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Abstract

Rail corrugation is a degradation phenomenon that affects most of railway lines. It consists
of a quasi-periodic irregularity on the railhead which interacts with the wheels passing over
it, causing high dynamic forces which, in turn, may damage the vehicle or the tracks and
cause discomfort and vibrations. No definite solutions exist for all types of corrugation:
the most frequently used treatment is periodic rail grinding. Costs associated with these
maintenance operations and the need to optimize them make rail corrugation monitoring
a priority for infrastructure managers.

In this thesis, an algorithm for the identification and monitoring of rail corrugation growth
using axlebox acceleration measurements taken from an instrumented trainset is devel-
oped, starting from a state-of-the-art approach to the problem. Different models for the
analysis of wheel-rail interaction in the frequency domain are derived to compute the
measurement system transfer function. At first, the vertical dynamics of the interaction
between wheel and rail is investigated. Effects of the full dynamic of the wheelset and the
influence of the inclination of the wheel-rail contact plane are then added. The transfer
functions obtained by these models are used for the estimation of railhead irregularity
profile from axlebox acceleration measurements.

The robustness of this approach is investigated, discovering that changes in the mea-
surement system parameters and speed variations cause a large dispersion of the results.
This is particularly evident when the system is excited at frequencies corresponding to
resonances in the wheel-rail dynamics. The possibility of monitoring the evolution of
corrugation over time with the use of subsequent surveys is verified.

Keywords: Axle-Box Acceleration, Rail Roughness, Corrugation monitoring, Wheel-rail
interaction





Abstract in lingua italiana

La marezzatura delle rotaie è un fenomeno di degrado dell’infrastruttura che interessa
quasi tutte le linee ferroviarie. Essa consta in un’irregolarità quasi-periodica presente
sulla superficie superiore delle rotaie che interagisce con le ruote che vi passano sopra,
provocando quindi lo scambio di elevati carichi dinamici che, a loro volta, possono dan-
neggiare il veicolo o i binari e causare disagi e vibrazioni. Non esistono soluzioni definitive
per tutti i tipi di marezzatura: il trattamento più utilizzato contro di esse è la mo-
latura periodica delle rotaie. I costi associati a queste operazioni di manutenzione e la
necessità di ottimizzarle rendono il monitoraggio delle rotaie una priorità per il gestore
dell’infrastruttura.

In questa tesi viene sviluppato un algoritmo per l’identificazione e il monitoraggio della
crescita della marezzatura utilizzando le misure di accelerazione in boccola acquisite da
un convoglio strumentato, partendo dallo stato dell’arte. La funzione di trasferimento
del sistema di misura viene ricavata tramite lo sviluppo di diversi modelli per l’analisi
dell’interazione ruota-rotaia nel dominio delle frequenze. In un primo momento, viene
analizzata la dinamica verticale dell’interazione tra ruota e rotaia. Gli effetti della dinam-
ica completa della sala e l’influenza dell’inclinazione del piano di contatto ruota-rotaia
vengono quindi aggiunti. Le funzioni di trasferimento ottenute da questi modelli sono
quindi utilizzati per stimare il profilo di irregolarità della rotaia a partire da misure di
accelerazione.

La robustezza di questo approccio viene quindi analizzata, scoprendo che le variazioni dei
parametri del sistema di misura e le variazioni di velocità causano una grande dispersione
dei risultati. Ciò è particolarmente evidente quando il sistema di misura viene eccitato a
frequenze corrispondenti a risonanze del sistema ruota-rotaia. Si verifica la possibilità di
monitorare l’evoluzione della marezzatua nel tempo mediante l’uso di misurazioni succes-
sive.

Parole chiave: Accelerazione in Boccola, Rugosità, Monitoraggio della Marezzatura,
Interazione ruota-rotaia
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1

Introduction

Proper maintenance has always been a fundamental priority for any major railway network
to obtain a safe and efficient passenger and freight service. Moreover, maintenance plays
a key role in ensuring regularity during operations. Therefore, over the years railway
companies have developed specific maintenance practices to address their track quality
standards.

Different kinds of maintenance operations can be carried out on railway lines, usually
following a schedule depending on the expected track load cycles [1]. Such processes are
normally performed by specialized machines which cannot execute their task alongside
normal traffic. Therefore, particular care must be taken by the railway operators to
plan rail maintenance operations, optimizing the timing and location of working areas to
avoid an expensive logistical burden. This need, combined with the non-uniform wear
rate of track lines along their extension, calls for the need of acquiring reliable data
about the health state of railway infrastructure to properly prioritize maintenance sites.
Traditionally, this has been done with approaches based on a fixed schedule, empirical
evidence of degraded sections, as well as inspections along the lines, carried out with
purpose-built vehicles while normal operations are interrupted. Such equipment is usually
acquired or rented by railway operators in small numbers and is limited to speeds of a few
kilometers per hour: having to cover large networks, they result in large lapses between
two consecutive passages on a specific section.

Luckily, this issue can be addressed by technology: the development of inexpensive ac-
celerometers and other measurement systems allows railway operators to install them on
the very vehicles they run on their networks, transforming their entire fleets (or large
parts of them) into frequent and continuous diagnostic vehicles. These measurement sys-
tems can be composed of a series of accelerometers mounted on the vehicle plus a data
storage system and some auxiliary subsystems (interfaces with trainset odometers and
speedometers,...) [2]. The information which can be acquired by such systems is an indi-
rect measurement: further processing is therefore required if the objective is to obtain a
reconstruction of the irregularity profile. However, such systems can detect a wide variety
of track defects [3, 4] as well as malfunctions and faults at train-level [5]. Their continuous
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and daily rail network coverage allows operators to closely follow and monitor degradation
levels over time and put sophisticated condition-based maintenance practices into service.

Within this vast framework, this thesis focuses on using accelerometer-equipped axleboxes
to identify a specific degradation phenomenon called rail corrugation. This phenomenon
is present in most of the railway networks and consists of a quasi-periodic irregularity of
the rail running surface: these periodic irregularities can give rise to high dynamic loads
between wheel and rail [6]. These loads can, in turn, produce degradation of railway
components as well as annoying vibration and sound emissions in the audible frequency
range. Corrugation growth can be arrested by removing the irregularity by reprofiling the
rail running surface. This is accomplished through rail grinding: identifying corrugation
at the early development stage is therefore of paramount importance for railway operators
to properly schedule the aforementioned maintenance practices.

Corrugation detection systems can either rely on direct analysis of the acceleration signal
[7] or obtain a reconstruction of the rail profile through the Transfer Function of the
measurement system [8]. From this profile, some synthetic indexes can be obtained: if
they overcome a predefined threshold, then rail grinding operations can be scheduled to
restore the original track profile [9].

This thesis aims to follow this latter approach, by developing an algorithm for the identi-
fication of rail corrugation starting from acceleration data acquired in the subway system
of Milan. The rail profile is estimated from acceleration measurement using a frequency
domain model of wheel-rail interaction developed from the work exposed in [10] and [11].
The algorithm is then validated using both tests on its robustness as well as data com-
ing from corrugation measurements made on-site by a specialized diagnostic railcar and
kindly provided by Milan Transit company ATM.

This thesis is divided into five chapters, organized as follows:

• First chapter presents a detailed overview of rail corrugation. Different types
of corrugation and their root causes are presented, and the principal options for
rail corrugation treatment are discussed. Moreover, an analysis of the principal
methodologies of corrugation detection is performed. The most common measure-
ment systems currently in use are compared, and their strengths and weaknesses are
discussed. Finally, some common treatments against different types of corrugation
are exposed.

• Second chapter details the layout of an axlebox accelerometers-based measure-
ment system. The interaction models between the wheelset and rails are discussed.
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From them, the measurement system transfer functions are derived. Several cases
with greater complexity are presented, starting from a simple system that neglects
wheel coupling to more complex and refined multi-input - multi-output models.
Then, the theory behind the experimental modal analysis of the wheelset is pre-
sented. A brief explanation of the method for computing track receptances is finally
exposed, alongside its experimental validation.

• Third chapter presents the experimental modal analysis carried out during the
thesis alongside its results. The results of the experimental activity are used to
validate and adjust a modal model of the wheelset obtained via a Finite Element
Analysis. From the latter, wheelset receptances are computed.

• Fourth chapter exposes the results of the axlebox accelerometers-based measure-
ment system. Its robustness is investigated using data from a line section of Milan’s
underground network. The algorithm is then used to monitor the evolution of cor-
rugation over time.

• Some conclusions regarding the work of this thesis are finally exposed in the last
chapter.
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1| State of the Art

In this chapter, rail corrugation is presented: different embodiments of the phenomenon
are analyzed and classified, according to their typical frequency, damage, and wavelength-
fixing mechanisms. Several methods of corrugation detection are also introduced and com-
pared. Some common treatments currently employed against different types of corrugation
are exposed. Finally, a brief description of the methods used to investigate corrugation
growth is given, as well as an overview of the main methodologies of corrugation growth
modeling.

1.1. Rail corrugation classification

The term Rail corrugation encompasses a range of phenomena with different manifesta-
tions and root causes that share a common formation scheme, as presented by Grassie in
[6] and illustrated in Figure 1.1.

This formation mechanism is based on a feedback loop: an initial rail profile - having a
casual distribution of irregularities - interacts with the rolling stock passing over it. The
induced vibrations of the wheelset cause the exchange of forces between them and the
track, which in turn excites a so-called wavelength-fixing mechanism, i.e. the dynamics
of the wheel-rail interaction, the dynamic behavior of wheel and rail. Wavelength-fixing
mechanisms determine the most likely corrugation wavelength and position along the
tracks. Other parameters, such as wheel-rail friction, and track geometry, etc... can
influence this dynamic mechanism. Moreover, these forces act as the main driver of
the damage mechanism, typically plastic flow or wear. Damage mechanisms modify the
initial rail profiles: damaged rails further interact with subsequent passages of trains,
thus accentuating the phenomenon. An example of a rail affected by corrugation can be
appreciated in Figure 1.2. The two circles highlight two different corrugation wavelengths.
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Figure 1.2: Track affected by corrugation.

+
Wavelenght-fixing
mechanism

Damage mechanism

Traction, Friction,...

Dynamic loads

Profile variation

Initial profile

Figure 1.1: General corrugation mechanism (as exposed in [6]).

Being railway engineering a mature research field, over the past decades the most common
types of corrugation have been studied and classified. Table 1.1 summarises them. Al-
though the frequency f at which the wavelength-fixing mechanism operates is fixed and
dependant on its dynamics [6], the spatial wavelength λ at which corrugation appears
depends on rolling stock speed v, with the relation (1.1) bonding them.

λ =
v

f
(1.1)

Transit networks are often affected by more severe corrugation with respect to mixed-
traffic lines, since the former tend to have a limited number of train types that operate
at high frequencies and homogeneous velocities. Any wavelength-fixing mechanism which
results in corrugation is therefore consistently excited, resulting in a faster corrugation
growth with respect to mixed-traffic lines. The following sections contain an overview of
the main types of corrugations.
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Type Wavelenght-fixing
mechanism

Typical frequency
(Hz)

Damage
mechanism

Pinned-pinned
resonance (‘roaring
rails’)

Pinned-pinned reso-
nance

400-1200 Wear

Rutting Second torsional reso-
nance of driven axle

250-400 Wear

Heavy haul P2 resonance 50-100 Plastic flow in
troughs

Light rail P2 resonance 50-100 Plastic bending

Other P2 resonance P2 resonance 50-100 Wear

Trackform-specific Trackform specific - Wear

Table 1.1: Types of corrugation and their characteristics (according to [12])

1.1.1. Pinned-Pinned resonance or ‘roaring rails’ corrugation

This type of corrugation occurs mainly in straight track sections or high-radius curves, in
the latter case primarily in the high rail. This corrugation is caused by the resonance of
the rail, acting almost like a beam pinned at the sleepers. It is possible to compute this
frequency with Equation (1.2):

f =
π

2L2
s

√
ErIr
mr

[
1− 1

2

(
πrg
Ls

)2(
1 +

2(1 + νr)

κr

)]
(1.2)

where Er is the rail Young’s modulus, Ir its 2nd moment of area, mr its mass, Ls the
supports spacing, νr rail Poisson modulus, rg its gyration radius, and κr the shear factor
of the cross-section.

A typical resonant frequency is about 770 Hz for a 56 Kg/m rail and a 0.7 m support
spacing or around 1200 Hz for a 60 Kg/m rail and 0.6 m spacing [12]. Corrugation is
worse over sleepers due to higher rail vertical stiffness. The damage mechanism for this
type of corrugation is wear: the high dynamic forces exchanged between the railhead and
the rolling stock (a 0.1 mm irregularity may be sufficient to cause contact loss in the
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corrugation troughs and therefore a continuous ‘hammering’ of the wheel along the track)
encourage slip and wear of the thoughs.

1.1.2. Rutting corrugation

Rutting corrugation is a corrugation characterized by a frequency of around 250-400 Hz,
caused by the second torsional resonance of driven wheelsets. Rutting commonly occurs
when the traction ratio on one wheel is close to the friction limit, generating wheel slip.
Sudden loss of adhesion causes the opposite wheel of the wheelset to start a stick-slip
oscillation. Such a phenomenon usually happens in the high rail of the leading wheelset in
a bogie during a curve, due to the higher tangential force and the lower friction coefficient
(also due to contaminants coming from flange lubricators which migrate from the gauge
face of the high rail). The damage mechanism is wear. Since the friction coefficients
strongly affect the slip phase of the roll-slip oscillation, intervening on them can be an
effective way of reducing rutting corrugation.

1.1.3. Heavy haul corrugation

Heavy haul corrugation usually identifies the type of corrugation found in railways char-
acterized by large axial loads, typically freight lines. This type of corrugation is nowadays
widely understood and mostly solved. It is caused by the excitation of P2 resonance,
i.e. the vertical oscillation of the wheelset and rail. This resonance occurs at a frequency
defined by Equation (1.3)

f =
1

2π

√
Ktrack

mtrack +mwheelset

(1.3)

where Ktrack is the equivalent stiffness of the track and mtrack and mwheelset are the equiv-
alent masses of the corresponding components. This excitation, if exited by defects such
as welds or rail joints, acts as the wavelength-fixing mechanism. Damage to the railhead
is in turn caused by plastic flow of metal, a mechanism exacerbated by the heavy axial
load in the rail sections under analysis, as well as the presence of cant excess for some of
the rolling stock in mixed-traffic railway lines.

1.1.4. Light rail corrugation

Light rail corrugation is also caused by P2 resonance. In this case, the damage mech-
anism is not plastic flow but rather rail plastic bending. This problem has successfully
been solved by employing materials and rail sections with greater yield strength and a
reduced number of initial defects (welds or joints) to reduce the possible starting points
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of corrugation.

1.1.5. Other P2 resonance corrugation

In some cases, where P2 resonance has a frequency comparable to the first torsional
resonance of wheelsets, severe corrugation can arise. This type of corrugation can cause
a low-frequency ‘rumble’ to be transmitted to the surrounding buildings and structures.
In this case, the damage mechanism is usually wear. This type of corrugation is present
in several metro and tram systems, especially when high-stiffness rail supports are used.

1.1.6. Trackform-specific corrugation

Trackform-specific corrugation is usually related to severe resonance in the track struc-
ture. The lightly damped resonance of a large baseplate can act as the wavelength-fixing
mechanism. Some trackforms, such as sleepers mounted in resilient boots, are particularly
prone to corrugation on the lower rail of curves.

1.2. Irregularity measurement techniques

To measure rail irregularity, several measurement systems have been developed. These
systems were developed to properly prioritize rail grinding operations along networks due
to their costs and impacts on train circulation, since grinding the whole network at fixed,
regular intervals is neither an efficient nor a cheap option for rail operators. By properly
detecting corrugation at an early stage, grinding operations can be scheduled in order not
to disrupt normal operations and at the same time save railheads from severe consumption
due to wear or excessive grinding. Grassie offers an overview of the three most diffused
methods in [8]:

• Chord-based measurement systems;

• Low-speed accelerometer-based systems

• Axlebox accelerometer systems

Each of them has its characteristics, pros, and cons, summarized in Table 1.2. Their
performances are analyzed mathematically by computing their transfer functions and
highlighting their operational benefits in the following sections.
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Measurement system type Pros Cons

Chord-based measurement
systems

Cheap, independent from
speed or vibration

Highly nonlinear, there-
fore it needs some infor-
mation regarding the ex-
pected wavelength(s)

Low-speed accelerometer-
based systems

Accurate below resonance
speed

Delicate, low measurement
speed, sensible to vehicle
and track vibrations

Axlebox accelerometer sys-
tems

Cheap, robust, easily scal-
able to a whole train fleet

Wheel and track dynamics
must be taken into account

Table 1.2: Advantages and disadvantages of different measurement systems.

1.2.1. Chord-based measurement systems

Chord-based measurement systems were the first to be developed. They are based on
a horizontal bar having length L, supported at both ends on the rail. From this bar,
measurements are taken by vertical probes (probes can either be mechanical or laser
transducers). These probes are set at a distance α from one bar extremity. Figure 1.3
shows the layout of such a system. When analysing a sinusoidal irregularity with ampitude

Figure 1.3: Layout of a chord-based corrugation measurement system.

Y and wavelength λ such as:

y(x) = Y sin

(
2πx

λ

)
= Y sin(kx) (1.4)
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where k = 2π/λ is the wavenumber. It is possible to compute the system’s measurement
on the point z as:

z(x) = y(x+ αL)− {y(x)− α[y(x+ L)− y(x)]}

= Y sin(kx)[cos(αxL)− α cos(kL)− (1− α)]

+ Y cos(kx)[sin(αxL)− α sin(kL)]

(1.5)

From this equation and by rearranging amplitude Z and phase Φ as functions of the
wavenumber and the instrument geometry defined by the λ/L ratio:

Z = Y {[cos(αxL)− α cos(kL)− (1− α)]2 + [sin(αkL)− α cos(kL)− (1− α)]2}1/2

Φ = tan−1

[
sin(αkL)− α cos(kL)

cos(αkL)− α cos(kL)− (1− α)

]

(1.6)

Figure 1.4 shows the Magnitude of the transfer function Z/Y shown in Equation (1.6)
as a function of the ration λ/L for different α/L rations. The Transfer Function is
highly nonlinear, with some wavelengths greatly amplified while others are drastically
reduced. Installing more transducers on the same instrument can aid in solving this issue,
broadening the peaks of the transfer function. Moreover, there is no speed influence on the
Transfer Function. Moreover, such systems are not sensible to rail or vehicle vibrations [8].
Chord-based measurement systems have been used by [13] to measure railhead roughness.
In their work, optical devices are used instead of probes to overcome the aforementioned
speed limitations associated with chord-based measurement systems.

1.2.2. Low-speed accelerometer-based systems

Another possibility for measuring rail irregularity is the use of a low-speed accelerometer-
based system. A transducer is placed on a rigid body having a mass m, which in turn
makes contact with the rail through a pad that has a finite stiffness K and a hysteresis loss
factor η. A representation of the layout can be appreciated in Figure 1.5. If a sinusoidal
irregularity of amplitude Y and wavelength λ as represented in:

y(x) = Y sin

(
2πx

λ

)
(1.7)
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Figure 1.4: Transfer function of a chord-based corrugation measurement system

where x = vt is the position of the rail with respect to time and v is the speed of the
measurement system. By substituting Ω = 2πv/λ it is possible to rewrite irregularity as:

y(t) = Y sinΩt (1.8)

It is now possible to compute the equation of motion of the rigid body to which the
accelerometer is attached in the vertical direction by writing:

mz̈ = k(1 + jη)(y − z) (1.9)

This is a second-order differential equation having infinite solutions. By knowing the
sinusoidal shape of the input, it is possible to impose a rigid body displacement in the
form z(t) = Zsin(Ωt). The displacement ratio Z/Y is therefore given by:

Z

Y
=

k(1 + jη)

−mΩ2 + k(1 + jη)
(1.10)

the system posesses a natural frequency Ω0, given by:

Ω0 =

√
k

m
(1.11)
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Figure 1.5: Layout of a low-speed accelerometer-based measuring system.
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Figure 1.6: Transfer function of a low-speed accelerometer-based measuring system.

It is possible to plot the obtained system response as a function of the adimensional
frequency f/f0 = Ω/Ω0 for different values of the loss factor η. The results are highlighted
in Figure 1.6.

It is possible to appreciate that, below Ω0, the measurement system can reproduce cor-
rectly the behavior of rail irregularities. Therefore, for the system to work correctly, it
must be moved far below its critical speed v0 = 2πλmin/Ω0, where λmin is the minimum
length of the irregularity to be detected. This can make such a layout impractical when
surveying long line sections. Moreover, these systems are also sensitive to both vehicle
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and rail vibration, and properly insulating them can be challenging.

1.2.3. Axlebox accelerometer systems

Limitations of low-speed accelerometer measuring systems can partially be overcome by
axlebox accelerometer-based systems. Thanks to their simplicity and robustness, these
systems are probably the most common instruments to measure rail irregularity at service
speed. These systems are based on measurements coming from accelerometers attached
to the axleboxes of railway axles, which can either be modeled as rigid bodies or by
introducing compliances. This acceleration can be linked to the rail contact force using
the wheel and rail receptances, as well as appropriate modeling of contact between rail
and wheel. There are different modeling strategies to compute the transfer function of

Wheel

v

z̈

∆FZ

y

Figure 1.7: Layout of a simple axlebox accelerometer measurement system.

such a system, with a simple layout being presented in Figure 1.7. As previously done,
it is possible to start from a sinusoidal irregularity defined as y(t) = Y ejΩt. The dynamic
contact force exchanged between the wheel and the railhead can also be described as a
sinusoidal function of time ∆f(t) = ∆FejΩt, with ∆F being a complex quantity. These
two quantities are bonded by Equation (1.12):

∆F

Y
=

1

Aw + Ar +
1

KH

(1.12)
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where KH is the linearised Hertzian stiffness, Aw and Ar are the wheel and rail receptances.
While, in some simple approximations, the wheel is treated as a rigid body, due to the
measurements being taken at service speed, it is often necessary to take into account
wheel and rail flexibility. An example of this can be traced in the work of Tassilly [14] and
Grassie [8]. It is then possible to link contact force and the vertical acceleration detected
in the axlebox via the receptance between the wheel’s contact point and the accelerometer
placed in the axlebox Z̈ = −Ω2Ab∆F , where Z̈ is the measured acceleration. The transfer
function between the measured acceleration and rail profile is therefore described by (1.13).

Y

Z̈
= −

Aw + Ar +
1

KH

Ω2Ab

(1.13)

Axlebox acceleration systems have the advantages of permitting monitoring at commercial
train speed as well as their lower cost compared to more sophisticated systems. However,
due to the high forces and loads, train and track dynamics interact with each other.
Therefore none of them can be neglected in the measurement system transfer function.
Moreover, Equation (1.13) shows how the dynamic characteristics of the rail constitute
part of the transfer function. Therefore, some parameters regarding its modeling must be
known in advance. These parameters can widely change along the line, being therefore a
potential inaccuracy source. However, for practical purposes a statistical representation
of the rail profile is sufficient: several acquisitions can be averaged to obtain it. This is
commonly accomplished by computing the roughness variance over a defined wavelength
window over a defined section of track. The evolution of this measurement over time can
therefore be used to monitor track health.

An axlebox acceleration measurement system was used by [15] for the estimation of lon-
gitudinal profile irregularities in the range of 10-3000mm. An implementation of an ir-
regularity measurement system based on axlebox accelerometers will be the core of this
thesis.

It is worth noticing that [16] has demonstrated the possibility of using a combined ap-
proach using a combination of different approaches. First, a one-dimensional convolution
neural network to identify and classify rail corrugation based on data coming from the ac-
celerometers. A vehicle–track coupling dynamics model to estimate the dynamic response
of the axlebox. Finally, a surrogate model is used to compute corrugation depth. This
combined approach is able to both identify corrugation and correctly estimate its depth.
This approach works successfully even when varying the track substructure, a common
limit for axlebox accelerometer systems [8].
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1.3. Corrugation treatment

Several treatments have been proven efficient in corrugation treatment.

One of the most commonly used treatments for corrugation is reprofiling or rail grind-
ing, i.e. the restoration of the initial profile of the rails. This practice can prevent the
recurrence of corrugation if the damage mechanism is excited by railhead defects (such in
the case of heavy haul and light rail corrugation. However, if the damage mechanism is
related to wear, rail grinding is only able to slow down the recurrence of corrugation [12].
Moreover, rail grinding can itself act like a wavelength-fixing mechanism if the grinding
signature has any periodic behavior.

Hard rails slow down the development of all types of corrugation since they resist plastic
flow and their high bending strength works against light rail corrugation. Moreover, they
can alleviate any corrugation for which wear is the damage mechanism.

Another possible treatment against corrugation is friction control. A friction coefficient
low enough to reduce wear but high enough to permit traction and braking can reduce
damage from plastic flow and wear. This is usually accomplished by normal atmospheric
humidity, moisture, and contaminants (leaves, rust,..). Excessive friction can become a
problem in long, dry tunnels typical of subway systems.

Better curving wheelsets and a general reduction of tangential loads are often able to
reduce the track’s tendency of developing corrugation in curves. For the same reason,
a reduction in cant is usually recommended in curves prone to corrugation. Moreover,
wheelsets’ resilience to torsional vibrations can help when dealing with corrugation arising
from wheelset torsional resonances. It is also possible to act on the trackform, for exam-
ple by reducing P2 resonance and increasing damping to counteract trackform-specific
corrugation. However, it can be difficult to implement these measurements on a whole
line.

1.4. Models for wheel-rail interaction

There are essentially two different approaches when modeling wheel-rail interaction: time
domain models and frequency domain models. A brief description of their main features
is given below.
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1.4.1. Time domain models

In these models, the interaction between wheelset and rails is described as a system of
equations that are solved numerically in the time domain. An example of this method can
be found in the work of Nielsen [17], who investigated corrugation growth in the Dutch
railway network. At first, an initial roughness profile is obtained in the form of a spectrum
with wavelengths in a relevant range and random phases. Amplitudes are chosen so that
the profile can approximate a smooth rail. The track is modeled as a series of Rayleight-
Timoshenko beam elements, laying on uniformly-spaced sleepers. Sleepers are modeled
as discrete masses, while rail pads and ballast are modeled as two layers of linear springs
and viscous dampers. The train is modeled as a single rigid mass corresponding to one
driven wheelset. Forces are estimated by numerically solving the interaction problem.
Detailed computations can be found in [18]. Time domain models have also been used
by [19] in the DB network and by [20] and [11] to investigate corrugation growth in the
Milan subway network.

Time domain models have the distinct disadvantage of requiring high computational
power. This requirement can be greatly reduced when choosing to use frequency-domain
models, at the cost of simplifications in the choice of models, which must be linear. How-
ever, time domain models allow to properly model wheelset and rail non-linearities.

1.4.2. Frequency domain models

The frequency domain models’ approach is based on the idea of considering rail irregularity
as the only source of excitation of the system. Irregularity acts as a harmonic driving
displacement, whereas the wheelset-rail interaction is either modeled as the results of a
quasi-static, non-linear simulation linearized around a steady state condition or by means
of an analytical interaction model. Examples of this approach can be found in the work
of Frederick [21] and Tassilly [14]. The system’s response to rail irregularity can then be
computed separately for each frequency.
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Layout

In this chapter, the layout of the measurement system and the irregularity detection
algorithms used in this thesis are explained. Different mathematical models used to
investigate the wheel-rail interactions are exposed. The first model exposed is a single-
input, single-output model oriented in the vertical direction which takes into account the
dynamics of only half of the wheelset. Afterward, the cross effects of rail irregularity on
both wheels are added, therefore obtaining a two-inputs, two-outputs model. Finally, the
effect of lateral dynamics and the influence of the contact plane inclinations are added.
The procedure to compute receptances of the wheelset under analysis is exposed and
the theory behind a modal model validated experimentally is described. Finally, the
receptances of the rail are derived from a mathematical model.

2.1. Measurement system layout

Data used for this thesis is acquired by a series of sensors placed in a trailer bogie of a
Meneghino trainset operated by the transit company Azienda Trasporti Milanesi along
the Milan underground network. One of the car’s bogies is equipped with a series of
6 accelerometers, one measuring vertical acceleration for each axlebox plus one mounted
laterally on one side of each wheelset. A detailed view of the sensors’ position can be found
in Figure 2.1, while Figure 2.2 depicts the accelerometers’ placement on the axleboxes of
the wheelset.

Depending on the travel direction, data coming from the three accelerometers in the
bogie’s leading wheelset is used. Accelerometers acquire data at a constant sampling
frequency of 1000 Hz, while the trainset position is computed by integrating a velocity
signal comping from an encoder, referenced through data of the Automatic Train Control
system.
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Figure 2.1: Instrumented car layout.

(a) Left side. (b) Right side.

Figure 2.2: Accelerometers mounted on the axleboxes.

2.2. Irregularity estimation algorithm

A detailed layout of the algorithms used in order to estimate rail corrugation can be
appreciated in Figure 2.3. The detection algorithm aims at reconstructing the rail profile
starting from the acquired acceleration measurements.

At first, data coming from the accelerometers is filtered and processed, obtaining a series
of spectra. Acceleration spectra are then multiplied by the system transfer function to
obtain irregularity spectra. From the irregularity spectra, several approaches are possible.
While Grassie et al. described the possibility of extracting the RMS amplitude of railhead
irregularity from the rail spectrum in [15], the approach used by Karaki et al. in [10] is
followed in this thesis. An inverse Fourier transform is applied to the spectrum and the
original rail profiles are reconstructed. From these, it is possible to directly compute the
RMS amplitude of railhead irregularities on both rails. Since the computed irregularities
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are a combination of both wheel and rail roughnesses, it is necessary to separate the two
contributions. One possible approach has been followed by Carrigan et al. in [22], and it
is based on the idea of exploiting the periodicity associated with the wheel roughness with
respect to the random component present in rails. Acceleration samples are interpolated
to obtain a fixed number of samples per wheel revolution. Signals are then filtered by
means of a 4th-order zero-phase Butterworth notch comb filter, centered on the wheel
rotational frequency.

Measurement system TF

Acceleration spectra Acc(f)

FFT

High Pass Filter

Notch-comb filter

Acceleration signals acc(t)

Irregularity spectra Irr(f)

IFFT

Irregularity profiles irr(t)

Figure 2.3: Irregularity detection algorithm layout.

To compute the transfer function of the measurement system, different approaches are
tested:

• Considering only half of the wheelset, as done by [10];

• Considering vertical dynamic of the wheelset;

• Considering both vertical and lateral dynamics of the wheelset.

The procedure to obtain the receptances necessary to compute the transfer function of
the measurement system will be exposed in the following sections. The contact between
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the wheel and rail is treated within Hertz framework [23], allowing to approximate the
force-displacement relation at the interface with a linear, Hertzian spring of stiffness KH .
All tangential forces are neglected, hence treating the problem as a pure normal contact
one.

2.2.1. Half wheelset approach

In the case of the half wheelset layout, the two halves of the wheelset and the two rails
are considered to be dynamically decoupled. The irregularities on each side will therefore
only influence the accelerometer on the same side, neglecting each cross-component. The
system’s layout is represented in Figure 2.4. To obtain the transfer function linking
vertical axleboz acceleration z̈A to the railhead irregularity zR, it is possible to start from
the displacement congruence at each wheel-rail interface:

zirr = ∆ZW −∆ZR +∆LH (2.1)

where zirr is the railhead irregularity, ∆ZW is the relative wheel vertical displacement,
∆ZR is the relative rail vertical displacement and ∆LH is the compression at the interface
due to Hertzian contact and KH is the Hertzian linearized stiffness. It is then possible to
link these displacements to wheel and rail receptances:

∆ZW = AW,Z(Ω)∆FZ

∆ZR = −AR,Z(Ω)∆FZ

∆LH = KH∆FZ

(2.2)

where AW,Z and AR,Z are the wheel and rail receptances in the contact point and along
the vertical direction, while ∆F is the normal force exchanged at the contact point. The
vertical force applied at the contact point can be linked to the axlebox displacement as:

ZA = AZ,CP→A(Ω)∆FZ (2.3)

by deriving twice the displacement it is possible to compute the acceleration in the Axle-
box. Therefore, in the frequency domain, it is possible to write:

Z̈A = −Ω2AZ,CP→A(Ω)∆FZ (2.4)
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Figure 2.4: Single input design layout.

Finally, it is possible to write the complete relationship linking zirr to the vertical force:

zirr = (AW,Z + AR,Z +KH)∆FZ (2.5)

and, by substituting the inverse of (2.4) into (2.5) the measurement system transfer
function is obtained:

zirr =
AW,Z + AR,Z +KH

−Ω2AZ,CP→A

Z̈A (2.6)

This transfer function allows for the computation of rail irregularity based on the accel-
eration data coming from the same side axlebox. This approach has been successfully
adopted by Karaki et al. in [10] to develop a methodology to continuously monitor cor-
rugation growth.

2.2.2. Vertical dynamic of the full wheelset

A more refined analysis can be performed by introducing cross terms between irregularity
on the left side, measured acceleration on the right side and vice versa. This causes the
model to effectively become a two inputs, two outputs system since now the full dynamic of
the wheelset is accounted for. The two rails can still be considered dynamically decoupled.
All the receptanes are referred to using the notation highlighted in Figure 2.5, i.e. A6,3

denotes the receptance in direction 6 (left axlebox, z direction) due to input in direction
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3 (left contact point, z direction).
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Figure 2.5: Receptances reference system.

Even if considering the full wheelset dynamics, the process is similar to a single wheel
model: the irregularities on each track zirr,L and zirr,R are computed as a function of the
relative displacements of wheel and rail, plus the contribution of each Hertzian contact
spring. However, each wheel displacement must be linked to all the forces acting on the
wheelset as represented in Figure 2.6, by means of the wheelset receptances.

At first, the irregularities on the two rails are written in the system of equations (2.7).
For the sake of clarity, the first subscript indicates whether displacements are referred to
Wheels, Rails, or Axlebox, while the second subscript identifies the side, either Left or
Right. zirr,L = ∆zW,L −∆zR,L +∆LH,L

zirr,R = ∆zW,R −∆zR,R +∆LH,R

(2.7)

Given the fact that vertical displacements of the contact points happen on directions 3 and
6 within the reference framework 2.5 respectively, it is possible to rewrite displacements
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using ∆FZ,L, ∆FZ,R and the wheel receptances found in (2.8).

∆zW,L = A3,3∆FZ,L + A3,9∆FZ,R

∆zR,L = AR,Z∆FZ,L

∆LH,L =
1

kH
∆FZ,L

∆zW,R = A9,3∆FZ,L + A9,9∆FZ,R

∆zR,R = AR,Z∆FZ,R

∆LH,R =
1

kH
∆FZ,R

(2.8)

Equation (2.8) is then substituted into (2.7) and the results are written in matricial form,
highlighting the dependence between vertical irregularity vector and the force vector.[

zirr,L

zirr,R

]
=

[
A3,3 + AR,Z + 1

kH
A3,9

A9,3 A9,9 + AR,Z + 1
kH

][
∆FZ,L

∆FZ,R

]
(2.9)

It is finally possible to use the same methodology to compute the relationship between
the vertical contact forces and vertical axleboxes accelerations z̈A,L and z̈A,R.[

z̈A,L

z̈A,R

]
= −Ω2

[
zA,L

zA,R

]
= −Ω2

[
A6,3 A6,9

A12,3 A12,9

][
∆FZ,L

∆FZ,R

]
(2.10)

By combining (2.9) and the inverse of (2.10) the measurement system transfer function
is found to be:[

zirr,L

zirr,R

]
= −

[
A3,3 + AR,Z + 1

kH
A3,9

A9,3 A9,9 + AR,Z + 1
kH

]
1

Ω2

[
A6,3 A6,9

A12,3 A12,9

]−1 [
z̈A,L

z̈A,R

]
(2.11)

The transfer function summarised by Equation (2.11) can account for the combined effects
of left and right irregularities on both accelerometers. However, it simplifies contact
mechanics by imposing a vertical contact direction between wheel and rail. The following
subsection will address the implementation of lateral dynamics.
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Figure 2.6: Double input design layout.

2.2.3. Vertical and lateral dynamics of the wheelset

In this section, the effect of the inclination of the wheel-rail contact planes are considered.
The contact between wheels and rails acts on planes inclined of angle θR and θL from
the horizontal direction respectively. It is therefore necessary to project the force applied
in the normal direction with respect to the contact planes into the wheelset’s reference
system.
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Figure 2.7: Coordinate change reference system.

The passages between the y - z and each t - n reference system are accomplished employing
a change-of-basis matrix arranged as in equation (2.12). All the sign conventions are
highlighted in Figure 2.7.[

vy

vz

]
=

[
cos θ − sin θ

sin θ cos θ

][
vt

vn

]
= [Λ(θ)]

[
vt

vn

]
(2.12)

If both angles of contact planes θL and θR are accounted for, any pair of vectors can be
converted from the wheelset y - z reference system and the two t - n reference systems of
each contact plane and vice versa. This is accomplished by assembling a 4× 4 matrix as
highlighted in Equation (2.13). This allows to group both left and right irregularity in a
single vector as in the previous section, therefore simplifying computations and notation.


vy,L

vz,L

vy,R

vz,R

 =


cos θL − sin θL 0 0

sin θL sin θL 0 0

0 0 cos θR − sin θR

0 0 sin θR cos θR



vt,L

vn,L

vt,R

vn,R

 (2.13)

When passing from the y - z wheelset reference system to the two t - n ones, the following
passages will be used:

vy,z = [Λ(θL, θR)]vt,n

vt,n = [Λ(θL, θR)]
⊺vy,z

(2.14)

A schematic representation of the system can be found in Figure 2.8. Forces are not
acting anymore in the vertical direction, and each contact plane is characterized by its
own angle with respect to direction y. Irregularities in the normal direction on both
sides are therefore computed in Equation (2.15), while tangential components, being of
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no interest for this work, are discarded.
tirr,L

nirr,L

tirr,R

nirr,R

 =


∆tW,L

∆nW,L

∆tW,R

∆nW,R

−


∆tR,L

∆nR,L

∆tR,R

∆nR,R

+


∆tH,L

∆nH,L

∆tH,R

∆nH,R

 (2.15)

It is possible to rewrite the followig relationship in the y - z coordinate system by means
of (2.13), therefore obtaining:

tirr,L

nirr,L

tirr,R

nirr,R

 =

[Λ(θL, θR)]
⊺


∆yW,L

∆zW,L

∆yW,R

∆zW,R

− [Λ(θL, θR)]
⊺


∆yR,L

∆zR,L

∆yR,R

∆zR,R

+


∆tH,L

∆nH,L

∆tH,R

∆nH,R


 (2.16)

Wheel and rail receptances can then be used to link each displacement to the contact
forces, thus obtaining the matrixes described in Equations (2.17) and (2.18).

∆yW,L

∆zW,L

∆yW,R

∆zW,R

 =


A2,2 A2,3 A2,8 A2,9

A3,2 A3,3 A3,8 A3,9

A8,2 A8,3 A8,8 A8,9

A9,2 A9,3 A9,8 A9,9



∆FY,L

∆FZ,L

∆FY,R

∆FZ,R

 = [AW ]∆F Y,Z (2.17)


∆yR,L

∆zR,L

∆yR,R

∆zR,R

 = −


AR,Y 0 0 0

0 AR,Z 0 0

0 0 AR,Y 0

0 0 0 AR,Z



∆FY,L

∆FZ,L

∆FY,R

∆FZ,R

 = −[AR]∆F Y,Z (2.18)

Relative displacement due to the Hertzian contact spring can directly be linked to the
contact forces ∆F n through the following receptance matrix:

∆tH,L

∆nH,L

∆tH,R

∆nH,R

 =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1



∆Ft,L

∆Fn,L

∆Ft,R

∆Fn,R

 = [AH,n]∆F n (2.19)

By using these receptances and the force vector in place of wheel and rail displacements
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in (2.16), the system is rewritten as:

nirr =
(
[Λ(θL, θR)]

⊺[AW ]∆F Y,Z + [Λ(θL, θR)]
⊺[AR]∆F Y,Z + [AH,n]∆F n

)
=

(
[Λ(θL, θR)]

⊺[AW ][Λ(θL, θR)] + [Λ(θL, θR)]
⊺[AR][Λ(θL, θR)] + [AH,n]

)
∆F n

(2.20)

Equation (2.20) directly links irregularities and forces along the contact direction. The
relationship between contact forces and acceleration at the axleboxes is displayed in Equa-
tion (2.21). The same procedure used in the previous chapter can be applied, bonding
contact forces and axlebox displacements and then deriving the obtained relationship
twice using multiplication for −Ω2 to find axlebox accelerations.

ÿA,L

z̈A,L

ÿA,R

z̈A,R

 = −Ω2


A5,2 A5,3 A5,8 A5,9

A6,2 A6,3 A6,8 A6,9

A11,2 A11,3 A11,8 A11,9

A12,2 A12,3 A12,8 A12,9



∆FY,L

∆FZ,L

∆FY,R

∆FZ,R

 = −Ω2[AB]∆F Y,Z (2.21)

It is finally possible to use Equations (2.20) and (2.21) to obtain the transfer function
between rail irregularities and axlebox accelerations:

nirr = − ([Λ]⊺[AW ][Λ] + [Λ]⊺[AR][Λ] + [AH,n])
1

Ω2
([AB][Λ])

−1 ẌA (2.22)

The result of this model is a 4 × 4 Transfer function matrix, linking both lateral and
vertical accelerations of the wheelset to normal irregularities. Tangential irregularities are
just a computation byproduct and can be neglected, therefore keeping just the second
and fourth term of vector nirr. The next two chapters expose the detailed computation of
the receptances required for this model, while the fifth chapter will describe and compare
the results obtained by analyzing acceleration data with these different models.

2.3. Wheelset receptances

When modeling the vehicle’s response to rail irregularities, a series of assumptions are
postulated. First, the wheelset is assumed to be a stable system, i.e. no self-excitation
is possible. Moreover, it is assumed that the contributions of the bogies and carbody
response can be neglected. The typical range of excitation due to rail irregularities is, in
fact, far above the natural frequencies of primary and secondary suspensions, as well as
above the frequencies of the rigid motions of the carbody. Therefore it is possible to study
only the frequency response of the wheelset and neglect the rest of the vehicle. Data of the
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Figure 2.8: Double input design layout with lateral dynamics accounted.
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Parameter Symbol Value

Wheelset mass Mw 1054 kg
Axlebox mass Maxlebox 78 kg
Axle mass Maxle 283 kg
Wheel mass Mwheel 251 kg
Brake disk mass Mdisk 135 kg
Wheel nominal diameter (new) Rw 0.41 m
Primary suspension vertical stiffness Kps,z 2× 0.5 kN/mm
Primary suspension lateral stiffness Kps,y 2× 2.1 kN/mm
Primary suspension longitudinal stiffness Kps,x 2× 4.15 kN/mm
Primary suspension vertical damping cps,z 11 kNs/m
Primary suspension lateral damping cps,y 50 kNs/m
Primary suspension longitudinal damping cps,x 85 kNs/m
Wheel profile [ - ] ORE S1002

Table 2.1: Data of the trailing wheelset of a Meneghino.

wheelset under analysis is presented in Table 2.1. Wheelset dynamics are studied using
the outputs of a FEM simulation as mode shapes and the results of the experimental
campaign described in the following chapters as natural frequencies and damping ratios.

2.3.1. Modal model overview

When computing the dynamic response of a mechanical system, it is often needed to
solve complex systems of equations or use a series of Finite Element simulations. Another
possibility is the use of a modal approach: the key idea behind it is that a flexible body
possesses an infinite series of natural frequencies or eigenfrequencies, each of them a fre-
quency at which it tends to oscillate when not subjected to external driving forces [24].
Each eigenfrequency will correspond to a mode shape, intuitively described as the defor-
mation that a component shows when vibrating at that frequency. Once the mode shapes
of a flexible body are known, displacements of its points can be written as a “weighted
sum” of all the mode shapes evaluated in the point(s) under analysis. In algebraic terms,
mode shapes effectively act as the basis of a reference system described by the matrix
[Φ]. Flexible bodies possess infinite mode shapes, but only a finite number n of them
will influence their dynamic response in the frequency range under analysis in this work
(0-500 Hz). It is therefore possible to neglect all the mode shapes outside this range,
transforming the infinite modal base into a finite one. Given a vector of points on the
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mechanical system x(t) and the modal shapes X(1), X(2),..., X(n), it can be rewritten as:

x(t) =


x1

x2

...

xn


(1)

q1(t) +


x1

x2

...

xn


(2)

q2(t) + ...+


x1

x2

...

xn


(n)

qn(t) (2.23)

where each vector x(i) represents the i-th mode shape associated with the independent
modal coordinate qi(t). Equation (2.23) can be rewritten more conveniently as:

x(t) = X(1)q1(t) +X(2)q2(t) + ...X(n)qn(t)

= [Φ]q(t)
(2.24)

Conversely, it is possible to pass to the modal coordinates system using the transformation:

q(t) = [Φ]⊺x(t) (2.25)

The matrix [Φ] represents the modal matrix. The dynamic response of an n-dof mechan-
ical system can therefore be rewritten in modal coordinates, from:

[M ]ẍ+ [C]ẋ+ [K]x = 0 (2.26)

and, by using the modal coordinates, as:

[Φ]⊺[M ][Φ]q̈ + [Φ]⊺[R][Φ]q̇ + [Φ]⊺[K][Φ]q = 0 (2.27)

Modal approach allows writing the equations of motion as a system of n decoupled equa-
tions, since the mass, damping and stiffness matrixes becomes diagonal in modal coordi-
nates [24]. However, experimental modal analysis may result in some uncertainties due
to errors in accelerometer placement, incorrect impulse inputs, difficulty in exciting some
modes, etc. To address this, a ‘hybrid’ approach can be used: modal frequencies and
dampings are identified experimentally while the modal shapes are computed via a Finite
Element analysis. The goal of the experimental campaign is to identify the wheelset mode
shapes, modal frequencies, and damping ratios, which can then be used to validate and
refine the results of the FE analysis. Once the mode shapes of a component are known,
the computation of displacements is relatively easy compared to FE analysis. For each
point under analysis, receptances can then finally be computed as the superposition of
the frequency responses of all the modal shapes.
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2.3.2. Receptances calculation

Once the mode shapes matrix [Φ] is known, it is possible to compute the frequency
response function to an external excitation on input i as:

(−Ω2[M̃ ] + iΩ[C̃] + [K̃])q
i
= [Φ]⊺


0

. . .

Fi

0

 (2.28)

Where the modal mass, stiffness, and damping matrixes are introduced as:

[M̃ ] = [Φ]⊺[M ][Φ]

[C̃] = [Φ]⊺[C][Φ]

[K̃] = [Φ]⊺[K][Φ]

(2.29)

From the frequency response in modal coordinates, it is finally possible to find the re-
ceptance on direction j as the j-th component of the vector Xj,i = x

(j)
i where xi defined

as:

xi = [Φ]q
i

(2.30)

Iterations of Equation (2.28) along all the points of interest defined in Figure 2.5 allow
computing the receptances required. Moreover, thanks to the knowledge of modal shapes
it is possible to compute the receptance of points which do not belong to the measurement
grid.

2.4. Track receptances

In the track section under analysis in this thesis, the rails are directly fastened to the un-
derlying substructure by means of a double elastic layer fastening system. This trackform
is called Milano Modificato and is widely used in Milano underground network. Rails used
in this section are 50E5 rails (whose data come from standard BS EN 13674-1:2011 [25]),
whereas the remaining data has been provided by the Mechanical Engineering Department
of Politecnico di Milano. A summary of all trackform data can be found in Table 2.2. In
the following subsections, the track behavior is modeled as an Infinite Timoshenko beam
laying on a continuous, double-layer support.
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Parameter Symbol Value

Rail mass mr 49.9 kg/m
Rail density ρr 7800 kg/m3

Rail cross-section Ar 63.62 cm2

Moment of inertia (y) Ir,yy 1844 cm4

Moment of inertia (z) Ir,zz 362.4 cm4

Young’s modulus Er 206000 MPa
Poisson ratius νr 0.28 [−]
Shear factor κr 0.34 [−]
Rail loss factor ηr 0.02 [−]
Support spacing Ls 0.75 m
Rail-pad vertical stiffness Krp,z 150 kN/mm
Rail-pad vertical damping Crp,z 1.5 kNs/m
Rail-pad lateral stiffness Krp,y 51.71 kN/mm
Rail-pad lateral damping Crp,z 0.75 kNs/m
Rail-pad loss factor ηrp 0.13 [−]
Baseplase mass Mp 15 Kg
Subplate vertical stiffness Ksp,z 30 kN/mm
Subplate vertical damping Csp,z 2.8 kNs/m
Subplate lateral stiffness Ksp,y 10.3 kN/mm
Subplate lateral damping Csp,y 1.4 kNs/m
Subplate loss factor ηsp 0.20 [−]

Table 2.2: Data of the trackform Milano Modificato.
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2.4.1. Track model

The layout of the track can be appreciated in Figure 2.9. The first layer on which the rail
lays represents the rail pad and the second accounts for the elastomeric subplate, while
the metallic base plate in between is modeled as a rigid mass. The Timoshenko beam
model is chosen since it allows to take into account the effects of shear deformation, which
become increasingly important at higher frequencies [26]. There are some assumptions to
be made in the analytical model:

• Displacements are infinitesimally small;

• The two rails are considered dynamically decoupled (this is true due to the particular
structure of the track, while the presence of concrete or wooden sleepers would cause
the two rails to be coupled);

• Longitudinal dynamics are neglected due to the large track impedance;

• The load applied on the rails is considered fixed at x = 0, therefore neglecting
contributions related to moving loads on the beam;

• Stiffnesses and dampings can be assumed as continuously supporting the rail, there-
fore neglecting the discrete spacing of rail supports. This forces to neglect the
periodic variation of stiffness which is exhibited by discretely-supported tracks;

• The inclination of the rail is neglected and the load is applied on the rail neutral
axis, allowing to decouple of vertical and lateral dynamics of the track. This is a
strong simplification, since loads misaligned with respect to the neutral axis tend
to cause rotations of the rail cross sections, therefore coupling vertical and lateral
dynamics.

A procedure to evaluate the receptances of a similar layout has been described by Thomp-
son in [26]. Both layers and the rail possess a damping component given in the form of a
loss factor η. This allows for modeling their hysteretic behavior. From these values, it is
possible to compute the complex elastic modulus of the rail as:

E∗
r = Er(1 + jηr)

G∗
r =

E∗
r

2(1 + νr)

(2.31)
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Fz(t) = Fz,0e
jΩt Fz(t)

zR,z

zS,z

mr, Jr, ρr, Ar, Er

Mp/Ls

K∗
rp, crp

K∗
sp, csp

z

x

Figure 2.9: Scheme of the track.

The complex stiffnesses per unit length of the two support layer can be similarly modeled
using the loss factor as:

k∗
rp =

Krp

Ls

(1 + jηrp)

k∗
sp =

Ksp

Ls

(1 + jηsp)

(2.32)

Where all data refers alternatively to damping ratios and stiffnesses along the vertical or
lateral direction alternatively. Equation (2.33) describes the motion of the system with
respect to the vertical displacement of the rail xR,z and the rotation of the rail cross-section
around its neutral axis Φ:

mrẍR,z + k∗
eqxR,z +G∗

rArκr
∂

∂x

(
Φ− ∂xR,z

∂x

)
= Fz(t)δ(x)

ρIrΦ̈− E∗
r

∂2Φ

∂x2
+G∗

rArκr

(
Φ− ∂xR,z

∂x

)
= 0

(2.33)

k∗
eq represents the equivalent stiffness per unit of length of the two support layers and can

be computed as follows:

k∗
eq =

(
k∗
rp + jΩ

Crp

Ls

)(
k∗
sp + jΩ

Csp

Ls

− Ω2MP

Ls

)
k∗
rp + k∗

sp + jΩ

(
Crp

Ls

+
Csp

Ls

)
− Ω2

MP

Ls

(2.34)
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The solutions to (2.33) can be computed by imposing a harmonic motion as the free
solution, as previously done for the wheel receptance:

xR,z(x, t) = XR,z0e
−jkxejΩt

Φ(x, t) = XR,z0Ψe−jkxejΩt
(2.35)

The free solutions described in (2.35) are characterized by complex amplitudes XR,z0 and
XR,z0Ψ. k is the complex wavenumber, whose real part represents the phase change per
unit distance and the imaginary part represents the distance decay. δ(x) is the Kroneker’s
delta. It is possible to solve this system of equations and obtain the rail’s vertical and
lateral receptances.

2.4.2. Results and validation

Figures 2.10 and 2.11 represent the track vertical and lateral receptances obtained via
the infinite, double-supported Timoshenko beam model. It is possible to see the first
track resonance frequencies, at around 112 Hz in the vertical direction and 67 Hz in the
lateral one. These frequencies correspond to the in-phase resonance of the rail and base
plate over the railpad. The second lateral resonance frequency is placed at 374 Hz, where
the rail is stationary and the plate moves laterally. Other resonances, corresponding to
the higher modes of the track, fall outside the frequency range of the thesis (0-500 Hz).
However, the Timoshenko continuously supported infinite beam is not able to take into
account the effect of supports spacing. This track characteristic is the source of the
Pinned-Pinned resonance, which manifests itself at around 400-1200 Hz [6]. Faccini et
al. in [11] offer validation of this approach via a comparison of the Analytical receptance
to the receptance obtained by means of an impact test performed on a real track section,
in correspondence of a rail support. Results can be appreciated in Figure 2.12.
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Track vertical receptance
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Figure 2.10: Vertical receptance of the track.

Track lateral receptance
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Figure 2.11: Lateral receptance of the track.
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Figure 2.12: Analytical and experimental vertical track point receptance in correspon-
dence of support (from [11]).
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3| Experimental Modal Analysis

of the Wheelset

In this chapter, the experimental campaign carried out in order to identify the modal
parameters of the wheelset is described. The methodology used in the campaign and
the theoretical background behind experimental modal identification are exposed. Modal
frequencies, mode shapes, and dampings of the wheelset are identified. Data from the
experimental campaign is then compared to the results from a Finite Element Model of
the wheelsets. The modal shapes of the wheelset obtained via the FEM analysis are then
paired with the corresponding experimental frequencies. The wheelset’s receptances are
computed and compared to the experimental results.

3.1. Experimental campaing overview

The experimental campaign to identify the modal parameters of the wheelset was carried
out in the laboratories of the Mechanical Engineering Department of Politecnico di Milano.
A wheelset of the same model used in the instrumented train described in Chapter 2
was instrumented using a series of accelerometers and subjected to a series of impact
tests. Although there are different methods that can be employed to estimate the transfer
function of a mechanical system [27], it was chosen to use an impact hammer over other
excitation techniques since impulse excitation is able to excite almost all the relevant
frequencies under analysis in the wheelset. The experimental setup can be appreciated
in Figure 3.1. During the tests, the wheelset is decoupled from the ground by means of
two sets of springs attached to the laboratory’s bridge crane. This arrangement is used to
simulate the conditions of a free wheelset and ease the need of modelling complex ground
constraints. A detailed view of the suspension system and the placement of accelerometers
are highlighted in Figure 3.2.



42 3| Experimental Modal Analysis of the Wheelset

Figure 3.1: Experimental setup used for modal analysis.

(a) Springs suspension system. (b) Accelerometers placement detail.

Figure 3.2: Details of suspension system and accelerometers placement.
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3.2. Setup

A total of 30 channels are recorded during each test, 29 being used for the accelerometers
and one for the impact hammer. Accelerometers are placed on the wheelset as represented
in Figure 3.3 to correctly identify both axle and wheels’ deformations. Although it would
be theoretically possible to compute the receptances needed for the computations exposed
in Chapter 2 using only sensors placed at the wheels’ contact points and axleboxes, it was
decided to instrument the whole wheelset to properly identify all the relevant modes
of vibration. Since torsional vibrations can act as a wavelength-fixing mechanism [12],
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Figure 3.3: Experimental accelerometers setup: flessional modes identification.

identification of torsional modes is also accomplished by means of a second set of impact
tests. In order to do so, the accelerometers are repositioned with their measuring direction
placed tangentially. Accelerometers on the axleboxes are not repositioned due to the
axleboxes bearings decoupling the torsional dynamics of the wheelset from the axleboxes.
The resulting layout can be appreciated in Figure 3.4. Impulses are given to the wheelset
by using a notch present on the disk brakes. For each test, all the channels are sampled
at a frequency of 12800 Hz, stored, and analyzed by using a dedicated Matlab script.

3.3. Frequency Response Functions

The frequency response functions between the input force and output accelerances are
estimated using power spectral densities. Given the fact that, in the frequency domain,
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Figure 3.4: Experimental accelerometers setup: torsional modes identification.

the relationship between the input x and the output y is modeled by the linear, time-
invariant transfer function H(f) such as:

Y (f) = H(f)X(f) (3.1)

Assuming that measurement noise is not correlated with the system input, it is possible
to estimate the transfer function as:

H1(f) =
Py,x(f)

Px,x(f)
(3.2)

where Py,x(f) is the cross power spectral density between input x and measured output
y while Px,x(f) is the power spectral density of the input x. This procedure is iter-
ated throughout all the measured channels to compute the outputs’ Frequency Response
Functions.

3.4. Modal parameters identification

After obtaining the transfer function, it is possible to identify natural frequencies, damping
ratios, and mode shapes using techniques exposed in [24] and [27]. When analyzing
the transfer function hj,k(Ω) between input k and output j, natural frequencies can be
identified as those frequencies Ω = ωi at which the transfer functions exhibit a peak in
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f (Exp.) f (FEM) Damping ratio Notes Figure

71 Hz 72 Hz 0.141% First torsional mode 3.5
72 Hz 71 Hz 0.428% First flessional mode 3.6
128 Hz 119 Hz 0.098% Second flessional mode 3.7
195 Hz 176 Hz 0.129% Third flessional mode 3.8
221 Hz 195 Hz 0.052% First wheel mode 3.9
270 Hz 305 Hz 0.034% Second Torsional mode 3.10
286 Hz 305 Hz 0.424% Fourth flessional mode 3.11
322 Hz 380 Hz 0.043% Fourth torsional mode 3.12
425 Hz 419 Hz 0.011% Second wheel mode 3.13

Table 3.1: Identified mode shapes.

magnitude. At each resonant frequency, the contribution of the corresponding vibration
mode is maximum while the other modes’ contributions are less significant, a reasonable
assumption in structures characterized by low damping ratios. In this thesis, a least-
squares complex exponential method was used to estimate modal parameters.

3.5. Results

The experimental analysis is able to successfully identify 9 modal shapes. The identified
shapes are then compared to the results coming from a Finite Element modal analysis;
the results can be found in Table 3.1. Some of the modal frequencies are identified only
during the experimental campaign and have no evidence on the Finite Element model of
the wheelset; others are instead only identified in the FEM analysis and had no feedback
in the experimental analysis. It is decided to take into account only the modal shapes
correctly visualized by both the experimental campaign and FEM approach.

3.5.1. Mode shapes

The system’s mode shapes can be appreciated in the Figures below. Each Figure compares
the modal shape obtained via a Matlab routine that plots the results of modal identifi-
cation to the corresponding mode obtained via Finite Element Analysis. All modes have
been normalized and scaled to highlight displacement.
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(a) Experimental identification. (b) FEM results.

Figure 3.5: First torsional mode.

-500

500

0

500

Modo 72 Hz - h = 0.428% (SF = 100)

0

1000
500

0
-500-500 -1000

(a) Experimental identification. (b) FEM results.

Figure 3.6: First flessional mode.
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(a) Experimental identification. (b) FEM results.

Figure 3.7: Second flessional mode.
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(a) Experimental identification. (b) FEM results.

Figure 3.8: Third flessional mode.
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(a) Experimental identification. (b) FEM results.

Figure 3.9: First wheel mode.
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(a) Experimental identification. (b) FEM results.

Figure 3.10: Second torsional mode.
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(a) Experimental identification. (b) FEM results.

Figure 3.11: Fourth flessional mode.
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(a) Experimental identification. (b) FEM results.

Figure 3.12: Third torsional mode.
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(a) Experimental identification. (b) FEM results.

Figure 3.13: Second wheel mode.
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3.5.2. Receptances

Finally, the receptances are computed with the procedure followed in Chapter 2. There-
fore, the modal frequencies and damping ratios exposed in Table 3.1 are paired with the
mode shapes obtained via FEM analysis. This model is then used to compute the re-
ceptances highlighted in the following figures. Due to the modal model being symmetric,
only half of the receptances are shown, grouped in four figures. For all the figures, the
convention adopted is the same as found in Figure 2.5.

• Figure 3.14 shows receptances in vertical direction (input in the left wheel contact
point and displacement outputs in vertical direction as well;

• In Figure 3.15 the input is a lateral force in the left wheel contact point and all the
outputs are aligned in the lateral direction;

• Figure 3.16 highlights the effects of a lateral force on the wheel contact point on
vertical displacements;

• Conversely, Figure 3.17 shows the effects of a vertical force on the wheel contact
point on lateral displacements.

The wheelset’s rigid displacements and rotations on the primary suspensions are not
identified experimentally but are directly accounted for in the Finite Element Model.
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Figure 3.14: Receptances in vertical direction.
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Figure 3.15: Receptances in lateral direction.

3.5.3. Modal model validation

Finally, the results of the modal model are compared with the experimental Frequency
Response Functions of the wheelset acquired in the experimental campaign, in order to
validate the model’s results. Figures 3.18 and 3.19 show that the modal model is able
to correctly simulate the actual behavior of the real wheelset in the frequency range of
interest.
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Figure 3.16: Cross receptances: lateral to vertical direction.
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Figure 3.17: Cross receptances: vertical to lateral direction.
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Model validation: contact point direct FRF, z direction
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Figure 3.18: Contact point direct FRF validation, vertical direction.

Model validation: contact point direct FRF, y direction
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Figure 3.19: Contact point direct FRF validation, lateral direction.
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4| Results

The different wheel-rail interaction models exposed in the previous Chapter are computed
and the resulting transfer functions are shown. The robustness of the measurement system
is investigated by using artificial roughness profiles, in order to check how changes in
modal parameters affect the system’s response. The algorithm is then tested by using
acceleration measurements collected by the instrumented trainset in Milan’s underground
network, as presented in Chapter 2. The results of the different wheel-rail interaction
models are compared and their robustness is checked. A way to improve the confidence
of roughness measurements using the average of multiple tests is validated. The effects
of changes in modal parameters of the position of the accelerometers on the axlebox are
investigated. Finally, the possibility of following the growth of corrugation over time is
discussed.

4.1. Transfer functions of the measurement system

Once the receptances of the wheelset and track are computed as exposed in the previous
Chapters, the model of the wheel-rail interaction can be used to compute the transfer
function between rail irregularities and axlebox accelerations.

When considering the dynamics of only half of the wheelset, the measurement system
neglects any cross contribution between left and right side irregularity, therefore becoming
a single-input, single-output system. The receptance between the rail irregularity and the
contact force can be computed as exposed in Equation (2.5). The half-wheelset model uses
only direct receptances in the vertical direction for both wheel and rail. A representation
of all the receptances involved is presented in Figure 4.1. It is possible to appreciate
as, at lower frequencies, the dynamics of the system is mainly governed by the wheelset,
while the track starts playing a more important role at higher frequencies and the contact
stiffness has a uniform contribution at all frequencies. Moreover, the wheel’s direct vertical
receptance possesses sharp peaks corresponding to resonances, which are translated to the
global receptance.
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Vertical receptances of the half wheelset model
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Figure 4.1: Direct vertical receptaces of the half wheelset model.

The first two peaks at 7 and 9 Hz are related to the rigid body motion of the wheelset
on the primary suspension, vertical bounce and roll motion respectively. However, these
frequencies fall outside the range of interest of corrugation in this thesis, which is in the
interval 10-500 Hz. They will therefore have no influence on the overall performance
of the measurement system. Adding the contact point-Axlebox vertical receptance it is
finally possible to compute the Transfer Function of the measurement system according
to Equation (2.6), which is depicted in Figure 4.2. The transfer function presents several
peaks, which correspond to the modal frequencies of the system highlighted in Table 3.1.
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Half wheelset approach
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Figure 4.2: Transfer Function of the system: half wheelset.

Equation (2.11) allows the introduction of coupling between the two contact points and
axleboxes. The two irregularities are now linked to the two measured accelerations by
means of a symmetric, 2× 2 matrix. The two direct and the two cross terms are exposed in
Figure 4.3: the direct term the same of the results of the half wheelset model. However,
as a result of the presence of the cross terms, the acceleration measurements on each
accelerometer have a component caused by irregularities on both rails. This can be
particularly critical in correspondence to the amplitude peaks of the transfer functions
since at these frequencies both direct and cross-term have the same amplitude. The
presence of a single accelerometer reading in correspondence of these frequencies would
result in the two irregularity profiles being reconstructed with the same amplitude, a large
error since corrugation in curves usually appears only on one of the two rails.
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Vertical dynamic of the wheelset
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Figure 4.3: Transfer Function of the system: full wheelset, vertical dynamic.

It is finally possible to introduce the effects of the inclination of the contact planes as done
in Equation (2.22). The two angles are computed by means of a multibody simulation of
the wheelset negotiating the curve under analysis. The presence of inclined contact planes
causes a difference in the terms of the Transfer functions matrix, which is not symmetric
anymore. This could partially alleviate the problems highlighted with the previous model,
allowing to recognize correctly the side at which corrugation appears. The four terms are
represented in Figure 4.4. As a matter of fact, it is possible to see the effects of the mode
shape at 425 Hz in the terms linking irregularity on the left side to accelerations on the
left and right sides. This is due to the lateral component of the contact force exciting
that mode.

4.2. Influence of uncertainties on wheelset modal pa-

rameters

After computing the system’s transfer functions, their robustness to uncertainties is
checked. In fact, there are different uncertainties that can influence the reconstruction of
irregularity profiles, such as:

• Temperature and ambient condition changes;
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Vertical and lateral dynamic of the wheelset
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Figure 4.4: Transfer Function of the system: full wheelset, vertical and lateral dynamics.

• The effects of wear and wheel reprofiling;

• Differences between the instrumented wheelsets;

• Errors in the effects of errors in the identification of modal parameters, etc.

Ideally, small changes in modal frequencies and damping ratios should not affect the
results, i.e. data coming from two different wheelsets travelling at slightly different speeds
should be able to reconstruct similar irregularity profiles. To investigate this, a series of 50
modified transfer functions are constructed, each obtained by randomly varying the modal
frequencies and damping ratios of the nominal one by ± 10%. These variations allow to
simulate the effects of uncertainties in the measurement conditions. A test irregularity
profile is then assembled, starting from a white noise signal on the left side and a constant
profile with no irregularity on the right side: the left side is therefore characterized by a
uniform frequency spectrum. These irregularities are converted to the frequency domain
by means of a FFT algorithm and their spectra are multiplied by the inverse of the three
measurement systems transfer functions, creating three sets of acceleration spectra. These
accelerations are then multiplied by the modified transfer functions to obtain a series of
irregularity spectra. For each frequency, the standard deviation of the module of the
irregularities is computed, with the results highlighted in Figures 4.5, 4.6 and 4.7.
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Figure 4.5: Spectral standard deviation: half wheelset.
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Figure 4.6: Spectral standard deviation: full wheelset, vertical dynamic.
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Figure 4.7: Spectral standard deviation: full wheelset, vertical and lateral dynamics.

It is possible to see that the obtained spectral standard deviations are almost constant
in large parts of the frequency range. In these regions, the irregularity profiles can be
robustly reconstructed even if there are some imprecisions in the modal parameters or if
slightly different frequencies are excited (for example, if different measurements are taken
at slightly different speeds). Ideally, if no variations in the modal parameters are intro-
duced, the spectral standard deviation is zero at all frequencies. However, there are some
frequency ranges in which the spectral variances suddenly increase. These ranges corre-
spond to resonances or antiresonances in the wheelset or rail receptances. Within these
ranges, small changes in modal parameters lead to large dispersion in the measurement
system’s outcomes, severely under- or overestimating irregularity. As a matter of fact, two
consecutive passages on the same line section at different speeds may create spectra with
large differences in the reconstructed irregularity profiles. Moreover, these frequencies are
often associated with some of the wavelength-fixing mechanisms exposed in Chapter 1.
Therefore, corrugation is usually present on the tracks at frequencies compatible with the
large, aforementioned peaks in dispersion, further exacerbating their correct identification.
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4.3. Rail corrugation monitoring

During this thesis, axlebox acceleration data coming from a section of the M1 line of
Milan subway are considered. The section under analysis is characterized by a series of
two curves and a switch. Both curves have the tendency of developing corrugation and the
section is frequently grinded. Since the instrumented trainset runs along the line almost
every day, a large dataset it accessible to study the development of corrugation over time.
Figure 4.8 represents the curvature of the line and the acceleration profile measured on
corrugated rails.
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Figure 4.8: Conciliazione - Pagano: line layout.

The analysis of the following sections is concentrated in the first curve of the section, in
which the contact plane angles between wheel and rails have been computed. The curve
is highlighted by the vertical lines in Figure 4.8.

4.3.1. Synthetic indexes for roughness monitoring

After reconstructing the profile with the process described in Figure 2.3, it is possible to
convert the profiles into a series of synthetic indexes which measure roughness severity
in a specific wavelength bandwidth. Standard EN 13231-3:2012 [28] presents different
requirements and criteria for measurements of the longitudinal and transversal surface
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Wavelength range [mm] Window length [m]

10-30 0.15
30-100 0.5
100-300 1.5
300-1000 5

Table 4.1: Window lengths for the computation of moving average according to [28].

of the rail, as well as reprofiling thresholds. For monitoring purposes, irregularity is
measured and compared against defined limits using three possible criteria:

• Moving average of RMS amplitude;

• Moving average of peak-to-peak amplitude;

• Number of irregularities exceeding a specified amplitude.

Among these methods, the criterion using the peak-to-peak amplitude is chosen due to
the ease of implementation and the possibility of comparing it to the irregularity data
already in possession of ATM. The railhead profile xirr,Z(x) is filtered in the wavelength
intervals of interest and its moving RMS is computed on a window of spatial length L.
The spatial window length and the wavelength intervals are both exposed in Table 4.1.
From the RMS it is possible to pass to the peak-to-peak amplitude by multiplying the
results for 2

√
2.

IrrZ,Pk−Pk(n, L) = 2
√
2

√
1

Ln

∫ x+Ln

x

xn,Z(x) dx (4.1)

where xn,Z(x) is the irregularity filtered with a zero-phase bandpass filter to the bandwidth
of interest and Ln is the window length.

In this thesis, the two wavelength intervals 30-100 mm and 100-300 mm are investigated,
due to the presence of corrugation in these two intervals in the Milan subway system.

4.3.2. Results with the different models

It is now possible to compare the moving average of peak-to-peak amplitude profiles
estimated starting from the axlebox accelerations, using a single train run. Figure 4.9
contains the resulting peak-to-peak amplitude profiles in the first curve of the section, as
well as data coming from measurements of a diagnostic railcar which were taken on the
same day. In the wavelength interval of 30-100 mm, the proposed methodology is able
to detect corrugation on one side but fails in discerning the side at which corrugation
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manifests. They also all overestimate the actual peak-to-peak amplitude. Moreover,
the use of different models for wheel-rail interaction produces similar results, confirming
the idea that wheelset dynamic plays a minor role at higher frequencies. In fact, at
the speed of 30-35 km/h at which the trainset negotiates the curve under analysis, the
wavelength interval of 30-100 mm translates into a frequency interval of 90-300 Hz, a region
in which the track dynamic starts having larger relevance on the overall response of the
system. This is partly less evident in the wavelength range 100-300 mm (corresponding to
a frequency interval of 30-90 Hz); here, when the half wheelset model or the full wheelset
model with vertical and lateral dynamics are used in the proposed methodology, the
estimated profiles show some degree of difference in the irregularities on the two sides.
The methodology employing the half wheelset model strongly overestimates corrugation
on both sides, while the use of the full wheelset models yields results which are comparable
to the profiles measured by a diagnostic draisine. When looking at the 100-300 mm
bandwidth on the left side, the use of the full wheelset model with vertical and lateral
dynamics reconstructs the profile which more closely matches the measured one. The
full wheelset model which accounts for vertical dynamics only, however, shows a strong
coupling of the two irregularities in both intervals. Better modeling of the wheelset is
able to improve the measurement system output at lower frequencies.
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Figure 4.9: Comparison of the three models’ results.
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4.3.3. Average of multiple runs

In order to improve the accuracy of the results, different runs on the same section can be
used to compute an averaged irregularity profile. This is facilitated by the fact that the
instrumented trainset runs along the entire line multiple times during each day, thus cre-
ating a large dataset. Figure 4.10 presents the moving average of peak-to-peak irregularity
profiles of seven runs.

The wavelength range 30-100 mm presents a slightly better roughness reconstruction:
despite the algorithm’s inability to accurately identify the side at which corrugation ap-
pears, a difference between the two sides can be appreciated. The right side shows a more
irregular behavior which matches the measured profile, while the profiles on the left side
are smoother.
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Figure 4.10: Effects of averaging multiple runs.

In the wavelength range of 100-300 mm, the effects of lateral dynamics allow to correctly
discern the presence of corrugation on the correct side: moreover, the full wheelset model
with both vertical and lateral dynamics is able to outperform all the others in terms of
distance from the measured profiles. The half-wheelset model still overestimated the ir-
regularity profiles. The full wheelset model with both vertical and lateral dynamics shows
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the overall best performances in reconstructing irregularities in the wavelength range of
100-300 mm, while all the models show similar performances in the range 30-100 mm.
Unfortunately, the contact angles needed for implementing lateral dynamics on the full
wheelset model are difficult to compute, since additional measuring devices or simulations
are needed to compute the contact angles, partially complicating the implementation of
this method from a practical point of view.

4.3.4. Influence of uncertainties on wheelset modal parameters

As previously done, the robustness of the algorithm to changes in the measurement con-
ditions is also investigated. In order to do so, a set of 25 modified receptances is used to
compute sets of transfer functions and then process the same acceleration time history.
Figures 4.11, 4.12 and 4.13 contain the mean roughness value and dotted lines correspond-
ing to a confidence level of 95% of the roughness distribution. The use of the three models
showcase a similar level of robustness in the wavelength range 30-100 mm. An analysis
over the range 100-300 mm allows to highlight overall better performances for the full
wheelset model that accounts for both vertical and lateral dynamics. The half-wheelset
model shows the largest confidence interval, suggesting that this model is particularly
susceptible to uncertainties in modal parameters. As previously stated, these Figures un-
derline how small changes in the modal parameters or in the measurement conditions can
cause large variations in the final results. This undermines the reliability of rail profiles
reconstructed from acceleration measurements since even relatively small speed variations
or differences in wheel wear can cause large differences in the reconstructed profiles. The
Automatic Train Operator and Control system featured in the rolling stock of the un-
derground line M1 is able only to partially alleviate this issue, while the averaging of
different reconstructed profiles improves the robustness of the overall results.
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Figure 4.11: Confidence intervals: half wheelset model.
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Figure 4.12: Confidence intervals: full wheelset model.
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Figure 4.13: Confidence intervals: full wheelset model with vertical and lateral dynamics.

4.3.5. Influence of accelerometers positioning

The influence of the placement of the accelerometers on the axleboxes is then investigated.
During the simulations, the receptances of the accelerometer placement points were com-
puted under the hypothesis that they were positioned in the axleboxes’ center. However,
the experimental setup is seldom precisely centered, due to the physical impossibility of
placing the accelerometer exactly in the desired location, tolerances, or minor misalign-
ments in the wheelset. Therefore, a new set of receptances is computed, imposing a shift
in the accelerometers of ±10 mm, ±30 mm and ±50 mm from the nominal position.
These receptances are used to compute a set of transfer functions which are in turn used
to analyze a line section. Figure 4.14 highlights the various roughness profiles identified
using different transfer functions. It is possible to notice how even small errors in the
placement of the accelerometer may result in large differences when reconstructing the
roughness profiles. Particular care must therefore be taken in the vehicles’ setup in order
to have reliable and comparable data.
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Figure 4.14: Effects of accelerometers placement: detailed view.

Figure 4.15 showcases the mean value the 95% confidence intervals of the roughness profiles
with different placement of the accelerometers depicted in Figure 4.14. The large disper-
sion of the results confirms that differences in the correct palcement of the accelerometers
can have large impacts on the final outcome of the algorithm.
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Figure 4.15: Effects of accelerometers placement: confidence intervals.

4.3.6. Monitoring of rail corrugation evolution

Finally, the possibility of tracking the evolution of corrugation of the rail profile is in-
vestigated. In order to do so, a set of days are selected to cover the period between two
consecutive grinding operation over the span of three months. For each day under anal-
ysis, all the runs recorded by the instrumented trainset are averaged in order to improve
their robustness. All data are processed using the full wheelset model and accounting
for both vertical and lateral dynamics. The results for each day are plotted in Figure
4.16. For reference, the measurements taken the day after grinding are averaged and
plotted with a dotted line. Figure 4.16 underlines how the obtained roughness profiles
are able to track the development of corrugation over time. The numerous acceleration
measurements taken each day allow to mediate them, improving robustness, while the
continuous coverage of the section under analysis over time permits the monitoring of
corrugation and other defects over time. Moreover, a large decrement in roughness after
the grinding operation is shown, suggesting the successful removal of rail irregularities.
Therefore, acceleration measurements could be used as a follow-up practice to trace the
correct removal of irregularity after rail grinding.
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Figure 4.16: Roughness evolution over time.
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5| Conclusions and future

developments

The objective of this thesis is the development of an algorithm for the identification and
monitoring of rail corrugation growth by interpreting acceleration data coming from an in-
strumented trainset. Different models of wheel-rail interaction allow for the computation
of the measurement system transfer function, which is used to process acceleration data
and estimate the irregularity profiles. Information on the evolution of rail corrugation can
therefore be used to relay data regarding the line sections to prioritize for maintenance op-
eration. The monitoring activity is performed in a specific section of Milan’s underground
network, characterized by the trackform Milano Modificato: such a trackform is widely
used in Milan’s subway network. The instrumented vehicle is a Meneghino trainset, which
passes over the side under analysis multiple times per day. One of the unpowered bogies
of the trainset is equipped with a set of accelerometers measuring vertical acceleration of
the axleboxes.

The aforementioned models are derived by taking three different approaches for modeling
the wheel-rail interaction. The first one is based on a state-of-the-art model of a flexible
half-wheelset which neglects the coupling between the two wheels, as previously done in
literature. Wheel-rail interaction is assumed to be aligned to the vertical direction. The
second approach introduces the full dynamic of the wheelset and therefore the coupling
between the two sides, creating a multi-input, multi-output model. Forces and displace-
ments are still considered to act in the vertical direction only. The effect of the inclination
of the wheel-rail contact planes is subsequently added to the third and last model, thereby
introducing the effect of the lateral dynamics of the full wheelset. The wheelset is mod-
eled by means of a modal model whose mode shapes have been obtained through a Finite
Element simulation and whose eigenfrequencies are adjusted according to the results of an
experimental modal identification campaign. The rail behavior is modeled as an infinite,
continuously supported Timoshenko beam.

The models of the wheel-rail interaction are used to compute the transfer functions be-
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tween rail irregularity and axlebox acceleration. The irregularity profiles are reconstructed
starting from the spectra of the axlebox acceleration time histories which are measured by
the instrumented trainset. The acceleration spectra are multiplied for the transfer func-
tions of the measurement system and the resulting irregularity spectra are transformed
back to the time domain by means of an inverse Fourier transform. Literature suggests
that axlebox acceleration measurement systems cannot reliably and precisely estimate the
whole rail profile. It is however seldom necessary to reconstruct it entirely: Standard EN
13231-3:2012 explains how to synthetically report irregularity by filtering the obtained
rail profiles according to a series of bandwidths defined by the standard and computing
the moving average of peak-to-peak irregularity amplitude in each wavelength interval.
This allows for a convenient expression of irregularity profiles in the space domain.

Acceleration data coming from the instrumented trainset is then used to reconstruct the
irregularity profile of a section of the Milan subway by means of an algorithm employing
the three aforementioned models. Their results are compared against irregularity data
coming from a diagnostic draisine and acquired on the same day. The section under
analysis is characterized by two curves, with corrugation appearing in the lower rail of
both. This thesis focuses on the first right curve. A multibody simulation of the train
negotiating the curve is performed in order to obtain the inclination of the two wheel-rail
contact planes.

The proposed methodology is unable to discern the side at which corrugation manifests in
the wavelength band of 30-100 mm. However, an analysis of the response in the wavelength
band of 100-300 mm shows that, when the algorithm employs the full-wheelset model with
the effects of both vertical and lateral dynamics for the computation of the measurement
system transfer function, it is able to correctly discern the side at which corrugation
appears. The full-wheelset model with only the contribution of vertical dynamics shows
unsatisfactory performances since the model’s dynamic creates a coupling between the
acceleration measured on one side and the two reconstructed irregularities. The use of
the half wheelset model results in a correct identification of the side at which corrugation
appears but errors in its amplitude.

More robust results can be improved by averaging the results of multiple runs. This is
facilitated by the fact that the instrumented trainset is able to travel along the test section
multiple times per day. Averaging several runs over a single day improves the results for
all models.

The influence of uncertainties in the modeling of wheel-rail dynamic and variations of the
measurement conditions is investigated. It is found that small variations in the compu-
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tation of the transfer function of the measurement system or changes in the condition in
which measurements are taken (speed, wear in wheels and rail, etc...) can severely impact
the final results. The robustness of the measurement system is also investigated in the
frequency domain: results highlight that the measurement system shows the largest result
dispersion in correspondence to excitation which matches the resonance frequencies of the
wheel-rail dynamic. This has a huge impact on the reliability of the results, since the
corrugation spatial wavelengths are usually associated to the natural frequencies of the
system.

The evolution of corrugation over time is finally investigated by analyzing acceleration
acquisitions taken over a period of three months and processing them with the full wheelset
model with both vertical and lateral dynamics. The measurement system is correctly able
to trace the evolution of corrugation over time and the effects of a rail grinding operation
performed at the end of the analysis period.

A possible development of this thesis could be the analysis of acceleration data measured
at speeds different from the usual line speed imposed by the Automatic Train Operator
system, in order to validate the possibility of using axlebox acceleration measurements to
correctly and reliably reconstruct the irregularity profiles. Alternatively, the possibility
of removing the effects of speed variation in the estimation of irregularity profiles could
be investigated.
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