
An Immersed Boundary method for
fish-like swimming simulations

Tesi di Laurea Magistrale in
Ingegneria Matematica

Author: Cássio Murakami

Student ID: 990364
Advisor: Prof. Nicola Parolini
Co-advisors: dr. Giorgio Negrini
Academic Year: 2022-23

i

Abstract

The study of flows over immersed structures is a widely researched field with significant
relevance in various industrial sectors and applications. This work focuses on the mod-
elling and simulation of external flows over deformable bodies with prescribed kinematics.
The mathematical model of the fluid employs the incompressible Navier-Stokes equations,
adapted to incorporate the interaction with the immersed body. The numerical solution
is implemented using the open-source software OpenFOAM, which utilizes the Finite Vol-
ume Method to discretize the problem. Additionally, the Immersed Boundary Method is
employed to handle meshes that do not conform to the structure.

The numerical verification of the scheme and the calculation of forces were conducted
using benchmark cases involving two-dimensional external flow around a cylinder and
travelling wavy foils. Subsequently, the study focused on modelling the movement of a
deformable body, reproducing the swimming of a fish while considering the constraints of
inextensibility and mass conservation.

Throughout two-dimensional simulations of the fish-like swimming, an analysis was con-
ducted on the effects of oscillation frequency, movement amplitude, and motion pattern.
This analysis encompassed the computation of thrust force and the examination of the
vorticity pattern in the wake, revealing its impacts on the swim. Ultimately, three-
dimensional simulations were executed utilizing a realistic fish geometry, featuring a par-
ticular focus on the topology of the wake.

Keywords: Computational Fluid Dynamics, Fish swimming, Immersed Boundary Method

Abstract in lingua italiana

Lo studio dei flussi su strutture immerse è un campo ampiamente studiato e di notevole
rilevanza in diversi settori industriali e applicazioni. Questo lavoro si concentra sulla
modellazione e sulla simulazione di flussi esterni su corpi deformabili con cinematica
prescritta. Il modello matematico del fluido impiega le equazioni di Navier-Stokes in-
comprimibili, adattate per incorporare l’interazione con il corpo immerso. La soluzione
numerica è implementata utilizzando il software open-source OpenFOAM, che utilizza il
metodo dei volumi finiti per discretizzare il problema. Inoltre, il Metodo della Superficie
Immersa viene utilizzato per gestire le maglie non conformi alla struttura.

La verifica numerica dello schema e il calcolo delle forze sono stati condotti utilizzando
casi di riferimento che coinvolgevano un flusso esterno bidimensionale attorno a un cilin-
dro e lame ondulate in movimento. Successivamente, lo studio si è concentrato sulla
modellazione del movimento di un corpo deformabile, riproducendo il nuoto di un pesce
e considerando i vincoli di inestensibilità e conservazione della massa.

Durante le simulazioni bidimensionali del nuoto simile a quello di un pesce, è stata con-
dotta un’analisi degli effetti della frequenza di oscillazione, dell’ampiezza del movimento
e del modello di movimento. Questa analisi ha incluso il calcolo della forza di spinta e
l’esame del modello di vorticità nella scia, rivelando il suo impatto sul nuoto. Infine, sono
state eseguite simulazioni tridimensionali utilizzando una geometria realistica del pesce,
con una particolare attenzione alla topologia della scia.

Parole chiave: Fluidodinamica Computazionale, Nuoto dei pesci, Metodo della Su-
perficie Immersa

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1

2 Fluid dynamics model 5
2.1 Incompressibility . 7
2.2 Mass conservation . 7
2.3 Linear momentum conservation . 8
2.4 Angular momentum conservation . 10
2.5 Constitutive relation . 11
2.6 The incompressible Navier-Stokes equations 13
2.7 Immersed Boundary Method . 14

3 Numerical approximation 17
3.1 Finite Volume Method . 17

3.1.1 FVM for the advection-diffusion-reaction equation 18
3.1.2 FVM for the incompressible Navier-Stokes equations 21

3.2 PIMPLE projection method . 24
3.3 Immersed Boundary numerical implementation 25

3.3.1 Immersed Boundary interpolator 26
3.3.2 PIMPLE-IBM . 30

4 Modelling of fish-like swimming 35
4.1 Modelling of the swimmer steady-shape . 35
4.2 Modelling of the fish backbone . 37

4.2.1 Analytical description of the 2D motion 37

vi | Contents

4.2.2 Analytical description of the 3D motion 38
4.2.3 Backbone numerical algorithm . 40

4.3 Modelling of the fish surface . 43
4.3.1 Analytical description of the 2D motion 43
4.3.2 Analytical description of the 3D motion 44
4.3.3 Structure velocity field algorithm 46

4.4 Fish-like swimming implementation . 48

5 Numerical verification 51
5.1 Flow over a circular cylinder . 52

5.1.1 Steady flow, Re = 1 . 53
5.1.2 Unsteady flow, Re = 200 . 54
5.1.3 Moving cylinder, Re = 550 . 56

5.2 Travelling wavy foils . 57
5.2.1 Travelling wave plate . 59
5.2.2 Travelling wavy fish-body like . 61

6 Fish-like swimming results 65
6.1 Fish-like swimming kinematics . 65

6.1.1 Swimmer backbone analysis . 67
6.1.2 Swimmer surface analysis . 67

6.2 Fish-like swimming 2D simulations . 69
6.2.1 Oscillation frequency analysis . 72
6.2.2 Oscillation amplitude analysis . 75
6.2.3 Swimming motion form analysis . 77

6.3 Fish-like swimming 3D simulations . 80

7 Conclusions and future developments 87

Bibliography 89

A 2D structure generation 95

List of Figures 99

List of Tables 103

Acknowledgements 105

1

1| Introduction

The study of fluid dynamics enables the analysis of the effects on an immersed body in a
flow domain, which is relevant for numerous aerodynamic applications [28]. In particular,
the modelling and simulation of fish-like swimming are not only of interest to biology but
also hold relevance in engineering applications. Within the realm of applied sciences, the
analysis of this scenario finds utility in optimizing underwater propulsion and enhancing
aerodynamic designs to augment maneuverability performance [2].

In the context of empirical data, the study of fish swimming kinematics has been widely
explored by biologists and analyzed using the Particle Image Velocimetry technique (PIV),
as demonstrated in [29, 44], aiming to investigate the flow structure of the wake. In the
realm of Computational Fluid Dynamics (CFD), in which results are obtained through
computational simulations, it is customary to utilize previously acquired kinematic data
to approximate fish motion. This approximation often involves the use of undulatory
backward-travelling waves, as explained in [18, 46].

The numerical simulations of fish-like swimming can be classified into two classes. The first
class investigates fish locomotion considering the self-propulsion. This approach considers
the feedback of fluid forces acting on the body, which in turn generates a propulsive force
and momentum that causes a change of motion in the structure. Studies that contemplate
this case are [2, 3, 24]. The present work belongs to the second category of investigation,
which focuses on evaluating the fixed swimming approach scenario. Within this category,
studies such as [13] fix a flexible structure at a specific point in a uniform external flow
and then impose the kinematic of the structure.

Additional studies have been conducted to gain a deeper understanding of fish motion,
as demonstrated in works such as [9, 23]. These studies delve into the effects of multiple
fish swimming nearby, particularly focusing on the wake generated by neighboring fish.
Their objective is to determine whether the school of fish benefits from mutual motion.
Furthermore, research efforts have expanded to include more complex three-dimensional
simulations, as seen in the studies by [6, 8]. These simulations involve the creation of
a more realistic model that incorporates refined geometry resembling the physiological

2 1| Introduction

characteristics of fish.

To solve the system of partial differential equations arising from the physical principles
of the real-world scenario, it is fundamental to establish a computational mesh that dis-
cretizes the space domain [39]. One approach is to adopt a background mesh that conforms
to the geometry of the solid, aligning the grid with the body and enabling the immedi-
ate imposition of coupling conditions on the shared interface. A demonstration of this
concept is found in the application of the Arbitrary Lagrange Eulerian Method (ALE)
[10, 11, 16]. On the other hand, the present study will utilize an alternative approach
that employs a fixed background mesh with a structured grid not necessarily aligned with
the fluid-solid interface. This requires enforcing boundary conditions through numerical
approximations, as performed by the Immersed Boundary Method (IBM) [34–36], which
is an important approach that can be used to obtain the solution of a variety of problems
[21, 37, 41, 42].

The objective of the present work is to apply the Immersed Boundary Method to inves-
tigate fish-like swimming. Focusing on the fixed swimmer method, a flapping airfoil is
positioned in a uniform flow to analyze both the thrust generated by the induced flow
and the wake structure. Utilizing the IBM developed in [30] within the OpenFOAM soft-
ware, we will construct a numerical algorithm to prescribe the structure motion while
considering the constraints of inextensibility and mass conservation.

The present study will be divided into various chapters. Chapter 2 will focus on developing
the mathematical equations derived from the underlying physical principles. Its main
objective is to derive the incompressible Navier-Stokes equations, taking into consideration
the influence of an immersed body.

Chapter 3 is dedicated to the development of the Finite Volume Method (FVM) framework
for the problem. It will detail the projection method that will be employed to discretize in
space and solve the incompressible Navier-Stokes equations. Additionally, it will provide
an overview of the Immersed Boundary Method and illustrate how it can be applied
algebraically to implement the immersed boundary condition.

Chapter 4 will focus on modelling the fish-like swimming kinematics, covering aspects such
as geometry, mass conservation, and backbone length conservation. It will also provide a
detailed explanation of the algorithm implemented to achieve this objective.

Chapter 5 will verify the OpenFOAM Immersed Boundary Method algorithm through
benchmark external flow scenarios involving a fixed cylinder. Subsequently, the chapter
will present the results of the travelling wave foil simulations, encompassing both flat

1| Introduction 3

plate and fish-body airfoil configurations.

Chapter 6 will present the results of the two-dimensional fish-like swimming simulations
in OpenFOAM, taking into account the inextensibility and mass conservation constraints.
Additionally, it will feature three-dimensional simulations and provide a discussion of the
results.

5

2| Fluid dynamics model

In this chapter, our main objective is to introduce the differential equations that govern
fluid dynamics [14, 28]. We begin by defining the characteristics of the flow and sub-
sequently introduce specific hypotheses. By applying these assumptions, we can derive
equations from the physical principles, aiming to obtain the system of partial differential
equations known as the incompressible Navier-Stokes equations.

We proceed to derive the Navier-Stokes equations, drawing from the principles of mass
and momentum conservation, focusing, in particular on the case of incompressible flows.
Then, we introduce the Immersed Boundary method, which is instrumental in describing
the presence of an immersed body within the fluid medium.

For this discussion, assume that the domain occupied by the fluid at time t ∈ [0,+∞) is
Dt ⊂ Rd, where d = 2, 3 represents the spatial dimension of the problem. Let D̂ = D0 be
the initial configuration of the fluid domain. The mapping between D̂ and Dt is defined
by the Eulerian velocity field u(x, t) : Dt × [0,+∞) → Rd as follows:

dx

dt
= u(x, t), ∀(x, t) ∈ Dt × [0,+∞).

x = x̂, ∀x ∈ D̂, t = 0.

Let Lt : D̂ → Dt be the Lagrangian map that relates the point in the reference configura-
tion x̂ to the corresponding point x = Lt(x̂) at time t in the deformed configuration. It is
worth mentioning that if the velocity field u is regular enough, the map Lt is invertible.
For visualization, consider Figure 2.1, which illustrates the correlation between points
that are mapped in a scenario that involves arbitrary sections within the fluid domain,
namely V̂ ⊆ D̂, and Vt ⊆ Dt.

6 2| Fluid dynamics model

Figure 2.1: Map Lt between the reference configuration V̂ and the deformed configuration
Vt.

To derive the fluid dynamic equations, we recall the Divergence Theorem and the Reynolds
Transport Theorem that are going to be extensively applied in the formulations of this
chapter.

Theorem 2.1. (Divergence Theorem) Let Vt be a volume in space enclosed by a surface
∂Vt. Given a regular function f : Vt × [0,+∞) → R, a regular vector field v : Vt ×
[0,+∞) → Rd, and a regular tensor field T : Vt × [0,+∞) → Rd×d, then∫

Vt

(∇f)dV =

∮
∂Vt

(nf)dS,∫
Vt

(∇ · v)dV =

∮
∂Vt

(n · v)dS,∫
Vt

(∇ · T)dV =

∮
∂Vt

(Tn)dS.

where n denotes the outward normal of ∂Vt.

Theorem 2.2. (Reynolds Transport Theorem) Given the Eulerian velocity field u, the
Lagrangian map Lt, and an arbitrary fluid portion Vt, then

d

dt

∫
Vt

fdV =

∫
Vt

∂f

∂t
dV +

∮
∂Vt

fu · ndS,

d

dt

∫
Vt

vdV =

∫
Vt

∂v

∂t
dV +

∮
∂Vt

vu · ndS,

d

dt

∫
Vt

TdV =

∫
Vt

∂T

∂t
dV +

∮
∂Vt

Tu · ndS.

2| Fluid dynamics model 7

2.1. Incompressibility

The incompressibility hypothesis states that the volume of a given portion of the fluid is
constant over time. In other words, the material derivative of the volume of any arbitrary
partition Vt ⊆ Dt is zero:

d

dt

∫
Vt

dV = 0. (2.1)

Consider the Divergence Theorem 2.1 and the Reynolds Transport Theorem 2.2 in the
particular case of a constant material element f(x, t) : Dt × [0,+∞) → R, such that
f(x, t) = 1, ∀(x, t) ∈ Dt × [0,+∞),

d

dt

∫
Vt

dV =
d

dt

∫
Vt

fdV =

∫
Vt

(
∂f

∂t
+∇ · (fu)

)
dV =

∫
Vt

∇ · u dV. (2.2)

Then, evaluate (2.2) using the constraint (2.1), which results in the incompressibility
integral formulation: ∫

Vt

∇ · u dV = 0.

Since the integration is zero for any arbitrary Vt, it implies that the integrand should be
null in Dt [15]. Finally, it is possible to develop the differential form of the incompress-
ibility hypothesis:

∇ · u = 0, ∀(x, t) ∈ Dt × [0,+∞). (2.3)

2.2. Mass conservation

Let ρ(x, t) : Dt × [0,+∞) → R+ be the mass density of the fluid. The principle of mass
conservation states that the total mass of a body remains constant throughout its motion.
This means that the material derivative of the mass of any arbitrary volume Vt ⊆ Dt is
zero:

d

dt

∫
Vt

ρdV = 0. (2.4)

Consider the Divergence Theorem 2.1 and Reynolds Transport Theorem 2.2, then

d

dt

∫
Vt

ρdV =

∫
Vt

(
∂ρ

∂t
+∇ · (ρu)

)
dV. (2.5)

Thus, considering the property (2.4) evaluated at (2.5) it is obtained the integral formu-

8 2| Fluid dynamics model

lation of the mass conservation:∫
Vt

(
∂ρ

∂t
+∇ · (ρu)

)
dV = 0.

Since the integration is zero for any arbitrary Vt, it is possible to state the differential
form of the mass conservation principle:

∂ρ

∂t
+∇ · (ρu) = 0, ∀(x, t) ∈ Dt × [0,+∞). (2.6)

Finally, using the incompressibility result (2.3), the differential form of mass conservation
is reduced to

dρ

dt
=
∂ρ

∂t
+ u · ∇ρ = 0, ∀(x, t) ∈ Dt × [0,+∞),

which states that the density is constant along the trajectory of the flow.

2.3. Linear momentum conservation

Consider an arbitrary partition of the fluid domain denoted as Vt ⊆ Dt. In this context,
let f(x, t) : Vt × [0,+∞) → Rd represent the volume forces per unit mass acting within
the fluid. To describe the behavior of the surface forces, we invoke the Cauchy principle,
which asserts the existence of a stress field S(x, t,n) : Dt × [0,+∞) × N → Rd, where
N = {n ∈ Rd : |n| = 1}. Therefore, we can define the surface force per unit area that acts
on the partition s(x, t,n) : ∂Vt × [0,+∞) → Rd, where n is the outward normal vector.

According to Newton’s second law, the rate of change of a body’s linear momentum is
directly proportional to the resultant force exerted upon it. For the body Vt, the linear
momentum can be expressed as the integral of the quantity ρu over the entire body.

The resultant of the volume forces can be determined by evaluating the integral of ρf over
the domain, while the resultant of the surface forces is obtained through integration of s
along the surface of the body:

d

dt

∫
Vt

ρudV =

∫
Vt

ρfdV +

∮
∂Vt

sdS. (2.7)

To derive the integral form of the linear momentum equation, we apply the Reynolds

2| Fluid dynamics model 9

Transport Theorem 2.2:

d

dt

∫
Vt

ρudV =

∫
Vt

∂ρu

∂t
dV +

∮
∂Vt

ρu(u · n)dS.

Next, we consider the product identity involving a scalar and a dyadic:

u(u · n) = (u⊗ u)n. (2.8)

Proof. [u(u · n)]i = ui
∑d

j=1(ujnj) =
∑d

j=1(uiuj)nj.

Then, using the identity (2.8), and then applying the Divergence Theorem 2.1 for tensors
we have that: ∮

∂Vt

ρu(u · n)dS =

∮
∂Vt

(ρu⊗ u)ndS =

∫
Vt

∇ · (ρu⊗ u)dV.

Let T(x, t) : Vt× [0,+∞) → Rd×d be the stress tensor field. Then, considering the Cauchy
Stress Theorem [17] and applying the Divergence Theorem 2.1 for second order tensors
we obtain: ∮

∂Vt

sdS =

∮
∂Vt

TndS =

∫
Vt

∇ · TdV.

Finally, applying the results in (2.7) we arrive at the integral form of the linear momentum
conservation: ∫

Vt

∂ρu

∂t
dV +

∫
Vt

∇ · (ρu⊗ u)dV =

∫
Vt

ρfdV +

∫
Vt

∇ · TdV. (2.9)

The relation (2.9) must hold for any arbitrary portion Vt ⊆ Dt, which leads us to the
differential form of the momentum equation in the conservative formulation:

∂ρu

∂t
+∇ · (ρu⊗ u) = ρf +∇ · T, ∀(x, t) ∈ Dt × [0,+∞). (2.10)

Considering the mass conservation relation (2.6), it is possible to analyze the time deriva-
tive of the linear momentum:

∂ρu

∂t
=
∂ρ

∂t
u+ ρ

∂u

∂t
= ρ

∂u

∂t
− (∇ · ρu)u. (2.11)

10 2| Fluid dynamics model

Moreover, it is possible to derive a formulation for the divergence of the dyadic product:

∇ · (ρu⊗ u) = (∇ · ρu)u+ ρ(u · ∇)u. (2.12)

Proof. [∇ · (ρu⊗ u)]i =
∑d

j=1
∂(ρuiuj)

∂xj
=

∑d
j=1

(
∂(ρuj)

∂xj
ui + ρuj

∂ui
∂xj

)
.

Finally, by combining the mathematical identities presented in (2.11) and (2.12) with the
previous formulation (2.10), we arrive at the non-conservative formulation of the linear
momentum equation:

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ρf +∇ · T, ∀(x, t) ∈ Dt × [0,+∞). (2.13)

2.4. Angular momentum conservation

Consider a fixed pole o ∈ Rd and define the vector r(x) : Rd → Rd such that r(x) = x−o.
According to the angular momentum conservation principle, any change in the angular
momentum of the body necessitates the application of an external torque:

d

dt

∫
Vt

r× ρudV =

∫
Vt

r× ρfdV +

∮
∂Vt

r× TndS. (2.14)

Consequently, it is possible to demonstrate that, for a vector field, the total derivative can
be interchanged with the integral operation [17]. By subsequently applying the identity
for the derivative of the vector product and utilizing the definition of the Eulerian velocity
field u = dx/dt, we arrive at the following result:

d

dt

∫
Vt

r× ρudV =

∫
Vt

(
dr

dt
× ρu+ r× ρ

du

dt

)
dV =

∫
Vt

r× ρ
du

dt
dV.

It is important to highlight that this equality holds even when considering its scalar
product with an arbitrary vector w ∈ Rd,∫

Vt

w · r× ρ
du

dt
dV =

∫
Vt

w · r× ρfdV +

∮
∂Vt

w · r× TndS.

Then, using the property of mixed product that allows cyclic permutation of factors, we
obtain: ∫

Vt

w × r · ρdu
dt

dV =

∫
Vt

w × r · ρfdV +

∮
∂Vt

w × r · TndS.

2| Fluid dynamics model 11

Using an algebraic manipulation of tensorial calculus and the Divergence Theorem 2.1 it
is possible to develop the surface integral into a volume integral:∮

∂Vt

w × r · TndS =

∮
∂Vt

TT (w × r) · ndS =

∫
Vt

∇ · (TT (w × r))dV. (2.15)

Furthermore, consider the mathematical identity involving the divergence of the transpose
of a tensorial operation:

∇ · (TTv) = (∇ · T) · v + T : ∇v. (2.16)

Proof. ∇ · (TTv) =
∑

i

∑
k
∂Tkivk
∂xi

=
∑

i

∑
k

(
∂Tki
∂xi

vk + Tki
∂vk
∂xi

)
.

Finally, applying the identity (2.16) into (2.15) considering v = w × r, and substituting
the results in (2.14) we obtain that:∫

Vt

(w × r) ·
(
ρ
du

dt
− ρf −∇ · T

)
dV =

∫
Vt

T : ∇(w × r)dV.

Thus, using the local formulation of the linear momentum balance (2.13) and the Reynolds
Transport Theorem 2.2 it is possible to show that the left-hand side of the equation is
zero. Since it must hold for any generic partition Vt it is possible to obtain the differential
formulation for the conservation of angular momentum:

T : ∇(w × r) = 0, ∀(x, t) ∈ Dt × [0,+∞). (2.17)

It is possible to prove that ∇(w × r) is the antisymmetric tensor associated with the
arbitrary vector w [17]. Therefore, for (2.17) to hold true for any generic vector w the
tensor T must be symmetric:

T = TT , ∀(x, t) ∈ Dt × [0,+∞).

2.5. Constitutive relation

Assume that the Cauchy stress tensor T is continuously related to ∇u, and that as shown
in section 2.4, the stress tensor T is symmetric. Furthermore, consider the principle of
frame indifference, which states that the material response should be essentially indepen-

12 2| Fluid dynamics model

dent of the observer:
QT(∇u)QT = T(Q∇uQT), ∀Q ∈ R (2.18)

where R = {Q ∈ Rd×d : QT = Q−1}.

Then, it is possible to show that the stress tensor T depends only on the symmetric part
of ∇u, which is the rate of deformation tensor D defined as

D(u) = sym(∇u) =
∇u+∇Tu

2
.

Let αi(ID, IID, IIID) : R3 → R, i = 1, 2, 3, be coefficients that depends exclusively on the
invariants of D, where ID = tr(D), IID = 1

2
((tr(D))2 − tr(D2)), IIID = det(D). Then, in

order to satisfy (2.18) considering the dependency only the symmetric part of ∇u, we
conclude that T must possess the following structure:

T = α1(ID, IID, IIID)I + α2(ID, IID, IIID)D + α3(ID, IID, IIID)D2.

Consider the assumption of a Newtonian fluid, that states that the relation between T and
D is linear. Because of the linear relation α3 = 0, and also α1 and α2 must not depend on
the nonlinear invariants IID and IIID. Moreover, applying the incompressibility hypothesis
(2.3), then ID = tr(D) = ∇ · u = 0. As a result, the coefficients αi remain independent of
the tensor D.

Let p(x, t) : Dt × [0,+∞) → R be the pressure field, and µ(x, t) : Dt × [0,+∞) → R+ be
the dynamic viscosity. Finally, consider that with no deformation, the internal stresses
rely only on the pressure field, such that T(0) = −pI, and let α1 = −p, α2 = 2µ. Thus
we obtain the constitutive relation of the incompressible Newtonian fluid:

T = −pI + 2µD(u). (2.19)

Additionally, examine the vector identity involving the divergence of the transpose of the
gradient of a vector:

∇ · (∇Tu) = ∇(∇ · u). (2.20)

Proof. [∇ · (∇Tu)]i =
∑d

j=1
∂
∂xj

(
∂uj
∂xi

)
=

∑d
j=1

∂
∂xi

(
∂xj
∂xj

)
= ∂

∂xi
(∇ · u).

Considering the hypothesis of a homogeneous fluid, which implies that the viscosity is
constant in space, together with the result (2.20) and the incompressibility constraint

2| Fluid dynamics model 13

(2.3), we can deduce that:

∇ · (2µD(u)) = 2µ∇ ·
(
∇u+∇Tu

2

)
= µ∆u. (2.21)

Finally, to incorporate the constitutive relation into the linear momentum equation (2.13),
we apply the divergence operator to (2.19) while considering the identity (2.21):

∇ · T = −∇p+∇ · (2µD(u)) = −∇p+ µ∆u. (2.22)

2.6. The incompressible Navier-Stokes equations

Consider the incompressibility hypothesis (2.3), the momentum equation in the non-
conservative form (2.13), and the constitutive model for Newtonian fluids (2.22). Taking
into account the negligible temperature-dependence of fluid properties, the continuity
equation and momentum equation are decoupled from the energy equation [14]. Conse-
quently, in this study, the analysis and modelling of the energy equation are excluded,
focusing primarily on the continuity and momentum equations.

To analyze the fluid dynamics in a fixed domain, consider an Eulerian approach, where
Ω ⊂ Dt, ∀t ∈ [0,+∞) is a stationary domain filled by the fluid at every time instant, with
a Lipschitz boundary ∂Ω. To define the boundary conditions consider a partition of the
boundary such that ∂Ω = ΓD∪ΓN and ΓD∩ΓN = ∅. Then, let g(x, t) : ΓD×[0,+∞) → Rd

be the Dirichlet boundary condition, ψ(x, t) : ΓN × [0,+∞) → Rd be the Neumann
boundary condition, and n the outward normal vector.

Ultimately, by dividing the linear momentum equation by ρ, we obtain a well-defined sys-
tem of partial differential equations describing the differential form of the incompressible
Navier-Stokes equations:

∂u

∂t
+ (u · ∇)u− ν∆u+

1

ρ
∇p = f , in Ω, t > 0

∇ · u = 0, in Ω, t > 0

u(x, 0) = u0(x), in Ω, t = 0

u = g, on ΓD, t > 0

µ
∂u

∂n
− pn = ψ, on ΓN , t > 0

(2.23)

where ν(x, t) : Ω× [0,+∞) → R+ is the kinematic viscosity defined as ν = µ/ρ.

14 2| Fluid dynamics model

2.7. Immersed Boundary Method

To advance the mathematical modelling of the differential problem concerning fish-like
swimming, it is imperative to establish a cohesive relationship between the fluid and the
structure [36]. In the present study, we focus on formulating the coupling, disregarding
the development of the elasto-dynamics partial differential equations that govern the
structure. We make this decision based on the premise that the displacement of the
structure is determined by a pre-defined analytical function.

The Immersed Boundary Method is an efficient technique for Fluid-Structure Interaction.
Introduced by Peskin [34] in the field of biological fluid dynamics, it is an approach for
managing boundary conditions at different interfaces, including fluid-solid boundaries.
This method is particularly valuable when dealing with non-body-conforming meshes, as
it offers an effective solution by maintaining a structured and static background mesh
throughout the simulation. It can effectively handle complex displacement scenarios,
as it eliminates the challenges associated with complex geometries and distorted mesh
arrangements often encountered in adaptive mesh conforming methods [40].

Let Ω ⊂ Rd be the domain encompassing the entire physical scenario. We can partition
the entire domain into two separate and non-overlapping subdomains at time t: Ω =

Ωt
f ∪ Ωt

s, where Ωt
f represents the fluid domain and Ωt

s corresponds to the solid domain.
Additionally, we define Γt = Ωt

f ∩ Ωt
s as the interface between these two domains. To

enhance clarity within our analysis, we adopt the notations Ω̂f = Ω0
f and Ω̂s = Ω0

s to
represent the reference configurations of the fluid and solid domains, respectively, at the
initial time.

In the context of the present study, we consider a prescribed motion for the structure, in
which a Lagrangian map to the reference state X(x̂, t) : Ω̂s × [0,+∞) → Ωt

s is defined.
Notice that the structure displacement is also prescribed, given that d(X, t) = X(x̂, t)−x̂.
Thus, considering the non-slip condition, we derive the kinematic compatibility condition,
which imposes that the velocity of the fluid at the interface must coincide with the velocity
of the corresponding point at the structure surface:

dX

dt
= u(X, t), in Γt, t > 0.

To establish the dynamic interface condition, we apply Newton’s third law, which states
that forces at the interface must be equal in magnitude and opposite. Therefore, we
consider an exchange of forces, denoted as fΓt(x, t) : Ωt

f × [0,+∞) → Rd, occurring only
at the interface between the fluid and solid. It is important to note that, for the sake of

2| Fluid dynamics model 15

the assumptions of prescribed displacement of the structure, we will not delve into the
detailed nature of these forces.

Hence, by considering these factors, we establish a representation of the fluid dynamic
equations in the context of incompressible Navier-Stokes flow interacting with an im-
mersed structure with prescribed motion:

∂u

∂t
+ (u · ∇)u− ν∆u+

1

ρ
∇p = f + δΓtfΓt , in Ωt

f , t > 0

∇ · u = 0, in Ωt
f , t > 0

u =
dX

dt
, in Γt, t > 0

+ Boundary Conditions on ∂Ωt
f/Γ

t

+ Initial Conditions

(2.24)

where δΓt is the Dirac delta function with support on Γt.

Regarding the fluid forces that act on the immersed body, let FD represent the drag
force and FL represent the lift force. These forces are computed by evaluating a surface
integral of the fluid stress tensor projected in the directions parallel and orthogonal to
the freestream, as illustrated in Figure 2.2.

Figure 2.2: 2D representation of the drag and lift forces acting on the structure.

Consider ex as the unit vector parallel to the freestream, and ey as the vertical unit
vector normal to the flow direction. The forces can then be calculated by applying the
expressions:

FD =

∮
Γt

(pn− 2µD(u)n) · exdS, FL =

∮
Γt

(pn− 2µD(u)n) · eydS. (2.25)

Concerning a more detailed analysis of the drag force (2.25), it is possible to decompose it
into two distinct components that allow for the isolation of the effects of the pressure and

16 2| Fluid dynamics model

velocity fields within the solid, such that FD = FDP + FDF . These components are the
pressure drag force, denoted as FDP , and the viscous drag force, denoted as FDF , given
by:

FDP =

∮
Γt

(pn) · exdS, FDF =

∮
Γt

(−2µD(u)n) · exdS.

17

3| Numerical approximation

This chapter introduces the numerical methods employed to solve the fluid dynamic model
described in chapter 2. In section 3.1, the Finite Volume Method is defined, which con-
sists of a numerical technique used to solve partial differential equations by partitioning
a continuous problem into a set of finite volumes, allowing us to derive the algebraic
counterpart of the incompressible Navier-Stokes system. Subsequently in section 3.2, a
projection method is introduced to solve the system of linear equations obtained from the
discrete problem.

Afterward in section 3.3, the immersed boundary numerical algorithm is introduced. This
algorithm entails adapting the incompressible Navier-Stokes equations to account for the
presence of an immersed structure using a non-conforming mesh. Ultimately, a modified
projection method is described for solving the fluid-structure interaction problem.

3.1. Finite Volume Method

The Finite Volume Method (FVM) is a numerical technique that partitions the domain
into a series of non-overlapping polyhedral elements. It enforces conservation principles
within each finite-volume cell, allowing for the approximation of the solution to the partial
differential equations as a set of linear algebraic equations. This method is commonly em-
ployed in various computational fluid dynamics (CFD) solver software [14, 27], including
OpenFOAM, which will be used in this project.

To construct the discretized mesh, we employ a polyhedral tessellation denoted as Th of the
computational domain Ω ⊂ Rd. Each cell element within this tessellation is represented
as Ci, with i indicating its index. These cells have the volume denoted as |Ci| and
centroids located at ci. Additionally, we define NB(Ci) as the set of adjacent cells to
Ci. It is important to note that we ensure that these finite volumes occupy the entire
domain, meaning that Ω can be represented as the union of all Ci, and these volumes are
non-overlapping.

Let Fh represent the set of faces Fi within the tessellation Th, also consider the set of

18 3| Numerical approximation

faces of cell Ci as FCi
. Each face Fi is associated with a surface area denoted as |Fi|, and

barycenter located at fi. These faces can be classified into two subsets: FI , comprising
internal faces, and FB, containing faces situated on the boundary ∂Ω. To describe an
internal face shared by two distinct cells Ci and Cj, we use the notation Fij ∈ FI .

First, to exemplify the key features and fundamental principles of the Finite Volume
Method, we shall apply it to a simplified problem of steady advection-diffusion-reaction.
The purpose of this exercise is to elucidate the core concepts and underlying principles
that characterize this numerical approach. After gaining insights from the simplified
problem, we will proceed to develop the Finite Volume Method for the incompressible
Navier-Stokes equations.

3.1.1. FVM for the advection-diffusion-reaction equation

In the context of the advection-diffusion-reaction equation (ADR), let ϕ(x) : Ω → R
denote an arbitrary scalar field, µ(x) : Ω → R stand for the diffusion coefficient, b(x) :
Ω → Rd represent the divergence-free convective field, c(x) : Ω → R refer to the reaction
coefficient, and s(x) : Ω → R be the source term. Then, the ADR differential equation is
described as: {

−∇ · (µ∇ϕ− bϕ) + cϕ = s, in Ω

+ Boundary Conditions on ∂Ω.

When deriving the boundary conditions in the context of the Finite Volume Method,
various approaches are available, which are described in [14]. For the sake of simplicity,
we will focus on formulating the method for cells that are internal to the domain, omitting
the consideration of boundary cells in this study.

Let us consider the control volume of cell Ci ∈ Th, whose surface can be decomposed into
a set faces FCi

. By integrating over the domain of cell Ci and applying the Divergence
Theorem 2.1, we obtain the following formulation:

−
∮
∂Ci

µ∇ϕ · ndS +

∮
∂Ci

ϕb · ndS +

∫
Ci

cϕdV =

∫
Ci

sdV.

The main concept of numerical approximation involves the use of the one-point Gaussian
quadrature method [39], which estimates the integrand by assuming that the average of
this quantity over the domain corresponds to its centroid value. We adopt the notation
of subscript □E to denote the evaluation at the centroid e of element E.

To begin, we focus on the numerical approximation of the diffusion term. For calculating

3| Numerical approximation 19

the surface integral over each face, we employ the one-point Gaussian quadrature method:∮
∂Ci

µ∇ϕ · ndS =
∑
F∈FCi

∫
F

µ∇ϕ · ndS ≈
∑
F∈FCi

(µ∇ϕ · n)F |F |. (3.1)

Similarly, we derive the term related to the transport term by decomposing the surface
of the control volume into its constituent faces and employing the one-point Gaussian
method of numerical integration:∮

∂Ci

ϕ(b · n)dS =
∑
F∈FCi

∫
F

ϕ(b · n)dS ≈
∑
F∈FCi

(ϕb · n)F |F |. (3.2)

To obtain the reaction term expressed in terms of an approximated term evaluated at the
centroid of the cell, we utilize the one-point Gaussian method of numerical integration
within the control volume: ∫

Ci

cϕdV ≈ (cϕ)Ci
|Ci|. (3.3)

Finally, we can derive the approximation of the source term analogously using the quadra-
ture method: ∫

Ci

sdV ≈ sCi
|Ci|. (3.4)

Hence, by approximating all the terms within the advection-diffusion-reaction equation
and assessing the continuous functions at a single point, we effectively discretize the
problem within cell Ci based on the quantities evaluated at both the centroid and faces
of the cell:

−
∑
F∈FCi

(µ∇ϕ · n)F |F |+
∑
F∈FCi

(ϕb · n)F |F |+ (cϕ)Ci
|Ci| = sCi

|Ci|. (3.5)

To establish a connection between the values at the centroids of faces and those at the
centroids of cells, we utilize linear interpolation. Consider two adjacent cells, labeled as
Ci and Cj, which share the face Fij, as illustrated in Figure 3.1.

20 3| Numerical approximation

Figure 3.1: Illustration of the finite volume grid and the neighbors’ computational cells
Ci and Cj.

Then, by employing the average weight between the values of the scalar field ϕ at the
centroids of adjacent cells, we can decompose the evaluation at the face centroid as

ϕFij
≈ ϕCi

λij + ϕCj
(1− λij), λij =

|fij − ci|
|cj − ci|

.

In the context of a structured mesh, with the assumption of orthogonality between cell
centers and assuming a linear profile between the centroids of the cells, we can approximate
the gradient by employing a discretized approach using centered finite differences between
two adjacent cell centroids:

(∇ϕ · n)Fij
≈
ϕCi

− ϕCj

|ci − cj|
.

Subsequently, by utilizing interpolation for the values considered on the face and the
method of centered finite differences for the gradient, it is possible to express the equation
in terms of quantities evaluated at the centroid of cell Ci and its neighboring cells:

aiϕCi
+

∑
Cj∈NB(Ci)

ajϕCj
= bi. (3.6)

Ultimately, by generating (3.6) for each cell in the mesh, it is possible to formulate a system
of linear equations that represents the entire simulation scenario. Let Ndof represent the
number of degrees of freedom in the tessellation Th. Consider ϕ ∈ RNdof as the vector of
the scalar field ϕ evaluated at the centroids of the cells. Let A ∈ RNdof×Ndof be the matrix
of coefficients that accounts for the effects of advection, diffusion, reaction, and b ∈ RNdof

be the vector representing the forcing terms. Thus, solving a high dimensional linear
system we obtain a discretized approximation of the solution to the continuous partial

3| Numerical approximation 21

differential equation described by the ADR problem:

Aϕ = b.

3.1.2. FVM for the incompressible Navier-Stokes equations

To address the unsteady incompressible Navier-Stokes equations, we adopt a time dis-
cretization scheme. Consider a uniform partition of the time interval [0, T], where T

designates the terminal time of the designated scenario, and each discrete instant of time
is denoted by tn = n∆t, with ∆t representing the time step. Furthermore, consider the
superscript □n to denote the approximation of a quantity evaluated at time tn.

For the subsequent discourse in this chapter, consider the evaluation of the Navier-Stokes
equations at the time instant tn+1, taking into consideration the quantities from preceding
time instances are known. To simplify the notation, we shall assume an implicit evaluation
at tn+1 unless explicitly specified otherwise.

In addressing the time derivative, we consider the adoption of a second-order backward
difference formula (BDF2), this choice leads to a second-order convergence in time:

∂u

∂t
≈ 3u− 4un + un−1

2∆t
. (3.7)

To spatially discretize and formulate an algebraic solution through a system of linear
equations using the FVM, assuming that we are using a co-allocated mesh, we will employ
techniques similar to those outlined in subsection 3.1.1.

To develop the spatial discretization of the finite volume formulation for the momentum
equation, adopt the approximation of the time derivative term (3.7) and consider the
momentum balance equation (2.23), integrating it over the control volume of the cell Ci:

3

2∆t

∫
Ci

udV +

∫
Ci

(u · ∇)udV − ν

∫
Ci

∆udV

=

∫
Ci

fdV − 1

ρ

∫
Ci

∇pdV +
1

2∆t

∫
Ci

(4un − un−1)dV. (3.8)

To develop a discrete formulation for the diffusion term, we will follow the methodology
described in (3.1). This involves applying the Divergence Theorem 2.1 and using one-point

22 3| Numerical approximation

Gaussian quadrature to approximate the integration across each cell face:∫
Ci

∆udV =

∮
∂Ci

∇undS ≈
∑
F∈FCi

(∇un)F |F |. (3.9)

To formulate an equivalent expression for the transport term, as described in (3.2), we
address the non-linearity by employing Picard’s iteration method. This transforms the
problem into an Oseen-type formulation, where we iteratively estimate the flux, denoted as
û. In this iterative process, we continuously update this estimate, aiming for convergence
of the global solution, and ensuring that (û · ∇)u ≈ (u · ∇)u.

Subsequently, we will proceed by employing the identities presented in (2.8) and (2.12),
followed by the application of the Divergence Theorem 2.1. Finally, we shall employ the
one-point quadrature over the cell’s faces to complete the procedure:∫

Ci

(û · ∇)udV =

∮
∂Ci

(û · n)udS ≈
∑
F∈FCi

((û · n)u)F |F |. (3.10)

It is noteworthy that when considering the time derivative approximation, a reaction term
emerges. This term will be addressed similarly to the approach detailed in (3.3):∫

Ci

udV ≈ uCi
|Ci|. (3.11)

Evaluating the source term, which includes volume forces and velocity history, we utilize
the integral approximation within the control volume, as demonstrated in (3.4):∫

Ci

(
f +

1

2∆t
(4un − un−1)

)
dV ≈

(
f +

1

2∆t
(4un − un−1)

)
Ci

|Ci|. (3.12)

To estimate the integral of the pressure gradient, we use the Divergence Theorem 2.1. We
then evaluate the approximation of this integration over the faces of the cell centroids:∫

Ci

∇pdV =

∮
∂Ci

pndS =
∑
F∈FCi

∫
F

pndS ≈
∑
F∈FCi

(pn)F |F |. (3.13)

Finally, for each computational cell Ci ∈ Th, analogous to the result in the ADR equation
(3.5), we derive an approximation of the momentum equation (3.8). With this objective,

3| Numerical approximation 23

considering the results (3.9), (3.10), (3.11), (3.12), and (3.13), we obtain that:

3

2∆t
uCi

|Ci|+
∑
F∈FCi

((û · n)u)F |F | − ν
∑
F∈FCi

(∇un)F |F |+
1

ρ

∑
F∈FCi

(pn)F |F | =(
f +

1

2∆t
(4un − un−1)

)
Ci

|Ci|. (3.14)

To complete the system of differential equations of Navier-Stokes, we will discretize the
continuity equation of the problem (2.23), which consists essentially of the divergence-
free condition. Consider the control volume of cell Ci, and then apply the Divergence
Theorem 2.1. Finally, approximate the integral using Gaussian quadrature:∫

Ci

∇ · udV =

∮
∂Ci

u · ndS =
∑
F∈FCi

∫
F

u · ndS ≈
∑
F∈FCi

(u · n)F |F |.

As a result, considering the continuity equation of the system (2.23), we conclude that
the total flux over the control volume of the cell must be zero:

∑
F∈FCi

(u · n)F |F | = 0. (3.15)

Finally, we will adopt the algebraic counterpart of the problem. Let Ndof denote the num-
ber of degrees of freedom of the computational mesh Th, and consider U ∈ Rd·Ndof and
P ∈ RNdof as the vectors that respectively hold the discretized components of velocity and
pressure. Also, let F ∈ Rd·Ndof represent the source term in a vectorial formulation, that
includes the volume force and velocity history contributions. Let A ∈ Rd·Ndof×d·Ndof rep-
resent the momentum coefficient matrix, and B ∈ RNdof×d·Ndof be the divergence operator
matrix. Thus, by considering the formulation (3.14) and (3.15) for all cells in the com-
putational mesh, it is possible to write the system of equations in the matrix structure.
In conclusion, we obtain a discretized approximation of the solution to the continuous
partial differential equation described by the incompressible Navier-Stokes problem:[

A BT

B 0

][
U

P

]
=

[
F

0

]
(3.16)

To solve the system described in equation (3.16), one can choose to use an iterative method
due to its effectiveness in solving high-dimensional linear systems. However, a notable
challenge arises from the absence of a pressure term in the continuity equation, since it

24 3| Numerical approximation

results in a block of zeros in the diagonal, generating a saddle-point problem structure.
Consequently, this ill-conditioned system can lead to numerical instability and slowness
at the solution [14]. To address this issue, projection methods are commonly employed,
and their implementation in the current project will be elaborated in section 3.2.

3.2. PIMPLE projection method

Projection methods are algorithms that solve the incompressible Navier-Stokes equations
in a segregated manner, which avoids the need for solving system (3.16). This approach
involves obtaining an estimate of the velocity by solving the momentum equation, which
may not necessarily satisfy continuity. Subsequently, the continuity equation is used to for-
mulate an equation for the pressure field, incorporating the estimated velocity. Finally, the
algorithm corrects the divergent velocity vector field to ensure it becomes non-divergent.

The PIMPLE algorithm [47] constitutes a synthesis of the SIMPLE algorithm (Semi-
Implicit Method for Pressure Linked Equations) [33] with the PISO algorithm (Pressure-
Implicit with Splitting of Operators) [45]. The PIMPLE method offers an advantage by
combining the stability inherent in the SIMPLE method, with the computational efficiency
of the PISO algorithm.

To briefly explain the PIMPLE method consider a partition of the incompressible Navier-
Stokes problem into 3 steps. The primary phase entails solving the momentum equation
for an intermediary velocity u⋆, which is not necessarily constrained by the incompress-
ibility condition. Subsequently, by introducing corrections to both pressure and velocity
to uphold the continuity equation, it is possible to show that the pressure must satisfy a
Poisson problem. Ultimately, the velocity components undergo a projection into a space
that enforces the divergence-free condition, thereby yielding a new set of solutions for the
velocity and pressure fields.

To express the differential form of the subproblems within the projection method at time
tn+1, we will use the superscript □(k) to denote the iteration k. Thus, the PIMPLE
method can be outlined as follows:

• Momentum Prediction:

3

2∆t
u⋆ + (u(k) · ∇)u⋆ − ν∆u⋆ = f − 1

ρ
∇p(k) + 1

2∆t
(4un − un−1)

• Pressure Equation:
∇ ·

(
D−1∇p(k+1)

)
= ρ∇ · u⋆

3| Numerical approximation 25

• Velocity Correction:

ρu(k+1) = ρu⋆ − D−1∇p(k+1)

where D represents the diagonal of the momentum discretization matrix.

If the convergence tolerance is not achieved, the PIMPLE loop is restarted, updating
the initial guess (u(k), p(k)) with the obtained result (k → k + 1). On the other hand, if
the results meet the convergence criterion, they are adopted as the solution, such that
(un+1, pn+1) = (u(k+1), p(k+1)), and the algorithm proceed to the next time step.

The concept underlying the fusion of two approaches within the PIMPLE method is
to integrate the SIMPLE outer loop with the PISO inner loop. The outer iterations
encompass both the momentum and pressure correction equations, while the inner cycle
begins iterating from the Poisson problem.

It is important to highlight that additional modifications to the method are possible,
for example, the introduction of pressure relaxation between the Pressure Equation and
Velocity Correction steps. This flexibility allows us to adapt the PIMPLE method to
various problem settings, such as the Immersed Boundary Method, which will be explored
in more detail in subsection 3.3.2.

3.3. Immersed Boundary numerical implementation

In the present work, we will adopt the formulation and numerical algorithm detailed in
[30] to incorporate Fluid-Structure Interaction with an Immersed Boundary approach into
the Navier-Stokes problem, as explained in section 2.7. Within the context of the Finite
Volume discretization framework, as described in section 3.1, to adjust the cell value to
the immersed boundary effect we will introduce the Immersed Boundary Interpolation
Operator SIB in subsection 3.3.1.

Subsequently, we formulate the projection algorithm, building upon the principles of the
PIMPLE method outlined in section 3.2. This projection algorithm serves to couple the
Fluid-Structure Interaction interface conditions into the fluid problem, leading to the
development of the PIMPLE-IBM algorithm, which is detailed in subsection 3.3.2.

26 3| Numerical approximation

3.3.1. Immersed Boundary interpolator

To define the solid region Ωs within the computational domain, we employ a closed surface
triangulation Σ using a finite set of vertices PIB as an approximation. In this project,
the coordinates of the structural points were generated using MATLAB, resulting in the
creation of a CSV file. This data was subsequently processed by Gmsh and ParaView,
to generate an STL file that represents the geometry of the structure, encapsulating
information about the triangulation and connectivity of the body surface. To illustrate
the position, connectivity, and velocity of each vertex of a moving triangulated surface,
refer to Figure 3.2.

Figure 3.2: Representation of the triangulation Σ, and the velocity uIB of the points.

Subsequently, it is necessary to categorize the cells comprising the computational mesh
Th into distinct subgroups. Referring to the mesh description within the Finite Volume
Method, these cells are classified into three sub-categories: solid cells, fluid cells, and
immersed boundary cells.

• Solid Cells (CS): Encompasses all cells with centroids situated within the solid
surface region Σ. This region will symbolize the immersed object within the discrete
space:

CS = {Ci ∈ Th | ci ∈ Σ}.

• Immersed Boundary Cells (CIB): Comprises cells whose centroids are not situ-
ated within the surface region and that share at least one face with the solid cells:

CIB = {Ci ∈ Th \ CS | NB(Ci) ∩ CS ̸= ∅}.

• Fluid Cells (CF): Covers all the remaining cells that are not included in the previous
sets, this represents the fluid cells, where the solid and immersed boundary do not
directly affect:

CF = {Ci ∈ Th \ (CS ∪ CIB)}.

3| Numerical approximation 27

To elucidate the criteria involved in mesh subdivision, Figure 3.3 presents a visual repre-
sentation.

Figure 3.3: 2D representation of the mesh subdivision into solid cells CS, fluid cells CF,
and immersed boundary cells CIB.

Each immersed boundary cell, denoted as Ci ∈ CIB, is associated with a set of extended
stencil cells, represented as Si. This association becomes essential to select the relevant
cells for the IB interpolation scheme.

Si = {Cj ∈ Th \ CS | Cj ∈ Sci ∩ Sdi ∩ Sθi }.

The set of cells of the fluid extended stencil is defined by the intersection of three geometric
criteria that can be represented by (c, d, θ), which restrict the set based on the principles
of connectivity, spatial distance, and field of view.

1. Connectivity: If a cell is included in the set related to a certain level of connectivity
denoted as c. The set Sci is defined recursively using the point-to-cell stencil that
includes all the cells that share at least one point:

S0
i = {Ci},

S1
i = {Cj ∈ Th | Cj ∩ S0

i ̸= ∅} ∪ S0
i ,

...

Sci = {Cj ∈ Th | Cj ∩ Sc−1
i ̸= ∅} ∪

c−1⋃
n=0

Sni .

28 3| Numerical approximation

2. Spatial Distance: If the distance between centroids of two cells is in a range of d.
This restriction can be interpreted as the cells whose centroids lie within a circle of
radius d around ci:

Sdi = {Cj ∈ Th | |ci − cj| ≤ d}.

3. Field of View: If the cell center is within the field of view defined by θ with respect
to the IB normal unit vector ni, which points in the direction of the projection of
the IB cell centroid onto the surface Σ:

Sθi =
{
Cj ∈ Th | ni ·

(ci − cj)

|ci − cIB,i|
≤ cos θ

}
.

Illustrated in Figure 3.4 is an overview of the imposed restrictions used to determine the
extended stencil cells related to the highlighted immersive boundary cell. Moreover, the
picture also shows the IB point cIB defined by the projection of the IB cell centroid into
the triangulated surface Σ.

Figure 3.4: 2D representation of the extended stencil of an immersed boundary cell,
considering connectivity criteria of level c = 1, distance criteria of d, and field of view
criteria of θ.

Finally, to account for the effects imposed by the immersed structure, we will construct
the IB interpolator denoted as SIB(U,g) that corrects the solution field at the solid and
immersed boundary cells. Define the IB value gIB = [gIB,i] as the vector of values of the
immersed boundary condition at the IB point cIB,i correspondent to the cell Ci ∈ CIB.
Then, let U be the vector of the Finite Volume Method solution, and let g be the vector

3| Numerical approximation 29

of immersed boundary and solid region datum defined in every cell of the mesh:

g =

gIB.i, if Ci ∈ CIB

gi, if Ci ∈ CS

0, if Ci ∈ CF

If Ci ∈ CIB, we perform a linear combination of values from the cells within the stencil
Si and the corresponding IB point. If Ci ∈ CS, we impose the prescribed solid solution,
whereas if Ci ∈ CF, we maintain the FVM solution. This process defines the interpolation
operator SIB that corrects the FVM solution:

Ucorr = SIB(g,U) =

sIB,igIB,i +

∑
Cj∈Si

sjuj, if Ci ∈ CIB

gi, if Ci ∈ CS

ui, if Ci ∈ CF

(3.17)

To determine the coefficients s of the linear combination of effects in equation (3.17),
we will employ the weighted least squares (WLS) approach. For this purpose, we will
consider a polynomial vector Px of order p defined for a point x = [x y z]T :

Px =
[
1 x y z · · · xp yp zp

]
,

and let b be the vector of coefficients of the polynomial:

b =
[
β0 β1 β2 β3 · · · β3p

]T
.

In the WLS approach, we aim to find the vector of coefficients b⋆, which balances the
solution of the extended stencil cells with that of the IB point:

b⋆ = argmin
b

wIB,i(uIB,i − PcIB,i
b)2 +

∑
Cj∈Si

wj(uj − Pcjb)
2

 ,

where the weight wi ∈ [0, 1] in the WLS method is determined based on the relative
distance between the point under consideration and the center of the IB cell, as well as
on the Dirichlet or Neumann condition. For a detailed formulation refer to [30].

Therefore, for each point x we can define the approximation function as fIB(x) = Pxb
⋆.

This function corresponds to the coefficients of equation (3.17), where we use x as either

30 3| Numerical approximation

the centroid of the stencil cell to obtain sj = fIB(cj) or as the IB point to estimate
sIB,i = fIB(cIB,i).

3.3.2. PIMPLE-IBM

The PIMPLE-IBM method is an integrated approach that incorporates IBM into the
PIMPLE projection algorithm, as discussed in section 3.2. Our approach begins by es-
tablishing the monolithic problem formulation and subsequently employing the projection
method algorithm to address the immersed boundary effect.

Within the formulation presented in (3.16), we introduce the operator b ∈ Rd·Ndof , which,
utilizing the IB interpolator SIB as detailed in subsection 3.3.1, ensures the non-conforming
mesh correction in both solid and fluid cells:

b = (1− χCF)(−AU+ BTP+U− SIB(g,U)),

where χCF is the indicator function of the discretized fluid domain.

Considering the system of equations as described in (3.16) with the addition of the Rhie-
Chow stabilizer [31] denoted as C ∈ RNdof×Ndof , and introducing the non-conforming mesh
corrector b, we derive the algebraic counterpart of the immersed boundary problem (2.24):[

A BT

B −C

][
U

P

]
=

[
F+ b

0

]
.

To formulate the PIMPLE-IBM algorithm, we start by decomposing the momentum dis-
cretization matrix A = D − H into two components: D as a diagonal matrix and −H
as the off-diagonal counterpart. Furthermore, since the interpolator operator defined in
(3.17) consists in a linear combination of the values of U and g, it is possible to write the
operator as the following decomposition:

SIB(g,U) = Sgg + SU. (3.18)

Hence, similar to the PIMPLE decomposition of the problem, we can divide the projection
method into five steps, as represented on the scheme Figure 3.5. To describe the algebraic
form of the problem at time tn+1, adopt superscript □(k) to denote iteration k, where
the fraction represents an intermediate value for the variable. Thus, the PIMPLE-IBM
method can be outlined as follows:

3| Numerical approximation 31

1. Momentum Prediction: Considering the momentum equation we make a predic-
tion of the corrected velocity field using an estimative of the pressure and velocity
fields (U(k),P(k)), obtaining the first auxiliary velocity field U(k+1/3).

AU(k+1/3) + BTP(k) = F+ b

2. Velocity Corrector: We apply a correction to the first predicted velocity field,
yielding a refined estimate of the velocity field denoted as U(k+2/3).

U(k+2/3) = D−1(HU(k+1/3) + F)

Additionally, it is essential to apply the IB interpolation in this procedure, ensuring
that U(k+2/3) = SIB(g,U

(k+2/3)) for the updated velocity field.

3. Pressure Equation: By combining the momentum and continuity equations, the
pressure equation can be formulated. To achieve this, select the Rhie-Chow matrix
as C = −SD−1BT + R(SD−1), where S is defined in (3.18). This strategic choice
substitutes the pressure Schur Complement with the discretization of the pressure
Laplacian operator via R(SD−1). Consequently, the resulting algebraic problem is
solvable, yielding the pre-relaxation pressure field P(k+1/2).

R(SD−1)P(k+1/2) = BU(k+2/3)

4. Pressure relaxation: Apply a pressure relaxation of a factor θP into the pressure
field.

P(k+1) = θPP
(k+1/2) + (1− θP)P

(k)

5. Final Correction: In the final step, the velocity field is projected into a divergence-
free space, resulting in the new velocity field denoted as U(k+1). This projection
ensures consistency with the non-conforming condition.

U(k+1) = U(k+2/3) − SD−1BP(k+1)

32 3| Numerical approximation

Figure 3.5: PIMPLE algorithm flowchart.

3| Numerical approximation 33

If the convergence tolerance is not attained, the PIMPLE-IBM loop is reinitiated, updat-
ing the initial estimative of the solution (U(k),P(k)) based on the results obtained during
the iteration (k → k + 1). Conversely, if the convergence criterion is met, the obtained
results are accepted as the solution, resulting in (Un+1,Pn+1) = (U(k+1),P(k+1)), and the
simulation progresses to the next time step.

35

4| Modelling of fish-like swimming

This chapter aims to analyze and develop a mathematical model to represent the geom-
etry and motion of the fish. The modelling is based on previous simulations of fish-like
swimming, which, in turn, were derived from empirical observations [46].

First, we considered the model of the fish described in [3], which has a geometry defined by
a conforming map, resulting in an airfoil-like shape, as explained in section 4.1. Next, in
section 4.2, we focus on analyzing the middle line of the fish, referred to as the backbone,
which requires solving an integral equation to satisfy the fixed length of the backbone
constraint. Then, in section 4.3, we analyze the solid body structure and apply segment
rotations along the motion to ensure mass conservation. In the concluding section 4.4, the
implementation of the OpenFOAM code related to the constructed algorithm is discussed.

4.1. Modelling of the swimmer steady-shape

To generate the reference state of the structure, we will consider the Karman-Trefftz
airfoil, whose geometry can be described using a conformal map method. It is worth
mentioning that the model is a common choice in the literature since it generates an
airfoil which has several studies on potential flows and their theoretical solution [5, 43].

Consider the function ζ : [0, 2π] → C, which is a parametrization of a circumference in
the complex plane with center at the coordinate (ηc, 0) and radius (1 + |ηc|), defined as:

ζ(φ) = (1 + |ηc|)eφi + ηc. (4.1)

Let ξ : C → C be the parametrization of the airfoil shape with triangle-like cusp edge of
trim angle α. The choice of the center of the circle ζ to lie on the real axis results in a
shape with horizontal symmetry for the structure ξ. To produce the desired geometry,

36 4| Modelling of fish-like swimming

the Karman-Trefftz transformation will be applied:

ξ(ζ) = n

(
1 + 1

ζ

)n
+
(
1 + 1

ζ

)n
(
1 + 1

ζ

)n
−
(
1 + 1

ζ

)n , (4.2)

where n is a function of the trim angle α:

n = 2− α

π
.

Furthermore, a contraction or expansion of the resulting shape ξ was performed to fix it
with a length of L. Finally, a translation of the structure was performed so its leading
edge is at the origin of the complex plane, as illustrated in Figure 4.1.

(a) Circle parametrization ζ using equation (4.1). (b) Airfoil parametrization ξ using equation (4.2).

Figure 4.1: Example of Karman-Trefftz transformation.

Thus, for the modelling of the body when the backbone is completely horizontal, which
is denoted as the reference configuration, 3 parameters define the structure:

• L: Backbone length.

• ηc: Circumference center.

• α: Trim angle of the airfoil.

4| Modelling of fish-like swimming 37

4.2. Modelling of the fish backbone

To describe the motion of the backbone, it will be necessary to adopt two different co-
ordinate systems. The first is the Cartesian coordinate system, which defines the points
in the plane. The second consists of a curvilinear coordinate attached to the backbone,
which demarcates the position over the middle line of the fish and varies between 0 and
L.

4.2.1. Analytical description of the 2D motion

To simulate the backbone undulation of the swimming fish, let the function that describes
the y Cartesian coordinate of the backbone be y(x, t) : [0, xL(t)] × [0,+∞) → R, where
xL(t) ∈ [0, L] is the x coordinate in the Cartesian plane such that the backbone has length
L. A possible approach to simulate the movement of the backbone is the travelling wave
undulation [3], which consists of a sinusoidal expression for the function y(x, t):

y(x, t) = Am(x) sin
(
2π

(x
λ
− ft

))
, (4.3)

where λ is the wavelength of the oscillations, f is the frequency of the oscillations, and
Am is the amplitude envelope defined by the quadratic polynomial:

Am(x) = A0 + A1x+ A2x
2,

in which A0, A1, and A2 are the coefficients of the polynomial.

The map between the curvilinear coordinate s ∈ [0, L] and the Cartesian abscissa x is
given by:

s(x, t) =

∫ x

0

√
1 +

(
∂y(u, t)

∂u

)2

du,

where for the derivative of the lateral motion function we have that:

∂y(x, t)

∂x
= (A1 + 2A2x) sin

(
2π

(x
λ
− ft

))
+

2π

λ
(A0 + A1x+ A2x

2) cos
(
2π

(x
λ
− ft

))
.

(4.4)

To obtain the cartesian abscissa given a curvilinear coordinate, consider the inverse rela-
tion given by x(s, t) = s−1(x, t). It is worth noting that the quantity xL(t), which defines
the domain of the travelling wave function (4.3), is obtained by xL(t) = x(L, t).

Another relevant information to be extracted from the equation of motion of the backbone

38 4| Modelling of fish-like swimming

is the tangential angle of each point on the curve, which will be used afterward to model
the motion of the swimmer surface. To obtain this quantity, compute the arc tangent of
the derivative of the function in space:

θ(x, t) = arctan

(
∂y(x, t)

∂x

)
. (4.5)

4.2.2. Analytical description of the 3D motion

To generalize the motion of the swimmer backbone to a three-dimensional scenario, con-
sider the coordinate x ∈ [0, xL(t)], such that the Cartesian coordinates of the backbone
are described by y(x, t) : [0, xL(t)]× [0,+∞) → R, and z(x, t) : [0, xL(t)]× [0,+∞) → R.
To replicate a similar movement, inspired by the 2D motion described in equation (4.3),
consider the following formulation:

y(x, t) = (A0y + A1yx+ A2yx
2) sin

(
2π

(
x

λy
− fyt

))
,

z(x, t) = (A0z + A1zx+ A2zx
2) sin

(
2π

(
x

λz
− fzt

))
,

(4.6)

where A0y, A0z, A1y, A1z, A2y, A2z, λy, λz, fy, fz have an analogous meaning of its corre-
spondent parameters described in (4.3).

The map between the curvilinear coordinate s ∈ [0, L] and the Cartesian abscissa x is
given by:

s(x, t) =

∫ x

0

√
1 +

(
∂y(u, t)

∂u

)2

+

(
∂z(u, t)

∂u

)2

du. (4.7)

Finally, for the motion of the structure surface, it is necessary to obtain the direction of
the tangential normalized vector of each point of the backbone. For the present project,
the Euler Angles will be used, which have a wide application in aerodynamic studies
[32], besides providing the motion of the structure one more degree of freedom, which
corresponds to the rotation around the backbone’s axis, referred as roll.

To obtain the angles that describe this direction, the set of Euler’s angles Y − z1−x2 will
be applied [25]. Consider Figure 4.2 and the visual representation of the Euler’s angles of
yaw (ψ), pitch (θ) and roll (φ).

4| Modelling of fish-like swimming 39

Figure 4.2: Euler’s angles considering the rotation Y − z1 − x2.

The objective of using Euler’s angles for orientation is to achieve a transformation of the
coordinate system in such a way that the normal vector n of the segment Bs associated
with the backbone point s remains parallel to the x-axis, as in the reference state. To
accomplish this, the angles ψ and θ are determined, and their analytical expressions are
as follows:

ψ(x, t) = − arctan

(
∂z(x, t)

∂x

)
, θ(x, t) = arctan

 ∂y(x, t)/∂x√
(∂z(x, t)/∂x)2 + 1

. (4.8)

As a new degree of freedom was added for the rotation around the x2 axis, the roll angle φ
is free to choose for each point of the backbone. In this case, it can be selected considering
the structure as a whole with the same roll angle:

φ(x, t) = 2πtfφ (4.9)

where fφ is the roll frequency.

40 4| Modelling of fish-like swimming

4.2.3. Backbone numerical algorithm

To describe the motion of the backbone points in space, consider a finite set of curvilinear
coordinates denoted as s = [si], which are provided in the discretized data of the structure.
Without loss of generality consider that the points are uniformly distributed within the
interval [0, L]. Considering the mapping between the curvilinear backbone coordinate s
and x described in (4.7), each point si can be associated with a parameter xi:

si =

∫ xi

0

√
1 +

(
∂y(u, t)

∂u

)2

+

(
∂z(u, t)

∂u

)2

du. (4.10)

Note that by adopting the origin of the Cartesian coordinate system as the initial backbone
point, it follows that when x0 = 0, then s0 = 0.

After obtaining the mapping function, we can determine the coordinates of the corre-
sponding backbone point at time t, prescribed by si = (xi, y(xi, t), z(xi, t)). Due to the
complexity of the integral described in (4.10), obtaining an analytical solution for the
parameter xi is challenging. In this work, two algorithms have been developed for this
purpose. The first algorithm utilizes the Newton Method to perform the inversion, while
the second algorithm focuses on analyzing physical quantities related to distance and
length.

Algebraic algorithm

The first algorithm involves directly solving the integral using Gaussian quadrature and
estimating the parameter xi through an iterative Newton Method. Define the auxiliary
function F (x, t) : [0, xL]× [0,+∞) → R+, such that:

F (x, t) =

√
1 +

(
∂y(x, t)

∂x

)2

+

(
∂z(x, t)

∂x

)2

. (4.11)

Next, we define the function G(x, t) : [0, xL]× [0,+∞) → R such that its zeros correspond
to the solutions of the curvilinear mapping equation (4.10), given by:

G(x, t) =

∫ x

0

F (u, t)du− si. (4.12)

To outline Newton’s method algorithm, we introduce the superscript □(k) to denote itera-
tion k of the scheme. The next iteration value depends on the evaluation of the functions

4| Modelling of fish-like swimming 41

(4.11) and (4.12) using the previous iteration’s data. Let ϵ ∈ R+ be the convergence
tolerance, the procedure is repeated until the convergence condition |x(k+1)

i − x
(k)
i | ≤ ϵ is

satisfied. The iterative procedure is described by:

x
(k+1)
i = x

(k)
i − G(x

(k)
i , t)

F (x
(k)
i , t)

.

It is worth mentioning that the initial guess for the parameter xi is chosen by an extrap-
olation of the previous terms x(0)i = 2xi−1 − xi−2.

The Gaussian quadrature will be employed to approximate the integral required for com-
puting the function (4.12). We will use the notation wq for the quadrature weight and
ζq for the quadrature point with index q. To utilize the provided quadrature data that
considers an integration in the interval [−1, 1], we must adjust the integration interval,
resulting in the approximation:

∫ x

0

F (u, t)du =
x

2

∫ 1

−1

F
(x
2
u+

x

2
, t
)
du ≈ x

2

nquad∑
q=1

wqF
(x
2
ζq +

x

2
, t
)
.

Geometric algorithm

The second algorithm involves creating a local discretization, calculating an approxima-
tion of the backbone’s length at each local step, and then retrieving the corresponding x
value when the desired curvilinear parameter is achieved.

Suppose that by a iterative process xi , si and si+1 are known and the objective is to
estimate xi+1. Notice that xi+1 ∈ Ii = [xi, xi + (si+1 − si)], this occurs once all points
undergo a horizontal contraction when the object deforms from its initial flat position to
a state at time t. Thus, it is expected that the distance of two consecutive points in x also
undergo a relative contraction. Therefore, consider a new discretization of the interval Ii
using uniformly distributed points denoted by the subscript □i,j, such that:

Ii = [xi, xi + (si+1 − si)] =
M⋃
j=0

[xi,j, xi,j+1]. (4.13)

The value xi+1 will occur when the string length is si+1. In this way, using the new
discrete interval within Ii declared in (4.13), the length of the backbone at a given point
xi,j will be calculated, until it approximately reaches the value si+1 at the point xi,J , in

42 4| Modelling of fish-like swimming

the sense that xi+1 ≈ xi,J . To represent the concept, consider the expression:

si+1 ≈ si +
J∑
j=0

√
(xi,j+1 − xi,j)2 + (yi,j+1 − yi,j)2 + (zi,j+1 − zi,j)2,

where J is the index such that si,J ≤ si+1 ≤ si,J+1.

Figure 4.3 illustrates the backbone and local discretization in a simplified two-dimensional
scenario used to numerically approximate the value of xi+1.

Figure 4.3: Example of the deformed backbone and the discretization procedure consid-
ering a 2D motion.

Comparison between the algorithms

The verification and comparative analysis of the algorithms will be conducted concerning
a parabolic curve described by the quadratic polynomial y(x) : R → R and its associated
length analytical function s(x) : R+ → R+, described as:

y(x) = x2, s(x) =
1

2

(
(x
√

(1 + 4x2) +
1

2
log (2x+

√
4x2 + 1)

)
.

In this discussion, the objective is estimating the value of the x-axis coordinate, denoted
as xL, at which the curve achieves a unitary length, such that s(xL) = 1.

In the algebraic method, a set of nquad = 8 quadrature points is employed, and the effi-
ciency of the algorithm is based on the number of iterations niter of the Newton method.
To evaluate the geometric method it was employed a uniform partition with a step size of
∆x = 0.01 within the interval [0, 1]. Between each subinterval, a local uniform discretiza-
tion with nlocal elements was adopted, as explained in equation (4.13). The results of the

4| Modelling of fish-like swimming 43

algebraic and geometric algorithms are displayed in Table 4.1 and Table 4.2, respectively.

niter xL s(xL)

1 0.7858 1.0404

2 0.7641 1.0004

3 0.7639 1.0000

4 0.7639 1.0000

Table 4.1: Algebraic Method Analysis.

nlocal xL s(xL)

101 0.7200 0.9214

102 0.7601 0.9930

103 0.7635 0.9993

104 0.7639 1.0000

Table 4.2: Geometric Method Analysis.

It is important to acknowledge that the geometric method introduces propagation of error
within each subinterval, potentially requiring an increase in the number of local elements
to attain a precise approximation. Therefore, in the present study, the algebraic algorithm
will be employed to numerically map the Cartesian and curvilinear coordinates.

4.3. Modelling of the fish surface

To define the motion of the fish surface, let χ∗ be the body in the reference configuration,
χ(t) the body configuration at time t. Consider S∗ the set of backbone points in the
reference configuration and S(t) the set of backbone points in the deformed configuration
at time t.

4.3.1. Analytical description of the 2D motion

Regarding the movement of the fish, the conservation of mass should be respected, which
considering the case of constant density would be equivalent to ensuring that the area
of the structure remains constant over time. Therefore, for mass conservation [26], the
following relation should hold:∫

χ(t)

dA =

∫
χ∗

dA∗, ∀t ≥ 0. (4.14)

It is possible to associate each point x∗ ∈ χ∗ a representative point in the backbone
s∗ = (s, 0) ∈ S∗. For this purpose, define the function S∗ : χ∗ → S∗ in the following way:

S∗(x∗) = s∗ such that ∥x∗ − s∗∥ = inf
p∈S∗

∥x∗ − p∥. (4.15)

For each point of the structure in the reference configuration x⋆, we can associate a

44 4| Modelling of fish-like swimming

curvilinear coordinate s. Using the mapping algorithms described in subsection 4.2.3,
we can obtain the abscissa x(s, t) and, as a consequence, the ordinate y(x(s, t), t) of the
backbone point. Those coordinates will be denoted as s = s(s, t) = (x(s, t), y(x(s, t), t)) ∈
S(t), that defines the backbone point associated to x⋆ at time t.

Furthermore, using the result of equation (4.5), it is possible to obtain the angle θ that
generates the rotation matrix R associated to backbone point s:

R(s, t) =

[
cos θ(x(s, t), t) − sin θ(x(s, t), t)

sin θ(x(s, t), t) cos θ(x(s, t), t)

]
·

Finally, the explicit map between the reference configuration point x⋆ and the correspond-
ing deformed configuration point x ∈ χ(t) is described as follows:

x(x∗, t) = s+R(s, t)(x∗ − s∗). (4.16)

The visual representation of the strategy is performed in Figure 4.4.

(a) Reference configuration of the structure. (b) Deformed configuration of the structure
at time t.

Figure 4.4: Illustration of the swimmer surface displacement.

4.3.2. Analytical description of the 3D motion

To describe the surface motion in a three-dimensional scenario, regarding the mass con-
servation of the body, and considering a constant density, the volume of the structure
should remain constant over time. Therefore, similar to the area conservation defined in
(4.14), we can define a volume conservation restriction represented as:

∫
χ(t)

dV =

∫
χ∗

dV ∗, ∀t ≥ 0.

4| Modelling of fish-like swimming 45

Furthermore, in an analogous way of the two-dimensional case, using the mapping S∗ de-
fined in equation (4.15), it is possible to generate a relation between the reference structure
point x∗ to a reference backbone point s∗ = (s, 0, 0). Then, using the mapping described
in subsection 4.2.3 we can compute s = s(s, t) = (x(s, t), y(x(s, t), t), z(x(s, t), t)).

Subsequently, considering the expressions (4.8), and (4.9) it is possible to obtain the
Euler’s angles ψ, θ and φ that generates the rotation matrices Rψ, Rθ and Rφ associated
to a backbone point s. The rotation matrices corresponding to each step of the change of
basis can be obtained from the direction of cosine matrix transformation.

• Yaw (ψ): OXY Z → Ox1y1z1 , (Y = y1)

Rψ(s, t) =

 cosψ(x(s, t), t) 0 sinψ(x(s, t), t)

0 1 0

− sinψ(x(s, t), t) 0 cosψ(x(s, t), t)

• Pitch (θ): Ox1y1z1 → Ox2y2z2 , (z1 = z2)

Rθ(s, t) =

cos θ(x(s, t), t) − sin θ(x(s, t), t) 0

sin θ(x(s, t), t) cos θ(x(s, t), t) 0

0 0 1

• Roll (φ): Ox2y2z2 → Ox3y3z3 , (x2 = x3)

Rφ(s, t) =

1 0 0

0 cosφ(x(s, t), t) − sinφ(x(s, t), t)

0 sinφ(x(s, t), t) cosφ(x(s, t), t)

 ·

The transformation matrix, denoted as T(s, t), is obtained by multiplying the individual
rotation matrices for each Euler angle, such that T(s, t) = Rψ(s, t)Rθ(s, t)Rφ(s, t). The
complete formulation of the 3D rotation matrix is given by:

T =

 cosψ cos θ − cosψ sin θ cosφ+ sinψ sinφ cosψ sin θ sinφ+ sinψ cosφ

sin θ cos θ cosφ − cos θ sinφ

− sinψ cos θ sinψ sin θ cosφ+ cosψ sinφ − sinψ sin θ sinφ+ cosψ cosφ

 . (4.17)

Finally, the explicit map between the reference configuration point x⋆ and the correspond-
ing deformed configuration point x is described as follows:

46 4| Modelling of fish-like swimming

x(x∗, t) = s+T(s, t)(x∗ − s∗). (4.18)

4.3.3. Structure velocity field algorithm

Considering the formulations presented in equations (4.16) for two-dimensional scenarios
and (4.18) for three-dimensional scenarios, a fundamental mapping is established. It
connects a surface point in the reference configuration x⋆ ∈ χ⋆, to its corresponding
spatial location within the configuration at a specific time x ∈ χ(t). For instance, when
employing a time discretization scheme with time steps represented as tn = n∆t, and
utilizing the BDF2 approximation for the time derivative, the Lagrangian velocity u of
the reference point x⋆ is computed as:

u(x⋆, tn+1) =
3x(x⋆, tn+1)− 4x(x⋆, tn+

1
2) + x(x⋆, tn)

∆t
. (4.19)

To prescribe the velocity field for the solid cells, commonly referred to as dead cells
within the OpenFOAM framework, it is necessary to reconstruct the Eulerian velocity
field associated with the structure. Considering a three-dimensional scenario, this process
involves associating a solid point x̂ = (x̂, ŷ, ẑ) ∈ χ(t) with a point x⋆ = (x⋆, y⋆, z⋆) ∈ χ⋆,
subsequently computing the Lagrangian velocity of x⋆ at time t using (4.19).

By employing the mapping defined in (4.15), it creates a correspondence between each
point x̂ of the deformed structure configuration to a point s = (xs, ys, zs) on the deformed
backbone, given by:

ŝ = argmin
s∈S(t)

(√
(xs − x̂)2 + (ys − ŷ)2 + (zs − ẑ)2

)
. (4.20)

It can be demonstrated using the minimization of a function that the point ŝ satisfying
(4.20) also complies with:

(xs − x̂) + (y(xs, t)− ŷ)
∂y(xs, t)

∂x
+ (z(xs, t)− ẑ)

∂z(xs, t)

∂x
= 0, (4.21)

where the functions y(x, t) and z(x, t) are defined at (4.6), the derivative ∂y(x,t)
∂x

at (4.4),
and the formulation of ∂z(x,t)

∂x
is analogous to ∂y(x,t)

∂x
.

To solve the nonlinear problem represented by (4.21), the Newton method will be em-
ployed. In this context, adopt the superscript □(k) to denote the k-th iteration of the

4| Modelling of fish-like swimming 47

scheme, and initialize the process with x
(0)
s = x̂ as the initial guess. Let ϵ ∈ R+ be

the convergence tolerance, and the algorithm is repeated until the convergence condition
|x(k+1)
s − x

(k)
s | ≤ ϵ is satisfied. Then, the algorithm is prescribed as:

x(k+1)
s = x(k)s − H(x

(k)
s , t)

J(x
(k)
s , t)

.

The auxiliary functions H(x, t) : [0, xL(t)] × [0,+∞) → R and J(x, t) : [0, xL(t)] ×
[0,+∞) → R of the Newton method algorithm are defined as:

H(x, t) = (x− x⋆) + (y(x, t)− y⋆)
∂y(x, t)

∂x
+ (z(x, t)− z⋆)

∂z(x, t)

∂x
,

J(x, t) = 1 +

(
∂y(x, t)

∂x

)2

+ (y(x, t)− y⋆)
∂2y(x, t)

∂x2
+

(
∂z(x, t)

∂x

)2

+ (z(x, t)− z⋆)
∂2z(x, t)

∂x2
,

where the second derivative of the lateral motion ∂2y(x,t)
∂x2

function is prescribed by

∂2y(x, t)

∂x2
=

(
2A2 −

4π2

λ2
(A0 + A1x+ A2x

2)

)
sin

(
2π

(x
λ
− ft

))
+

4π

λ
(A1 + 2A2x) cos

(
2π

(x
λ
− ft

))
,

and ∂2z(x,t)
∂x2

posses an analogous formulation to ∂2y(x,t)
∂x2

.

Thus, by solving (4.20), the point ŝ = (xs, ys, zs) is obtained. This enables the reconstruc-
tion of the reference configuration point x⋆ = (x⋆, y⋆, z⋆) through the use of the inverse
formulation with respect to (4.18).

To retrieve the coordinates x⋆, y⋆ and z⋆, the mapping (4.10) and an inverse rotation are
applied. Consider the angles (ψ, θ, φ) associated with the coordinate xs, as described by
the formulations (4.8) and (4.9). Then, define the inverse matrix T−1 = R−1

φ R−1
θ R−1

ψ

using the following formulation:

T−1 =

 cosψ cos θ sin θ − sinψ cos θ

− cosψ sin θ cosφ+ sinψ sinφ cos θ cosφ sinψ sin θ cosφ+ cosψ sinφ

cosψ sin θ sinφ+ sinψ cosφ − cos θ sinφ − sinψ sin θ sinφ+ cosψ cosφ

 .

(4.22)

Finally, the coordinates of the point x⋆ of the reference configuration that on time t is

48 4| Modelling of fish-like swimming

located at x̂ are given by the following expression:x
⋆

y⋆

z⋆

 =

x
⋆⋆

0

0

+T−1

x̂− xs

ŷ − ys

ẑ − zs

 , (4.23)

where the coordinate x⋆⋆ is given by:

x⋆⋆ =

∫ xs

0

√
1 +

(
∂y(u, t)

∂u

)2

+

(
∂z(u, t)

∂u

)2

du.

Hence, a bijection has been established between the spatial coordinates of a solid point
and its corresponding point in the reference configuration, denoted as x̂ ↔ x⋆. This
enables the reconstruction of the Eulerian velocity field using the mapping defined by
(4.16) for each point x̂ ∈ χ(t), calculating the corresponding x⋆ and applying the time
derivative approximation (4.19).

4.4. Fish-like swimming implementation

The numerical simulations have been performed using the open-source software Open-
FOAM, complemented by the incorporation of the Immersed Boundary Method library
[30]. The code functionality, initially restricted to rigid body motions, was expanded in
this thesis to encompass deformable bodies, incorporating the kinematic description of
fish-like swimming.

Within the directory src/immersedBoundary/immersedBoundaryDynamicFvMesh, a folder
labeled flexibleIb was created containing the source code flexibleIb.C and its header flexi-
bleIb.H. This adds the option of ibFlexibleBodyMotionFvMesh into the parameter dynam-
icFvMesh of constant/dynamicMeshDict.

The C++ code implements Algorithm 4.1, which reads the STL file stored in the directory
constant/triSurface at the simulation case, generating the deformed configuration of the
solid at time t. Additionally, it calculates the structure surface velocity, as elaborated in
section 4.2 and section 4.3. Considering that two-dimensional motion is a particular case
of three-dimensional motion, the description will concentrate on the latter.

4| Modelling of fish-like swimming 49

Algorithm 4.1 Flexible Motion Algorithm
1: Input Parameters: Reference coordinates (x⋆, y⋆, z⋆) and time t
2: for All points of the reference STL do
3: Project the reference structure point onto the backbone to obtain the curvilinear

coordinate s
4: Calculate x(s, t) solving (4.10) using the algorithm described in subsection 4.2.3
5: Compute y(x, t) and z(x, t) using the expressions (4.6)
6: Compute the Euler angles ψ(x, t), θ(x, t) and φ(x, t) using (4.8) and (4.9)
7: Generate the transformation matrix T(x, t) described in (4.17)
8: Update the reference point position using the map (4.18)
9: Recalculate the position at the time t− ∆t/2

10: Recalculate the position at the time t−∆t

11: end for
12: Output Result: Using the BDF2 approximation in (4.19), return the Lagrangian

velocity field of the structure.

For prescription of the Eulerian velocity field within the solid cells, commonly referred to
as dead cells, Algorithm 4.2 is applied. A dedicated folder named nonUniformDeadVal-
ueIb is created within the directory src/immersedBoundary/immersedBoundary/fvPatch-
Fields/derived. This folder contains the source code nonUniformDeadValueIbFvPatchVec-
torField.C along with its corresponding header nonUniformDeadValueIbFvPatchVector-
Field.H. The code implements the nonUniformDeadValueIb type within the IBCYLIN-
DER of 0.orig/U.

Algorithm 4.2 Non Uniform Dead Cell Algorithm
1: Input Parameters: Dead cell coordinates (x̂, ŷ, ẑ) and time t
2: for All dead cells do
3: Project the dead cell onto the backbone to obtain the x-coordinate xs solving the

minimization problem (4.21)
4: Compute y(xs, t) and z(xs, t) using the expressions (4.6)
5: Compute the Euler angles ψ(xs, t), θ(xs, t) and φ(xs, t) using (4.8) and (4.9)
6: Generate the inverse transformation matrix T−1(xs, t) described in (4.22)
7: Calculate the corresponding point (x⋆, y⋆, z⋆) in the reference configuration using

the map (4.23)
8: Use the algorithm 4.1 to obtain the velocity of (x⋆, y⋆, z⋆) at time t.
9: end for

10: Output Result: Eulerian velocity field of the structure.

50 4| Modelling of fish-like swimming

To input the kinematic parameters, a dictionary named flexibleMotionProperties is estab-
lished within the constant folder of the simulation setup. Within this dictionary, the user
has the flexibility to make several selections:

• Dimension: The available options include two-dimensional motion, which can be
selected using the motion2D option, or a simplified motion without considering
inextensibility and mass conservation constraints, which can be chosen by selecting
simplified2DMotion. In the absence of any selection, the complete 3D algorithm will
be applied.

• Kinematic parameters: Specify various parameters of the wave function (4.6),
including A0y, A0z, A1y, A1z, A2y, A2z, λy, λz, fy, fz, and also the roll frequency fφ.
Notice that in the 2D motion, it is assumed that only the y-direction is considered.

• Transient time: Specify the transient period T from the initial resting state. The
characterization of the transient state is detailed in section 6.1.

• Initial phase: Set the phase ϕy and ϕz of the wave functions.

• Newton Method Parameters: Customize parameters for the Newton method,
providing control over tolerance and the maximum number of iterations, to enable
the effective solution of the algorithms outlined in both subsection 4.2.3 and sub-
section 4.3.3.

In the context of post-processing and force calculations, the implementation includes two
folders, namely ibForces and ibForceCoeffs, situated within the directory src/functionOb-
jects. These folders collectively generate the data file ibForceCoeffs.dat, located within
the postProcessing/forces/0 folder of the simulation case. This file computes the drag and
lift coefficients, adhering to the instructions provided in the forces dictionary found in the
system folder of the simulation setup.

51

5| Numerical verification

In this chapter, we conducted a series of experiments to validate the immersed boundary
algorithm and the force calculations using benchmark cases. Initially, in section 5.1, we
presented results from simulations of a two-dimensional external flow over a circular cylin-
der, varying the Reynolds number to analyze different scenarios. These tests encompass
a verification of the solution in a steady-state scenario, followed by a simulation of an
unsteady case to confirm the consistency of the time-marching algorithm. Additionally,
computations are performed to verify an immersed body with rigid body motion.

In section 5.2, we extended our investigations to scenarios involving immersed bodies with
flexible motion. The first scenario involved a flat plate with an undulating motion, while
the second case featured a fish-body airfoil exhibiting an undulating motion inspired by
the kinematics of the animal. It is important to note that this representation simplifies the
motion and does not consider constraints related to inextensibility and mass conservation.

In all the cases described in this section, we performed a dynamic local refinement of
the background mesh when constructing the computational domain around the immersed
body using a three-layer refinement. For instance, Figure 5.1 illustrates the refined mesh
around a circular cylinder.

Figure 5.1: Illustration of a locally refined mesh around a circular cylinder.

52 5| Numerical verification

5.1. Flow over a circular cylinder

To verify the simulation result using the immersed boundary algorithms and the forces
computation, the benchmarking scenario of a two-dimensional flow around a circular
cylinder is considered. Let the domain of the simulation be constructed such that Ω =

[x1, x2]× [y1, y2], and consider an immersed cylinder of diameter D centered at the coor-
dinates (xc, yc) with a velocity of UIB.

Regarding the boundary conditions applied in the rectangular domain, the left boundary
features an inflow condition with a horizontally uniform velocity of U∞, along with a zero
gradient condition for pressure. The top and bottom boundaries are assigned slip condi-
tions for velocity and zero gradient conditions for pressure. Finally, the right boundary
features an outflow condition with a zero gradient for velocity and a uniform null value
for pressure. The described scenario is illustrated in the Figure 5.2.

Figure 5.2: Geometric domain of the simulation cylinder.

To categorize and analyze the simulations, we will examine two dimensionless parameters,
the Reynolds number (Re) and the Strouhal number (St), defined as:

Re =
DUr
ν

, St =
fD

Ur
,

where Ur = |U∞ − UIB| is the relative velocity of the solid concerning the fluid, and f is
the frequency of the lift force oscillation.

Furthermore, to evaluate the forces, it is common practice to adopt the dimensionless pa-
rameters of drag and lift coefficients, represented respectively as CD and CL. To compute

5| Numerical verification 53

these parameters, we first calculate the forces as described in equation (2.25). Once these
quantities are obtained, we calculate the dimensionless coefficients as:

CD =
FD

1
2
ρU2

rD
, CL =

FL
1
2
ρU2

rD
.

For the simulation setup of flow over a circular cylinder, we consider the same computa-
tional domain of Ω = [−6, 20] × [−6, 6], utilizing anisotropic distributed nodes, with the
number of points in the horizontal and vertical directions being Nx = 600 and Ny = 300,
respectively. These parameters were selected through a series of experiments to guaran-
tee grid independence and to ensure that the boundary conditions do not significantly
influence the results in all scenarios.

5.1.1. Steady flow, Re = 1

The initial validation involves considering the creeping flow scenario of Re = 1, which
characterizes a flow field predominantly influenced by viscosity. Assuming this state, the
detachment of the boundary layer from a surface into a wake does not occur, which allows
us to assume a steady-state hypothesis. Consequently, we employ the SIMPLE-IBM
algorithm to solve the present scenario and verify the accuracy of the algorithm.

Concerning the solid surface, it consists of an immersed fixed cylinder UIB = 0 m/s with a
diameter of D = 1 m, the cylinder is centered at a slight displacement from the origin, at
coordinates xc = 0.0 m and yc = 0.1 m. Finally, to achieve a Reynolds number of Re = 1,
a uniform inflow with a fluid velocity of U∞ = 1 m/s and a kinematic viscosity of ν = 1

m2/s were considered.

(a) Velocity field for Re = 1 (b) Pressure field for Re = 1

Figure 5.3: Results of the simulation of a flow over a cylinder considering Re = 1.

Analyzing the results presented in Figure 5.3, which occurs after 105 iterations of the

54 5| Numerical verification

SIMPLE-IBM method, we observe the characteristic behavior of creeping flow. This
includes a pressure gradient around the cylinder such that there is a drop at the wake
of the cylinder and higher pressure at the front. Additionally, there is a region of low
velocity near the solid surface, expected from the no-slip condition imposed at the solid-
fluid interface.

The result obtained for the drag coefficient is approximately Cd = 12.7, which is consistent
with the documented literature for this scenario as exhibited in Figure 5.4.

Figure 5.4: Drag coefficient as a function of Reynolds number for a smooth circular
cylinder and sphere [28].

5.1.2. Unsteady flow, Re = 200

The second case focuses on a Von Kármán wake scenario obtained when Re = 200,
where periodic vortex shedding is observed. It is important to highlight that due to the
periodic nature of the dynamics, the simulation is unsteady, and the verification of the
time-marching algorithm PIMPLE-IBM was performed.

Similar to the previous case, we considered a cylinder of diameter D = 1 m, centered
at coordinates xc = 0.0 m and yc = 0.1 m. The slight elevation of the cylinder above
the origin is made to introduce asymmetry and accelerate the development of the vortex-
shedding pattern. To obtain the desired Reynolds number of Re = 200, a uniform inflow
with a fluid velocity of U∞ = 1 m/s and a kinematic viscosity of ν = 5× 10−3 m2/s were
considered.

In this evolutionary scenario, we employed a time step of ∆t = 5× 10−3 s, this parameter
was determined through extensive testing, demonstrating its independence from the time

5| Numerical verification 55

interval. The simulation was conducted until the capture and illustration of Von Kármán
street patterns, as depicted in Figure 5.5. This figure illustrates the vorticity profile of
the wake, defined as ω = ∇× u.

Figure 5.5: Von Kármán street vorticity patterns for an external flow over a cylinder at
Re = 200.

After simulating a sufficient duration to capture the periodic behavior, the forces were
calculated during the post-processing. Figure 5.6 illustrates the evolution of drag and
lift coefficients, beginning from the transient state and progressing towards the periodic
regime characterized by Von Kármán wake.

Figure 5.6: Drag and Lift coefficients at Re = 200.

To calculate the Strouhal Number, we utilized a Fast Fourier Transform algorithm to
extract the main frequency of oscillation from the lift coefficient result, which corresponds

56 5| Numerical verification

to the period of wake oscillation. The obtained results for the average drag coefficient
and the Strouhal Number are consistent with findings in the literature, as presented in
Table 5.1.

CD St

Braza et al. [7] 1.4000 0.2000

Henderson [20] 1.3412 0.1971

He et al. [19] 1.3560 0.1978

Bergmann et al. [4] 1.3900 0.1999

Bergmann et al. [3] 1.3500 0.1980

Present Work 1.4268 0.2050

Table 5.1: CD and St comparison for Re = 200.

5.1.3. Moving cylinder, Re = 550

In the present experiment, we aim to verify the scenarios with include the motion of the
immersed body. Specifically, we will compare a simulation of external flow over a fixed
cylinder at Re = 550 with a scenario that accounts for an inertial fluid and a moving
cylinder to replicate the same conditions.

This experiment involves a comparison between two scenarios. In the first scenario, similar
to previous cases, the cylinder remains fixed in space with a uniform inflow at a fluid
velocity of U∞ = 1 m/s. In the second scenario, we impose an impulsive rigid body
movement of UIB = −1 m/s on the cylinder, which is immersed in an inertial fluid,
such that in the location of the inlet, it is adopted a second outlet boundary condition.
To achieve a Reynolds number of Re = 550 in both scenarios, a kinematic viscosity of
ν ≈ 1.82 × 10−3 m2/s was employed. Notice that in this case the mesh is dynamically
refined to encompass the current position of the cylinder in the motion case.

In this experiment, we employed a time step of ∆t = 5 × 10−3 s, and the scenario was
simulated for a shorter duration of 3 s. This shorter simulation time was sufficient to
verify the adherence of the moving body to the expected curve of the drag coefficient
obtained in the literature [38]. The result of both the fixed cylinder and moving cylinder
is illustrated in Figure 5.7.

5| Numerical verification 57

Figure 5.7: Comparison between the external flow over a fixed and motion circular cylinder
at Re = 550, compared with values from Ploumhans & Winckelmans (2000) [38].

To generate Figure 5.7, a weighted moving average was applied to reduce noise in the case
of the moving cylinder, eliminating high-amplitude outliers:

x̂i =
xi−2 + 2xi−1 + 3xi + 2xi−1 + xi−2

9
.

It is important to note that when simulating the moving body, there are small amplitude
oscillations around the expected curve of the fixed cylinder case. Similar differences were
also observed in related experiments using the Immersed Boundary Method [3]. It was
verified in the reference study that this phenomenon occurs because the discrete-time
derivative is taken over a support that varies in time.

5.2. Travelling wavy foils

In section 5.1, we have verified that the immersed boundary algorithm accurately solves
scenarios involving external flow over a cylinder. This extends to the verification of simu-
lations involving the unsteady incompressible Navier-Stokes equations with an immersed
body, whether it remains stationary or undergoes rigid body motion.

In this section, scenarios involving immersed bodies with non-uniform deformations, repre-
senting general cases of flexible bodies, are investigated. Benchmark cases are considered:
In subsection 5.2.1 the wavy flexible plate is analyzed, and in subsection 5.2.2 a simplified

58 5| Numerical verification

modelling of fish-like swimming that does not adhere to the constraints of fixed backbone
length and mass conservation is performed.

Consider a simulation domain, denoted as Ω = [x1, x2] × [y1, y2], which encompasses an
immersed flexible body with arbitrary geometry, possessing a total horizontal length of
L, where one of its ends is positioned at the origin of the Cartesian coordinate system.
Regarding the boundary conditions, the same conditions applied to the cylinder case are
considered. These include a uniform inflow velocity of U∞, slip conditions on the bottom
and top walls, and an outlet condition on the right wall. For illustrative purposes, refer
to Figure 5.8.

Figure 5.8: Geometric domain of the simulation of a flexible body.

The simulation setup for these scenarios remains consistent with the previous cases of
flow over a circular cylinder. For both cases, it was considered a domain with dimensions
of Ω = [−6, 20] × [−6, 6], and an anisotropic mesh comprising Nx = 600 points in the
horizontal direction and Ny = 300 points in the vertical direction, with dynamic mesh
refinement applied at the immersed boundary location. For each case, the computational
setup was verified to ensure grid independence and minimize the influence of boundary
conditions.

The dimensionless parameters evaluated in the simulation of the flexible body include the
Reynolds number (Re) and the Strouhal number (St):

Re =
LU∞

ν
, St =

fL

U∞
,

where f is the imposed frequency of the travelling wave.

The results of this study will be based on the total drag coefficient (CD), pressure drag co-

5| Numerical verification 59

efficient (CDP), viscous drag coefficient (CDF), and lift coefficient (CL). These parameters
for the flexible body case are defined as:

CD =
FD

1
2
ρU2

∞L
, CDP =

FDP
1
2
ρU2

∞L
, CDF =

FDF
1
2
ρU2

∞L
, CL =

FL
1
2
ρU2

∞L
.

5.2.1. Travelling wave plate

The objective of modelling the wavy plate case is to validate the motion of a flexible
immersed body and the calculation of forces for a simplified geometry. It is important to
note that the study of this structure is not the primary focus of the work, rather, it serves
as an initial verification and validation of a generic body motion.

Introducing the scenario for a travelling wave plate in a two-dimensional case, we consider
a plate geometry with a length of L = 1 m and a small thickness of e = 0.01 m, subjected
to an undulated motion of uniform amplitude Am = 0.1 m. Then, we define the function
y(x, t) : [0, L]× [0,+∞) → R to represent the backward undulating motion of the plate:

y(x, t) = Am sin
(
2π

(x
L
− ft

))
, 0 ≤ x ≤ L.

To visualize one period of the prescribed motion, refer to Figure 5.9, which presents the
undulation motion at various time instances within a period T of the oscillation cycle.

(a) Deformed plate at t = T/4 (b) Deformed plate at t = T/2

(c) Deformed plate at t = 3T/4 (d) Deformed plate at t = T

Figure 5.9: Wavy plate motion in one period T .

60 5| Numerical verification

To configure the simulation scenario, an intermediate Reynolds number of Re = 500

was selected. This setup involved employing a uniform inflow with a fluid velocity of
U∞ = 1 m/s and a kinematic viscosity of ν = 2 × 10−3 m2/s. Additionally, a time
step of ∆t = 2.5 × 10−3 s was employed. This choice was made to ensure an accurate
representation of the oscillatory motion imposed on the flexible plate, considering a range
of oscillation frequencies from f = 0.5 Hz to f = 2.5 Hz.

The drag force exerted on the wavy plate is crucial for comprehending the locomotion
dynamics since it reflects the power required to propel. For each frequency of oscillation,
we performed a simulation to determine the mean drag coefficient, which is then compared
to values obtained in the literature, as presented in Figure 5.10.

Figure 5.10: Time average drag coefficient for the travelling wavy plate as a function of
the frequency of oscillation, compared with values from Dong & Lu (2005) [12].

It is possible to notice the trend of the mean drag coefficient, which decreases until it
reaches a negative value approximately at frequencies f > 2.0 Hz, which implies the drag
force acting as a thrust force. This phenomenon will be further investigated in the fish-like
swimming simulation, where we delve into the propulsion force that enhances locomotion
efficiency.

5| Numerical verification 61

5.2.2. Travelling wavy fish-body like

In this section, we investigate a simplified two-dimensional kinematic model of fish-like
swimming, which has been previously studied in [13]. This model offers insights into
important aspects of swimming profile dynamics, including the average drag coefficient
and motion efficiency. However, it has limitations as it does not impose fixed values for
the length and volume of the fish, nor does it account for self-propulsion due to force
feedback.

To replicate the fish-like shape in this set of simulations, we utilized the NACA0012 airfoil
with a zero flap angle to define the geometry of the structure. The original formulation of
the airfoil is scaled by a factor of r = 1.0089, ensuring a total length of L = 1, following
the approach outlined in [1]. Thus, consider the function YNACA(x) : [0, 1] → R, which
characterizes the body surface defined as:

YNACA(x) = ±Y0(Y1
√
x+ Y2x+ Y3x

2 + Y4x
3 + Y5x

4), 0 ≤ x ≤ 1

where the coefficients are Y0 = 0.5947, Y1 = 0.2982, Y2 = −0.1271, Y3 = −0.3579,
Y4 = 0.2920, Y5 = −0.1052.

Based on empirical kinematic data acquired from observations of steady swimming saithe,
particularly a carangiform swimmer [46], we define the function y(x, t) : [0, L]×[0,+∞) →
R to represent the backward undulating motion of the middle line. It is important to note
that the backbone is defined over the interval x ∈ [0, L], resulting in a curved middle-line
in a deformed configuration with a length that exceeds the value of L:

y(x, t) = Am(x) sin
(
2π

(x
L
− ft

))
, 0 ≤ x ≤ L

where f is the oscillation frequency, and Am(x) is the amplitude envelope described using
a quadratic curve:

Am(x) = A0 + A1x+ A2x
2.

The parameters of the amplitude envelop that represents a swimming motion are chosen
such that Am(0) = 0.02, Am(0.2) = 0.01, and Am(1) = 0.10. These conditions results in
the set of coefficients: A0 = 0.02, A1 = −0.0825, and A2 = 0.1625.

Within the framework of the notation introduced in section 4.3, we establish the map
between the reference and deformed state being a translation of the segment according to
the backbone motion:

x(x⋆, t) = s+ (x⋆ − s⋆).

62 5| Numerical verification

Notice that in this case s = (x⋆, y(x⋆, t)), neglecting the non-linear mapping.

To visualize the motion of the travelling wave fish-body like within one complete period,
refer to Figure 5.11, where the arrows indicate the velocity of the backbone points.

(a) Deformed fish-body airfoil at t = T/4 (b) Deformed fish-body airfoil at t = T/2

(c) Deformed fish-body airfoil at t = 3T/4 (d) Deformed fish-body airfoil at t = T

Figure 5.11: Wavy fish-body airfoil motion in one period T .

Finally, to simulate the motion of an aquatic animal, a Reynolds number of Re = 5000

was selected. This Reynolds number denotes an intermediate regime, indicating that the
flow does not exhibit purely laminar characteristics. It is important to note that the IBM
solver utilized in this study does not support a turbulent model, which may consequently
lead to a decrease in result accuracy.

This setup involved employing a uniform inflow with a fluid velocity of U∞ = 1 m/s and
a kinematic viscosity of ν = 2 × 10−4 m2/s. To perform the time discretization a step
of ∆t = 2.5 × 10−3 s was employed, such that it is sufficient to capture the oscillatory
motion and the vortices of the wake.

Analyzing the effect of increasing the frequency of oscillation, it is possible to notice that
the average mean coefficients decrease. Until it gets negative for frequencies f > 1.5. As
illustrated in the Figure 5.12, which compares the result with the simulations presented
in [13].

5| Numerical verification 63

Figure 5.12: Time average drag coefficient for an undulation NACA0012 as a function of
frequency of oscillation, compared with values from Dong & Lu (2007) [13].

65

6| Fish-like swimming results

In this chapter, several analyses were carried out on the fish-like swimming model and
simulations. First, in section 6.1, a discussion revolves around kinematics while consid-
ering the constraints of inextensibility and mass conservation. Then, in section 6.2, a
series of experiments were conducted within a two-dimensional simulation. These exper-
iments included variations in the frequency of oscillation, amplitude of motion, and form
of movement. The purpose of these analyses was to assess their impact on thrust force
and the patterns of the eddies on the wake.

Finally, in section 6.3, a more realistic three-dimensional scenario was employed. This
involved utilizing a fish geometry resembling a mackerel and applying undulating wave
motion to the backbone to replicate the swimming movement. This motion generated
vortices with distinct topologies, which were influenced by the frequency of oscillation.

6.1. Fish-like swimming kinematics

To characterize the lateral undulation of the middle line of the swimmer within a two-
dimensional framework, consider the backward wave function y(x, t) : [0, xL(t)]×[0,+∞) →
R. The expression encompasses the inclusion of a parameter α ∈ R to modulate the ampli-
tude of the undulate waveform, and the time-dependent function Tr(t) : [0,+∞) → [0, 1]

to dictate the transient from the initial flat state:

y(x, t) = αTr(t)Am(x) sin
(
2π

(x
λ
− ft

)
+ ϕ

)
, (6.1)

where f is the oscillation frequency, λ is the wavelength, ϕ the phase of the wave, and
Am(x) is the amplitude envelope described by the quadratic curve:

Am(x) = A0 + A1x+ A2x
2.

66 6| Fish-like swimming results

To ensure the continuity of the motion from the rest configuration, a smooth step function
characterized by a sinusoidal waveform was adopted in the transient state:

Tr(t) =

1
2
− 1

2
cos

(
t
T
π
)
, if t ≤ T

1, if t > T.

where T ∈ [0,+∞) represents the transient period.

In terms of the geometry of the structure, the parameters outlined in Table 6.1 are em-
ployed to characterize the conformal mapping that generates the fish surface, as detailed
in section 4.1. As for the kinematics, the parameters governing the undulating wave mo-
tion are specified in Table 6.2. These values have been selected to emulate the carangiform
fish-like swimming motion, while also accounting for an appropriate transient period.

L ηc θ

1 −0.04 5°

Table 6.1: Geometric Parameters.

α A0 A1 A2 λ ϕ T

0.1 0.200 −0.825 1.625 1.00 0.0 0.2

Table 6.2: Kinematic Parameters.

For a visual representation of the chosen parameters governing the kinematics of the
backbone, refer to Figure 6.1. This figure illustrates the transitional phase of the midline
motion from its horizontal initial state and provides insight into the configuration of the
backbone throughout a complete cycle.

(a) Transition state (b) Complete cycle

Figure 6.1: Backbone motion in the transitional state and a cycle of motion.

6| Fish-like swimming results 67

6.1.1. Swimmer backbone analysis

One of the consequences of the inextensibility constraint is the necessity for the middle line
points to experience a horizontal displacement to ensure the maintenance of the backbone
at a constant length L. In particular, the analysis will concentrate on the tail extremity
point, although it applies to all points along the curve.

As discussed in subsection 4.2.3, the algebraic numerical algorithm is considered for gen-
erating the map between Cartesian and curvilinear coordinates. Thus, considering the
travelling wave function and the parameters described in section 6.1, it is possible to
examine the x-axis coordinate and the horizontal velocity of the backbone points. The
results for the tail point in a full cycle of the undulated motion are depicted in Figure 6.2.

(a) Horizontal position of the tail (b) Horizontal velocity of the tail

Figure 6.2: Tail horizontal position and velocity in a cycle of motion.

Due to the inextensibility constraint, there is a decrease in the average abscissa of the
tail, and this effect becomes more pronounced as the amplitude of motion increases.
This phenomenon occurs because, in the flat state, the backbone is at its maximum
extensibility, and when the backbone starts to curve, all points undergo a horizontal
contraction. Furthermore, note that the horizontal velocity exhibits significant peaks,
that will have an impact on the immersed boundary kinematic conditions transmitted by
the structure.

6.1.2. Swimmer surface analysis

Considering the geometric and kinematic parameters specified in section 6.1, it becomes
possible to define the motion and area of the structure, which in its flat configuration is

68 6| Fish-like swimming results

approximated as A = 0.0445 m2. Assuming a constant density for the structure, it is
essential to ensure the preservation of this area throughout the motion to satisfy the mass
conservation constraint.

Due to the inextensibility and the resultant horizontal contraction of the backbone, it is
necessary to implement segment rotations to satisfy the mass conservation, as elaborated
upon in section 4.3. Through the application of numerical integration, the area of the
structure over time can be computed and it is present in Figure 6.3, starting from the flat
state and comparing scenarios with and without segment rotations.

(a) Without segment rotation (b) With segment rotation

Figure 6.3: Surface variation in a cycle of motion.

Concerning the structure’s velocity field at an arbitrary time instant of the simulation,
refer to Figure 6.4. This figure illustrates the horizontal and vertical velocity field com-
ponents on both the immersed boundary surface and solid cells. At the boundary, the
velocity is determined using the direct algorithm of the Lagrangian map, as explained in
subsection 4.3.1. In the interior cells, the velocity field is generated using the reconstructed
Eulerian field using the algorithm described in subsection 4.3.3.

6| Fish-like swimming results 69

(a) Horizontal velocity field component

(b) Vertical velocity field component

Figure 6.4: Velocity field components in the immersed boundary surface and solid cells.

Note that the solid cells and the structure’s velocity fields are compatible and continuous.
It is important to highlight that further verification on a 3D structure with the generalized
three-dimensional motion was performed, and the results of the internal cells also adhere
to the structure velocity field. This serves as verification of the Eulerian velocity field
reconstruction, ensuring the correct prescription of the solid cells values in the immersed
boundary method.

6.2. Fish-like swimming 2D simulations

Consider a two-dimensional domain denoted as Ω = [x1, x2]× [y1, y2], which encompasses
an immersed flexible body with a fish-like shape and a length of L, with the head po-
sitioned at the origin. In the simulation scenario, the boundary conditions include a
uniform inflow velocity of U∞ applied to the left wall, slip conditions on the bottom and
top walls, and an outlet condition on the right wall, as depicted in Figure 6.5.

70 6| Fish-like swimming results

Figure 6.5: Illustration of the two-dimensional domain for fish-like swimming simulation.

An intermediate Reynolds number of Re = 5000 was chosen to represent the motion of
the aquatic animal. This setup involved using a unit body length L = 1, a uniform inflow
with fluid velocity U∞ = 1 m/s, and a kinematic viscosity of ν = 2× 10−4 m2/s.

To assess numerical convergence and determine the appropriate mesh size, time step, and
domain dimensions, a series of experiments were conducted to ensure the results remained
invariant with these parameters.

For the independence analysis, an intermediate setup was defined to resemble the one
outlined in subsection 5.2.2. Subsequently, a coarse scenario was generated by increasing
the mesh size and time step while using a more compact domain. In contrast, the refined
scenario was developed by taking the opposite approach. The numerical values of the
discussed parameters are presented in Table 6.3.

Setup h ∆t Ω

Coarse 4.0× 10−2 5.0× 10−3 [−1, 8]× [−2, 2]

Intermediary 2.0× 10−2 2.5× 10−3 [−1, 12]× [−4, 4]

Refined 1.5× 10−2 1.0× 10−3 [−1, 16]× [−6, 6]

Table 6.3: Numerical setup configurations for mesh size, time step, and domain dimen-
sions.

With the numerical setup of the simulations established, experiments were conducted with
an oscillation frequency of f = 2.0 Hz. In all scenarios, three layers of dynamic local mesh

6| Fish-like swimming results 71

refinement were applied in the vicinity of the fish. Regarding the PIMPLE-IBM method
parameters, a maximum of 10 iterations for the outer loop and 3 iterations for the inner
loop were defined, without incorporating relaxation for either pressure or velocity.

Regarding the immersed boundary extended stencils parameters, it was considered the
point-to-cell approach, a maximum connectivity level of c = 3, a maximum spatial distance
as a multiple of IB cell span of d = 2.5 and a maximum field of view angle of θ = 90◦.

The results for the drag coefficient in a cycle of motion across different setups are illus-
trated in Figure 6.6.

Figure 6.6: Comparison of drag coefficient for different setup configurations.

Analyzing the time-dependent drag coefficient results, it is apparent that the solution
tends to converge with increasing refinement in the setup. Thus, to achieve an optimal
trade-off between computational accuracy and efficiency, the intermediary setup illus-
trated in Figure 6.7 has been selected for the execution of the two-dimensional analysis
in the project.

(a) Grid of the complete domain (b) Grid near fish

Figure 6.7: Mesh of the intermediary setup.

72 6| Fish-like swimming results

The initial conditions of the simulation are derived from the steady-state results obtained
using the SIMPLE-IBM algorithm for the structure in its flat configuration. This outcome
dictates the initial velocity and pressure fields in the vicinity of the fish in the flat state.
Figure 6.8 provides the steady-state solution of the initial conditions of pressure and
velocity fields set for the two-dimensional simulation.

(a) Velocity field (b) Pressure field

Figure 6.8: Initial configuration of the velocity and pressure.

6.2.1. Oscillation frequency analysis

Considering the kinematics and geometry parameters specified in section 6.1 and the
simulation setup outlined in section 6.2, a series of simulations were conducted. In this
scenario, the oscillation frequency was systematically varied from f = 0.5− 2.0 Hz. The
outcomes of these investigations are presented in Figure 6.9, illustrating the mean drag
coefficient and its constituent viscous and pressure components.

Figure 6.9: Time average drag coefficient for the fish-like swimming as a function of
frequency of oscillation.

For a motion amplitude of α = 0.1, the incorporation of inextensibility and mass conser-

6| Fish-like swimming results 73

vation constraints is not expected to significantly impact the simulation when compared
to the simplified travelling wave model with null horizontal displacement as outlined in
subsection 5.2.2. This observation is supported by the data presented in Figure 6.2, which
indicates minimal changes in the motion of the backbone.

The results indicate a decreasing mean pressure drag coefficient CDP with an increasing
trend in the mean viscous drag coefficient CDF as the frequency increases. In general, a
decreasing trend is observed in the total drag coefficient CD, reaching a negative value
at approximately CD = 1.6, implying that the drag force change direction and starts to
act as a thrust force. For enhanced visualization of the results, Figure 6.10 presents the
total drag coefficient and its components for different frequencies over a period sufficient
to observe a periodic cycle.

(a) Frequency of oscillation f = 0.5 Hz (b) Frequency of oscillation f = 1.0 Hz

(c) Frequency of oscillation f = 1.5 Hz (d) Frequency of oscillation f = 2.0 Hz

Figure 6.10: Fish-swimming time-dependent drag force coefficients for the frequencies of
oscillation f = 0.5, 1.0, 1.5, 2.0 Hz.

74 6| Fish-like swimming results

It is possible to notice that the viscous force contributions are almost constant over time,
which reveals that the undulating profile of the drag coefficient is related to the pressure.
In addition, there is a noticeable trend in the amplitude of the total drag coefficient,
which possesses an almost constant value at f = 1.0 Hz and starts to increase with higher
frequencies.

Further analysis of the simulation patterns can be performed. In Figure 6.11, the results
for the lift coefficient throughout multiple cycles of motion at different frequencies are
depicted. The lift coefficient exhibits a sinusoidal wave pattern with an amplitude that
increases in tandem with the swimmer’s oscillation.

Figure 6.11: Fish-swimming time-dependent lift force coefficients for the frequencies of
oscillation f = 0.5, 1.0, 1.5, 2.0 Hz.

Notably, the amplitude of the lift increases as the frequency of the motion rises. Coupled
with the higher velocity at elevated frequencies, this necessitates additional internal power
to execute the oscillation. Consequently, evaluating the efficiency of the motion requires a
balance between the power associated with thrust and the energy required for the lateral
oscillation.

Finally, an essential characteristic of the oscillation frequency is its impact on the vorticity
patterns in the wake of the swimmer. As depicted in Figure 6.11, the visualization of
fluid vorticity shows distinct patterns of swirling structures with opposite directions. At
lower frequencies, the vortices exhibit periodicity with significant spacing, whereas higher
oscillation frequencies result in more pronounced and closely spaced wake patterns.

6| Fish-like swimming results 75

(a) Vorticity profile at a frequency f = 0.5 Hz (b) Vorticity profile at a frequency f = 1.0 Hz

(c) Vorticity profile at a frequency f = 1.5 Hz (d) Vorticity profile at a frequency f = 2.0 Hz

Figure 6.12: Vorticity profile of the wavy body-fish airfoil at different frequencies.

6.2.2. Oscillation amplitude analysis

The amplitude of the undulate waveform has a notable impact on the motion, inducing
alterations in the dynamics, one example is the horizontal contraction of the backbone
points, as depicted in Figure 6.2. To explore this parameter, a series of experiments were
conducted, varying the amplitude, while keeping all other simulation settings constant.
The results of the mean average drag coefficient for various frequencies and amplitudes
are illustrated in Figure 6.13.

Figure 6.13: Comparison of the time average drag coefficient for the fish-like swimming
for different amplitude as a function of frequency of oscillation.

76 6| Fish-like swimming results

The results show that an increase in amplitude amplifies the mean effect of the drag force,
leading to increased drag forces at low frequencies, which negatively impacts swimming.
Conversely, at higher frequencies it is noticeable that the thrust forces increase, propelling
the fish and generating positive feedback for the swim. For a more refined analysis,
Figure 6.14 provides a visual comparison of the drag coefficient throughout a complete
cycle of motion.

(a) Drag coefficient for f = 0.5 Hz (b) Drag coefficient for f = 1.0 Hz

(c) Drag coefficient for f = 1.5 Hz (d) Drag coefficient for f = 2.0 Hz

Figure 6.14: Time-dependant drag coefficient for different amplitudes for the frequencies
of f = 0.5, 1.0, 1.5, 2.0 Hz.

In the analysis of the time-dependent drag coefficient, it becomes evident that, in addition
to the trend of the mean drag coefficient, there is an increase in the amplitude of the
oscillations. Furthermore, as the amplitude of motion increases, the sinusoidal shape of
the curve of the drag coefficient value becomes less pronounced, reflecting the influence
of the complex motion introduced by the effects of inextensibility and mass conservation.

6| Fish-like swimming results 77

Finally, to investigate the dynamic changes induced by varying the amplitude, Figure 6.15
displays the vorticity profile in the wake of the swimmer with increasing amplitudes.

(a) Vorticity Profile at α = 0.2 (b) Vorticity Profile at α = 0.3

Figure 6.15: Vorticity profile different amplitudes of the fish-like swimming motion at a
frequency of f = 2.0 Hz.

Notably, when considering an amplitude of α = 0.2, the vortices resemble the profile
observed with an amplitude of α = 0.1. In contrast, with a higher amplitude of α = 0.3,
the wake undergoes significant modification, in which the eddies are pushed upward, and
the emergence of lines of vortices with the same direction indicates a distinct flow pattern.

6.2.3. Swimming motion form analysis

The preceding results were based on a specific motion characterization known as carangi-
form. However, in the study of fish-like swimming, various motion configurations are
considered, leading to the categorization of carangiform and anguilliform groups, as de-
tailed in [24]. The differentiation between these motion types lies in the parameters
defining the amplitude envelope of the travelling wave equation, as presented in Table
6.4.

Motion α A0 A1 A2 λ

Carangiform 0.1 0.200 −0.825 1.625 1

Anguilliform 0.1 0.367 0.323 0.310 1

Table 6.4: Kinematic parameters of the carangiform and anguilliform motion.

In Figure 6.16, the difference in the amplitude envelope and its impact on the backbone
motion is illustrated. It is important to note that, while the movements are similar in the
tail region, the anguilliform motion exhibits a more pronounced amplitude at the head
and in the middle.

78 6| Fish-like swimming results

(a) Amplitude envelope (b) Cycle of the travelling-wave

Figure 6.16: Backbone motion of the carangiform and anguilliform.

Defined the kinematics for both types of motion, simulations were conducted to gain in-
sights into the dynamics of each distinct swimmer. The results, depicted in Figure 6.17,
express the mean average drag coefficient for different frequencies and motion configura-
tions.

Figure 6.17: Comparison of the time average drag coefficient for the fish-like swimming
carangiform and anguilliform as a function of frequency of oscillation.

The results demonstrate that at lower frequencies, the carangiform motion reduces drag
force in comparison to the anguilliform, thereby improving swimming efficiency. On the
other hand, at higher frequencies, the anguilliform motion outperforms by providing a

6| Fish-like swimming results 79

greater thrust force, propelling the fish, and facilitating its motion. For a more refined
analysis, Figure 6.18 provides a visual representation of the drag coefficient throughout a
complete cycle of motion.

(a) Drag coefficient for f = 1.0 Hz (b) Drag coefficient for f = 2.0 Hz

Figure 6.18: Time-dependant drag coefficient for the carangiform and anguilliform motion
for the frequencies of f = 1.0 Hz and f = 2.0 Hz.

Notably, at a frequency of f = 1.0 Hz, the dynamic response of the fluid yields a nearly
identical constant drag coefficient for both cases. On the other hand, as the frequency
rises to f = 2.0 Hz, the anguilliform motion exhibits a drag coefficient oscillation similar
in amplitude to the carangiform, yet notably lower in mean value, signifying a more
substantial thrust force, which also possesses a different phase.

Finally, regarding the vorticity profile of the anguilliform motion, as depicted in Fig-
ure 6.19, it does not exhibit significant differences from the carangiform form illustrated
in Figure 6.12.

(a) Vorticity Profile at a frequency f = 1.0 Hz (b) Vorticity Profile at a frequency f = 2.0 Hz

Figure 6.19: Vorticity profile of anguilliform fish-like swimming motion.

80 6| Fish-like swimming results

6.3. Fish-like swimming 3D simulations

In this section, the objective is to simulate fish-like swimming within a three-dimensional
scenario, striving for more realistic results. It is important to note that 3D simulations
are more computationally expensive compared to two-dimensional scenarios. Therefore,
considering the computational resources available, a limited number of cases will be ana-
lyzed.

To define a realistic geometry for the fish in the reference configuration, the 3D model
referenced in [22] was adopted. The details, including the fins, were removed from the
model, and its size and position were adjusted to achieve a unitary length, positioning
the head at the origin. Figure 6.20 illustrates the geometry and size of the 3D model that
will be incorporated in the simulations.

Figure 6.20: 3D geometry of a mackerel-inspired fish.

Consider a three-dimensional domain denoted as Ω = [x1, x2]× [y1, y2]× [z1, z2], and the
subdomains Ω1,Ω2 and Ω3 that define the regions of local refinement of the mesh, such
that Ω ⊃ Ω1 ⊃ Ω2 ⊃ Ω3. The decision to employ prescribed subdomains for refinement
in 3D simulations is motivated by the necessity to maintain better control of the scheme
employing a fixed number of elements and to enforce particular emphasis on the wake
region.

Regarding the boundary conditions, these consist of a uniform inflow velocity of U∞

applied to the left wall, slip conditions on the bottom, top, front, and back walls, and an
outlet condition on the right wall. Figure 6.21 illustrates the described scenario for the
simulation of fish-like swimming in three dimensions.

6| Fish-like swimming results 81

Figure 6.21: Illustration of the three-dimensional domain with local refinement for the
fish-like swimming simulation.

The specific numerical values used to define the boundaries of the domain and the size h of
the isotropic mesh element are outlined in Table 6.5. These specifications were chosen after
a preliminary examination of the wake, focusing on identifying areas requiring refinement.
Subsequently, the subdomains were delineated as follows: Ω1 encompasses the entire wake
region to be analyzed, Ω2 targets the examination of eddies near the tail, and Ω3 captures
the fish’s movement with a higher degree of refinement.

Domain [x1, x2] [y1, y2] [z1, z2] h

Ω [−1.0, 10] [−2.0, 2.0] [−2.0, 2.0] 0.04

Ω1 [−0.5, 5.0] [−1.0, 1.0] [−0.4, 0.4] 0.02

Ω2 [−0.2, 3.0] [−0.6, 0.6] [−0.3, 0.3] 0.01

Ω3 [−0.1, 1.1] [−0.3, 0.3] [−0.2, 0.2] 0.005

Table 6.5: Domain configuration of the local refinement.

Concerning the imposed kinematics of the fish, the model of inextensibility and mass
conservation described in subsection 4.3.2 will be considered. The backward wave function
for y(x, t) as indicated in (6.1) will be used, considering the parameters of the carangiform
indicated in table 6.2. In addition, a null displacement of the backbone at z(x, t) = 0 and
φ(x, t) = 0, will be taken into consideration. The chosen parameters produce a kinematic
profile that resembles that of a fish, as illustrated in Figure 6.22.

82 6| Fish-like swimming results

(a) Swimming 3D Fish at t = T/4 (b) Swimming 3D Fish at t = T/2

(c) Swimming 3D Fish at t = 3T/4 (d) Swimming 3D Fish at t = T

Figure 6.22: Swimming 3D Fish in one period T .

The specific set of parameters chosen was applied to represent the oscillatory caudal
movement of a fish. However, the implemented code is generalized to consider z(x, t) and
φ(x, t), which implies that it could be modified to represent the helicoidal movement of
various bodies, such as sperm.

Regarding the time discretization, a time step of ∆t = 0.005 s was selected, and all
simulations were carried out until reaching a time of 5 seconds. The maximum Courant
number at the highest frequency of the simulation was max(Co) = 2.0. Thus, to achieve
convergence, a total of 10 outer loops and 3 inner loops were executed in each iteration.

In terms of the scenario setup, an intermediate Reynolds number of Re = 5000 was
selected to portray the motion of the aquatic animal. This involved employing a unit
body length of L = 1, establishing a uniform inflow with a fluid velocity of U∞ = 1 m/s,
and utilizing a kinematic viscosity of ν = 2× 10−4 m2/s.

The Q-Criterion method, detailed in [48], is employed for vortex identification in the
flowfield. It involves comparing the magnitudes of vorticity and the strain rate, through
the scalar:

Q =
1

2
(∥Ω∥ − ∥S∥),

6| Fish-like swimming results 83

where Ω = Sym(∇u) is the vorticity tensor, S = Skw(∇u) is the strain-rate tensor, and
∥H∥ = (tr(HHT))1/2 is the Frobenius tensor norm.

The simulations were performed on the High-Performance Computing (HPC) system
at the Modelling and Scientific Computing department of Politecnico di Milano, using
20 cores, which solved each simulation in approximately 23 hours. Conducting three-
dimensional simulations of fish-like swimming and applying a Q-criterion threshold of 0.1,
the resulting wake eddies are depicted in Figure 6.23.

(a) Frequency f = 0.5 Hz (b) Frequency f = 1.0 Hz

(c) Frequency f = 1.5 Hz (d) Frequency f = 2.0 Hz

Figure 6.23: Three-dimensional vortical structures using the Q-criterion of Q = 0.1 for
the frequencies of oscillation f = 0.5, 1.0, 1.5, 2.0 Hz.

In the analysis of the wake’s topology, it is observed that at lower frequencies, a single
trail of eddies emerges, oscillating over the center line of the fish. Conversely, at higher
frequencies, these eddies bifurcate into two distinct lines that expand laterally. This
observation is consistent with the results reported in the numerical simulations conducted
by [6]. This phenomenon can be attributed to the fact that at higher frequencies, the
fish’s tail exhibits greater lateral velocity, leading to the lateral dispersion of the fluid
eddies.

To gain deeper insights into the vorticity pattern, horizontal (z-direction) and vertical
(y-direction) cross-sections were analyzed. Figure 6.24 depicts a horizontal cross-section

84 6| Fish-like swimming results

through the middle of the fish, offering a perspective similar to the 2D simulation previ-
ously conducted.

(a) Frequency f = 1.0 Hz

(b) Frequency f = 2.0 Hz

Figure 6.24: Z-plane cross-section vorticity profile in three-dimensional fish-like swimming
compared with the Q-criterion profile of Q = 0.1.

When comparing the results with the 2D simulation depicted in Figure 6.12, there is a no-
ticeable similarity between the wake structures. Particularly, at a frequency of f = 1.0 Hz,
patterns observed closely resemble those observed in the 2D simulation. At a frequency
of f = 2.0 Hz in the 3D simulation, deeper insights emerge as a lateral separation into
two distinct wakes becomes evident. This results in a high-frequency alternating pattern
in the vorticity direction, resembling the 2D simulation, albeit with a higher amplitude.

Furthermore, in the 3D simulations, it is possible to analyze the perspective perpendicular
to the fish. Figure 6.25 offers a lateral view of the structure, highlighting the vorticity in
the Y direction and providing additional insights into the Q-criterion results.

6| Fish-like swimming results 85

(a) Frequency f = 1.5 Hz

(b) Frequency f = 2.0 Hz

Figure 6.25: Y-plane cross-section vorticity profile in three-dimensional fish-like swimming
compared with the Q-criterion profile of Q = 0.1.

By evaluating a lateral perspective of the swimming, it becomes apparent that at the
lower frequency of f = 1.0 Hz, there is a region of null vorticity in the Y direction
between the eddies. The pattern also reveals that the vorticity is consistently positive
at the top and consistently negative at the bottom, which mirrors the behavior near the
structure. As the frequency of the oscillation increases, the separation space between
the eddies decreases, appearing more continuous, while the pattern of top and bottom
vorticity remains unchanged.

87

7| Conclusions and future

developments

In this concluding remarks, we recall the key research findings regarding fish-like swimming
simulations through the application of the Immersed Boundary Method. Additionally, we
discuss the limitations of the study while presenting potential ideas for future research.

The proposed methodology employed a mathematical model based on the unsteady in-
compressible Navier-Stokes equations, incorporating the immersed body effect through
a non-conforming mesh employing the Immersed Boundary Method. The open-source
software OpenFOAM was utilized, which is based on the Finite Volume Method in con-
junction with the PIMPLE-IBM algorithm to compute numerical solutions. The accuracy
and reliability of the employed methodology were confirmed through the verification pro-
cess involving benchmark case simulations.

To develop a kinematic model for fish-like swimming, an algorithm was developed that
encompasses both two-dimensional and three-dimensional simulations. Based on the
travelling-wave undulation, it modifies the standard model by incorporating the con-
straints of inextensibility and mass conservation. Hence, the fish-like swimming results
were generated through the establishment of a computational setup involving domain and
time discretization, followed by post-processing to analyze the desired results.

The study developed algorithms in OpenFOAM using the C++ language, built upon the
previously elaborated kinematic model for the rigid body. This allowed for the efficient
generation of a variety of tests, with different frequencies, amplitudes, and types of motion.
This approach facilitated an investigation into how these parameters influence the drag
coefficient, thus offering valuable insights into the propulsive force of swimming and the
resultant vorticity patterns in the wake.

The study has certain limitations, including the absence of the self-propelling mode of
swimming, which accounts for feedback mechanisms that both rotate and translate the
center of mass within the structure. Additionally, the simulation setup did not incorporate
a turbulence model; instead, it assumed laminar flow conditions. Finally, the scope of 3D

88 7| Conclusions and future developments

simulations was constrained due to limitations in available cluster resources and processing
time, which in turn affected both spatial and temporal discretization to generate a more
refined result.

Hence, a compelling direction for further research lies in leveraging the implemented model
to advance the understanding of the fluid dynamics associated with swimming. By incor-
porating feedback mechanisms, simulations could be performed to identify acceleration,
velocity, and power exertion in swimming, potentially leading to the discovery of optimal
swimming mechanisms. Furthermore, investigations into scenarios involving multiple fish
would explore the effects of wake interactions within a school of fish. To enhance the
accuracy of results, the research can extend into 3D simulations using a more refined
setup and explore a broader range of motions. Finally, to validate the findings, empirical
experiments can be conducted for a comparison with the numerical data using a realistic
case.

In conclusion, this project developed an algorithm for simulating deformable bodies within
OpenFOAM, employing the Immersed Boundary Method. The customization of structure
and motion parameters allowed for a comprehensive exploration of fish-like swimming
scenarios, leading to valuable insights into swimming dynamics through the analysis of
the generated forces and vorticity profiles.

89

Bibliography

[1] T. Ahmed, M. T. Amin, S. R. Islam, and S. Ahmed. Computational study of flow
around a NACA 0012 wing flapped at different flap angles with varying mach num-
bers. Glob J Res Eng, 13(4):4–16, 2014.

[2] D. Barrett, M. Triantafyllou, D. Yue, M. Grosenbaugh, and M. Wolfgang. Drag
reduction in fish-like locomotion. Journal of Fluid Mechanics, 392:183–212, 1999.

[3] M. Bergmann and A. Iollo. Modeling and simulation of fish-like swimming. Journal
of Computational Physics, 230(2):329–348, 2011.

[4] M. Bergmann, L. Cordier, and J.-P. Brancher. Optimal rotary control of the cylinder
wake using proper orthogonal decomposition reduced-order model. Physics of fluids,
17(9), 2005.

[5] J. Blom. Some characteristic quantities of Karman-Trefftz profiles. Technical report,
NASA, 1983.

[6] I. Borazjani and F. Sotiropoulos. Numerical investigation of the hydrodynamics
of carangiform swimming in the transitional and inertial flow regimes. Journal of
experimental biology, 211(10):1541–1558, 2008.

[7] M. Braza, P. Chassaing, and H. H. Minh. Numerical study and physical analysis of
the pressure and velocity fields in the near wake of a circular cylinder. Journal of
fluid mechanics, 165:79–130, 1986.

[8] H.-B. Deng, Y.-Q. Xu, D.-D. Chen, H. Dai, J. Wu, and F.-B. Tian. On numerical
modeling of animal swimming and flight. Computational Mechanics, 52:1221–1242,
2013.

[9] J. Deng, X.-M. Shao, and Z.-S. Yu. Hydrodynamic studies on two traveling wavy
foils in tandem arrangement. Physics of fluids, 19(11), 2007.

[10] J. Donea, S. Giuliani, and J.-P. Halleux. An arbitrary Lagrangian–Eulerian finite
element method for transient dynamic fluid-structure interactions. Computer methods
in applied mechanics and engineering, 33(1-3):689–723, 1982.

90 | Bibliography

[11] J. Donea, A. Huerta, J.-P. Ponthot, and A. Rodríguez-Ferran. Arbitrary Lagrangian–
Eulerian methods. Encyclopedia of computational mechanics, 2004.

[12] G.-J. Dong and X.-Y. Lu. Numerical analysis on the propulsive performance and
vortex shedding of fish-like travelling wavy plate. International Journal for Numerical
Methods in Fluids, 48(12):1351–1373, 2005.

[13] G.-J. Dong and X.-Y. Lu. Characteristics of flow over traveling wavy foils in a side-
by-side arrangement. Physics of fluids, 19(5), 2007.

[14] J. H. Ferziger, M. Perić, and R. L. Street. Computational methods for fluid dynamics,
volume 3. Springer, 2002.

[15] G. B. Folland. Real analysis: modern techniques and their applications, volume 40.
John Wiley & Sons, 1999.

[16] L. Formaggia, F. Nobile, et al. A stability analysis for the arbitrary Lagrangian
Eulerian formulation with finite elements. EAST-WEST JOURNAL OF MATHE-
MATICS, 7:105–132, 1999.

[17] S. Forte, L. Preziosi, M. Vianello, et al. Meccanica dei continui. Springer, 2019.

[18] J. Gray. Studies in animal locomotion: I. the movement of fish with special reference
to the eel. Journal of experimental biology, 10(1):88–104, 1933.

[19] J.-W. He, R. Glowinski, R. Metcalfe, A. Nordlander, and J. Periaux. Active control
and drag optimization for flow past a circular cylinder: I. oscillatory cylinder rotation.
Journal of Computational Physics, 163(1):83–117, 2000.

[20] R. D. Henderson. Nonlinear dynamics and pattern formation in turbulent wake
transition. Journal of fluid mechanics, 352:65–112, 1997.

[21] G. Iaccarino and R. Verzicco. Immersed boundary technique for turbulent flow sim-
ulations. Appl. Mech. Rev., 56(3):331–347, 2003.

[22] Kaangvl. Fish (Low Poly) 3D Model. https://free3d.com/3d-model/

3d-fish-model-low-poly-63627.html, 2019. [Online; accessed 01-November-
2023].

[23] S. Li, C. Li, L. Xu, W. Yang, and X. Chen. Numerical simulation and analysis of
fish-like robots swarm. Applied Sciences, 9(8):1652, 2019.

[24] A. P. Maertens, A. Gao, and M. S. Triantafyllou. Optimal undulatory swimming
for a single fish-like body and for a pair of interacting swimmers. Journal of Fluid
Mechanics, 813:301–345, 2017.

https://free3d.com/3d-model/3d-fish-model-low-poly-63627.html
https://free3d.com/3d-model/3d-fish-model-low-poly-63627.html

| Bibliography 91

[25] F. L. Markley and J. L. Crassidis. Fundamentals of spacecraft attitude determination
and control, volume 1286. Springer, 2014.

[26] J. S. MARTíN, J.-F. Scheid, T. Takahashi, and M. Tucsnak. An initial and boundary
value problem modeling of fish-like swimming. Archive for rational mechanics and
analysis, 188:429–455, 2008.

[27] F. Moukalled, L. Mangani, M. Darwish, F. Moukalled, L. Mangani, and M. Darwish.
The finite volume method. Springer, 2016.

[28] B. Munson, A. Rothmayer, T. Okiishi, and W. Huebsch. Fundamentals of Fluid
Mechanics. Wiley, 2012. ISBN 9781118116135. URL https://books.google.it/

books?id=BSEpygEACAAJ.

[29] U. K. Müller, B. L. E. Van Den Heuvel, E. J. Stamhuis, and J. J. Videler. Fish Foot
Prints: Morphology and Energetics of the Wake Behind a Continuously Swimming
Mullet (Chelon Labrosus Risso). Journal of Experimental Biology, 200(22):2893–
2906, 11 1997. ISSN 0022-0949. doi: 10.1242/jeb.200.22.2893. URL https://doi.

org/10.1242/jeb.200.22.2893.

[30] G. Negrini. Non-conforming methods for the simulation of industrial polymer mixing
processes. Ph.D. thesis, Politecnico di Milano, 2023.

[31] G. Negrini, N. Parolini, and M. Verani. The Rhie-Chow stabilized box method for
the stokes problem. arXiv preprint arXiv:2308.01059, 2023.

[32] Y. Ohkami. Spacecraft dynamics. In R. A. Meyers, editor, Encyclopedia of Phys-
ical Science and Technology (Third Edition), pages 431–448. Academic Press, New
York, third edition edition, 2003. ISBN 978-0-12-227410-7. doi: https://doi.org/10.
1016/B0-12-227410-5/00898-X. URL https://www.sciencedirect.com/science/

article/pii/B012227410500898X.

[33] S. Patankar. Numerical heat transfer and fluid flow hemisphere publishing corpora-
tion. New York, 1980.

[34] C. S. Peskin. Flow patterns around heart valves: a numerical method. Journal of
computational physics, 10(2):252–271, 1972.

[35] C. S. Peskin. Numerical analysis of blood flow in the heart. Journal of computational
physics, 25(3):220–252, 1977.

[36] C. S. Peskin. The immersed boundary method. Acta numerica, 11:479–517, 2002.

[37] F. Picano, W.-P. Breugem, and L. Brandt. Turbulent channel flow of dense sus-

https://books.google.it/books?id=BSEpygEACAAJ
https://books.google.it/books?id=BSEpygEACAAJ
https://doi.org/10.1242/jeb.200.22.2893
https://doi.org/10.1242/jeb.200.22.2893
https://www.sciencedirect.com/science/article/pii/B012227410500898X
https://www.sciencedirect.com/science/article/pii/B012227410500898X

92 | Bibliography

pensions of neutrally buoyant spheres. Journal of Fluid Mechanics, 764:463–487,
2015.

[38] P. Ploumhans and G. Winckelmans. Vortex methods for high-resolution simula-
tions of viscous flow past bluff bodies of general geometry. Journal of Computa-
tional Physics, 165(2):354–406, 2000. ISSN 0021-9991. doi: https://doi.org/10.
1006/jcph.2000.6614. URL https://www.sciencedirect.com/science/article/

pii/S0021999100966142.

[39] A. Quarteroni. Numerical models for differential problems, volume 2. Springer, 2009.

[40] P. Saksono, W. Dettmer, and D. Perić. An adaptive remeshing strategy for flows
with moving boundaries and fluid–structure interaction. International Journal for
Numerical Methods in Engineering, 71(9):1009–1050, 2007.

[41] S. Schwarz, T. Kempe, and J. Fröhlich. An immersed boundary method for the
simulation of bubbles with varying shape. Journal of Computational Physics, 315:
124–149, 2016.

[42] F. Sotiropoulos, T. B. Le, and A. Gilmanov. Fluid mechanics of heart valves and
their replacements. Annual Review of Fluid Mechanics, 48:259–283, 2016.

[43] F. C. Thames, J. F. Thompson, C. Wayne Mastin, and R. L. Walker. Numerical
solutions for viscous and potential flow about arbitrary two-dimensional bodies using
body-fitted coordinate systems. Journal of Computational Physics, 24(3):245–273,
1977. ISSN 0021-9991. doi: https://doi.org/10.1016/0021-9991(77)90037-7. URL
https://www.sciencedirect.com/science/article/pii/0021999177900377.

[44] E. D. Tytell and G. V. Lauder. The hydrodynamics of eel swimming: I. wake struc-
ture. Journal of Experimental Biology, 207(11):1825–1841, 2004.

[45] H. K. Versteeg and W. Malalasekera. An introduction to computational fluid dynam-
ics: the finite volume method. Pearson education, 2007.

[46] J. Videler and F. Hess. Fast continuous swimming of two pelagic predators, saithe
(pollachius virens) and mackerel (scomber scombrus): a kinematic analysis. Journal
of experimental biology, 109(1):209–228, 1984.

[47] S. Ye, Y. Lin, L. Xu, and J. Wu. Improving initial guess for the iterative solution of
linear equation systems in incompressible flow. Mathematics, 8(1):119, 2020.

[48] Y.-n. Zhang, X.-y. Wang, Y.-n. Zhang, and C. Liu. Comparisons and analyses of vor-

https://www.sciencedirect.com/science/article/pii/S0021999100966142
https://www.sciencedirect.com/science/article/pii/S0021999100966142
https://www.sciencedirect.com/science/article/pii/0021999177900377

7| BIBLIOGRAPHY 93

tex identification between omega method and q criterion. Journal of Hydrodynamics,
31:224–230, 2019.

95

A| 2D structure generation

To generate the STL (Standard Tessellation Language) representation of the structure,
a MATLAB code was developed to create a script compatible with the GMSH software,
which subsequently generates the tessellation. The transformation into a two-dimensional
structure, achieved by removing the lateral components of the fish structure, is performed
using the ParaView software in a later step.

Considering the geometrical description of the 2D swimmer steady-shape outlined in sec-
tion 4.1, the MATLAB code receives as an input the parameter nθ, which determines
the number of discrete points used to parameterize the reference circumference. As for
the shape parameters, the user can specify the horizontal coordinate of the center of the
circumference, denoted as ηC , and the trailing edge angle, denoted as α.

Therefore, the code generates the IBFISH.geo file, which serves as input for GMSH to cre-
ate the IBFISH.stl file. Moreover, for verification, the MATLAB script displays Figure 4.1
using the specified parameter set. The MATLAB code is provided as follows:

1 % Fish_Generator (Reference state)

2 clear;

3 close all;

4
5 % Circle Parametrization:

6 ntheta = 100;

7 theta = linspace(0, 2*pi , ntheta);

8
9 % Fish Parameters:

10 eta_c = -0.04;

11 alpha_degree = 5;

12
13 alpha = alpha_degree *(pi /180);

14 n = 2 - alpha/pi;

15

96 A| 2D structure generation

16 for j = 1: length(theta) - 1

17 zeta(j) = (1 + abs(eta_c))*exp(1i*theta(j)) + eta_c;

18
19 num = (1 + 1/zeta(j))^n + (1 - 1/zeta(j))^n;

20 den = (1 + 1/zeta(j))^n - (1 - 1/zeta(j))^n;

21 z = n*num/den;

22
23 x(j) = real(z);

24 y(j) = imag(z);

25 end

26
27 % Rescale:

28 rescale = abs(max(x) - min(x));

29 for i = 1: length(x)

30 x(i) = x(i)/rescale;

31 y(i) = y(i)/rescale;

32 end

33
34 % Translation:

35 translation = abs(min(x));

36 for i = 1: length(x)

37 x(i) = x(i) + translation;

38 end

39
40 % Visual Plot of the result

41 figure (1)

42 subplot (1,2,1)

43 plot(real(zeta), imag(zeta),'r');

44 grid on;

45 title(" Parametrized Circunference ")

46
47 subplot (1,2,2)

48 plot(x,y,'black');

49 grid on;

50 xlim ([0 1]);

51 ylim ([-0.5 0.5]);

52 title("Fish Shape")

A| 2D structure generation 97

53
54 % Verification of the trailing edge angle:

55 alpha_airfoil = 2*atan(abs(y(end) - y(end - 1))/abs(x(end) -

x(end - 1)))*(180/ pi);

56
57 %% Save in Gmesh

58 clearvars -except x y

59
60 z = zeros(1,length(x)) - 0.5;

61 characteristicLength = z + 1.0;

62
63 points = [x',y',z', characteristicLength '];

64
65 lines = [];

66 for i = 0: length(x) - 2

67 lines = [lines; [i , i+1]];

68 end

69 lines = [lines; [lines(end), 0]];

70
71 % Writing in the output file.

72
73 % Open the output file for writing

74 fid = fopen('IBFISH.geo', 'w');

75
76 fprintf(fid , '// Generate the stl with the following command\

n');

77 fprintf(fid , '//gmsh -2 -format stl IBFISH.geo\n');

78 fprintf(fid , '\n');

79 fprintf(fid , '// Shape points\n');

80
81 % Write the shape points

82 for i = 0:size(points , 1) -1

83 fprintf(fid , 'Point(%d) = {%f, %f, %f, %f};\n', i, points

(i+1,:));

84 end

85
86 fprintf(fid , '\n');

98 A| 2D structure generation

87
88 % Write the lines

89 for i = 10: size(lines , 1)+9

90 fprintf(fid , 'Line(%d) = {%d, %d};\n', i, lines(i-9,:));

91 end

92
93 fprintf(fid , '\n');

94
95 fprintf(fid , 'Curve Loop (100) = {10:%d};\n', length(lines) +

9);

96
97 fprintf(fid , '\n');

98
99 fprintf(fid , 'Plane Surface (1000) = {100};\n');

100
101 fprintf(fid , '\n');

102
103 fprintf(fid , 'extr[] = Extrude {0, 0, 1.0} {\n');

104 fprintf(fid , ' Surface {1000};\n');

105 fprintf(fid , ' Layers {1};\n');

106 fprintf(fid , ' Recombine ;\n');

107 fprintf(fid , '};\n');

108
109 fprintf(fid , '\n');

110
111 fprintf(fid , 'Volume (" internal ") = extr [1];\n');

112 % Close the file

113 fclose(fid);

99

List of Figures

2.1 Map Lt between the reference configuration V̂ and the deformed configu-
ration Vt. 6

2.2 2D representation of the drag and lift forces acting on the structure. 15

3.1 Illustration of the finite volume grid and the neighbors’ computational cells
Ci and Cj. 20

3.2 Representation of the triangulation Σ, and the velocity uIB of the points. . 26
3.3 2D representation of the mesh subdivision into solid cells CS, fluid cells CF,

and immersed boundary cells CIB. 27
3.4 2D representation of the extended stencil of an immersed boundary cell,

considering connectivity criteria of level c = 1, distance criteria of d, and
field of view criteria of θ. 28

3.5 PIMPLE algorithm flowchart. 32

4.1 Example of Karman-Trefftz transformation. 36
4.2 Euler’s angles considering the rotation Y − z1 − x2. 39
4.3 Example of the deformed backbone and the discretization procedure con-

sidering a 2D motion. 42
4.4 Illustration of the swimmer surface displacement. 44

5.1 Illustration of a locally refined mesh around a circular cylinder. 51
5.2 Geometric domain of the simulation cylinder. 52
5.3 Results of the simulation of a flow over a cylinder considering Re = 1. . . . 53
5.4 Drag coefficient as a function of Reynolds number for a smooth circular

cylinder and sphere [28]. 54
5.5 Von Kármán street vorticity patterns for an external flow over a cylinder

at Re = 200. 55
5.6 Drag and Lift coefficients at Re = 200. 55

100 | List of Figures

5.7 Comparison between the external flow over a fixed and motion circular
cylinder at Re = 550, compared with values from Ploumhans & Winckel-
mans (2000) [38]. 57

5.8 Geometric domain of the simulation of a flexible body. 58
5.9 Wavy plate motion in one period T . 59
5.10 Time average drag coefficient for the travelling wavy plate as a function of

the frequency of oscillation, compared with values from Dong & Lu (2005)
[12]. 60

5.11 Wavy fish-body airfoil motion in one period T 62
5.12 Time average drag coefficient for an undulation NACA0012 as a function

of frequency of oscillation, compared with values from Dong & Lu (2007)
[13]. 63

6.1 Backbone motion in the transitional state and a cycle of motion. 66
6.2 Tail horizontal position and velocity in a cycle of motion. 67
6.3 Surface variation in a cycle of motion. 68
6.4 Velocity field components in the immersed boundary surface and solid cells. 69
6.5 Illustration of the two-dimensional domain for fish-like swimming simulation. 70
6.6 Comparison of drag coefficient for different setup configurations. 71
6.7 Mesh of the intermediary setup. 71
6.8 Initial configuration of the velocity and pressure. 72
6.9 Time average drag coefficient for the fish-like swimming as a function of

frequency of oscillation. 72
6.10 Fish-swimming time-dependent drag force coefficients for the frequencies

of oscillation f = 0.5, 1.0, 1.5, 2.0 Hz. 73
6.11 Fish-swimming time-dependent lift force coefficients for the frequencies of

oscillation f = 0.5, 1.0, 1.5, 2.0 Hz. 74
6.12 Vorticity profile of the wavy body-fish airfoil at different frequencies. 75
6.13 Comparison of the time average drag coefficient for the fish-like swimming

for different amplitude as a function of frequency of oscillation. 75
6.14 Time-dependant drag coefficient for different amplitudes for the frequencies

of f = 0.5, 1.0, 1.5, 2.0 Hz. 76
6.15 Vorticity profile different amplitudes of the fish-like swimming motion at a

frequency of f = 2.0 Hz. 77
6.16 Backbone motion of the carangiform and anguilliform. 78
6.17 Comparison of the time average drag coefficient for the fish-like swimming

carangiform and anguilliform as a function of frequency of oscillation. . . . 78

| List of Figures 101

6.18 Time-dependant drag coefficient for the carangiform and anguilliform mo-
tion for the frequencies of f = 1.0 Hz and f = 2.0 Hz. 79

6.19 Vorticity profile of anguilliform fish-like swimming motion. 79
6.20 3D geometry of a mackerel-inspired fish. 80
6.21 Illustration of the three-dimensional domain with local refinement for the

fish-like swimming simulation. 81
6.22 Swimming 3D Fish in one period T . 82
6.23 Three-dimensional vortical structures using the Q-criterion of Q = 0.1 for

the frequencies of oscillation f = 0.5, 1.0, 1.5, 2.0 Hz. 83
6.24 Z-plane cross-section vorticity profile in three-dimensional fish-like swim-

ming compared with the Q-criterion profile of Q = 0.1. 84
6.25 Y-plane cross-section vorticity profile in three-dimensional fish-like swim-

ming compared with the Q-criterion profile of Q = 0.1. 85

103

List of Tables

4.1 Algebraic Method Analysis. 43
4.2 Geometric Method Analysis. 43

5.1 CD and St comparison for Re = 200. 56

6.1 Geometric Parameters. 66
6.2 Kinematic Parameters. 66
6.3 Numerical setup configurations for mesh size, time step, and domain di-

mensions. 70
6.4 Kinematic parameters of the carangiform and anguilliform motion. 77
6.5 Domain configuration of the local refinement. 81

105

Acknowledgements

I would like to express my gratitude to Professor Nicola Parolini, who played a vital
role in shaping the content and direction of this thesis. He offered valuable insights and
provided me with all the support I needed throughout my development as a student.
Furthermore, I would like to express my appreciation to Doctor Giorgio Negrini. His help
was indispensable throughout the entire journey using OpenFOAM. He provided me with
essential codes to improve the results, corrected misconceptions, and helped me whenever
I needed it. I extend my thanks to Professor Bruno Carmo, who gave me valuable feedback
during the project and constructive criticism, which significantly improved the quality of
this thesis.

I would also like to express my gratitude to my family, Hélio Murakami and Roseli Mu-
rakami, who, even on the other side of the world, have offered me encouragement and
support, making this exchange program possible. Finally, I want to acknowledge all my
friends who have been by my side throughout this incredible journey, with special mention
to Carolina Iplinsky, Felipe Pascutti, Gustavo Torrico, Julia Rangel, Juliana Maines, and
Pedro Gianjoppe.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Fluid dynamics model
	Incompressibility
	Mass conservation
	Linear momentum conservation
	Angular momentum conservation
	Constitutive relation
	The incompressible Navier-Stokes equations
	Immersed Boundary Method

	Numerical approximation
	Finite Volume Method
	FVM for the advection-diffusion-reaction equation
	FVM for the incompressible Navier-Stokes equations

	PIMPLE projection method
	Immersed Boundary numerical implementation
	Immersed Boundary interpolator
	PIMPLE-IBM

	Modelling of fish-like swimming
	Modelling of the swimmer steady-shape
	Modelling of the fish backbone
	Analytical description of the 2D motion
	Analytical description of the 3D motion
	Backbone numerical algorithm

	Modelling of the fish surface
	Analytical description of the 2D motion
	Analytical description of the 3D motion
	Structure velocity field algorithm

	Fish-like swimming implementation

	Numerical verification
	Flow over a circular cylinder
	Steady flow, Re = 1
	Unsteady flow, Re = 200
	Moving cylinder, Re = 550

	Travelling wavy foils
	Travelling wave plate
	Travelling wavy fish-body like

	Fish-like swimming results
	Fish-like swimming kinematics
	Swimmer backbone analysis
	Swimmer surface analysis

	Fish-like swimming 2D simulations
	Oscillation frequency analysis
	Oscillation amplitude analysis
	Swimming motion form analysis

	Fish-like swimming 3D simulations

	Conclusions and future developments
	Bibliography
	2D structure generation
	List of Figures
	List of Tables
	Acknowledgements

