
ODIN Web: A web-based tool for
image annotation, inference, and
model evaluation

Tesi di Laurea Magistrale in
Computer Science And Engineering - Ingegneria In-
formatica

Author: Simona Malegori

Student ID: 995216
Advisor: Prof. Piero Fraternali
Academic Year: 2022-2023

i

Abstract

Computer Vision is a field of study, whose purpose is to replicate, by means of Machine
Learning and Deep Learning methods, the ability of humans to extract information and
interpret the visual world around them. Computer Vision exploits the vast amount of
imagery data available, which has to be annotated with the truth the model should learn
from. Being image annotation a laborious task, several tools that provide functionalities
to annotate images and create high-quality datasets have been implemented. Thanks to
the progress made, models increased in complexity, achieving exceptional results in image
interpretation. This, however, added complexity to the model performance evaluation nec-
essary for their understanding and improvement. Studies on model performance analysis
yielded the development of several tools that exploit "black-box" analysis techniques to
achieve in-depth diagnosis of complex models. These advancements led Computer Vision
to acquire an increasing impact in real-world scenarios applications. This combination un-
covered the need for tools to allow individuals with no technical knowledge to approach
Computer Vision models. In this context, the objective is now the implementation of
tools, accessible to non-technical users, that cover the entire pipeline of model develop-
ment, from image annotation and model analysis to the practical application of Computer
Vision models. ODIN Web, is a user-friendly web-based tool for dataset management,
image annotation related to image classification, object detection, and instance segmen-
tation tasks, and model performance investigation, that leverages the ODIN "black-box"
analysis tool. Starting from this version, this thesis expands ODIN Web by implementing
a user system, for collaboration and role-based access control, integrating model infer-
ence, and providing geo-visualization functionalities for datasets of geolocalized satellite
images. The relevance of the implemented tool was demonstrated by illustrating its usage
in some real-application scenarios.

Keywords: computer vision, image annotation tool, model evaluation tool, inference

Abstract in Lingua Italiana

La Computer Vision è un campo di studi il cui obiettivo è di replicare, attraverso metodi
di Machine Learning e Deep Learning, la capacità umana di estrarre informazioni e in-
terpretare il mondo visivo attorno a sé. La Computer Vision sfrutta la vasta quantità
di dati visivi disponibili, i quali devono essere annotati con la "verità" da cui il modello
dovrebbe imparare. Essendo l’annotazione di immagini un compito laborioso, diversi tool
che forniscono funzionalità per annotare le immagini e creare dataset di alta qualità sono
stati implementati. Grazie ai progressi fatti, i modelli sono aumentati in complessità rag-
giungendo risultati eccellenti nell’interpretazione di immagini. Tuttavia, ciò ha aggiunto
complessità alla valutazione della performance dei modelli necessaria per la loro compren-
sione e il loro perfezionamento. Studi sull’analisi della performance dei modelli hanno
portato allo sviluppo di diversi tool che sfruttano tecniche di analisi "black-box" per ot-
tenere una diagnosi approfondita di modelli complessi. Questi progressi hanno portato la
Computer Vision ad acquisire un impatto sempre maggiore in scenari di applicazione reale.
Questo ha sollevato la necessità di tool che permettano ad individui che non possiedono
conoscenze tecniche, di approcciarsi ai modelli di Computer Vision. In questo contesto,
l’obiettivo è quello di implementare tool intuitivi, che coprano l’intero processo di sviluppo
di modelli, dall’annotazione di immagini e analisi di modelli all’applicazione pratica dei
modelli di Computer Vision. ODIN Web, è un web-based tool intuitivo per la gestione
di dataset, per l’annotazione di immagini legata alla classificazione di immagini, alla in-
dividuazione e alla segmentazione di oggetti, e per l’investigazione della performance dei
modelli, funzione che sfrutta ODIN, un tool di analisi di tipo "black-box". Partendo da
questa versione, questa tesi espande ODIN Web implementando un sistema di utenti, per
la collaborazione e l’accesso controllato basato sul ruolo, integrando l’inferenza dei mod-
elli, e fornendo delle funzionalità di geo-visualizzazione per dataset formati da immagini
satellitari geolocalizzate. L’importanza del tool implementato è stata dimostrata illus-
trando il suo utilizzo in alcuni scenari di applicazione reale.

Parole chiave: computer vision, strumento per l’annotazione di immagini, strumento
per la valutazione di modelli, inferenza

v

Contents

Abstract i

Abstract in Lingua Italiana iii

Contents v

1 Introduction 1

2 Related Work 5
2.1 Computer Vision . 5

2.1.1 Computer Vision Tasks . 5
2.1.2 Computer Vision and Remote Sensing 7

2.2 Model Performance Evaluation . 11
2.2.1 Analysis and Metrics for Model Performance Evaluation 11
2.2.2 Tools for Model Performance Evaluation 20

2.3 Dataset Annotation . 24
2.3.1 Data Annotation . 24
2.3.2 Tools for Image Annotation . 26

3 Proposed Solution 31
3.1 ODIN . 31
3.2 ODIN Web . 31

3.2.1 Requirements . 32

4 Implementation 39
4.1 Architecture Overview . 39
4.2 Design . 40

4.2.1 Domain Model . 40
4.2.2 Backend . 42
4.2.3 Frontend . 48

4.3 Implementation Technologies . 49
4.4 Deployment . 52

5 Results and Validation 55
5.1 Features . 55

5.1.1 ODIN Web Access . 55
5.1.2 User Management . 56
5.1.3 Dataset . 57
5.1.4 Annotator . 61
5.1.5 Analyzer . 63
5.1.6 Map Visualizer . 65
5.1.7 Predictor . 67

5.2 Validation . 68

6 Conclusions and Future Work 71

Bibliography 73

List of Figures 81

List of Tables 83

Acknowledgements 85

1

1| Introduction

Computer Vision (CV) is a field of study, whose purpose is to replicate, by means of
Machine Learning (ML) and Deep Learning (DL) methods, the ability of humans to
extract information and interpret the visual world around them. The main Computer
Vision problems that are at the basis of image interpretation are those related to the
identification of objects and the detection of their position on the image. Indeed, the
three most important tasks in CV are Image Classification, the problem of determining
what object classes are present in an image, Object Detection, the task of identifying
what objects are inside an image and where they are localized by surrounding them with
bounding boxes, and Instance Segmentation, which is similar to the previous one but aims
at precisely outlining each object instance.

Computer Vision exploits the vast amount of imagery data available, from which models
can discover patterns and learn to solve specific problems. Thanks to this, and to the
increasing computational power available, in recent years Deep Learning models based on
Deep Neural Networks (DNNs), have achieved exceptional results in the above-mentioned
tasks. This development has brought Computer Vision into real-world applications, such
as environmental protection [25], medical image analysis [18], agriculture [58], transporta-
tion [32], and others. Nevertheless, Computer Vision is a complex problem and is still a
matter of research.

Given the increasing complexity of DL models, a critical subject is the performance as-
sessment necessary to understand the model behavior and improve its results. For this
analysis, both "open-box" and "black-box" techniques can be applied. Although the first
ensures a deep layer-by-layer diagnosis, the second allows to obtain similar insights with
reduced complexity. The "black-box" analysis computes evaluation performance metrics
by comparing the output of a model to the ground truth. Moreover, it makes use of extra
properties associated with the data and computes their impact on the performance, to
better understand the model behavior and allow for an in-depth diagnosis. Several tools
have been developed that address "black-box" analysis of DNNs performance.

The training of ML and DL models requires large amounts of data, which need to be anno-

2 1| Introduction

tated to provide the model with a ground truth to learn from. The annotation of datasets,
and specifically of images, is typically manual, thus is a laborious and time-consuming
task. Moreover, the quality of the annotations influences the model performance, as from
imprecise annotations the model will learn erratic patterns. Therefore, the data annota-
tion process represents a critical step in the development of CV models. Over the years,
several tools have been implemented addressing image annotation, by providing sets of
features to annotate images and manage datasets to expedite the creation of high-quality
ground truths.

As previously mentioned Computer Vision has an increasing impact in real scenarios
where it can be used in practical applications. This combination has uncovered the need
for tools that aim to allow individuals with no technical knowledge to approach ML and
DL models. An example is that of ARPA Lombardia (Environmental Protection Agency
of the Region of Lombardy), where the team of experts in environmental monitoring and
protection, would benefit from a Computer Vision tool for the analysis of satellite images
for illegal landfills and waste detection.

Considering the analyzed context, the objective is the development of tools that cover the
entire pipeline of model development, from image annotation and model analysis to the
practical application of Computer Vision models. The purpose of this thesis is to extend
ODIN Web [52], a web-based tool for dataset management, image annotation related
to image classification, object detection, and instance segmentation tasks, and model
performance investigation, that leverages the ODIN "black-box" analysis tool [76]. This
work expands ODIN Web to deliver a collaborative web tool, with dataset management
and image annotation features, that implements model inference and performance analysis
and provides geo-visualization functionalities for datasets of geolocalized satellite images.
In particular, the contributions of this work, w.r.t. the first ODIN Web version [52], can
be summarized as follows:

• Implementation of a user system, with user management and access control.

• Adaptation of the dataset management system to the new user system.

• Implementation of a model inference system with non-blocking execution.

• Implementation of a geo-visualization system for geolocalized satellite images.

• Implementation of integrations between the Annotator and the Map Visualizer.

This thesis is organized as follows:

• Chapter 2 introduces the Computer Vision concept. Then defines metrics and

1| Introduction 3

analyses for model performance evaluation and the relative tools available in the
literature. Finally discusses data annotation and presents some available image
annotation tools.

• Chapter 3 presents the ODIN Web solution and discusses the requirements at the
basis of this development work.

• Chapter 4 discusses the implementation of ODIN Web by presenting the architec-
ture, the design, the implementation technologies and the deployment infrastructure.

• Chapter 5 presents the results of the implementation of ODIN Web by illustrating
the application’s functionalities, and addresses ODIN Web validation.

• Chapter 6 draws the conclusion and discusses future works.

5

2| Related Work

This chapter aims to present an overview of Computer Vision and Computer Vision tasks
in Section 2.1, Machine Learning model performance evaluation metrics and tools in
Section 2.2, and methods and tools for image annotation in Section 2.3.

2.1. Computer Vision

Computer Vision (CV) is a subfield of Artificial Intelligence (AI), whose purpose is to
replicate the ability of humans to extract information and interpret the visual world
around them. The interest of scientists in the human visual system dates back to the
1960s when researchers first discovered that the brain’s image processing starts with simple
shapes like oriented edges and lines. Later, with the emergence of the AI field of study and
the development of image scanning technologies, the first Optical Character Recognition
(OCR) systems were created. Over the years artificial intelligence has evolved, leading
to the appearance of object and face recognition applications. Impressive advancements
were made in Computer Vision with Deep Neural Networks (DNNs) which outperformed
the previous methods. In particular, the Convolutional Neural Network (CNN) AlexNet
[44] represented a breakthrough in the field.

2.1.1. Computer Vision Tasks

Computer Vision is based on a comprehensive set of different tasks, that can be employed
in image analysis problems relevant to diverse application domains. In the following the
core tasks of Computer Vision are reported and described.

Image Classification (CL) is the task of determining what object classes are
present in an image. Image classification includes different sub-tasks based on the
complexity of the classification task, in particular, one can distinguish between
binary and multi-class problems. The binary classification represents the task of
categorizing the image into one of two defined classes, oftentimes the problem is de-
termining if a target object is present in the image or not. The multi-class problems

6 2| Related Work

instead apply to the cases in which the set of classes considered for the classification
has more than two categories. In particular, multi-class classification can be of two
types: single-label, the image can be labeled with only one class from the set of
known categories, multi-label, the image can be classified as depicting one or more
objects from the predefined set (Fig 2.2a).

Object Detection (OD) is the task of identifying which objects are present in
an image and localizing them on the image. The position of an object is reported
through a bounding-box drawn around it (Fig 2.2b).

Image Segmentation is the task of partitioning images into multiple segments be-
longing to certain classes. There are three formulations of image segmentation, i.e.,
semantic, instance, and panoptic [55]. Semantic Segmentation (SS) is the problem
of assigning a semantic label to each pixel in an image. All pixels with the same
label are considered together, and for each category, a single mask is created with-
out any distinction between different objects of the same class (see cars or persons
in Fig 2.1b). Instance Segmentation (IS) is the problem of detecting and outlin-
ing each object of interest in the image. The labels are assigned per-object, and
a mask is created for each single object instance (2.1c). Panoptic Segmentation is
the combination of semantic segmentation and instance segmentation. This task
requires each pixel of an image to be assigned both a semantic label and an instance
identifier. Pixels with the same label and identifier belong to the same object [39].

Fig 2.2 shows a comparison of the expected results, over the same image, for the main
Computer Vision tasks: image classification, object detection, semantic segmentation,
and instance segmentation.

Further Computer Vision tasks, that find application in many domains, can be mentioned.
Optical Character Recognition (OCR), one of the first tackled computer vision tasks, is
the problem of recognizing characters in images and converting them into text/string
[53]. Edge Detection is the task of detecting boundaries of objects in images and is
often used as a pre-processing step for other tasks. Human Pose Estimation aims to
locate the human body parts, estimate their configuration, and build body representation
(e.g., body skeleton) starting from images or videos [85]. Object Tracking is the problem
of identifying and tracking different objects in a video and predicting their trajectory
[11]. Human Action Recognition is the task of recognizing a human action from a video
containing the complete action execution. In case of an incomplete video sequence, the
task can be extended to the prediction of the human action [40].

2| Related Work 7

(a) Image (b) Semantic Segmentation

(c) Instance Segmentation (d) Panoptic Segmentation

Figure 2.1: For a given image (a), the expected results for the three image segmentation
tasks are shown: semantic segmentation (b), instance segmentation (c), and panoptic
segmentation (d). Source [39].

2.1.2. Computer Vision and Remote Sensing

Remote Sensing techniques are those that use satellite and airborne sensor technologies
to collect geospatial information and data about given areas. The measurements are
made by sensors mounted on platforms such as satellites and unmanned aerial vehicles
(UAVs), placed from a few hundred meters above the earth’s surface (e.g., high-resolution
multispectral and hyperspectral imagery, light detection and ranging (LiDAR), and radar
systems) to hundreds, or thousands, of kilometers (e.g., orbital satellites) [8]. The use
of satellite data enables the coverage of large regions, with reduced costs, and allows
repeated acquisitions of the same area. Indeed, Earth Observation (EO) satellites have
been deployed for decades and periodically collect earth images. Some common satellite
missions are WorldView Series, GeoEye-1, Copernicus Programme, and Pléiades Missions
[25].
For the large and assorted amount of geospatial data and images that it generates, Re-
mote Sensing is extremely valuable in the field of environmental monitoring, providing an
effective and economic solution for land surface observation, and in particular for solid
waste detection. In [25], the authors provide a complete survey of the relevant approaches
for the identification and monitoring of solid waste disposal sites and the data sets and

8 2| Related Work

(a) Image Classification (b) Object Detection

(c) Semantic Segmentation (d) Instance Segmentation

Figure 2.2: An example, for a given image, of the expected results for the core computer
vision tasks: image classification (a), object detection (b), semantic segmentation (c), and
instance segmentation (d). Source [50].

techniques employed for such tasks. Solid waste detection can be approached through
different tasks, such as:

• landfill or sparse waste detection, that consists in detecting the presence of solid
waste in remote sensing data;

• landfill sites monitoring, that involves the analysis of landfills changes over time;

• landfill sites detection and monitoring, a combination of the previous two, that aims
at landfill detection and subsequent monitoring of changes;

• illegal dumping distribution characterization, that aims at characterizing the distri-
bution of illegal dumps by integrating remote sensing data with additional informa-
tion such as road networks and land use maps;

• mapping of areas with a high risk of illegal waste dumping, that consists in defining
a probabilistic map of the areas where the presence of illegal waste sites is likely;

• waste heat contamination monitoring, that concerns the identification of waste in
the environment through thermal models of solid waste disposal sites;

• identification of subsurface fires within landfills, that aims at monitoring subsurface
fires in landfill areas through analysis of Land Surface Temperature;

• assessment of suitable landfill locations, that involves analyzing and selecting suit-

2| Related Work 9

able locations for constructing new landfills to minimize the environmental impact.

To address these tasks there are various techniques, that leverage different remote sens-
ing data (e.g., aerial images, thermal parameters, and others), GIS variables, and non-
geographical information. Some of the employed methods are:

• visual interpretation: image analysis by human experts;

• descriptive indices extraction and analysis : extraction of descriptive indices from
multispectral images, then used for waste detection;

• multi-factor analysis : waste detection algorithms exploiting multi-modal inputs
such as GIS data and descriptive indices;

• features extraction and classification: waste detection algorithms exploiting image
features, such as brightness, spectral, and spatial features;

• traditional CV techniques : application of CV techniques to multispectral images,
with tasks such as image classification, object detection, and semantic segmentation;

• Deep Learning CV techniques : application of CV techniques based on the recent
outstanding Deep Learning architectures to optical or multispectral images.

The approaches to adopt vary significantly based on the scale of the solid waste disposal
to be detected, as the characteristics that can be exploited are different. Large sites emit
large quantities of gas that produce heat and thus thermal parameters and vegetation
indices can be employed. Smaller sites do not have a significant impact on those indicators
and therefore the analysis of optical and spectral signatures is preferable.

Traditional CV techniques for Remote Sensing Images

Several traditional Computer Vision techniques, both object-based and pixel-based, have
been applied to multispectral images to perform solid waste detection. In [5] and [36]
object-based classification is obtained through Multi-Resolution Segmentation (MRS),
i.e., a bottom-up region-merging technique that starts with one-pixel objects and proceeds
in subsequent steps by merging smaller image objects into bigger ones. In [78], image
objects are defined using SLIC (Simple Linear Iterative Clustering), an unsupervised K-
Means-based algorithm, that clusters pixels based on their color similarity and closeness
on the image plane. In [21] the authors use a pixel-based classification approach on
multispectral images, adopting both an unsupervised classification technique (ISODATA),
based on the spectral response, and a Maximum Likelihood Parametric (MLP) supervised
classifier. In [69] is presented an approach to detect floating plastic materials in the ocean

10 2| Related Work

through pan-sharpened hyperspectral images. It consists of a combination of an unsu-
pervised K-Means clustering algorithm and a supervised classification method, the Light
Gradient Boosting Model (LGBM), whose final result is a probability map representing
the probability that a pixel contains plastic or not.

Deep Learning CV techniques for Remote Sensing Images

Following the development of powerful Deep Learning architectures, the application of
such techniques on optical and multispectral aerial images has yielded significant re-
sults in the environmental monitoring field. Different architectures have been employed
for Computer Vision tasks, such as image classification, object detection, and seman-
tic segmentation, on Remote Sensing images. Some techniques implement pixel-level,
or patch-level, Neural Network classifiers: in [45], the authors trained a Convolutional
Neural Network (CNN) on spatial, spectral, and temporal features of multispectral im-
ages; in [47], an Artificial Neural Network (ANN) is employed together with a Decision
Tree to perform pixel classification by waste type or land use, based on multispectral
channels and vegetation indices. Several architectures have been employed for semantic
segmentation tasks: in [15], a model based on the U-Net [63] architecture is applied to
multispectral images to produce binary masks denoting waste sites; similarly, in [60], the
authors trained landfill detection models on pansharpened images, which combine mul-
tispectral images with the high-resolution details of a panchromatic band. The models
are based on U-Net and Fully Convolutional Network (FCN) architectures, and use VGG
[66] and ResNet [31] as feature extractors. In [81], a model based on the DeepLabv3+ [9]
architecture with Xception [10] backbone network is used to perform semantic segmen-
tation on high-resolution pansharpened images to identify construction and demolition
waste in urban areas. In [71], a binary classification model is trained on labeled op-
tical images at different ground resolutions to perform a scene classification task. The
binary classifier exploits ResNet as the network backbone and augments it with a Feature
Pyramid Network (FPN) [49] architecture. The model can identify a wide variety of solid
waste materials dispersed in a vast region composed of urban and extra-urban scenarios.
In [87] and [68], a CNN object detection model is trained to localize landfills in urban
scenarios. Specifically, in [87] a novel Asymmetric Deep Aggregation (ADA) block is used
as the backbone to extract features of weakly visible waste. Then, an Efficient Attention
Fusion Pyramid Network (EAFPN) merges multi-scale geospatial information using at-
tention fusion blocks, and the resulting feature maps are fed to a YOLO [61] detection
head for the final waste localization. In [68] the waste type is also predicted (domestic,
construction, covered, and agricultural waste). The proposed architecture is based on a

2| Related Work 11

ResNet backbone to extract high-level features that are connected to Blocked Channel
Attention (BCA) modules. The network is based on a Feature Pyramid Network (FPN)
structure to preserve multi-scale features of dumpsites.

2.2. Model Performance Evaluation

Model performance evaluation is a fundamental step in the development of Machine Learn-
ing models, and is an essential means both in the training stage and testing stage. Perfor-
mance evaluation is necessary to understand how a model is performing and the direction
to follow in order to optimize it, to measure the effectiveness over unseen data, and to
compare different models and determine the optimal one. Model performance is mea-
sured through the computation and analysis of the so-called performance metrics defined
in 2.2.1. Those metrics are also used as the basis for the implementation of performance
analysis tools, some of which are described in 2.2.2.

2.2.1. Analysis and Metrics for Model Performance Evaluation

Literature presents a great number and variety of metrics including standard, commonly
used, and more specific ones. Research shows that different metrics evaluate different
characteristics of a model [22, 56], which is why several metrics are used for a complete
analysis. Moreover, the set of metrics used can differ based on the type of machine learning
task that the model is performing, e.g., classification or object detection.
Here some important concepts are introduced, and some relevant metrics are defined and
described.

Threshold The threshold is the limit that defines whether a prediction is positive or
negative. In particular, the threshold is the confidence value, for classification tasks, or
the IOU value, for object detection tasks, above which the prediction is to be considered
positive.

IOU (Intersection Over Union) The IOU measures the similarity between ground-
truth and predicted bounding-boxes, and is obtained by dividing their overlapping area
by their union area [57]:

IOU =
area of overlap
area of union

=
Bgt ∩Bp

Bgt ∪Bp

(2.1)

where Bgt is the ground-truth bounding-box, and Bp is the predicted bounding-box.

12 2| Related Work

Standard Metrics

Confusion Matrix The Confusion Matrix is a common method to provide insight
into the performance of a predictive classifier and in particular into which classes are
predicted correctly, and which incorrectly. The matrix (Figure 2.3) has dimension n x n
(with n number of classes), with the rows representing the actual classes, and columns
the predicted ones. The value of cell (i, j) corresponds to the number of instances of the
i-th class, that were classified as elements of the j-th class. The resulting matrix will show
on the diagonal all the correct predictions of the model and in the other positions the
wrongful ones.

Figure 2.3: Confusion Matrix for multi-class.

Figure 2.4: Confusion Matrix for binary classification.

Considering the Confusion Matrix of the binary case (Figure 2.4), with only a positive
and a negative class, the following important definitions can be extracted:

• TP (True Positive). The number of positive instances that were correctly classi-
fied.

• TN (True Negative). The number of negative instances that were correctly
classified.

2| Related Work 13

• FP (False Positive). The number of positive instances that were wrongfully
classified.

• FN (False Negative). The number of negative instances that were wrongfully
classified.

For object-detection models, a prediction is correct if the predicted bounding-box suffi-
ciently overlaps the ground-truth bounding box. As such, in a similar way TP, FP, FN
can be computed, except for TN which is not applicable, given that there is an infinite
number of negative bounding-boxes in each image.

Accuracy The accuracy represents the percentage of correct predictions over the total
number of instances evaluated.

Accuracy =
number of correctly classified instances

total number of instances
(2.2)

In the case of binary classification, the accuracy can be computed as:

Accuracy =
TP + TN

TP + FP + TN + FN
(2.3)

Error Rate The error rate represents the complement of the accuracy, i.e., the number
of incorrect predictions over the total number of instances evaluated.

ErrorRate =
number of wrongfully classified instances

total number of instances
(2.4)

In the case of binary classification, the error rate can be computed as:

ErrorRate =
FP + FN

TP + FP + TN + FN
(2.5)

Precision The precision is the fraction of positively predicted instances that were ac-
curate and represents the ability of the classifier to identify only relevant instances.

P =
TP

TP + FP
(2.6)

In the case of multiple classes, the previous metrics are computed for each single class,
and then micro- or macro-averaged to obtain an overall precision score. The two averages
are different as the macro-average does not take class imbalance into account.

14 2| Related Work

Pmicro =

∑n
i=1 TPi∑n

i=1 TPi + FPi

(2.7)

Pmacro =
1

n

n∑
i=1

Pi (2.8)

Recall The recall, also called sensitivity, represents the proportion of positive instances
that were correctly identified and represents the ability of the classifier to find all ground-
truth instances.

R =
TP

TP + FN
(2.9)

In the case of multiple classes, the previous metrics are computed for each single class,
and then micro- or macro-averaged to obtain an overall recall score.

Rmicro =

∑n
i=1 TPi∑n

i=1 TPi + FNi

(2.10)

Rmacro =
1

n

n∑
i=1

Ri (2.11)

F1 Score The F1 measure combines precision and recall into a single score, and is
computed as the harmonic mean between precision and recall.

F1 =
2 ∗ P ∗R
P +R

(2.12)

In the case of multiple classes, the overall F1 score is computed by micro- or macro-
averaging.

F1micro =
2 ∗ Pmicro ∗Rmicro

Pmicro +Rmicro

(2.13)
F1macro =

1

n

n∑
i=1

F1i (2.14)

Curve Analysis

Other than by looking at standard metrics, the evaluation of a model can be done through
the analysis of some curves which give insight into the relation between metrics and are
especially suitable for model comparison. Among those, common curves are PR Curve,
ROC Curve, and F1 Curve. Besides the visual representation, each of these curves can be
summarized into a single score, the Area Under the Curve (AUC), which has been proven
to be better than accuracy for evaluating and comparing classifiers [34, 35].

2| Related Work 15

PR Curve The PR Curve represents the trade-off between precision and recall and is a
plot of recall (x-axis) and precision (y-axis) for different probability thresholds. The reason
for the PR Curve is that a good model is one able to find all ground-truth instances (no
false negatives) while identifying only the relevant ones (no false positives), i.e., one with
high values for both precision and recall. Thus the model can be considered good if the
area under the PR curve is high. Given the trend of the PR curve, the computation of the
AUC is quite challenging and requires approximations to ease the computation. Several
research proposed various interpolation types to simplify the curve, e.g., two common
approaches are 11-point interpolation and all-point interpolation. For the PR Curve, its
AUC also corresponds to the Average Precision (AP). In the following, AP formulation
with all-point interpolation is presented [57]:

APall =
∑
n

(Rn+1 −Rn)Pinterp(Rn+1) (2.15)

Pinterp(Rn+1) = max
{R̃:R̃≥Rn+1}

P (R̃) (2.16)

ROC Curve The ROC (Receiver Operator Characteristic) Curve plots the False Posi-
tive Rate (FPR) on the x-axis and the True Positive Rate (TPR), i.e., the recall [Eq. 2.9],
on the y-axis. This curve shows how the number of correctly classified examples varies
with the number of incorrectly classified negative examples [13].

FPR =
FP

FP + TN
(2.17)

ROC Curve can be represented through a single score, its AUC.

F1 Curve The F1 Curve is represented by considering the F1 Score, on the y-axis, for
each possible threshold value, on the x-axis. As for the others, it can be summarized into
one value by computing its AUC.

Figure 2.5 shows an example of the PR Curve, ROC Curve, and F1 Curve: in blue the
sample curve, and in light blue its AUC, in grey the curve corresponding to AUC=0.5,
and in red the perfect curve. The closer a curve is to its perfect form, the better it is.
The perfect PR Curve is the one maximizing both precision and recall, i.e., the curve
passing through (1, 1). The perfect ROC Curve is the one maximizing the True Positive
Rate while minimizing the False Positive Rate, i.e., the curve passing through (0, 1). The
perfect F1 Curve is the one maximizing the F1 Score both for threshold equal to 0 and
threshold equal to 1, i.e., the curve passing through (0, 1) and (1, 1).

16 2| Related Work

(a) PR Curve (b) ROC Curve

(c) F1 Curve

Figure 2.5: Curve Analysis: examples of PR Curve (a), ROC Curve (b), F1 Curve (c)

Reliability Analysis

When returning a prediction, a model also reports a score defining how confident it is
about the prediction, which is expressed as a probability, the likelihood, of the prediction
being correct. The reliability analysis focuses on understanding whether the predicted
class probabilities reflect the true likelihood, also called confidence calibration [27].

Diagrams For the reliability analysis, two types of diagrams can be employed: confi-
dence histograms, and reliability diagrams.

2| Related Work 17

Confidence histograms plot the distribution of prediction confidence, the average con-
fidence, and the accuracy. This diagram can be used to determine if a model is either
over-confident or under-confident; e.g. in Figure 2.6: on the right, the average confidence
is quite greater than accuracy, the model is over-confident, on the left instead the average
confidence matches closely the accuracy.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

%
of

Sa
m

pl
es

A
vg

.c
on

fid
en

ce
A

cc
ur

ac
y

LeNet (1998)
CIFAR-100

0.0 0.2 0.4 0.6 0.8 1.0

A
vg

.c
on

fid
en

ce

A
cc

ur
ac

y

ResNet (2016)
CIFAR-100

Figure 2.6: Confidence histograms of two different neural networks (LeNet, ResNet) on
CIFAR-100 dataset. Source: [27]

Reliability diagrams plot the expected sample accuracy as a function of confidence. A
model is well-calibrated when the confidence matches approximately the accuracy, i.e.,
when the bars are roughly aligned on the diagonal. Figure 2.7 shows the reliability
diagrams of two models, well-calibrated (left), and miscalibrated (right).
To find the expected accuracy, the predictions are grouped into M interval bins (of size
1/M , and the accuracy of each bin is computed.

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi) (2.18)

where Bm is the set of indices of samples with prediction confidence into the interval
Im = (m−1

M
, m
M
], ŷi is the predicted class for sample i, and yi is the true class. The

confidence is defined as follows:

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i (2.19)

where p̂i is the confidence for sample i.

18 2| Related Work

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Error=44.9

Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.0

Error=30.6

Outputs
Gap

Confidence

Figure 2.7: Reliability diagrams of two different neural networks (LeNet, ResNet) on
CIFAR-100 dataset. Source: [27]

Summary Scores In addition to the graphical representations of calibration, scalar
summary values can be convenient. Two measures of miscalibration can be considered:
ECE (Expected Calibration Error) and MCE (Maximum Calibration Error), whose value
for perfectly calibrated classifiers is 0.

Expected Calibration Error represents the expected difference between confidence and
accuracy, which, by considering the M interval bins and n the number of samples, is
defined as:

ECE =
M∑

m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (2.20)

The difference between acc(Bm) and conf(Bm) is the calibration gap (Figure 2.7).
Maximum Calibration Error represents the maximum difference between confidence and
accuracy, useful when reliable confidence measures are required, which is defined as:

MCE = max
m∈{1,...,M}

|acc(Bm)− conf(Bm)| (2.21)

Other Metrics and Analysis

Normalization In the case of unbalanced classes, given that the number of True Posi-
tives is highly affected by the size of the classes, metrics depending on TP can be defined
by considering a normalization of the TP instead [33].

TPnormi
= TPi ∗

N

ni

(2.22)

2| Related Work 19

where ni is the number of observations for class i, and N is the size of each class if the
classes were balanced:

N =
ntot observations

nclasses

(2.23)

For example, considering 3 classes with these distributions:

n1 = 100, TP1 = 10 n2 = 10, TP2 = 1 n3 = 22, TP3 = 6

The size of the classes in a balanced scenario would be N = 132
3

= 44, and the normalized
true positives would be:

TPnorm1 = 10 ∗ 44

100
= 4.4 TPnorm2 = 1 ∗ 44

10
= 4.4 TPnorm3 = 6 ∗ 44

22
= 12

As expected classes 1 and 2 have the same TPnorm as, for both, the true positives were
10
100

= 1
10

= 0.1% of the observations; class 3 instead has a greater TPnorm as the ratio of
observations that were TP is also greater (6

22
= 0.273%).

False Positive Analysis False positives, i.e., wrongful positive detections of classes,
are one major type of error, and an analysis of this type of error is important to understand
how to improve the model. There are different types of false positives, in particular, for
object detection and segmentation [33]:

• localization error : the class is correctly predicted but the IoU is lower than the
threshold (typically 0.5);

• confusion with background or unlabeled objects : an object is detected but is not
present in the ground-truth (IoU lower than 0.1);

• confusion with similar objects : the object is localized but the predicted class is
confused with a similar one;

• confusion with other objects : the object is localized but the predicted class is con-
fused with another, not similar, one;

For classification, the false positive errors are:

• background error : the detection of a class for an instance whose ground-truth has
no classes associated;

• similarity error : the detection of an incorrect class but belonging to the same group
of similar classes of the ground-truth one;

20 2| Related Work

• classification error : the detection of an incorrect class that does not fall in either of
the previous cases.

FPs can be analyzed through the impact each false positive type has on the model per-
formance, i.e., by computing for each evaluation metric the improvement that would be
obtained by removing a certain error type.

Additional Properties Analysis To better understand the behavior of a model, the
analysis of performance may rely also on the so-called meta-annotations or properties. The
properties are supplementary annotations, not used for training, that add information to
the dataset instances.

• Per-Property Evaluation: a deeper analysis can be achieved by computing the pre-
viously described metrics, other than on the overall dataset, also by considering spe-
cific subsets of instances having the same value for a certain property (per-property
analysis).

• Sensitivity and Impact of Properties : further insights can be gained by analyzing the
impact a property has on a certain metric. Given a metric, its score can be computed
for each value of each property. The sensitivity, of the metric w.r.t. a certain
property, is defined by the difference between the maximum and the minimum value
obtained for the property. The impact, that a property has on a metric, is denoted
by the difference between the maximum value and the overall value of the metric.

CAMs Analysis Other insights into the behavior of the model can be deduced by the
visual inspection of the results (qualitative analysis). In particular, a valuable analysis is
the one that considers the Class Activation Maps (CAMs) [86]. Given an image, the CAM
is the matrix, of the same dimensions, that contains for each cell a value denoting the
relevance of the corresponding pixel with respect to the classification target class. The
CAM represented as a heatmap over the original image, helps in understanding which
pixels influenced the most the model prediction.

2.2.2. Tools for Model Performance Evaluation

As previously mentioned, an essential step in Computer Vision model development is the
analysis of the prediction performance, whose results are useful for model debugging and
improvement. With the advances in Machine Learning, that yielded more powerful and
complex architectures based on Deep Learning, this analysis and the understanding of
the models’ behavior have become even more essential. Two different methodologies can

2| Related Work 21

be adopted for performance analysis. One is the “open-box” technique, which evaluates
the relationship between the input, the inner layers, and the output of the model. The
other is the "black-box" method, which aims to compare the output of the model with the
ground-truth computing performance metrics and to understand the model characteristics
by analyzing the impact that some properties (meta-annotations) of the input, not used
for training, have on the prediction performance. Several tools for the evaluation of Deep
Neural Networks implement black-box analysis [24]. In the following, some of the most
relevant tools are presented in chronological order and described.

• Hoiem et al. [33]: a pioneer work in the black-box error analysis in OD tasks which
showed the utility of adding extra annotations to the input besides the training
labels. In particular, it provides an analysis of the impact that a set of pre-defined
metadata properties, such as size, parts visibility, aspect ratio, shape, and occlusion,
have on the performance.

• COCO API [48]: is a framework developed together with the MS COCO dataset.
It introduces the use of custom input properties as an aid for error diagnosis and
differentiates the computation of mean Average Precision based on the object size
(mAPsmall, mAPmedium and mAPbig). The API also allows to load any data set, in
MS COCO format, and to visualize both the images and the annotations.

• ModelTracker [4]: provides performance analysis, for classification tasks, through
metrics summaries, visual representations, and interactive review of results. It im-
plements analysis aids such as color-coded predictions, classification score ordering,
and custom properties tagging of the input.

• Prospector [42]: is a web-based tool that implements a dependence technique for
determining the impact of each input feature on the model results (i.e., counterfac-
tual analysis). By applying changes to the input data, a measure of the impact on
the output is provided. The tool also suggests the change in the value of each input
feature that would lead to the greatest performance improvement.

• Explanation Explorer [43]: is a tool that provides visual analytics for the di-
agnosis of errors and the understanding of the behavior of binary classifiers. The
analysis is in three steps, declined over three main linked interfaces. The first offers
an overview of the overall performance. The second shows the results of an ex-
planation algorithm, which represents the main model decisions and the associated
statistics by groups of features (feature-level). The third allows for specific analysis
at the instance level.

22 2| Related Work

• Squares [62]: is a tool for the interactive performance analysis of multi-class single-
label classifiers. It provides the visualization of prediction scores through instance-
level histograms, with color codes for distinct classes, and comparison among pre-
dictions of different models.

• DETAD [3]: is a tool for the identification of temporal actions in videos. The
tool enables the False-Positive and False-Negative analysis and the estimation of the
sensitivity, of metrics based on mean Average Precision, to six action characteristics:
length, context distance, agreement, coverage, context size, and number of instances.

• Manifold [84]: is a framework that uses visual techniques to support the evaluation
and debugging of ML models. The tool provides an agreement analysis function,
that allows the comparison of model pairs by highlighting the similarities and dif-
ferences of their predictions, and a feature distribution function for feature-wise
comparison between subsets of samples.

• What-If Tool [80]: the tool allows to analyze the performances of ML systems in
hypothetical situations by visualizing the effect of several features on different mod-
els and different subsets of data. The tool also provides fairness analysis to detect
bias in the input data set (Bias Detection) and other features such as counterfactual
analysis, performance measures, and data set fairness optimization.

• TIDE [6]: is a tool that supports error diagnosis in object detection and instance
segmentation. The tool is applicable to multiple data sets and can be applied
directly to output prediction files. It provides the analysis of six types of errors,
each one isolated from the others to understand its specific impact on the overall
performance. TIDE also includes the comparison of the results of different models.

• TF-GraF [82]: is a user-friendly Tensorflow object detection graphical framework.
The tool supports pre-processing, training, and evaluation with the MS COCO
metrics. It allows the selection of the best-known object detection and instance
segmentation architectures (Faster RCNN, SSD, Mask RCNN) through a GUI en-
vironment, letting non-experts design, train, and assess models without coding.

• Boxer [26]: is a tool for comparing the performances of different classifiers on
the same data set. The system provides a customizable interface that allows the
visualization of different metrics and graphs and the assessment of the performance
of models over different data subsets.

• OpenVINO [14]: is an environment for analysis, optimization, evaluation, and
deployment of DL models. It includes black-box analysis through metrics for classi-

2| Related Work 23

fication, object detection, instance segmentation, and semantic segmentation tasks.
It also supports open-box analysis, through the model execution graph (Runtime
Graph), and some calibration techniques.

• AIDeveloper [41]: is an open-source software supporting the entire development
process of an image classification model: dataset definition and visualization, model
training, with various neural network architectures, model optimization, and per-
formance evaluation. The tool presents an easy-to-use GUI that allows DL model
training and analysis without coding.

Tool Ref. Year Task Media Interface

Hoiem et al. [33] 2012 OD Image No

COCO API [48] 2014 OD, IS, PE Image No

ModelTracker [4] 2015 CL Generic Yes

Prospector [42] 2016 CL Generic Yes

Explanation Explorer [43] 2017 CL Generic Yes

Squares [62] 2017 CL Generic Yes

DETAD [3] 2018 AD Video No

Manifold [84] 2018 CL Generic Yes

What-If Tool [80] 2019 CL, BD Generic Yes

TIDE [6] 2020 OD, IS Image No

TF-GraF [82] 2020 OD Image Yes

Boxer [26] 2020 CL Generic Yes

OpenVINO [14] 2020 CL, OD, SS, IS Images Yes

AIDeveloper [41] 2021 CL Images Yes

Table 2.1: Black-box model performance evaluation tools

Table 2.1 presents a summary of the described tools together with their publication year.
For each tool is also indicated: the supported types of media, image, video, and generic
which refers to arbitrary record types, whether the tool provides a user interface or not,
and the addressed task types: classification (CL), object detection (OD), instance seg-
mentation (IS), semantic segmentation (SS), pose estimation (PE), action detection (AD),
and bias detection (BD). All the tools included here are dataset-independent, i.e., allow
the processing of different data sets.

24 2| Related Work

2.3. Dataset Annotation

With regards to machine learning and deep learning, the datasets used for training and
testing form the foundation of the model development process. Two important aspects
of these datasets, that impact the model performance, are the quantity of data available,
desirably large, and the quality of that data, poor quality data entry produces erratic
data output ("garbage-in, garbage-out" concept). For a supervised model, the input
information is the data (images, text, etc.) together with information that represents the
reality the model is trained to recognize, i.e., the ground-truth. The quality of the ground-
truth given in input in the training phase is critical, therefore data must be prepared and
annotated as accurately as possible to provide a correct ground-truth. In [2], the authors
present an experiment, to examine how the quality of annotations impacts the model
performance, highlighting that an increase of wrongful annotations leads to worse model
performance. Therefore, data annotation assumes a substantial role in the preparation of
training and testing datasets.

2.3.1. Data Annotation

Data annotation is the process of assigning labels or adding relevant information to the
data that supervised machine learning models can use in the learning phase. The target
data can be of different types such as text, voice, image, and video.

Text Annotation

When considering machine learning tasks involving text, different annotation types can
be applied based on the task to perform.

• Sentiment Annotation is the association of sentences with the sentiment/emotion
corresponding to the text, it is useful for preparing data for sentiment analysis
models whose task is to define whether a text is, for example, positive, negative,
neutral, happy, angry, etc.

• Intent Annotation is the annotation of text with the intent the sentence conveys, for
example, greeting, thanking, accepting, denying, and such. This data is specifically
useful for developing virtual assistants and chatbots.

• Entity Annotation is the annotation of named entities, phrases, or parts of speech
of a sentence (e.g., "NewYork" is a city, "hurricane" is an event). This is useful for
developing models that extract different kinds of entities from a given text.

2| Related Work 25

• Text Classification associates a sentence, a group of sentences, or a document with
a category/topic (e.g., politics, sport, etc.,). It can be used for the machine learning
classification models that classify text into categories.

• Linguistic Annotation refers to the annotation of the language-related elements of
the text such as semantics, and phonetics. This is useful in multiple tasks as it helps
understand the phonetics, the intention, and the content of the text.

Image Annotation

When building computer vision models, the data to be annotated are images. Different
types of information can be used to annotate images [30]:

• content-independent, are information related to the image but not directly to its con-
tent (e.g., author, location, date, source, ...), also called meta-annotations/properties.
Meta-annotations are not employed in the training process but are useful for the
analysis of models and to give insights into the datasets of images.

• content-dependent, are low/intermediate level features of the image such as color,
texture, etc.

• content-descriptive, are information related to the image’s semantic content, and to
the correspondence between entities in the image and real-world entities. This type
of information is the most challenging one to automate and is the focus of research.

Focusing on content-descriptive annotations, those can be free-text, a textual description
without a pre-defined structure, and keywords, arbitrarily chosen or pre-defined labels
associated with the image or with a region of the image. For different Computer Vision
tasks, content-descriptive annotations are required in distinct types/forms:

• Image Classification: requires images annotated with one or more labels or tags,
typically chosen from a fixed set of predefined labels, that assess the elements present
in the image, or its categorization.

• Object Detection (or Recognition): requires annotations in the form of bounding-
boxes, defined by their extreme coordinates, and a label associated with each box.

• Image Segmentation: requires annotations in the form of segmentation masks, or
binary masks, that delineate the exact boundaries of the objects, associated with
their corresponding labels.

26 2| Related Work

Video Annotation

Video Annotation has some extent of similarity with image annotation, as some machine-
learning tasks are quite similar. A video can be annotated frame-by-frame, returning to
the annotation of images, or, in some cases, annotations can be applied on the video itself.
In any case, the annotation types are similar to the ones used for images, with labels,
bounding-boxes, polygons, etc. The ML tasks usually performed on videos are:

• Detection: i.e., detecting objects in the video;

• Localization: i.e., providing the coordinates of found objects;

• Tracking: i.e., tracking an object and predicting its next location. For this task, an
object must be annotated with the same identifier so that the model can track it
throughout the different frames.

2.3.2. Tools for Image Annotation

The starting point to train and test a supervised computer vision model is a dataset of
images, together with a ground-truth, i.e., a set of annotations over the images the model
relies on for learning to perform a certain task. Over the years many datasets have been
built and publicly shared, with the purpose of being employed for the construction of
computer vision models (e.g., ImageNet [64], MS COCO [48], Pascal VOC [19, 20], Mil-
lionAID [51], LabelMe [65], AerialWaste [73]). Nevertheless, developers typically work on
training models for specific fields or applications and must build training/testing datasets
from the ground up or complement pre-existing ones with additional data. To the ob-
jective of creating a high-quality and sufficiently large dataset, different strategies can be
adopted for the annotation task [51]. The annotation process can be manual, a strategy
that assures highly accurate annotations but is labor-intensive and time-consuming, auto-
matic, which is faster but reveals quality issues, and interactive, or semi-automatic, which
benefits from both the other methods, reduces time costs by leveraging automatically
produced annotations, whose are reviewed by annotators to ensure higher quality.
In this context, the development of annotation tools that seek to ease and expedite the
annotation task becomes crucial. Several tools for image annotation, with various char-
acteristics, have been published. Among other distinctive aspects, annotation tools may:

• be based on different platforms, for example, software-based or web-based, locally
installed or online;

• cover different annotation types, such as image classification, object detection, and
image segmentation;

2| Related Work 27

• provide different annotation instruments, such as bounding-boxes, polygons, poly-
lines, cuboids, etc.;

• implement various annotation aids, for example, automatic shape detection;

• offer import/export functionalities from/to different formats.

In the following, a number of relevant image annotation tools are presented.

• PhotoStuff [29]: an image annotation tool that allows to annotate images from
the Web or local disk, and integrates the use of ontologies and instance knowledge
bases (KBs) in the process. It allows users to describe regions of an image according
to concepts in an ontology (RDFS or OWL).

• LabelMe [65]: a web-based tool for image and video annotation that provides an
easy-to-use drawing interface. Images can be annotated by drawing polygons and
labeling the objects, moreover, the tool provides functionalities to query and browse
the dataset. This tool was created by the MIT Computer Science and Artificial
Intelligence Laboratory to allow users to contribute to the LabelMe dataset, but
a version of the tool has been released for whomever to run locally and annotate
personal sets of images.

• VoTT [54]: is the Visual Object Tagging Tool developed by Microsoft, an annota-
tion tool for image and video assets. It allows the labeling of images and video frames
and supports importing and exporting data from local or cloud storage providers,
such as Azure Blob Storage. Annotations can be exported in different formats like
CNTK, PascalVOC, YOLO, JSON, and CSV. The web application is no longer
available but the tool can be installed and run locally.

• ImageTagger [23]: an image labeling online collaborative tool. Allows the anno-
tation of images, by drawing bounding-boxes and assigning them labels, the upload
and verification of existing labels, potentially generated offline through deep learning
methods, the export to user-defined formats, and the collaboration within teams.

• ByLabel [59]: a boundary-based semi-automatic annotation tool. Given an image,
it automatically detects edge fragments that the user can group to obtain an accurate
region mask (composed of one or multiple boundaries, e.g., in the case of holes), to
which to associate a label.

• CVAT [12]: is the Computer Vision Annotation Tool. It is a web-based and col-
laborative image and video annotation tool for labeling data for computer vision
tasks. It supports many types of annotation: bounding-boxes, polygons, polylines,

28 2| Related Work

points, etc., and offers additional annotation forms such as 3D cuboids, skeletons,
and point clouds. Moreover, it offers features such as interpolation of shapes be-
tween keyframes, in video annotation, and automation instruments to ease and
speed up the annotation process, such as automatic detection of object outlines.
It also supports models for semi-automatic annotation, offering some pre-installed
models: Attributed face detection, RetinaNet R101, Text detection, YOLO v3, and
YOLO v7.

• V7 [79]: is a powerful and complete AI training data platform. It allows the annota-
tion and processing of images, videos, documents, medical imaging files, and 3D vol-
umetric data. The tool can perform various types of annotations for tasks, including
object detection, semantic segmentation, and image classification. It offers multiple
annotation instruments such as bounding-boxes, polygons, lines, keypoint, ellipses,
skeletons, cuboids, and additional annotation aids like shapes auto-selection. V7
supports the training of Label-Assistant Models and their execution, the execution
of a set of public models of different tasks, and the user’s models through REST API.
This allows for auto-annotation features, that make V7 a valuable tool to quickly
produce high-quality annotated data. In the end, it includes more functionalities
such as collaboration features, annotators’ performance tracking, and annotation
workflow management. V7 is freely accessible with reduced functionalities and re-
quires payment for full access.

• Labelbox [46]: is a data-centric AI platform comparable to V7. It addresses both
computer vision and LLM (Large Language Models) systems. It allows annotation
and data curation of images, videos, audio, documents, text, medical images (DI-
COM), and geospatial tiles (properly prepared according to Labelbox documenta-
tion). As V7 it offers several annotation instruments, and automatic aids to speed up
the dataset annotation. Similarly, it integrates the execution of models, evaluation
of models through some performance indices, and workflow management together
with collaboration functionalities. Labelbox provides a free plan with limitations,
and payment plans to fully exploit its features.

• VIA [16]: is the VGG Image Annotator from the Visual Geometry Group. It allows
to define and describe regions in images or video frames, and temporal segments in
audio or video. In particular for image annotation, the tool lets to manually define
objects, through rectangles, circles, ellipses, polygons, points, and polylines, and
attach a textual description or a label, through configurable input types (e.g., text
input, checkbox, radio, dropdown, etc). Moreover, it provides the functionality of
uploading annotations (e.g., automatically generated offline with a model), that can

2| Related Work 29

be then filtered, selected, and updated.

• Make Sense [67]: is an online tool for image labeling. It supports both classifica-
tion, through labels, and detection, through polygons, bounding-boxes, lines, and
points. It supports the export of annotations to different formats, depending on the
type, and the import of rectangular and polygonal annotations. Furthermore, the
tool integrates three ML models, that run locally thanks to TensorFlow.js: YOLOv5
and COCO for object detection, PoseNet for pose estimation with points.

• LabelStudio [70]: is an open-source data labeling tool, for audio, text, images,
videos, and time-series. In the context of computer vision, it offers annotation for
image classification, object detection, and semantic segmentation tasks. For each
annotation task, a labeling setup is provided, but the user can create customized
ones using a specifically designed configuration language. The tool allows the import
of annotations or predictions, export to multiple formats, both from/to files or
cloud storage, and integration with machine learning models, through the specific
Label Studio ML backend SDK. The tool must be installed locally or on a server
and accessed through a web application. It supports also collaborative annotation,
provided that the users have access to the same Label Studio instance.

• TORAS [38]: is the Toronto Annotation Suite, originated as an advancement of
the previous Polygon-RNN++ tool [1]. It offers interactive segmentation tools that
integrate segmenting models, able to automatically detect an object outline, with
some precise polygon editing methods. It allows the creation of training datasets,
also with collaboration options, and the export of annotations to TORAS, COCO,
and mask formats.

In Table 2.2 a summary of the previously described tools is presented, together with their
publishing year, the available instruments for the annotation and annotation exporting
formats, and whether they provide collaborative functionalities. There are other tools
available that can also be mentioned. Among open-source tools there are LabelImg [77],
ImgLab [28], and COCO Annotator [7] that provide a lightweight solution with a simple
interface for image annotation, offering some annotation instruments for image classifi-
cation, object detection and segmentation. Tools such as RoboFlow [17], Superannotate,
and Kili offer more complex platforms, and are proprietary, with full access based on
fees. They provide management of datasets, multiple data types such as images, text,
and video, extended labeling features, enhanced by automatic tools like shape-detection
and others, collaboration features, and some integrations with models.

30 2| Related Work

Tool Ref. Year Image Annotation Format Collab.

PhotoStuff [29] 2005 bounding-box RDF/XML No

LabelMe [65] 2008 bounding-box, XML only for

polygon, mask LabelMe

dataset

VoTT [54] 2017 bounding-box, YOLO, CNTK, No

polygon Pascal VOC,

JSON, CSV

ImageTagger [23] 2018 bounding-box, line, user definable Yes

polygon, point

ByLabel [59] 2018 mask TXT No

CVAT [12] 2018 bounding-box, point YOLO, COCO, Yes

polygon, polyline Pascal VOC,

mask, skeleton CVAT, others

3D cuboid, point cloud

V7 [79] 2018 bounding-box, lines COCO, CVAT Yes

polygon, ellipse DARWIN (XML)

keypoint, cuboid YOLO, PNG

skeletons, mask PASCAL VOC

Labelbox [46] 2018 bounding-box, mask, NDJSON Yes

cuboid, polygon,

polyline, point

VIA [16] 2019 bounding-box, point JSON, CSV Yes

polygon, polyline,

ellipse, circle

Make Sense [67] 2019 bounding-box YOLO, CSV, No

polygon Pascal VOC XML,

point, line JSON

Label Studio [70] 2020 polygon, mask, COCO, CSV, Yes

bounding-box, JSON, YOLO,

keypoint Pascal VOC XML

TORAS [38] 2021 bounding-box, TORAS, COCO, Yes

polygon, mask PNG masks

Table 2.2: Image Annotation tools

31

3| Proposed Solution

3.1. ODIN

ODIN is an evaluation framework developed in [75, 76, 83]. The framework provides
functionalities for black-box diagnosis for image classification, object detection, and in-
stance segmentation. It allows the investigation of errors and model performance through
a wide range of metrics and diagnostic reports, including the analysis of subsets of the
input by exploiting meta-annotations. It also provides a Graphical User Interface (GUI)
for annotating the dataset and adding custom extra properties to the input. The tool is
implemented in Python and the GUI is realized as a Jupyter Notebook.

3.2. ODIN Web

ODIN Web is a web application, developed in [52], whose aim is to provide a web interface,
accessible by non-technical users, that exploits the above-mentioned ODIN framework.
The application allows to create and manage datasets, annotate images according to
the different computer vision tasks, such as image classification, object detection, and
instance segmentation, and investigate model performance. The purpose of this work is
to extend ODIN Web with further functionalities to address the requirements presented
in this section. The aim is to realize a web tool covering the most steps in the model
development pipeline, from data annotation to the application of computer vision models.
In particular, the tool should be collaborative and offer dataset management features,
annotation for image classification, detection, and segmentation tasks, model performance
analysis, inference, and geo-visualization of predictions for geo-localized stellite images.

ODIN Web supports the annotation of five computer vision tasks divided into classification
and localization tasks. Classification tasks are those concerning the identification of one
or more categories in the image. ODIN Web supports the following classification tasks:

• Binary Classification: the task of categorizing an image into one of two defined
categories;

32 3| Proposed Solution

• Multi-Class Single-Label Classification: the task of classifying an image with only
one class from a defined set of more than two categories;

• Multi-Class Multi-Label Classification: the task of assigning to an image one or more
classes from a defined set of more than two categories.

Localization tasks are those that refer to the problem of identifying which objects are
present in an image and localizing them on the image. ODIN Web supports the following
localization tasks:

• Object Detection: the task of recognizing the objects in the image and defining their
location enclosing each one in a bounding box.

• Instance Segmentation: the task of recognizing the objects in the image and defining
their location by outlining them.

3.2.1. Requirements

The requirements identified for the design of ODIN Web are represented through the use
cases diagram in Figure 3.1. Then, some relevant use cases are described, in particular,
those related to the user management functionalities, the map and predictions visualiza-
tion features, and the models’ inference features.
For each use case are defined: the goal, the actors involved in the use case, the entry con-
ditions that must be true before the use case starts, the flow of the events, and optionally
the exceptions that describe anything leading to not achieving the use case’s goal and
how is handled.

The actors of the presented use cases are the Organization Admins, who are registered
by the ODIN Web team upon request, and the Users, who, instead, are registered and
managed by the admins themselves.

User Management Use Cases

Create a User
An ODIN Web organization admin wants to add a new user to his organization.

• Actors: Organization Admin.

• Entry Conditions: The admin must be logged in to ODIN Web.

• Event Flow: The admin is on the homepage, which corresponds to the Datasets
page. The admin presses the Users button in the navigation bar entering the user

3| Proposed Solution 33

management page. The admin fills out a form, inserting a username and a password
for the user he wants to create. Alternatively, the password can be automatically
generated by pressing the relative button. Clicking on the Create button the user
will be registered by the application and a success alert will appear with a recap of
the inserted information. The username is inserted into the list of supervised users
visible on the same page.

• Exceptions: The application recognizes that the username has already been used.
A warning is displayed asking the admin to try with another username.

Authorize Users
An ODIN Web organization admin wants to authorize one or more users to a dataset.

• Actors: Organization Admin.

• Entry Conditions: The admin must be logged in to ODIN Web.

• Event Flow: The admin is on the homepage, which corresponds to the Datasets
page. The admin presses the Users button in the navigation bar entering the user
management page. The admin selects the target dataset from the dropdown menu,
and the application displays two lists of users, respectively the not-authorized ones
and the already-authorized ones. The admin selects one or more users from the
list of Not-Authorized and presses the button to give them permission. A dialog of
confirmation is displayed. If the admin confirms the action, the users are enabled
to access the target dataset and moved to the Authorized list.

Revoke Authorization from Users
An ODIN Web organization admin wants to revoke the authorization to a dataset from
one or more users.

• Actors: Organization Admin.

• Entry Conditions: The admin must be logged in to ODIN Web.

• Event Flow: The admin is on the homepage, which corresponds to the Datasets
page. The admin presses the Users button in the navigation bar entering the user
management page. The admin selects the target dataset from the dropdown menu,
and the application displays two lists of users, respectively the not-authorized ones
and the already-authorized ones. The admin selects one or more users from the
list of Authorized and presses the button to revoke their permission. A dialog of
confirmation is displayed. If the admin confirms the action, the users are revoked

34 3| Proposed Solution

their permission to access the target dataset and moved to the Not-Authorized list.

Map Visualization Use Cases

Visualize Predictions on the Map
An ODIN Web user wants to visualize the predictions over a geolocalized target dataset
onto the map.

• Actors: Organization Admin, User.

• Entry Conditions: The user must be logged in to ODIN Web. The user must
have uploaded the required prediction files in GeoJSON format.

• Event Flow: The user is on the Datasets page and selects the target dataset enter-
ing its page. The user enters the Map Visualizer page by pressing the corresponding
button. After loading, the map is shown, with Google Maps as default. Onto the
map are drawn the perimeter of the area of interest, the predictions in the form of
color-coded bounding-boxes, and the activation maps as the contours of the areas
the model focused on. The user can manage the visibility of the layers and use an
interactive legend to filter the visible predictions.

Open Images from Map Visualizer
An ODIN Web user wants to open a geolocalized satellite image from its corresponding
bounding-box on the map.

• Actors: Organization Admin, User.

• Entry Conditions: The user must be logged in to ODIN Web. The user must
have uploaded the required files in GeoJSON format.

• Event Flow: The user is on the Map Visualizer page of the target dataset. The
map is shown together with the perimeter of the area of interest, the color-coded
bounding-boxes, and the activation map shapes. By hovering over each bounding-
box, a tooltip is opened displaying the name of the corresponding image in the
dataset, the coordinates of the center of the square, and the information relative
to the annotations associated with the image (categories and properties). With a
right-click on the target square, a context menu is opened offering the possibility
to open the image in the Annotator. Once the user selects the option, a new tab is
opened showing the Annotator page of the image. The annotations for categories
and properties are displayed. The user enables the visibility of the CAMs through
the relative layer control menu, and the shapes representing the areas the model

3| Proposed Solution 35

focused on are drawn over the image.

Prediction Visualization Use Cases

Visualize Predictions in the Annotator
An ODIN Web user wants to visualize the predictions over a dataset onto each single
image.

• Actors: Organization Admin, User.

• Entry Conditions: The user must be logged in to ODIN Web. The user must have
run the inference of a model on the dataset or uploaded the required prediction files.

• Event Flow: The user is on the Datasets page and selects the target dataset
entering its page. The user enters the Annotator page by pressing the corresponding
button. A grid of thumb images is displayed, one for each image in the dataset,
spread over multiple pages. The user navigates through the grid and presses on a
target image entering its annotation page. On this page, the image is visualized and
the annotation section for categories and properties is displayed. The user enables
the toggle switch Show Predictions, and the predictions over the image are shown
in the appropriate section. A color-coded border appears around the image as a
visual indication of the prediction. If CAMs are available, a layer control menu also
appears. The user selects the CAMs option from the menu and the activation areas
are shown over the image.

Open Map Visualizer from Annotator
An ODIN Web user wants to visualize a specific geolocalized image on the map.

• Actors: Organization Admin, User.

• Entry Conditions: The user must be logged in to ODIN Web. The user must
have uploaded the required files in GeoJSON format.

• Event Flow: The user is on the Annotator page, where the grid of thumb images
is displayed. The user navigates through the grid and presses on a target image
entering its annotation page. On this page, the image is visualized and the anno-
tation section for categories and properties is displayed, if available the user can
visualize the predictions and CAMs as described in the previous use case. The user
presses on the Open in Map Visualizer button entering the Map Visualizer page.
The map is loaded, zoomed, and focused automatically on the position on the map
corresponding to the geolocalized image. The user interacts with the map, and the

36 3| Proposed Solution

information represented on it, as described in the Map Visualization Use Cases.

Model Inference Use Cases

Model Selection
An ODIN Web organization admin wants to select or add a model for a dataset.

• Actors: Organization Admin.

• Entry Conditions: The admin must be logged in to ODIN Web.

• Event Flow: The admin is on the Datasets page and selects the target dataset
entering its page. The admin presses the Settings button and accesses the dataset
Settings page. The admin is presented with a list of the editable settings of the
dataset, among which there is a Models section. The admin selects the desired
model, through its corresponding checkbox, among the ones made available by ODIN
Web. If the admin wants to insert a model of his own, he inserts the model name
into the dedicated input field, which checks the name availability, and presses the
corresponding button to add it. The system will create directories, one for each
model, in which the predictions are stored (by inference with the available models)
or uploaded (for the additional models).

Model Inference on a Dataset
An ODIN Web user wants to run the inference over a dataset.

• Actors: Organization Admin, User.

• Entry Conditions: The user must be logged in to ODIN Web.

• Event Flow: The user is on the page of the target dataset and enters the Predictor
page by pressing the corresponding button. The user navigates to the Models section
and selects the model to run from the dedicated dropdown menu. The user runs
the model through the Run button. A progress bar appears, with the percentage
of completion and an estimate of the remaining time, while the system elaborates
the images. During the inference, the user can navigate through the rest of the
application. Once the inference is completed the system saves the predictions in
TXT format in the directories mentioned in the previous use case. The computed
predictions are used in the Analyzer, together with the annotated ground-truth,
for the analysis of model performance, and in the Annotator as described in the
Prediction Visualization Use Cases.

3| Proposed Solution 37

Model Inference on Images
An ODIN Web user wants to run the inference over some new images distinct from the
datasets ones.

• Actors: Organization Admin, User.

• Entry Conditions: The user must be logged in to ODIN Web.

• Event Flow: The user is on the homepage, i.e., the Datasets page. The user
navigates to the Models section, in which he selects one of the available models.
The user uploads some images, that will remain separated from the other image
collections. The user runs the selected model on the added images. Similarly to
the previous case, during system elaboration, a progress bar is displayed. Once
the inference is completed, the images appear on a preview grid. The user selects
an image entering the page for the visualization of the prediction, including the
complete Class Activation Map (CAM) on the image.

38 3| Proposed Solution

Figure 3.1: Use Cases Diagram

39

4| Implementation

This chapter aims to describe the design and implementation of ODIN Web. An overview
of the employed architecture is described in Section 4.1, the design is discussed in Section
4.2, a description of the implementation technologies is presented in Section 4.3, lastly
the application deployment is addressed in Section 4.4.

4.1. Architecture Overview

The architecture adopted for the implementation of ODIN Web is that of a three-tier
client-server architecture, that consists of a presentation, an application, and a data tier.
The presentation tier is the interface through which the user interacts with the application.
The application tier is the component handling the logic of the application. The data tier
is the place that stores the information processed by the application. In Figure 4.1, a
high-level overview of ODIN Web architecture is represented. ODIN Web is accessible
for the users from the client side through a Web Browser of choice which communicates
with the Application Server through HTTP protocol. On the Application Server resides
the ODIN Web application logic which interacts with the ODIN framework to exploit the
services that it offers. The Application Server communicates with the Database Server
which runs an instance of the DBMS, MongoDB, used by the ODIN Web application to
store, access, and update data.

Figure 4.1: ODIN Web Architecture Overview

40 4| Implementation

4.2. Design

In this section are presented and described the design choices at the basis of ODIN Web
development. In particular, in the following subsections, the Domain Model and the
ODIN Web Backend and Frontend designs are introduced.

4.2.1. Domain Model

Considering the purposes of ODIN Web and the requirements described in Chapter 3 the
conceptual design of the domain has been defined. The resulting domain model, reported
in Figure 4.2, illustrates the concepts, and their relationships, involved in the design of
the ODIN Web application, representing them as classes in the diagram. The diagram is
built following the Unified Modeling Language1 (UML) conventions.

Figure 4.2: ODIN Web Domain Model

The concepts and relationships represented in the domain model diagram of ODIN Web
are described in the following.

1https://www.uml.org/

https://www.uml.org/

4| Implementation 41

Odin Web User The Odin Web User class represents any end user of the application.
A user can be of one of two types:

• Organization Admin, who has full rights to create and delete datasets, edit
dataset settings, register users, and manage the authorizations for dataset access.

• User, who has limited rights, in particular, can visualize and access only the datasets
he has been authorized to by the Organization Admin and does not have access to
any user-management functionalities.

Image The Image class represents an image with its file name, width, and height. If the
image is geo-localized, it will also have a set of Coordinates.

Image Collection The Image Collection class represents a named set of Images.

Dataset The Dataset class represents an object that is associated with an Image Collec-
tion, the set of images to be considered for the dataset annotation, analysis, and inference,
and that is characterized by a name and a description and specific values for the user-
defined configuration parameters: task type, categories, and properties. A Dataset can also
contain the Annotation Data Set derived from the annotation process and some Predic-
tion Sets derived from the inference on the dataset images. The Dataset class generalizes
the three types of dataset Training Dataset, Validation Dataset, and Testing Dataset.

Annotation The Annotation class represents an annotation made over an Image. As
defined in 2.3, an annotation is the information associated with the image to be used
in model training as the truth. The Annotation concept includes the different forms in
which an annotation can be represented based on the computer vision task to address and
may include a Segmentation for the localization ones.

Segmentation The Segmentation class represents a set of image-related coordinates
combined or not with image dimensions that encode a shape drawn to delimit a certain
area of an image. In particular, this class generalizes two distinct types of segmentations
that are Bounding Boxes and Masks.

Meta-Annotation The Meta-Annotation class represents a property value associated
with an Image. As defined in 2.3, a meta-annotation is the information associated with
the image that is not used for training, but that can be functional in the dataset or model
performance analysis.

42 4| Implementation

Annotation Data Set The Annotation Data Set class represents the set of Annotations
and Meta-Annotations associated with the set of images of the relative Dataset. Of the
Annotation Data Set only the annotations are to be considered in the training of a model.
The meta-annotations instead can be used for a deeper and more informative model
performance analysis.

Model The Model class represents a Machine Learning/Deep Learning model.

Prediction The Prediction class represents a prediction obtained from Model inference
over an image. A Prediction has a score, which represents the prediction confidence over
a category, and in case of detection or segmentation tasks, also a Segmentation that is
either a Bounding Box or a Mask.

Prediction Set The Prediction Set class represents a set of predictions computed by a
model over the set of images of the relative Dataset. It can be used to show the predictions
over the images and to perform model performance analysis and model comparison.

4.2.2. Backend

This section describes the design of the ODIN Web backend, that handles the logic of
the application. ODIN Web backend is built into modules to separate the various func-
tionalities of ODIN Web, such as user management, dataset management, annotation,
analysis, model execution, and map visualization. Figure 4.3 illustrates the class diagram
that represents the main components of ODIN Web backend extending the model in [52].

User
The User component concerns users and user management features. There are two types
of users: the admin and the simple user. Admins are registered upon request by the ODIN
Web team, while users are created by the admins, who register them by inserting:

• username;

• password.

As shown in Figure 4.4, the User component offers a series of methods to deal with
user management. This component provides login methods, both through username and
password or through JSON Web Tokens (JWT) [37]. A JWT temporary token is generated
upon login with username and password and saved at the frontend in the Cookies. In

4| Implementation 43

Figure 4.3: UML Class Diagram of the main components of ODIN Web Backend.

Figure 4.4: UML Class Diagram of User Component

this way, it can be later employed for automatic authentication on ODIN Web, if it
has not expired. For authentication and authorization purposes the functions exposed
by ODIN Web are decorated with @token_required, which checks whether the user
is authenticated, or in specific cases with @admin_only if the function is reserved to the
admins. Other methods provided by this component are for user creation and management
by admins, and for granting or revoking authorizations.
Figure 4.5 illustrates how the user instances are structured inside the users collection in
the chosen database MongoDB (4.3). For clarity, the admin and the user structures are
represented separately in the figure. Users information is organized in the fields:

• _id: the primary key generated by MongoDB;

• public_id: a unique identifier generated at creation;

44 4| Implementation

(a) Admin

(b) User

Figure 4.5: MongoDB structure of user: user with admin privileges (a), simple user (b),
the two cases are represented separately for clarity.

• username: the username associated with the user;

• password: the password stored in hashed form;

• admin: a flag that indicates whether the user is an admin or not;

• datasets: an array of datasets. Each dataset is a document with:

– name: name of the dataset;

– owner: the dataset owner public_id.

Only if the user is an admin, the dataset document contains also the field:

– authorized_users: an array containing the users authorized by the admin to
access the dataset, each with its public_id and username.

Only in the case, that the user is an admin, its document contains also the field:

• supervised_users: an array containing the users created by the admin, each with

4| Implementation 45

its public_id and username.

Dataset
The Dataset component concerns the management of datasets. As defined in Section 4.2.1
a dataset is a composite object that contains multiple pieces of information. A dataset is
created by an admin that specifies:

• dataset name: the name of the dataset. Different datasets cannot be named equally.

• dataset description: a text that describes the dataset.

• task type: the type of computer vision task to address.

• categories : the list of classes to be considered for annotating the dataset images. In
case the task is Binary Classification, then the classes are two and only two.

• properties : the meta-annotation properties that can be used during annotation to
add extra information. ODIN Web allows to define properties in three formats:

– unique: the property has a fixed set of user-defined values;

– range: the property can assume integer values in a user-defined range;

– textual : the property value is an arbitrary text.

• images path: the path to the collection of images the dataset is based on;

• models : the models selected or associated with the dataset from the dataset settings.

On the backend each admin has a dedicated directory for storing the content of the
datasets. Each dataset has its directory in which is stored: the configuration file, which
contains all the dataset settings parameters, the ground truth file, which can be uploaded
or downloaded, the properties file, the directories to store model predictions, and those to
store the geolocalized prediction files.

Annotator
The Annotator component is the one used to manage everything related to the annotation
process. The component is divided into three modules:

• Classification Annotator : handles annotations specifically for the classification tasks,
i.e., binary, multi-class single-label, and multi-class multi-label classification.

• Localization Annotator : handles annotations specifically for the localization tasks,
i.e., object detection and instance segmentation.

46 4| Implementation

• Annotator : handles the management of the ground truth for both classification and
localization tasks.

The annotations are saved on the MongoDB database. Figure 4.6 illustrates the struc-
ture of observations, organized to store annotations for classification tasks and part of
the observations collection, and the structure of annotations, organized to store anno-
tations for localization tasks and part of the annotations collection. With respect to
the previous structure described in [52], the new schema, includes one additional field for
both observations and annotations:

• dataset_owner : is the public_id of the owner of the dataset associated with the
annotation or observation, which is needed so that annotations and observations
can be univocally identified.

(a) Observation (b) Annotation

Figure 4.6: MongoDB structure of annotations: observation, represents a classification
annotation (a), annotation, represents a localization annotation (b). Updated [52].

Analyzer
The Analyzer component is the one used to manage everything related to the analysis
process. The component is divided into four modules:

• Classification Analyzer: handles the analysis requests specifically for the classifica-
tion tasks, i.e., binary, multi-class single-label, and multi-class multi-label classifi-
cation.

4| Implementation 47

• Localization Analyzer: handles the analysis requests specifically for the localization
tasks, i.e., object detection and instance segmentation.

• Comparator : handles the analysis requests concerning the comparison between mul-
tiple models.

• Analyzer : is the main analyzer module that instantiates and saves the analyzer
class, which is then used to exploit the services offered by the ODIN Framework.
The analyzer object has the following settings:

– properties : the set of properties among the ones defined for the dataset to be
considered in the analysis;

– similar-classes : groups of categories to be considered similar;

– threshold : the confidence threshold to apply, for each model;

– iou-threshold : the IOU threshold for localization tasks, for each model;

– categories-factor-check and categories-factor : whether category normalization
is to be applied, and the relative factor, for each model;

– properties-factor-check and properties-factor : whether properties normaliza-
tion is to be applied, and the relative factor, for each model;

Model Executor
The Model Executor component is the one used to manage model inference. It exposes
two methods:

• run_model(): is the function that processes the HTTP request coming from the
frontend and extracts the model inference parameters: the name and owner of the
dataset, the model selected for the inference, and the type of task.

• task_progress(): is the function called to retrieve the progress of the inference.

When the frontend calls run_model(), this function executes extracting the data, calling
the execute_model() task, and returning its id. The execute_model() is a @shared_task
that runs in the background on the celery worker, performing the inference through
calls to the prediction method of the target model. While this task is executed the rest
of the application remains available. The frontend periodically retrieves the status of an
inference task by calling task_progress(), providing as argument the task id.

Geovisualizer
The Geovisualizer component handles the information regarding the Map Visualization

48 4| Implementation

functionalities. In particular, it exposes methods to:

• retrieve the information needed to populate the Map Visualizer;

• upload the geolocalization information, such as the area shape or kml files, or the
geojson prediction files.

Redis
The Redis component is used to manage the data stored on the Redis server (4.3). The
component provides the other modules functions to store/get/change dataset and analyzer
instances, keep track of the model under analysis when using the comparator, and main-
tain the user’s session in the annotator. Data is stored in a key-value structure, where the
key includes the user uuid, i.e., a unique temporary id that changes over different sessions.

4.2.3. Frontend

This section introduces the design of the ODIN Web frontend. The user application
interface comprises different pages, that are built following a component-based approach.
Indeed, components allow to split the user-interface into independent and reusable pieces,
which can then be assembled and nested to realize more complex components. Figure
4.7 illustrates the tree of nested components of the ODIN Web frontend. All components
are nested under the root instance, i.e., the App component. Directly inside the root,
there are the components representing the different views of ODIN Web, that themselves
encapsulate other components, until the basic ones.

Figure 4.7: ODIN Web Frontend Components

4| Implementation 49

The entire ODIN Web user-interface is illustrated and described in Chapter 5.

4.3. Implementation Technologies

In this section, the technologies adopted for the ODIN Web implementation are discussed.
In particular, are presented the ones employed for backend, frontend, database, commu-
nication, and deployment. The described technologies follow the ones used in [52] for the
first implementation of ODIN Web, and are extended with others necessary to implement
the new version presented in this work. As well as ODIN [75, 76, 83], the backend of
ODIN Web is written in Python, while the frontend uses Javascript, HTML, and CSS.

Docker
Docker2 is an open-source platform for developing, deploying, and running applications.
It provides the ability to package applications in isolated environments, enabling the
separation of the applications from the infrastructure. Specifically, docker provides the
following useful features:

• isolation: docker allows to package an application and its dependencies into a stan-
dardized unit called a container. The container is lightweight and self-contained,
and as such does not need to rely on what is installed on the host. Many containers
can be run simultaneously on the same host.

• portability : the docker containers include everything needed to run the target ap-
plication and can run consistently on multiple different host environments.

• fast and consistent delivery : given the characteristics of containers those can be
tested locally, shared, and delivered consistently regardless of the underlying host.

For a description of how dockers are employed for the ODIN Web deployment refer to
Section 4.4.

Flask
Flask3 is a micro web framework implemented in Python and is one of the most popu-
lar Python web application frameworks. Flask is lightweight and flexible as it does not
depend on particular external libraries, except for Werkzeug, a Python utility library for
Web Server Gateway Interface (WSGI) applications, and Jinja, a Python template en-
gine. Flask can be integrated through the many available extension libraries that allow
to easily add needed functionalities.

2https://www.docker.com/
3https://flask.palletsprojects.com/en/3.0.x/

https://www.docker.com/
https://flask.palletsprojects.com/en/3.0.x/

50 4| Implementation

Flask allows the mapping of specific URLs to the associated functions through the @app.route()
decorator, which requires, as arguments, the URL string and the list of HTTP meth-
ods supported by that URL: @app.route(’/url/of/function’, methods=[’GET’]). In
ODIN Web, Flask is used to build the web application and handle the HTTP communi-
cation with the frontend on the backend side.

Celery
Celery4 is a simple, flexible, and reliable distributed system to process messages, written in
Python. It is a powerful task queue for real-time processing and task scheduling. Celery
is suitable for simple background tasks, as well as complex multi-stage programs and
schedules. It can be used independently, but can also be integrated and configured with
Flask to let tasks access the Flask application. Through the @shared_task() decorator,
a function can be defined as a task to be executed in the background, running separately
on a celery worker instead of on the main Flask application. In ODIN Web, Celery is
employed to run the inference of models in the background while the rest of the application
remains available.

MongoDB
MongoDB5 is a NoSQL document-based database suitable for scalable applications. It is
schemaless and stores data in collections and JSON-like documents consisting of key-value
pairs, where the value may be a native data type, an array, or other documents.
ODIN Web adopts MongoDB as the database, given its flexibility in the structure of data,
and the documental format for the storage. Indeed, ODIN Web mostly works with data
in JSON format, e.g. annotations in MS COCO format, that can be easily mapped to the
MongoDB database. The structure is not fixed and, as such, is suitable to store instances
of the same concept that contain different fields, e.g. different types of users (Figure
4.5). Moreover, MongoDB is scalable and can deal with large volumes of data, which
is an important aspect considering the amount of expected annotations. The MongoDB
database of ODIN Web consists of four collections: observations, for storing image clas-
sification annotations, annotations, for storing detection and segmentation annotations,
images, for storing image information, and users, for storing users with their relationship
and datasets access authorizations.

Redis
Redis6 is an open-source, in-memory data structure store that can be used as a database,

4https://docs.celeryq.dev/en/latest/index.html
5https://www.mongodb.com/
6https://redis.io/

https://docs.celeryq.dev/en/latest/index.html
https://www.mongodb.com/
https://redis.io/

4| Implementation 51

cache, message broker, and streaming engine. In ODIN Web Redis is used as a caching
memory to store instances of Dataset and Analyzer associated with a user in a session.
The advantage is that Redis data resides in memory, instead of on disk, achieving top
performance with low latency and high throughput.

Vue.js
Vue.js7 is a Javascript framework for building web user interfaces, that covers most fron-
tend development features. It is based on standard HTML, CSS, and Javascript, and
provides a declarative and component-based programming model. The Vue.js framework
has two major features:

• Declarative Rendering : it extends the standard HTML with a template syntax that
allows to describe the HTML output based on the Javascript state. In this way, the
manual manipulation of the DOM is reduced to a minimum, and Vue takes care of
updating the view when the state changes.

• Rectivity : it automatically monitors changes in the Javascript state and updates the
DOM to reflect those changes. The update is efficient as Vue maintains a virtual
DOM (v-DOM) to compute the difference between the old and new DOM so that
only the necessary parts are re-rendered.

In ODIN Web, Vue.js is used to create the whole web application interface. The com-
ponents are built using the Single-File format feature of Vue.js, which encapsulates the
component’s logic (Javascript), the template (HTML), and the style (CSS) in a single
file for each component. Components are implemented singularly and then nested and
assembled to compose web pages.

Axios
Axios8 is a promise-based HTTP Client for Node.js and the browser. Axios can be used to
make XMLHttpRequests from the browser or HTTP requests from node.js. It supports the
Promise API, for handling asynchronous calls, the automatic request body serialization
to JSON, Multipart or FormData, and URL-encoded form, and the automatic handling
of JSON data in response. For these characteristics, Axios has been used for handling
HTTP requests and responses in the Vue.js ODIN Web frontend.

7https://vuejs.org/
8https://axios-http.com/

https://vuejs.org/
https://axios-http.com/

52 4| Implementation

4.4. Deployment

ODIN Web is deployed, as mentioned in Section 4.1, on a three-tier architecture. Specif-
ically, ODIN Web is accessible online from the user’s device through a Web Browser of
choice. The ODIN Web Client interacts with the server through the HTTP protocol. On
the server side, ODIN Web is deployed on the ODIN Server with three dockers that con-
tain respectively: the Application Server and the Database Server, which are networked
and communicate with each other, and the Ortophoto Server, which exposes its services
through HTTP. The deployment infrastructure is illustrated in Figure 4.8 and the content

Figure 4.8: ODIN Web Deployment Diagram

of the three dockers is described in the following.

Application Server The first docker, based on Python 3.10.8, represents the Applica-
tion Server that includes all the components handling the application logic.

• ODIN Framework : the ODIN framework is installed as a pip package and therefore
accessible as a Python library.

• Celery : runs the celery worker that offers parallel computation.

• Redis : runs the redis server used for caching and session maintaining.

• ODIN Web Backend : is the ODIN Web backend module running with the Flask
framework. It constitutes the core of the ODIN Web application.

• ODIN Web Frontend : is the ODIN Web frontend module constituting the web
application user interface.

4| Implementation 53

Database Server The second docker represents the Database Server on which the
MongoDB database resides. This docker is connected to the first one to allow interaction.
Specifically, the ODIN Web Backend accesses the MongoDB through its IP address.

Ortophoto Server The third docker represents the Ortophoto Server on which the
Ortophoto Provider runs providing access to the PNEO and Ortophoto tiles. The ODIN
Web Frontend accesses this service through HTTP Requests.

55

5| Results and Validation

This chapter presents the implementation results of ODIN Web, by illustrating the appli-
cation’s functionalities, and addresses ODIN Web validation.

5.1. Features

Following the requirements in Chapter 3, ODIN Web was implemented as described in
Chapter 4 to realize a collaborative web-based tool offering dataset management features,
annotation for classification, detection, and segmentation computer vision tasks, model
performance analysis, inference, and geo-visualization of predictions. In this section,
ODIN Web is demonstrated by illustrating the areas dedicated to those functionalities:

• User Management;

• Dataset;

• Annotator;

• Analyzer;

• Map Visualizer;

• Predictor.

5.1.1. ODIN Web Access

ODIN Web is available online. The access browser must support Javascript execution.
An admin account can be obtained upon request to the ODIN Web team, while users are
registered by their admin. After reaching the website the user must log in by inserting
his username and password. ODIN Web provides automatic authentication if the user has
previously accessed and the authentication token has not expired.
After logging in, ODIN Web displays the homepage, which corresponds to the Datasets
page. To navigate the sections of ODIN Web the user can use the navigation bar on
top (Figure 5.1). After entering a dataset, an additional breadcrumb navigation bar,
positioned right under the main one, helps the user understand his location on the website
and quickly move back to a preferred page.

56 5| Results and Validation

Figure 5.1: Overview of ODIN Web Interface

5.1.2. User Management

The user management feature is restricted to the admins. By entering the Users page, the
admin is presented with a bipartite interface. On the upper half (Figure 5.2), the admin
can create a user, by filling out the form on the left, and visualize the list of supervised
users on the right. The admin can use the password generation button to generate a
random password, which is placed into the relative fields of the form.

Figure 5.2: User Management: users creation

5| Results and Validation 57

On the lower half (Figure 5.3), the admin can select the target dataset from the dropdown
menu (1). The users authorized and not authorized to that dataset appear in the cor-
responding lists. The admin can authorize some users by selecting them (2a) and then
clicking on the button (3a) to move them to the authorized. The admin can revoke the
authorization from some users by selecting them (2b) and then clicking on the button
(3b) to move them back to the not authorized.

Figure 5.3: User Management: authorize/remove authorization

5.1.3. Dataset

The Datasets page, which is also the homepage, presents the users with a horizontal pagi-
nated list of datasets. Datasets can be searched by name, or filtered by task type through
a dropdown menu. Each dataset is represented through a card reporting the dataset
name, description, and task type, and can be accessed by clicking on it. This page offers
different functionalities according to the user’s role.

The Datasets page for admins (Figure 5.4) allows them to create datasets through the
Dataset Creation page accessible by clicking on the relative button. An admin has access
to all the datasets he created.

The Datasets page for users allows them to visualize and open the datasets they have
been authorized to by their administrator (Figure 5.5).

58 5| Results and Validation

Figure 5.4: Datasets: datasets page for admins

Figure 5.5: Datasets: datasets page for simple users

Dataset Creation
The Dataset Creation page allows admins to create a dataset (Figure 5.6). The admin
should fill out the dedicated form by inserting the dataset name and an optional descrip-
tion, selecting the task type among the 5 supported ones, defining the training classes,
also called categories, and the annotation properties, and inserting the path to the target
collection of images. The admin is presented with two different training class definition
forms, according to the selected task (Figure 5.7). The properties can be defined in 3

5| Results and Validation 59

different formats (Figure 5.8): unique, the property has a fixed set of user-defined values,
range, the property can assume integer values in a user-defined range, and textual, the
property value is an arbitrary text.

Figure 5.6: Dataset Creation page

Figure 5.7: Dataset Creation: on the top, training classes definition for binary classifica-
tion, on the bottom, training classes definition for the other four supported task types.

Figure 5.8: Dataset Creation: properties definition for unique, range, and textual format.

60 5| Results and Validation

Dataset Page
The Dataset Page is accessed by clicking on the dataset card in the Datasets page. This
page (Figure 5.9), provides, on the left, a set of information relative to the dataset, such as
its name, description, number of images, addressed task, etc. On the right, are displayed
the buttons to the 4 functionality sections of the dataset. On the top-right, the Dataset
Settings can be accessed, only by admins, through the relative button.

Figure 5.9: Dataset Page

Dataset Settings
The Dataset Settings page allows the admin to edit the dataset settings, select models
from the available ones, or add other models (Figure 5.10). The models available at
the moment on ODIN Web are the solid waste classification models: aerialwaste binary
classifier (v1) [73], aerialwaste binary classifier (v2), and aerialwaste multi-class classifier.
The addition of custom models results in the creation of directories, in which the user can
upload the predictions he obtained by running the model on the dataset.

5| Results and Validation 61

Figure 5.10: Dataset Settings

5.1.4. Annotator

The Annotator is accessible by clicking on the relative button on the Dataset Page of a
target dataset. This page (Figure 5.11), presents a paginated grid of the dataset images.
On the left, a menu allows the user to decide the number of images displayed on one page,
and apply filters to visualize only a set of the images. Buttons for the upload/download
of ground-truth are available under the filters. The user can navigate through the grid
and click on an image to open it in the annotation interface.

Figure 5.11: Annotator

62 5| Results and Validation

The Annotation Interface (Figure 5.12) displays the image in the center and a section
on the right that comprises a Categories tab, for the class assignment, and a Properties
tab, for the meta-properties annotation. The annotation tools change according to the
computer vision task of the dataset as illustrated in Figure 5.12 and 5.13.

Figure 5.12: Annotator: an overview of the annotation interface (binary classification).

Figure 5.13: Annotator: annotation interface for instance segmentation, object detection,
multi-class multi-label classification, and multi-class single-label classification.

5| Results and Validation 63

When predictions are available for the current dataset, a switch toggle appears on the
top-right of the annotation interface, allowing the user to decide whether he wants to
visualize the prediction scores in the section on the right or not. Moreover, if the Class
Activation Map (CAM) is available, it can be displayed over the image, by enabling it
from the layer controls. Finally, a button is available, for the geolocalized datasets that
have the GeoJSON prediction files, to open the image in the Map Visualizer.

Figure 5.14: Annotator: visualization of predictions

5.1.5. Analyzer

The Analyzer is accessible by clicking on the relative button on the Dataset Page of a
target dataset. It is divided into two main areas respectively: the Dataset Analysis, the
analysis of categories and properties distribution within the dataset, and the Predictions
Analysis, enabled if predictions are available, for the model performance analysis. The
Predictions Analysis is itself divided into multiple sections, accessible from the dropdown
menu, depending on the type of analysis they implement.

Each section of the analyzer presents on the left a column menu with filters and se-
lectors, on the top a navbar to navigate among different declinations of the same analysis
type, and on the remaining part the specific analysis diagrams and tables.

In Figure 5.15 is shown the Dataset Analysis section. In Figure 5.16 and 5.17 are shown
two different Predictions Analysis, respectively the TP, TN, FP, FN Distributions and
the Performance Curves (PR, ROC, F1).

64 5| Results and Validation

The Analyzer provides all the metrics and analyses discussed in Chapter 2.2, and the
comparison between multiple models. It allows both for per-category diagnosis, and
per-property diagnosis, which leverages the meta-annotations to perform an analysis on
subsets of the dataset, according to some property value, and compute the impact of the
properties. The analysis settings discussed in the Paragraph 4.2.2 are editable in the
analyzer Settings section, accessible from the relative button on the top-right.

Figure 5.15: Analyzer: Dataset Analysis section

Figure 5.16: Analyzer: the comparative analysis of the TP, TN, FP, FN Distributions of
two models. Accessible by selecting Distributions from the Predictions dropdown menu.

5| Results and Validation 65

Figure 5.17: Analyzer: the comparative analysis of the PR Curves of two models. Acces-
sible by selecting Performance Curves from the Predictions dropdown menu.

5.1.6. Map Visualizer

When the dataset is geolocalized and predictions in GeoJSON format have been uploaded,
the Map Visualizer button on the Dataset Page is enabled. Once entered the Map Visu-
alizer, the map is displayed, which by default is the Google Maps one. Over the map are
rendered (Figure 5.18):

• the perimeter of the area of interest;

• the predictions in the form of color-coded bounding-boxes;

• the activation maps (CAMs), i.e., the contours of the areas the model focused on.

From the layers controller in the top-right corner, the user can select a different map
source, and enable or disable the visibility of CAMs and predictions. The map sources
available are Google Maps, OpenStreetMap, Ortophoto2018, and Pleaiades Neo. The last
two are partial maps, that cover only some specific areas in Lombardy.

From the interactive legend in the bottom-right corner, the user can enable or disable
the bounding-boxes and CAMs with the associated prediction belonging to a certain
confidence interval. The legend shows, for each confidence interval, the number of the
corresponding bounding-boxes.

The user can move around the map through Click and Drag, and zoom in and out the
view. By hovering over each bounding-box, a tooltip is opened displaying the name of

66 5| Results and Validation

the corresponding image in the dataset, the coordinates of the center of the square, and
the annotations associated with the image for both categories and properties. With a
right-click on the target square, a context menu is opened from which the user can open
the image in the Annotator.

Figure 5.18: Map Visualizer

When the user clicks on the Open in Map Visualizer button in the Annotator Interface
the Map Visualizer is opened. The map is focused and zoomed automatically on the
position on the map corresponding to the geolocalized satellite image (Figure 5.19).

Figure 5.19: Map Visualizer: map zoomed on the coordinates of the opened image.

5| Results and Validation 67

5.1.7. Predictor

The Predictor is accessible by clicking on the relative button on the Dataset Page of a
target dataset. From this page, the user can select a model from the dropdown menu and
run the inference on the dataset (Figure 5.20). The models the user can choose from, are
those previously selected in the Dataset Settings 5.1.3.

Figure 5.20: Predictor

While the model is running a progress bar is displayed. Under the bar, on the left is
reported the name of the image that is currently being processed and the estimated
remaining time to inference completion. On the right is displayed the percentage of
completion. (Figure 5.21). While the model is running the user can freely navigate
throughout the rest of the website.

The results of the prediction are stored on the server in the dataset directory inside the
appropriate folder associated with the executed model. Predictions are stored in TXT
files, following the format required for the analysis by the ODIN framework. Multiple
models can be run on the same dataset, to obtain the previously illustrated comparative
analysis in the Analyzer(Section 5.1.5).

68 5| Results and Validation

Figure 5.21: Predictor: progress of the running inference

5.2. Validation

ODIN Web was validated internally, through a set of different application use cases,
and externally by a team of photo interpreters from ARPA Lombardia (Environmental
Protection Agency of the Region of Lombardy) to verify its effectiveness and compliance
with the requirements.

Predictions Analysis on PNEO Municipalities
For this use case, given the PNEO satellite images of 20 municipalities located in Lom-
bardy, a dataset was created for each municipality. All datasets were defined for the binary
classification task, with categories Waste and NoWaste, and three properties: quality, to
annotate the prediction quality as "bad", "good", or "very good", evidence, and severity.

The predictions in TXT format for performance analysis and in GeoJSON format for
map visualization were uploaded to the server. For two of the municipalities, instead, the
predictions in TXT format were generated by running the inference with the aerialwaste
binary classifier (v2) model directly from ODIN Web to test the functionality.

The datasets were assigned to the members of the internal team through the user man-
agement system. Each member was asked to analyze 2 or 3 datasets. The task on each
dataset was to verify the quality of the predictions with a confidence level greater than
0.8. This was done by opening the map visualization, filtering out, through the legend,
the bounding boxes with lower confidence, and opening each image in the annotator vi-

5| Results and Validation 69

Figure 5.22: Datasets for the predictions analysis on PNEO municipalities use case

sualizing the CAM on the image and choosing a value between "bad", "good", and "very
good" for the quality property.

Model Performance Analysis on AerialWaste Test Set
For this use case, a dataset for binary classification has been created employing one of the
test sets from the AerialWaste2.0 dataset [74]. The dataset comprehends 2605 satellite
images. The categories are Waste and NoWaste, while the properties are evidence, is
candidate location, site type, severity, valid fine grain, and image source. The annotations
for those classes and categories, available at [74], were uploaded on the server. The models
to be analyzed were not available on ODIN Web, as such inference was run offline and
the predictions were uploaded in TXT format. Then the performances of the two models
were analyzed and compared in the Analyzer.

Model Performance Analysis and Comparison on AREU dataset
For this use case, a dataset, with 2625 aerial images captured with UAVs, has been
created in the context of the AREU (Regional Emergency Ugency Agency) project, which
aims at the identification of targets in aerial images. The task for the dataset is binary
classification with classes Target, and Background, the property for meta-annotation is
the occlusion, which can be "none", "low", "medium", or "strong". The predictions over
this dataset have been computed offline with three models, LeNetV3, MobileNetV3Small,
and EfficientNetB0, and then uploaded for exploring the model performance analysis and
the comparison between the three binary classifiers in the Analyzer.

70 5| Results and Validation

Annotation Analysis of Multi-Class Single-Label on FORESTAMI dataset
For this use case, a dataset with 714 satellite images has been created in the context of
the FORESTAMI project. The dataset was uploaded together with the annotations. The
objective was to verify the correctness of the multi-class single-label annotations through
the Annotator of ODIN Web. The categories for classification are areas for storing building
materials or other aggregates and/or with unauthorized activities, uncultivated and/or
abandoned areas, informal urban gardens, waste disposal areas and any informal artifacts,
and others. The properties associated are waste, if present or not, and vegetation type.

Re-Annotation of AerialWaste 1.0 dataset by ARPA
For the re-annotation of the AerialWaste 1.0 dataset [72], the ARPA team of expert
photo interpreters is involved. For this purpose, an admin account was created for the
team administrator. The team is composed of five more experts, thus the ARPA admin
registered five users.

The AerialWaste dataset, composed of 3478 satellite images, was split into eight subsets.
For each of those subsets, a dataset for multi-class multi-label classification was created
in ODIN Web. The admin authorized each user to the datasets he was assigned to work
on. The datasets were built as follows:

• Out of the total number of images, 2763 are assumed to contain waste. This set
of images was split into five datasets. The objective of the annotation is to define
whether the assumption is correct, and in that case, annotate the categories present
in the image.

• For the remaining 715 images, the annotations were already available and they were
uploaded to ODIN Web. This set of images was split into three datasets. The
objective is to verify the previous annotations and correct them when necessary.

The application use cases above described allowed the validation of ODIN Web on the
following functionalities: user creation and management, dataset creation and annotation,
model inference, model performance analysis and model comparison, and predictions vi-
sualization on the map.

71

6| Conclusions and Future Work

In this thesis, the ODIN Web application has been described. ODIN Web has been
developed to address the necessity for tools that can expedite the image annotation pro-
cess, and for methods that allow the evaluation of the performance of complex models.
Additionally, the objective is to offer user-friendly instruments that can be accessed by
individuals with no technical knowledge to operate with Computer Vision models.

ODIN Web [52] is a tool that integrates, in a web-based application: dataset management,
image annotation for tasks such as image classification, object detection, and instance
segmentation, and model performance investigation and comparison through the ODIN
framework. ODIN [76] is a Python tool that offers extensive "black-box" analysis instru-
ments. In this work, ODIN Web has been extended with further functionalities with the
aim of realizing a web-based tool that covers the most steps in the model development
pipeline, from data annotation to the application of Computer Vision models. The web
application was enriched with a user system involving admins and simple users, that al-
lows for collaboration and role-based access control of datasets. The dataset management
system was adapted to fit the new user system. Finally, model inference execution was in-
tegrated, and a geo-visualization interface for geolocalized satellite images and predictions
was implemented.

In conclusion, an analysis of the available tools for performance analysis and for image
annotation highlighted that tools tend to specialize in either one of the two problems.
There are a few integrated comparable tools that, although, lack an exhaustive model
performance analysis and some functionalities available on ODIN Web. As such, ODIN
Web can be considered an innovative and valuable tool.

Future work on ODIN Web will concentrate on:

• implementing the Collections section to allow agile upload and management of col-
lections of images;

• implementing a Models section for more sophisticated management of models, for
both the ones available on the platform and the ones added by the users;

72 6| Conclusions and Future Work

• enhancing the analysis of models even more, by including functionalities such as
model performance comparison on samples;

• integrating the inference of users’ custom models through REST API;

• implementing automatic retrieval of image tiles starting from uploaded shape files.

73

Bibliography

[1] D. Acuna, H. Ling, A. Kar, and S. Fidler. Efficient interactive annotation of seg-
mentation datasets with polygon-rnn++. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 859–868, 2018.

[2] K. Alhazmi, W. Alsumari, I. Seppo, L. Podkuiko, and M. Simon. Effects of annota-
tion quality on model performance. In 2021 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC), pages 063–067. IEEE,
2021.

[3] H. Alwassel, F. C. Heilbron, V. Escorcia, and B. Ghanem. Diagnosing error in
temporal action detectors. In Proceedings of the European conference on computer
vision (ECCV), pages 256–272, 2018.

[4] S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Suh. Model-
tracker: Redesigning performance analysis tools for machine learning. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages
337–346, 2015.

[5] G. Bilotta, V. Barrile, and G. M. Meduri. Recognition and classification of illegal
dumps with object based image analysis of satellite data. A-+ A, 1:4, 2012.

[6] D. Bolya, S. Foley, J. Hays, and J. Hoffman. Tide: A general toolbox for identifying
object detection errors. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, pages 558–573. Springer,
2020.

[7] J. Brooks. COCO Annotator. https://github.com/jsbroks/coco-annotator/,
2019.

[8] H. I. Chaminé, A. J. Pereira, A. C. Teodoro, and J. Teixeira. Remote sensing and
gis applications in earth and environmental systems sciences, 2021.

[9] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-

https://github.com/jsbroks/coco-annotator/

74 | Bibliography

decoder with atrous separable convolution for semantic image segmentation, 2018.
arXiv:1802.02611.

[10] F. Chollet. Xception: Deep learning with depthwise separable convolutions, 2017.
arXiv:1610.02357.

[11] G. Ciaparrone, F. L. Sánchez, S. Tabik, L. Troiano, R. Tagliaferri, and F. Herrera.
Deep learning in video multi-object tracking: A survey. Neurocomputing, 381:61–88,
2020.

[12] CVAT.ai-Corporation. Computer Vision Annotation Tool (CVAT), Feb. 2024. URL
https://doi.org/10.5281/zenodo.10696672. Available: https://www.cvat.ai/.

[13] J. Davis and M. Goadrich. The relationship between precision-recall and roc curves.
In Proceedings of the 23rd international conference on Machine learning, pages 233–
240, 2006.

[14] A. Demidovskij, A. Tugaryov, A. Kashchikhin, A. Suvorov, Y. Tarkan, F. Mikhail,
and G. Yury. Openvino deep learning workbench: towards analytical platform for
neural networks inference optimization. In Journal of physics: Conference series,
volume 1828, page 012012. IOP Publishing, 2021.

[15] M. R. Devesa and A. V. Brust. Mapping illegal waste dumping sites with neural-
network classification of satellite imagery. arXiv preprint arXiv:2110.08599, 2021.

[16] A. Dutta and A. Zisserman. The via annotation software for images, audio and video.
In Proceedings of the 27th ACM international conference on multimedia, pages 2276–
2279, 2019.

[17] B. Dwyer, J. Nelson, J. Solawetz, and et. al. Roboflow (Version 1.0) [Software]., 2022.
Available from: https://roboflow.com.

[18] E. Elyan, P. Vuttipittayamongkol, P. Johnston, K. Martin, K. McPherson, C. Jayne,
M. K. Sarker, et al. Computer vision and machine learning for medical image analysis:
recent advances, challenges, and way forward. Artificial Intelligence Surgery, 2, 2022.

[19] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes (voc) challenge. International journal of computer vision,
88:303–338, 2010.

[20] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zis-
serman. The pascal visual object classes challenge: A retrospective. International
journal of computer vision, 111:98–136, 2015.

arXiv:1610.02357
https://doi.org/10.5281/zenodo.10696672
https://www.cvat.ai/
https://roboflow.com

| Bibliography 75

[21] F. Faizi, K. Mahmood, M. Chaudhry, and A. Rana. Satellite remote sensing and im-
age processing techniques for monitoring msw dumps. In Proccedings of 5th EurAsia
Waste Management Symposium, pages 26–28, 2020.

[22] C. Ferri, J. Hernández-Orallo, and R. Modroiu. An experimental comparison of per-
formance measures for classification. Pattern recognition letters, 30(1):27–38, 2009.

[23] N. Fiedler, M. Bestmann, and N. Hendrich. Imagetagger: An open source online
platform for collaborative image labeling. In RoboCup 2018: Robot World Cup XXII
22, pages 162–169. Springer, 2019.

[24] P. Fraternali, F. Milani, R. N. Torres, and N. Zangrando. Black-box error diagnosis
in deep neural networks for computer vision: a survey of tools. Neural Computing
and Applications, 35(4):3041–3062, 2023.

[25] P. Fraternali, L. Morandini, and S. L. H. González. Solid waste detection in remote
sensing images: A survey. arXiv preprint arXiv:2402.09066, 2024.

[26] M. Gleicher, A. Barve, X. Yu, and F. Heimerl. Boxer: Interactive comparison of
classifier results. In Computer Graphics Forum, volume 39, pages 181–193. Wiley
Online Library, 2020.

[27] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pages 1321–1330. PMLR,
2017.

[28] A. K. Gupta. ImgLab. https://github.com/NaturalIntelligence/imglab, 2018.
Available: https://solothought.com/imglab/.

[29] W. Halaschek, J. Golbeck, A. Schain, M. Grove, B. Parsia, and J. Hendler. Photo-
stuff: An image annotation tool for the semantic web. In Proceedings of the Poster
Track, 4th International Semantic Web Conference, pages 2–4, 2005.

[30] A. Hanbury. A survey of methods for image annotation. Journal of Visual Languages
& Computing, 19(5):617–627, 2008.

[31] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition,
2015. arXiv:1512.03385.

[32] G. T. S. Ho, Y. P. Tsang, C. H. Wu, W. H. Wong, and K. L. Choy. A computer vision-
based roadside occupation surveillance system for intelligent transport in smart cities.
Sensors, 19(8):1796, 2019.

https://github.com/NaturalIntelligence/imglab
https://solothought.com/imglab/

76 | Bibliography

[33] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in object detectors. In
European conference on computer vision, pages 340–353. Springer, 2012.

[34] M. Hossin and M. N. Sulaiman. A review on evaluation metrics for data classification
evaluations. International journal of data mining & knowledge management process,
5(2):1, 2015.

[35] J. Huang and C. X. Ling. Using auc and accuracy in evaluating learning algorithms.
IEEE Transactions on knowledge and Data Engineering, 17(3):299–310, 2005.

[36] M. Ðidelija, N. Kulo, A. Mulahusić, N. Tuno, and J. Topoljak. Segmentation scale
parameter influence on the accuracy of detecting illegal landfills on satellite imagery.
a case study for novo sarajevo. Ecological Informatics, 70:101755, 2022.

[37] M. B. Jones, J. Bradley, and N. Sakimura. JSON Web Token (JWT). RFC 7519,
May 2015. URL https://www.rfc-editor.org/info/rfc7519.

[38] A. Kar, S. W. Kim, M. Boben, J. Gao, T. Li, H. Ling, Z. Wang, and S. Fidler.
Toronto annotation suite. https://aidemos.cs.toronto.edu/toras, 2021.

[39] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollar. Panoptic segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2019.

[40] Y. Kong and Y. Fu. Human action recognition and prediction: A survey. Interna-
tional Journal of Computer Vision, 130(5):1366–1401, 2022.

[41] M. Kräter, S. Abuhattum, D. Soteriou, A. Jacobi, T. Krüger, J. Guck, and M. Herbig.
Aideveloper: deep learning image classification in life science and beyond. Advanced
science, 8(11):2003743, 2021.

[42] J. Krause, A. Perer, and K. Ng. Interacting with predictions: Visual inspection of
black-box machine learning models. In Proceedings of the 2016 CHI conference on
human factors in computing systems, pages 5686–5697, 2016.

[43] J. Krause, A. Dasgupta, J. Swartz, Y. Aphinyanaphongs, and E. Bertini. A workflow
for visual diagnostics of binary classifiers using instance-level explanations. In 2017
IEEE Conference on Visual Analytics Science and Technology (VAST), pages 162–
172. IEEE, 2017.

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25, 2012.

https://www.rfc-editor.org/info/rfc7519
https://aidemos.cs.toronto.edu/toras

| Bibliography 77

[45] C. Kruse, E. Boyda, S. Chen, K. Karra, T. Bou-Nahra, D. Hammer, J. Mathis,
T. Maddalene, J. Jambeck, and F. Laurier. Satellite monitoring of terrestrial plastic
waste. PloS one, 18(1):e0278997, 2023.

[46] Labelbox. "Labelbox," Online, 2024. [Online]. Available: https://labelbox.com.

[47] S. Lavender. Detection of waste plastics in the environment: Application of coperni-
cus earth observation data. Remote Sensing, 14(19):4772, 2022.

[48] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

[49] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature
pyramid networks for object detection. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 936–944, 2017. doi: 10.1109/CVPR.2017.
106.

[50] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen. Deep
learning for generic object detection: A survey. International journal of computer
vision, 128:261–318, 2020.

[51] Y. Long, G.-S. Xia, S. Li, W. Yang, M. Y. Yang, X. X. Zhu, L. Zhang, and D. Li.
On creating benchmark dataset for aerial image interpretation: Reviews, guidances,
and million-aid. IEEE Journal of selected topics in applied earth observations and
remote sensing, 14:4205–4230, 2021.

[52] A. Mastropasqua. ODIN Web: an interactive dashboard for black-box deep learning
error diagnosis. Master’s thesis, Politecnico di Milano, ING - Scuola di Ingegneria In-
dustriale e dell’Informazione, 2022. URL https://hdl.handle.net/10589/188236.

[53] J. Memon, M. Sami, R. A. Khan, and M. Uddin. Handwritten optical character
recognition (ocr): A comprehensive systematic literature review (slr). IEEE Access,
8:142642–142668, 2020.

[54] Microsoft. Visual Object Tagging Tool (VoTT), 2017. URL https://github.com/

microsoft/VoTT.

[55] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos.
Image segmentation using deep learning: A survey. IEEE transactions on pattern
analysis and machine intelligence, 44(7):3523–3542, 2021.

https://labelbox.com
https://hdl.handle.net/10589/188236
https://github.com/microsoft/VoTT
https://github.com/microsoft/VoTT

78 | Bibliography

[56] J. D. Novaković, A. Veljović, S. S. Ilić, Ž. Papić, and M. Tomović. Evaluation of
classification models in machine learning. Theory and Applications of Mathematics
& Computer Science, 7(1):39, 2017.

[57] R. Padilla, S. L. Netto, and E. A. Da Silva. A survey on performance metrics for
object-detection algorithms. In 2020 international conference on systems, signals
and image processing (IWSSIP), pages 237–242. IEEE, 2020.

[58] D. I. Patrício and R. Rieder. Computer vision and artificial intelligence in preci-
sion agriculture for grain crops: A systematic review. Computers and electronics in
agriculture, 153:69–81, 2018.

[59] X. Qin, S. He, Z. Zhang, M. Dehghan, and M. Jagersand. Bylabel: A boundary
based semi-automatic image annotation tool. In 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 1804–1813. IEEE, 2018.

[60] A. Rajkumar, C. A. Kft, T. Sziranyi, and A. Majdik. Detecting landfills using multi-
spectral satellite images and deep learning methods, 2022.

[61] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Uni-
fied, real-time object detection. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 779–788, 2016. doi: 10.1109/CVPR.2016.91.

[62] D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams. Squares: Supporting interac-
tive performance analysis for multiclass classifiers. IEEE transactions on visualization
and computer graphics, 23(1):61–70, 2016.

[63] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, Oc-
tober 5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer, 2015.

[64] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge.
International journal of computer vision, 115:211–252, 2015.

[65] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme: a database
and web-based tool for image annotation. International journal of computer vision,
77:157–173, 2008.

[66] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition, 2015. arXiv:1409.1556.

| Bibliography 79

[67] P. Skalski. Make Sense. https://github.com/SkalskiP/make-sense/, 2019. Avail-
able: https://www.makesense.ai/.

[68] X. Sun, D. Yin, F. Qin, H. Yu, W. Lu, F. Yao, Q. He, X. Huang, Z. Yan, P. Wang,
et al. Revealing influencing factors on global waste distribution via deep-learning
based dumpsite detection from satellite imagery. Nature Communications, 14(1):
1444, 2023.

[69] N. Taggio, A. Aiello, G. Ceriola, M. Kremezi, V. Kristollari, P. Kolokoussis,
V. Karathanassi, and E. Barbone. A combination of machine learning algorithms
for marine plastic litter detection exploiting hyperspectral prisma data. Remote
Sensing, 14(15):3606, 2022.

[70] M. Tkachenko, M. Malyuk, A. Holmanyuk, and N. Liubimov. La-
bel Studio: Data labeling software, 2020-2022. URL https://github.

com/heartexlabs/label-studio. Open source software available from
https://github.com/heartexlabs/label-studio.

[71] R. N. Torres and P. Fraternali. Learning to identify illegal landfills through scene
classification in aerial images. Remote Sensing, 13(22):4520, 2021.

[72] R. N. Torres and P. Fraternali. Aerialwaste, Aug. 2022. URL https://doi.org/10.

5281/zenodo.7034382.

[73] R. N. Torres and P. Fraternali. Aerialwaste: A dataset for illegal landfill discovery
in aerial images, 2022.

[74] R. N. Torres and P. Fraternali. Aerialwaste, May 2023. URL https://doi.org/10.

5281/zenodo.7991872.

[75] R. N. Torres, P. Fraternali, and J. Romero. Odin: An object detection and instance
segmentation diagnosis framework. In Computer Vision–ECCV 2020 Workshops:
Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16, pages 19–31. Springer,
2020.

[76] R. N. Torres, F. Milani, and P. Fraternali. Odin: Pluggable meta-annotations and
metrics for the diagnosis of classification and localization. In International Conference
on Machine Learning, Optimization, and Data Science, pages 383–398. Springer,
2021.

[77] Tzutalin. LabelImg. git code (2015), 2015. URL https://github.com/tzutalin/

labelImg.

https://github.com/SkalskiP/make-sense/
https://www.makesense.ai/
https://github.com/heartexlabs/label-studio
https://github.com/heartexlabs/label-studio
https://doi.org/10.5281/zenodo.7034382
https://doi.org/10.5281/zenodo.7034382
https://doi.org/10.5281/zenodo.7991872
https://doi.org/10.5281/zenodo.7991872
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg

80 6| BIBLIOGRAPHY

[78] Y. Z. Ulloa-Torrealba, A. Schmitt, M. Wurm, and H. Taubenböck. Litter on the
streets-solid waste detection using vhr images. European Journal of Remote Sensing,
56(1):2176006, 2023.

[79] V7. V7: AI Data Engine for Computer Vision and Generative AI, 2018. URL
https://www.v7labs.com/.

[80] J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Viégas, and J. Wilson.
The what-if tool: Interactive probing of machine learning models. IEEE transactions
on visualization and computer graphics, 26(1):56–65, 2019.

[81] K. Yang, C. Zhang, T. Luo, and L. Hu. Automatic identification method of con-
struction and demolition waste based on deep learning and gaofen-2 data. The Inter-
national Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 43:1293–1299, 2022.

[82] H. Yoon, S.-H. Lee, and M. Park. Tensorflow with user friendly graphical framework
for object detection api. arXiv preprint arXiv:2006.06385, 2020.

[83] N. Zangrando. The ODIN framework, a tool for image classification diagnosis.
Master’s thesis, Politecnico di Milano, ING - Scuola di Ingegneria Industriale e
dell’Informazione, 2021. URL https://hdl.handle.net/10589/177405.

[84] J. Zhang, Y. Wang, P. Molino, L. Li, and D. S. Ebert. Manifold: A model-agnostic
framework for interpretation and diagnosis of machine learning models. IEEE trans-
actions on visualization and computer graphics, 25(1):364–373, 2018.

[85] C. Zheng, W. Wu, C. Chen, T. Yang, S. Zhu, J. Shen, N. Kehtarnavaz, and M. Shah.
Deep learning-based human pose estimation: A survey. ACM Computing Surveys,
56(1):1–37, 2023.

[86] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features
for discriminative localization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2921–2929, 2016.

[87] L. Zhou, X. Rao, Y. Li, X. Zuo, Y. Liu, Y. Lin, and Y. Yang. Swdet: Anchor-based
object detector for solid waste detection in aerial images. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 16:306–320, 2022.

https://www.v7labs.com/
https://hdl.handle.net/10589/177405

81

List of Figures

2.1 Image Segmentation tasks . 7
2.2 Core Computer Vision tasks . 8
2.3 Confusion Matrix for multi-class. 12
2.4 Confusion Matrix for binary classification. 12
2.5 Curve Analysis: PR, ROC, F1 Curves . 16
2.6 Confidence histograms . 17
2.7 Reliability diagrams . 18

3.1 Use Cases Diagram . 38

4.1 ODIN Web Architecture Overview . 39
4.2 ODIN Web Domain Model . 40
4.3 UML Class Diagram of the main components of ODIN Web Backend. . . . 43
4.4 UML Class Diagram of User Component 43
4.5 MongoDB structure of user . 44
4.6 MongoDB structure of annotations . 46
4.7 ODIN Web Frontend Components . 48
4.8 ODIN Web Deployment Diagram . 52

5.1 Overview of ODIN Web Interface . 56
5.2 User Management: users creation . 56
5.3 User Management: authorize/remove authorization 57
5.4 Datasets: datasets page for admins . 58
5.5 Datasets: datasets page for simple users 58
5.6 Dataset Creation page . 59
5.7 Dataset Creation: training classes definition 59
5.8 Dataset Creation: properties definition for unique, range, and textual format. 59
5.9 Dataset Page . 60
5.10 Dataset Settings . 61
5.11 Annotator . 61
5.12 Annotator: an overview of the annotation interface (binary classification). . 62

82 | List of Figures

5.13 Annotator: annotation interface of different tasks 62
5.14 Annotator: visualization of predictions . 63
5.15 Analyzer: Dataset Analysis section . 64
5.16 Analyzer: TP, TN, FP, FN Distributions analysis 64
5.17 Analyzer: Performance Curves analysis . 65
5.18 Map Visualizer . 66
5.19 Map Visualizer: map zoomed on the coordinates of the opened image. . . . 66
5.20 Predictor . 67
5.21 Predictor: progress of the running inference 68
5.22 Datasets for the predictions analysis on PNEO municipalities use case . . . 69

83

List of Tables

2.1 Black-box model performance evaluation tools 23
2.2 Image Annotation tools . 30

85

Acknowledgements

Ringrazio il professor Piero Fraternali per l’opportunità che mi ha dato di svolgere questa
tesi, per la sua passione, la sua disponibiltà e il suo supporto durante questo percorso.

Ringrazio Sergio Herrera per l’aiuto e il sostegno con cui mi ha affiancato durante tutti
questi mesi. Allo stesso modo, ringrazio anche l’AerialWaste Task Force.

Ringrazio il mio fidanzato Francesco per aver sempre creduto in me ed esserci stato sempre
per me, per avermi sempre supportata ... e sopportata.

Ringrazio mio fratello Gabriele e i miei genitori per avermi sempre sostenuta e incoraggiata
in tutti questi anni.

Ringrazio la RdG Monza per l’affetto dimostratomi.

Ringrazio i miei amici e colleghi politecnici per i bei momenti passati insieme.

	Abstract
	Abstract in Lingua Italiana
	Contents
	Introduction
	Related Work
	Computer Vision
	Computer Vision Tasks
	Computer Vision and Remote Sensing

	Model Performance Evaluation
	Analysis and Metrics for Model Performance Evaluation
	Tools for Model Performance Evaluation

	Dataset Annotation
	Data Annotation
	Tools for Image Annotation

	Proposed Solution
	ODIN
	ODIN Web
	Requirements

	Implementation
	Architecture Overview
	Design
	Domain Model
	Backend
	Frontend

	Implementation Technologies
	Deployment

	Results and Validation
	Features
	ODIN Web Access
	User Management
	Dataset
	Annotator
	Analyzer
	Map Visualizer
	Predictor

	Validation

	Conclusions and Future Work
	Bibliography
	List of Figures
	List of Tables
	Acknowledgements

