
POLITECNICO DI MILANO
School of Industrial and Information Engineering

Master of Science in Automation and Control Engineering

On hierarchical routing control in discrete
manufacturing plants

Supervisor: Prof. Lorenzo Fagiano
Co-supervisor: Dr. Andrea Cataldo

Master Thesis dissertation of:

Roberto Boffadossi Matr. 905811

Accademic year 2019-2020

Abstract

The interest in automating demanufacturing processes has constantly grown in

the recent years, especially for electronic products. The main feature required by

this application is high flexibility due to the uncertain configuration of the prod-

ucts and the variability of the operations. Specifically, the problem of routing

pallets across a plant is considered here. The purpose of this thesis is to im-

prove and implement a new approach to address this problem: the Hierarchical

Routing Control (HRC). It is based on Model Predictive Control strategy acting

at supervisory level, combined with a low-level path following approach. A new

solution for the path generation problem and path assignment redundancy prob-

lem is proposed and additional constraints are introduced in the plant model via

new specific sub-routines. The conditions for lockout detection are identified and

their implementation allows an Intelligent Move Blocking. Then the optimization

problem is reformulated and sub-optimal solution methods are defined to reduce

the computational time. A data exchange protocol is added to control algorithm

in order to communicate with the integrated low-level logic that directly controls

the pallet handling system. Finally the developed model is verified to be consis-

tent with a real plant and the HRC strategy reaches high performances with very

low computational cost.

Keywords: MPC, discrete manufacturing plant, Hierarchical Routing Control,

Move Blocking, path following, lockout detection, handling system, search tree.

Sommario

L’interesse nell’automatizzare i processi di demanufacturing è cresciuto costante-

mente negli ultimi anni, specialmente per i prodotti elettronici. La caratteristica

principale richiesta in questo tipo di applicazioni è un elevata flessibilità a causa

delle condizioni incerte dei prodotti e della variabilità delle operazioni. Nello

specifico è stato considerato il problema di instradamento dei pallet attraverso

l’impianto. Lo scopo della tesi è di migliorare e di implementare un nuovo approc-

cio di Hierarchical Routing Control (HRC) per affrontare questo problema. Esso

si basa sulla strategia di Model Predictive Control, che agisce come supervisore,

combinata con una logica di basso livello per l’inseguimento dei percorsi. Viene

proposta una nuova soluzione per il problema della generazione dei percorsi e della

ridondanza nel loro assegnamento; inoltre sono stati aggiunti ulteriori vincoli al

modello dell’impianto per mezzo di due nuove sub-routine. Avendo individuato

le condizioni necessarie per identificare la formazione di un lockout, la loro im-

plementazione permette di impiegare la strategia di Intelligent Move Blocking.

Successivamente viene riformulato il problema di ottimizzazione e utilizzando

metodi sub-ottimi vengono ridotti i tempi di calcolo. L’aggiunta di un protocollo

di scambio dati consente all’algoritmo di controllo di comunicare con la logica

integrata di basso livello che controlla il sistema di movimentazione dei pallet.

Infine, avendo verificato la completa coerenza tra modello e sistema reale, si di-

mostra che la strategia HRC raggiunge ottime prestazioni con tempi di calcolo

molto bassi.

Contents

Abstract i

Sommario ii

1 Introduction 1

1.1 Model Predictive Control . 4

1.2 Thesis contributions . 7

1.3 Thesis structure . 8

2 Hierarchical Routing Control 10

2.1 Eulerian System Model . 12

2.2 Lagrangian System Model . 15

2.3 Hierarchical control approach . 18

2.3.1 Greedy path following strategy 19

2.3.2 Model Predictive Path Allocation 23

3 Real case implementation 30

3.1 Plant description . 30

3.2 Eulerian plant modelling . 35

3.3 Additional constraints . 40

3.3.1 Constraints on transitions related to specific nodes 40

3.3.2 Constraints on pairs of transitions with no node in common 46

iv CONTENTS

3.3.3 New subroutines implemented in the Greedy Path Follow-

ing Strategy . 49

4 Path allocation redundancy and sequence generation problem 51

4.1 Paths redundancy in the set of compatible sequences 52

4.2 Sequence generation problem . 56

4.2.1 Sequence generation in the real plant case 63

5 Solution methods for FHOCP in MPPA 67

5.1 Lockout detection . 68

5.1.1 Local lockout . 68

5.1.2 Theoretical lockout . 70

5.2 Brute force or extensive search . 72

5.3 Intelligent Move Blocking . 77

5.3.1 Approaching direction . 80

5.4 Non-optimal solution . 83

5.5 Intelligent Move Blocking with sub-horizons 86

5.6 Move blocking with controllable exogenous input and emptying

condition . 88

6 Test results and methods comparison 91

6.1 Test 1 . 97

6.2 Test 2 . 100

6.3 Test3 . 102

6.4 Test4 . 103

6.5 Test5 . 105

6.5.1 Case 1 . 105

6.5.2 Case 2 . 106

6.6 Throughput results . 108

CONTENTS v

7 Test on the real plant simulator 110

8 Conclusions 115

Bibliography 122

List of Figures

1.1 Demanufacturing pilot plant in the Institute of Industrial Tech-

nologies and Automation (STIIMA), National Research Council

(CNR), laboratory, Milano . 3

1.2 MPC scheme . 4

1.3 Receding Horizon principle . 5

2.1 Eulerian representation of a generic plant, where: hl = 1, hu = 6,

outside node= 0, the nodes 5 and 9 are machines (i.e.,M = {5, 9}) 13

2.2 Hierarchical Routing Control structure. 18

2.3 Greedy path following strategy algorithm scheme. 20

2.4 Algorithm 2 scheme. 21

2.5 Algorithm 2 as a black box model, useful for a simulation-based

optimization method . 23

2.6 Model predictive path allocation (Algorithm 3) scheme. 26

2.7 Feedback loop with Eulerian state validation 27

2.8 Lagrangian Feedback loop with state observer. 28

3.1 Demanufacturing plant structure 31

3.2 Demanufacturing plant in STIIMA-CNR laboratory 32

3.3 Targets order scheme, M1 is the Load/Unload Robot Cell, M2

Testing Machine, M3 Reworking Machine, M4 Discharge Machine 33

3.4 HRC with external agent scheme 34

LIST OF FIGURES vii

3.5 Transport module Ti photo . 36

3.6 Transport module Ti . 37

3.7 Buffer zones and Control Sequences model [1] 39

3.8 Directed Graph model [1] . 39

3.9 Example of a constraint node wj (in this case j=4) 42

3.10 Priority problem due to Algorithm 4 45

3.11 Constraints nodes in the CNR plant 46

3.12 Set of the pairs of constrained transitions 47

3.13 Scheme of the implementation of Algorithm 4 and Algorithm 5 in

the Greedy Path Following Strategy 50

4.1 Paths redundancy example . 53

4.2 Example of sequence generation for a generic graph 57

4.3 Example of sequences combinations 58

4.4 Move blocking and search tree schemes comparison 59

4.5 Main sequence generation example 64

4.6 Additional sequence generation example 65

4.7 Supporting sequence generation example 1 65

4.8 Supporting sequence generation example 2 66

5.1 Local lockout example. 69

5.2 Search tree . 73

5.3 Search tree recursive solution via sub-problems 74

5.4 Search tree scheme . 74

5.5 Solution of the sub-problems at the end of the horizon 75

5.6 Backwards solution of the middle sub-problems 75

5.7 Solution of the main optimization problem 75

5.8 Intelligent Move Blocking strategy 78

5.9 Brute force computational time 79

5.10 Intelligent Move Blocking computational time 79

viii LIST OF FIGURES

5.11 Example of a sequence defining the waiting nodes in a graph . . . 80

5.12 Number of solutions compared in a IMB problem 84

5.13 Search tree sub-horizons division 86

5.14 Lower sub-horizon IMB problems 87

5.15 Solutions to be compared in the Sub-IMB problems 87

5.16 Main IMB: solutions to be compared 87

5.17 Move blocking with controllable exogenous input and emptying

condition, control logic scheme 90

6.1 Photo of the CNR pilot plant . 91

6.2 Testing machine results probability 93

6.3 Testing machine in the real plant, STIIMA-CNR laboratory, Mi-

lano . 96

6.4 Intelligent Move Blocking withNp,max = 13 andH = 30: through-

put and computational time per step 99

6.5 Move Blocking with one main sequence: plot of the number of

parts Np(k) and computational time per step Ct(k). 106

6.6 Move Blocking with two main sequences: plot of the number of

parts Np(k) and computational time per step Ct(k). 107

6.7 Nf depending on Np,max (tested with IMB, AD1 and H=30) . . . 109

6.8 Thr of IMB with H=30 and Np,max = 10, AD1 and AD2 comparison 109

7.1 I/O data connection . 111

7.2 Frame from the simulator view on SIMIO 113

8.1 3-Layer Hierarchical Routing Control 118

List of Tables

6.1 Table of machines working time 92

6.2 Extensive search compared with IMB 97

6.3 Test 1 results . 98

6.4 Test 2: ADs comparison . 100

6.5 Test 2: AD2 performances with respect to IMB(ξ) 101

6.6 Reduction of Cpeak depending on ADs 101

6.7 IMBSH compared with IMB . 102

6.8 Robustness test . 103

6.9 Move blocking with one main sequences test results. 105

6.10 Move blocking with two main sequences test results. 107

6.11 Throughput AD1 comparison . 108

Acronyms

HRC Hierarchical Routing Control

MPC Model Predictive Control

FHOCFP Finite Horizon Optimal Control Problem

GPFS Greedy Path Following Strategy

MPPA Model Predictive Path Allocation

BZ Buffer Zone

CN Constrained Nodes

FTFS Forbidden Transition Filtering Strategy

AD Approaching Direction

BF Brute Force

IMB Intelligent Move Blocking

IMBSH Intelligent Move Blocking with Sub-Horizon

CP Control Platform

PLLC Plant Low Level Control

CNR Consiglio Nazionale delle Ricerche

Chapter 1

Introduction

In recent years the attention to material recovery and product restoration has

increased constantly together with the importance of efficiency and sustainability

of manufacturing processes. For this reason de-remanufacturing represents an

important field of research. The ability of recycling materials from industrial

waste and repairing discharged products represents new business opportunities,

increasing energy saving and reducing the environmental footprint.

Quoting from [2]: De- and remanufacturing includes the set of technologies

and systems, tools and knowledge-based methods to systematically recover, reuse,

and upgrade functions and materials from industrial waste and post-consumer

products, to support a sustainable implementation of manufacturer–centric Cir-

cular Economy businesses.

Specifically demanufacturing deals with recovering raw materials and com-

ponents from discarded products, while remanufacturing restores or updates

their functions along their life-cycle. In this way, to produce the same goods, a

large part of the energy and materials are saved and the product "end-of-life"

concept is replaced with "restoration".

Demanufacturing tasks are usually performed manually and so there is a great

interest in automating these types of processes, especially for electronics waste.

2 Introduction

In the past decades many demanufacturing studies have been developed on elec-

tronics products such as television, monitor, personal computer, printed circuit,

electronic home appliances, in order to improve materials and reusable compo-

nents recycling [3].

In order to explore the potentials of this area, in the laboratory of the Institute

of Industrial Technologies and Automation (STIIMA), National Research Council

(CNR), a pilot plant for automated de-remanufacturing has been set up, in figure

1.1. It has been designed to process End-of-Life electronic boards [4] and consists

in:

• Flexible pallet handling system, composed of fifteen transport modules,

that allows to move the boards from one machine to another.

• Load/Unload Robot Cell, that positions the electronic board on a pallet

and loads it in into the plant. Furthermore the Cell unloads processed

pallets from the line and removes the finished boards from them.

• Testing machine, which task is to analyze the state of the electronic board.

• Reworking Machine, used for repairing a board that has been detected to

not work properly.

• Discharge machine, that dismantles the non reparable boards.

Firstly a functioning test of the electronic board is performed and it is sent to

repair, to discharge or to the robot cell, depending on the result of the test. The

complexity of this application is determined by the fact that each processed part

has a personalized operations scheduling and the target machines are assigned

online.

The main feature required by an automated demanufacturing plant is high

flexibility. In fact there is a great variability in the condition of products belonging

to the same family and for this reason the operations needed by a specific part

3

Figure 1.1: Demanufacturing pilot plant in the Institute of Industrial Technolo-

gies and Automation (STIIMA), National Research Council (CNR), laboratory,

Milano

could be different. The product identification is essential in this application,

due to the unknown configuration of the processed product, that can depend on

consumer alterations, missing, damaged components or manufacturing errors [5].

This application requires a flexible layout of manipulators, sensors and handling

devices, to detect the current state of the product and to address the variability

of the operations needed to disassembly or repair it [6].

The purpose of this thesis is to improve, implement and verify a new approach

for controlling the pallet routing in a discrete manufacturing plant: the Hierar-

chical Routing Control via Model Predictive Path Allocation and Greedy Path

Following, proposed in [7]. The control algorithm will be set up for the demanu-

facturing pilot plant in the STIIMA-CNR laboratory previously described. This

approach is based on the Model Predictive Control (MPC) strategy, which has

the advantage of reformulating the control problem into an optimization ones.

4 Introduction

1.1 Model Predictive Control

Nowadays MPC is one of the most widespread advanced control strategy in the

process industry, because it can be used for a large number of applications and

is capable of dealing with complex systems. The MPC control architecture is

presented in the following block diagram in figure 1.2.

Figure 1.2: MPC scheme

The main features of this method are the following:

• The control problem is formulated as an optimization one, thus the control

action is computed minimizing a specific objective function. The advantages

of this characteristic are:

− Designing a multi-objective cost function allows to take into account

many different goals, even if conflicting with each other. For example

it is possible to find a compromise between minimizing the energy

consumption and maximising the plant throughput.

− In the formulation of the control problem it is possible to explicitly

include the state and input constraints.

− It is suitable for a large range of processes and is an open metodology,

improvable with future extensions.

1.1 Model Predictive Control 5

Figure 1.3: Receding Horizon principle

• Amatematical model, usually in descrete-time, is used to predict the output

of the system along a prediction horizon [k, k + N], where k is the actual

discrete time step and N is the length of the horizon.

• It adopts the so-called Receding Horizon (RH) principle: at each time step k

the future control sequences [u(k), . . . , u(k+N −1)] is computed solving the

corresponding Finite Horizon Optimal Control Problem (FHOCP), based

on the available process information at time k. Then only the first control

action is applied and at the new time instant k+ 1 a new FHOCP is solved

along the prediction horizon [k + 1, k + N], based on the available process

information at time k + 1 [8]. In this way the control operates in "close

loop" and the provided control action is guaranteed to always respect all

the system constraints (recursive feasibility). The RH principle has been

represented in figure 1.3.

The high versatility of the objective function and the ability to deal with

complex systems make this control strategy appropriate for a flexible (de-) man-

ufacturing plant. But unfortunately the control problem that has to be solved

6 Introduction

at each step can be very complex. That depends on the large number of integer

or Boolean control inputs and on the presence of many constraints, especially

for the temporal-logic constraints that characterize a manufacturing application.

Thus the controller has to solve a large combinatorial optimization problem in

few seconds to provide the control action within the time step.

The MPC strategy has been frequently adopted in manufacturing plants, but

with a different role. Usually it is implemented to compute the optimal online

scheduling of the manufacturing system, see [9] [10], to support the supply chain

management [11] or to improve the energy efficiency of the plant [12]. In these

cases the MPC provides the long-term references to the lower control layer, i.e.

the local controllers that establish the detailed operation of the discrete event

manufacturing line. Considering the application developed in this thesis, the

purpose of the controller is to compute directly the inputs of a pallet handling

system that moves the electronic boards to their target machine.

The scheduling of the operations needed by a specific board depends on the

state of that board and can not be decided by the controller. Furthermore the

target of a board is defined online, because product identification is performed

inside the plant at the same time as other operations. In fact the boards are

tested by a machine in order to establish if they must be repaired, discharged

or unloaded from the line. In the plant there is a single machine for each of

these tasks, thus the next target is related only to the product state. The MPC

computes the optimal pallet paths combination in order to send each board to the

corresponding machine target, maximising the plant performances and avoiding

to incur a lockout; moreover it provides the related Boolean control signals that

trigger the transitions along the transport modules connecting the machines.

For the considered application, the previous contributions [13] [1] have de-

scribed the plant by means of a directed graph and the system behaviour has

been modeled from an Eulerian point of view, that represents the part movement

inside the plant referring to the nodes as control volumes. In this way it has been

1.2 Thesis contributions 7

possible to obtain a Mixed Logical Dynamical (MLD) formulation of the control

problem, manipulating the plant linear model and the temporal-logic constraints

that limits the part movements. This model has been implemented in a MPC

strategy to compute the complex optimal control inputs and high performances

has been reached, but the computational cost increases exponentially as function

of the number of parts in the plant and the length of the prediction horizon.

The HRC approach [7] has the purpose to reduce the computational cost

reformulating the MPC architecture. In fact the point of view is shifted to a

Lagrangian one, describing the overall state as the collection of the states of the

parts that are being processed by the plant. A sequences is assigned to each part

state in order to indicate its path and the MPC controller is designed following

a hierarchical structure. Two control layers operates to route the parts: an high-

level logic allocates a path to each part solving the optimal control problem

choosing from a precomputed set of sequences, a low-level logic moves the parts

forward along the assigned path and compute the control inputs.

The validity of HRC approach has not yet been tested on a real case. The

main goal of this thesis is to implement this control method in a real plant,

including new specific constraints, addressing the problem of sequence generation

and providing a new formulation of the optimization problem.

1.2 Thesis contributions

The main contributions developed in this thesis are:

• A new model of the demanufacturing plant in STIIMA-CNR laboratory has

been developed using a Lagrangian approach.

• Two new sub-routines have been developed and included in the path follow-

ing algorithm in order to fully represent the handling system constraints.

8 Introduction

• The Lagrangian state has been reformulated to remove redundancy in the

path assignment.

• New guidelines have been developed regarding the problem of sequence

generation.

• A lockout detection function has been implemented.

• TheMove Blocking approach has been improved adopting the lockout avoid-

ance backtracking and the Approaching Direction (AD) concept. The new

strategy has been named Intelligent Move Blocking (IMB).

• Several tree search sub-optimal methods have been implemented and a

Move Blocking strategy with emptying condition has been developed.

• The IMB has been proved to reach excellent throughput performances with

very low computational cost. Moreover, if an aggressive AD is adopted

good performances are obtained even without optimization.

• A data exchange protocol has been introduced in the control algorithm to

communicate with the real plant and the controller has been validated on

a simulator of the STIIMA-CNR pilot plant.

1.3 Thesis structure

The thesis is organized as follows.

Chapter 2 explains the principles of the the Hierarchical Routing Control, intro-

ducing the Eulerian and Lagrangian formulations. The low-level logic and the

high-level logic are presented and some critical issues are highlighted.

Chapter 3 describes the characteristics and the functioning of the STIIMA-CNR

plant and the implementation of the HRC approach. New additional constraints

are introduced and two new subroutines are included in the low-level logic in

1.3 Thesis structure 9

order to model these constraints.

In Chapter 4 are solved two critical issues: the sequences redundancy in the path

allocation algorithm and the sequence generation problem.

Chapter 5 proposes different solution methods for the optimal control problem

that characterize the path allocation logic. Moreover two types of lockout are

formulated and the related detection conditions are presented.

In Chapter 6 the results of the test are discussed and the different solution meth-

ods are compared considering the throughput value and the computational per-

formances.

Chapter 7 describes how the control algorithm is set up for communicating with

the plant and a simulator is used to validate the functioning of the controller.

Finally Chapter 8 analyzes the objectives achieved and offers hints for future

works.

Chapter 2

Hierarchical Routing Control

The purpose of this thesis is to deepen a new approach developed to solve a real-

time optimal routing problem in a discrete manufacturing plant and on adapting

it to a real case. The considered problem refers to a flexible demanufacturing

plant, where the controller has the task of optimizing the pallet routing through

the handing system, because distinct items must be transported to different tar-

gets to complete a sequence of jobs. This approach has recently been formalized

in the paper [7], leaving some issues unsolved. The main sources of complexity in

this kind of problem are represented by the presence of temporal-logic constraints

and by the large amount of discrete control inputs.

The previous contributions, see [13] [1], have developed a solution from an

Eulerian point of view. In this way the state of the whole plant is considered as

the set of the node states of the graph defining the handling system. Therefore the

previous works have mathematically represented the system relying on a mixed

logical dynamical model. According to a predictive receding horizon strategy,

the control algorithm solves recursively the mixed-integer linear programming

problem, deriving by the previous assumptions. As results the controller is able

to provide the optimal solution at each time steps and the performances are better

than the strategy based on a set of heuristic rules. Unfortunately this approach

11

has shown an exponentially increasing computational cost, that depends both on

the length of the prediction horizon and on the number of items to be moved.

In the new approach a different perspective of the system has been adopted,

the point of view has passed from the Eulerian model to a Lagrangian model,

that does not consider the nodes state but the state of each part processed by

the plant. Moreover a hierarchical MPC structure has been adopted:

• At a higher level, the control algorithm solves recursively a Finite Horizon

Optimal Control Problem (FHOCP) using a receding horizon strategy and

assigns a path to each part in the plant, minimizing a defined cost criterion

in order to reach the desired performances.

• At a lower level, a path following logic computes the control inputs needed

by the parts inside the plant to follow the paths assigned by the high-level

controller. At the same time this logic ensures that the control inputs are

obtained satisfying all the constraints.

The Hierarchical Routing Control has been implemented and tested on the

demanufacturing pilot plant located in the laboratory of Institute of Industrial

Technology and Automation, National Research Council, Italy. The plant con-

sists of 4 machines connected by a modular flexible transport line and its purpose

is to test, repair or discharge electronics boards. In order to implement the ap-

proach to this particular case new constraints have been introduced, modifying

the low-level logic. Some improvements have been performed to deal with the

computational cost problem and with other several issues, such as defining the

creation process of the paths to be assigned, that has not already been automa-

tized.

All the changes and innovations will be discussed in the next chapters, while

in this one the approach will be presented in the generalized form, referring to

paper [7].

12 Hierarchical Routing Control

2.1 Eulerian System Model

The first formulation proposed is the Eulerian system model. Even if the control

algorithm will operate from the Lagrangian model point of view, it is helpful to

recall the Eulerian formulation for the sake of completeness and to introduce some

features of the system. The plant is represented as a directed graph composed

of a finite number Nn ∈ N of nodes and transitions. A Boolean control signal

uh,j(k) ∈ {0, 1} models each transition, indicating if a part in the node h at the

time k will move to the node j at time k+1, where h, j = 1 . . . , Nn. For example,

considering the plant represented in figure 2.1, u4,8(34) = 1 means that at the

time instant 34 a part is leaving the node 4 and will occupy the node 8 at the time

instant 35. Then to each node is associated a Boolean variable zh(k) ∈ {0, 1},

that represents the state of the node h at the time instant k: zh(k) = 1 a part

is present in the node h at time instant k, zh(k) = 0 the node is empty at that

time.

Referring to the whole set of nodes, we consider that Nt out of Nn nodes

consist of transportation nodes, while the remaining Nm = Nn − Nt denotes the

machines. The set of machine node is indicated as:

M = {h : node h is a machine}.

Furthermore two special nodes must be taken into account, the loading node

and the unloading node, denoted respectively with hl and hu. These could be

associated with a single node, depending on the plant configuration, and are

connected to a particular node that represents the outside of the plant. It acts

as interface with an input and output buffer for new and finished parts and

is generically indicated by the index 0. The control action u0,hl refers to the

command that allows a new part to enter into the loading node from outside the

plant, while uhu,0 refers to the command that brings out a finished part from the

unloading node. The number of finished parts at time k is denoted with Nf (k)

2.1 Eulerian System Model 13

Figure 2.1: Eulerian representation of a generic plant, where: hl = 1, hu = 6,

outside node= 0, the nodes 5 and 9 are machines (i.e.,M = {5, 9})

and corresponds to the number of parts that have been unloaded from the line

after being processed by the machines. Finally we can include all the Nu Boolean

control signals in a column vector U(k) ∈ {0, 1}Nu to represent the whole control

action.

Then the nodes indexes are collected into two sets: the outgoing set Oh and

the incoming set Ih h = 1, . . . , Nn, defineded as follows:

Oh = {j : ∃uh,j}, h = 1, . . . , Nn

Ih = {j : ∃uj,h}, h = 1, . . . , Nn

The first one is the set of the indexes related to all nodes that can be reached

directly by node h, while the second one is the set of the indexes related to all

nodes for which h is a direct destination (both of them including possibly the

outside node).

In order to obtain the plant model we define the state of the whole plant

as z = [z1, . . . , zNn]T . At each time step the state is updated by means of the

column vector v(k). Considering the transitions occurring at time k, it sums or

subtracts from the corresponding elements of z(k) the number of parts that are

moving in or out a node.

14 Hierarchical Routing Control

The state update v(k) is computed at each time step as following:

v(k) =


∑
j∈I1

uj,1(k)−
∑
j∈O1

u1,j(k)

...∑
j∈INn

uj,Nn(k)−
∑

j∈ONn

uNn,j(k)


Finally we can describe the plant behaviour by means of this linear model:

z(k + 1) = z(k) + v(k)

Nf (k + 1) = Nf (k) + uhu,0(k)
(2.1)

The Eulerian formulation describes the part movements inside the plant re-

ferring to the nodes as control volumes. Conceptually it can be interpreted as a

series of mass conservation equations, because the state indicates how many parts

are present in each node at the time k. Taking into account the real application

the model is incomplete, thus we have to introduce some operational constraints

on control inputs, that must be satisfied at all time steps:∑
j∈Oh

uh,j(k) ≤ 1, h = 1, . . . , Nn (2.2a)

∑
j∈Ih

uh,j(k) ≤ 1, h = 1, . . . , Nn (2.2b)

∑
j∈Oh

uh,j(k) = 0, ∀h : zh(k) = 0 (2.2c)

∑
j∈Ih

uj,h(k) = 0, ∀h : zh(k) = 1 ∧
∑
j∈Oh

uh,j(k) = 0 (2.2d)

The constraints limit the control inputs in order to guarantee that in each

nodes can be present one part o none. Specifically constraints (2.2a)-(2.2b) ensure

that a part occupying the node h shall reach at most another one, and that only

one part shall enter in the node h at the next time step. Moreover the sum of

all control signals from an empty node must be zero (2.2c). In conclusion (2.2d)

indicates that if the node h is already occupied by a part and it does not become

empty in the next step, no one else can reach it.

2.2 Lagrangian System Model 15

Because a part has to be held in a machine node until the specific operation

is finished, one last group of constraints must be introduced: the temporal logic

constraints. It is possible to write such constraints defining the time needed

by the machine m to end the job by an integer number Lm ≥ 1 of time steps.

Denoting by km the time when a new job is started, the constraints become:∑
j∈Om

um,j(k) = 0, ∀k ≤ km + Lm,∀m ∈M : zm(k) = 1 (2.3)

At this point the model is complete and the optimal control problem can be set.

The aim of the control policy is to compute at each time step the input vector

U(k) minimizing a defined cost criterion and ensuring that all the constraints

(2.2)-(2.3) are always satisfied.

In a previous approach [13] [1], the linear model and the constraints have

been manipulated in order to obtain a mixed logical dynamical (MLD) formu-

lation of the system model, that allows to solve the problem by means of a

large-scale mixed-integer linear program. The MPC algorithm reaches optimal

performances, but is limited by the very high computational cost, caused by the

complexity of the MLD reformulation.

For that reason a hierarchical control scheme is introduced and a new formu-

lation is presented. The perspective shifts to a Lagrangian model and a two-level

approach has been implemented.

2.2 Lagrangian System Model

The major difference between the Eulerian model and the Lagrangian model

consists in the fact that the first one approaches the plant from the point of view

of the nodes, taking into account their status, while the second one tracks the

trajectories of each part in the plant. In order to introduce the Lagrangian model

the state of a part has been described adopting the formulation (2.6) reported in

the following.

16 Hierarchical Routing Control

The index i = 1, . . . , Np(k) denotes the Np(k) ∈ N parts inside the plant at

step k. It is important to underline that the number of parts can change during

the process execution. Then the sequences (or paths) to be assigned have been

indicated by a sets of integers S = {1, 2, . . . , Ns}, where each element corresponds

unequivocally to one sequences. In [7] the formulation of this approach has left

open the problem of sequence generation. Indeed the sequences are empirically

created by the control designer and not even specific guidelines for the sequence

generation have been released. In Chapter 4 this problem will be addressed in

order to find some building methods that could be useful for a future automation

of the process. Moreover in the same chapter will be solved another problem

related to the sequences. Their actual formulation causes a redundancy in the

model predictive path algorithm increasing the computational cost.

Then, the Operator S(s) is defined, which returns ∀s ∈ S the sequence that

corresponds to the index s. The general structure of each sequence S(s) is de-

scribed in the following equation:

S(s) =


 h1

g1

 , . . . ,
 hp

gp

 , . . . ,
 hNs

gNs

 (2.4)

The sequence length is defined by Ns and the element position along the sequence

is expressed by p = 1, . . . , Ns. Each element in the sequence is composed by an

array of two values: hp, gp. These are two integers indicating a node in the plant,

in particular the ordinate set of values hp corresponds to the list of nodes that

must be visited by the part (i.e., the trajectory), while the value gp, with the

same position p in the sequence, denotes the node chosen as the current target

to be reached. For example, depending on the specific part routine, gp could

indicates the next machine to be visited or the outside of the plant, in the case

the part is finished. The actual sequence formulation has been improved in order

to remove the path redundancy, that heavily overloads the computation in the

case of long sequences presenting identical segments. In particular a third entry

2.2 Lagrangian System Model 17

has been added to each element in the sequence:

S(s) =



h1

g1

f1

 , . . . ,

hp

gp

fp

 , . . . ,

hNs

gNs

fNs


 (2.5)

The new value fp ∈ {1, 0} is a Boolean and its function will be explained more in

detail in the Chapter 4. Thanks to this improvement the optimization algorithm

avoids to take into account identical scenarios, reducing the computational cost.

In conclusion the plant state of a part i, obtained from the Lagrangian model,

has the following structure:

xi(k) =


si(k)

pi(k)

ti(k)

 (2.6)

where si(k) ∈ S indicates the sequence assigned to the part i at time k, pi(k) ∈ N

indicates the position of the part i along the sequence and ti(k) counts the elapsed

time steps since the part entered the plant. In particular, denoting by ki the step

when the part was loaded, ti(k) is computed by the following expression:

ti(k) = k − ki (2.7)

The state variables of all parts are collected in a single vector with a variable

length with respect to time (i.e., the length is proportional to the actual number

of parts at the time k), that defines the overall Lagrangian state of the whole

plant model:

XNp(k)(k) = [x1(k)T , . . . ,xNp(k)T]T ∈ N3Np (2.8)

This kind of formulation are not common in dynamical models, but allows us to

simplify the optimal control problem, implementing a hierarchical control, based

on a low level path following algorithm and a high-level path allocation algorithm.

18 Hierarchical Routing Control

2.3 Hierarchical control approach

Figure 2.2: Hierarchical Routing Control structure.

The Hierarchical Routing Control proposed in the new approach has the aim

to simplify the computational complexity of the MPC algorithm. The main

idea is to separate the function of ensuring the compliance with the operational

constraints, from the function of computing the optimal trajectory for each part

in the plant. Furthermore the optimal routing can be found via a simulation-

based optimization method. Such control structure is described by the block

diagram in figure 2.2. Where a(k) is an exogenous signal, which can be assumed

to be a known input or a unknown disturbance; it indicates that at the time k a

new part is ready to be loaded into the system.

The two layers of the hierarchical routing control algorithm perform the fol-

lowing tasks:

• a high-level Model Predictive Path Allocation assigns recursively to each part

a sequence and a position in that sequence, solving a Finite Horizon Optimal

2.3 Hierarchical control approach 19

Control problem (FHOCP) with the aim of maximising the efficiency of the

plant.

• a low-level Greedy Path Following Strategy receives as input the optimal

state computed by the FHOCP solver and computes the feasible control

inputs needed to move the parts forward along their sequences, satisfying

the constraints and solving the conflicts between different part trajectories.

Starting from low-level Greedy Path Following Strategy a more detailed explana-

tion of the control algorithms will be now presented, together with some inno-

vations provided by this thesis, in order to comply with the features of the real

plant.

2.3.1 Greedy path following strategy

In the following block diagram, fig. 2.3, the structure of the Greedy Path Follow-

ing Strategy algorithm (GPFS) has been summarized to explain its functioning;

for the complete formulation, see [7]. The main task of the algorithm is to com-

pute the control action needed to move the parts forward along their sequence

and to update the state of the model. Firstly the actual state is provided to the

algorithm that compute the one-step-ahead predicted state of each part, as if they

could freely proceed to the next position in the sequence. Then it verifies that no

part will conflict (i.e., more than one part will occupy the same node in the next

step). In case of conflicting parts the algorithm will choose which part has the

highest priority. The state of the part with higher priority is confirmed. To the

other parts it assumed to assign their previous state, except for the time counter

that is always updated. Such greedy strategy refers to the priority order exposed

in the block diagram 2.3. Assuming that there is just one loading node, the

GPFS algorithm guarantees that the part with the highest priority is always one,

thus there is always one unique choice. This operation is cyclically repeated until

20 Hierarchical Routing Control

Figure 2.3: Greedy path following strategy algorithm scheme.

there are no more conflicting parts, therefore the correct one-step-ahead state is

provided and, following a ruled-base procedure, the movements are translated in

control signals (i.e., the active transitions). In conclusion, if possible and if the

exogenous signal a(k) is equal to 1, the loading control action u0,hl(k) is activated

in order to put a new part in the plant.

The Greedy Path Following Strategy ensures the compliance with the con-

straints (2.2), while the temporal logic constraints (2.2)-(2.3) are satisfied a priori

by a correct sequence generation. Assuming that the machine nodes are repeated

consecutively along the path for at least Lm positions, the part is held inside

the machine for the same number of steps. When the HRC approach has been

adopted for the real plant located in the CNR laboratory, the path following

algorithm has been improved, because the generalized formulation does not in-

cludes enough constraints. In particular there is a list of transitions that can not

occur at the same time. To correctly model the plant behaviour additional con-

flict solver subroutines has been developed and included in the GPFS algorithm.

2.3 Hierarchical control approach 21

They use the same priority order introduced above to compute which transition

has the priority. Most of the conflicts generated by these constraints have been

solved defining a particular node property, that allows to immediately detect the

parts that must be held in position. These topic will be discuss properly in the

next chapter.

Finally to be able to correctly update the predicted Lagrangian plant the

Greedy Path Following Strategy algorithm has been included in another one (for

simplicity has been called Algorithm 2), that performs the operation of creating

the state for a part that will enter in the plant in the next step and the operation of

removing from the overall state vector the state of a part that has been unloaded.

The control action u0,hl(k) and the control action uhu,0(k), both obtained from

GPFS, report to the Algorithm 2 that a part is going to be loaded or is going to

be unloaded respectively (the node index 0 corresponds to the outside).

Figure 2.4: Algorithm 2 scheme.

22 Hierarchical Routing Control

In conclusion the control policy can be assumed as the description of the

plant behaviour (which is forced to act according to the low-logic rules). Indeed

Algorithm 2 receives as input the actual overall state and the exogenous signal

a(k), returning as output the correct one-step-ahead prediction of the next state.

Moreover it provides as an additional information the feasible control action that

allows each part to move forward along the assigned sequence, in order to perform

the predicted state evolution. This plant model can be expressed by the following

set of functions f(Np(k+1),Np(k)) : 3NNp(k) → 3NNp(k+1), that describe the evolution

of the state:

XNp(k+1)(k + 1) = f(Np(k+1),Np(k))(XNp(k)(k), a(k)). (2.9)

Thanks to this plant model representation, the high-level control algorithm can

predict the system evolution to solve the FHOCP without explicitly including

the challenging constraints (2.2)-(2.3) in the problem formulation. In this way it

can ignore how the lower controller operates and it is able to impose a desired

motion to the parts just changing the actual state with a compatible one, after

having predicted how the state trajectory will evolve in free motion.

The vector of the control signals U(k) is an output of the system model

described by Algorithm 2 and it constitutes the information needed to impose

the same behaviour to the real system. The plant is considered as a black box

model from the high-level controller point of view: assigning a state as input

it is possible to compute its evolution and the corresponding control action, as

represented in the figure 2.5.

2.3 Hierarchical control approach 23

Figure 2.5: Algorithm 2 as a black box model, useful for a simulation-based

optimization method

2.3.2 Model Predictive Path Allocation

The high-level logic represents the core of the MPC. At each time step the task

of the controller is to allocate a sequence s ∈ S (and a position p along that

sequence) to each part, in order to optimize the performances of the plant. For

this purpose a FHOCP is solved predicting the system behaviour by means of

the equations (2.9). Below the features of the Model Predictive Path Allocation

(MPPA or Algorithm 3) control policy will be introduced as proposed by Fagiano

et al. in their paper.

Firstly the actual state is processed for generating the sets of the compatible

states Xi(k), i = 1, . . . , Np(k), whose elements are defines as a couple of values

(s, p), indicating a sequence index s and a position p inside that sequence. Each

set Xi(k) corresponds to the i-th part inside the plant, and represents all the

compatible states with respect to the i-th Lagrangian state xi(k), considering

the two first elements of the state. In two compatible states, the positions along

the related sequences must correspond to the same node and must indicate the

24 Hierarchical Routing Control

same target. In addition when the part is held by a machine node, the state is

defined compatible taking into account also the previous positions, back to the

ones in which the machine has begun the job. In the paper [7] the sets have been

formulated as reported below:

if S(si(k))(1,pi(k)) /∈M :

Xi(k) =


(s, p) ∈ S × N :

S(s)(1,p) = S(si(k))(1,pi(k))

∧S(s)(2,p) = S(si(k))(2,pi(k))

 (2.10a)

else if S(si(k))(1,pi(k)) ∈M :

Xi(k) =



(s, p) ∈ S × N :

S(s)(1,p−j) = S(si(k))(1,pi(k)−j),

j = 0, . . . , k − kS(si(k))(1,pi(k))

∧S(s)(2,p) = S(si(k))(2,pi(k))


(2.10b)

where the operator S(s) returns for each index s the corresponding sequence, the

two operators S(si(k))(1,pi(k)) and S(si(k))(2,pi(k)) define the first and the second

value, respectively, of the pi-th element belonging to the sequence si. The time

step when the i-th part has started the operation in machine m = S(si(k))(1,pi(k))

has been defined by kS(si(k))(1,pi(k)) . The sequences redundancy problem, already

introduced during the sequence formulation, has been solved adding a new con-

dition in (2.10) (in both cases), that excludes a possible compatible state if the

related third element fp is equal to zero. That concept will be better explained in

the Chapter 4, that deals with the sequence features. It is important to underline

that the sets Xi(k) contain at least one pair, the one corresponding to the actual

Lagrangian state of the part. The elements of the compatible state sets represent

the optimization variables of the finite horizon optimal control problem, because

indicate the pull of possible path to be assigned to a part.

2.3 Hierarchical control approach 25

After building the sets (2.10), the Algorithm 3 computes the optimal state

(i.e., assigns the optimal path to each part), solving the following FHOCP, di-

rectly reported from [7]:

min
(σi,πi), i=1,...,Np(k)

N∑
o=0

`Np(o|k)

(
XNp(o|k)(o|k)

)
(2.11a)

subject to

xi(0|k) = [σi, πi, ti(k)]T , i = 1, . . . , Np(k) (2.11b)

XNp(0|k)(0|k) =[
x1(0|k)T , . . . ,xNp(k)(0|k)T

]T (2.11c)

XNp(o+1|k)(o+ 1|k) =

f(Np(o+1|k),Np(o|k))(XNp(o|k)(k), a(o|k)),

o = 0, . . . , N − 1

(2.11d)

(σi, πi) ∈ Xi(k), i = 1, . . . , Np(k) (2.11e)

Where N ∈ N denotes the prediction horizon and lNp(XNp) represents the

stage cost function chosen by the designer, XNp(o|k)(o|k), x(o|k) indicates the pre-

dictions of overall plant state and part Lagrangian states, respectively, computed

at time k and pertaining to time k + o. The prediction of the exogenous signal,

indicating the necessity to load a new part, is denoted by a(o|k) ∈ {0, 1}, o =

0, . . . , N−1. During the tests, reported in the final section of this thesis, it has al-

ways been considered as known. The constraints (2.11b) and (2.11c) indicate that

the optimization variables, the pairs (σi, πi), i = 1, . . . , Np(k), are the sequences

indexes and the corresponding positions in those sequences to be assigned to the

Lagrangian states. Constraints (2.11d) correspond to the system model defined

26 Hierarchical Routing Control

by Algorithm 2, introduced above. The last set of constraints (2.11e) indicates

that the optimization variables are chosen from the sets of the sequences and posi-

tions compatible with the actual part states. At the end (σ∗i , π
∗
i), i = 1, . . . , Np(k)

are the solution to (2.11), which is used to compute the optimal overall state of

the system X∗Np(k)(k). Finally the optimal state is applied to the GPFS algorithm

in order to compute the control inputs.

Figure 2.6: Model predictive path allocation (Algorithm 3) scheme.

In the real case the feedback loop can not be closed directly on the Lagrangian

state, because the sensors of the handling system just check the position of the

pallets inside the nodes (i.e, the Eulerian state) and take track of the target to

be reached by each pallet. Two control strategies can be adopted: a verification

Eulerian state feedback or an estimated Lagrangian state feedback.

In the first option, as showed in the block diagram in fig. 2.7, the control

action is applied to the Eulerian model of the plant in order to obtain a state

comparable with the one measured by the sensors. In that case the feedback loop

becomes only a validation of the prediction, considering the Lagrangian states as

2.3 Hierarchical control approach 27

Figure 2.7: Feedback loop with Eulerian state validation

an image of the process, known and updated only by the controller.

Otherwise a state observer could be implemented to estimate the next overall

Lagrangian state, by means of the actual and past inputs U(k), U(k − 1), ... and

the measured Eulerian states of the next and previous steps z(k+ 1), z(k), z(k−

1), ... This control feedback is shown below in figure 2.8.

Only the first control strategy has been tested (figure 2.7), because in this

thesis the plant is assumed to operate in nominal condition. Therefore no move-

ment faults occur and it is sufficient that at each step the feedback loop verifies

the consistency between the plant model and the real system.

In case movement faults would be considered, two types of error may arise

with respect to the actual state measured by the sensors:

• One or more parts may not move to the next node. In this case it would be

sufficient to reassign to those parts their previous Lagrangian state (except

for the time counter).

28 Hierarchical Routing Control

• One or more parts may move in a wrong node. In this case, being able

to isolate the parts that have moved incorrectly, it would be sufficient to

assign them a new sequence, compatible with the node they are in and the

target they must reach.

Figure 2.8: Lagrangian Feedback loop with state observer.

The actual FHOCP (2.11) follows a Move Blocking approach [14], in which

the Lagrangian states can be changed only at the first step of the prediction

horizon (i.e. the pair (σ∗i , π
∗
i) consists in the two controllable elements in the state

vector of the i-th part, indeed the time ti(k) is just a counter). This is a heavy

limitation, meaning that a very high number of sequences must be precomputed

in order to cover all the possible paths for every possible configurations of the

pars. If the pool of sequences does not cover all the possibilities, in some cases,

especially with many parts in the plant, the controller may not be able to avoid

the lockout during the prediction, because is running in open loop and needs a

specific sequence to avoid the lockout from the beginning. Also because a non

2.3 Hierarchical control approach 29

optimized sequence, for example a default path, is assigned to a new part entering

in the plant during the prediction.

For these reasons an improvement of the optimization problem will be adopted,

considering the possibility to change the Lagrangian state of each part also during

the prediction. In this way the sequence generation problem becomes feasible,

because all the possible part trajectories can be described by a finite number of

sequences. Moreover the model simulation is able to reproduce exactly the move-

ments of the parts along the horizon. These aspects will be described in more

detail in Chapter 4 regarding the sequence generation and Chapter 5 regarding

the optimization problem.

Chapter 3

Real case implementation

In this thesis the HRC approach is implemented and tested on a real plant for

the fist time. It is adopted in an automated demanufacturing plant for testing

and repairing electronic boards. In the following section the plant functioning

will be presented and the operations performed by the different machines will be

explained. Then the handling system will be described by means of a directed

graph in order to develop the Eulerian system model. Furthermore new con-

straints will be identified and added to those formulated in 2.2. In particular

these constraints will be collected in two classes:

• constraints on transitions related to specific nodes

• constraints on pairs of transitions with no node in common

Finally the two corresponding subroutines will be included in the GPFS to cor-

rectly represent the plant behaviour from a Lagrangian point of view.

3.1 Plant description

The approach of Hierarchical Routing Control, introduced in the previous chap-

ter, has been implemented to a real case: a demanufacturing plant designed to

manage the testing, the repair or dismantling of electronic boards. The plant is

3.1 Plant description 31

located in laboratory of the Institute of Industrial Technologies and Automation

(STIIMA), National Research Council (CNR), Italy. Its structure and compo-

nents are shown in the scheme 3.1.

Figure 3.1: Demanufacturing plant structure

The components of the plant consist in the following machines:

• Machine M1 is the Load/Unload Robot Cell: its purpose is to unload the

pallet occupying the transport module adjacent to the manipulator, replace

the electronic board with a new one, then reload the pallet in the plant.

Or i could directly insert or remove a pallet from the plant, if there is an

external pallet buffer.

• Machine M2 is the Testing Machine: is the machine in which the boards

are tested to determine whether they need to be repaired, dismantled or if

they work correctly. For each of these cases the machine determines which

new target the board should reach.

• Machine M3 is the Reworking Machine: in case the board has been eval-

uated as not working, but still repairable, this machine has the task to

32 Real case implementation

rework the board for repairing the malfunction that has been detected by

M2.

• Machine M4 is the Discharge Machine: all boards that can not be repaired

by M3 are unloaded from the pallet and destroyed. Then the empty pallet

is positioned on the transport line.

• The handling system is composed of fifteen transport modules Tn, n =

1, . . . , 15: they form a flexible modular transport line, that connects the

machines to each other and is able to move a part individually along its

specific path. The particular scheme of the modules allows to reach one

machine from another by making different routes, and this determines the

degrees of freedom that enables to optimize the overall handling of the

boards in the plant. The components of these module are translated into

the nodes of the control volumes graph, adopted in the Eulerian system

modelling. Their features will be reported below.

Figure 3.2: Demanufacturing plant in STIIMA-CNR laboratory

3.1 Plant description 33

Figure 3.3: Targets order scheme,M1 is the Load/Unload Robot Cell,M2 Testing

Machine, M3 Reworking Machine, M4 Discharge Machine

The operation of the system is described by a routine that may vary depending

on the characteristics of the processed electronic board. Firstly the board is

loaded on a pallet and enters in the plant, its initial target is the machine M1

in order to analyze the board conditions and to identify its next target. As

previously explained, the result of the Testing Machine can correspond to three

different paths: the first one directed to the Reworking Machine, in case the

board can still be repaired, the second one directed to the Discharge Machine,

if the board must be destroyed, or finally to the Loading/Unloading Cell, if the

board works correctly. When the board is sent to the Reworking Machine, after

the restoration process, it is sent back to the Testing Machine, to check the

new state of the board. When it is sent to the Discharge Machine, the board is

removed from the pallet and is destroyed. In this case the pallet is sent back to

the Loading/Unloading Cell to assign it a new board.

The test performed by machine 1 is what introduces uncertainty into the

model. In fact not knowing exactly what routine the part will have to perform

is a hard problem for a predictive control model, which in order to be robust to

34 Real case implementation

Figure 3.4: HRC with external agent scheme

lockout should take into account all possible test results and simulate all possible

scenarios. It also becomes necessary to modify the route of a part according to

the machine that will be assigned as target after the test. A sequence allocated

to a generic part describes the entire path it will follow through the plant, always

indicating as the last node the one representing the outside. So, in order to

change the target to a part it is necessary to introduce an external agent that

replaces his Lagrangian state just before it leaves the testing machine. In this

way a new sequence will be assigned to the part according to the routine it will

have to perform. This replacement must also be performed during the simulation

to predict correctly the behavior of the plant. For this reason a Move Blocking

approach, which allows the controller to change the trajectory of a part only

at the beginning of the prediction horizon, becomes even more disadvantageous.

Within the prediction horizon, after the external agent has replaced the state of a

part, the control can not decide the sequence for reaching the new target and the

control on that part is completely lost. And even if the test results were known a

3.2 Eulerian plant modelling 35

priori, the control logic would have to define an even larger number of sequences

to cover all the path combinations that can occur.

At each step, before the control reads the actual system state, the external

agent checks if a part is present in the node indicating theM2 machine and checks

if it will leave the machine at the next step. At this point, depending on the test

results it assigns a sequence starting from the same node but with a different

target to move the part towards the next machine. The new target is provided to

the external agent by a parameter denoted as θ and generated by the M2. It can

assume 4 values to indicate respectively: no test performed, next targetM3, next

target M4 or next target M1. Obviously the model of the external agent must be

included in the MPPA algorithm to reproduce its behavior during the prediction

of the system behaviour, see figure 3.4. Considering θ as known it is possible

to predict exactly the different routine of each part, otherwise it will have to be

estimated according to the probability of the outcome of the tests.

3.2 Eulerian plant modelling

The control method proposed in this thesis deals with managing the movement of

parts through the plant, while the operations that take place inside the machines

are assumed to be controlled locally. Therefore, the machines (Load/Unload Cell

and the Testing, Reworking and Discharge Machines) are simply seen as nodes

where the part must be held for a certain number of steps, which corresponds

to the time needed to complete the specific operation (described by Lm in the

temporal-logic constraints 2.3). Those machine nodes are connected to the adja-

cent transport module node by a pair of transitions that indicate the possibility

of accessing and exiting the machine. The remaining parts of the plant consists

of the 15 transport modules, which in previous study, see [13] [1], have been

modelled as in the following lines.

36 Real case implementation

Figure 3.5: Transport module Ti photo

A transport module Ti is composed of three Buffer Zones Yi,j, with j = 1, 2, 3

indicating the three possible positions that one pallet can occupy inside it. From

a Buffer Zone (BZ) a pallet can move in an adjacent BZ in the same module or, if

the transport line configuration allows it, in a BZ belonging to another module.

Referring to [13], on a transport module the movements of a pallet from one of its

three BZs have been defined as Sn, n = 1, . . . , 36 and called Control Sequences, in

the fig. 3.6 they are indicated by the red arrows (they must not be confused with

the concept of sequence introduced in Chapter 2). Moreover, a low-level control

logic has been realized, which in this work is considered as already implemented.

It allows to translate the control inputs, representing the transitions between the

nodes, in the Control Sequences and finally in the signals for the actuators of the

transport modules.

Then the entire plant can be represented by aggregating the model of the

individual transport module and identifying the possible transitions between the

buffer zones between one module and another. In the diagram in figure 3.7 the

3.2 Eulerian plant modelling 37

Figure 3.6: Transport module Ti

entire line has been modeled according to the representation with Buffer Zones

and Control Sequences.

The representation as direct graph is obtained simply by replacing the Buffer

Zones with nodes and connecting the nodes with the transitions defined by the

related Control Sequences. Each of these transitions corresponds to a binary

control action that determines the displacement of the part from one node to

another. (ui, j = 1 indicates that the command to move a part from the node hi

to the node hj is active).

Unlike the model presented in paper [13], a further transition previously ig-

nored is added u21,23 (from node 21 to node 23) and a new node has been intro-

duced: the node 36, which represents the outside of the plant and is connected

with the Load/Unload Cell, node 32. This last one represents both the load and

the unload node, respectively hl and hu. The outside node was not considered

because it was not needed by the previous approach, which did not consider the

possibility to load and unload a pallet from the plant, but only to be able to

replace or load a new electronic board inside of it (these additions are reported

38 Real case implementation

in red in the di-graph in fig. 3.8). In conclusion the dynamical model can be de-

scribed by the equations already introduced in the chapter defining the Eulerian

system model formulation.

z(k + 1) = z(k) + v(k)

Nf (k + 1) = Nf (k) + u32,36(k)
(3.1)

Where:

• z(k) is the array collecting the state at time k of all the nodes in the plant,

z = [z1, . . . , z36]T (Nn = 36);

• v(k) is the Eulerian state update vector, derived as function of the 53

Boolean control actions (U(k) ∈ {0, 1}53, Nu = 53);

• the output of the system Nf (k+ 1) indicates the number of finished part at

the step k + 1, and it is function of the unloading control action u32,36(k),

that corresponds to a part moving fromM1 to outside the plant, (node 36).

Moreover Nm=4 is number of machine nodes, in fact the nodes 32, 33, 34, 35,

denote the machines M1, M2, M3, M4, respectively.

The constraints that characterize the real plant have been discussed in the

previous chapter and have been considered in the control algorithms to directly

limit the system inputs and provide a feasible system behaviour. As anticipated,

the transport modules must satisfy a further set of constraints, determining which

transitions can not occur at the same time. Thus it will be necessary to modify

the GPFS algorithm to take into account also these additional limitations due to

the configuration of the transport line.

3.2 Eulerian plant modelling 39

Figure 3.7: Buffer zones and Control Sequences model [1]

Figure 3.8: Directed Graph model [1]

40 Real case implementation

3.3 Additional constraints

The constraint that must be considered in order to have a faithful representation

of the plant behaviour are denoted by the following formulation:∑
j∈Ci

uj(k) ≤ 1, i = 1, . . . , Nc (3.2)

Where Nc is the number of additional constraints. Each one of them is defined

by a set Ci ⊂ {1, . . . , Nu} of transitions that can not occur at the same time,

Nu = 53 corresponds to the number of control inputs (i.e. the number of possible

transitions in the directed graph representing the plant). In particular the i-th

constraint indicates that just one of the transitions, related to the control actions

belonging to the set Ci, can occur at the step k. These transitions may not refer to

the same node, because the additional constraints take into account the structural

limitations of the transport modules and their configuration. Furthermore two

different subclasses of this type of constraints have been defined depending on the

characteristics of the corresponding set of control inputs Ci. In the first subclass

the set indicates transitions in or out of a specific node, whereas in the second one

the set indicates pairs of transitions that have no nodes in common. The latter

depends on the particular layout of the transport modules and on the limited

number of pallets they can move at the same time. Two different subroutines

have been implemented in the path following algorithm in order to comply with

both categories of constraints.

3.3.1 Constraints on transitions related to specific nodes

It is possible to collect all the constraints related to a node in a set that char-

acterizes the properties on the transitions of that node. In particular it can be

observed that for some nodes a common property P can be defined. For this

reason, they have been distinguished from the others and have been defined as

Constrained Nodes (CN), to indicate that transitions involving that specific node

3.3 Additional constraints 41

must follow certain limitations. The constraints on the transitions of these nodes

can be summarized in few rules:

• If there is a part in a CN and that part is moving out, it is forbidden for

another part, that is leaving an adjacent node, to enter in the CN at the

same time step.

• A couple of nodes (h∗out, h
∗
in) can be assigned to some adjacent CNs. The

first one h∗out corresponds to the destination for the part that is leaving the

CN and the second one h∗in corresponds to the actual node for the part that

is entering in the CN. That couple determines the only pair of transitions

that can occurs simultaneously (not respecting the first rule).

The set of constrained nodes is denoted as W , including the indexes of all

nodes in the plant h = 1 . . . , Nn with the property P , that is formulated below.

Thus the CNs are indicated as wj, j ∈ {1, . . . Nn}, where Nn is the total number

of nodes and Nw = card(W) is the number of constrained nodes, with Nw < Nn.

The property P of those type of nodes is described by the two rules previously

introduced and can mathematically be defined as:

P(w) = {uw,hout(k) + uhin,w(k) ≤ 1,∀hout ∈ Ow ∧ ∀hin ∈ Iw, except for a

specific pair (h∗out, h
∗
in) such that uw,h∗out(k) + uh∗in,w(k) ≤ 2}

An example is proposed in figure 3.9, where the CN is the fourth node w4,

underlined with the colour yellow, and the two transitions that can occur at the

same time are u4,7 and u3,4, represented with the red arrows. These transitions are

determined by the couple of nodes (h∗out = 7, h∗in = 3), and the specific property

P(w4) related to the CN w4 is defined by the set of constraints shown next to the

figure. In particular the constraint u3,4 + u4,7 ≤ 2 is implicit and indicates which

transitions are free to occur at the same time, in fact it is always satisfied.

It is possible to notice that if a part is going to move in a occupied CN, the

only case in which the part can actually move is the following: the part is in the

42 Real case implementation

Figure 3.9: Example of a constraint node wj (in this case j=4)

node hin∗ and the part occupying the constrained node will move simultaneously

in the node hout∗.

In all other cases the transition of this specific part can not occur and the corre-

sponding control input must be set to zero (for some constrained nodes no pair

(h∗out, h
∗
in) is assigned and therefore no pair of transitions that can take place at

the same time). This is the main reason why it was decided to treat these con-

straints separately from the others. There is no need to resolve a conflict between

different parts, because a priori it is known whether a part is in a position to move

or not. The idea proposed is to filter the output of the one-step-ahead predictor

in order to reset the Lagrangian states of the parts that are moving in a node wi,

but are not allowed due to P(wi). Conflicts caused by this property are always

won by the part that is held in node wi, so it is not necessary to make a choice,

for example with a greedy policy as for the type of conflicts that are solved by

the path following strategy.

The algorithm that deals with the correction of the result of the one-step-

ahead prediction has been included in the Greedy Path Following algorithm. It

3.3 Additional constraints 43

has been implemented as a subroutine, immediately after the next Lagrangian

states are computed. Thus it has been defined as Forbidden Transitions Filter-

ing Strategy (FTFS) and in this thesis we will refer to this subroutine simply as

Algorithm 4.

It is assumed that to each node of the plant recognised as constrained node wj,

j = 1, . . .Nw the related pair of nodes (h∗outj , h
∗
inj

) has already been assigned. If

no transitions can occur at the same time for a specific node, the corresponding

pair of nodes is denoted by two null values. The algorithm receives as input the

one-step-ahead prediction x̂i(k + 1) and gives as output its correction ˆ̂xi(k + 1).

Algorithm 4 Forbidden Transitions Filtering Strategy. After each time the

one-step-ahead prediction of the state is computed in GPFS:

1. For each part i = 1, . . . , Np(k) in the plant compute from its Lagrangian

state xi(k) the node where it is located at the current time k and the

node that it will reach in the prediction x̂i(k + 1), respectively as hai =

S(si(k))(1,pi(k)) and as hni = S(si(k))(1,p̂i(k+1)).

2. For each part i:

2.a If the next node is not a constrained node hni /∈ W , or it will be

the same of the previous one hni = hai (i.e, the part is held in the same

position) update normally the state of that part:

ˆ̂xi(k + 1) = x̂i(k + 1)

Thus if one of the two assumptions is not verified then proceed to the next

step, otherwise verify another part state prediction.

2.b The part will move in a constrained node wj = hni at the next step,

thus check if another parts is actually occupying that node. In case no part

44 Real case implementation

is held by wj update normally the state of that part and verify another part

state prediction, otherwise proceed to the next step.

2.c Verify if the l-th part, occupying the node wj, will move to hnl =

h∗outj and if the i-th part is actually in the node hai = h∗inj
. In that case up-

date normally the state of that part and verify another part state prediction

otherwise proceed to last step.

2.d The i-th part is not allowed to move and its state prediction must

be corrected:

ˆ̂xi(k + 1) =


si(k)

pi(k)

ti(k + 1)


As can be noticed, no conflicts are solved by this algorithm. It only checks if each

part is in the condition to advance along its path, otherwise its position in the

sequence will be moved back to the current step. At the end of the prediction

correction some conflicts may remain unsolved, furthermore other conflicts may

also have been generated keeping some parts in position (because a part can not

move into a node that remains occupied). Those conflicts will be solved by the

next steps of the Greedy Path Following Strategy, in which the Algorithm 4

has been included.

One problem arises from this translation of the additional constraints, because

the pair of transitions that can occur simultaneously in a constrained node wj

always has priority over any other. This means that if a continuous flow of parts

triggers this pair of transitions, all other transitions are always inhibited. In this

way the control algorithm can not choose to leave the constrained node empty

for an instant so that another part, coming from a node different from h∗inj
, can

enter in wj. The priority of conflicting parts in a crossroads can be forced by

modifying their sequences appropriately. Repetitions have been introduced in

order to allow the controller to evaluate the option of keeping in position a part

3.3 Additional constraints 45

that would otherwise have precedence. This will be discussed in detail in the

Chapter 4 on the creation of sequences.

Figure 3.10: Priority problem due to Algorithm 4

In the figure 3.10 is shown the problem previously described. Each color

indicates a different part. In this specific case the red one, located in node six,

can not pass in w4 because its transition is always inhibited by the parts that

trigger the pair of transitions indicated by the green arrow.

Finally in figure 3.11 the scheme of the plant is reported to show which nodes

have been considered as constrained nodes, coloured yellow, and the related cou-

ple of unconstrained transitions has been sketch as a green arrow (only for nodes

that allow a couple of possible synchronous transitions).

Also the node 36, directly connected to the loading/unloading machine and

representing the outside, could be considered a constrained node. In fact a part

can not be loaded in the same step when another one is leaving the plant. But

to take this into account, it was enough to modify the condition for which a new

part is introduced in the system.

u36,32(k) = 1, if a(k) = 1 ∧ @i : [S(si(k))(1,p̂i(k+1)) = hl ∨ S(si(k))(1,p̂i(k)) = hl]

u36,32(k) = 0, else.
(3.3)

The modification in the entry condition, with respect to the formulation intro-

duced in [7] has been colored in red, and it adds that a part can be introduced

into the system only if the load node is empty at the next step k+ 1 and even at

the current step k.

46 Real case implementation

Figure 3.11: Constraints nodes in the CNR plant

3.3.2 Constraints on pairs of transitions with no node in

common

The second category of additional constraints includes all the pairs of transitions

that can not occur at the same time and that have no nodes in common. Therefore

these constraints can not be grouped in a set that defines the property of a

node. Usually the control inputs included in this type of constraints activate

cross transitions, which if were triggered at the same time they would cause two

pallets to collide with each other. Another case characterized by these constraints

is related to a technical limitation of specific transport modules that can not

perform two certain movements at the same time, even if they concern different

nodes.

In particular for the real CNR pilot plant the set of this type of constraints is

composed by six elements, reported below. It is possible to notice that for each

pair of transitions the control actions are defined by four different nodes, and

3.3 Additional constraints 47

Figure 3.12: Set of the pairs of constrained transitions

thus the general formulation of this kind of constraints can be defined as follows:

ua,b + uc,d ≤ 1, a 6= b 6= c 6= d ∧ a, b, c, d ∈ {1, . . . , Nn}

Unlike the previous case, these constraints generate a new type of conflicts

between the parts. They are caused by the fact that only one of the two transi-

tions can be triggered in a given instant k. Actually the path following algorithm

only solves conflicts between two or more parts that would occupy the same node.

The new constraints are translated into conflicts that can be resolved using the

same greedy policy introduced previously. In order to do that the path following

strategy must be improved by introducing a subroutine that has been denoted

as Transitions Conflicts Solver algorithm, and in this thesis will be named Algo-

rithm 5. To each j-th constraint of this type is assigned pair of couple of nodes

(aj, bj), (cj, dj) that indicates the couple of transitions τ1j, τ2j that are not allowed

to occur at the same time, referring to the constraint j.

Algorithm 5 Transitions Conflicts Solver. For each j-th transition con-

straint:

1. Detect if there is a conflict between two parts i, l due to the constraints j.

1.a Check if there is a part i actually occupying the first node of tran-

sition τ1j and if the next node of its path will be the second node of that

48 Real case implementation

transition:

aj = S(si(k))(1,pi(k)) ∧ bj = S(si(k))(1,pi(k+1)) (3.4)

If the condition is verified, go to the next step. Otherwise the j-th constraint

is fulfilled.

1.b Check if there is a different part j actually occupying the first node

of transition τ2j and if the next node along its path will be the second node

of that transition:

cj = S(sl(k))(1,pl(k)) ∧ dj = S(sl(k))(1,pl(k+1)) (3.5)

If the condition is verified the conflicting pair of parts (i, l) is identified, go

to the next step. Otherwise the j-th constraint is fulfilled.

2. Compute the index i∗ of the part with the highest priority:

If ri(k) < rl(k) then i∗ = i

Elseif ri(k) > rl(k) then i∗ = l

Elseif ri(k) = rl(k) then i∗ = arg min
y∈{i,l}

ty(k).

where ri(k) is the number of remaining nodes for the generic part i to

complete its sequence.

3. The one-step-ahead prediction state of the part i∗ is kept the same while

the state of the part i
¯
that has lost the conflict is corrected:

x̂i
¯
(k + 1) =


si
¯
(k)

pi
¯
(k)

ti
¯
(k + 1)


The Algorithm 5 solves just conflicts on couple of transitions, it does not solve

all the type of conflict, and at the end of its execution it can leave some conflicts

unresolved or even generate others (holding a part in position could cause a

conflict). Moreover the Algorithm 5 does not detect the conflicts on transitions

3.3 Additional constraints 49

checking directly the control actions because the vector on the control inputs will

be computed later, at the last step of the path following algorithm in which it

has been included.

3.3.3 New subroutines implemented in the Greedy Path

Following Strategy

The two algorithms previously described (Algorithm 4, Algorithm 5) are both

included in the Path following strategy in order to take into account also the ad-

ditional constraints for generating the control action. Is important to notice that

the Hierarchical Routing Control allows to solve the optimal control problem re-

lated to the path allocation without the issue of complying with rigid constraints.

All the plant constraints have been converted into specific subroutines inside the

low-level logic, which ensures that they are fulfilled when generating the control

action. Following this approach every logical constraint can be translated into a

specific algorithm and every temporal constraint can be described with a correct

formulation of the sequences.

In the figure 3.13 has been schematized how the two subroutines have been

implemented in the Greedy Path Following Strategy. The Forbidden Transition

Filter (Algorithm 4) corrects the output of the One-step-ahead predictor. It

ensures that in the prediction the properties of all constrained nodes are fulfilled

holding in position the parts that can not move. The block named "Conflicts

solving" groups all the steps of the GPFS that detect and solve the conflicts

caused by two or more parts competing for a single node. When all the conflicts

have been solved the predicted state is also modified by the Transitions Conflicts

Solver (Algorithm 5), in order to solve conflicts on pairs of transitions due to

the additional constraints described above. Then the GPFS algorithm searches

if new nodes with conflicts have been generated by the Transitions Conflicts

Solver subroutine, and if so, it solves them. Finally the one-step-ahead state

50 Real case implementation

Figure 3.13: Scheme of the implementation of Algorithm 4 and Algorithm 5 in

the Greedy Path Following Strategy

prediction is provided and the control inputs needed to reach it are computed

(following the new entry condition to establish u36,32). It is possible to notice

that the Transitions Conflicts Solver subroutine shares the same greedy policy

to compute the part with the highest priority, in order to be consistent with the

choices made by the GPFS conflict solving.

At this point the model of the real plant is described almost correctly by the

new algorithm. In fact as announced above, further constraints, such as tem-

poral constraints due to the processing times of different machines, are directly

described by the sequences that will be assigned to the parts. This problem is

discussed in the next chapter together with the more general problem of sequence

generation.

Chapter 4

Path allocation redundancy and

sequence generation problem

In the previous chapter the approach implementation has been discussed referring

to the low-level logic and the complete model of the plant has been obtained

including the constraints on transitions in the Greedy Path Following Strategy.

After that it is necessary to analyze the two main features of high-level logic (i.e.,

the Model Predictive Path Allocation): the generation of the sequences to be

assigned and the methods applied to solve the FHOCP. The first one of these

issues is analyzed in the following lines, while the latter will be exposed in the

next chapter.

Recalling how the sequences have been formulated in the paper [7], the general

expression of a sequence S(s) is:

S(s) =


 h1

g1

 , . . . ,
 hp

gp

 , . . . ,
 hNs

gNs

 (4.1)

where s ∈ S is the index of the sequence. The length of a sequence corresponds to

the number of nodes that constitute its trajectory, in other words the Ns number

of positions along the sequence. The elements hp and gp, with p = 1 . . . Ns,

are the node occupied by the part in the p-th sequence position and the related

52 Path allocation redundancy and sequence generation problem

target to reach, respectively. In order to allocate a sequence to a part at the time

step k, the sequence index s(k) and a position along that sequence p(k) have to

be assigned to the Lagrangian state x(k) of that part:

x(k) =


s(k)

p(k)

t(k)


The first problem that will be discussed has already been introduced in Chapter

2, dealing with the paths redundancy in evaluating which paths can be assigned.

The sequence generation problem will be covered secondarily.

4.1 Paths redundancy in the set of compatible se-

quences

At each step the Model Predictive Path Allocation assigns a sequence to each

part in order to avoid lockouts and in order to reach the best overall pallet

handling, maximizing the throughput of the plant. In the ideal case the controller

would have available all the possible sequences that each part could perform from

the node in which it is located. In this way the high-level logic could evaluate

all the trajectories combinations starting from the actual state of the system.

The approach introduced presents a Move Blocking FOHCP formulation [14].

According to this strategy it is allowed to assign a sequence to a part only at the

first step of the prediction horizon. This means that the sequences can not be

combined during the simulation and must indicate the entire trajectory of the

part from the current node to the final target. As an example the scheme of a

generic plant graph is reported below, in which a part must reach node 7 from

node 1. The sequences that indicates the possible evolution of the part from each

node through the graph have been highlighted in three different colours and their

indexes are denoted as s1, s2, s3.

4.1 Paths redundancy in the set of compatible sequences 53

Figure 4.1: Paths redundancy example

The mathematical formulation of those sequences S(s1), S(s2), S(s3) is re-

ported below. It is possible to notice that the target is always equal to 7 for

each position in each sequence, while the other elements describe the trajectory

of the part as an ordinate list of nodes (a sequences could have many targets, the

corresponding index changes each time one of them has been reached).

S(s1) =


 1

7

 ,
 2

7

 ,
 3

7

 ,
 4

7

 ,
 5

7

 ,
 6

7

 ,
 7

7


S(s2) =


 1

7

 ,
 2

7

 ,
 3

7

 ,
 8

7

 ,
 9

7

 ,
 4

7

 ,
 5

7

 ,
 6

7

 ,
 7

7


S(s3) =


 1

7

 ,
 2

7

 ,
 3

7

 ,
 10

7

 ,
 11

7

 ,
 5

7

 ,
 6

7

 ,
 7

7


The problem that derives from this formulation concerns the creation of the set

Xi(k), that is the set of all compatible pairs (s, p) with the Lagrangian state

xi(k) of the i-th part at the step k. In fact, if some sequences coincide in the

final section of their path, they would still be considered as different options to be

evaluated, even if the choice is absolutely indifferent in that part of the trajectory.

For example, in the case just reported the last three steps of each sequences are

54 Path allocation redundancy and sequence generation problem

identical and the FHOCP solver will uselessly perform three identical simulations

when the part will be in the node 5 or 6. This redundancy increases significantly

the complexity of the optimization problem, in particular when there are many

different parts in the plant and when the path to be taken through the plant are

long and overlying.

The solution adopted is to add a third Boolean value fp ∈ {1, 0} to the vectors

that constitute the elements of the sequence. Its function is to worn when it is

needed to evaluate the sequence as a different option or when it can be ignored,

because it is identical to another one. The new formulation adopted is the fol-

lowing:

S(s) =



h1

g1

f1

 , . . . ,

hp

gp

fp

 , . . . ,

hNs

gNs

fNs


 (4.2)

For the previous example it is possible to choose that only s1 will be evaluated

from the node 5 on, and the sequences will assume this form:

S(s1) =




1

7

1

 ,


2

7

1

 ,


3

7

1

 ,


4

7

1

 ,


5

7

1

 ,


6

7

1

 ,


7

7

1




S(s2) =




1

7

1

 ,


2

7

1

 ,


3

7

1

 ,


8

7

1

 ,


9

7

1

 ,


4

7

1

 ,


5

7

0

 ,


6

7

0

 ,


7

7

0




S(s3) =




1

7

1

 ,


2

7

1

 ,


3

7

1

 ,


10

7

1

 ,


11

7

1

 ,


5

7

0

 ,


6

7

0

 ,


7

7

0




The conditions that define the set of compatible sequences Xi(k) (each compat-

ible sequences is indicated by the pair (s, p) including the sequence index and

4.1 Paths redundancy in the set of compatible sequences 55

the position along that sequence) must be modified in order to implement this

improvement. Thus a new condition has been added, that allows to consider a

compatible position p in a sequence only if fp = 1. The formulation of Xi(k)

introduced above in (2.10), is reported with the additional conditions colored in

red:

if S(si(k))(1,pi(k)) /∈M :

Xi(k) =



(s, p) ∈ S × N :

S(s)(1,p) = S(si(k))(1,pi(k))

∧S(s)(2,p) = S(si(k))(2,pi(k))

∧S(s)(3,p) = 1


(4.3a)

else if S(si(k))(1,pi(k)) ∈M :

Xi(k) =



(s, p) ∈ S × N :

S(s)(1,p−j) = S(si(k))(1,pi(k)−j),

j = 0, . . . , k − kS(si(k))(1,pi(k))

∧S(s)(2,p) = S(si(k))(2,pi(k))

∧S(s)(3,p) = 1


(4.3b)

Where S(si)
(3,pi) is the third entry in of the vector in position pi(k) of sequence

S(si(k)), corresponding to the Boolean value fpi that has been introduced in

the new sequence formulation. This improvement ensures to obtain the same

plant behaviour, drastically reducing the computational cost needed to solve

the FHOCP, because the redundant optimization variables (σi, πi) ∈ Xi(k), i =

1, . . . , Np(k) have been removed (referring to the optimal control problem set in

(2.11)).

A practical example is proposed with respect to the demonstration graph

showed in the figure 4.1. It is considered the case with two parts in the graph,

one in node 5 and one in node 6, both with node 7 as target. The controller should

56 Path allocation redundancy and sequence generation problem

test three sequences for each part. Then a total of nine combinations is obtained.

While, after introducing the new condition, the optimizer is not even activated,

because the choice for each part is only one and therefore obligatory. The number

of redundant combinations grows exponentially if we considered the graph of the

real plant, with more parts inside and much longer trajectories. In conclusion

this improvement has been essential to implement the Model Predictive Path

Allocation with reasonable computational time.

4.2 Sequence generation problem

The previous contributions in the literature do not provide any guidelines on

how the sequences should be created, they are simply assumed as already given,

leaving this problem open. Considering the Move Blocking formulation of the

optimization problem, the ideal case would be to provide the optimizer with all

the possible paths that any part placed in any node could perform to reach the

next target. This hypothesis is obviously impossible, because if loops are present

in the graph an infinite number of sequences becomes necessary to represent all

the combinations. Actually it is sufficient to define a loop only once within a se-

quence, so that when the part returns to the position at the beginning of the loop

it can be reassigned the same sequence and repeat the loop, but unfortunately

this happens only in the real behavior of the plant. In the prediction, when the

part returns to the initial position of the loop has no possibility to go back in the

sequence and repeat the path; it will be forced to perform the rest of the nodes

indicated in the sequence assigned at the fist step of the horizon. Therefore the

simulation of the model would not be able to reflect the true behavior of the

system.

For these reasons, the Move Blocking approach that defines the control prob-

lem has been replaced by an extensive search in order to explores all branches

of the search tree. In this way the ability of changing the sequences at every

4.2 Sequence generation problem 57

Figure 4.2: Example of sequence generation for a generic graph

step of the prediction horizon is correctly simulated, becoming consistent with

the real plant behavior. In order to do that, the sets of compatible sequences are

computed at each step, Xi(k + o), i = 1, . . . , Np(k + o), o = 0, . . . , N − 1, where

N ∈ N is the length of the prediction horizon. Obviously the number of opti-

mization variables increases significantly, because several optimization variables

are generated at each step: (σi(k + o), πi(k + o)) ∈ Xi(k + o), o = 0, . . . , N − 1.

The complexity of the optimization problem grows exponentially as function of

the length of the horizon and of the number of compatible states, that determines

the number of branches for the corresponding time step. However the number of

sequences to be assigned can be greatly reduced, and an infinite number of paths

can be covered simply by combining a few sequences. In this way it is possible

to evaluate all the possible parts trajectories during the simulation of the plant

behavior.

A simple example is given to indicate the advantages of the search tree explo-

ration in defining sequences. In figure 4.3 the parts must reach the node 4 from

the node 1. With the Move Blocking approach the number of sequences needed

to describes all the possible trajectories of a part starting from the node 1 would

be infinite, in fact in the graph there are three loops which give the possibility to

reach the node 4 with an infinite number of different trajectories. Thanks to the

58 Path allocation redundancy and sequence generation problem

Figure 4.3: Example of sequences combinations

search tree exploration approach all the possible paths can be described by just

three sequences:

S(s1) =




1

4

1

 ,


2

4

1

 ,


3

4

1

 ,


4

4

1




S(s2) =




3

4

1

 ,


2

4

1

 ,


7

4

1

 ,


8

4

1

 ,


3

4

0

 ,


4

4

0




S(s3) =




3

4

1

 ,


6

4

1

 ,


5

4

1

 ,


2

4

0

 ,


3

4

0

 ,


4

4

0




An example of a more complex sequences s4 is proposed, obtained along the

prediction horizon as a combination of the precomputed sequences s1, s2, s3:

S(s4) =




1

4

1

 ,


2

4

1



⊂S(s1)

∪




3

4

1

 ,


6

4

1

 ,


5

4

1



⊂S(s3)

∪




2

4

1

 ,


7

4

1

 ,


8

4

1



⊂S(s2)

∪




3

4

1

 ,


2

4

1



⊂S(s2)

∪




2

4

1

 ,


3

4

1

 ,


4

4

1



⊂S(s1)

4.2 Sequence generation problem 59

Figure 4.4: Move blocking and search tree schemes comparison

In order to define the minimum number of sequences it is necessary that they cover

all the transitions of the graph. In this way it is possible to move the part freely

through the plant performing any possible trajectory, combining segments of

sequences. Following the Moving Blocking approach the sequences s4, reported in

the previous example, should have been precomputed and stored in the set S. The

combination of the sequences, resulting from the exploration of the search tree,

partially delegates the problem of sequence generation to the control algorithm.

But the problem is not yet solved, because you have to take into account that

along a sequence a part can have different targets and it is not possible to combine

two sequences with different targets.

Along the prediction horizon a part motion does not necessarily coincide with

the sequences assigned to it, because the motion of each part depends on the

control actions computed by the Path Following Strategy algorithm, that takes

into account the constraint and the limitation of the plant. But the algorithm

can not change the trajectory of a part, it can only hold the part in position when

its motion is not allowed.

Another important fact to be considered is the necessity of holding a part in a

node. The temporal constraints due to the machine working time are represented

in the sequence by repeating the specific machine node as many time as the steps

60 Path allocation redundancy and sequence generation problem

needed to finish that machine process. Considering Lm ≥ 1 as the time steps

needed by the machine m to complete the task, the node m must be repeated

at least Lm times along the sequences each time it is indicated. The second

expression in the definition (4.3) determines how the set Xm(k) is generated for

the machine node m. It guarantees that the compatible couple (s, p) take into

account the steps already spent by the part inside the machine node, in this

way the time constraint is ensured to be respected also when the part changes

sequence during the machine process.

Having the possibility to hold a part in a node can be useful for several reasons.

In the Move Blocking approach it is necessary to repeat a node along the sequence

as many time as we want it to remains in that node during the prediction. In

the real plant behaviour the part can be held in position for an infinite number

of steps, it is sufficient that at each instant the previous position in the sequence

is reassigned. At the first step of the simulation the part can decide how many

steps to wait in its node, choosing a number of steps equal or less to how many

times the node has been repeated along the sequences. While for the rest of the

horizon it can wait in the nodes exactly how many times they have been repeated

consequently (not considering when the part is held in position due to the path

following strategy). For these reasons it is important to know in advance how

long a part will have to wait in a specific node and that is not so easy to be

estimated. In the search tree exploration approach this problem is solved; in

fact it is sufficient to repeat a node exactly twice within a sequence to explore

the possibility for a part of leaving the node or remaining there at each step of

the horizon. The nodes repeated twice within the sequences have been defined as

waiting nodes, and are chosen according to their strategic position. The functions

of a waiting node are the following.

• To avoid the lockout: in many points in the plant graph two or more

different trajectories intersect. Those nodes could cause a lockout if two

4.2 Sequence generation problem 61

parts block each other, such as at the entrance of machine nodes. In these

cases it is necessary to choose a node adjacent to the crossing as waiting

node. In this way we are able to anticipate the evaluation of the priority

between part trajectories.

• To force the part priority: sometimes could be useful not to apply

the greedy policy to solve conflicts between parts, perhaps to avoid plant

congestion. To bypass the path following strategy it is enough to provide

to the high-level logic the opportunity to evaluate the case where the part

with the highest priority is waiting in position.

• To inhibit the couple of synchronous transitions in a constrained

node: as anticipated, to a constrained node wj could be associated a pair of

transition that can simultaneously occur. A continuous flow of parts could

trigger this pair of transitions, inhibiting all other transitions entering in

wj. To solve this problem it is sufficient to make the node h∗inj
a waiting

node.

Because the search tree exploration is computationally costly, the number of

sequences must be reduced as much as possible, and the presence of many waiting

nodes along the sequences must be avoided. In the tests will be shown that just a

long optimized sequence can be adopted to reach excellent performances, except

when the part in the plant are to many. In conclusion the guidelines to generate

the set of sequences are provided by these instructions:

1. Generate a main sequences s∗ connecting the shortest path from the loading

node to the first target node, from the first target node to the second one

and so on. The last target must be the node representing the outside. In

this way has been defined the ideal trajectory of a part through the plant,

thus the fastest route possible that cover all the targets. To compute the

shortest path between two targets is possible to use the Dijkstra’s algorithm

62 Path allocation redundancy and sequence generation problem

[15], considering all the transition edges identically weighted.

2. Generate an additional number of sequences in order to represent the as-

signment of different targets when a part exits from a machine. In the case

of the CNR plant, a part can be sent from the testing machine to the re-

working machine, to the discharging machine or to the unloading cell. (one

of this options is already included in the main sequence) The additional

sequences are assigned by the external agent, determining the routine of a

specific part. To generate those path is used the same method as for the

main sequence.

3. A machine node m inside each sequences must be repeated as many times

as the corresponding working time Lm in order to fulfilled the temporal

constraints.

4. Other sequences can be generated to support a specific sequence already

defined, in particular the main sequences, covering nodes that have not been

included in that sequence and transition that could be useful to decongest

the handling system.

5. Establish what nodes must be considered as waiting nodes, taking into

account the three functions to be performed by these kind of nodes, previ-

ously indicated. The waiting nodes must be repeated exactly twice along

the sequences.

6. Check the supporting sequences (generated at step 4.) and the additional

sequences(generated at step 2.), if there are redundant segments with re-

spect to other paths, set to zero the Boolean variable in all the third value

of the elements of those segments.

The tests performed have underlined that the definition of the main sequence is

fundamental to obtain good performances. In fact, in order to speed up the solu-

4.2 Sequence generation problem 63

tion of the control problem, it has been decided not to introduce other supporting

sequences and to manage the pallet traffic only by means of the waiting nodes. It

is hoped that when the number of parts in the plant is not too high, the parts can

follow the same path defined by the main sequence, calculated as the best one

(except for the additional sequences that can change the trajectory of the part for

sending it to a different target). Moreover it has been noticed that the number of

waiting nodes establishes the number of branches in the search tree, i.e. the num-

ber of paths combinations to be simulated. Thus, in case no supporting sequence

is adopted, the presence of waiting node determines the computational cost. The

generation of the main sequence s∗ can be formulated as a operations research

problem. A Shortest Path Problem (SPP) with crossing avoidance [16] can be

formulated: Find the shortest path that connects the loading node to the unload-

ing node, connecting in the right order all the targets that characterize the plant

routine. At the same time minimize the number of waiting nodes needed by the

paths (i.e, minimize the intersections between two different sections of the same

path or between the additional sequences, which represent the routine flexibility,

in particular those occurring in a constrained node.)

The solution to this problem has not been discussed in this thesis, since it

is outside of its purpose and part of future work. In particular, an interesting

problem is to automate the sequence generation process, obtaining the right bal-

ance between computational cost and sequences variety. An on-line sequences

generator might allow to develop an adaptive controller able to deal with line

faults, for example the unexpected inaccessibility of some nodes.

4.2.1 Sequence generation in the real plant case

The following schemes show the result of the sequence generation guidelines.

First, the main sequence is generated, connecting the paths between the differ-

ent machines 4.5. The paths are chosen empirically as a compromise between

64 Path allocation redundancy and sequence generation problem

sequence shortness and the reduction of the number of waiting nodes. In the

second figure 4.6 the additional sequence is defined, representing the testing ma-

chine output that establishes the discharge machine as next target. The two other

outputs of the testing machine (reworking machine or unload cell) are obtained

reallocating the main sequences sections that present that specific target. Finally

two different supporting sequences are proposed 4.7, 4.8, but their implementa-

tion can be useful only when the pallet traffic is congested and the controller need

more nodes to avoid the lockout (e.g., by exploiting the creation of loops some

nodes can be used just as buffer).

Figure 4.5: Main sequence generation example

4.2 Sequence generation problem 65

Figure 4.6: Additional sequence generation example

Figure 4.7: Supporting sequence generation example 1

66 Path allocation redundancy and sequence generation problem

Figure 4.8: Supporting sequence generation example 2

Chapter 5

Solution methods for FHOCP in

MPPA

The Finite Horizon Optimal Control Problem (FHOCP) is the core of the control

strategy developed in this thesis. The purpose of all the algorithms previously

proposed is to provide the optimizer with a model that allows at any time step

to assign the best path combination by a simulation based optimization. The

performance of the plant depends on the design of the stage cost, thus it is

possible to adopt a multi-agent criterion that determines the plant behaviour.

For example it can balance a trade off between conflicting goals, such as the

throughput maximization and the energy saving. In the following sections the

FHOCP is reformulated in order to implement a strategy based on the search

tree exploration. In addition different optimal and sub-optimal solution methods

are proposed. Finally a Move Blocking strategy is presented, assuming that is

possible to choose when to bring a new part into the plant (i.e., assuming the

exogenous signal a(k) as controllable).

A key task of the controller is to avoid the lockout of the plant; to do this

we must be able to identify when a choice will cause the lockout in the next

steps and prevent it from happening. In the first section of this chapter a tool

68 Solution methods for FHOCP in MPPA

is provided to identify the formation of lockouts and a definition of the different

types of lockouts is proposed.

5.1 Lockout detection

The ability to detect a lockout is very important from the computational cost

point of view. The stage cost function defined in the FHOCP allows to avoid

the choice of blocking paths, maximising the throughput or minimizing the time

spent by the parts inside the plant. A non-blocking solution is always more con-

venient with respect to a blocking one. But if a lockout detector is implemented

it is possible to interrupt and reject a sequences combination even during the

simulation, or to interrupt the search without analyzing other scenarios when a

non blocking paths combination has been reached. In the priority tree search it

is fundamental to interrupt the search in a branch when a lockout occurs, other-

wise the computation time would increase unnecessarily. The global lockout of

the system (all the parts can no longer move in any direction) is caused by a local

lockout, in which just two or more parts are blocking each other (unless they are

not blocking fundamental nodes and other paths are still free to reach their tar-

gets). For this reason the movements of the parts must be analysed individually

and it must be prevented that even a local lockout occurs.

In the present thesis two different types of lockouts are defined: the local

lockout and the theoretical lockout. It is sufficient that even just one of the two

happens to stop the simulation and discard the corresponding state causing the

lockout.

5.1.1 Local lockout

A local lockout occurs when two different parts are reciprocally blocking each

other. When the motion of a part along its sequences is inhibited, there is always

5.1 Lockout detection 69

another part with an higher priority blocking it. The problem arises when a part

is indirectly inhibiting its own motion. Note that this case always occurs simul-

taneously for almost two different parts. A chain of conflicts could be created,

starting and ending with the same part. In this case the conflicts force all the

parts to be held in position and nobody will ever win. An example is proposed

in figure 5.1, where the green part in node 6 can not move because it is blocked

by the part in node 3, that is indirectly blocked by the green one by means of

a chain of conflicts. This means that the green part is indirectly blocking itself,

and will be no longer able to move. The same reasoning applies to part in node

3 with respect to the part in node 6.

Figure 5.1: Local lockout example.

It is enough to find a single part that is indirectly blocking itself to detect a

local lockout. And in order to do that a vector Q is defined at each step, where

the elements qi, i = 1 . . . , Np(k) indicates the index of the part that is blocking

the i-th part. If the part is free to move the corresponding element is set to

zero. These values are computed each time a part is held in position by the path

following algorithm (and by its subroutines, Algorithm 4 and Algorithm 5). It

assigns the index of the part with the highest priority, that wins the conflict,

to the value qi related to a part i that loses the conflict. The condition that

determines a lockout occurring is:

∃(i, j) : Q(i)j = i and i, j = 1 . . . , Np(k) (5.1)

70 Solution methods for FHOCP in MPPA

Where the operator Q(i)1 returns the index value qi ∈ Q, that denote the index

of the part that is blocking i. The exponent j indicates how many times the

operator is applied consequently (e.g, Q(i)3 = Q(Q(Q(i)))). The condition (5.1)

indicates that the local lockout occurs when the same part index is detected going

backwards up the chain of conflicts.

In a particular case a lockout can be hidden to this condition: if a part is in a

waiting node. Even if it can not move, because the adjacent node is occupied,

the conflict is not reported and the part wait in position to avoid the unavoidable

lockout. It can only progresses one position along the sequence and at the next

step the previous one will be reassigned (remaining in the same node). To over-

come this problem, it is sufficient to modify the vector of the blocking indexes Q

in this way:

If S(si)
(1,pi) = S(si)

(1,pi+1) ∧ ∃ a part j : S(sj)
(1,pj) = S(si)

(1,pi+2)

then qi = j

The blocking index qi assigned to a part i in a waiting node, corresponds to the

index of the part occupying the node indicated in the next position along the

sequence related to i.

5.1.2 Theoretical lockout

Theoretical lockout denotes a specific evolution of the state of the whole system

characterized by the fact that state is equivalent to the previous one. Equivalent

means that all the parts remain in the same node of the previous state and if

there are parts in a machine node, those parts are not moving along their sequence

(the node is the same and the position inside the sequence is not progressing, the

machine has already completed the operation). The theoretical lockout does not

necessarily correspond to a global lockout, because the part are not blocked, but

all those parts that could move are waiting in a position. This type of lockout

5.1 Lockout detection 71

does not cause the irreversible blockage of the parts but indicates the fact that

the chosen state has evolved in an equivalent one, thus the control action has

been completely useless (it could repeat this condition indefinitely). The parts

are not locked but are kept locked by the controller itself.

The detection of theoretical lockouts removes useless branches from the search

tree and especially avoids that the controller keeps the parts in position to avoid

incurring a unavoidable local lockout. In order to detect a theoretical lockout

is needed to compute the one-step-ahead prediction of the state and compare it

with the previous one. The three conditions required to identify a theoretical

lockout are the following:

Np(k) = Np(k + 1) = Np

S(si(k))(1,pi(k)) = S(si(k + 1))(1,pi(k+1)) ∧ S(si(k))(1,pi(k)) /∈M, ∀i = 1 . . . , Np

K(sj(k), pj(k)) < K(sj(k + 1), pj(k + 1)),∀j : S(sj(k))(1,pj(k)) ∈M, j = 1 . . . , Np

Where the operator K(sj, pj) returns the number of positions, preceding the po-

sition pj in the sequence sj, with a node index identical to the actual node

S(sj)
(1,pj) = m (i.e., it indicates for how many steps the part j has been inside

the machine m up to the position pj in the sequence sj).

72 Solution methods for FHOCP in MPPA

5.2 Brute force or extensive search

In order to easily generate the sequences set and to obtain a simulation consis-

tent with the real plant behaviour, it has been decided to adopt a search tree

exploration approach over the Move Blocking approach. The optimal solution

can be found by means of a extensive exploration with a Brute Force method.

The FHOCP proposed in (2.11) is thus reformulated:

min
(σi(k+o),πi(k+o)), i=1,...,Np(k+o), o=0,...,N−1

N∑
o=0

`Np(o|k)

(
XNp(o|k)(o|k)

)
(5.2a)

subject to

xi(o|k) = [σi(k + o), πi(k + o), ti(k + o)]T , i = 1, . . . , Np(k + o), (5.2b)

o = 0, . . . , N (5.2c)

XNp(o|k)(o|k) =[
x1(o|k)T , . . . ,xNp(k)(o|k)T

]T
,

(5.2d)

o = 0, . . . , N (5.2e)

XNp(o+1|k)(o+ 1|k) =

f(Np(o+1|k),Np(o|k))(XNp(o|k)(k), a(o|k)),

o = 0, . . . , N − 1

(5.2f)

(σi(k + o), πi(k + o)) ∈ Xi(k + o), i = 1, . . . , Np(k + o), (5.2g)

o = 0, . . . , N − 1 (5.2h)

Where the optimization variables σi(k+ o), πi(k+ o) are the sequence index and

the position inside those sequence, respectively, to be assigned to each part at

each step k + o of the predicting horizon. Their number change at each step

depending on the evolution of the number of parts in the plant Np(k + o) and

5.2 Brute force or extensive search 73

Figure 5.2: Search tree

they belong to the set of compatible states Xi(k + o) which can be assigned to

that specific parts i at the prediction step k + o.

Because that problem is a non-linear integer optimization problem, a brute

force approach has been adopted in order to test all the possible sequences com-

bination. The optimal solution is find exploring extensively the search tree and

choosing the branch associated to the minimum sum of edges weights. The stage

cost function `Np(o|k)

(
XNp(o|k)(o|k)

)
computes the weight related to the edge that

connect the state k + o to the next state. The search tree is generated simply

simulating the plant model one-step behavior for each part state derived by the

related compatible set Xi(k + o), represented in the figure 5.2 in brackets. The

branches falling into a state that causes a local lockout or that repeat cyclically

the same state evolution, because the simulation incurs an equivalent state (the-

oretical lockout), are immediately rejected to speed up the tree exploration. This

is possible thanks to the ability to detect a lockout previously introduced.

The brute force approach can be implemented adopting the Deep-First Search

[17]. Thus the main optimization problem can be divided into sub-problems as

progressing along the horizon. Then the solution of the main problem can be

easily obtained solving step by step each sub-problem, starting from the bottom

of the horizon and coming backwards. The branches obtained from the underlying

74 Solution methods for FHOCP in MPPA

Figure 5.3: Search tree recursive solution via sub-problems

solutions are recursively connected to the upper edge related to the next sub-

problem. In this way the problem to be solved at each step is trivial and consists

only in the choice of the branch with the minimum cost in a finite range of

possibilities. A graphical example of the recursive search tree exploration is

proposed in following figures: in fig. 5.4 is represented the overall search tree

scheme, in figure 5.5 the lowest sub-problems are solved, those at the end of the

horizon, in fig. 5.6 the middle sub-problems are solved including the solutions of

the previous sub-problems; finally in fig. 5.7 the branch with the minimum cost

is found comparing the solutions obtained from the lower sub-problems.

Figure 5.4: Search tree scheme

5.2 Brute force or extensive search 75

Figure 5.5: Solution of the sub-problems at the end of the horizon

Figure 5.6: Backwards solution of the middle sub-problems

Figure 5.7: Solution of the main optimization problem

76 Solution methods for FHOCP in MPPA

It is possible to notice that the solution of sub problems, that refers to the

same step of the prediction horizon, can be parallelized and computed indepen-

dently. The solution of the FHOCP via extensive search ensure to find the optimal

solution but becomes unfeasible when there are too many pallets in the plant or

too many sequences to evaluate. An approximate calculation of the number of

one-step simulations can be performed considering a constant average value for

the number of elements of the set of complementary states. Assuming a single

sequence to be assigned, the size of the set of equivalent states depends on the

number of waiting nodes actually occupied at that step. For example, considering

approximately two occupied waiting nodes per step, there are four different state

combinations to be tested (i.e, 2n with n denoting the number of waiting nodes).

The average number of simulation to be performed can be computed using this

equation:

Nsim =
N∑
o=1

(2N̄w)o

where N̄w is the average number of waiting node occupied by a part at each time

step k + o of the prediction horizon. Considering always two constrained nodes

to be occupied and a relatively short prediction horizon N = 20, the number of

one-step simulation would be 1, 466 ·1012. Referring to the application developed

in this thesis, the average computational time needed to simulate the system for

one-step is 0, 004s. Thus the whole computational time needed to an extensive

exploration of the search tree would approximately be 5.86 · 109s. Therefore

the brute force approach is not implementable and it has been replaced by sub-

optimal tree exploration strategies in order to obtain a feasible computational

time.

5.3 Intelligent Move Blocking 77

5.3 Intelligent Move Blocking

A sub-optimal alternative to extensive tree search is proposed. This method is de-

veloped calculating a feasible branch for each of the compatible states at the first

step of the horizon. Thus the optimization variable are the pairs (σi(k), πi(k), i =

1, . . . , Np(k), as for the move blocking approach, but with an improvement. Each

time the simulation incurs a state causing a lockout, the simulation is returned

in the previous state (one step backwards) and a new compatible state is cho-

sen, in order to find a non blocking solution, if it exists. In conclusion the

sequence assigned to each part can change only at the current time step or ev-

ery time a lockout is detected along the prediction horizon. The Backtracking

is used in the artificial intelligence field, because is an effective method to solve

constraint satisfaction problems [18]. A graphical explanation of the lockout-

avoidance backtracking is showed in figure 5.8 below, where the yellow cross

indicates the detection of a lockout.

The Intelligent Move Blocking provides a sub-optimal solution to the problem,

because the optimization depends exclusively on the choice between compatible

states with respect to the actual state. The additional degrees of freedom help to

reach the end of the horizon without incurring a lockout, making no contribution

to the optimization.

The computational time is greatly reduced, from thousands of hours, see fig

5.9, to a few seconds, see fig. 5.10, but the problem is not completely solved.

In fact a peak may occur when the plant is in a condition where it is difficult

to avoid the lockout and the search tree must be explored almost completely

before a feasible branch is found. For this reason other exploration methods

have been developed and will be exposed in the next sections, obtaining better

computational performances but at the cost of a worse sub-optimal solution.

The choice to adopt only one main sequence and to control the parts flow

thanks to the waiting nodes (repeated twice along the sequence) adds a degree of

78 Solution methods for FHOCP in MPPA

Figure 5.8: Intelligent Move Blocking strategy

freedom to the design of the Intelligent Move Blocking strategy. In fact, for that

specific case the set of compatible states consists in the combination of choices

regarding the motion or the waiting of the parts that are occupying a waiting

node. Furthermore at each step of the prediction horizon it is possible to direct

the evolution of the system, instead of letting the parts advance in open loop

along the sequences assigned at the first step (as in the classic Move Blocking

approach). In order to do that the set of all compatible states is computed at

each step and the state chosen to continue the simulation depends on the order

of choice (Approaching Direction) of the elements of the set. The Approaching

Direction is an additional parameter that can be tuned by the designer in order

5.3 Intelligent Move Blocking 79

to impose an aggressive or a soft control policy (i.e., it determines the ratio of

how many part in a waiting node are push forward and how many parts are held

in position at each step of the prediction horizon). The concept of approaching

direction will be better explained in the following section.

Figure 5.9: Brute force computational time

Figure 5.10: Intelligent Move Blocking computational time

80 Solution methods for FHOCP in MPPA

5.3.1 Approaching direction

In the case a single main sequence with waiting nodes has been defined, the set of

compatible states can be defined in an orderly manner. In that case it is possible

to choose an Approaching Direction (AD) to test the elements of the set. In

particular when the search tree will not be completely explored, it is crucial to

determine what Lagrangian states combination must be tested first, because this

will determine the quality of the sub-optimal solution. In the set of compatible

states there are sequences combinations that try to move forward most of the

part and others that hold in position most of the parts occupying a waiting node.

This determines the aggressiveness of the control action and affects the result of

the optimization. Thus the approaching direction consists in the testing order of

the next edges in the search tree.

An example is proposed in order to define some approaching directions that

will be implemented in the control algorithm in the next chapter. In the following

figure 5.11 a simple graph is proposed with the precomputed main sequence S(s1)

that defines four different waiting nodes 1, 3, 5, 6 (underlined in red). At the

actual time step in the below graph there are four parts and the nodes 1, 3, 4, 6

are those occupied by those parts, coloured in orange.

Figure 5.11: Example of a sequence defining the waiting nodes in a graph

The current four set of compatible sequences are: X1(k) = {(s1, 1), (s1, 2)},

X2(k) = {(s1, 4), (s1, 5)}, X3(k) = {(s1, 6)}, X4(k) = {(s1, 9), (s1, 10)} with part

1 in node 1, part 2 in node 3, part 3 in node 4, part 4 in node 6. It is possible to

5.3 Intelligent Move Blocking 81

notice that all parts in a waiting node have two possibilities: to stay in position or

to move to the next node, with respect to the first and the second pair respectively.

The Lagrangian state xi(k) related to the part i and to the first pair in X i(k)

has been denote as xi(k)[1], and that one related to the second pair has been

denoted as xi(k)[2], e.g. x2(k)[1] = [s1 4 t3]T and x2(k)[2] = [s1 5 t3]T .

Therefore the set of compatible states related to the case just introduced is

Xcom(k) = {X1(k), X2(k), X3(k), X4(k), X5(k), X6(k), X7(k), X8(k)}.

the number of elements is obtained as 2Nw(k), where Nw(k) is the number of wait-

ing nodes actually occupied. The elements of the set Xcom(k) can be ordered from

the more aggressive to the softer, following the combinatorial method reported

below (referring to the specific example).

X1(k) = [x1(k)[1]T , x2(k)[1]T , x3(k)[1]T , x4(k)[1]T]T

X2(k) = [x1(k)[2]T , x2(k)[1]T , x3(k)[1]T , x4(k)[1]T]T

X3(k) = [x1(k)[1]T , x2(k)[2]T , x3(k)[1]T , x4(k)[1]T]T

X4(k) = [x1(k)[2]T , x2(k)[2]T , x3(k)[1]T , x4(k)[1]T]T

X5(k) = [x1(k)[1]T , x2(k)[1]T , x3(k)[1]T , x4(k)[2]T]T

X6(k) = [x1(k)[2]T , x2(k)[1]T , x3(k)[1]T , x4(k)[2]T]T

X7(k) = [x1(k)[1]T , x2(k)[2]T , x3(k)[1]T , x4(k)[2]T]T

X8(k) = [x1(k)[2]T , x2(k)[2]T , x3(k)[1]T , x4(k)[2]T]T

It is possible to observe that X1(k) is the softer state, where all the parts are held

in position (the part 3 can not be held, because is not in a waiting node), while

X8(k) is the more aggressive state, where all the parts are pushed forward. The

states X7(k), X6(k), X4(k) are moderately aggressive, while the states X1(k),

X2(k), X5(k) are weakly aggressive. Not always the most aggressive states cor-

respond to the best performances, in fact they can more easily cause a congestion

of parts or even a lockout. In this thesis the following Approaching Directions

(ADs) have been tested:

82 Solution methods for FHOCP in MPPA

1. AD1: From the most aggressive to the softest

Xeq(k) = {X8(k), X7(k), X6(k), X5(k), X4(k), X3(k), X2(k), X1(k)}.

2. AD2: From the softest to the most aggressive

Xeq(k) = {X1(k), X2(k), X3(k), X4(k), X5(k), X6(k), X7(k), X8(k)}.

3. AD3: Inward alteration

Xeq(k) = {X1(k), X8(k), X2(k), X7(k), X3(k), X6(k), X4(k), X5(k)}.

4. AD4: Outward alternation

Xeq(k) = {X5(k), X4(k), X6(k), X3(k), X7(k), X2(k), X8(k), X1(k)}.

5. AD5: Alternation directed to the most aggressive

Xeq(k) = {X5(k), X1(k), X6(k), X2(k), X7(k), X3(k), X8(k), X4(k)}.

The choice of the correct approaching direction can be very useful to avoid

computational peak. In fact when the handling system is congested by many

pallets, a too aggressive AD facilitates a lockout generation and it makes it very

difficult to find a non-blocking solution able to reach the end of the horizon.

In those situation the computational cost could rise tremendously, because the

most prudent solutions, that would facilitate to solve the congestion, are tested

last. Especially when the algorithm need to go back several steps to discard the

choice that will cause the lockout. Another solution could be to interrupt the

exploration of a branch that runs into a large number of lockouts during the

prediction horizon, to avoid too much useless backtracking.

The approaching directions previously described have been implemented at

the beginning of the tests as a constant control parameter, but they could be

automatically changed at the beginning of the tree exploration, depending on the

number of parts inside the plant, or they could even be changed at each step of

the predicting horizon as function of the cardinality of the current compatible

state set Xcom(k + o).

5.4 Non-optimal solution 83

5.4 Non-optimal solution

If a feasible solution to the control problem has to be found as soon as possible,

the optimization can be abandoned directly choosing the first solution computed

during the exploration the search tree. The only condition to be satisfied in order

to choose a feasible solution is that the plant lockout must be avoided for all the

prediction horizon. The problem is identical to the one proposed in the Intelligent

Move Blocking, but it is not necessary to choose the best solution among those

found for each compatible state at the beginning of the horizon: it is chosen the

first one.

Obviously, this method loses all the advantages of implementing optimal con-

trol, in fact the only task of the controller becomes to avoid the lockout, it can no

longer affect the throughput or improve other performance of the system. Nev-

ertheless the progression of the parts along the assigned routine is guaranteed.

This is due to the fact that the sequences assigned to the parts contains the cor-

rect routine to be performed and if the sequences have been correctly generated,

they partially solves the optimization problem, representing the most convenient

paths. The control guarantees the advancement of the parts along the sequences,

because the theoretical lockout has been included in the lockout detection, ac-

cording to which a control action that keeps the system in a state equivalent to

the previous one can not be chosen.

As for the Intelligent Move Blocking, the solution computation along the

search tree can be directed by choosing properly the Approaching direction.

That allows to test first the solutions that theoretically should improve the per-

formances (a soft approaching direction could uselessly keep waiting parts in

position). For the above reasons, even if the system performances are no longer

controllable by the non-optimal controller, the quality of the solution is partially

preserved; in particular when there are only a few pallets in the plant the solu-

tion is identical to the optimize one. Using this control method is very helpful in

84 Solution methods for FHOCP in MPPA

case the available computing power is extremely limited or the complexity of the

search tree is really high, because the parts are in an unfortunate configuration

where many different compatible sequences are detected.

The second case has been taken into account to develop a switching control

strategy, able to adapt the solution search method to different scenarios in order

to avoid computational peaks. A Intelligent Move Blocking strategy has been

implemented with the ability to interrupt the optimization and take the first so-

lution available. A switching criterion has been adopted to activate or deactivate

the optimization with respect to the complexity of the search tree. The compu-

tational time in an Intelligent Move Blocking approach depends on the number

of elements included in the compatible states set at the first step of horizon. In

fact for each of those states it is required to find (if possible) a non blocking

solution to be compared by the optimization process (figure 5.12). Therefore a

maximum value of the cardinality of Xcom(0|k) has been established above which

it is sufficient to compute a single non-optimal solution to the control problem.

Figure 5.12: Number of solutions compared in a IMB problem

5.4 Non-optimal solution 85

The parameter triggering the non-optimal solution strategy is denoted with ξ

and is compared with card(Xcom(0|k)) at the first step of the Model Predictive

Path allocation algorithm (after computing of the sets Xi(0|k), i = 1 . . . , Np(0|k)).

In conclusion the switching criterion between the two control strategy can be

defined as follows:

Control strategy =

 card(Xcom(0|k)) ≤ ξ → Intelligent Move Blocking

card(Xcom(0|k)) > ξ → Non-optimal solution
(5.4)

Another switching criterion can be the based on the number of one-step sim-

ulations performed. After a certain number of simulations the control algorithm

can interrupt the search tree exploration and choose between the feasible solu-

tions already found or, in case no solution has been found, it can switch to a

non-optimal solution approach. This strategy has not been developed in this

thesis, because less interesting for the controller design.

The partial optimizing control strategy formulated in 5.4 has been defined as

IMB(ξ): Intelligent Move Blocking with switching criterion based on ξ. Obviously

the case IMB(0) corresponds to the non-optimal solution approach. Many tests

have been performed; the results, that will be reported in the next chapter, have

shown how throughput and computational cost depend on the value of ξ. In

fact the more ξ decreases the more the throughput and the computational time

decrease. But, in case an aggressive approaching direction has been adopted,

with few parts in the plant the performances remains almost constant, while the

computational cost decreases. It can be established that if the plant is not heavily

congested, the optimisation is no longer relevant because the controller has only

to push forward the parts along the main sequence and their trajectories do not

conflict with each other.

86 Solution methods for FHOCP in MPPA

5.5 Intelligent Move Blocking with sub-horizons

In order to improve the optimization result, the search tree has to be explored

more extensively. The Move Blocking approach ignores most of the possible

solutions, even with an lockout-avoidance backtracking. Moreover, when a soft

approaching direction is adopted it would be very useful to compare a greater

number of feasible scenarios to compensate the weakness of the solutions found.

The strategy that has been developed for this purpose consists in a recursive

nesting of Intelligent Move Blocking problems, in which the prediction horizon is

divided in many sub-horizons. At the end of each sub-horizon a new IMB problem

is set, starting from the current state. In this way the number of optimization

variables increases at each sub-problem. It can be interpreted as the prediction of

the plant behaviour branches out at the limit at each sub-horizon, thus developing

all current alternative scenarios. The sub-horizons length is chosen depending on

the desired level of detail adopted for the tree exploration. Of course, the higher

the number of intervals in which the horizon is divided the more computational

cost will increase. A graphical explanation is reported in the following figures,

where the horizon is divided in two sub-horizons. Firstly the sub-problems are

solved and their results is connected to the previous branches in order to solve the

main problem. (This strategy can be implemented also with IMB(ξ) problems

nesting)

Figure 5.13: Search tree sub-horizons division

5.5 Intelligent Move Blocking with sub-horizons 87

Figure 5.14: Lower sub-horizon IMB problems

Figure 5.15: Solutions to be compared in the Sub-IMB problems

Figure 5.16: Main IMB: solutions to be compared

88 Solution methods for FHOCP in MPPA

5.6 Move blocking with controllable exogenous in-

put and emptying condition

The last control strategy that has been developed consists in a classical Move

Blocking optimal control problem but with some improvements in order to make

it effective. As already mentioned, the main problem of the MB strategy is due

to the sequence generation. In fact it would be necessary an infinite number

of path to represent each possible part trajectory from each node in the plant

(i.e for each plant parts distribution). Moreover to a new part entering in the

plant during the prediction horizon can not be assigned a different path, thus can

not be controlled. While in the Intelligent Move Blocking variant, the system

evolution is directed at each time step thanks to the approaching direction of the

compatible state sets. Another disadvantages is that if the simulation from an

initial compatible state incurs in a lockout, the only thing that can be done is

to interrupt that simulation, because the state evolution can not be corrected to

avoid the lockout. Some assumptions can be introduced to simplify the control

problem and to make the Move Blocking strategy implementable:

• The exogenous signal a(k), indicating that a new part must be loaded into

the plant, is considered controllable. It is not included in the control prob-

lem as an additional optimization variable, but its value is chosen in order

to avoid the lockout. In case a new part would enter the plant and the

Model Predictive Path Allocation could not find a feasible solution to the

next control problem, the signal a(k) is switch off and the part is not loaded.

That occurs because the set of precomputed sequences stores just few possi-

ble assignable path or because that maximum manageable number of parts

has been reached

• The prediction horizon is variable, depending on the emptying plant condi-

tion. The system behaviour is simulated from the actual state until all the

5.6 Move blocking with controllable exogenous input and emptying
condition 89

parts have been unloaded, guaranteeing that the plant is able to process all

parts without incurring a lockout. To this purpose no new parts are loaded

during the next steps of the simulation. Moreover the optimal control prob-

lem cost function can be substitute by the length of the prediction horizon.

In fact the simulation in which the plant is emptied in the shortest time,

corresponds to the optimal initial state.

The model predictive path allocation is modified in order to take into ac-

count these assumptions and the strategy adopted to solve the control prob-

lem can be summarized in few steps:

1. Set a(k) = 1 and compute the one-step-ahead prediction of the state

X̂(k + 1) from the actual state X(k) by means of the plant model

that include the Greedy Path Allocation Strategy.

Then check the provided vector of control actions if a new part would

be loaded into the plant at k + 1 (i.e., u(k)36,32 = 1).

2. If no part will be loaded, compute the optimal state X∗(k) compat-

ible with the actual state X(k) applying the Model Predictive Path

Allocation algorithm with a move blocking approach.

Then compute the control action by means of the plant model simu-

lation and update the plant state.

If no part will be loaded go to the next step.

3. In case a new part is loaded compute the optimal state X∗(k + 1)

compatible with the state obtained from the one-step-ahead predic-

tion X̂(k + 1) applying a move blocking approach. If no solution is

possible set a(k) = 0 and go to step 2. otherwise apply the control

input computed at the step 1. and update the plant state with the

optimal state X∗(k + 1) (in this way the parts will be routed along

the optimized paths when the algorithm is restarted from step 1.).

90 Solution methods for FHOCP in MPPA

This approach has reached excellent performances in terms of computational

cost and of throughput. However compared to previous approaches it has less

restrictive conditions. In fact the other approaches can not control the loading

signal and they have to manage a new part even when it becomes very complicated

to avoid the lockout. Besides the computational cost of the previous approaches

is not necessarily higher, even if the number of parts in the plant remains almost

constant along the prediction horizon and the number of optimization variables

must be higher to avoid the lockout. In fact this last strategy has much longer

prediction horizon length due to the emptying condition, increasing significantly

the computational cost.

In conclusion the Move Blocking strategy can not be compared with the pre-

vious approaches, because operates in special conditions. It do not include the

lockout-avoidance backtracking and the possibility to choose the approaching di-

rection to affect the system evolution along the search tree. Thus when all the

solutions incur a lockout, the control logicn can just renounces to manage an

extra part.

Figure 5.17: Move blocking with controllable exogenous input and emptying

condition, control logic scheme

Chapter 6

Test results and methods

comparison

Figure 6.1: Photo of the CNR pilot plant

In this chapter are presented the results of the tests obtained from all the

simulations of the control algorithm, to verify the validity of the proposed HRC

approach and to compare all the possible methods for solving the optimization

problem. A laptop with 16GB RAM and an Intel Core i7-7700HQ at 2.8 GHz

has been used and the simulations have been implemented via MATLAB.

The routine characterizing the target of a specific part has been defined as

92 Test results and methods comparison

shown in figure 6.2 by setting the probability of the possible testing machine

results (M2). The first time a board is processed by the testing machine the

probability associated to the new target are:

• PM4 = 0.4 the board can not be repaired and is discharged;

• PM1 = 0.2 the board works properly and is unloaded from the plant;

• PM3 = 0.4 the board can be repaired and it is sent to the reworking machine.

If a part is sent to the reworking machine, then it will be processed by the testing

machine a second time. In that case the board can no longer be sent to the

reworking machine, thus the outputs probabilities of the two remaining options

are:

• PM4 = 0.4 (the board is definitely broken and is discharged);

• PM1 = 0.6 (the part works properly and is unloaded from the plant).

For each machine a fixed working time Lm as been chosen. This is a sim-

plification, because the specific operations performed by the testing machine or

by the reworking machine may vary depending on the status of the processed

board. Specifically, the working times (denoted by number of steps) has been set

as following:

Lm1 Lm2 Lm3 Lm4

1 5 4 3

Table 6.1: Table of machines working time

The main purpose of the tests is to verify in different scenarios which method

is more efficient with respect to performance and computational time. The two

parameters that will most affect the results are the maximum number of parts in

the plant and the length of the prediction horizon. It has been considered that

93

Figure 6.2: Testing machine results probability

the task of the controller is just to maximize the throughput, ignoring all the

energy issues. Firstly a deterministic model prediction has been implemented, i.e

the controller perfectly knows the results of the testing machine along the pre-

diction horizon. Then the robustness of the controller has been tested, referring

to the uncertain plant model, where the previous probability distributions are

considered known.

For all the following test only two sequences has been adopted: a main se-

quence s1 and an additional sequence s2 representing a different testing machine

output. The graphical representation of the main sequences can be found in

figure 4.5 and defines the routine of a non working board that is fixed by the re-

working machine and is unloaded after the second test in M2. The mathematical

formulation is reported below. In order to distinguish the first time the board

is processed from the second one, the testing machine target node is denoted by

two indexes 34 and 34.2 . Moreover it is possible to observe that the waiting

nodes are {2, 10, 15, 22, 27}, because they are repeated twice along the sequence.

The machine nodes has been repeated as many times as corresponding number

of the working time steps.

The additional sequence s2 indicates the trajectory of a board that has been

94 Test results and methods comparison

processed by M2 and is going to be discharged before returning to the Load/Unload

robot Cell. Its graphical representation is shown in figure 4.6. Along the sequence

s2 the Boolean variable fp has been set to zero from the node 23 to the node 36,

to avoid redundancy in path evaluation. In fact the final sections of the two

sequences are identical.

The mathematical formulation of the two sequences is the following:

By properly combining these two sequences is possible to obtain all board

routines previously defined in fig. 6.2 and the default sequence s1 is assigned to

a new board. When it reach the penultimate step in the testing machine (node

34) there are three option: if the board has to be repaired the sequence does

not change, if the board works properly the sequences does not change, but the

position skips to the point when the board finishes the second test, thus it is

sent to the robot cell, finally if the board has to be discharged the additional

sequences s2 is assigned in place of s1. If the board has been sent for repair,

when it returns to the testing machine for the second time, at the penultimate

working step the sequence s1 will remain or s2 will be assigned, depending on

the result of the machine; in any case it will never be able to return to M3. The

exogenous signal a(k) is always considered as known and it is constantly set equal

to one. In this way, when the max number of pallet is reached, a new pallet will

95

be loaded only after another one will be unloaded. To add the new constraint

dealing with the maximum number of pallet in the plant, the entering condition

3.3 has been modified:

u36,32(k) = 1, if a(k) = 1 ∧ @i : [S(si(k))(1,p̂i(k+1)) = hl ∨ S(si(k))(1,p̂i(k)) = hl]

∧ Np(k) < Np,max

u36,32(k) = 0, else.
(6.1)

The new condition is coloured in red and Np,max denotes the maximum number

of parts. In this way no part can be loaded if the limit has already been reached

in the current step.

In the following sections the results of the test are exposed. The different

approaches that have been tested are:

• BF: Brute force or extensive search;

• IMB: Intelligent move blocking;

• IMB(ξ): Intelligent Move Blocking switching to a non-optimal solution;

• IMBSH: Intelligent Move Blocking with sub-horizons.

In all the test the IMB and its variants will be implemented considering the most

aggressive approaching direction (AD1: from the most aggressive to the softest

compatible state) and a comparison between different APs will be proposed at

the end.

Because the purpose of the controller is only to maximize the throughput,

the stage cost, computed at each step of the prediction horizon, is defined by the

following function:

`Np(o|k) = λ1

Np(o|k)∑
i=1

ri(o|k) + λ2

Np(o|k)∑
i=1

ti − λ3u32,36(o|k) (6.2)

where λ1, λ2, λ3 are three strictly positive weighting factor. The first term of the

stage cost consists in the sum of the remaining nodes for each part and ensures

96 Test results and methods comparison

Figure 6.3: Testing machine in the real plant, STIIMA-CNR laboratory, Milano

that the parts are pushed forward along their sequences. The second is the sum

of the time counter values ti and avoids that a part is held in position for too

long, even if that choice would allows to move a greater number of parts. The

last negative term is a reword that is triggered when a pallet is unloaded from

the robot cell and reduces significantly the value of the stage cost (considering

λ3 >> λ1, λ2).

Furthermore two new constraints have been introduced in the plant model.

They have been detected during the tests with the real plant simulator and have

been added to the path following algorithm via a specific sub-routine. These

constraints will be presented in the next chapter, dealing with the communication

protocol of the real plant and with the validation of the HRC.

6.1 Test 1 97

6.1 Test 1

In this test and in the following ones the throughput of the plant is computed as

Thr = Nf (k)/k and indicates the number of finished part per step processed in

the time interval [0, k]. The initial condition consists in one pallet in the robot

cell (node 32) and the simulation is interrupted at k = 2000. Ct denotes the mean

of the computational time [s] needed to provide the control action for one step,

while Cpeak indicates the computational peak [s] measured in the simulation. H

indicates the length of the prediction horizon.

Np,max = 3 pallets

H = 10 H = 15

Ct [s] Cpeak [s] Nf Ct [s] Cpeak [s] Nf

BF 0,564 10,520 152 8,041 180,962 152

IMB 0,018 0,180 152 0,026 0,267 152

IMB(0) 0,010 0,143 153 0,014 0,175 153

Table 6.2: Extensive search compared with IMB

As anticipated the extensive search (BF) is a non implementable method,

because the computational time increases tremendously as function of the number

of parts and of the horizon length. In table 6.2 is shown that with very few parts

Ct is low, but it is sufficient to increase the length of the horizon by a few steps

to obtain high computational peak and to significantly grow Ct. The settings

Np,max = 5 and H = 20 are already enough to need tens of minutes to find the

solution at each step (with computational peak of hours). Furthermore it can be

noticed that IMB and IMB(0) reach the same throughput of BF, but with almost

instantaneous times. Sometimes the IMB(0) seems even a little better than IMB,

but that is an not really true because the optimization could choose a worse

scenario in the short term in order to obtain better results in the future. Thus

98 Test results and methods comparison

the comparison depends on when the simulation has been interrupted. When the

plant becomes more congested the importance of optimization is verified.

The extensive search has been abandoned in the next tests, where a greater

number of parts is introduced in the plant and a longer horizon length is adopted.

Np,max = 5 pallets

IMB IMB(0)

Ct [s] Cpeak [s] Nf Ct [s] Cpeak [s] Nf

H = 10 0,036 0,272 208 0,018 0,158 210

H = 30 0,108 1,090 211 0,049 0,283 210

H = 50 0,247 2,686 211 0,076 0,352 210

Np,max = 10 pallets

IMB IMB(0)

Ct [s] Cpeak [s] Nf Ct [s] Cpeak [s] Nf

H = 10 0,157 3,824 209 0,062 0,589 203

H = 30 0,499 3,596 211 0,192 2,287 203

H = 50 0,811 6,252 215 0,292 3,026 203

Np,max = 13 pallets

IMB IMB(0)

Ct [s] Cpeak [s] Nf Ct [s] Cpeak [s] Nf

H = 10 0,330 28,663 199 0,363 69,346 196

H = 30 1,368 34,177 216 0,927 16,088 199

H = 50 / > 103 / / > 103 /

Table 6.3: Test 1 results

The test results 6.3 shows that the optimization is not needed when the plant

in not congested. In fact for Np,max ≤ 5 the number of finished parts is almost

identical both for IMB and IMB(0). It can be noticed that the optimization

6.1 Test 1 99

provides surely a better result when Np,max ≥ 10. The computational peaks

rarely occur, see figure 6.4, but in the worst cases the algorithm may take minutes

to provide the control action when too many sequences has been generated, there

are too many parts in the plant or the prediction horizon is too long (for example

H ≥ 50 and Np,max ≥ 13).

As you can see from 6.3 the IMB(0) method seems to solve the problem of

computational peaks, but for a greater number of part in the plant, for example

Np,max = 13, this problem affects also the non-optimal solution. That happens

because sometimes the parts are in particular configuration for which is more

difficult to find a non-blocking solution and the lockout-avoidance backtracking

causes the generation of computational peaks. In some cases the non-optimal

solution incurs even higher peaks because choosing the most aggressive AD the

controller try to move forward as many parts as possible, increasing lockout prob-

ability. Anyway the algorithm is very fast and when the plant is not congested

excellent performances are guaranteed even with no optimization, thanks to a

proper definition of the main sequence and to the choice of an aggressive AD.

Figure 6.4: Intelligent Move Blocking with Np,max = 13 and H = 30: throughput

and computational time per step

100 Test results and methods comparison

6.2 Test 2

In the second test the different Approaching Directions, previously defined in the

section 5.3.1, are compared: AD1, AD2, AD3, AD4, AD5.

The simulation is interrupted at k = 2000 and the initial condition is one

pallet in node 32. Moreover it has been set Np,max = 10 and H = 30.

Np,max = 10 pallets, H = 30

IMB IMB(0)

Ct [s] Cpeak [s] Nf Ct [s] Cpeak [s] Nf

AD1 0,499 3,596 211 0,062 0,589 203

AD2 1,462 14,084 204 0,547 6,167 105

AD3 1,198 9,097 206 0,214 0,613 180

AD4 0,665 6,105 208 0,161 1,325 194

AD5 0,667 4,320 205 0,238 1,294 118

Table 6.4: Test 2: ADs comparison

It is possible to observe from table 6.4 that the softest Approaching Direction

(AD2) provides the worst throughput but not the better computational time. In

fact it can be assumed that a more aggressive control action determines a better

pallet flow, avoiding the formation of congestion that would cause computational

peaks. Furthermore a soft AD incurs more frequently theoretical lockouts. In

fact the most aggressive AD (AD1) is the one that allows to obtain the greater

number of finished parts and the better computational time performances. Some

of of the tested Approaching Directions has demonstrated to be a trade-off, for

example AD3 and AD4 obtain good computational time and an excellent number

of finished parts. AD5 has shown good results only of the optimizing method

IMB.

The following table 6.5, indicates how the Ct, Cpeak, Nf change as function of

6.2 Test 2 101

ξ. The test are performed setting AD2: it is observed that the soft Approaching

Direction is compensated by the optimization and excellent throughput perfor-

mances are reached anyway with IMB.

Np,max = 10 pallets, H = 30

AD2

Ct [s] Cpeak [s] Nf

IMB 1,462 14,084 204

IMB(8) 1,144 6,281 199

IMB(4) 0,623 5,981 144

IMB(0) 0,547 6,167 105

Table 6.5: Test 2: AD2 performances with respect to IMB(ξ)

Unfortunately the choice of a less aggressive AD does not always solve the

problem of high Cpeak, in particular when the number of parts increases, see table

6.6. The problem could be solved by parallelizing the exploration of different

branches or by anticipating the calculation of the future control actions while

pallet movements are executed in the real plant. In case a mismatch between

the predicted behaviour and the measured one is detected, the control algorithm

returns to compute the actual one.

Np,max = 13 pallets, H = 50

IMB

Ct [s] Cpeak [s] Nf

AD1 / > 103 /

AD2 13,089 217,474 202

AD3 3,109 15,842 200

Table 6.6: Reduction of Cpeak depending on ADs

102 Test results and methods comparison

6.3 Test3

The purpose of the third test is to verify if dividing the prediction horizon into

sub-horizons can improve the quality of the solution. The controller has been set

with AD2 and three different horizon configurations have been tested: a single

horizon of 30 steps, two sub-horizon of 15 steps, five sub-horizons of 6 steps. The

simulation has been interrupted at k = 2000 and the maximum number of parts

has been set to 10. In this case the IMBSH method has been implemented nesting

IMB(4) problems. The results are reported in the following table 6.7:

Np,max = 10 pallets

IMBSH(4), AD2

Ct [s] Cpeak [s] Nf

H = 1× 30 0,623 5,981 144

H = 3× 10 1,753 16,026 199

H = 5× 6 3,129 37,370 200

Table 6.7: IMBSH compared with IMB

The throughput grows depending on the number of sub-horizons. In fact at

the end of each sub-horizon a new control problem is set and the number of

optimization variables grows. The improvement of the solution corresponds to

greater computational times. The IMBSH method can be considered as a tunable

extensive tree search and can be very useful when the optimization has a funda-

mental role, for example when many sequences has been generated and the the

controller has more decision-making degrees of freedom.

6.4 Test4 103

6.4 Test4

The following test has been performed to prove the robustness of the control

algorithm, adopting a non-deterministic model of the plant, i.e the results of

the testing machine are not known a priori. The same probability distributions

indicated in figure 6.2 have been implemented along the prediction in order to es-

timate the future target machine of a part. The simulation has been interrupted

at k = 2000 and the controller operates with the IMB strategy.

H = 30, IMB

Deterministic Non-deterministic

Ct [s] Cpeak [s] Nf Ct [s] Cpeak [s] Nf

Np,max = 3 pallets, AD1 0,075 0,636 149 0,075 0,768 149

Np,max = 5 pallets, AD1 0,108 1,090 211 0,189 1,689 206

Np,max = 10 pallets, AD1 0,499 3,596 211 0,462 3,313 201

Np,max = 13 pallets, AD1 1,368 34,177 216 2,000 56,285 200

Np,max = 13 pallets, AD2 1,462 14,084 204 3,265 6,339 193

Table 6.8: Robustness test

As shown in table 6.8, the controller is able to avoid lockout formation even

when the results of the testing machine are provided online. Moreover for an

aggressive Approaching Direction (AD1) the throughput is almost the same

with Np,max ≤ 5, while decreases when the plant is more congested. More-

over the computational cost increases due to the unexpected congestion of the

non-deterministic model. When the optimization has a more important role, such

as with a soft Approaching Direction AD2, the number of finished part is reduced

more significantly.

It is important to underline that the sequence definition is fundamental to

104 Test results and methods comparison

guarantee the robustness of the controller. In fact the assignable sequences must

allow to avoid the lockout immediately after a part exits from the testing machine

(M2). Considering the sequences defined for the previous tests: a part exiting

from M2 performs for some nodes the same path both to go to M3, to go to M4

or M1. In this way the controller has time to correct the route of all the parts

in order to avoid the lockout. On the contrary, if immediately after the end of

the test the processed part would take two or more different paths, it would not

be possible to avoid the lockout. For example if a part in M2 to go to M3 moves

through the nodes 19, 16, 7, 8..., in case of a wrong prediction a lockout can occur

between the part that is entering in the testing machine and the part that is

going out. The only way to ensure that there is always a solution for the control

problem would be to evaluate all alternative future scenarios and check that the

lockout is avoided for every M2 results.

In addition the tests have demonstrated that, for example, with Np,max ≥ 10

the prediction horizon must be greater than eight steps to be able to avoid a

lockout. This value is empirically derived and change depending on the number

of parts in the plant and on the assignable sequences.

6.5 Test5 105

6.5 Test5

This test deals with the Move Blocking with controllable exogenous-input and

emptying condition. Different assumption must be introduced.

• The prediction horizon is no more fixed because the length of the simulation

depends on how many steps are needed to empty the plant.

• The signal a(k) is controlled in order to let a new part in only if it will not

cause a lockout.

In this case sequences represent the control design variable and the plant per-

formances are directly related to the number of sequences defined. The average

number of parts present in the plant at each time step has been denoted by N̄p

and no limitation has been set on the maximum Np(k). The cost to be minimized

corresponds to the length of the prediction horizon, thus the optimal solution is

the one that allows to empty the plant in the shortest possible time.

6.5.1 Case 1

Firstly the same sequences of the previous tests are adopted and the simulation

is stopped at k = 500, with a part in node 32 as initial condition. In the following

table 6.9 are reported the results of the test and in figure 6.5 are shown the values

of Np(k) and the computational time per time step.

One main sequence

Ct [s] Cpeak [s] Nf N̄p

0,856 4,708 47 6,850

Table 6.9: Move blocking with one main sequences test results.

This control method provides a non stable throughput, because it tries to

load the maximum possible number of parts ensuring that the system does not

106 Test results and methods comparison

run into a lockout. When it is no longer able to insert new parts those already

in the plant are unloaded (the priority is given always to the part that is leaving

than the one that is entering the plant).

Figure 6.5: Move Blocking with one main sequence: plot of the number of parts

Np(k) and computational time per step Ct(k).

6.5.2 Case 2

Then the main sequence has been replaced with two sequences, both identical to

the previous one but with these differences:

• Main sequence 1: the waiting nodes have been repeated twice except for the

ones in correspondence of a machine, which have been repeated as many

time as the specific working time Lm.

• Main sequence 2: no node is repeated along the sequence.

The simulation has been stopped at k = 500 and the results are indicated

in the table 6.10 below, in figure 6.6 are shown the values of Np(k) and the

computational time per time step.

6.5 Test5 107

Two main sequences

Ct [s] Cpeak [s] Nf N̄p

6,129 72,315 50 8,222

Table 6.10: Move blocking with two main sequences test results.

In this second test N̄p increases and the controller is able to load simultane-

ously a greater number of parts in the plant. In fact assigning many different

sequences there are more possibility to manage a new part. Unfortunately the

computational times increases and would become unsustainable with too many

sequences. This depends on the fact that the length of the variable prediction

horizon usually is very high due to the emptying condition (H ≥ 100).

Figure 6.6: Move Blocking with two main sequences: plot of the number of parts

Np(k) and computational time per step Ct(k).

108 Test results and methods comparison

6.6 Throughput results

The variability of the processes performed by a part inside the plant makes it

difficult to theoretically calculate the ideal maximum throughput value. Con-

sidering a line with infinite buffer, the maximum throughput corresponds to the

bottleneck machine, i.e. the machine with the higher Lm. In the tests performed

the slowest machine is M2 with Lm = 5. Moreover, if M2 is processing a part,

due to the constraint of the handling system, the part in the node 16 has to

wait two more steps before entering in M2 in order to get the other part out.

Thus the bottleneck must be evaluated summing these additional steps to the

working time. The derived maximum throughput is Thr = 0, 14 [part/step]. This

is an optimistic approximation because the following issues have not been taken

into account: other constraints on transitions, conflicts between different paths,

variability of the targets.

In the previous tests the best throughput value is Thr = 0, 11 (i.e. 216 parts

in 2000 steps), obtained with IMB, AD1, Np,max = 13, H= 30. In most cases

the throughput is greater than 0,1, in table 6.11 the Thr values for AD1 are

indicated at steady state (i.e., from step k = 1600 to step k = 2000). It is

possible to conclude that the HRC strategy allows to reach excellent throughput

performances with really low computational cost for the considered application.

Throughput [part/k], k ∈ [1600, 2000], AD1

IMB IMB(0)

H = 10 H = 30 H = 50 H = 10 H = 30 H = 50

Np,max = 5 pallets 0,1075 0,1075 0,1075 0,1075 0,1075 0,1075

Np,max = 10 pallets 0,11 0,1125 0,1125 0,11 0,11 0,11

Np,max = 13 pallets 0,11 0,1125 / 0,11 0,095 /

Table 6.11: Throughput AD1 comparison

6.6 Throughput results 109

Figure 6.7: Nf depending on Np,max (tested with IMB, AD1 and H=30)

In figure 6.7 the number of finished parts is represented as a function of the

maximum number of parts in the plant Np,max. It can be noticed that with

Np,max = 5 almost the best throughput performances are reached, thus it makes

no sense to insert a greater number of pallets. Moreover Np,max = 14 is the limit

beyond which the controller is no more able to avoid a lockout. To overcome this

limit it is necessary to generate a greater number of sequences.

Even if almost the sameNf is obtained at the end of the test, a more aggressive

AD ensures to reach the operative condition faster than a softer one. In figure

6.8 the throughput of the most aggressive AD and the softest one are compared

(AD1 and AD2 respectively).

Figure 6.8: Thr of IMB with H=30 and Np,max = 10, AD1 and AD2 comparison

Chapter 7

Test on the real plant simulator

Finally the algorithm has been tested on the simulator of the pilot plant, devel-

oped on SIMIO and provided by the STIIMA-CNR laboratory. The simulator

identically replicates the plant operations, because the actuators and sensors be-

havior and the corresponding I/O exchanged signal are faithfully reproduced.

Anyway two differences with the real plant should be highlighted:

• The communication time needed to exchange data between the plant

components is always constant, while in the real case it is be subjected

to possible delay and/or signal faults. On the pilot plant that fact occurs

because the instrumentation communicates by means of a fieldbus, which

behaviour is not replicated in the SIMIO model.

• The simulator operates in nominal condition, in fact the pallets al-

ways correctly perform the movements imposed by the control inputs, while

in the real plant they could get stuck or their position could not be properly

detected by means of any sensor failure.

These two approximations do not affect the validation of the control algorithm

developed by this thesis. The fault detection and recovery problem has been

already solved on the plant and the regarding algorithm has been directly included

in the real plant low-level logic control, see [19]. In any case the purpose of

111

this thesis is to verify the Hierarchical Routing Control in nominal condition,

no communication or transport faults have been taken into account, thus the

simulator is perfectly suitable with the assumptions of the considered control

problem.

Figure 7.1: I/O data connection

In order to be able to interact with the plant, the control algorithm developed

on MATLAB has to be set up for exchanging I/O data. The simulator adopts

the same I/O interface of the real plant. The Control Platform (CP), in our case

MATLAB, communicates with the Plant Low Level Control (PLLC) system, in

our case the implemented Low Level control logics on SIMIO, in order to read

the state of the system and write the control inputs. The data communication is

performed via text files shared by CP and PLLC and it is regulated by a token

exchange protocol, figure 7.1. It is characterized by two token: TokenIn and

TokenOut, the first one for the input signal and the second for the output signal.

Their functioning is the following:

• TokenIn: the PLLC assign the value 1 the file “TokenIn.txt” to indicates

that is in writing phase. The CP can not access the input data file until

the PLLC writes the integer 2 into the file “TokenIn.txt”. When the CP

terminates to read the input data files, it returns the token to the PLLC

and writes the value 1 in the file “TokenIn.txt”.

112 Test on the real plant simulator

• TokenOut : the CP assigns the value 1 the file “TokenOut.txt” to indicates

that is in writing phase. The PLLC can not access the output data file

until the CP writes the integer 2 into the file “TokenOut.txt”. When the

PLLC terminates to read the output data files, it returns the token to the

CP and writes the value 1 in the file “TokenOut.txt”.

In the input data files the PLLC writes the Eulerian overall state of the plant z(k)

(indicating the target assigned to the parts), while in the output data files the

CP writes the vector of the control inputs U(k). Thus the PLLC communicates

to the CP the state of the plant, the CP computes the control action and send

it to PLLC, then the CP waits for computing the next control action until the

imposed motions has been performed, i.e. when the PLLC communicates the

next step state.

The control loop is closed on the Eulerian state, thus the simulator is just

used to validate the plant model implemented in the control algorithm. The

Lagrangian state is known and updated only by the control algorithm. Because

the plant is assumed to work in nominal conditions there is expected to be no

mismatch between the measured Eulerian state and the predicted one.

Thanks to this validation two missed constraints have been detected:

if ∃ i = 1, . . . , Np(k) : S(si(k))(1,pi(k) = 19 then u16,34(k) = 0 (7.1a)

if ∃ i = 1, . . . , Np(k) : S(si(k))(1,pi(k) = 21 then u23,24(k) = 0. (7.1b)

The condition 7.1a indicates that the transition related to the control input

u16,34(k) can no occur if the node 19 is occupied. That because the part moving

from the node 16 to the node 34 would crash with the part in node 19. The

condition 7.1b indicates the same type of constraint, but for the node 21 and the

transition associated to the control input u23,24(k). In the Greedy Path Following

Strategy these new constraints have been included modifying the subroutine of

Algorithm 5: if the node 19 is occupied and a part has to move from the node 16

113

Figure 7.2: Frame from the simulator view on SIMIO

to the node 34, the part in node 16 is held in position (the same for the node 21

and a part in node 23 that has to move in node 24). The vector of the blocking

index Q, defined in 5.1, is updated in order to assign the part in node 19 as

blocking index for the part in node 16 (the same for the part in node 21 and in

node 23).

Finally the constraint on the pair of transitions u19,22 and u16,34 has been

removed (from the set 3.12), because is redundant. In fact if there is a part in

the node 19 the part in node 16 is not able to move first.

Several tests have been performed in order to demonstrate the correct oper-

ating of the communication between the control algorithm and the PLLC. Fur-

thermore the control action computed by the Greedy Path Following Strategy is

114 Test on the real plant simulator

always feasible and consistent with the plant constraints. The model of the plant

developed by this thesis and implemented in Matlab has been validated, thus is

possible to confirm the reliability of the tests proposed in the previous chapter

(performed considering the two new constraints 7.1).

Chapter 8

Conclusions

In this thesis the Hierarchical Routing Control for discrete manufacturing plants

has been implemented and tested on a real case for the first time. The low-level

control logic (GPFS) has been improved in order to consider the specific con-

straints of the demanufacturing pilot plant in the CNR laboratory. In particular

two subroutines have been added to the path following algorithms:

• Algorithm 4 has the task of ensuring that all transitions comply with the

constraints collected in the constrained node property.

• Algorithm 5 has the task of computing the priority for couple of transi-

tions that can not occur at the same time. In addition this subroutine deal

with two specific constraints defined in 7.1.

A new mathematical sequence formulation has been proposed, in order to

eliminate the redundancy in the evaluation of compatible sequences. Thanks to

that it is possible to obtain the same results but with a much lower computational

cost. Furthermore some guidelines to generate the sequences have been proposed

and three types of sequences has been defined: the main sequences, the additional

sequences, the supporting sequences. Some nodes along the sequences have been

named waiting nodes, characterized by the fact that are repeated twice, allowing

to hold a part in position for an unlimited number of steps. They are useful

116 Conclusions

especially to avoid lockout and to force the part priority at the crossroads. The

advantage of a path allocating controller is that the optimization problem can be

partially solved a priori by choosing as main sequences the one that connect all

the targets with the shortest path with the smallest number of crossroads.

Then two conditions have been introduced that allow to detect the formation

of local lockout and theoretical lockout, respectively. A local lockout occurs when

at least two parts are reciprocally blocking each other, while a theoretical lockout

consist in the evolution of the plant state to an equivalent one. The ability to

prevent a lockout is very important to ensure the correct plant behaviour along

the prediction horizon and to interrupt the exploration of wrong branches when

exploring the search tree.

This ability has been adopted in the Move Blocking formulation of the FHOCP

to introduce a lockout-avoidance backtracking, i.e. when a lockout is detected

along the prediction horizon the state is returned one step back and a different

compatible state is chosen. In this way additional optimization variables are

introduced only if needed. Furthermore considering the assumption that a main

sequences has been generated with no supporting sequences and the pallet flow

is managed only by means of the waiting nodes, the concept of Approaching

Direction has been introduced. These assumptions allow to ordinate the set of

the compatible states and thus it is feasible to direct the exploration in the search

tree. The formulation of the control problem with these two improvements has

been called Intelligent Move Blocking (IMB). In addition some variants have been

implemented to provide a larger number design possibilities: IMB(ξ) and IMBSH.

The results of the tests have shown that choosing the most aggressive Ap-

proaching Direction (AD1) it is possible to reach an high throughput value even

with no optimization (IMB(0)), obtaining also better computational times. In

this case, when there are few part in the plant, the number of finished part is

identical to the optimization case. Considering IMB and all its variants, gener-

ally the obtained computational time is very low, except for few peaks that occur

117

when the plant is too congested.

The control algorithm has been set up to interact with the real plant. In order

to do that a simulator replicating the same communication structure and the same

plant features has been used. A token exchange protocol has been implemented

on the control algorithm to be able to read the actual state and send to the plant

the corresponding control action. The functioning of the Hierarchical Routing

Control has been successfully verified: the control action provided is feasible and

all the plant constraints are satisfied. Furthermore the developed Eulerian and

Lagrangian models have been shown to be faithful to the real system.

In conclusion the new HRC approach for discrete manufacturing plant has

been proven to be very effective in managing a flexible handling system. All

the constraints related to the specific transportation module has been properly

translated into low-level logic and the temporal constraints due to the machine

tasks have been satisfied thanks to a correct sequence definition. The controller

ensures lockout avoidance even for long prediction horizon when the sequences

has been generated properly. The obtained control algorithm is very fast consid-

ering the complexity of the problem and the amount of constraints. Furthermore

the computational time depends more on the number of parts and sequences than

on the length of the prediction horizon. This approach proved to be extremely

agile in organizing the flow of pallets with different targets and conflicting paths,

obtaining a stable and excellent throughput.

Future research works in this area could address the following issues:

• The sequence generation process could be automated defining a standard

procedure or solving a specific shortest path problem. In this thesis some

guidelines have been proposed, but the process is still knowledge based and

the paths are empirically produced. Furthermore the concept of Approach-

ing Direction has been developed on the assumption that there is only one

118 Conclusions

Figure 8.1: 3-Layer Hierarchical Routing Control

main sequences with waiting nodes. This concept has to be expanded also

in case more sequences are provided or there are loops inside a sequence.

• The computational peak problem must be solved. When there are many

parts in the plant sometimes the controller struggle to find the non blocking

solution. One could try to parallelize the search in different branches or to

anticipate the calculation of the control action for the future steps, if it is

verified that the behavior of the plant corresponds to the prediction.

• The robustness to target uncertainty must be improved. A solution could

be to branch out the search tree including a different scenario for each

assignable target. To find the robust solution the lockout must be avoided

in all the possible scenarios. Obviously the dimension of the search tree

increases significantly and more advanced tree search could be adopted.

For example the Monte Carlo tree search is an heuristic tree search used

119

to develop artificial intelligence for board game [20], such as chess or Go,

where the number of board configuration is around 10170 possibilities.

• The control algorithm must be adapted to work even in non nominal con-

dition. In fact in the real plant sometimes a pallet could get stuck or stop

at a wrong node. In those cases the controller must be able to assign a new

path to correct the trajectory of that pallet.

• A third control layer could be added to the Hierarchical Routing Control

structure. If the path generation is automated it is possible to implement an

On-line Path Generation that at each step receives as input the actual state

XNp(k)(k) and provide to the Model Predictive Path Allocation the set of the

sequences to be assigned S(k). That can be useful to compute new paths

when some nodes are no more available (for malfunctions or programmed

maintenance operations) or can be useful to test different sequences and

remove the inefficient ones from the set. The block diagram of the three-

layer Hierarchical Routing Control with On-line Path Generation has been

indicated in figure 8.1.

Bibliography

[1] A. Cataldo and R. Scattolini, “Modeling and model predictive control of a

de-manufacturing plant,” in 2014 IEEE Conference on Control Applications

(CCA), pp. 1855–1860, 2014.

[2] T. Tolio, A. Bernard, M. Colledani, S. Kara, G. Seliger, J. Duflou, O. Bat-

taia, and S. Takata, “Design, management and control of demanufacturing

and remanufacturing systems,” CIRP Annals, vol. 66, no. 2, pp. 585 – 609,

2017.

[3] J. Williams, “A review of electronics demanufacturing processes,” Resources,

Conservation and Recycling, vol. 47, no. 3, pp. 195 – 208, 2006.

[4] M. Colledani, G. Copani, and T. Tolio, “De-manufacturing systems,” Proce-

dia CIRP, vol. 17, pp. 14 – 19, 2014. Variety Management in Manufacturing.

[5] M. Bailey-Van Kuren, “Automated demanufacturing studies in detecting and

destroying, threaded connections for processing electronic waste,” in Con-

ference Record 2002 IEEE International Symposium on Electronics and the

Environment (Cat. No.02CH37273), pp. 295–298, 2002.

[6] M. B. . Kuren, “A lean framework for prototyping demanufacturing work cell

automation,” in Proceedings 2003 IEEE/ASME International Conference on

Advanced Intelligent Mechatronics (AIM 2003), vol. 1, pp. 663–668 vol.1,

2003.

BIBLIOGRAPHY 121

[7] L. Fagiano, M. Tanaskovic, L. Cucas Mallitasing, A. Cataldo, and R. Scat-

tolini, “Hierarchical routing control in discrete manufacturing plants via

model predictive path allocation and greedy path following,” in Proceedings

of the 59th IEEE Conference on Decision and Control, Jeju Island, Republic

of Korea - December 14th-18th 2020.

[8] Lalo Magni and Riccardo Scattolini, ADVANCED and MULTIVARIABLE

CONTROL, ch. 12. Pitagora Editrice Bologna, 2014.

[9] P. Wenzelburger and F. Allgöwer, “A novel optimal online scheduling scheme

for flexible manufacturing systems,” IFAC-PapersOnLine, vol. 52, no. 10,

pp. 1 – 6, 2019. 13th IFAC Workshop on Intelligent Manufacturing Systems

IMS 2019.

[10] F. D. Vargas-Villamil and D. E. Rivera, “A model predictive control approach

for real-time optimization of reentrant manufacturing lines,” Computers in

Industry, vol. 45, no. 1, pp. 45 – 57, 2001. COMPUTERS IN THE SEMI-

CONDUCTOR INDUSTRY.

[11] W. Wang and D. E. Rivera, “Model predictive control for tactical decision-

making in semiconductor manufacturing supply chain management,” IEEE

Transactions on Control Systems Technology, vol. 16, no. 5, pp. 841–855,

2008.

[12] M. A. Bermeo and C. Ocampo-Martinez, “Energy efficiency improvement

through mpc-based peripherals management for an industrial process test-

bench,” IFAC-PapersOnLine, vol. 52, no. 13, pp. 648 – 653, 2019. 9th IFAC

Conference on Manufacturing Modelling, Management and Control MIM

2019.

[13] A. Cataldo and R. Scattolini, “Dynamic pallet routing in a manufacturing

122 BIBLIOGRAPHY

transport line with model predictive control,” IEEE Transactions on Control

Systems Technology, vol. 24, no. 5, pp. 1812–1819, 2016.

[14] R. Cagienard, P. Grieder, E. C. Kerrigan, and M. Morari, “Move blocking

strategies in receding horizon control,” in 2004 43rd IEEE Conference on

Decision and Control (CDC) (IEEE Cat. No.04CH37601), vol. 2, pp. 2023–

2028 Vol.2, 2004.

[15] Jørgen Bang-Jensen and Gregory Z. Gutin, Digraphs: Theory, Algorithms

and Applications, ch. 3.3.3. Springer - Monographs in mathematics, Springer,

2010.

[16] Takahashi Jun-ya, Suzuki Hitoshi, and Nishizeki Takao, “Algorithms for find-

ing non-crossing paths with minimum total length in plane graphs,” in Al-

gorithms and Computation, pp. 400–409, 1992.

[17] Zhengxin Chen, Computational Intelligence for Decision Support, ch. 2.8.1.1.

International series on computational intelligence, CRC press, 2001.

[18] Zhongzhi Shi, Advanced Artificial Intelligence, ch. 3.2. Series on intelligent

science; Vol 4, World scientific Publishing, 2019.

[19] A.Cataldo, M.Morescalchi, and R. Scattolini, “Fault-tolerant model predic-

tive control of a de-manufacturing plant,” The International Journal of Ad-

vanced Manufacturing Technology 104, pp. 4803–4812, 2019.

[20] M. C. Fu, “Monte carlo tree search: A tutorial,” in 2018 Winter Simulation

Conference (WSC), pp. 222–236, 2018.

Ringraziamenti

Ringrazio il professor Lorenzo Fagiano per avermi fatto appassionare agli argo-

menti trattati in questa tesi e per il supporto ricevuto durante la stesura. Inoltre

ringrazio il dr. Andrea Cataldo per la grande disponibilità e per il prezioso aiuto

fornitomi. Un immenso ringraziamento è rivolto alla mia famiglia, in particolare

ai miei genitori e ai miei fratelli, per avermi sostenuto e per essermi stati sem-

pre vicini. Infine ringrazio tutti gli amici, specialmente chi ho conosciuto durante

questi indimenticabili anni al Politecnico di Milano, con cui ho potuto condividere

difficoltà e traguardi.

	Abstract
	Sommario
	Introduction
	Model Predictive Control
	Thesis contributions
	Thesis structure

	Hierarchical Routing Control
	Eulerian System Model
	Lagrangian System Model
	Hierarchical control approach
	Greedy path following strategy
	Model Predictive Path Allocation

	Real case implementation
	Plant description
	Eulerian plant modelling
	Additional constraints
	Constraints on transitions related to specific nodes
	Constraints on pairs of transitions with no node in common
	New subroutines implemented in the Greedy Path Following Strategy

	Path allocation redundancy and sequence generation problem
	Paths redundancy in the set of compatible sequences
	Sequence generation problem
	Sequence generation in the real plant case

	Solution methods for FHOCP in MPPA
	Lockout detection
	Local lockout
	Theoretical lockout

	Brute force or extensive search
	Intelligent Move Blocking
	Approaching direction

	Non-optimal solution
	Intelligent Move Blocking with sub-horizons
	Move blocking with controllable exogenous input and emptying condition

	Test results and methods comparison
	Test 1
	Test 2
	Test3
	Test4
	Test5
	Case 1
	Case 2

	Throughput results

	Test on the real plant simulator
	Conclusions
	Bibliography

