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1. Introduction and goals
The advent of Industry 4.0 has radically changed
the way companies manufacture, improve and
distribute their products. Nowadays the inter-
twining between automation and data exchange
is becoming a common practice for the manufac-
turers and in a world where resources are getting
scarcer day by day we all need to do more with
less. In particular, artificial intelligence and ma-
chine learning are playing an increasingly central
role in this landscape where the physical and vir-
tual worlds are fused together. Similar trends
are observed in many other industrial sectors.
As of today, neural networks are the basis of
many of the most successful algorithms in ma-
chine learning. These networks, which try to em-
ulate the human brain, are used to solve many
prediction problems, e.g. to predict stock mar-
ket prices, the effect of an actuation in robotics,
etc. and for this reason they have been taken
into consideration during this thesis.
Given a regression problem and a Feed Forward
Neural Network (FFNN), this thesis focused on
increasing the neural network performances via
problem variables rescaling. This technique con-
sists of multiplying the dataset features with a

set of rescaling parameters which were chosen
in an optimal way by solving a global optimiza-
tion problem. For this reason, this technique
was called Optimal Feature Rescaling (OFR).
Throughout the thesis a metaheuristic approach
(Genetic Algorithm) was used in order to find
the best parameters. Typically, the loss function
of a global optimization problem is non-convex.
Therefore, searching for a better minimum via
feature rescaling is an interesting and not trivial
topic.
OFR method was then applied in a real scenario
to verify its effectiveness: the roundness predic-
tion in a centerless grinding machining opera-
tion. Centerless grinding is a machining pro-
cess characterized by a high degree of difficulty
in predicting the quality of the machined parts
based on process parameters. The classical ma-
chine learning-based approach, even enhanced
by physics-based features embedding some apri-
ori knowledge, achieved non-satisfactory predic-
tion performances. As the quality of the worked
part mainly depends on the choice of process
parameters, e.g. work piece height, feed veloc-
ity, etc., which are inhomogeneous in terms of
absolute numerical values, an "Optimal Feature
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Rescaling" was investigated in order to make the
roundness of the worked piece more predictable.

2. Proposed method:
Optimal Feature Rescaling

Feature rescaling is one of the most critical parts
of the pre-processing phase in machine learning.
In fact, it can make the difference between weak
and strong machine learning models. In feature
rescaling the problem variables are differently
transformed depending on the method applied.
Usually, these techniques are used to:
• make the features comparable;
• make a few algorithms converge faster, e.g.

training processes of neural networks.
In this work, feature rescaling was proposed in
order to improve FFNN performances. The idea
behind this thesis is to find a set of rescaling
parameters w = {w1, ..., wM} that can be used
to rescale the M input variables of a regression
problem. Given a dataset X ∈ RN×M (where N
is the number of samples) and a vector of rescal-
ing parameters w ∈ RM , the rescaled dataset
X̃ ∈ RN×M is obtained as:

X̃ = wX =

=

w1 ·

x11
...

xN1

 , · · · , wM ·

 xN1
...

xNM




and x̃i = (wix1i, ..., wixNi)
T , i = 1, ...,M is the

i-th rescaled feature of the problem.
In order to improve the prediction capabilities
of the model (in this study, a FFNN), a vec-
tor of optimal parameters w∗ has to be chosen,
hence the name "Optimal Feature Rescaling".
Therefore, an optimization problem was defined.
Since the analytical form of the cost function is
not known in advance a global optimization ap-
proach was followed.

2.1. Considered cost function
In order to set a global optimization problem a
loss function has to be defined. Since the target
model for this thesis is a FFNN, the considered
objective function takes as inputs the vector of
parameters (the optimization problem decision
variables) and the training/validation sets, per-
forms the feature rescaling using the input pa-

rameter vector, then trains a FFNN using the
training set and returns the Root Mean Squared
Error (RMSE) calculated on the validation data:

RMSEvalidation =

= f(w,Xtrain,ytrain,Xval,yval)

In this scenario, the analytical form of the
objective function is not known beforehand.
But, since the considered cost function, i.e. the
training of the neural network, turns out to
be non-convex, it is possible to find a better
minimum point and therefore obtain different
performances following different scalings. If the
cost function was convex, then its convexity
would remain unchanged even through a rescal-
ing, and it would not be possible to reach a
better minimum point:

affine input transformation. if f : Ω → R
is convex (where Ω ⊆ Rn), then also
f̃(x) = f(Ax + b) is convex on the do-
main Ω̃ = {x ∈ R : Ax + b ∈ Ω}, with
A ∈ Rn×m,b ∈ Rm [3].

Once the optimization problem is set, a solver
should be used in order to get to a solution.
Thus, during the thesis a Genetic Algorithm
(GA) was implemented.

2.2. Genetic Algorithm
Throughout the thesis, the GA was initialized
with 20 individuals sampled randomly from a
uniform distribution (in log-scale) and it was
executed for 100 iterations, i.e. 2020 function
evaluations. The GA individuals, i.e. the pa-
rameter vectors that compose the initial popu-
lation, were sampled from a uniform distribu-
tion between [−3, 3] in logarithmic scale. They
were then converted in decimal scale, i.e. w ∈
[−103, 103], before being applied to the dataset
features.

2.3. Fixing the FFNN input layer
weights

An interesting aspect of the FFNN is that, in the
first layer, it implicitly performs an input rescal-
ing, multiplying the dataset features by the in-
put layer weights [1]. If alj is the j-th input to
the layer l, and βljk is the weight from the k-th
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neuron in the (l− 1)-th layer to the j-th neuron
in the l-th layer, such that:

alj = f(
∑
k

βljka
l−1
j + blj) (1)

where blj is the j-th bias to the layer l and f(·) is
the activation function of the considered layer.
Extending this concept by exploiting the OFR
technique, it can be possible to set the first layer
weights in order to optimally rescale the neural
network inputs. If wk is the k-th rescaling pa-
rameter, it can be incorporated into the k-th
weight of the first layer in order to enable the
network to perform input OFR without any data
preprocessing. In this case the weight from the
k-th neuron in the first layer to the j-th neuron
in the second layer, becomes:

β̃1jk := β1jkwk

while the Equation 1 changes into:

alj = f(
∑
k

β̃1jka
0
j + b1j ) =

= f(
∑
k

β1jkwka
0
j + b1j )

3. Case study
In order to test the OFR method, it was ap-
plied in a real scenario: roundness prediction for
a centerless grinding machining process. Cen-
terless grinding is a machining operation where
material is removed from the workpiece using an
abrasive wheel. The work part is not clamped
during the machining process, making it prone
to inherent instability, and therefore the overall
quality of the final piece is difficult to predict on
the basis of the chosen process parameters.

3.1. Data preparation
In centerless grinding, each operation can be de-
fined by 12 parameters which are listed in Table
1.

x0: w.p. height x6: grin. wheel diam.
x1: blade angle x7: contr. wheel diam.
x2: feed vel. x8: contr. wheel vel.
x3: tot. diam. removal x9: grin. spec. energy
x4: w.p. length x10: edge force comp.
x5: w.p. diameter x11: grit stiff.

Table 1: Centerless grinding process parameters
[4].

There are 9 other parameters that are charac-
teristic of the grinding machine and not of the
process. For this reason, they will be considered
as fixed for this study.
The model of the centerless grinding process, the
so-called high fidelity model [2], was then used
in order to obtain a dataset for the regression
problem: D := {yi,xi}, i = 1, 2, ..., Ns, where
yi ∈ R+ is the continuous value of the round-
ness of the final piece that measures the process
performances of the i-th sampled grinding op-
eration (i.e. the target variable), xi ∈ R12 is
the corresponding vector of process parameters
(i.e. the input variables), and Ns = 4069 is the
number of samples.
The feature set (that consisted of the 12 afore-
mentioned parameters) was further expanded by
using the output of the so-called low fidelity
model [4], which is a simplified version of the
(more complicated) high fidelity one.
The dataset thus obtained was divided in 3 sub-
sets by applying a hold-out procedure: training
(70%), validation (15%) and test (15%) sets. In
order to reserve the majority of the data for the
FFNN training, only a small portion of them was
held out for the test phase. For this reason, dur-
ing the thesis a 10-folds cross-validation proce-
dure was used in order to test the performances
of the FFNN using as a metric the Coefficient of
determination (R2). Because of the dimensions
of the test set, it was only used in cases where
the cross-validation procedure was not a viable
option.

3.2. Test 1: OFR application
Once the dataset was defined, the OFR ap-
proach was tested by training a FFNN on an
optimally rescaled set of data. The tested FFNN
was composed by:
• an input layer with 128 neurons and relu

activation function;
• 3 hidden layers with 256 neurons each and
relu activation functions;
• an output layer with a single neuron with
linear activation function.

Mean Absolute Error (MAE) was used as loss
metric for the training and validation phases,
while an optimizer implementing the Adam al-
gorithm was used for the optimization phase.
In the end, 500 epochs were considered during
the training phase and the neural network was
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trained with all the training data in each one of
them.
The FFNN in exam was trained on two differ-
ent datasets and the performances thus obtained
were used in order to define the baselines for the
test. The neural network was tested on:
1. the raw data, i.e. data without feature

rescaling (Base1);
2. the standardized data (Base2).

The two baselines were then compared to the
performances obtained training the FFNN on:
1. the data rescaled by applying OFR on the

raw ones (OFR1);
2. the data rescaled by applying OFR on the

standardized ones (OFR2).
The obtained results are reported in Table 2.

Test R2 (Train) CV Mean CV Std

t1 OFR2 0.844512 0.561060 0.117817

t1 OFR1 0.822084 0.475483 0.092552

t1 Base2 0.990043 0.369556 0.337064

t1 Base1 0.515098 0.285996 0.168344

Table 2: Results of test 1 (t1), ordered w.r.t.
"CV Mean".

The performance improvement obtained by ap-
plying OFR to a standardized dataset is far
greater than all of the other cases, guarantee-
ing an increment of 95.69% compared to using
of raw data, of 51.44% compared to using the
standardized data, and 17.70% compared to the
performances obtained by applying OFR on the
raw data, demonstrating the fact that a previ-
ous standardization can be useful even when an
OFR procedure is carried out. Although these
results are promising, the test makes it clear
that OFR cannot compensate the effect of a sim-
ple standardization, making the latter a desired
step.
Nevertheless, analyzing the discrepancy between
the performances on the train set and the ones
obtained with cross-validation, it can be de-
duced that the model is affected by the overfit-
ting problem, so the Early Stopping (ES) tech-
nique was applied in test 2.

3.3. Test 2: OFR application with ES
In order to counteract the overfitting problem,
an ES approach was followed. The number of

epochs for the FFNN training was increased to
10000, while the ES patience was set to 100. The
goal of this choice is to make sure that the ending
of the training phase is reached before the end of
the epochs. In this way, it is guaranteed that the
FFNN training stops when the validation error
begins to rise.
The results obtained in this case are reported in
Table 3.

Test R2 (Train) CV Mean CV Std

t2 OFR2 0.818443 0.527066 0.137574

t2 OFR1 0.888022 0.488795 0.111678

t2 Base2 0.808376 0.456640 0.116470

t2 Base1 0.655322 0.357649 0.080880

Table 3: Results of test 2 (t2), ordered w.r.t.
"CV Mean".

The improvement achieved by using the OFR
technique can be seen from Table 3. However,
the performances of the FFNN are still rather
poor despite the implementation of ES. This
probably depends on several factors:
1. the FFNN is too complex for the considered

problem;
2. the parameters that were set for the ES

were too permissive;
3. the numerosity of the data;
4. the noise on the data.

The prediction performances of the network
would surely benefit from a model selection pro-
cedure, where several models are tested on a val-
idation set in order to choose the best among
them.

3.4. Test 3: OFR effects on a simpli-
fied FFNN with ES

In order to test the efficacy of the OFR method
with a model not subjected to the overfitting
problem a simpler neural network was tested.
The FFNN described in Section 3.2 was simpli-
fied by drastically reducing the number of layers
and neurons. The resulting model is composed
by:
• an input layer with 13 neurons and relu ac-

tivation function;
• 1 hidden layer with 100 neurons and relu

activation function;
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• an output layer with a single neuron with
linear activation function.

Furthermore, the objective function for the op-
timization program was changed, reflecting the
new considered model.
The ES patience was incremented to 200, in or-
der to gain more training time for the FFNN.
The results obtained in this case are reported in
Table 4.

Test R2 (Train) CV Mean CV Std

t3 OFR2 0.615985 0.595238 0.098966

t3 Base2 0.629364 0.540791 0.147672

t3 OFR1 0.674978 0.533133 0.147843

t3 Base1 0.335624 0.237633 0.464777

Table 4: Results of test 3 (t3), ordered w.r.t.
"CV Mean".

As it can be seen from Table 4 the net-
works trained on the optimally rescaled datasets
achieve better performances compared to the
baselines. Furthermore, the overfitting problem
was almost completely solved, significantly re-
ducing the gap between the training error and
the cross-validated performances. Although the
performances obtained by applying OFR to the
standardized dataset were better compared to
the baselines, it is evident that even with the
simplification of the neural network the perfor-
mances achieved by applying a common stan-
dardization to the data are almost equal (greater
in this case) to the ones obtained by optimally
rescaling the raw data. Therefore, the useful-
ness of a standardization procedure prior to the
application of the OFR technique has been con-
firmed.

3.5. Final comparisons
In conclusion, the best performances obtained in
the three tests are reported in Table 5.

Test R2 (Train) CV Mean CV Std

t3 OFR2 0.615985 0.595238 0.098966

t1 OFR2 0.808739 0.559659 0.133694

t2 OFR2 0.818443 0.527066 0.137574

Table 5: Final comparisons.

From Table 5 it can be seen that the simpli-
fied neural network described in Section 3.4 per-
forms better than the more complex ones and,
at the same time, it is not affected by the over-
fitting problem. Performing a model selection
procedure before the application of the OFR
technique, as demonstrated by the results ob-
tained with the simplified network, would guar-
antee even better results.

3.6. Fixing the input layer weights of
the FFNN

By exploiting the feature of neural networks to
apply the rescaling of the variables within the
input level, it was possible to test the particular
application of the OFR technique described in
Section 2.3.
Table 6 shows the performances obtained by
FFNN (Section 3.2) by carrying out the opti-
mal rescaling outside and inside the network, i.e.
modifying the first level of the neural network.

Test RMSE (Test) R2 (Train) R2 (Test)

Inside 5.092644 0.82803 0.247903

Outside 5.092644 0.82803 0.247903

Table 6: Performances obtained by fixing with
OFR the FFNN input layer.

Observing the Table 6, it can be seen that the
performances obtained by applying the optimal
rescaling outside the neural network coincide
with those obtained by using the unscaled data,
but by modifying the weights of the first level of
the network.
Thanks to the non-convexity of the training
problem it is always possible to pass from the
neural network original weights to the ones op-
timally selected. For this reason, the global opti-
mization can be used to "globalize" the training
phase of the FFNN and, in particular, the initial
values of its first layer.

4. Conclusions
In this thesis, a new method to improve the per-
formances of a Feed Forward Neural Network
in regression problems was defined and tested.
This method was called Optimal Feature Rescal-
ing (OFR) and consists in multiplying the vari-
ables of the problem, i.e. the features of the
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input dataset, by an optimal parameter set ob-
tained by solving a global optimization problem.
Since the training of the neural network is non-
convex, the performances of the network should
have improved, demonstrating the effectiveness
of this approach. The Optimal Features Rescal-
ing approach was then applied to a real sce-
nario to test its efficacy: the roundness predic-
tion for a centerless grinding machining process.
Because the workpiece is not fixed during the
grinding process, the roundness prediction is a
difficult task and represents the perfect scenario
on which to test the OFR technique. The re-
sults demonstrated the OFR efficacy, highlight-
ing how, through a model selection process, it
is possible to achieve satisfactory results. More-
over, tests have shown that it is possible to apply
the OFR within the network, incorporating the
optimal parameters in the first level weights of
the neural network.
Several aspects of the method can be further an-
alyzed to understand its efficacy in the machine
learning and deep learning fields, e.g. the OFR
method could be tested on more complex prob-
lems (i.e. with more variables), on techniques
with less computational requirements (like k-
Nearest Neighbor), it can be tested after an ac-
curate model selection phase, etc.

References
[1] Charu C. Aggarwal. Neural Network and

Deep Learning. Springer International Pub-
lishing AG, part of Springer Nature, 2018.

[2] Qi Cui, Kei Cheng, and Hui Ding. An ana-
lytical investigation on the workpiece round-
ness generation and its perfection strategies
in centreless grinding. 2014.

[3] Lorenzo Fagiano. Constrained numerical op-
timization for estimation and control. 2020.

[4] Marco Leonesio and Lorenzo Fagiano. A
semi-supervised physics-informed classifier
for centerless grinding operations. 2022.

6


	Introduction and goals
	Proposed method: Optimal Feature Rescaling
	Considered cost function
	Genetic Algorithm
	Fixing the FFNN input layer weights

	Case study
	Data preparation
	Test 1: OFR application
	Test 2: OFR application with ES
	Test 3: OFR effects on a simplified FFNN with ES
	Final comparisons
	Fixing the input layer weights of the FFNN

	Conclusions

