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Summary
The electronic structure of a material plays a critical role in the determi-
nation of many of its macroscopic properties. Why some materials are
transparent and some other opaque, why some conduct electricity and
heat better than others, why some are magnetic, can all be understood
by investigating how electrons in the material organize themselves, how
they move and how they interact with the other degrees of freedom.
Time and angle-resolved photoemission spectroscopy (TR-ARPES) is an
experimental technique which has the capabilities of not only directly
visualizing the band structure and Fermi surface, but also following
their temporal evolution after excitation by an intense ultrafast laser
pulse on a sub-picosecond scale. In this thesis, we will first present the
general principles of the TR-ARPES technique as developed and used
at the Physics Laboratory at the Politecnico di Milano. Then, it will be
used to study the electronic dynamics of two quantum materials. The
first one is a topological insulator, a type of material insulating in the
bulk but conducting on the surface. The conduction and valence states
have contrasted dynamics that will be evidenced using TR-ARPES. We
will also track the opening of a gap caused by the deposition of magnetic
impurities on the surface. The second material belongs to the so-called
charge density waves (CDW) compounds, inwhich the electronic density
becomes spontaneously non-uniform below a certain temperature. In
our case this it is accompanied by a lattice distortion, corresponding
to a new phonon. TR-ARPES can reveal the interplay between the
electronic phase at low temperature and the CDW lattice mode. This
work contributed to the publication of an article [1].
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Sommario
La struttura elettronica di un materiale ha un ruolo fondamentale nella
determinazione di molte delle sue proprietà macroscopiche. Perché al-
cuni materiali sono trasparenti e altri opachi, perché alcuni conducono
elettricità e caloremeglio di altri, perché alcuni sonomagnetici, tutto può
essere comrpeso studiando come si organizzano gli elettroni nel materi-
ale, come si muovono e come interagiscono con gli altri gradi di libertà.
La spettroscopia di fotoemissione risolta in tempo e angolo (TR-ARPES) è
una tecnica sperimentale che ha la capacità non solo di visualizzare diret-
tamente la struttura abandee la superficie di Fermi,maanchedi seguirne
l’evoluzione temporale dopo l’eccitazione da parte di un intenso impulso
laser ultraveloce su una scala di sub-picosecondi. In questa tesi, pre-
senteremo innanzitutto i principi generali della tecnica TR-ARPES svilup-
pata e utilizzata presso il Laboratorio di Fisica del Politecnico di Milano.
Quindi, verrà utilizzato per studiare la dinamica elettronica di due ma-
teriali quantistici. Il primo è un isolante topologico, un tipo di materiale
isolante nel volume ma conduttore in superficie. Gli stati di conduzione
e di valenza hanno dinamiche contrastanti che verranno evidenziate uti-
lizzandoTR-ARPES. Ci occupiamoanchedell’apertura di una gap causata
causata dalla deposizione di impurezze magnetiche sulla superficie. Il
secondo materiale appartiene ai cosiddetti composti delle onde di den-
sità di carica (CDW), in cui la densità elettronicadiventa spontaneamente
nonuniforme al di sotto di una certa temperatura. Nel nostro caso questo
è accompagnato da una distorsione del reticolo, corrispondente ad un
nuovo fonone. TR-ARPES può rivelare l’interazione tra la fase elettronica
a bassa temperatura e il modo CDW del reticolo. Questo lavoro ha con-
tribuito alla pubblicazione di un articolo [1].
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1 Time-resolved ARPES:
general principles and
experimental setup

1.1 Fundamentals of ARPES

1.1.1 The photoemission phenomenon
Photoemission is the process by which an electron inside a material is
ejected after absorbing a photon of sufficient energy. In a first approxi-
mation, the process can be described using the conservation of energy:
𝐸𝑘𝑖𝑛 = ~𝜔−𝜙−|𝐸𝑏|. 𝐸𝑘𝑖𝑛 is the kinetic energy of the ejected electron,𝜙 is
the work function of the material, and 𝐸𝑏 is the binding energy, which is
the energy difference between the state the electron was in before photo-
excitation and the Fermi level of the material. The energy distribution of
the emitted electrons thus contain information about the band structure
of the material. In order to understand more precisely what the photoe-
mission current dependson, onefirst needs to choose amodel of thepho-
toemission process. The mainstream approach is the phenomenological
three-step model (figure 1.1.1 (b)), where the photoemission is divided in
three independent steps [2]:

i . An electron in the solid is excited from an initial to a final bulk Bloch
eigenstate by absorbing the incoming photon,

ii . The excited electron then travels to the sample surface

iii . Finally it escapes into vacuumafter transmission through the surface
potential barrier.

A complete description of this process must take into account not only
the conservation of energy mentioned above, but also the conservation
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1 Time-resolved ARPES: general principles and experimental setup

(b) (c)

Figure 1.1.1: (a) General geometry of an ARPES experiment. The emis-
sion direction of the photoelectron is specified by the polar (𝜗) and az-
imuthal (𝜙) angles. (b) and (c) Graphical representations of the three-
step model (b) and the one-step model (c). Figure adapted from [2].

of momentum between the initial and the final states. The general geo-
metrical configuration of an angle-resolved photoemission spectroscopy
(ARPES) experiment is shown in panel (a) of figure 1.1.1.

Step (ii) of the three-step model can be modeled by a transport coeffi-
cient related to the inelastic mean free path of excited electrons in solids.
This length is of the order of a few nanometers for electron energies of a
few electronvolts. ARPES is thus fundamentally a surface sensitive tech-
nique. Step (iii) is described by a transmission probability through the in-
terfacewith vacuum. It is foundbymatching thebulkBlocheigenstates to
free-electronplanewaves in vacuum. The translation symmetry in the𝑥−
𝑦 plane at the interface imposes the conservation of the parallel compo-
nent of the electron momentum during the process. Moreover, the emit-
ted photoelectron has a parabolic dispersion relation: 𝐸𝑘𝑖𝑛 = ~2𝑘2/2𝑚𝑒.
Therefore, we can simply link the in-plane electron momentum to its en-
ergy and emission angle:

𝑘∥ =
1
~√2𝑚𝑒𝐸𝑘𝑖𝑛 ⋅ sin⒧𝜗⒭ (1.1.1)

where 𝜗 is the polar angle defined in figure 1.1.1 (a). Given that 𝐸𝑘𝑖𝑛 can-
not surpass ~𝜔−𝜙, this relation 1.1.1 shows that the size of the part of the
Brillouin zone that we can probe is limited by the energy of the incom-
ing photon. However, it is not as straightforward to find the value of the
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1.1 Fundamentals of ARPES

perpendicular electron momentum, because it is changed at the trans-
mission through the surface in a material-dependent way. This can be
taken into account by defining for each material a parameter 𝑉0, called
the inner potential, such that:

𝑘⟂ =
1
~
√2𝑚𝑒(𝐸𝑘𝑖𝑛 cos⒧𝜗⒭2+𝑉0) (1.1.2)

In this work, we will not focus on the determination of 𝑉0. Consequently,
only the 𝑘∥ component will be considered.

1.1.2 Computation of the photoemission current
Step (i) of the three-step model is the most complex to describe, but it is
the one that gives the most insight on the intrinsic electronic structure.
The starting point is to find the probability to go from the initial stateΨ𝑁

𝑖
with 𝑁 electrons to one final state Ψ𝑁

𝑓 , through optical excitation. This
probability can be approximated by the Fermi golden rule [2]. The pho-
toemission current is proportional to the sum of the transition probabil-
ities for all possible initial and final states:

𝐼(k, 𝐸𝑘𝑖𝑛) ∝
𝑖,𝑓

|Ψ𝑁
𝑓
|Ĥ𝑖𝑛𝑡 |Ψ𝑁

𝑖 |
2𝛿(𝐸𝑁

𝑓 −𝐸𝑁
𝑖 −~𝜔) (1.1.3)

The Hamiltonian for the interaction with the photon can be written as
Ĥ= 𝑒

𝑚𝑒𝑐A⋅p̂, byworking in a gaugewhere the scalar potentialΦ is zero, ne-
glecting non-linear two-photon processes and assuming that the vector
potential is uniform over atomic dimensions (this is the dipole approxi-
mation, which holds for UV photons). The energies can be readily sepa-
rated into a photoelectron term and a (𝑁 −1) electron term: 𝐸𝑁

𝑓 =𝐸𝑁−1
𝑓 +

𝐸𝑘𝑖𝑛 and 𝐸𝑁
𝑖 = 𝐸𝑁−1

𝑖 −𝐸𝑏(k). In order to simplify the expression of the
transition probability, we would like to similarly factorize the wavefunc-
tions Ψ𝑁

𝑖 and Ψ𝑁
𝑓 into a photoelectron wavefunction and a (𝑁 −1) elec-

tron wavefunction. This is generally not possible, as the photoelectron
will relax and interact with the system left behind; but it can be reason-
ably assumed for high kinetic-energy electrons, which are disturbed less
by the scattering. Wewill therefore places ourselveswithin the suddenap-
proximation, where the photoemission process is assumed to be sudden:
the photoelectron decouples from the remaining system immediately af-
ter photoexcitation, before relaxation sets in. This approximation is ex-
tremelyuseful, as it gives thephotoemission current a clear interpretation

13



1 Time-resolved ARPES: general principles and experimental setup

in terms of intrinsic electronic properties. On the other hand, it will not
reproduce the feature of the spectrum for low kinetic-energy electrons,
which are more likely to suffer inelastic scattering events. This gives rise
to an inelastic backgroundwhich is usually ignored or subtracted. Amore
refined picture of the photoemission process is the one-step model (fig-
ure 1.1.1 (c)). Thismodel directly considers the optical transitionbetween
initial and final states in terms of many-body wave functions that obey
appropriate boundary conditions at the surface of the solid; but it is ob-
viously much more complicated.

Within the sudden approximation, we may write [10]:

Ψ𝑁
𝑓 =𝜙k

𝑓,𝐸𝑘𝑖𝑛𝑠
Ψ𝑁−1

𝑠 (1.1.4)

where𝜙k
𝑓,𝐸𝑘𝑖𝑛 is thewavefunction of the photoelectronwithmomentumk

and kinetic energy 𝐸𝑘𝑖𝑛, andΨ𝑁−1
𝑠 are the excited states for (𝑁 −1). Sim-

ilarly,
Ψ𝑁

𝑖 =𝜙k
𝑖Ψ𝑁−1

𝑖 (1.1.5)
where𝜙k

𝑖 is thewavefunction of the state fromwhich the electron is emit-
ted. With this factorization, we can rewrite the matrix elements of equa-
tion (1.1.3) as:

Ψ𝑁
𝑓
|Ĥ𝑖𝑛𝑡 |Ψ𝑁

𝑖  = 𝜙k
𝑓,𝐸𝑘𝑖𝑛

|Ĥ𝑖𝑛𝑡 |𝜙k
𝑖  ⋅𝑠

Ψ𝑁−1
𝑠 |Ψ𝑁−1

𝑖  (1.1.6)

The first term 𝜙k
𝑓,𝐸𝑘𝑖𝑛

|Ĥ𝑖𝑛𝑡 |𝜙k
𝑖  =𝑀k

𝑓,𝑖 is the one-electron dipole matrix
element. The photoemission current is therefore proportional to:

𝐼(k, 𝐸𝑘𝑖𝑛) ∝
𝑖,𝑓
|𝑀k

𝑓,𝑖
|
2 ⋅

𝑠
|Ψ𝑁−1

𝑠 |Ψ𝑁−1
𝑖 |

2𝛿(𝐸𝑘𝑖𝑛+𝐸𝑁−1
𝑠 −𝐸𝑁

𝑖 −~𝜔)

(1.1.7)
The sum over 𝑠 can be rewritten in a more understandable form, yielding
the final expression for the photoemission current:

𝐼(k, 𝐸𝑘𝑖𝑛) ∝ 𝐴(k, 𝐸𝑘𝑖𝑛−~𝜔)𝑓FD(𝐸𝑘𝑖𝑛−~𝜔) (1.1.8)

𝑓FD(𝜔) is the Fermi-Dirac distribution and signals that fact that this ver-
sion of photoemission only probes the occupied electronic states. 𝐴(k, 𝜔)
is the one-electron spectral function. It describes the probability with
which an electron with energy𝜔 and momentum k can be removed from
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1.1 Fundamentals of ARPES

an electron system in its ground state. Equation (1.1.8) canbe generalized
out of equilibrium, with time-dependent spectral function and distribu-
tion functions [11]. But this approach is not valid when the pump over-
lapswith theprobe. Therigorousnon-equilibriumcalculationof 𝐼(k, 𝜔,𝑡)
relies on the Keldysh formalism for non-equilibrium Green’s functions
and is outside the scope of this work [12].

1.1.3 Spectral function and Green’s function
The one particle spectral function is linked to the retarded Green’s func-
tion 𝐺(k, 𝜔) by the relation [2]:

𝐴(k, 𝜔) = −1
𝜋 Im 𝐺 (k, 𝜔) (1.1.9)

For the case of a non-interacting electron system, the retarded Green’s
function is given by:

𝐺 0(k, 𝜔) = 1
~𝜔−𝜀(k) , so 𝐴(k, 𝜔) =

1
𝜋𝛿(~𝜔−𝜀(k)) (1.1.10)

So the spectral function is a perfectly sharp image of the non-interacting
band structure. If we now switch on the interactions, the renormalization
of the retarded Green’s function is expressed in terms of the electron self-
energyΣ(k, 𝜔):

𝐺(k, 𝜔) = 1
~𝜔−𝜀(k)−Σ(k, 𝜔) (1.1.11)

The spectral function becomes:

𝐴(k, 𝜔) = −1
𝜋

ImΣ

(~𝜔−𝜀(k)−ReΣ)2+ ImΣ2 (1.1.12)

The general effect of the interactions is to broaden the photoemission
spectra, by turning the spectral function into a Lorentzian. The width of
this Lorentzian is the imaginary part of the self-energy, which is directly
linked to the lifetime of the quasi-particles: the broader the line shape,
the smaller the life time of the quasi-particles excitations [10]. There-
fore, we have shown that by measuring the photoemission current in an
angle- and energy-resolved way, we can not only access the electronic
band structure, but also probe many-body effects in solids.

15



1 Time-resolved ARPES: general principles and experimental setup

1.2 Experimental setup
A setup for time- and angle-resolved photoemission spectroscopy must
be able to produce intense ultrafast laser pulses for both the pump and
the probe. A sketch of the optical setup used is shown in figure 1.2.1.
It uses several high-end, non-linear optical components to generate a
pumppulse at 1.82 eV (480 nm) and a probe pulse at 6.05 eV (205 nm) [3].
This probe energy only permits to probe a limited part of the Brillouin
zone (|𝑘∥| < 0.2 Å−1). In return, both the temporal and energy resolution
are contained, at around 50 fs and 50meV respectively. Indeed, as a result
of the indeterminacy principle, it is not possible to improve the temporal
and the energy resolutions at the same time without lowering the probe
energy. The pump and the probe are then focused on the sample down to
a spot size of about 100micrometers. Space-charge broadening is a result

Figure 1.2.1: Simplified representation of the optical modules for the
generation of pump and probe pulses. FF: fundamental frequency, SH:
second harmonic, UV: ultraviolet, DUV: deep ultraviolet; SHG: second
harmonic generation stage, NOPA: non- collinear parametric amplifier,
SFG: sum-frequency generation stage, BS: beam-splitter. From [3].

of Coulomb repulsion among emitted photoelectrons, which broadens
and shifts the spectra. Therefore, it is critical to keep the number of
photoexcited electrons per pulse as low as possible; in our setup this
is around 0.1 𝑒−/pulse. To keep the measurement time reasonable,
the optical setup has a repetition rate of 100 kHz. The photoexcited
electrons are sent into a hemispherical electron energy analyzer. This
device disperses the electrons radially according to their energy using
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1.3 Analysis of TR-ARPES data

an electric field. The electrons are then detected by a camera, with
one axis of the sensor corresponding to the energy and the other to
the photoemission angle. The aperture of the setup allows detection of
photoexcited electrons in the range ±15∘.

The sample, as well as the part of the setup responsible for the detec-
tion of electrons are kept under ultra-high vacuum, with pressures of the
order of 10−10 mbar. This is needed to detect the photoemitted electrons,
aswell as to preserve the sample surface quality. For this same reason, the
samples can be cleaved in situ using a piece of carbon tape. Such a level
of vacuum requires baking after every opening of the chamber, to remove
all adsorbed atoms from the sides. The vacuumchamber is also equipped
with other devices useful in surface science. One that we will use is the
evaporator, which can deposit thin films on the sample by heating. An-
other relevant one is the low-energy electron diffraction (LEED) device,
to check the crystalline orientation of the sample. Finally, it is possible to
control the temperature of the sample inside the vacuum chamber. Cool-
ing is donebypouring liquidnitrogen in the cryostat of the sampleholder,
and heating to 400 K can be achieved with resistors.

1.3 Analysis of TR-ARPES data
To analyse the data for this project, a Jupyter notebook was written in
Python. The Jupyter software is particularly suited to an experimental
data analysisworkflow, thanks to the fact that the code is divided into cells
that can be executed independently. This particular notebook is able to
load the raw data from the camera, transform the angles of photoemis-
sion to 𝑘∥ vectors according to equation (1.1.1), and makes it possible to
explore the time-dependent data easily using interactive widgets. One
of the main ways ARPES data are analyzed is through the study of energy
curves (EDCs),whichare theenergy-dependent spectralweights at afixed
𝑘∥. These EDCs are then often fitted with various functions. As discussed
insection1.1.3, we expect the spectral function to experience aLorentzian
broadening caused by interactions. But this does not take into account
the instrument resolution, which can be modeled by a Gaussian with a
width of about 50meV. Hence the ARPES data will almost always be fitted
by the convolution of the Lorentzian spectral function with the Gaussian
instrument resolution, which is called a Voigt function. The Voigt func-
tions have no analytic expression, but they can be considered as contin-
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uous interpolations between a Gaussian line shape and a Lorentzian line
shape. Thus it can still be relevant to fit solely a simpler Lorentzian (Gaus-
sian) function if the spectral feature of interest is really broad (narrow). In
addition, if the zoneof interest is close to the Fermi level, then the spectral
line shape must be multiplied by the Fermi-Dirac distribution. If on the
contrary the material has no clear feature at the Fermi level, one can put
the material in electrical contact with a metal (often gold). The two mate-
rials will have the same Fermi level by definition, and this will be clearly
visible on the ARPES signal of the metal. The Jupyter notebook created
for this project enables the user to select EDCs at a given 𝑘∥ for all delays,
and define custom fit functions. All the ARPES figures in the following
were produced with this code.
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2 Capabilities of the system:
study of a topological
insulator

Topological insulators are new states of quantum matter that have at-
tracted a lot of interests, both for their striking experimental properties
and for the theoretical concepts used to describe them. This section will
first present models of topological insulators, and then focus on experi-
mental realizations of 3D topological insulators to demonstrate the capa-
bilities of the TR-ARPES system.

2.1 Introduction to topological insulators
2.1.1 Quantum Hall effect and Chern insulators
The band theory of solids was one of the first achievements of quantum
mechanics. It explains in simple terms how some crystals can conduct
electricity and some others cannot, even though electrons are allowed to
hop from an atom to another. Band insulators are materials with no par-
tially filled bands: the set of valence bands is unambiguously separated
from the set of conduction bands by an energy gap, which represents the
energy cost to move an electron. In contrast, band conductors have par-
tially filled bands, where there are plane wave states available for trans-
port at arbitrarily low energy [13].

However, the discovery of the quantum Hall effect (QHE) in 1980
showed that this simple distinction does not give a complete picture
of electronic transport in solids. Let us consider a slab of a metal in a
perpendicular magnetic field, as shown on figure 2.1.1. From a classical
point of view, the electrons in the bulk follow closed cyclotron-like
trajectories. But on the edge of the sample, the orbits are opened as
they repeatedly hit the edge. These skipping trajectories correspond to
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2 Capabilities of the system: study of a topological insulator

the formation of edge states in a magnetic field. Note the unidirectional
character of the edge trajectories: it is a direct consequence of the action
of the Lorentz force on charge carriers. In a strong magnetic field, the

Figure 2.1.1: Classical and quantum picture of the Hall effect. From [4].

motion of the electron becomes quantized and the edge states form a
one-dimensional channel on the boundary. To summarize, starting from
the quantumHall effect we have constructed amodel of amaterial whose
bulk is insulating but which has conductive edge states. In addition,
the states in the edge channel are gapless and unidirectional, with their
momentum locked to the magnetic field. This means that these states
can conduct current without dissipation at low temperatures. Indeed,
the main source of scattering in this regime is backscattering k ↦ −k
caused by disorder in the electrostatic background; but such a process
is forbidden, as there is no counter-propagating edge state. This robust
directiveness is called chirality. As we will now see, it is a consequence of
the breaking of the time reversal symmetry.

The time reversal operation𝒯 simply reverses the directionof the time
arrow in a model: 𝑡 ↦ −𝑡. Its effect on the most relevant quantum oper-
ators for an electron is the following:

𝒯 r̂𝒯−1 = r̂
𝒯 p̂𝒯−1 =−p̂
𝒯�̂�𝒯−1 =−�̂�

where 𝜎 is the vector of Pauli matrices. From the first two relations, one
concludes that the canonical commutator [r̂, p̂] = 𝑖~ is only conserved if
𝒯 i𝒯−1 =−i, meaning that𝒯 is antiunitary [14]. For a single electron, it
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Figure 2.1.2: Black line: Chiral edge mode of the Chern insulator. Red
dashes: modifiededgemodewith additional crossings of theFermi level.
Adapted from [4].

can be shown to have the property

𝒯 2 =−1⟺ 𝒯−1 =−𝒯 (2.1.1)

Finally, a system is said to be time reversal symmetric (TRS) if its Hamil-
tonian commutes with the time reversal operator:

𝒯ℋ̂𝒯−1 = ℋ̂⟺ 𝒯ℋ̂ =ℋ̂𝒯 (2.1.2)

This makes it possible to prove an important statement regarding a TRS
single electron Hamiltonian. Consider an eigenstate |+⟩ of a TRS Hamil-
tonian. Given the symmetry, the time reversed state |−⟩ = 𝒯 |+⟩ is also
an eigenstate at the same energy. Let us show that these two states are
also orthogonal:

⟨+|−⟩ = ⟨−| 𝒯 †𝒯−1 |+⟩ = −⟨−| 𝒯 †𝒯 |+⟩ = −⟨−|+⟩∗ =−⟨+|−⟩ = 0
(2.1.3)

This result, called Kramers’ theorem, shows that any eigenstate of a TRS
Hamiltonian is at least double degenerate [4]; for half-integer spin parti-
cles, it corresponds simply to the degeneracy between up and down spin
states. This theorem gives more insight on the origin of the dissipation-
less edge state in the quantum Hall effect described above. Indeed, the
application of an external magnetic field breaks the TRS, as it adds to a
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2 Capabilities of the system: study of a topological insulator

free particle Hamiltonian terms like Â⋅p̂, p̂⋅Â or �̂� ⋅B̂which are odd under
time reversal. This allows the existence of edge states without a Kramers
doublet, which would be available for backscattering.

This leaves the question of where in thismodel topology plays a role. It
turns out that it is possible tobreak theTRS in amore generalway,without
any netmagnetic flux [15]. Thisway, one can define an infinite set of TRS-
breaking Hamiltonians which are related by a continuous change in their
parameters. Although these Hamiltonians all have the same symmetry,
they do not all correspond to the same phase of matter. The phase dia-
gram is composed of several insulating phases, which differ by the value
of an integer called a topological invariant. This number can have several
definitions depending on the model considered. In the case of the quan-
tum Hall effect, it is called the (first) Chern number and corresponds to
the winding number of the phase of the electronic wave function on a
path around the center of the Brillouin zone. A non-trivial (different from
0) value indicates that the phase cannot be defined continuously on the
Brillouin zone, here because of broken time reversal symmetry.

The meaning of “topology” in this context can be further precised by
a geometrical analogy. It is well known that two manifolds of the same
genus can be deformed continuously into each other without creating
holes. In the same way, insulating Hamiltonians can be adiabatically de-
formed [13], in the sense that:

• their parameters are changed continuously,

• they keep the same symmetries,

• the bulk gap remains open.

Then, two Hamiltonians with the same topological invariant can be adia-
batically transformed into each other without a closure of the gap, which
would indicate a quantum phase transition. This paradigm provides the
most general explanation for the origin of the gapless edge states. At the
interface betweena topological insulator and the topologically trivial vac-
uum, the value of the topological invariant has to change from a non zero
value to zero. This cannot be donewithout closing the gap, and thus guar-
antees the presence of gapless edge states with all topological insulators.

However, adiabatically equivalentHamiltonians could have a different
number of edge states. One could change the Hamiltonian close to the
surface so that the edge state crosses the Fermi level more than one time.
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2.1 Introduction to topological insulators

For instance on figure 2.1.2, there are two edge modes of positive group
velocity and one of negative group velocity. But the difference 𝑁𝑅 −𝑁𝐿
between the number of right and left moving modes cannot change, and
is determined by the topological properties of the two systems in contact.
For the Chern insulator, we have [5]:

𝑁𝑅−𝑁𝐿 = 𝛿𝑛 (2.1.4)
where𝛿𝑛 is the difference in theChern number across the interface. Thus
the topological invariant canbecomputedmuchmoreeasilyby lookingat
the number of edge states. This is the simplest example of bulk-boundary
correspondance, a hallmark principle in topological insulators physics.

2.1.2 Quantum spin hall effect
We have seen that the interesting characteristic of Chern insulators re-
quire the breaking of time reversal symmetry, which is usually realized
experimentally by applying an external magnetic field. But this prevents
the use of powerful experimental techniques, specifically ARPES. There-
fore, we now investigate whether time reversal symmetric topological in-
sulators can exist.

A simple way to create a TRS system starting from the quantum Hall
effect is to stack two copies of the Chern insulator on top of each other,
withaneffectivemagneticfield that acts inoppositeways forupanddown
spin species. Formally, this is done by doing the tensor product of the
QHE Hilbert space with a two-state Hilbert space (|1⟩ , |2⟩) correspond-
ing to the two layers [13]. One layer will have its dynamics controlled by
the original QHE Hamiltonian ℋ̂𝑄𝐻𝐸 , and the other by the time reversed
conjugate 𝒯ℋ̂𝑄𝐻𝐸𝒯−1. Thus, the total Hamiltonian reads

ℋ̂𝑡𝑜𝑡 = |1⟩⟨1|⊗ℋ̂𝑄𝐻𝐸 +|2⟩⟨2|⊗ 𝒯ℋ̂𝑄𝐻𝐸𝒯−1 (2.1.5)
By making use of the property 2.1.1 and renumbering the layers, one can
see that this Hamiltonian is indeed time reversal symmetric. The con-
struction is represented in figure 2.1.3.

In real materials, this concept can be realized through intrinsic spin-
orbit coupling, where each layer represents a spin polarization of elec-
trons. This interaction can be difficult to model in a tight-binding Hamil-
tonian, but its symmetryproperties canbeunderstoodwith the formused
in atomic physics: L̂ ⋅ �̂�, where L̂ is the orbital angular momentum. This
shows that this coupling has the properties we are looking for:
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2 Capabilities of the system: study of a topological insulator

Figure 2.1.3: Quantum spin Hall effect an helicity on a 2D topological
insulator. From [4].

• it is time-reversal symmetric,

• it acts in opposite ways on up and down spin electrons.

The consequence of introducing such an interaction is that the edge state
of the QHE now forms a Kramers doublet: at each energy, there are two
eigenstates related by the time reversal operation. These edge states also
have a peculiar spin texture, called helicity, characterized by the locking
between the spin and momentum direction. As shown on figure 2.1.3,
right-moving edge electrons must have a spin up, whereas left-moving
electrons have a spin down. In consequence, the topological protection
is slightly weaker than in the case of the QHE. Backscattering processes
between the edge modes are allowed, but only if they are able to flip the
spin of the electron. In other words, the edge states are protected by the
time reversal symmetry, given that a disorder potential with such a sym-
metry cannot flip an electron spin. Toprove this, let us consider again two
edge states |±⟩ forming a Kramers doublet, and a TRS scattering potential
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2.1 Introduction to topological insulators

Figure 2.1.4: Protection of the edge states of the QSHE phase against a
disorder potential or deformation. From [4].

�̂� . The scattering matrix element reads [4]:

⟨+| �̂� |−⟩ = ⟨−| 𝒯 †�̂� 𝒯−1 |+⟩ = −⟨−| 𝒯 †�̂� 𝒯 |+⟩ = ⟨−| 𝒯 †𝒯�̂� |+⟩
(2.1.6)

=−⟨−|�̂� |+⟩∗ =−⟨+|�̂� † |−⟩ (2.1.7)

Given that a an operator �̂� representing a physical perturbation has to
be hermitian, the matrix element can only be zero. The edge states are
therefore protected against many ordinary perturbations such as surface
disorder or defects, chemical doping or external electric fields, as shown
on figure 2.1.4. Nevertheless, they are not protected against any kind of
magnetic perturbation, like one createdbydepositingmagnetic atomson
the surface. Indeed such an interaction is able to flip the spins of the elec-
trons in helical states, and thus makes backscattering possible. By anal-
ogy with the quantum Hall effect, this electronic state is referred to as the
quantum spin Hall effect (QSHE). However, since this phase respects the
TRS, its topological properties cannot be described by theChern number.
It is therefore necessary to look for a new topological invariant to describe
the QSHE.

The answer can be found in an algebraic property of the time rever-
sal operator acting on Bloch wavefunctions, at some special points of the
Brillouin zone [5]; but it is often hard to calculate. As for the Chern in-
sulator, the meaning of the topological invariant is more easily explained
in terms of bulk-boundary correspondence. Let us look at how the edge
states, if present, can connect the time reversal symmetric points of the
Brillouin zone, also calledKramers points. For a 2D system, the edge is 1D
and there areonly two suchpoints in theBrillouin zone for the edge states:
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2 Capabilities of the system: study of a topological insulator

the center and the edge. At the Kramers points, the Kramers doublet of
edge states is degenerate; between those points, the degeneracy is lifted
by the spin-orbit interaction. The topological character lies in how many
times this pair of edge states crosses the Fermi level. If it is even, then the
edge states can be adiabatically deformed so that there is no more cross-
ing. But if it is odd, this operation is not possible. Therefore, the interface
between two TRS phases, the bulk boundary correspondance can be ex-
pressed in the following form:

𝑁𝐾 =Δ𝜈 mod 2 (2.1.8)

where𝑁𝐾 is the number of Kramers pairs of edge modes intersecting the
Fermi level, and Δ𝜈 is the change in topological invariant at the inter-
face. For example, the QSHE phase has one single Kramers doublet of
edge states at the interface with the trivial vacuum; therefore, this phase
is topologically non trivial. This number 𝜈 cannot take all integers values
like the Chern number.It is only two-valued, and is thus coined theℤ2 in-
variant. Its computation canbemade simpler if the systemhas additional
symmetries, such as preserving the perpendicular spin ̂𝜎𝑧 or crystalline
inversion symmetry. These tricks are used extensively to find new topo-
logical insulators from band structure calculations. From now on, we will
focus on 3D topological insulators.

2.1.3 3D topological insulators
Three dimensional topological insulators can be thought of as generaliza-
tions of spin Hall 2D topological insulators described above. The surface
states on a 3D topological insulator are labelled by a 2D Brillouin zone,
where there are 4 Kramers points Γ1, Γ2, Γ3 and Γ4 (shown on figure 2.1.5
(a) and (b)). As in the 2D case, the surface states are degenerate at the
Kramers points, and between said points this degeneracy is lifted by the
spin-orbit interaction. This means that the spectrum of the edge states at
the Kramers points resembles the one of a spin 1

2 particle obeying the 2D
Dirac equation. Thus in 3D theKramerspointswhere there are edge states
are also calledDirac points. Similarly to the 2D case, one can defineℤ2 in-
variants describing how many edge states cross the Fermi level between
two Dirac points points Γ𝑖, Γ𝑗 [5]. There are 6 such pairs of points but a
geometry argument shows that only 4 ℤ2 invariants are independent; the
interested reader may find more details in [16]. 3D topological insulators
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2.1 Introduction to topological insulators

Figure 2.1.5: Brillouin zone at the Fermi level for the edge states for (a)
a weak 3D topological insulator and (b) a strong topological insulator.
From [5].

are thus characterized by 4 ℤ2 invariants (𝜈0, 𝜈1𝜈2𝜈3). The first one 𝜈0 is
the one which has the most effect on the resulting electronic phase. It
corresponds to the parity of the number of TRS points inside the Fermi
circle.

The simplest topologically non-trivial 3D material can be constructed
by stacking layers of 2D quantum spin Hall insulators. For instance,
weakly coupling layers along the 𝑦 direction can create the Fermi circle
and spin polarization of edge states depicted onfigure 2.1.5 (a). Therefore
the 𝜈0 invariant for such a state is 0. But there are no surface states on
the face perpendicular to the stacking axis, and on the other surfaces the
edge states are not protected by time-reversal symmetry. They can exist
on a clean surface but are easily localized in the presence of disorder.
Such an electronic phase is called a weak topological insulator.

On the contrary, a phase with 𝜈0 = 1 cannot be interpreted in terms of
layers of 2D topological insulators. This phase is called a strong topologi-
cal insulator and is characterizedby anoddnumber ofDirac points inside
the Fermi circle. The simplest case, where there is only one such point at
the center of the Brillouin zone Γ1, is depicted on figure 2.1.5 (b). The sur-
face states are degenerate at Γ1, and separated by spin-orbit interaction
away from this point. Therefore, the Hamiltonian of the edge states close
to the Dirac point is:

Ĥ= 
k,𝜎

Ψ†
k,𝜎ℋ̂(k)Ψk,𝜎 (2.1.9)

with ℋ̂(k) = ~𝑣𝑓�̂� ⋅ k̂−𝐸𝑓 = ~𝑣𝑓(𝜎𝑥𝑘𝑥+𝜎𝑦𝑘𝑦)−𝐸𝑓 (2.1.10)
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2 Capabilities of the system: study of a topological insulator

whereΨk,𝜎 is a spinor field operator for an electron, 𝑣𝑓 is the Fermi veloc-
ity of charge carriers and 𝐸𝑓 is the position of the Fermi level relative to
the Dirac point. The corresponding band structure, shown on figure 2.1.5
(c), is linear:

𝐸(k) = ±~𝑣𝑓|k| (2.1.11)

It is analogous to the Dirac dispersion relation, with 𝑣𝑓 playing the role of
the speed of light. Thehelical spin structure still provides topological pro-
tection against backscattering, but not against other scattering processes
k↦ k′.

An experimental realizations of 3D topological insulators requires a
compound with a large bulk band gap, at least 0.25 eV (or about 3000 K).
The goal is to make the bulk conductivity as low as possible, so that mea-
surements of surface transport are not degraded by parasitic leaks in the
bulk. But this band gap must be smaller than the spin-orbit coupling en-
ergy. The idea is to use the spin-orbit interaction to create inversions of
thebulk conductionandvalencebands. If one imagines slowly turningon
the spin-orbit interaction, the band gap will start to close with the sepa-
ration of up and down spin bands, until it opens again into a topologi-
cally non trivial phase. Spin-orbit coupling being an effect of relativistic
origin, it is more intense in using heavier elements. It can reach ener-
gies of about 1 eV using materials like antimony, bismuth, selenium or
tellurium. Indeed, materials like Bi2Se3, Bi2Te3 or Sb2Te3 are strong topo-
logical insulators, with invariants (1, 000). Up to now, Bi2Se3 has been the
most studied, because it has a larger band gap of about 0.3 eV and a band
structure that resembles more the ideal case of equation (2.1.10). Owing
to this, it has been used as a platform to demonstrate the main theoret-
ical predictions of the field [5]. Its band structure and ARPES spectrum
are depicted on figure 2.1.6. On subfigure (d) one can see that the surface
state dispersion in real materials slightly departs from the ideal case: the
particle-hole symmetry between the upper half and the lower half of the
Dirac cone is broken. Tuning the Fermi level farther from theDirac point,
one can also see an hexagonal warping of the cone [5]. In addition, the
topological surface states remain well-defined up to room temperature.

Most of the interesting theoretical and technological proposals require
the Fermi level to be as close as possible to the Dirac point. As a mat-
ter of fact, figure 2.1.6 shows that the Fermi level of Bi2Se3 is not even
in the bulk band gap. For ARPES measurements, this actually makes it
possible to see a greater part of the surface states dispersion, given that
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2.1 Introduction to topological insulators

Figure 2.1.6: Surface states and band structure of strong topological in-
sulators. (a) ARPES spectra of Bi2Se3 close to the Γ point, showing the
surface state dispersion, very close to an ideal Dirac cone, and (b) their
helical spin texture. (c) Band structure calculation along two directions
of the Brillouin zone. The shaded regions describe bulk states, and the
red lines are surface states. (d) General dispersion relation and spin tex-
ture for the edge states of Bi2X3 (1, 000) topological insulators. From [5].
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2 Capabilities of the system: study of a topological insulator

this technique can only see occupied states. However it is a problem for
most transport measurements or experiments in a magnetic field, where
separating contributions of surface electrons from the one of bulk elec-
trons is of crucial importance. One solution to change the position of the
Fermi level is to modify the chemistry of the topological insulator, using
for example a quaternary compound of the family Bi𝑥Sb2−𝑥Te𝑦Se3−𝑦 (also
known as BSTS). This chemical modification has an effect very similar to
electronic doping [17]. For instance, in this family one can tune the posi-
tion of the Dirac cone from 0.2 eV above the Fermi level (Sb2Te3) to more
than 0.3 eV below (Bi2Te0.5Se2.5). This phenomenon is highlighted in fig-
ure 2.1.7, showing two different samples of BSTS at equilibrium. How-
ever, even if the Dirac point is close to the Fermi level, it is still possible
to reveal the top of the cone and the bottom of the conduction band with
time resolved ARPES. Indeed, the nonequilibrium character of this tech-
nique means that it can populate states that were unoccupied before, as
can be seen in figure 2.1.7.

Figure 2.1.7: ARPES data at room temperature showing the different po-
sitions of the Dirac cone relative to the Fermi level, in (a) Bi2Te0.5Se2.5
and (b) BiSbTeSe2. (c) BiSbTeSe2 at zero delay when the pump and the
probe overlap, with a pump power of 6 mW. The Fermi level in marked
with a white dashed line to guide the eye.

As an end note on the general concepts of topological insulators, one
should note the difference between the symmetry protected topological
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2.2 Dynamics of topological states in Bi2Te2Se

states described in this work, and phases with intrinsic topological
order [18]. Topological order relies on long-range entanglement, which
usually happens in strongly interacting phases, whereas topological
insulators are described as free fermion systems. Both phases can exhibit
protected gapless edgemodes; but those in a topologically ordered phase
are robust against any local perturbation, while in a topological insulator
they are protected against local perturbations that do not break the
symmetry. In addition, topologically ordered phases often exhibit exotic
properties like fractionalized statistics or an emergent gauge theory, and
this in a way depending on the topology of the manifold on which they
are considered.

2.2 Dynamics of topological states in
Bi2Te2Se

Understanding and controlling the dynamics of the topological states
is of great importance in the development of TI-based electronic and
spintronic devices. In this section, we explain how the TR-ARPES
setup can reveal the different electronics dynamics in the topological
insulator Bi2Te2Se. This compound has a Dirac point located about 0.3
eV below the Fermi level. We start by taking TR-ARPES snapshots of
Bi2Te2Se every 50 fs with a pump power of 7 mW. Then, we define four
energy-momentum regions in the band structure. They are represented
as colored rectangles on the ARPES data in figure 2.2.1 (a), within which
we integrate the ARPES signal at each time. The green and blue regions
correspond to excited electrons in bulk conduction bands, respectively
a high-energy conduction band (HCB) and the low-energy one which
crosses the Fermi level (LCB). The orange and red regions correspond
to electrons in the topological surface states (TSS). More precisely, the
orange regions correspond to the parts of the Dirac cone above the Fermi
level (TSS+), and the red one to parts below the Fermi level (TSS-). The
evolution of the electron population in these regions are on figure 2.2.1
(b) and can help us understand the decay path of the electrons during
and after photo-excitation.

First, we observe that the population of HCB (green) increases first,
reaching its maximum in about 200 fs. The population of TSS+ (red)
varies in an opposite way, reaching its maximum depletion in a similar
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2 Capabilities of the system: study of a topological insulator

Figure 2.2.1: (a) ARPES data of Bi2Te2Se at room temperature 150 fs after
the pump. The pump power is 7mW. (b) Electronic dynamics of various
zoneof theband structure, shownas colored rectangles onpanel (a). The
curves have been normalized to their respective maxima and minima.

time. This indicates that the photo-excited electrons directly populate the
HCB. The same depletion and population dynamics has been reported in
Bi2Te3 [19]. In addition, the population of HCB shows the fastest decay,
of around 500 fs. This fact can be simply understood in terms of the
Fermi golden rule. The HCB has a higher energy than other regions, and
therefore a particle excited there has more available states to decay into,
thus increasing the decay rate [17]. Then, we notice that both the LCB
(blue) and TSS+ (orange) regions have similar dynamics. The population
build-up time of about 800 fs for both regionsmeans that there is no clear
evidence of a direct, photo-induced population in these regions. Instead,
the low-energy bulk band and the surface band are populated mostly by
the relaxation of electrons in the HCB, through inter-band scattering.
After one picosecond, the HCB is almost back to its (empty) equilibrium
state. The electrons then relax towards the Fermi level through intra-band
scattering, mediated for instance by electron-phonon interaction. But
these processes have a lower energy, which explains the longer build-up
time. After about 1200 fs, the electrons just above the Fermi level (in
TSS+ and LCB) start relaxing towards equilibrium. This process is mostly
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driven by the recombination between electrons and holes, which can in
this case be considered symmetric with respect to the Fermi level [19].
This can explain the opposite population slopes between TSS+ and TSS-
after 1200 fs. Finally, we note that the relaxation of the LCB happens at
the same rate of TSS+, only about 500 fs sooner. This may indicate that
the bottom of the LCB acts as a charge reservoir, which in a way empties
itself through the topological surface states. To sum up, we see that
the TR-ARPES setup is able to measure the evolution of the population
of various bands, which can help understand the flow of charge after
photo-excitation.

2.3 Depositing magnetic impurities
Probing the effect of magnetic perturbations on the topological surface
states can not only help develop new TI-based devices, but also pave
the way for the realization of exotic particles such as axions on the
surface [20]. This section focuses on the deposition ofmagnetic atoms on
the topological insulator Bi2Te2Se, and the effect it has on the dispersion
relations of the topological surface state. We choose to deposit atoms
of cobalt, using the evaporator integrated in the experimental setup
(section section 1.2). Indeed cobalt atoms have an intrinsic magnetic
moment, of about 1.7 times the one of the electron. As explained
in section 2.1.2, the topological surface states are not robust against
scattering by a non time-reversal symmetric potential, such as the one
created by a magnetic field. However, the effect of a random deposition
of magnetic atoms on the edge state dispersion is not straightforward to
derive. To understand the collective behavior of the magnetic impurities,
theoretical studies [21, 22] have investigated the interplay between those
impurities and electrons on a Dirac cone with a helical spin texture.
They found that the classic RKKY interaction between the spins of the
impurities, when mediated by such electrons, amounts to an anisotropic
ferromagnetic interaction between the impurities, which favors ferro-
magnetic ordering of the spins perpendicularly to the surface. The effect
of a high density of magnetic impurities can therefore be modeled by
adding to the Hamiltonian 2.1.10 a term corresponding to an effective
magnetic field perpendicular to the surface: ~𝐵𝑧𝜎𝑧. However, to keep the
analogy with relativistic physics, we will refer to this term as amass term
𝑚𝑣2𝑓𝜎𝑧, as this Hamiltonian corresponds to the one of a massive Dirac
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particle. In the end, we get the following Hamiltonian for the surface
states:

ℋ̂(k) = ~𝑣𝑓(𝜎𝑥𝑘𝑥+𝜎𝑦𝑘𝑦)+𝑚𝑣2𝑓𝜎𝑧−𝐸𝑓 (2.3.1)

and surface band dispersion [4]:

𝐸(k) = ±√(~𝑣𝑓|k|)2+(𝑚𝑣2𝑓 )2−𝐸𝑓 (2.3.2)

Therefore the mass term opens a gap of value 2𝑚𝑣2𝑓 at the Γ point. Our
goal will now be to measure accurately the gap and the Fermi velocity for
Bi2Te2Se with and without cobalt.

Figure 2.3.1: Comparison between (a) bare Bi2Te2Se and (b) Bi2Te2Se
with deposited cobalt. The sample was exposed during 30 seconds to
cobalt evaporated with an emission current of 7 mA. (c) EDCs for both
samples at 𝑘∥ = 0.

Figure 2.3.1 compares the equilibrium ARPES signal of bare Bi2Te2Se
(panel (a)) to Bi2Te2Se with deposited cobalt (panel (b)). A gap opening
of about 150 meV can clearly be seen. The EDCs at the Γ point for both
situations are represented on panel (c). They show that as expected, the
bulk bands above andbelow theDiracpoint arenot essentially affectedby
the surface impurities. To measure the gap more precisely, we will follow
the procedure below:

34



2.3 Depositing magnetic impurities

• TakeEDCs at various𝑘∥ values for both situations (without andwith
cobalt),

• Fit the EDCs with an appropriate fitting function and find the posi-
tion of the surface state at each 𝑘∥,

• Fit the surface states dispersion with the corresponding dispersion
relation (respectively equation (2.1.11) and equation (2.3.2)),

• Compare the results of the fits to find the value of the gap opened
by the cobalt atoms.

In this case, as the bands we want to fit are quite narrow in energy, we
will use a simple Gaussian line shape. For each EDC, the location of the
surface state is defined to be the center of the gaussian given by the fit
routine. Furthermore, we will focus our analysis where the data is of the
best quality, i.e. on the top left part (negative 𝑘∥) of the Dirac cone. The
symmetries of the gapopening (±𝑚 from theDiracpoint) andof theband
structure𝐸((𝑘)) = 𝐸(−(𝑘))) ensure that this restriction ismeaningful. The
results of this analysis are presented in figure 2.3.2. The EDCs taken from
𝑘∥ =−0.55Å−1 to 0 for both situations are shown in panels (a) and (b). The
blue and red dots correspond to the location of the surface states as de-
fined earlier. The locations of the surface states are again shown in panel
(c), along with the corresponding fits with the dispersion relations 2.1.11
and 2.3.2. According to these fits, the opened gap is about 130 meV, cor-
responding to a mass of about 4% of the one of the electron. These values
are consistentwith similarmeasurementswith irondeposition [23]. More
surprisingly, the cobalt deposition seems to lower slightly the Fermi ve-
locity; from𝑣𝑓 = 5.7⋅105ms−1 for bareBi2Te2Se to5.2⋅105ms−1 forBi2Te2Se
with cobalt. Such a drop in the Fermi velocity can originate from the ap-
plication of a perpendicular electric field [24], which can be caused by
atoms deposited at the surface [25]. But further investigation is needed
to conclusively answer this question.

To summarize, we have seen how the TR-ARPES data can be analyzed
to find numerical values of band gaps or of parameters of the electronic
Hamiltonian. The next step in the study of topological insulators with a
magnetically doped surface is the analysis of the dynamics of the gapped
surface states, in a way similar to what has been done in section 2.2. Un-
fortunately the corresponding experiments could not be realized during
the internship, due to a successionof problems in the experimental setup.
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2 Capabilities of the system: study of a topological insulator

Figure 2.3.2: Waterfall plot of the normalized EDCs at various 𝑘∥ for (a)
bare Bi2Te2Se and (b) Bi2Te2Se with cobalt. The colored points corre-
spond to the locationof the surface state for someEDCs. (c) Comparison
of the surface state dispersion for both cases. The error bars correspond
to the 95% confidence interval on the location of the surface states with
a gaussian fit; they are taken into account in the fits by the theoretical
models (dashed lines).
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3 Electronic dynamics of a
charge density wave
compound: 1T-TaSe2

In this section, we study the ultrafast electronic dynamics of 1T-TaSe2.
This material presents a rich landscape of correlated phases, among
which charge density waves and metal-insulator transitions.

3.1 Origins of charge density wave transitions
Metals usually have a very uniform electron density. But in some mate-
rials, the Fermi surface may become unstable below a critical tempera-
ture 𝑇𝑐. This instability can lead to a redistribution of the electron den-
sity, where it is modulated spatially according to a given wave vector s.
This new phase is called a charge density wave (CDW). The modulated
electron density modifies in return the potential around the ions, which
also shift them into new equilibrium positions. Thus a CDW is always ac-
companied by a lattice distorsion. The electron modulation and lattice
modulation can have rational or irrational ratios, in which case the CDW
state is called commensurate (CCDW) or incommensurate (ICCDW) re-
spectively.

CDW formation is a complex phenomenon and does not seem to be
caused by only onemechanism. Nevertheless, we can highlight some im-
portant features ofmost CDWstates using a 1Dpicture: the Peierls distor-
sion. Let us consider a 1D chain of atoms with lattice constant 𝑎 and one
electron per atom, as shown in figure 3.1.1 (a). This system is a metal and
the corresponding band structure is shown in panel (c). But by doubling
the lattice constant and introducing twodifferent hopping amplitudes for
the electron (panel (b)), it is possible to lower the energy of the entire elec-
tronic structure by opening a gap at the Fermi level (panel (d)). In this
model, theCDW is therefore always linked to ametal-insulator transition.
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3 Electronic dynamics of a charge density wave compound: 1T-TaSe2

The cause of this instability in this 1D system is the divergent susceptibil-
ity for perturbations with a wave vector q = 2k𝑓. Such a divergence hap-
penswhenparts of the Fermi surface can bematched upon translation by
a vector q in reciprocal space. This feature is called Fermi surface nesting,
and q is then referred to as the nesting or spanning vector. In this sense,
the 1D Fermi surface of a linear chain (figure 3.1.1 (c)) is perfectly nested
since it consists of only two points separated by q = 2k𝑓. This 1D picture
can explain the CDW transitions in some materials, but it presents some
limitations: no system is perfectly 1D, and most importantly some CDW
transitions are not accompanied by a metal-insulator transition.

Figure 3.1.1:ThePeierls distortion, a 1Dpicture of a CDWphase. (a) Reg-
ular 1D lattice of atoms. (b) Distorted lattice with doubled periodicity.
(c) Band structure and Fermi points at half filling. q is the nesting vector.
(d) Band structure in the distorted phase, showing the gap opening and
the reconstructed Brillouin zone of half the original size. From [6].

In order to extend this description to 2D systems, one needs to take
into account the renormalization of the phonon dispersion 𝜔(q) by the
electron-phonon coupling. The electron-phonon system is described by
the Frölich Hamiltonian [6]:

Ĥ=
k
𝜀(k)�̂�†k�̂�k+

q
~𝜔(q)�̂�†q�̂�q+

k,q
𝑔(q)�̂�†k+q�̂�k ⒧�̂�†−q+�̂�q⒭ (3.1.1)

The first term corresponds to a free electron gas with dispersion 𝜀(k) and
the second to the free phonons with energy ~𝜔(q). The last term models
the electron-phonon coupling with a momentum-dependent coupling
𝑔(q). This coupling renormalizes the bare phonon dispersion 𝜔(q) in the
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3.2 Material properties of 1T-TaSe2

following manner:

�̃�(q)2 =𝜔(q)2+2𝜔(q)|𝑔(q)|2Re 𝜒(q, 𝜔) (3.1.2)

where 𝜒(q, 𝜔) is the interacting susceptibility function. This function is
both difficult to calculate and to measure experimentally, so we will ap-
proximate it by its non-interacting counterpart, also called the Lindhard
function 𝜒0(q, 𝜔). Its real part is negative and can be expressed as:

Re 𝜒0(q, 𝜔) =
−2
(2𝜋)2 

BZ

𝑓FD(k)−𝑓FD(k−q)
~𝜔+𝜀(k)−𝜀(k−q) (3.1.3)

where 𝑓FD is the Fermi-Dirac distribution. When q𝑛 is a nesting vector,
then by definition 𝜀(k) − 𝜀(k−q𝑛) is almost 0 on a large part of the Bril-
louin zone, which increases the absolute value of Re 𝜒0(q𝑛, 𝜔). This in
return lowers the frequency of the renormalized phonon at q𝑛, which is
called the Kohn anomaly. If the nesting is large enough, the renormalized
frequency of the phonon at q𝑛 becomes imaginary (�̃�(q𝑛)2 < 0), meaning
that a static lattice distortion appears. Thus in this model, a large Fermi
surface nesting can lead to an electronic instability and a CDW transition.
But this mechanism can only explain a part of the observed CDW tran-
sitions, as some materials have Kohn anomalies without any significant
Fermi surfacenestingorCDWdrivenbyelectron-electron interactions[6].

3.2 Material properties of 1T-TaSe2
Tantalum diselenide (TaSe2) is part of a large family of compounds called
transitionmetal dichalcogenides (TMDs), of formulaMX2 (M = Ti,Mo,W,
Ta…, and X = S, Se, Te). As for graphene, these materials are composed of
layers linked by a weak van der Waals interaction. The layers can exist
in two different stacking arrangements called polytypes 1T (tetrahedral)
and 2H (hexagonal), shown in figure 3.2.1 (a). Transition metal dichalco-
genides have numerous applications in photonics, opto-electronics or
even nanomedicine. But a lot of compounds in this family also exhibit
a wide range of correlated electronic phases: superconductivity, metal-
insulator transitions and charge density waves transitions. Such com-
plexity makes it relevant to drive the compounds far from equilibrium
with intense ultrafast laser pulses, to possibly switch between different

39



3 Electronic dynamics of a charge density wave compound: 1T-TaSe2

phases and study their recovery. Although 1T-TaS2 has already been stud-
ied under this approach [26], there are few similar experimental works for
1T-TaSe2, especially at low temperature.

1T-TaSe2 forms a ICCDW below 600 K, then undergoes a first-order
transition to a CCDW at 473 K. The commensurate phase is character-
ized by an electron density modulation and corresponding periodic lat-
tice distortion (PLD) of size √13×√13 in unit cell length. The recon-
structed lattice, represented in figure 3.2.1 (b), follows a pattern of 13 Ta
atoms star-of-David supercells, where 12 out the 13 atoms are displaced
inwards. ThePLDandCDWamplitudes are quite large compared to other
TMDs: respectively 7% of the lattice constant and about 0.5 electrons per
Ta atom [9]. The band structure of 1T-TaSe2 has large elliptical electron
pockets centered around the M points of the Brillouin zone, which are
prone to Fermi surface nesting. Their approximate shapes at the Fermi
level are shown in figure 3.2.1, with possible nesting vectors indicated as
red arrows. The gap opened by the CCDW transition in the electron pock-
ets is at about 0.8Å−1 from theΓpoint, and is therefore not visiblewith the
probe energy of our setup, which can access states with |𝑘∥| ≲ 0.1 Å−1 at
the Fermi level in this material. Other studies with a higher energy probe
(for example, 22.4 eV in [8]) can map a part of the Brillouin zone large
enough to observe the CDW gap and the folding of the band structure
caused by the reconstruction of the lattice. To determine the orientation
of the sample and the direction of the Brillouin zone probed by ARPES, a
LEEDpatternwas taken (panel (d)). Thehexagonal symmetry of 1T-TaSe2
is clearly revealed by the high-intensity diffraction spot and highlighted
with an orange hexagon. Its vertices are the center of a unreconstructed
(no CDW) Brillouin zone. The reconstruction corresponds to the weaker
pattern of the same symmetry (underlined with a blue hexagon). Com-
paring the sizes of the two patterns leads to a ratio (720/200 ≈ 3.6) close
to the predicted√13. The TR-ARPES setup will probe the band structure
along the horizontal axis of the LEED pattern, emphasized with the white
arrow, which turns out to be close to the Γ−𝑀 direction of the Brillouin
zone. In addition to modifying the diffraction pattern, the periodic lat-
tice distorsion below 473 K creates new phonon modes in the extended
star-of-David unit cell. Some of these phonons can be seen by Raman
spectroscopy [27]: below the transition temperature, new peaks appear
on the signal (panel (e)). The CDW phonon around 2.1 THz (70 cm−1), of
symmetry 𝐴1𝑔, will be of particular importance later. In the CCDW phase,
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3.2 Material properties of 1T-TaSe2

its frequency decreases with temperature, as shown on panel (f).
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3 Electronic dynamics of a charge density wave compound: 1T-TaSe2
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Figure 3.2.1: Structure and physics of TaSe2. (a) The polytypes 1T and 2H
of TaSe2. From [7]. (b) Lattice reconstruction of 1T-TaSe2 in the com-
mensurate CDW phase. From [8]. (c) 2D band structure at the Fermi
level. Blue ellipses indicate electron pockets, with possible nesting vec-
tor shown with red arrows. The dashed hexagons represent the recon-
structed Brillouin zone. From [9]. (d) LEED pattern of the sample in the
configuration used for all the experiments. (e) Raman spectra at temper-
atures near the ICCDW to CCDW transition. The dashed line indicates
the phonon mode 𝐴1𝑔 of interest. (f) Evolution of the frequency of the
low-frequency 𝐴1𝑔 mode with temperature. Figures (e) and (f) are cour-
tesy of Charles Sayers.
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3.2 Material properties of 1T-TaSe2

Below about 200 K, 1T-TaSe2 undergoes a metal-insulator transition
which opens a Mott gap across the entire Fermi surface. This indicates
that 1T-TaSe2 exhibits strong electron-electron Coulomb coupling, in ad-
dition to the electron-lattice coupling relevant to theCDWtransition. Fig-
ure 3.2.2 compares the equilibrium ARPES signal at 80 K (panel (a)) and
room temperature (panel (b)). A gap opening of a few hundreds meV can
clearly be seen. TR-ARPES with a probe energy of 6 eV is therefore per-
fectly suited to study the dynamics of the Mott phase around the Γ point.
To get a more accurate value of this gap, one needs to define precisely the
position of the band edges at the Γ point. High-energy ARPES [8, 9] and
transport measurements reveal that the room temperature band touches
the Fermi level, meaning that we can fit the edge with a Fermi-Dirac dis-
tribution. The resulting Fermi level is shown on the room temperature
EDC as a blue dashed line in figure 3.2.2 (c), and is used as a reference
for 0 binding energy. The low temperature band is much farther from the
Fermi level so its spectral shape shows no influence of the Fermi-Dirac
distribution. Therefore, the band edge at low temperature is defined as
themaximumof the slope of the EDCwhile going down in energy. It is de-
picted as a red dashed line on panel (c). Defined this way, the gap opened
is of about 300meV. We will now focus on the electronic dynamics of 1T-
TaSe2 at room temperature, then in the Mott phase at 80 K.
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3 Electronic dynamics of a charge density wave compound: 1T-TaSe2

Figure 3.2.2: Comparison of the equilibrium ARPES signal of 1T-TaSe2 at
80 K (panel (a)) and room temperature (panel (b)). The Fermi level is
indicated with a white dashed line to guide the eye. (c) EDCs at 𝑘 = 0
and position of the band edges at both temperatures.

3.3 Dynamics at room temperature
In this section, we investigate the dynamics of of 1T-TaSe2 at room tem-
perature, following a pump of 3.2 mW. ARPES snapshots are taken every
50 fs between−300 and 2000 fs, then every 500 fs until 5.5ps. Tomake any
kind of quantitative analysis, we first need to choose a spectral line shape
that fits the data at all delays. The single band seen on the ARPES signal
at room temperature is quite broad in energy, and intercepts the Fermi
level. Therefore, a fit with a product of a Lorentzian and the Fermi-Dirac
distribution should be able to reproduce the features of the EDC.

𝐸𝐷𝐶 = 𝐴0𝛾2
(𝐸 −𝐸0)2+𝛾2

⋅ 1
1+𝑒

𝐸−𝜇
𝑘𝐵𝑇

(3.3.1)

In order to ensure that the fit results are physically relevant, we can de-
fine physically meaningful constraints on the fit parameters. In our case,
there is no reason for the Fermi level 𝜇 to move over time, so it is kept at
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3.3 Dynamics at room temperature

0. Moreover, we can also expect the width of the Lorentzian 𝛾 to increase
during and just after the pump, then exponentially decay to its equilib-
rium value. Indeed, the width of the Lorentzian is related to the lifetime
of quasiparticles, and this behavior is somethingwhich is commonly seen
in TR-ARPES. Figure 3.3.1 presents the results of this analysis. Panels (a)
and (b) compare the ARPES signal at equilibrium and after 100 fs after the
pump respectively, to highlight the photo-excited states. The evolution of
the EDCs at 𝑘 = 0 is represented on panel (c). The black line corresponds
to the equilibrium EDC, taken 300 fs before the pump. EDCs from 0 delay
(in blue) to 800 fs after the pump (in green) show one of themain features
appearing in most TR-ARPES experiments: the slope of the band edge at
the Fermi level increases just after the pump, then relaxes back to equi-
librium. This indicates a similar evolution in the electronic temperature.
Indeed, panel (d) shows the evolution over time of the effective electronic
temperature 𝑇𝑒𝑓𝑓, defined to take into account the broadening caused by
the instrument resolution [3]:

𝑇 =
√√√
√𝑇 2

𝑒𝑓𝑓+⒧
Δ𝐸𝑒𝑥𝑝
4𝑘𝐵

⒭
2

(3.3.2)

Δ𝐸𝑒𝑥𝑝 is set so that the equilibrium effective temperature matches the
knownexperimental temperature of 300K. As expected,𝑇𝑒𝑓𝑓 first presents
a sharp increase during the pump, then decays back with a time constant
of about 500 fs, typical of many materials for photo-excited states. Fi-
nally, panel (e) depicts the evolution of the binding energy of the band
maxima 𝐸0(𝑡) compared to its equilibrium condition. Although this pa-
rameter has a larger uncertainty, it seems to present a downward shift on
which are superimposed oscillations. Since no Mott or CDW gap is ex-
pected at Γ at this temperature, the apparent downward shift is proba-
bly just an artifact resulting from the displacement of electrons above 𝐸𝑓
caused by the pumping. The oscillations are a more intriguing feature.
The data can be correctly fitted between 0.5 and 1 ps by the sum of a sine
and an exponential decay with the same time constant as for the effective
temperature (panel (d)). The frequency of the oscillations is found to be
about 2.1 THz, which is close to the frequency of the 𝐴1𝑔 CDW phonon
at room temperature (figure 3.2.1 (f)). This is likely a signature of strong
electron-phonon coupling, consistentwith the Fermi surface nesting pic-
ture for CDW transitions. The quality of the data and the fits did notmake
it possible to estimate the characteristic damping time of the oscillations,
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3 Electronic dynamics of a charge density wave compound: 1T-TaSe2

but similar experiments on 1T-TaSe2 at room temperature seem to show
that all oscillations disappear within 3 ps [8]. In order to get a clearer pic-
tures of the oscillations, we now study the dynamics of this compound at
low temperature.
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Figure 3.3.1: Electronic dynamics of 1T-TaSe2 at room temperature. (a)
ARPES signal at equilibrium and (b) 50 fs after the pump. (c) EDCs at
𝑘∥ = 0 over time. Colors fromblue to red to green indicate increasing de-
lays. (d) Dynamics of the effective temperature 𝑇𝑒𝑓𝑓 defined in the text,
with a exponential decay fit. (e) Dynamics of the shift of the band rela-
tive to its equilibrium position, with a fit of the oscillations. The shaded
areas on panels (d) and (e) are the confidence interval at 95% given by
the Lorentzian × Fermi Dirac fit. They are taken into account for the fits
of the temperature and the oscillations.
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3.4 Dynamics at low temperature

In addition to the Mott gap opening, the low temperature (80 K) ARPES
signal presents two distinctive bands, whichwe label upper and lower va-
lence bands with respect to their energy (figure 3.4.1 (b)). These bands
are much sharper and seem to be more dispersive than the broad room
temperature band, which was very flat around Γ. In order to reproduce
the main features of the dynamics in this regime, we choose to fit those
two bands by a sum of two Voigt functions. The Mott gap opening pushes
the bands far below the Fermi level compared to the thermal energy, so it
is not necessary to take into account the Fermi-Dirac distribution. Weuse
the same sampling rate as for the room temperature experiments, but us-
ing various pumppowers: 1.6, 3.2, 6 and 8.1mW. Figure 3.4.1 presents the
evolution of important features of the two bands with a pump of 8.8mW,
where the nonequilibrium effects are the most visible. In panel (a), the
EDCs at 𝑘∥ = 0 are represented for all delays with the same color map as
the full ARPES maps. Oscillations of the entire band structure are clearly
visible, but cannot be seen after 2ps because of the sampling rate change.
Panel (b) compares the same EDCs in a way similar to figure 3.3.1 (c).
Contrary to the room temperature case, the slopeof thebandedgedoesn’t
vary significantly. Instead, the edge appears to shift upwards by about
40meV. This visualization also highlights the depletion of the two bands,
seen as the transient decrease in intensity of the peaks. The shifts in the
position of the two peaks relative to their equilibrium position are shown
in panel (c). Both bands shift upwards about 100 meV after the pump,
with the lower band (red) seemingly shifting upwards about 15meVmore
than the upper band. They then decay back to equilibrium in a character-
istic time of about 1 ps, of the same order of magnitude than the room-
temperature case. The depletion dynamics (panel (d)) shows a similar
temporal behavior. However, the most striking feature remain the oscil-
lations superimposed to the band shift in panel (c). They are in phase for
both bands and have a peak-to-peak amplitude of around 30 meV for a
pump power of 8.8 mW. No decay can be seen in the oscillations up to
2 ps. An experiment over 17 ps with a pump power of 9.3 mW was at-
tempted to find the damping time of oscillations. It showed that the os-
cillations persist up to at least 6 ps, but due to instabilities in the laser the
data could not be properly analyzed.
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Figure 3.4.1: Electronic dynamics of 1T-TaSe2 at 80K. (a) ARPES signal at
𝑘∥ = 0 over time. (b) EDCs at 𝑘∥ = 0 over time. Colors from blue to red to
green indicate increasingdelays. (c) Shifts of thepositionsof themaxima
of the two bands relative to their equilibrium position. (d) Depletion of
the twobands. The shaded areas onpanels (c) and (d) are the confidence
intervals at 95% given by the Voigt functions fit.

We now shift our focus to the systematic study of the oscillations in
the upper band, since the Voigt fit is of better quality for this band. The
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3 Electronic dynamics of a charge density wave compound: 1T-TaSe2

upper band shifts for all pump powers are shown in figure 3.4.2(a). We
fit the oscillations between 1 and 2 ps with an undamped sine function,
and report the frequency, peak-to-peak amplitude and phase for each
pumppower on figure 3.4.2, respectively on panels (b), (c) and (d). For all
pumppowers, the frequency of the oscillations have the samephase−30∘
and frequency 2.3 THz, within confidence intervals. This frequency is
once again close to the frequency of the𝐴1𝑔 phonon seen by Raman spec-
troscopy (figure 3.2.1 (f)): 2.19 THz at this temperature. Such long-lived
oscillations at a phonon frequency are a signature of coherent phonon os-
cillations. In this phenomenon, the q= 0mode of an optical phonon be-
comes macroscopically and coherently populated after excitation by an
ultrafast laser pulse, in a way similar to Bose-Einstein condensation [28].
We therefore have strong evidence to affirm that the Mott phase of 1T-
TaSe2 is coupled to a CDW phonon, the 𝐴1𝑔 mode at 2.2 THz, which mod-
ulates the band gap. In addition, the maximum band shift did not exceed
30 meV for the upper band, about 10% of the Mott gap. This means that
evenat themaximumpumppowerweused, theMott phase is onlyweakly
disturbed and most of the energy of the excitation is in the form of a large
lattice displacement. Besides, the amplitude of the oscillations increases
more or less linearly with the pump power (figure 3.4.2). This is evidence
that the CDW order also is far from being suppressed. Indeed, as one ap-
proaches the CDW transition the amplitude of the𝐴1𝑔 phonon decreases,
until it drops to almost 0 above the transition temperature (figure 3.2.1
(f)). Consequently, if we were to significantly disturb the CDW order with
the pump power used, we would expect the frequency of the oscillations
to at least saturate as the pump power increases.
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Figure 3.4.2: Systematic study of the oscillations in the upper band shift
for all pumppowers. Colors fromblue to green indicate increasingpump
power. (a) The oscillations in the upper band shift are represented in the
same way as in figure 3.4.1 (c). (b) Frequency, (c) amplitude, and (d)
phase of the oscillations as a function of the pump power. The shaded
areas on panel (a) and are the confidence intervals at 95% given by the
Voigt function fits. They are taken into account for the fit of the oscilla-
tions.
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Conclusions
In conclusion, we have investigated the electronic structure and dynam-
ics of two quantum materials using a TR-ARPES experiment. In the topo-
logical insulator Bi2Te2Se, we have highlighted the contrasted electronic
dynamics between the bulk and the surface states. Wehave also observed
in static ARPESmeasurements the opening of a gap caused by the deposi-
tion of magnetic atoms at the surface. For the CDW compound 1T-TaSe2,
we have provided strong evidence that the Mott phase is linked to athe
in-plane CDW amplitude, since it determines in large part the amount of
electron localization between adjacent star-of-David configurations. In
addition, neither the Mott phase nor the CDW order are significantly dis-
turbedby thephoto excitation. These results highlight the role of theCDW
and lattice degrees of freedom in stabilizing the Mott phase of 1T-TaSe2
and further the understanding of the interplay between these coexisting
phases.
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