Score Difference
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n

Multiple Comparisons Between All Pairs (Tukey)

Figure A.6: ANOVA results for avg daily runs experiment.

nation N Mean SD Interval

Belgium 99 3.4019 0.8815 3.5777

Italy 98 3.5125 1.0139 3.7157

Japan 101 3.9703 1.2904 4.225

United States 100 4.1958 1.2307 4.44

test statistic p-value

Levene s Test: 4.743096 0.002911

Bartlett's Test: 17.65232 0.000519

Figure A.7: Samples and variances assumption check for n of running workouts experiment.
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test statistic p-value

Shapiro-Wilk Test: 0.961952 0.0
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Figure A.8: Normality assumption check for n of running workouts experiment.

index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 42.0904 3.0 14.0301 11.2283 4e-07 0.0788 0.0716

Residual 492.3152 394.0 1.2495 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy 0.1105 0.8957 -0.3004 0.5215 False

Belgium Japan 0.5684 0.0021 0.1605 0.9763 True

Belgium United States 0.7939 0.001 0.385 1.2028 True

Italy Japan 0.4578 0.0212 0.0489 0.8668 True

Italy United States 0.6833 0.001 0.2734 1.0933 True

Japan United States 0.2255 0.4821 -0.1814 0.6323 False

3.2 3.4 3.6 3.8 4.0 4.2 4.4
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Figure A.9: ANOVA results for n of running workouts experiment.
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nation N Mean SD Interval

Belgium 99 12849.741 3666.2205 13580.9557

Italy 98 12266.4598 3783.5516 13025.0139

Japan 101 14502.3293 5404.9071 15569.3257

United States 100 13968.8101 5138.2289 14988.3462

test statistic p-value

Levene s Test: 6.749505 0.000189

Bartlett's Test: 23.546762 3.1e-05

Figure A.10: Samples and variances assumption check for running time experiment.
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Figure A.11: Normality assumption check for running time experiment.
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index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 310962145.3 3.0 103654048.4 4.9558 0.00218 0.0364 0.029

Residual 8240855642.4 394.0 20915877.3 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy -583.2812 0.783 -2264.7067 1098.1443 False

Belgium Japan 1652.5883 0.0534 -16.2408 3321.4174 False

Belgium United States 1119.0691 0.3117 -553.8852 2792.0234 False

Italy Japan 2235.8695 0.0035 562.7462 3908.9928 True

Italy United States 1702.3503 0.0452 25.1123 3379.5883 True

Japan United States -533.5192 0.8212 -2198.1291 1131.0908 False
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Figure A.12: ANOVA results for running time experiment.

nation N Mean SD Interval

Belgium 99 3835.3002 857.5887 4006.3432

Italy 98 3623.695 962.9424 3816.7527

Japan 101 3822.8262 1248.2466 4069.2458

United States 100 3428.8531 1165.6237 3660.1381

test statistic p-value

Levene s Test: 4.06793 0.007268

Bartlett's Test: 17.07727 0.000681

Figure A.13: Samples and variances assumption check for avg run duration experiment.
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test statistic p-value

Shapiro-Wilk Test: 0.928481 0.0
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Figure A.14: Normality assumption check for avg run duration experiment.

index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 11064448.2 3.0 3688149.4 3.2125 0.0229778 0.0239 0.0164

Residual 452340102.5 394.0 1148071.3 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy -211.6052 0.5078 -605.5397 182.3293 False

Belgium Japan -12.4739 0.9 -403.4573 378.5094 False

Belgium United States -406.4471 0.0388 -798.3969 -14.4972 True

Italy Japan 199.1312 0.55 -192.8582 591.1207 False

Italy United States -194.8419 0.5676 -587.7953 198.1116 False

Japan United States -393.9731 0.0467 -783.968 -3.9783 True
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Figure A.15: ANOVA results for avg run duration experiment.
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nation N Mean SD Interval

Belgium 99 37903.8855 11900.7983 40277.4579

Italy 98 36306.1892 11281.3211 38567.9511

Japan 101 41417.4008 15379.6128 44453.5293

United States 100 39369.5195 15741.2341 42492.9219

test statistic p-value

Levene s Test: 4.932163 0.002251

Bartlett's Test: 17.015218 0.000702

Figure A.16: Samples and variances assumption check for running volume experiment.
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Figure A.17: Normality assumption check for running volume experiment.
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index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 1412985056.6 3.0 470995018.9 2.494 0.059621 0.0186 0.0111

Residual 74408765535.8 394.0 188854734.9 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy -1597.6963 0.8274 -6650.1637 3454.7711 False

Belgium Japan 3513.5153 0.2713 -1501.1015 8528.1321 False

Belgium United States 1465.634 0.8631 -3561.3787 6492.6467 False

Italy Japan 5111.2116 0.0446 83.6911 10138.7321 True

Italy United States 3063.3303 0.3993 -1976.5544 8103.215 False

Japan United States -2047.8813 0.6926 -7049.8202 2954.0576 False
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Figure A.18: ANOVA results for running volume experiment.

nation N Mean SD Interval

Belgium 99 11145.7147 2163.401 11577.1974

Italy 98 10618.0276 2432.4528 11105.7035

Japan 101 10656.196 2705.245 11190.2453

United States 100 9331.3768 2462.7766 9820.0451

test statistic p-value

Levene s Test: 1.681086 0.170513

Bartlett's Test: 4.892268 0.179858

Figure A.19: Samples and variances assumption check for avg run volume experiment.
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test statistic p-value

Shapiro-Wilk Test: 0.988307 0.002799
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Figure A.20: Normality assumption check for avg run volume experiment.

index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 180029243.6 3.0 60009747.9 9.9978 2.3e-06 0.0707 0.0635

Residual 2364898602.3 394.0 6002280.7 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy -527.6871 0.433 -1428.4236 373.0493 False

Belgium Japan -489.5187 0.4923 -1383.5072 404.4699 False

Belgium United States -1814.3378 0.001 -2710.5363 -918.1394 True

Italy Japan 38.1685 0.9 -858.1205 934.4575 False

Italy United States -1286.6507 0.0014 -2185.144 -388.1575 True

Japan United States -1324.8192 0.001 -2216.5476 -433.0908 True
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Figure A.21: ANOVA results for avg run volume experiment.
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nation N Mean SD Interval

Belgium 99 0.9174 0.0722 0.9318

Italy 98 0.9279 0.0719 0.9423

Japan 101 0.9632 0.0574 0.9745

United States 100 0.9369 0.0706 0.9509

test statistic p-value

Levene s Test: 4.367814 0.004843

Bartlett's Test: 6.736469 0.080789

Figure A.22: Samples and variances assumption check for pct time running vs cross experiment.

test statistic p-value

Shapiro-Wilk Test: 0.878272 0.0

3 2 1 0 1 2 3
Theoretical quantiles

0.2

0.1

0.0

0.1

0.2

O
rd

er
ed

 V
al

ue
s

R2 = 0.8790

Probability plot of model residuals

0.25 0.20 0.15 0.10 0.05 0.00 0.05
0

10

20

30

40

50

60

70

80

C
ou

nt

Histogram of model residuals

Figure A.23: Normality assumption check for pct time running vs cross experiment.
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index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 0.1153 3.0 0.0384 8.2492 2.46e-05 0.0591 0.0518

Residual 1.8353 394.0 0.0047 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy 0.0105 0.6799 -0.0146 0.0356 False

Belgium Japan 0.0458 0.001 0.0209 0.0707 True

Belgium United States 0.0195 0.1849 -0.0055 0.0444 False

Italy Japan 0.0353 0.0017 0.0103 0.0603 True

Italy United States 0.009 0.7656 -0.016 0.034 False

Japan United States -0.0263 0.0332 -0.0511 -0.0015 True
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Figure A.24: ANOVA results for pct time running vs cross experiment.

nation N Mean SD Interval

Belgium 99 252.1313 237.1742 299.4349

Italy 98 415.0378 450.4669 505.3507

Japan 101 589.0327 403.0957 668.6088

United States 100 362.591 333.4454 428.7538

test statistic p-value

Levene s Test: 5.678528 0.000815

Bartlett's Test: 41.263288 0.0

Figure A.25: Samples and variances assumption check for elevation gained experiment.
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test statistic p-value

Shapiro-Wilk Test: 0.802818 0.0
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Figure A.26: Normality assumption check for elevation gained experiment.

index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 5923815.06 3.0 1974605.02 14.8325 4e-09 0.1015 0.0944

Residual 52451951.7 394.0 133126.78 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy 162.9064 0.01 28.7621 297.0508 True

Belgium Japan 336.9014 0.001 203.762 470.0407 True

Belgium United States 110.4597 0.1437 -23.0088 243.9282 False

Italy Japan 173.9949 0.0047 40.5129 307.4769 True

Italy United States -52.4468 0.7179 -186.257 81.3635 False

Japan United States -226.4417 0.001 -359.2445 -93.6389 True
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Figure A.27: ANOVA results for elevation gained experiment.
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nation N Mean SD Interval

Belgium 99 0.066 0.1449 0.0949

Italy 98 0.2937 0.6798 0.43

Japan 101 0.1515 0.3223 0.2152

United States 100 0.1123 0.2447 0.1608

test statistic p-value

Levene s Test: 6.90004 0.000154

Bartlett's Test: 236.603177 0.0

Figure A.28: Samples and variances assumption check for avg incline grade experiment.
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Figure A.29: Normality assumption check for avg incline grade experiment.
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index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 2.86 3.0 0.95 5.9327 0.0005766 0.0432 0.0358

Residual 63.21 394.0 0.16 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy 0.2278 0.001 0.0805 0.375 True

Belgium Japan 0.0856 0.4333 -0.0606 0.2317 False

Belgium United States 0.0463 0.8277 -0.1002 0.1928 False

Italy Japan -0.1422 0.0609 -0.2887 0.0043 False

Italy United States -0.1815 0.0084 -0.3284 -0.0346 True

Japan United States -0.0393 0.895 -0.1851 0.1065 False
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Figure A.30: ANOVA results for avg incline grade experiment.

nation N Mean SD Interval

Belgium 95 0.4016 0.2061 0.4436

Italy 94 0.2591 0.1208 0.2838

Japan 98 0.3948 0.1571 0.4263

United States 99 0.3296 0.1606 0.3617

test statistic p-value

Levene s Test: 8.744133 1.3e-05

Bartlett's Test: 26.110171 9e-06

Figure A.31: Samples and variances assumption check for time at low intensity pct experiment.
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test statistic p-value

Shapiro-Wilk Test: 0.983248 0.000189
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Figure A.32: Normality assumption check for time at low intensity pct experiment.

index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 1.264 3.0 0.4213 15.6689 1e-09 0.1096 0.1023

Residual 10.2722 382.0 0.0269 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy -0.1425 0.001 -0.2041 -0.081 True

Belgium Japan -0.0068 0.9 -0.0677 0.0541 False

Belgium United States -0.072 0.0128 -0.1328 -0.0112 True

Italy Japan 0.1357 0.001 0.0747 0.1968 True

Italy United States 0.0706 0.0158 0.0096 0.1315 True

Japan United States -0.0652 0.0282 -0.1255 -0.0049 True
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Figure A.33: ANOVA results for time at low intensity pct experiment.
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nation N Mean SD Interval

Belgium 95 0.4275 0.1552 0.4591

Italy 94 0.5011 0.129 0.5275

Japan 98 0.3881 0.1105 0.4102

United States 99 0.4388 0.1266 0.4641

test statistic p-value

Levene s Test: 4.805902 0.002682

Bartlett's Test: 11.290758 0.010253

Figure A.34: Samples and variances assumption check for time at medium intensity pct experiment.
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Figure A.35: Normality assumption check for time at medium intensity pct experiment.
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index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 0.6291 3.0 0.2097 12.1988 1.22e-07 0.0874 0.0801

Residual 6.5663 382.0 0.0172 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy 0.0736 0.001 0.0244 0.1228 True

Belgium Japan -0.0395 0.1583 -0.0882 0.0093 False

Belgium United States 0.0113 0.9 -0.0373 0.0599 False

Italy Japan -0.113 0.001 -0.1619 -0.0642 True

Italy United States -0.0623 0.0059 -0.111 -0.0135 True

Japan United States 0.0508 0.0346 0.0026 0.099 True
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Figure A.36: ANOVA results for time at medium intensity pct experiment.

nation N Mean SD Interval

Belgium 95 0.1003 0.0864 0.1179

Italy 94 0.173 0.08 0.1894

Japan 98 0.1453 0.0879 0.1629

United States 99 0.162 0.1056 0.183

test statistic p-value

Levene s Test: 1.580729 0.193556

Bartlett's Test: 8.300295 0.040197

Figure A.37: Samples and variances assumption check for time at high intensity pct experiment.
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test statistic p-value

Shapiro-Wilk Test: 0.95126 0.0
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Figure A.38: Normality assumption check for time at high intensity pct experiment.

index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 0.292 3.0 0.0973 11.8439 1.96e-07 0.0851 0.0777

Residual 3.1388 382.0 0.0082 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy 0.0727 0.001 0.0387 0.1067 True

Belgium Japan 0.045 0.0035 0.0113 0.0786 True

Belgium United States 0.0616 0.001 0.028 0.0952 True

Italy Japan -0.0278 0.1484 -0.0615 0.006 False

Italy United States -0.0111 0.8093 -0.0448 0.0226 False

Japan United States 0.0167 0.5609 -0.0167 0.05 False
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Figure A.39: ANOVA results for time at high intensity pct experiment.
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nation N Mean SD Interval

Belgium 95 257.118 76.349 272.6711

Italy 94 255.8758 81.0771 272.482

Japan 98 275.6773 109.3238 297.5954

United States 99 274.514 117.3325 297.9155

test statistic p-value

Levene s Test: 6.432752 0.000293

Bartlett's Test: 25.478995 1.2e-05

Figure A.40: Samples and variances assumption check for running load rtss experiment.
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Figure A.41: Normality assumption check for running load rtss experiment.
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index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 33483.53 3.0 11161.18 1.1624 0.3238805 0.009 0.0013

Residual 3667748.6 382.0 9601.44 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy -1.2423 0.9 -38.0271 35.5426 False

Belgium Japan 18.5593 0.5473 -17.8462 54.9649 False

Belgium United States 17.3959 0.5918 -18.919 53.7109 False

Italy Japan 19.8016 0.5001 -16.7022 56.3053 False

Italy United States 18.6382 0.5444 -17.7752 55.0516 False

Japan United States -1.1634 0.9 -37.1936 34.8668 False
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Figure A.42: ANOVA results for running load rtss experiment.

nation N Mean SD Interval

Belgium 96 1.0059 0.0438 1.0148

Italy 96 0.9922 0.0348 0.9993

Japan 99 0.9671 0.0569 0.9785

United States 99 0.9925 0.0533 1.0031

test statistic p-value

Levene s Test: 3.292777 0.020658

Bartlett's Test: 26.122953 9e-06

Figure A.43: Samples and variances assumption check for avg volume acwr experiment.
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test statistic p-value

Shapiro-Wilk Test: 0.95094 0.0
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Figure A.44: Normality assumption check for avg volume acwr experiment.

index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 0.077 3.0 0.0257 11.0995 5.28e-07 0.0794 0.0721

Residual 0.893 386.0 0.0023 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy -0.0137 0.1991 -0.0316 0.0042 False

Belgium Japan -0.0388 0.001 -0.0566 -0.021 True

Belgium United States -0.0134 0.2093 -0.0312 0.0043 False

Italy Japan -0.0251 0.0017 -0.0429 -0.0073 True

Italy United States 0.0003 0.9 -0.0175 0.0181 False

Japan United States 0.0254 0.0014 0.0077 0.043 True
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Figure A.45: ANOVA results for avg volume acwr experiment.
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nation N Mean SD Interval

Belgium 95 0.4674 0.1294 0.4937

Italy 94 0.3863 0.1366 0.4143

Japan 98 0.4758 0.1686 0.5096

United States 99 0.4544 0.1366 0.4817

test statistic p-value

Levene s Test: 2.876639 0.035994

Bartlett's Test: 8.367247 0.039001

Figure A.46: Samples and variances assumption check for pct of uniform runs experiment.
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Shapiro-Wilk Test: 0.99292 0.065556
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Figure A.47: Normality assumption check for pct of uniform runs experiment.
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index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 0.4727 3.0 0.1576 7.6224 5.82e-05 0.0565 0.049

Residual 7.8964 382.0 0.0207 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy -0.0811 0.001 -0.1351 -0.0271 True

Belgium Japan 0.0084 0.9 -0.045 0.0619 False

Belgium United States -0.013 0.9 -0.0663 0.0403 False

Italy Japan 0.0895 0.001 0.036 0.1431 True

Italy United States 0.0681 0.006 0.0147 0.1215 True

Japan United States -0.0214 0.6986 -0.0743 0.0314 False
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Figure A.48: ANOVA results for pct of uniform runs experiment.

nation N Mean SD Interval

Belgium 95 0.0953 0.0612 0.1078

Italy 94 0.0793 0.0517 0.0899

Japan 98 0.1395 0.0797 0.1554

United States 99 0.1061 0.0598 0.118

test statistic p-value

Levene s Test: 5.02415 0.001994

Bartlett's Test: 19.387571 0.000227

Figure A.49: Samples and variances assumption check for pct of long runs experiment.
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test statistic p-value

Shapiro-Wilk Test: 0.972381 1e-06
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Figure A.50: Normality assumption check for pct of long runs experiment.

index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 0.1876 3.0 0.0625 15.2269 2e-09 0.1068 0.0996

Residual 1.5689 382.0 0.0041 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy -0.016 0.3152 -0.0401 0.008 False

Belgium Japan 0.0442 0.001 0.0204 0.068 True

Belgium United States 0.0108 0.6269 -0.0129 0.0346 False

Italy Japan 0.0602 0.001 0.0363 0.0841 True

Italy United States 0.0268 0.0201 0.003 0.0506 True

Japan United States -0.0334 0.0017 -0.0569 -0.0098 True

0.06 0.08 0.10 0.12 0.14
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Multiple Comparisons Between All Pairs (Tukey)

Figure A.51: ANOVA results for pct of long runs experiment.
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nation N Mean SD Interval

Belgium 95 0.0591 0.0437 0.068

Italy 94 0.1317 0.0767 0.1474

Japan 98 0.1085 0.0769 0.1239

United States 99 0.0985 0.0687 0.1122

test statistic p-value

Levene s Test: 7.869344 4.2e-05

Bartlett's Test: 33.850392 0.0

Figure A.52: Samples and variances assumption check for pct of progression runs experiment.
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Figure A.53: Normality assumption check for pct of progression runs experiment.
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index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 0.2606 3.0 0.0869 18.8162 2e-11 0.1287 0.1216

Residual 1.7633 382.0 0.0046 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy 0.0726 0.001 0.0471 0.0981 True

Belgium Japan 0.0494 0.001 0.0242 0.0747 True

Belgium United States 0.0394 0.001 0.0142 0.0646 True

Italy Japan -0.0232 0.0861 -0.0485 0.0021 False

Italy United States -0.0332 0.0043 -0.0584 -0.0079 True

Japan United States -0.01 0.7058 -0.035 0.015 False
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Figure A.54: ANOVA results for pct of progression runs experiment.

nation N Mean SD Interval

Belgium 95 0.0499 0.0449 0.059

Italy 94 0.0326 0.0321 0.0392

Japan 98 0.028 0.0309 0.0342

United States 99 0.0284 0.0309 0.0346

test statistic p-value

Levene s Test: 5.056822 0.001907

Bartlett's Test: 20.611934 0.000127

Figure A.55: Samples and variances assumption check for pct of peaks runs experiment.
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test statistic p-value

Shapiro-Wilk Test: 0.889489 0.0
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Figure A.56: Normality assumption check for pct of peaks runs experiment.

index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 0.0305 3.0 0.0102 8.2483 2.49e-05 0.0608 0.0533

Residual 0.4714 382.0 0.0012 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy -0.0172 0.0045 -0.0304 -0.004 True

Belgium Japan -0.0218 0.001 -0.0349 -0.0088 True

Belgium United States -0.0215 0.001 -0.0345 -0.0084 True

Italy Japan -0.0046 0.7759 -0.0177 0.0085 False

Italy United States -0.0042 0.8166 -0.0173 0.0088 False

Japan United States 0.0004 0.9 -0.0125 0.0133 False

0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
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Figure A.57: ANOVA results for pct of peaks runs experiment.
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nation N Mean SD Interval

Belgium 95 0.0459 0.0403 0.0542

Italy 94 0.0407 0.0437 0.0496

Japan 98 0.0655 0.0562 0.0768

United States 99 0.0582 0.0454 0.0672

test statistic p-value

Levene s Test: 2.514449 0.058085

Bartlett's Test: 12.13941 0.006921

Figure A.58: Samples and variances assumption check for pct of recovery runs experiment.
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Figure A.59: Normality assumption check for pct of recovery runs experiment.

133



APPENDIX A. EXPERIMENTS ADDITIONAL OUTPUT A.2. SEASONALITY

index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(nation) 0.037 3.0 0.0123 5.6225 0.000884 0.0423 0.0347

Residual 0.8389 382.0 0.0022 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

Belgium Italy -0.0053 0.8527 -0.0228 0.0123 False

Belgium Japan 0.0196 0.0202 0.0022 0.037 True

Belgium United States 0.0122 0.2663 -0.0051 0.0296 False

Italy Japan 0.0249 0.0016 0.0074 0.0423 True

Italy United States 0.0175 0.0485 0.0001 0.0349 True

Japan United States -0.0074 0.6666 -0.0246 0.0099 False
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Figure A.60: ANOVA results for pct of recovery runs experiment.

A.2 Seasonality
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season N Mean SD Interval

autumn 381 37337.5364 16937.6292 39043.7117

spring 398 40719.2137 17997.0458 42492.7243

summer 395 36997.4246 18028.9108 38780.8508

winter 393 39821.7272 18807.7988 41686.9587

test statistic p-value

Levene s Test: 0.680599 0.563917

Bartlett's Test: 4.24234 0.236457

Figure A.61: Samples and variances assumption check for running volume experiment.
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Figure A.62: Normality assumption check for running volume experiment.
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index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(season) 3967716685.5 3.0 1322572228.5 4.0989 0.006567 0.0078 0.0059

Residual 504331282570.9 1563.0 322668766.8 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

autumn spring 3381.6773 0.0432 70.5072 6692.8475 True

autumn summer -340.1118 0.9 -3657.4261 2977.2025 False

autumn winter 2484.1909 0.2186 -837.2652 5805.6469 False

spring summer -3721.7891 0.0188 -7002.8426 -440.7357 True

spring winter -897.4865 0.8908 -4182.7274 2387.7544 False

summer winter 2824.3027 0.122 -467.1308 6115.7361 False
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Figure A.63: ANOVA results for running volume experiment.

season N Mean SD Interval

autumn 381 10220.6566 3093.8842 10532.3123

spring 398 10573.9499 3384.7422 10907.4977

summer 395 9666.0358 3005.0761 9963.299

winter 393 10379.2144 2997.4581 10676.4822

test statistic p-value

Levene s Test: 0.977466 0.402452

Bartlett's Test: 7.909451 0.047921

Figure A.64: Samples and variances assumption check for avg run volume experiment.
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test statistic p-value

Shapiro-Wilk Test: 0.976715 0.0
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Figure A.65: Normality assumption check for avg run volume experiment.

index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(season) 180894268.5 3.0 60298089.5 6.1737 0.000361 0.0117 0.0098

Residual 15265661875.2 1563.0 9766898.2 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

autumn spring 353.2933 0.3932 -222.7848 929.3714 False

autumn summer -554.6208 0.0649 -1131.7679 22.5262 False

autumn winter 158.5578 0.8891 -419.3099 736.4254 False

spring summer -907.9141 0.001 -1478.7525 -337.0757 True

spring winter -194.7355 0.7934 -766.3024 376.8314 False

summer winter 713.1786 0.0076 140.5343 1285.8229 True
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Figure A.66: ANOVA results for avg run volume experiment.
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season N Mean SD Interval

autumn 381 0.9461 0.0957 0.9557

spring 398 0.9389 0.0881 0.9476

summer 395 0.9042 0.1286 0.9169

winter 393 0.951 0.0773 0.9587

test statistic p-value

Levene s Test: 17.21094 0.0

Bartlett's Test: 116.2445 0.0

Figure A.67: Samples and variances assumption check for pct time running vs cross experiment.
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Figure A.68: Normality assumption check for pct time running vs cross experiment.
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index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(season) 0.5293 3.0 0.1764 17.88 2e-11 0.0332 0.0313

Residual 15.4225 1563.0 0.0099 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

autumn spring -0.0072 0.7164 -0.0255 0.0111 False

autumn summer -0.0419 0.001 -0.0603 -0.0236 True

autumn winter 0.0049 0.8978 -0.0134 0.0233 False

spring summer -0.0347 0.001 -0.0529 -0.0166 True

spring winter 0.0121 0.3141 -0.006 0.0303 False

summer winter 0.0469 0.001 0.0287 0.0651 True
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Figure A.69: ANOVA results for pct time running vs cross experiment.

season N Mean SD Interval

autumn 308 0.3457 0.1978 0.3679

spring 384 0.3576 0.1934 0.377

summer 375 0.3883 0.2055 0.4092

winter 362 0.3389 0.2019 0.3598

test statistic p-value

Levene s Test: 0.633349 0.593537

Bartlett's Test: 1.527536 0.67593

Figure A.70: Samples and variances assumption check for time at low intensity pct experiment.
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test statistic p-value

Shapiro-Wilk Test: 0.965259969 0.0
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Figure A.71: Normality assumption check for time at low intensity pct experiment.

index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(season) 0.5225 3.0 0.1742 4.3671 0.004538 0.0091 0.007

Residual 56.8292 1425.0 0.0399 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

autumn spring 0.0119 0.8476 -0.0274 0.0512 False

autumn summer 0.0426 0.0286 0.0031 0.0821 True

autumn winter -0.0068 0.9 -0.0466 0.033 False

spring summer 0.0307 0.1481 -0.0066 0.068 False

spring winter -0.0187 0.5686 -0.0563 0.0189 False

summer winter -0.0494 0.0045 -0.0872 -0.0115 True
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Figure A.72: ANOVA results for time at low intensity pct experiment.
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season N Mean SD Interval

autumn 310 0.1681 0.1554 0.1854

spring 389 0.1576 0.1215 0.1697

summer 379 0.1409 0.1212 0.1532

winter 364 0.1624 0.1356 0.1763

test statistic p-value

Levene s Test: 2.747387 0.041649

Bartlett's Test: 29.057454 2e-06

Figure A.73: Samples and variances assumption check for time at high intensity pct experiment.
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Figure A.74: Normality assumption check for time at high intensity pct experiment.
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index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(season) 0.1463 3.0 0.0488 2.7578 0.041068 0.0057 0.0036

Residual 25.4211 1438.0 0.0177 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

autumn spring -0.0104 0.7061 -0.0365 0.0156 False

autumn summer -0.0271 0.039 -0.0533 -0.0009 True

autumn winter -0.0057 0.9 -0.0321 0.0207 False

spring summer -0.0167 0.3041 -0.0414 0.008 False

spring winter 0.0047 0.9 -0.0202 0.0297 False

summer winter 0.0214 0.1248 -0.0037 0.0465 False
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Figure A.75: ANOVA results for time at high intensity pct experiment.

season N Mean SD Interval

autumn 308 280.6776 116.0334 293.6875

spring 384 273.1433 116.0886 284.7912

summer 375 247.8873 119.4713 260.0185

winter 362 282.5134 129.3266 295.8806

test statistic p-value

Levene s Test: 1.510977 0.209866

Bartlett's Test: 5.72534 0.125765

Figure A.76: Samples and variances assumption check for running load rtss experiment.

142



APPENDIX A. EXPERIMENTS ADDITIONAL OUTPUT A.2. SEASONALITY

test statistic p-value

Shapiro-Wilk Test: 0.963372469 0.0
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Figure A.77: Normality assumption check for running load rtss experiment.

index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(season) 278581.25 3.0 92860.42 6.4015 0.000263 0.0133 0.0112

Residual 20670999.01 1425.0 14505.96 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

autumn spring -7.5343 0.8262 -31.23 16.1614 False

autumn summer -32.7903 0.0023 -56.6122 -8.9684 True

autumn winter 1.8357 0.9 -22.1783 25.8498 False

spring summer -25.256 0.0205 -47.7464 -2.7656 True

spring winter 9.3701 0.6892 -13.3237 32.0638 False

summer winter 34.6261 0.001 11.8005 57.4516 True
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Figure A.78: ANOVA results for running load rtss experiment.
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season N Mean SD Interval

autumn 356 772.9247 324.4084 806.7388

spring 392 853.0748 365.3601 889.3553

summer 390 768.4619 378.4902 806.143

winter 387 829.3722 368.11 866.1626

test statistic p-value

Levene s Test: 0.910355 0.435235

Bartlett's Test: 9.751986 0.020796

Figure A.79: Samples and variances assumption check for running load edwards experiment.

test statistic p-value

Shapiro-Wilk Test: 0.965186238 0.0
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Figure A.80: Normality assumption check for running load edwards experiment.
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index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(season) 2018329.15 3.0 672776.38 5.179 0.001461 0.0101 0.0082

Residual 197585338.97 1521.0 129904.89 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

autumn spring 80.1501 0.013 12.285 148.0153 True

autumn summer -4.4628 0.9 -72.4107 63.4851 False

autumn winter 56.4475 0.1432 -11.6259 124.521 False

spring summer -84.6129 0.0058 -150.9097 -18.3162 True

spring winter -23.7026 0.7701 -90.128 42.7228 False

summer winter 60.9104 0.0865 -5.5996 127.4203 False
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Figure A.81: ANOVA results for running load edwards experiment.

season N Mean SD Interval

autumn 310 0.9475 0.1155 0.9604

spring 389 0.9867 0.093 0.996

summer 379 1.0033 0.1152 1.0149

winter 364 1.0204 0.1301 1.0338

test statistic p-value

Levene s Test: 2.948846 0.031746

Bartlett's Test: 42.383997 0.0

Figure A.82: Samples and variances assumption check for avg volume acwr experiment.
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test statistic p-value

Shapiro-Wilk Test: 0.851985455 0.0
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Figure A.83: Normality assumption check for avg volume acwr experiment.

index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(season) 0.96 3.0 0.32 24.8115 1e-15 0.0492 0.0472

Residual 18.64 1438.0 0.01 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

autumn spring 0.0392 0.001 0.0169 0.0615 True

autumn summer 0.0557 0.001 0.0333 0.0782 True

autumn winter 0.0729 0.001 0.0503 0.0955 True

spring summer 0.0165 0.1836 -0.0046 0.0377 False

spring winter 0.0337 0.001 0.0123 0.055 True

summer winter 0.0171 0.1696 -0.0043 0.0386 False

0.94 0.96 0.98 1.00 1.02 1.04
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Figure A.84: ANOVA results for avg volume acwr experiment.
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season N Mean SD Interval

autumn 310 0.4304 0.2148 0.4544

spring 389 0.4493 0.1916 0.4684

summer 379 0.4747 0.2109 0.496

winter 364 0.4457 0.1926 0.4655

test statistic p-value

Levene s Test: 2.584975 0.051777

Bartlett's Test: 7.542018 0.056489

Figure A.85: Samples and variances assumption check for pct of uniform runs experiment.
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Figure A.86: Normality assumption check for pct of uniform runs experiment.
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index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(season) 0.3563 3.0 0.1188 2.9055 0.03366 0.006 0.0039

Residual 58.7785 1438.0 0.0409 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

autumn spring 0.0189 0.5977 -0.0207 0.0584 False

autumn summer 0.0443 0.0221 0.0045 0.0841 True

autumn winter 0.0153 0.7364 -0.0249 0.0555 False

spring summer 0.0255 0.3009 -0.0121 0.063 False

spring winter -0.0036 0.9 -0.0415 0.0343 False

summer winter -0.029 0.2049 -0.0672 0.0091 False

0.42 0.44 0.46 0.48 0.50
Score Difference

autumn

spring

summer

winter

se
as

on

Multiple Comparisons Between All Pairs (Tukey)

Figure A.87: ANOVA results for pct of uniform runs experiment.

season N Mean SD Interval

autumn 310 0.3917 0.2269 0.4171

spring 389 0.417 0.2038 0.4373

summer 379 0.445 0.2273 0.468

winter 364 0.4082 0.1999 0.4288

test statistic p-value

Levene s Test: 4.194676 0.005762

Bartlett's Test: 10.079789 0.0179

Figure A.88: Samples and variances assumption check for pct of uniform under lt runs experiment.
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test statistic p-value

Shapiro-Wilk Test: 0.986717641 0.0
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Figure A.89: Normality assumption check for pct of uniform under lt runs experiment.

index sum_sq df mean_sq F PR(>F) eta_sq omega_sq

C(season) 0.5245 3.0 0.1748 3.8063 0.00985 0.0079 0.0058

Residual 66.0473 1438.0 0.0459 nan nan nan nan

group1 group2 meandiff p-adj lower upper reject

autumn spring 0.0253 0.4087 -0.0167 0.0673 False

autumn summer 0.0533 0.0065 0.0111 0.0955 True

autumn winter 0.0165 0.7265 -0.0261 0.0591 False

spring summer 0.028 0.2681 -0.0118 0.0678 False

spring winter -0.0088 0.9 -0.049 0.0314 False

summer winter -0.0368 0.0889 -0.0773 0.0036 False

0.36 0.38 0.40 0.42 0.44 0.46
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Figure A.90: ANOVA results for pct of uniform under lt runs experiment.
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A.3 Nation/Season interaction

nation season N Mean SD Interval

Belgium autumn 98 0.9369 0.099 0.9568

Belgium spring 99 0.9175 0.0926 0.9359

Belgium summer 98 0.8634 0.1371 0.8909

Belgium winter 99 0.9451 0.0839 0.9618

Italy autumn 96 0.9416 0.0885 0.9595

Italy spring 98 0.9359 0.0916 0.9542

Italy summer 98 0.8828 0.1285 0.9086

Italy winter 98 0.9448 0.0807 0.9609

Japan autumn 93 0.9683 0.0643 0.9815

Japan spring 101 0.9606 0.076 0.9756

Japan summer 99 0.9589 0.081 0.9751

Japan winter 99 0.9676 0.0611 0.9798

United States autumn 93 0.948 0.0753 0.9635

United States spring 100 0.9411 0.0874 0.9585

United States summer 99 0.9187 0.1166 0.942

United States winter 97 0.9465 0.0804 0.9627

Figure A.91: Samples for pct time running vs cross experiment.

index sum_sq df F PR(>F)

Intercept 1370.71 1.0 159728.96 0.0

nation 0.51 3.0 19.619 2e-12

season 0.51 3.0 19.7398 1e-12

nation:season 0.2 9.0 2.6073 0.005470997952

Residual 13.29 1549.0 nan nan

Figure A.92: ANOVA results for pct time running vs cross experiment.
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Figure A.93: Normality assumption check for pct time running vs cross experiment.

nation season N Mean SD Interval

Belgium autumn 79 0.9756 0.1474 1.0086

Belgium spring 96 0.9972 0.084 1.0142

Belgium summer 94 1.0188 0.0947 1.0382

Belgium winter 93 1.029 0.0748 1.0444

Italy autumn 73 0.9519 0.0867 0.9721

Italy spring 96 0.9969 0.0802 1.0132

Italy summer 93 0.9984 0.0855 1.016

Italy winter 89 1.0166 0.1043 1.0386

Japan autumn 79 0.9656 0.1036 0.9888

Japan spring 97 0.9656 0.1017 0.9861

Japan summer 94 0.9709 0.0843 0.9881

Japan winter 89 0.9754 0.0828 0.9929

United States autumn 79 0.9115 0.1244 0.9394

United States spring 98 0.9872 0.0828 1.0038

United States summer 96 1.0124 0.1099 1.0347

United States winter 92 1.0239 0.1135 1.0474

Figure A.94: Samples for avg volume acwr experiment.
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index sum_sq df F PR(>F)

Intercept 1389.73 1.0 143273.1426 0.0

nation 0.24 3.0 8.1924 2.085244159e-05

season 0.67 3.0 23.0855 1e-14

nation:season 0.29 9.0 3.3451 0.00046255495638

Residual 13.78 1421.0 nan nan

Figure A.95: ANOVA results for avg volume acwr experiment.
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Figure A.96: Normality assumption check for avg volume acwr experiment.
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