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1. Introduction
Thanks to treatments such as radiotherapy, the
survival in patients diagnosed with cancer is in-
creasing. However, approximately 5% of pa-
tients receiving radiotherapy are particularly
sensitive to irradiation and likely to develop
long-term side effects [2]. The work in this thesis
is developed within a large international study,
namely, RADprecise [2] aiming at personalizing
radiotherapy treatment for cancer patients by
improving prediction models for radiosensitivity
[2]. Radiosensitivity is a latent outcome, and it
is only inferred through measurements of vari-
ous types of Late Toxicities (LTs), side effects
that arise when the radiation damages healthy
tissue and can occur years after radiotherapy im-
pairing quality of life. LTs are measured as bi-
nary responses or endpoints according to CT-
CAE (Common Terminology Criteria for Ad-
verse Events) and multivariate inference is nec-
essary for comprehensive treatment decisions.
Traditionally, physicians base treatment deci-
sions on model-based risk estimates called Nor-
mal Tissue Complication Probabilities (NTCP).
Specifically, NTCPs model the risk of radio-
induced complications in terms of radiation dose
(D), and partial volume irradiated (v). In re-

cent years, new statistical and machine learning
methodologies were introduced to expand the set
of predictors, including clinical information and
biomarkers in risk modeling. Genetic biomark-
ers are believed to be crucial in predicting LT
development [1]. Therefore, their incorporation
into NTCPs models may substantially improve
personalized treatment planning. A Polygenic
Risk Score (PRS) summarizes a patient’s genetic
predisposition to a disease. In radiogenomics,
it is usually computed as the score associated
with each patient by a predictive model, such as
logistic regression, that links the risk of devel-
oping LTs to the presence of associated genetic
mutations in the patient DNA and can be ex-
ploited to incorporate genetic information into
wider risk prediction models as NTCPs. In gen-
eral, as with any other classification model, PRS
models perform at best when fed with highly in-
fluential features that provide intrinsic informa-
tion and discriminant properties for class separa-
bility. Moreover, Features Selection (FS) is fun-
damental when variables are many and highly
correlated. This is typical of genomic studies,
where data is high-dimensional (i.e. up to mil-
lion genetic features) and the curse of dimension-
ality plays an important role. Indeed the work
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presented in this thesis is focused on the task
of FS for genetic data. In the peculiar setting
of genetic studies, proper FS is hindered by sev-
eral endogenous and exogenous data complex-
ities. Indeed, high-dimensional genetic data is
most of the time available in very small samples.
Moreover, the study of rare phenotypical traits
(such as LT) determines mostly unbalanced set-
tings, with very low case-control ratios that may
violate asymptotic assumptions of statistical in-
ference. Additionally, several raw genetic fea-
tures are not directly measured: indeed, imputa-
tion methods estimate genotype probabilities at
variants not genotyped to achieve completeness
in genetic information. Ignoring the genotypic
uncertainty and performing analysis with stan-
dard statistical tools generally affect inference,
causing statistical significance to be lost for cer-
tain experimental configurations. Moreover, the
latest radiogenic studies in late-toxicity radio-
therapy, reveal that epistasis, or gene-gene inter-
actions, affect polygenic susceptibility to com-
mon human diseases, suggesting complex inter-
actions are more important than the effects of
any single common genetic variant [1]. The bi-
ological relevance of interactions introduces an-
other source of complexity. The introduction of
complex interactions in predictive models could
effectively discriminate between classes of phe-
notypes (i.e. cases/controls, etc.). In turn, FS
methods need to be able to consider the poten-
tial predictive power of such interactions during
selection. However, Traditional FS techniques
usually just consider the main effect of covari-
ates in performing the selection and become sub-
optimal when high-order interactions effect is
more important than any single genetic variant.
Most of the above-mentioned complexities have
been recently addressed in [4, 5], where the au-
thors develop a Deep Learning-based FS method
for imbalanced data. Of note, the genetic fea-
tures selected via their Deep Sparse AutoEn-
coder Ensemble (DSAEE) are subsequently in-
cluded in an interaction-aware method for poly-
genic risk scoring (PRSi) [1]. In brief, the
DSAEE FS method exploits Deep Sparse Au-
toEncoders as weak learners. AutoEncoders are
trained to learn the normal patterns in the ma-
jority class observations and tested on both ma-
jority and minority class data, mimicking Au-
toEncoders usage in anomaly detection. The

FS method in [5] presents three major bene-
fits: the ability to deal with heavy class imbal-
ance, the interaction-aware selection and the in-
terpretability of the selection method.
However, this effective algorithm does not ac-
count for the multivariate aspect of the LT pre-
diction. In fact, in this, and many similar preci-
sion medicine applications the need to simulta-
neously model several phenotypic traits or end-
points entails the importance in identify predis-
posing factors associated with radiosensitivity
without explicitly defining it. The main con-
tribution of this work is the improvement of
the DSAEE method, generalizing it to a multi-
endpoint framework. Techniques to properly
handle imputation in the input data are also
introduced in the method. Specifically, this
thesis proposes an innovative methodology ca-
pable of performing variable selection in high-
dimensional contexts where high-order interac-
tions are of interest and multiple outcomes are
simultaneously studied. The multivariate FS is
developed specifically to work on genomic data.
The algorithm is robust to data imputation and
suitable for multiple binary classification prob-
lems with high imbalance in the classes of each
outcome. As in the case of the work in [1], the
selection can be exploited to efficiently include
genetic effects in clinical risk models.

2. Background: Anomaly de-
tection autoencoders

An AutoEncoder (AE) is a neural network
trained to copy its input to its output. AEs
are used for data reconstruction in unsupervised
learning. Let the matrix X ∈ RNxJ be the input
data, X = {x1, ..., xN} set of N training vectors
x characterized by J features. The network can
be seen as constituted by two parts: an encoder
and a decoder. The encoder and decoder func-
tions can be represented as: hi = f(Wxi+ b) in
the encoder that maps each input vector xi into
an encoded version of itself (i.e. a latent rep-
resentation), usually in a low dimensional space
of size H; and xi = g(W′hi + b′) in the decoder
that maps back the latent representation vector
to the original J-dimensional space. In general,
we can define an AE as a map ϕ(xi) : RJ → RJ ,
such that ϕ(xi) = g(W′f(Wxi+b)+b′) and the
weight are optimized so that the reconstruction
xi = ϕ(xi) is as close as possible, considering
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some loss L(x, x), to xi. L is typically the mean
squared reconstruction error (MSRE) for con-
tinuous features, that is, the mean squared Eu-
clidean distance between the input values and
the reconstructed values for each observation,
while L is typically a cross-entropy for categori-
cal variables that measure the difference between
input and reconstructed values probability dis-
tributions. Mimicking the identity function, the
AE learns an encoded version of the data com-
pressing and aggregating information in input,
in the best way for the network to reconstruct
the original information from the latent repre-
sentation. AEs typically do not provide exact
reconstruction since H <<< J but the latent
representation is expected to be meaningful and
a compact representation of the input [5].
Better representations can be achieved using
constraints that force autoencoders not only to
replicate the input but to learn effective rep-
resentations of such input in the latent space.
In a Deep Sparse AutoEncoder (DSAE), the
L1 penalization is applied on h(l), the function
generating the latent representation, forcing the
model to represent the input in the simplest way
and incrementing generalization propriety of the
model.

LS(xi, ϕ(xi)) = L(xi, ϕ(xi)) + λ|h(l)|

The parameter λ is usually optimized through
grid search.
AEs are used for learning data representations,
dimensionality reduction, and anomaly detec-
tion. An anomaly is a data point that is sig-
nificantly different from the remaining data and
arouses suspicions that it was generated by a dif-
ferent mechanism. Autoencoder-based anomaly
detection methods are deviation-based. That is,
in a semisupervised learning setting, they exploit
the reconstruction error as the anomaly score. In
particular, one-class detection AEs, are trained
exclusively on normal observations so that the
AE will reconstruct normal data very well while
failing to do so with anomaly data that has not
been encountered in training. Data points with
high loss are considered to be anomalies. An
additional consideration should be pointed out
for the context of uncertain data, such as that of
imputed genotype. Imputation error can be also
considered as noise in the input data and tacked
via signal processing techniques. A “Denoising”

version of autoencoders can be exploited to re-
construct noise-free corrupted versions of their
inputs.

3. Methodology
A multi-outcome binary supervised learning
setup is considered with an available set of N
(input, targets) pairs

D̃ = {(x̃1, y1), ..., (x̃N , y
N
)}

where y
i
= {Yi1, ..., YiT } is the multi-endpoint

target, LTs in radiogenomics; each endpoint
takes values in {0, 1} and x̃i ∈ RJ with i =
{1, ..., N} is the input feature vector of imputed
data or, in general, noisy data. Suppose that
xi, true categorical feature vector, is known for
each sample present in the training set and that
a fixed number of M categories is available for
each feature. Therefore a second dataset is avail-
able with N (input, target) pairs

D = {(x1, y1), ..., (xN , y
N
)}

where y
i

is the same multi-endpoint target and
xi ∈ {1, ...,M}J with i = {1, ..., N} is the input
feature vector of categorical data. If the true
categorical feature vector is unknown it is possi-
ble to simply round each imputation to the clos-
est integer. Finally, suppose that imbalance in
the classes is present for each of the endpoints,
with a minority class Yk = 1 and a majority class
Yk = 0 with k ∈ {1, ..., T}. The method employs
an ensemble of DSAE to perform multivariate
FS. Each AE is trained, as an anomaly detection
autoencoder, to optimally represent a class of
controls and distinguish them from the anoma-
lies (cases). Multivariate FS is achieved by the
proper definition of these groups, accounting for
correlation in the endpoints. The method is de-
tailed in the following and schematized in Figure
1.
The FS is performed starting from a unique
train sample, extracted from the intersection of
the majority classes of each endpoint, and an
endpoint-depending test sample. This means
that each learner is trained to represent the
population that does not present any toxic-
ity. Genetic variants influencing radiosensitivity
are only partly toxicity-specific. Consequently
starting from a control population extracted
from each endpoint majority class could lead to
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the concealing of genetic risk patterns linked to
general toxicity, due to their presence in both
the majority and minority classes.

Xmaj = {xi|Yik = 0 ∀ k}

For each outcome, k, the specific set of selected
features is computed as follows.
(i) The case sample (minority class) is defined,

including all the patients that present end-
point k (B).

Xmin = {xi|Yik = 1}

(ii) In each ensemble iteration b ∈ {1, ...., B} a
test set containing 2 * O data points, where
O is the minority class numerosity, is con-
structed by concatenating all the minority
class patients with a random sample of the
same size from the common control class pa-
tients. The remaining observations of Xmaj

are included in the training set (C).
(iii) Each DSAE learner is trained on the train-

ing set. The training includes a denoising
procedure forcing the DSAE to reconstruct
from the continuous noisy input its categor-
ical representation so that the possible error
due to imputation is accounted for in the
comparison (D). The network weights and
reconstruction map are optimized to have
the best possible representation and recon-
struction of the J features in the training
set exploiting the following loss:

Loss(x, ϕ(x̃)) =
J∑

j=1

−
M∑
k=0

(xjk ∗ log(ϕ(x̃jk)))

+λ|h(l)|

where x̃ ∈ D̃ and x ∈ D. The loss func-
tion heeds the cross-entropy between the
AE outcome and the one-hot encoding of
the corresponding categorical covariate and
the L1 loss to improve the generalization
ability of the model.

(iv) Once the network has been trained, it is
applied to the test set (E). The evaluation
of its performance when facing both major-
ity and minority class examples enables the
comparison of the RE in two populations to
detect features able to distinguish between
them.

Figure 1: A methodology illustration. (A)
Definition of the control sample as those patients
that do not present any toxicity (green). (B)
Definition of the endpoint-dependent case sam-
ple as those patients presenting the specific end-
point (red). (C) In each ensemble iteration, a
random sample of the same size as the case sam-
ple is extracted from the common control class
patients and included in the test set while the re-
maining observations of the latter are included
in the training set. (D) The DSAEE is trained
on the training set. (E) Each AE in the ensem-
ble is applied to the test set sample and the re-
construction error is stored in a unique dataset.
(F) Data are grouped based on their belonging
to the case and controls and the distributions of
the reconstruction error in the two groups are
compared via the Smirnov test for each covari-
ate. Those with a p-value smaller than the Bon-
ferroni correct threshold are selected.

The reconstruction error is evaluated on
each sample of the test set as:

RE(xj , ϕ(x̃j)) = −
M∑
k=0

(xjk ∗ log(ϕ(x̃jk)))
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for j ∈ {1, ..., J}

The test set REs from each ensemble repe-
tition are concatenated in a unique dataset
Q and labeled according to the belonging to
the majority or minority class of the sam-
ples. At the end of the ensemble procedure,
REs are divided into two datasets Qmaj and
Qmin including respectively the majority
and minority class observations.

(v) Each of the B*O observations in Qmin and
Qmaj is considered as a sample extracted
from each feature distribution rej | minor-
ity sample ∼ fmin

j and rej | majority sam-
ple ∼ fmaj

j with j ∈ {1, ..., J}. It is possible
then to compare the samples for each fea-
ture and test if the distributions in different
groups are statistically different (F). The
analysis is performed via the Smirnov test,
a non-parametric two-sample test, used to
determine if two independent random sam-
ples appear to follow the same distribution.
Once the test is performed, the set Fk in-
cludes all the features whose test p-value is
lower than the Bonferroni corrected thresh-
old of 0.05. This selection method will be
referred to in the following as distribution-
based selection.

(vi) If the Fk includes an oversized number of
features. A second selection method can be
applied to Fk to restrict it. We can estimate
the vector of average RE per feature per
class: lmin and lmaj , both belonging to RJ ,
where each element is computed as:

lmin,j =
1

B ∗O

B∗O∑
t=0

Qmin,t

lmaj,j =
1

B ∗O

B∗O∑
t=0

Qmaj,t

It is possible to compute for each j ∈ Fk

∆j , the difference between the average RE
on the minority class and the majority class.

∆j = lmin,j − lmaj,j

The features can then be ranked in decreas-
ing order according to ∆j . To identify an
exact set F comb

k we need to define a thresh-
old δ ∈ (0, 1), such that ∆δ is the δ-th
quantile evaluated on the distribution of
{∆j}j∈Fk

. We, therefore, select all those

features j whose average RE difference is
above the predefined threshold:

F comb
k = {j ∈ Fk|∆j ≥ ∆δ}

This second selection methodology will be
referred to in the following as combined se-
lection.

Once the set of features is selected for each end-
point, it is possible to compute the union of all
the features selected and consider it as the set
of significant features for a comprehensive end-
point.
The multivariate FS developed is able to pro-
duce a set of SNPs describing each specific toxi-
city accounting for the dependency structure in
the multivariate outcome and consequently in-
creasing the statistical power of the model. The
selected SNPs can then be combined to form
an informative set of features correlated with
general toxicity and able to distinguish gener-
ally radiosensitive patients. The method is ro-
bust to error in the imputation of genomic data
thanks to a procedure inspired by denoising au-
toencoders and to the imbalance in the classes
thanks to a procedure inspired by anomaly de-
tection autoencoders. Finally, the FS is high-
order interaction aware thanks to autoencoders’
intrinsic hierarchical structure, and the selection
method allows for the interpretability of the se-
lection.

4. Simulation study
4.1. Simulation setting
In this section, we validate the distinctive
aspects introduced in the proposed method
through a simulation study. To do that, sim-
ulated data needs to reproduce peculiar char-
acteristics of genomic data, namely categorical
features (i.e. the variants) and the presence of
complex interactions determining the endpoints’
onset. Moreover, to test the improved power
of the proposed FS algorithm for multivariate
targets, we simulated a generative model deter-
mining correlated endpoints. The algorithm ex-
ploited to generate the simulated data begins
with the construction of the multivariate target
endpoint. Specifically, the multivariate output is
constructed as a matrix of binary features with a
user-defined intra-features correlation structure.
Then, the genotype data is generated as a set of
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binary covariates representing the variants (with
a defined variant’s frequency). At this point,
to simulate the complex genotype-multivariate
phenotype relationship, the algorithm defines,
for each dimension of the multivariate endpoint
a set of interacting features (hereby called “pat-
tern”) with a specified co-occurrence frequency
with its corresponding dimension.

4.2. Denoising proprieties of the de-
veloped method

We first aim at validating the utility of the de-
noising aspect introduced in the novel DSAEE
algorithm. That is, we want to verify the capa-
bility of the denoising DSAEE to improve im-
putation error handling. This simulated experi-
ment includes a dataset with 1000 observations
and 100 variants with a 10% relative frequency.
The output is univariate with a minority class
composed of 100 samples. The length of the
associated pattern contains 20 variants and the
co-occurrence frequency of the pattern and end-
point is 70%. The noisy dataset is generated
starting from the original categorical dataset
adding random exponential noise. To test the
denoising capability of the method a denoising
DSAEE, reconstructing the continuous input to
its categorical representation, is compared to a
DSAEE algorithm reconstructing a continuous
output. Changes and improvements from one
algorithm representation to the other are then
the consequence of better imputation error han-
dling. In both cases, the same simple AE archi-
tecture is implemented and its in-training con-
vergence is analyzed. Each AE is composed of an
encoder with one 90-nodes hidden layer, followed
by a bottleneck layer of 50 nodes and a sym-
metrical decoder and the ensemble is composed
of 10 learners. To quantify and evaluate the re-
construction ability of the autoencoder, the loss,
MSE in the DSAEE and binary-cross-entropy in
the denoising DSAEE, and accuracy are consid-
ered and their evolution is studied during the
training process. In Figure 2 in-train loss of both
methods is plotted to be compared and in Fig-
ure 3 the accuracy is reported. Further insight
into the representation capability of the DSAEE
denoising can be extracted from the mean AUC.
The denoising DSAEE reconstructs binary data
evaluating the probability of the variation pres-
ence. The AUC can be computed for each fea-

ture reconstruction and averaged overall. The
in-train AUC is shown in Figure 4.

Figure 2: In-train loss of the compared
methodologies. In the DSAEE the loss is eval-
uated via MSE since noisy data are treated like
continuous variables, while in denoising DSAEE
the loss is evaluated via cross-entropy since the
encoder output distribution is compared to the
real categorical value. The training was per-
formed excluding a validation set to mimic the
performance of both algorithms on unseen data.
The loss on the validation sets is also presented.

Several observations emerge from these plots.
First, the denoising DSAEE keeps both the
validation and training set loss very low and
very close with respect to DSAEE, showing a
better reconstruction performance on seen and
unseen data and better generalization ability.
Moreover, both loss and accuracy plots reveal
a faster and smoother convergence in the de-
noising DSAEE. Reducing the computational ef-
fort in training has great advantages on the total
computational time enabling, in ensemble learn-
ing algorithms, a higher number of repetitions
to be performed and higher performance. Fi-
nally, the AUC performance of the denoising al-
gorithm stabilized at approximately 62% in both
the training and validation sets. The perfor-
mance in AUC, although, probably weakened by
the high noise-to-signal ratio present in the data,
shows the ability of the autoencoder to isolate
the signal and compute a latent representation
that enables a good reconstruction of noisy data.
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Figure 3: In-train accuracy of the com-
pared methodologies. The training was per-
formed excluding a validation set to mimic the
performance of the autoencoder on unseen data.
The accuracy of the validation sets is also pre-
sented.

Figure 4: In-train AUC of the denoising
DSAEE. The training was performed excluding
a validation set to mimic the performance of the
autoencoder on unseen data. The mean AUC on
the validation sets is also presented.

In conclusion, the simulated analysis reveals the
denoising DSAEE’s ability to reconstruct from
noisy data their true categorical values. In this
stage, accuracy in data representation is funda-
mental to better distinguish the classes of the
binary outcome, and consequently to perform a
better feature selection when applied within the
multivariate methodology.

4.3. Inclusion of intra-endpoints cor-
relation structure in the FS im-
prove the method performance

This section aims at verifying the capability of
the multi-outcome methodology to improve fea-
ture selection. The method’s performance in FS
tasks is evaluated by considering:
• FSPrecision = |IRF |/|F |

where |IRF | is the total number of infor-
mative and redundant features selected and
|F | is the total number of features selected

• FSCorrespondence = |IF |/|TIF |
where|IF | is total number of informative
features selected and |TIF | is total number
of true informative features

This simulated experiment includes a dataset
with 1000 observations and 100 variants with a
10% relative frequency. The output is multi-
variate with five outcomes and a comprehensive
minority class composed of 50 samples. The cor-
relation structure within the multivariate out-
put is composed of two sets of correlated dimen-
sions: the first 3 with a correlation of 0.8 and
the last two with a correlation of 0.7. Each out-
come is associated with a pattern of variants.
The length of the associated patterns ranges
from 10 to 15 variants. The co-occurrence fre-
quency of pattern and endpoint ranges from 60%
to 90%. To test the improvement in the multi-
outcome selection the multivariate algorithm is
tested against the algorithm described in [5]
which performs univariate selection for each out-
come separately. The multi-outcome algorithm
introduces the definition of a unique control set,
i.e. the null class across all target dimensions.
Conversely, the univariate algorithm is trained
on the control group of each endpoint separately.
To compare the two algorithms in terms of fea-
ture selection only, the same AE architecture
was exploited for both. Specifically, each AE
is composed of an encoder with one 90-nodes
hidden layer, followed by a bottleneck layer of
50 nodes and a symmetrical decoder and the en-
semble is com- posed of 10 learners. The pa-
rameter regulating the sparsity term of the loss
(i.e.λ) is instead optimized by grid search dur-
ing the training of each DSAEE. Features are
selected via both the distribution-based and the
combined selection methods. The δ parameter
of the combined selection is optimized in each
method first on FSP, as the fundamental goal is
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Multivariate method performance on the
simulated dataset

Distributional FS Combined FS
FSP FSC FSP FSC

y1 0,562 0,857 1 0,571
y2 0,615 0,125 1 0,125
y3 0,611 0,75 0,857 0,5
y4 0,357 1 1 0,875
y5 0,375 1 1 0,857
alo 0,688 0,355

alo_union 1 0,55
Table 1: Multi-outcome method perfor-
mance on simulation dataset. For each of
the considered outcomes, metrics evaluation of
the selection via Distributional FS and Com-
bined methodology is presented. The last two
rows present the result of the best working algo-
rithm on selection for a comprehensive endpoint
by the direct definition of at least one endpoint,
as the maxiyi, and the union of the selected fea-
tures for each outcome.

to avoid introducing non-informative features in
the selection, and secondly on FSC to get the
best possible set of features. An additional end-
point is defined. The "at least one" (alo) end-
point is defined for each sample as

yalo = max5i=0yi

If an observation presents any of the considered
endpoints then yalo = 1 otherwise yalo = 0. The
endpoint is introduced to represent the presence
of overall toxicity. Aiming at explaining yalo ex-
ploiting a univariate algorithm the DSAEE is
trained on the null class across all target dimen-
sions, as for the other endpoints, and tested on
cases presenting at least one endpoint. In both
the multivariate and the univariate methods, the
union of all the selected covariates for each end-
point is evaluated in predicting a comprehensive
endpoint. The multivariate selection for overall
toxicity can then be compared to the univariate
one. Tables 1 and 2 report the results for the
multivariate and the univariate FS algorithms
respectively.
The first result emerging from the analysis con-
cerns the comparison between the two selec-
tion methods considered. In the simulation set-
ting the combined FS works better since the

Univariate method performance on the
simulated dataset

Distributional FS Combined FS
FSP FSC FSP FSC

y1 0,394 0,714 0,7 0,429
y2 0,444 0 0,666 0
y3 0,4545 0,571 1 0,286
y4 0,25 0,875 1 0,5
y5 0,21 0,5 0,5 0

alo_union 0,737 0,452
Table 2: Univariate method performance
on simulation dataset. For each of the
considered outcomes, metrics evaluation of the
selection via Distributional FS and Combined
methodology is presented. The last row presents
the result of the best working algorithm on selec-
tion for a comprehensive endpoint by the union
of the selected features for each outcome.

distributional-based FS defines a set of covari-
ates too large and therefore includes insignifi-
cant covariates. A possible reason for this be-
havior is the clean separation of the classes in
the simulation setting. In applications, usually,
groups are overlapping and the set of features
statistically able to distinguish between them
is restricted. The comparison between multi-
variate and univariate selection methodology is
performed focusing on the best-performing selec-
tion, namely the combined FS. From the com-
parison, it is possible to observe that the mul-
tivariate model shows an improvement in FSP
in almost every endpoint, and when the FSP is
the same the FSC metric increase, implying a
selection focused on the discovery of every and
only significant features that better avoid those
linked to correlated endpoints. Through the re-
sults presented in this section, it is possible to
verify another propriety of the multivariate se-
lection. One of the objectives in developing a
multi-outcome feature selection is to be able to
define a set of features informative about gen-
eral radiosensitivity. It is possible to observe
that the union of selected variables for individ-
ual endpoints identifies a set of covariates more
informative for yalo with respect to the selec-
tion performed univariately on yalo endpoint and
the union set of variants chosen in the univari-
ate case. These analyses validate the hypothesis
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that the multivariate method improves the selec-
tion of variables for individual outcomes, avoid-
ing the pitfalls of a univariate selection when a
strong correlation exists between endpoints. In-
deed, the independent univariate selection might
identify as predictive for a certain target, fea-
tures that are actually determinant for a corre-
lated target. This, while in principle still grant-
ing an acceptable predictive power of the se-
lected features, may affect the interpretation of
the underlying generative mechanism. In the
context of genetic studies, this would translate
into false discoveries of the biological interac-
tions determining the phenotype of interest.

5. Case study application in ra-
diogenomics

As the original DSAEE algorithm, the multi-
variate DSAEE presented in this work was tai-
lored to tackle the complexities of real-life ge-
nomic research. As mentioned in the intro-
duction, the selection and discovery of genomic
variants predictive of late toxicities can inform
downstream models such as PRSs and NTCPs.
Therefore, in this section, we briefly present the
case study application (detailed in [3]) of the
proposed algorithm on the RADPrecise Breast
Cancer Cohort, with the aim of identifying vari-
ants associated with LT. The considered sample
is a subset of 599 patients with a documented
follow-up visit three years after the initial can-
cer treatment. Six late toxicity endpoints are
considered: five have an incidence below 10%,
while one occurs for approximately 47% of the
subjects. The pool of genetic features to select
from included 122 variants previously identified
in the literature as correlated to radio-induced
LTs in breast cancer patients. The features se-
lected via the proposed multivariate method are
meant to be exploited to construct a PRS for
breast cancer late toxicities. Therefore the al-
gorithm is applied to a multivariate target com-
bining the six (highly correlated) LT endpoints.
This resulted in six dimension-specific sets of se-
lected SNP exploited (i) independently to build
six different PRSs (one for each LT endpoint)
and (ii) in combination (i.e. their union), to
define a unique PRS to predict the overall risk
of any LT. The PRSs are computed following
the PRSi algorithm presented in [1] that exploits
FIM (Frequent Itemset Mining) routines to cre-

ate a list of possible significant interactions and
builds the score by weighting the contribution of
each interaction term accordingly to the weights
obtained when fitting a logistic regression model
with the considered endpoint as the outcome.
This being an unsupervised setting it is hard to
comment on the precision of the results with-
out the required clinical expertise. However, the
metrics of the classification models exploited in
the definition of the PRSs reveal good predictive
models (i.e AUC ≥ 60%), with some limitations
in the discrimination of the minority class. Good
results are probably induced by an effective ini-
tial selection.

6. Discussion and Conclusions
The innovation of this work is the development
of a methodology able to detect the most im-
portant genomic features in a multi-outcome
setting. The proposed method builds upon
the original work in [5], where an ensemble of
anomaly detection AEs (i.e, the DSAEE algo-
rithm) is exploited to select predictive features
to discriminate between classes. In this work,
the DSAEE is extended to allow FS for multi-
variate binary outcomes. Similarly to its pre-
decessor, the method developed is designed to
overcome the challenges imposed by the pecu-
liar setting of genomic studies. In particular,
it is meant to tackle, features’ imputation (i.e.
noise), class imbalance derived from the study of
rare traits, and the need to account for predic-
tive high-order interactions among features, due
to the complex biological mechanisms determin-
ing phenotypic traits. The developed methodol-
ogy is applied to the RADPrecise Breast Cancer
Cohort, with the aim of identifying variants as-
sociated with LT and constructing a PRS for
breast cancer LTs. Based on simulation stud-
ies, we can say that the developed model suc-
ceeds in improvement in the representation of
noisy data thanks to the denoising technique.
Moreover, the multivariate model succeeds in
the accurate selection of highly influential fea-
tures that provide intrinsic information and dis-
criminant properties for class separability. The
accurate definition of influential features for the
specific toxicity can be fruitful for an interpreta-
tion of biologically relevant variants. Indeed, the
model, in addition to selection, can be exploited
for the discovery of influential genetic variants
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or validation of variants previously identified
in the literature as correlated to radio-induced
LTs. The developed method, thanks to a well-
performing FS, can improve the definition of
genetic predisposition to general toxicities and
can be employed by physicians to take more in-
formed individual decisions in cancer treatment.
The importance of the model lies in its clinical
applicability. The method can be generalized
to all contexts where it is necessary to perform
a multivariate FS with unbalanced classes and
similar data characteristics. Some of the limita-
tions of the developed model are the need for a
ground truth definition of noisy input data and
the difficulty to scale in input features due to the
high computational cost. Further development
can be introduced in the model. Variational
autoencoders have already been proposed for
anomaly detection. Anomaly detection in this
case is performed considering the reconstruction
probability, a probabilistic measure that takes
into account the variability of the distribution of
covariates. It has a theoretical background mak-
ing it a more principled and objective anomaly
score than the reconstruction error. However,
variation autoencoders require a large training
dataset that hinders its applicability in this the-
sis work. Improvement can be done also on the
denoising characteristic of the autoencoder. De-
noising terms can be introduced directly in AEs
loss avoiding the need to define or approximate
the true value of the considered features. In this
work, we chose to use a denoising method that
with good performance was more interpretable
and controllable. Finally, it would be interest-
ing to further develop the multivariate setting
developing a full multivariate methodology for
multiple endpoint PRS definition.
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